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ABSTRACT 

U.S. Forests are under significant pressure from global climate change.  This study 

investigates the impact of climate change on U.S. forest at various aspects. In the first 

essay, I use a generalized linear model to examine how climatic conditions have 

influenced southern pine beetle (SPB; Dendroctonus frontalis Zimmermann) outbreaks 

in the southern U.S. and project future SPB infestations using the future climates 

projected by Global Climate models (GCMs). The estimation results indicate that 

climate significantly affects SPB outbreaks, but projected future SPB infestation would 

not move in one direction under the complex interactions between temperature and 

precipitation and the magnitude of damages would vary across the region.  In the second 

essay, I use panel data analysis with various climate and spatial characteristic variables 

to investigate the effects of CO2 fertilization and climate variables on forest productivity 

across the U.S. The results from the second essay indicate that there is a significant 

correlation between climate variables and forest productivity. Also, projected global 

climate change would enhance future forest productivity in the South, the Pacific 

Coastal, and the northern Great Plains of the U.S. but likely threaten forest productivity 

in some regions such as the southern Great Plains. In the third essay, I investigate how 

forest carbon credits and SPB risk associated with climate change affect individual 

landowner’s decision making using a real options framework. The results of the third 

essay reveal that carbon sequestration would increase the value of standing forests, 

whereas higher SPB risk associated with climate change would reduce the forest value.  
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The higher value of standing forests would encourage the landowners to delay timber 

harvest. Overall results of this study show that climate change will have a mixed impact 

on U.S. forests, which requires region-specific adaptation and mitigation strategies. 
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1. INTRODUCTION 

 

The southern U.S. is one of the most productive forest regions in the world, 

supplying almost 60% of the timber in the U.S. and over 14% of industrial round wood 

in the world. Forest owners, however, are facing many uncertainties such as timber price 

volatility, unexpected climate events, and other disturbances. Moreover, ongoing climate 

change will enhance uncertainties including changes in average temperature and 

precipitation, and increases in occurrences of droughts and flooding. Ample evidence 

shows that climate change is proceeding and one of the crucial causes of climate changes 

is human-caused greenhouse gases emissions (IPCC 2007). From 1990 to 2012, the 

worldwide net greenhouse gases emission from human activities have been increased by 

35% (US EPA 2015). Emissions of carbon dioxide (CO2) which accounts for about 

three-fourths of total greenhouse gas emissions have been increased by 42% in the same 

period (US EPA 2015). An increasing concentration of greenhouse gases in the 

atmosphere is considered a major cause of global warming. The Intergovernmental Panel 

on Climate Change (IPCC) suggests increase in world average temperature range in size 

from 0.2–5.5°C by 2100 in their fifth assessment report (IPCC 2013). The rapid growth 

of greenhouse gases will be expected to change the earth’s climate, temperature, 

precipitation, and temperature variability (IPCC 2013). Forests have a close relationship 

with climate factors such as temperature and precipitation. As climate change 

progresses, the uncertainties that forest owners are going to face are intensified because 

climate change is largely related to forest productivity and insect outbreaks that could 
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directly affect forest owner’s profit.  

The purpose of this dissertation is to examine issues which are related to 

understanding the impacts of climate change on forests in the U.S. at different aspects. 

The first and third essays focus on the southern U.S. In the second essay, the target area 

will be extended to all of the U.S. continental states. The specific objectives are:  

- Investigate the relationship between climate factors and southern pine beetle 

(SPB) (Dendroctonus frontalis Zimmermann) risk and predict future SPB 

outbreak risks using projected future climate data;  

- Investigate climate change effects on forest productivity using historical data 

and predict future forest productivity in the U.S. under future climate scenarios; 

and  

- Examine optimal rotation age and forest bareland value under timber price 

volatility coupled with the value of forest carbon sequestration and SPB 

outbreak risk in the southern U.S.  

In the first essay, I examine the effects of various climate variables including 

temperature, temperature extremes, and precipitation on SPB outbreak risk and project 

SPB infestations under future climate change. SPB infestations have been largely related 

to climate conditions, and ongoing global climate change is expected to alter the pattern 

of SPB infestation risk. The Generalized Linear Model (GLM) approach provides 

appropriate framework for investigating the relationship between various independent 

variables and SPB risk through control fractional dependent variables. In the projection 

part, I investigate the responses of SPB infestation under various climate change 
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scenarios. Also, expected future cyclical pattern and amplitude of SPB infestation are 

examined using cyclical pattern analysis.  

The relationships between climate factors and forest productivity are examined in 

the second essay. Forest productivity is closely related to not only temperature and 

precipitation, but also other factors including soil quality, forest type, and tree density in 

the area. In addition, CO2 concentration in the atmosphere plays a pivotal role in tree 

growth. To investigate the relationship between various dependent variables and forest 

productivity, panel data approach is used. Also, the future climate change impact on 

forest productivity is provided across multiple global climate scenarios. In the projection 

part, I consider changes of CO2 concentration pathways in climate scenarios. This 

explores the potential future CO2 impact on forest productivity.   

In the third essay, I apply a suitable technique for valuing forestland and 

determining optimal harvest/rotation age. The most widely used static discount cash 

flow (DCF) method fails to include flexibility in forest harvesting decision. To overcome 

this weakness, a real option analysis is used to evaluate forestland value and optimal 

harvest decision under uncertainties. The main objective is to find optimal harvest age 

and forest bareland value considering timber price volatility, carbon sequestration ability 

of the forest, and SPB risk by applying real option to forest management problems.  

The overall structure of the dissertation takes the form of five sections and 

appendix. Section 1 is a general introduction of the dissertation. Section 2 includes the 

first essay that is concerned with climate variability and SPB infestation. The 

relationship between climate variables and SPB risk, projected future SPB risk using 
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global climate models (GCMs), and hidden cyclical pattern in SPB outbreaks are 

reported in the second section. Section 3 is the second essay that examines the impact of 

climate variables on the forest productivity and project future climate change impact on 

forest productivity across the continental U.S. states under multiple global climate 

scenarios. Section 4 includes the third essay. In the third essay, I evaluate the changes in 

optimal harvest decision, forest bareland value, and harvest threshold ages using real 

option approach under various risks including timber price volatility, carbon 

sequestration ability of forest and tree damages by SPB infestation. Section 5 presents 

findings of the studies and overall conclusions.  
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2. CLIMATE VARIABILITY, ADAPTATION, AND SOUTHERN PINE BEETLE 

INFESTATION 

 

Infestations of the southern pine beetle (SPB; Dendroctonus frontalis Zimmermann) 

are a major disturbance to pine forest ecosystems in the southern U.S. (Preisler et al. 

2012). This region is one of the most productive forest regions in the U.S., supplying 

almost 60% of timber in the U.S. and over 14% of industrial round wood in the world 

(Smith et al. 2009). SPB outbreaks not only cause timber loss but also affect the 

structure and health of the forest ecosystem, increasing fire hazards and reducing forest 

carbon storage (Safranyik, Shrimpton, and Whitney 1975). SPB infestations have been 

found to be responsive to climatic conditions and are predicted to rise under climate 

change (Gan 2004). Previous works (Lorio and Hodges 1977; Safranyik et al. 2010; 

Raffa and Berryman 1982) on SPB infestation primarily have focused on two aspects: 1) 

explaining the factors that contribute to SPB population dynamics from entomological 

perspectives; and 2) modeling the relationship between SPB infestations and 

contributing factors using statistical tools and observed data.  

Considerable work has been done in entomology to identify and explain the factors 

and their contribution to SPB outbreaks. Many factors have been found to be attributable 

to SPB infestations, including forest stand age (tree diameter), stand density, nearby 

beetle sources, host tree vigor, soil condition, environmental stress, water deficit, 

climatic conditions, along with other factors (Lorio and Hodges 1977). Among these 

factors, climate, however, is probably the most significant (Bentz et al. 2010; Carroll et 
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al. 2003). Climate conditions directly affect the dynamic of the SPB population and 

influence the health of host trees and natural predators of the SPB (Preisler et al. 2012). 

Moreover, ongoing global climate change accelerates the risk of SPB infestation because 

it increases the beetle population and distribution in the forest because of changes in 

average temperature and precipitation (Ungerer, Ayres, and Lombardero 1999).  

Based on the Intergovernmental Panel on Climate Change (IPCC) report, projected 

average global temperature will increase by 2–4 °C by end of the twenty-first century 

under several emission scenarios (IPCC 2007), and such climate changes can cause 

potential movement of epidemic insect populations (Logan, Bentz, and Powell 2001). 

Changes in temperature likely have direct impacts on the beetle population dynamics 

while water shortage may have indirect impacts on the beetle through impacts on the 

host trees (Bentz et al. 2010). 

 One of the most significant temperature-related factors in SPB population dynamics 

is insect mortality resulting from cold exposure (Bentz et al. 2010). The stage of beetle 

development, durations of exposure to cold temperatures, responses to seasonal changes 

in temperature, and geographical locations influence the population of pine beetles. The 

SPB has four life stages: egg, larva, pupa, and adult. The third and fourth stages are 

usually exposed to the coldest weather from December to February (Bentz and Mullins 

1999). Winter temperatures, therefore, are critical because frequent occurrences of 

severe winter temperatures decrease the survival of the immature and can cause 

widespread beetle mortality. SPB accumulates cryoprotectant such as glycerol 

compounds as temperature decreases during the fall (Bentz and Mullins 1999). 
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Increasing temperature associated with climate change, particularly in the fall during the 

periods of glycerol synthesis, induces beetle mortality (Bentz et al. 2010). Beetles 

increasingly develop cold tolerance with the decrease in fall temperatures, but 

abnormally cold weather increases the mortality rate (Régnière and Bentz 2007). In 

particular, dramatic temperature drops in fall and spring can result in death of many 

individuals (Gibbons, Hedeker, and DuToit 2010). These entomological studies have 

provided a theoretical basis for modeling. 

 Climate can also influence beetle infestations through its effect on host tree vigor 

and food abundance to the insects. Climate water stress may have a significant effect on 

host trees as well. Trees that face water stress are more easily exposed to beetle attacks 

because of lower resin production during the drought season (Bentz et al. 2010). If the 

beetle population has settled in stressed trees, even healthy trees in the neighboring area 

can be attacked by beetles (Gaylord 2014). Therefore, fast management action may be 

important to reduce the damage by beetle attacks. Recent large-scale outbreaks of 

mountain pine beetles in the western U.S. and Canada also suggest the vulnerability of 

the pine forests in the U.S. to bark beetles because climate change has altered structure 

and composition of forest in these areas (Negron and Fettig 2014). In this essay, I 

quantify the relationship between SPB infestations and climatic conditions in the 

southern U.S. and predict future SPB risk under predicted climate change in the region. 

The specific steps for this essay are; 1) to investigate the relationship between 

climate factors and southern pine beetle (SPB) risk using the Generalized Linear Model 

(GLM); 2) to identify cyclical patterns of SPB outbreaks using cyclical pattern analysis; 
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and 3) to project future SPB risk using the future climate conditions projected by Global 

Climate Models (GCMs) to assess global climate change impact on SPB outbreak risk.  

Several studies have employed statistical tools to estimate the relationship between 

SPB infestations and their contribution factors, in general, and climatic conditions, in 

particular. This study advances the previous modeling work in several aspects. First, I 

use generalized linear model to estimate the relationship between climatic conditions and 

SPB infestations, which can better handle the fractional dependent variable by ensuring 

that it remains within the range of [0, 1]. Second, I explore the potential impact of 

climate extremes (e.g., maximum and minimum seasonal temperatures), in addition to 

average seasonal temperatures and total seasonal precipitation, on SPB outbreaks, as 

these extremes have shown influences on SPB populations. Third, I incorporate 

independent variables representing forest conditions such as unsalvaged volume of 

infested trees into the model. The unsalvaged volume of infested trees could affect SPB 

infestations in the neighboring area. Also, the values of the variables can be altered by 

changing forest management practices. Thus, the variable may prove implications for 

adopting strategy to alleviate SPB damage by salvaging infested trees in the future.  

In addition, the newly developed Representative Concentration Pathways (RCPs) 

climate scenarios based on the IPCC fifth assessment report (AR5) are adopted to project 

future SPB risks. The climate scenarios are used to ensure that projections are consistent 

across the various branches of climate science (Wayne 2013). The new set of scenarios 

for climate change is necessary to take into account scientific advances in the 

understanding of the climate system, as well as to include updated data on current and 
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historical emissions, climate change mitigation, and adaptation impact (Moss et al. 

2010). Using the integrated RCP scenarios, I provide more robust estimates and 

projections of the SPB risks than previously found in the studies using the scenarios in 

SRES (IPCC 2000a).  

  

2.1 Estimation method  

2.1.1 Generalized linear model with fractional response variables  

A traditional linear regression of ( )E y x  given X takes the following form: 

(1) 1 1 2 2( ) .... k kE y x x x x Xβ β β β= + + = . 

where 1 2( , ,..., )kX x x x≡  is a 1 K×  vector of explanatory variables with 1 1x ≡ ; y  is the 

dependent variable; and β  is a 1K ×  vector of coefficients to be estimated. Suppose a 

response variable, y , is fractional and bounded between 0 and 1. In this case, the linear 

modeling approach is inappropriate, and the estimation result could be biased because 

for certain values of ,x  the estimated ŷ  could be greater than one or less than zero, i.e., 

ˆ 1y >  or ˆ 0y <  (Papke and Wooldridge 1996). To overcome this problem, I employ the 

Generalized Linear Models (GLM) framework which can better treat the fractional 

response variable than a linear model for the log-odd ratio. A linear model for log-odd 

ratio is (log[ / (1 )] )E y y x X β− = . However, the equation cannot be defined if y  has 

values 0 or 1 with positive probability so adjustments should be made before computing 

log-odds ratio if any observation iy  takes values 0 or 1 in a given data set (Papke and 
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Wooldridge 1996). The logit or probit link function in GLM ensures that the y  value 

remains within the range of [0, 1], and the GLM framework allows the outcomes at the 

end points to be zero and one. Under the GLM, the link between the expected value of 

response and explanatory variables is   

(2) 2 21( [ ]) .... k kg E y x x x Xβ β β β= + + = , 

where X , a 1 K×  vector, is a set of explanatory variables and ( )g ⋅  is called a link 

function. Equation (2) linearly links the expected value of response variable y  to the 

explanatory variables (Madsen and Thyregod 2011). To identify the model, we need to 

specify a distribution of the response variable y , explanatory variables, and the link 

function. The response variable follows a Bernoulli distribution in the GLM model. The 

link function ( )g ⋅  is a smooth monotonic function. In this study, the inverse standard 

normal cumulative density function (CDF), 1( ) ( )g z z−= Φ  is used as the link function 

(probit link function). Empirically, applying the logit or probit link function in binomial 

data generates similar estimation results (Hardin and Hilbe 2007), but probit is 

computationally simpler when we have unobserved heterogeneity or endogenous 

explanatory variables (Papke and Wooldridge 2008). Also, probit is preferred when 

researchers focus more on prediction rather than on parameter estimations (Hardin and 

Hilbe 2007). Because the link function, (z)g , satisfies 0 ( ) 1g z≤ ≤  for all z ∈ , the 

value of y  lies in the interval (0, 1). Also it is easy to recover the regression function 

using an inverse link function such that 1( ) ( )it it
g X E y xμ β ε−= + = . This is another 
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advantage of GLM compared to traditional logistic transformation (Hardin and Hilbe 

2007). 

 

2.1.2 Data and the empirical model 

The empirical model for estimating the relationship between SPB risk and climate 

and forestry variables is 

(3) 
0 1 2 3
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r MaxSpring
MaxSummer MaxFall MaxWinter d c

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

β
β β β

− −

− − −

+

+ + + + +

where 

Φ  = the standard normal cumulative density function;  

i = 1, 2, … , N (state), t = 1, 2, … , T (time) , and ρ  = 0, 1, … , m (lags number);  

RISK = the risk of SPB outbreaks (the portion of timber volume killed by SPB in 

terms of the total volume of softwood growing stock);  

USV = the portion of unsalvaged volume in terms of the total pine growing stock, 

which is measured as a percentage against growing stock and can represent 

human’s efforts for adapting to climate change;  

SPT = monthly average spring temperature;  

SMT = monthly average summer temperature;  

FLT = monthly average fall temperature;  
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WNT = monthly average winter temperature;  

SPP = monthly average spring precipitation;  

SMP = monthly average summer precipitation;  

FLP = monthly average fall precipitation; 

WNP = monthly average winter precipitation;  

MinSpring = minimum spring temperature;  

MinSummer = minimum summer temperature;  

MinFall = minimum fall temperature; 

MinWinter = minimum winter temperature;  

MaxSpring = maximum spring temperature;  

MaxSummer = maximum summer temperature;  

MaxFall = Maximum fall temperature;  

MaxWinter = maximum winter temperature;  

id  = state dummy variables; and  

ic  = catastrophic events to filter out their effect.  

March to May is the spring season, June to August is the summer season, September to 

November is the fall season, and December to February is the winter season. The 

independent variable RISK is calculated by using equation (4), and 0 1itRISK≤ ≤ . RISK 

implies the proportion of the timber volume killed by SPB in terms of the total pine 

species (Gan 2004). 

(4) Timber volume killed by SPB
Total growing stock of pine species

it
it

it

RISK = . 
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 Lag variables are included in equation (3), as well as the current variables, to detect 

the lagged impact of climate conditions on SPB population/infestations (Gan 2004) 

because climate impact does not tend to appear immediately on SPB infestations (the 

past values of the variables). For example, last year’s warm winter temperature can 

possibly influence the outbreaks of pine beetles in this spring. An F-test is used to 

determine the number of lags necessary for the model.  

Data on the volume of trees killed by SPB are obtained from USDA Forest Service 

Southern Research Station (USDA Forest Service 2012b). The total growing stock of 

pine forests was obtained from forest inventory data (Smith et al. 2009). The forest 

inventory data are only collected every 5–10 years. Therefore, to generate annual series, 

linear interpolation is applied. Data for the years 1973 to 2004 for 11 southern states are 

used: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, 

South Carolina, Tennessee, Texas, and Virginia. The average historical monthly 

temperature, precipitation, and monthly maximum/minimum temperatures are from the 

PRISM (Parameter-elevation Relationships on Independent Slopes Model) climate data 

(PRISM Climate Group 2013). 

After obtaining the estimation results, marginal effects are calculated because in the 

GLM, the estimated coefficients are difficult to interpret. Marginal effects are defined as 

the effect of a unit change in one of the explanatory variables on y . Unlike linear 

regression approach, the estimated coefficients are not the same as marginal effects 

under the GLM framework. Marginal effects are calculated by taking a partial derivative 

of equation (3) with respect to kx : 
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(5) 
1( )

( ) ( ) k
k

E y X
g X

x
β β−∂

′=
∂

. 

The marginal effect for the probit link function follows equation (6) where φ  is a 

probability distribution function of standard normal distribution:  

(6) ( )
( ) ( ) k

k

E y X
X

x
φ β β

∂
′=

∂
. 

   

2.1.3 Assessment of climate change impact 

Ongoing global climate change could directly influence tree health and the 

abundance of SPB populations. Global climate change causes more frequent and 

intensive climate events (e.g., droughts) and changes in biodiversity (Maclean et al. 

2008). Therefore, climate change may affect the pattern of SPB risk. Several studies 

have investigated the link between climate and SPB risk (Gan 2004). Some studies claim 

that as the climate becomes warmer, large-scale insect outbreaks will become more 

common (USDA Forest service 2012a), but few studies examine quantitative 

relationships between future climate condition and SPB risk.  

This study aims to assess the impact of future climate change on SPB risk using the 

estimation model and the future climatic factors projected by Global Climate Models 

(GCMs). The simulated future climate data from GCMs reflect the response of the 

global climate change to greenhouse gas (GHG) emission scenarios. GCMs based on the 

fifth phase of the Coupled Model Intercomparison Project (CMIP5) are applied to 

projecting future SPB risk under climate changes. These new GCMs have several 
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advantages. First, the new GCMs provide more unified metric, grid and location points 

than previous GCMs. Second, Representative Concentration Pathway (RCPs) scenarios 

in the new GCMs use scientifically specified terms to avoid ambiguous definition. For 

example, the special report on emission scenarios (SRES) based on the IPCC fourth 

assessment report (AR4) includes subjective components such as rapid economic growth 

and introduction of clean and resource-efficient technologies while the RCPs only 

consider the components of radiative forcing that is measured in W/m2 (Wayne 2013). 

The RCPs scenarios are defined based on their total radiative forcing pathways. 

Cumulative measure of human emission of GHGs from all sources are expressed in 

Watts per square meter (IPCC 2013). The RCPs are: (1) RCP4.5: stabilization without 

overshoot pathway to 4.5 W/m2 at stabilization after 2100; (2) RCP6.0: stabilization 

without overshoot pathway to 6 W/m2 at stabilization after 2100; and (3) RCP8.5: rising 

radiative forcing pathway leading to 8.5 W/m2 in 2100 (van Vuuren et al. 2011).   

Several uncertainties emerge in predicting future climate such as model 

uncertainties and scenario uncertainties (Hawkins and Sutton 2009). To alleviate model 

uncertainty related to model bias, this study obtains six different climate models and 

then average out the climate variables from the different climate models including 

CanESM2, CCSM4, CESM1-CAM5, GFDL-CM3, HadGEM2-ES and MPI-ESM-MR 

under each RCP. These data are available at Downscaled CMIP3 and CMIP5 Climate 

and Hydrology Projections (CMIP5 Climate and Hydrology Projections 2013). To 

alleviate scenario uncertainty, three RCPs including RCP4.5, RCP6.0 and RCP 8.5 are 

compared. In RCP4.5, which is a moderate but not extremely low emission scenario, 
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total radiative forcing is stabilized before 2100 while GHG emissions continue to 

increase through the 21st century in RCP8.5, the highest emission scenario (Stavros et al. 

2014). Using forecasted climate data from the aggregated GCMs and different scenarios 

including RCP4.5, RCP6.0 and RCP8.5, this analysis projects future SPB risk for three 

time periods: 2012–2030, 2031–2060, and 2061–2090.  

 

2.2 Cyclical patterns of SPB risk  

2.2.1 Assessing cyclical patterns  

 To calculate “hidden” periodicities of SPB risk, periodogram analysis is applied. 

The periodogram is used to detect the dominant frequency and cyclical patterns in a time 

series. Historical SPB risk from 1973 to 2004 (base line scenario) and projected SPB risk 

from the year 2020 to 2099 by different models and scenarios are used as data for the 

periodogram analysis. Also, the Hodrick-Prescott (HP) filter is applied to calculate the 

periodogram (Hodrick and Prescott 1997). The HP filter method is a data-smoothing 

technique to reveal long-term trends by removing short-term fluctuations.  

Consider the time series ty  that can be separated into two parts, t y ty cτ= + , where 

tτ  is the trend component, and tc  is the stationary component. The cyclical component is 

the difference between the original series and its trend (Hodrick and Prescott 1997). In 

the frequency domain approach, the stochastic cycles occur at frequency [ , ]ω π π∈ − . 

The spectral-density function, ( )yf ω , specifies the contribution of stochastic cycles at 

each frequency ω . The time-series filter transforms the original series ty  into a new 
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series *ty  which can be expressed as *t j t jy yα −

∞

−∞

= . Thus, I can explain the spectral 

density of the filtered series * ( )yf ω  as the combination of the original series ( )yf ω  and 

the filter weights jα . This is  

(7) 2
* ( ) (exp( )) ( )y yf i fω α ω ω= . 

I attempt to find a filter for which *( ) 0yf ω =  when unwanted frequencies occur and 

( )yf ω  is the desired frequency. Therefore, the ideal filter should be 2exp( ) 0iα ω =  for 

unwanted frequencies and 2exp( ) 1iα ω =  for desired frequencies. It is, however, hard to 

find such an ideal filter in practice, so I should consider the tradeoffs between the ideal 

filter and an implementable filter. The HP filter for a given λ  follows equation (8) as 

follows: 

(8) 2 2
1

1

2
1

1
( ) [( ) ( )] .t t

T T

t t
t t t ty τ λ τ τ τ τ+ −

−

= =

− + − − −   

The first term penalizes the cyclical component to minimize the sum of the squared 

deviations, and the second term is the sum of squared second differences in the trend 

component which panelize changes in the growth rate of trend. The smoothness of the 

trend component is related to λ . Therefore, the larger the λ , the smoother the trend 

component. Hodrick and Prescott (1997) say that usually a greater frequency of the data 

tends to need a larger value of lambda. They suggest 1600λ =  for quarterly data. Ravn 

and Uhlig (2002) suggest 129,600λ =  for monthly data and 100λ =  for annual data. 
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The graph of filtered time series only displays the estimated cycle components. 

Therefore, we need to plot the periodogram to see how well we have estimated the 

component. The periodogram is considered as an estimator of the spectral density 

function and displays the natural frequency and amplitude of the time series. The basic 

rule of thumb for interpreting the periodogram is that if a time series has a strong 

sinusoidal signal for some frequency, then the periodogram peaks at that frequency. If 

the data have non-sinusoidal signal for some frequency, then the periodogram peaks at 

that frequency (fundamental frequency) but also peaks at some multiples of that 

frequency (harmonic). For a pure random series, the periodogram will vary randomly 

around a constant.  

The analysis procedure follows several steps. First, the evidence of periodicity in the 

data is established. The Bartlett Kolmogorov-Smirnov (BKS) test is performed to test 

whether the SPB risk follows a white noise or sinusoidal pattern. Then, the HP filter is 

applied method to smoothing the raw time series data. Finally, the periodogram is 

plotted using the smoothed data to display the frequency and amplitude of the data.  

 

2.3 Results  

2.3.1 Estimation results  

To seek more statistical evidences for using probit link function, the deviances are 

calculated in the probit and logit link functions. The values of the parameters which 

minimize the deviance maximize the likelihood function (Hardin and Hilbe 2012). First, 

a same model is estimated using both logit and probit link functions. Then the deviance, 
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D , is calculated for each model. If the D  of the probit model is significantly lower than 

that of the corresponding logit model, this is evidence that the probit model is superior to 

the logit model. Table 1 shows the calculated deviance statistics results. Because the 

model with the probit link function has a smaller deviance statistic than the model with 

the logit link function, using the probit link function is justified.  

 

Table 1 Deviance statistics 

 Probit Logit 

Log pseudo-likelihood 1354.30 1279.3 
Deviance 0.00160 0.00268 
AIC -9.256 -8.742 

 
 

The marginal effects of the estimated regression model are shown in Table 2. 

Because of the long list of independent variables, only the significant estimates are 

presented in Table 2 (full estimation results are shown in Table A1 in appendix). 

Heteroscedasticity and serial correlation are adjusted using robust standard errors. The 

robust standard error estimator relaxes the assumption of an independent and identically 

distributed error term. Several lagged seasonal temperatures and precipitations largely 

affect SPB risk in the current year. Previous studies found significant relationships 

between climate conditions of the previous year and the SPB outbreaks in the current 

year. Kalkstein (1981), for example, found that the previous winter temperature greatly 

affects the current spring outbreaks. To determine the lag order, Gan’s method in his 

pine beetle study (2004) is chosen. First, the 10th order lags model are compared with the 
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9th order lags model using F-test. Remove 10th lagged variable from the model if the test 

statistic is unable to reject the null hypothesis that the coefficient of the 10th lagged 

variable is equal to zero. Then test 8th order model against the 9th order model. The 

procedure continues until the null hypothesis are rejected at a certain lag. 

 

Table 2 Estimated results (marginal effects of GLM estimation): the relationship between SPB 
risk and independent variables  

Variable description Independent 
variable 

 Average 
marginal effect

Delta-Method 
S.E p-value 

Unsalvaged volume in current year USV 0.0456 0.0127 0.0000 
Spring temperature SPT 0.0118 0.0051 0.0200 
Fall temperature FLT -0.0141 0.0058 0.0500 
Minimum winter temperature MinWinter 0.0035 0.0015 0.0160 
Summer temperature one year ago SMT1 -0.0243 0.0092 0.0080 
Fall temperature one year ago FLT1 -0.0130 0.0061 0.0330 
Winter precipitation one year ago WNT2 -0.0006 0.0002 0.0100 
Max winter temperature one year ago MaxWinter1 0.0036 0.0014 0.0080 
Max spring temperature two years ago MaxSpring2 0.0088 0.0033 0.0070 
Summer precipitation one year ago SMP1 -0.0007 0.0003 0.0140 

Note: Insignificant estimates at the 5% level are suppressed because of the long list of 
independent variables (full estimation results are presented in Table A1 in the appendix) 

 

Unsalvaged volumes of trees, spring temperature and minimum winter temperature 

in the current year, minimum winter temperature one year ago, and maximum spring 

temperature two years ago have positive impacts on pine beetle outbreaks. However, the 

fall temperature in the current year, summer temperature one year ago, fall temperature 

one year ago, and winter precipitation one year ago have negative impacts on SPB risk. 

SPB infestation risk increases as spring temperature and minimum winter temperature 

rise due to early maturing beetle lavas. Warmer temperature in the spring and winter 
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could allow for faster development of the beetle population due to the increased the 

number of beetle generations completed (Gaylord 2014). Moreover, abundant food 

availability due to warmer spring temperature is also partially related to increases in SPB 

population because the host trees start to grow earlier and faster during the spring season 

(Gan 2004).  The minimum winter temperature in the current year and one year ago are 

both positively related to SPB outbreaks. Continuous warming in consecutive winter 

seasons might be largely related to increases in the SPB outbreak risk. Continuously 

increasing winter temperature might cause a reduction in cold-induced beetle mortality 

(Bentz et al. 2010). The fall temperature has a negative impact on SPB because beetle 

larvae progressively develop cold tolerance during the fall due to accumulated 

cryoprotectant compound such as glycerol as temperatures decline during the season 

(Bentz and Mullins 1999). Increasing fall temperature, therefore, interrupts developing 

cold tolerance of the beetle larvae, and this could lead to a decrease in the SPB 

population due to higher mortality rates during the winter season. Summer temperatures 

one year ago have a negative impact on SPB infestation. A hotter summer in the 

previous year would reduce SPB infestation risk.  

SPB infestation risk decrease as precipitation in the previous winter decreases and 

previous summer precipitation but the magnitude of precipitation impacts is smaller than 

that of temperature impact. Trees that suffer from water shortage are more exposable to 

SPB attacks (Gaylord 2014). Drought stress may reduce tree phloem thickness, and 

phloem thickness has been shown to be positively related to beetle brood production 

(Amman and Cole 1983). The unsalvaged timber also has a positive impact on SPB. The 
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unsalvaged beetles attacked stands can affect SPB infestations in the neighboring area. 

Especially, the unhealthy timbers are more susceptible to beetle attack because a healthy 

tree has more capacity to defend against attack such as exuding toxic resin to pitch out 

attacking beetles (Raffa et al. 2008). Thus, salvaging of tree killed by SPB help alleviate 

future infestation risk and maintaining healthy trees conditions could be one of the 

efficient management systems to reduce SPB damages. 

 

2.3.2 Climate change impacts on SPB risk  

The predicted future temperatures from six different GCMs show that the southern 

U.S. is projected to be warm by 0.5 °F to 6 °F by the year 2098 compared to 2010, the 

base line. The projected temperature from the GCMs shows that spring, summer and fall 

are warming more than winter, but the model projections are more uncertain about if 

precipitation will be increasing or decreasing in this region by 2098. The precipitation 

change will vary depending on the scenarios and the regions, but the slight tendency 

towards wetter conditions can be detected in the middle part of the region including AL, 

MS, west LA, north GA and drying conditions in TX, north VA and FL. The projected 

averaged temperature and precipitation from 2020 to 2060 by different scenarios are 

shown in the figures A1–A5 in appendix. Compared to temperature and precipitation in 

the year 2010, we can detect a certain tendency toward increasing temperature but 

uncertain changes in precipitation.  

Projected SPB infestation rate using aggregated GCMs for three time periods 

including 2012–2030, 2030–2060, and 2061–2090 for each RCP scenario is shown in 
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Figure 1. The values of projected SPB risk are expressed in ‰. The observed SPB risk 

in the period 1976–2004 is used as the baseline scenario. Although the projected SPB 

infestation varies across the climate change scenarios, SPB risks are predicted to be 

more severe in the short and midterm future (2012–2060, 2031–2060) than in the long 

term (2061–2098) for all scenarios. Also, the magnitude of damages varies across the 

regions. The center of the regions including northern AL, northern GA, north-western 

NC, western TN, and western VA will be exposed to more SPB risks compared to other 

regions under most of the climate scenarios. However, LA, eastern AR and part of 

eastern TX expect comparatively moderate SPB risks than other areas in most RCP 

scenarios. In the short term, SPB risk would slightly increase in the high emission 

scenario (RCP8.5), but SPB risk would decrease under the high emission scenario in the 

long term. Therefore, it is difficult to find a significant co-movement between scenarios 

and SPB risk. This result implies that the SPB population is determined by the complex 

interaction between precipitation and temperature. Higher temperatures tend to have a 

positive impact on SPB populations while higher precipitation level generally reduces 

beetle populations.  
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In most scenarios, one can detect the increasing tendency of temperature but no 

specific co-movement between precipitation and temperature. In addition, the negative 

impact of hotter falls and summer could compensate the positive impact of warmer 

springs and winters on SPB infestation. Therefore, the magnitude of SPB infestation 

could be limited even if temperature shows an increasing tendency due to climate 

change. All in all, even if the global warming is ongoing, the risk of SPB outbreaks will 

not move in one direction. Rather the risk vary depends on the complex interactions 

between climate factors.  

 

2.3.3 Cyclical patterns of SPB infestation  

Base on the BKS test results in Table 3, the null hypothesis that the projected SPB 

infestation in a given state follows a white noise is rejected at the 5% significance level 

for every RCP scenario. This implies that the SPB infestation process is significantly 

different from white noise. For projected SPB risk, the existence of a deterministic 

sinusoidal component is detected for all states, while the null hypothesis of white noise 

fails to be rejected in several states based on the data of historical observations. At the 

10% significance level, SPB infestations in LA, NC and TX show statistically significant 

evidence of a deterministic sinusoidal component.  
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Table 3 Bartlett Kolmogorov-Smirnov test result 

 RCP4.5 RCP6.0 RCP8.5 Historical 

State BKS statistic 
(p-value) 

BKS statistic 
(p-value) 

BKS statistic 
(p-value) 

BKS statistic 
(p-value) 

AL 4.119 (0.00) 2.711 (0.00) 4.374 (0.00) 1.153 (0.14) 

AR 3.386 (0.00) 2.489 (0.00) 3.608 (0.00) 0.887 (0.41) 
FL 3.466 (0.00) 3.113 (0.00) 3.466 (0.00) 1.035 (0.23) 
GA 4.120 (0.00) 2.723 (0.00) 4.110 (0.00) 0.418 (0.99) 
LA 3.426 (0.00) 1.927 (0.00) 4.083 (0.00) 1.292 (0.07) 
MS 3.937 (0.00) 2.471 (0.00) 4.270 (0.00) 1.210 (0.11) 
NC 4.329 (0.00) 2.754 (0.00) 4.078 (0.00) 1.820 (0.00) 
SC 3.922 (0.00) 2.655 (0.00) 3.815 (0.00) 0.736 (0.65) 
TN 4.195 (0.00) 2.430 (0.00) 4.120 (0.00) 0.384 (0.99) 
TX 2.733 (0.00) 2.894 (0.00) 4.246 (0.00) 1.343 (0.05) 
VA 4.334 (0.00) 2.768 (0.00) 3.913 (0.00) 0.318 (1.00) 

 
 

The amplitude and cyclical pattern of SPB infestation by scenarios are shown in 

Table 4. The amplitude and cyclical pattern are calculated by two different time periods, 

2012–2060 and 2061–2098, because the patterns of projected SPB infestation risks differ 

between the short-term future and the long-term future. The outbreak period for 

historical SPB risks ranges from five to nine years. This implies that the SPB outbreak 

occurs every five to nine years. This result is supported by a study from Pye (1993). Pye 

(1993) noticed that SPB outbreaks reoccurred every six–seven years in the southern U.S. 

The projected SPB risk frequency is expected to be shorter than the observed risk 

(historical scenario). The frequency of projected SPB infestation risks varies across 

states, ranging from two to five years.  
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Two-tail t-test results, as shown in Table 5, indicate that most amplitudes and 

periods of projected SPB risk are different from those of the historical pattern. For 

amplitude, the test statistic rejects the null hypothesis that the projected amplitude of 

SPB is different from the historical one under all scenarios (at 5% level for RCP 4.5 and 

RCP 8.5, at 10% level for RCP 6.0) in the short term. However, the projected amplitude 

is not different from historical one in the long term because the test statistics fail to reject 

the null hypothesis. The projected periods of SPB risk are different from historical one 

under all scenarios, both in the long and short terms. Differences exist in periods of SPB 

risk rather than amplitude under climate change.  

One-tail t-test results comparing between the amplitude of the projected SPB risk 

and the amplitude of historical SPB risk are presented in Table 6. The null hypothesis is 

that the amplitudes of historical SPB risk are larger than projected ones. For the short 

term, the null hypothesis is rejected. Therefore, the amplitude of SPB risk would 

increase in the short term future. However, in the long term, the null hypothesis that the 

historical amplitude is larger than projected one cannot be rejected. The statistical test 

results show that projected amplitudes are larger than the historical one in the short term. 

On the other hand, the projected amplitude is not larger than historical one in the long 

term.  
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One-tail t-test results comparing between the cyclical periods of projected SPB risk 

and the cyclical periods of historical SPB risk are presented in Table 7. The null 

hypothesis is that the cyclical periods of historical SPB risk is shorter than projected one. 

The null hypothesis is rejected at the 5% significance level in both the short and long 

term. SPB outbreaks would be occurring rather frequently due to climate change.   

 

Table 6 One-tail t-test results: historical amplitude > projected amplitude  

Scenarios RCP4.5 
Short term 

RCP4.5 
Short term 

RC8.5 
Short term 

RCP4.5 
Long term 

RCP6.0 
Long term 

RCP8.5 
Long term 

 Amplitude Amplitude Amplitude Amplitude Amplitude Amplitude 
p-value 0.0015 0.0271 0.0003 0.7684 0.1241 0.3036 

 
 

Table 7 One-tail t-test results: historical period < projected period 

Scenarios RCP4.5 
Short term 

RCP4.5 
Short term 

RC8.5 
Short term 

RCP4.5 
Long term 

RCP6.0 
Long term 

RCP8.5 
Long term 

 Period Period Period Period Period Period 
p-value 0.006 0.000 0.000 0.006 0.000 0.000 

 
 

2.4 Conclusions  

I evaluate the impact of projected global climate change on the risk of SPB 

infestation using the GLM framework in this essay. This approach reduces the problems 

related to fractional response variables; especially the outcomes at the end points (zero 

and one) are allowed and the quasi-maximum likelihood can modify the assumption of 

the standard error. The estimation results indicate that average spring temperature, 

minimum winter temperature, maximum spring temperature a year ago, and maximum 

winter temperature a year ago have positive impacts on SPB infestation while spring and 
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winter precipitation a year ago, and average fall temperature have negative impacts on 

SPB outbreaks. The unsalvaged volume of trees killed by SPB also has a positive impact 

on SPB risk, implying that the human intervention can play an important role in reducing 

SPB infestation risk.  

To project the relationship between SPB infestation and future climate change, 

aggregate averaged GCMs and three climate scenarios are used. This method may 

reduce uncertainties related to model bias. The projection results indicate that the risk of 

SPB outbreaks would not move in one direction given the complex interactions between 

temperature and precipitation. An increase in spring and winter mean temperature due to 

climate change would have a positive impact on SPB risk, but a rise in fall temperature 

and precipitation would tend to reduce SPB infestations. In general, the projection 

results show that in the short- and mid-term (2012–2060, 2031–2060), SPB risk is larger 

than in the long-term (2061–2098) for all RCP scenarios. However, the magnitude of 

damages varies across the southern region. Cyclical patterns of SPB outbreaks tend to 

change as global climate progresses. The historical cycle of SPB outbreaks re-occurred 

every six–seven years but this cycle is expected to take place more frequently, at a 

frequency of two–five years, under the projected climate change. Frequency and 

magnitude of SPB outbreak in the southern U.S. may respond to ongoing climate 

change. SPB risk is projected to severe in short-term and mid-term while the long-term 

climate change impact on SPB outbreaks is projected to be moderate.  

 The results of this essay reveal that the southern U.S. forests would be exposed to 

higher SPB risk in the short- and mid-term future (2012–2060, 2031–2060) than in the 
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long-term future (2061–2098). These findings suggest that continuously monitoring of 

SPB infestations is important in the south U.S. Salvaging beetle-damaged trees may help 

alleviate future infestation risk, and developing more effective SPB outbreak prevention 

and response measures are necessary. Also, policy makers should establish forest 

management strategies based on scientific prediction of climate change risk rather than 

their subjective estimates of those risks to protect forest disturbance by climate change.  

This study has some limitations by the lack of fine-resolution historical data of SPB 

infestation. The state-level historical SPB data make it difficult to incorporate more 

detailed spatial variability into modeling. High-resolution historical SPB data can help 

improve the estimation of the relationship between SPB risk and climatic conditions. 

Another limitation is that the model assumes constant coefficients in the estimation and 

projection procedure. To assess dynamic climate impacts on SPB infestation risk in the 

long term, further studies would relax this assumption and apply time varying 

coefficients to estimations and projections of the SPB risk. Also, this essay could not 

consider the interaction impacts among climate variables. The interaction between 

temperature and precipitation might exist. It would be useful to add interaction terms to a 

regression model to understand the relationships among the climate variables in the 

future study.    
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3. THE EFFECTS OF CLIMATE AND CO2 CONCENTRATION ON FOREST 

PRODUCTIVITY 

 

In the U.S., about one third of the country’s total land area is covered by forests 

(Smith et al. 2009). Forests provide commercial and non-commercial benefits to society 

including timber and other forest products, clean air, water, recreation, wild-life and 

carbon sequestration. Forest productivity, therefore, is always major concern for forest 

land managers and society. The growing body of literature that addresses the assessment 

of forest productivity is evidence of this concern. Recently, there has been an increasing 

interest in the climate change impact on forests. Climate plays a pivotal role in the 

structure and health of forest ecosystems. Moreover, there is evidence that ongoing 

climate change plays a crucial role in forest productivity (EPA 2013). Forests are under 

significant pressure from global climate change. Climate change may affect forest 

structure through a variety of pathways such as altering productivity and changing 

disturbance patterns (Vose and Klepzig 2013) that may bring about both positive and 

negative impacts on forest productivity.  

Global climate changes can have positive impacts on forest resilience. Wu et al. 

(2014) found that climate warming is contributing a widespread growth enhancement of 

forest in British Colombia (B.C.) due to significantly increasing growing season length, 

especially in the high-latitudinal region B.C. Piao et al. (2006) studied the spatial 

patterns of vegetation growth over the North Hemisphere region using a mechanistic 

terrestrial carbon model. Their study showed that from 1980 to 2000, the increase in 
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vegetation in most of Siberia was associated with temperature warming while greening 

trend in North America was primarily related to the precipitation changes. However, 

they claimed that the contribution of rising temperature to the current enhancement of 

greening trend will be limited under continued global warming unless the higher 

moisture levels were accompanied with the higher temperatures.  

Although several changes such as elevated CO2 and warming temperatures 

accompanied with higher precipitation likely enhance forest productivity, climate change 

may negatively affect some forests. Temperature warming could have significant 

negative impact on forest if there are significant decrease in soil moisture and 

precipitation (Sedjo and Sohngen 1998). According to modeling study by Bowes and 

Sedjo (1993), the condition of natural forests in the U.S. Midwest is significantly 

dependent on precipitation. The productivity of forest would decline if climate warming 

and drying occur simultaneously while forest productivity would increase where 

warming coincided with increasing precipitation. Climate change also induces several 

other negative indirect impacts of forest productivity including wild fire and insect 

outbreaks (Kirilenko and Sedjo 2007). A number of authors have found that warmer 

temperature likely shifts the habit of forest insects such as pine beetle (Gan 2004; Bentz 

et al. 2010; Carroll et al. 2004).        

 Forest productivity is defined as the change in growing stock volume over time, 

usually measured by net volume per area (Vose and Klepzig 2013), and forest 

productivity is a common measurement of forest conditions at the stand level (Trumbore, 

Brando, and Hartmann 2015). Forest productivity is closely related to climate variables 
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including seasonal temperature and precipitation, as well as carbon dioxide (CO2) 

concentration (fertilization), soil characteristics, forest density and structure. Climate 

factors affect many aspects of forest growth and productivity. Generally, forest 

productivity is higher in warm and moisture climates. The yearly average warming 

temperature because of climate change might move the forest zone farther north. So it is 

possible that some northern forest land in the U.S. will become more productive.  

 However, some tree species, tropical forest and high mountain forest in particular, 

will be at risk because their current geographical ranges are not suitable anymore if the 

current global warming trend is continued (Backlund, Janetos, and Schimel 2008). 

Increasing temperature could also influence the timing of snowmelt, which affects the 

seasonal water availability for trees (EPA 2013). Changes in precipitation will likely 

increase the risk of drought in some areas and the risk of extreme precipitation and 

flooding (EPA 2013). Drought also reduces trees' ability to protect them from destructive 

insects (Gaylord 2014).  

Many studies have provided evidence of climate impacts on tree growth. Kiger 

(2014) examined the current growth of two dominant types of trees in European forests 

and found that trees are growing faster than they did in 1960. He believed that the 

current rising global temperatures and higher levels of CO2 have accelerated tree growth. 

However, faster tree growth is not always a good thing because faster aging trees have 

relatively low wood quality (Taylor 2013).  

Climate is also related to soil organic matter which is defined as decomposition 

product of organic materials in soil and is an important factor in forest productivity. An 
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increase in soil organic matter enhances crop/tree productivity, and the relationship 

between soil organic matter and crop or forest/tree yield is linear in most soil (Janzen, 

Larney, and Olson 1992). Level of soil organic matter is generally higher in the cool and 

humid regions or warm and arid regions because these conditions are favorable for soil 

microorganisms (Franzen et al. 2015). If water is sufficient, temperature warming will 

have a generally positive impact on forest productivity. Boisvenue and Running (2006) 

reviewed several papers reporting forest production levels, and 37 out of 49 studies 

showed a positive forest growth trend while five showed a negative trend, and three 

reported both a positive and negative trend for different time periods.   

Beside the temperature factors, forest productivity is largely related to regional 

characteristics including biodiversity, soil conditions and tree density. Increasing 

atmospheric CO2 concentration can stimulate forest productivity due to enhancing light 

and water use efficiency of the trees (Norby et al. 2005). Therefore, increasing CO2 in 

the atmosphere will likely stimulate forest productivity if sufficient water and nutrients 

are available. However, the impact of increases CO2 on tree growth is uncertain in 

limited water area (EPA 2013). The net forest productivity could increase in areas with 

high water availability. Water availability is related to not only precipitation but also 

depth of groundwater. Ford, Mitchell, and Teskey (2014) investigated the relationship 

between water table depth and aboveground net primary productivity (ANPP) of long 

leaf pines in the Southern U.S. They found that ANPP increases linearly with decreasing 

minimum annual water table depth. Shallow groundwater reduces water stress during 

dry years and mitigates decreasing net primary productivity associated with water 
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deficits (Soylu et al. 2014). If the water table, however, is too close to the surface during 

the growing season, the oxygen stress on roots can negatively affect photosynthesis 

(Soylu et al. 2014). Paquette and Messier (2011) examined the influence of biodiversity 

on forest productivity controlling for climatic and environmental conditions using 

stepwise regression to identify the relevant explanatory variables. According to the 

stepwise selection results, mean annual temperature, depth of the organic horizon, and 

basal area (BA) were significant in explaining forest productivity. Planting density was 

insignificant to forest productivity. In the slash pine forest, an increase in planting 

density decreased tree diameter growth. However, in contrast to individual tree growth, 

as stand density increases, the total wood production per unit area tends to increase 

because increasing total volume of tree production compensates for decreasing 

individual size (Ware and Stahelin 1948).  

The climate change impact on forests may vary by the region. Especially, regions 

with limited water resources will tend to face amplified water losses because of warming 

temperature, and this might accelerate forest declines in these regions (Park Williams et 

al. 2013). On the other hand, regions with projected warmer temperature and higher 

precipitation are likely expected to have higher future forest productivity.   

According to Rusted et al. (2011), higher temperature and increased CO2 might lead 

to an increasing growth rate; the forests become more productive because trees absorbed 

more CO2 from the atmosphere in the Northeast areas in the U.S. For the Western and 

Southeastern areas, on the other hand, warmer temperatures and the long growing season 

would have no crucial impact on tree productivity because of limited water availability. 
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Moreover, some tree species could not survive in the new climate conditions unless they 

move to higher altitudes (Rustad et al. 2011).  

The purpose of this essay is to estimate the relationships between forest productivity 

and various independent variables including temperature, precipitation, soil, and tree 

density and using empirical modeling approach. Then, I will examine the future climate 

change impact on forest productivity across multiple global climate scenarios. The target 

area is all U.S. continental states. Although many studies have investigated the impact of 

climate parameters on forest productivity, the influence of specific climate parameters 

on forest productivity is still poorly understood. Moreover, regional specific changes of 

forest productivity under global climate change show large variability and direction of 

the changes are inconsistent between studies (Kirilenko and Sedjo 2007). There are two 

primary objectives of this essay: 1) to investigate the effects of climate change and forest 

characteristic on forest productivity using panel data analysis; and 2) to assess the future 

climate change impact on forest productivity using output from Global Climate Models 

(GCMs). 

 

3.1 Data and model specification  

3.1.1 Characteristics of U.S. forests and eco-climate zones  

Forestland in the U.S. is widely but unevenly distributed with approximately 67 

percent of all forestland is classified as timberland (Smith et al. 2009). The term 

timberland refers to “forest land capable of producing in excess of 20 cubic per year and 

not legally withdrawn form timber unitization” (Smith et al. 2009, 12).  The continental 
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U.S. forests are concentrated in the South and Northeast, Pacific Northwest, the Lake 

states, and the Rocky Mountains while several central continental States including North 

and Dakota, Nebraska, Iowa, and Kansas have small proportions of forestland. 

According to Oswalt et al. (2014), overall trends of both acreages of forestland and 

timberland are upward nationwide between 2007 and 2014. Average net annual growth 

on growing stock trees has been increasing since 1996 in the North, South, and Pacific 

Coast region, but the growth has seen a decline in the Rocky Mountain region due to 

mountain pine beetle outbreaks (Oswalt et al. 2014).  The definition of the forest 

reporting regions and subregions by states are shown in Table 8.  

 

Table 8 Forest reporting region and subregion (Source: Smith et al. 2001) 

Forest reporting 
region 

Forest reporting 
subregion 

States 

Rocky Mountain Interior Mountain MT, ID, WY, NV, UT, VT, CO, AZ, 
NM 

 Great Plain ND, SD, NE, KS 
Pacific Coast Pacific North West WA, OR 
 Pacific South East CA 
North North Central MN, IA, MO, WI, IL, IN, OH, MI, MO 
 North East ME, VT, NH, MA, CT, NY, PA, WV, 

MD, DE, NJ 
South South East VA, NC, SC, FL 
 South Central KY, TN, AR, OK, TX, LA, MS, AL 

 
 

Forests in the U.S. are influenced by multiple climate and geographical factors 

including climate, geology, soil, and water (Smith et al. 2009). As such, the Forest 

Inventory and Analysis (FIA) program creates Ecoregion by grouped counties. An 

ecoregion is a broad area with climatic similarity that includes domain, division, 
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province, and section (Rudis 1999). There are four major eco-climatic domains in the 

U.S. including polar, temperature humid, arid and tropical humid (Bailey 1995). These 

eco-climatic zones are divided further subdivision by influence of precipitation: humid, 

semi-arid, arid (Smith et al. 2009). The major eco-climate domain in the U.S. continental 

areas is illustrated in Figure A6. The following discussion will introduce the major forest 

cover types and predominant climatic zones in the continental U.S. by geographic 

region.   

The predominant climatic zone in the North region is temperate humid climatic 

zone. Oak-hickory and maple-beech-birch forests are dominant forest type in the North 

region (Smith et al. 2001; Oswalt et al. 2014). The predominant climatic zone in the 

South region is subtropical humid climatic zones expect for most of Kentucky and 

Tennessee (temperate humid) and a small area in south Florida (tropical humid). 

Loblolly-shortleaf pine forests are the major forest type in the South. Longleaf-slash pine 

forests are found in Florida, Georgia and the states bordering the South Atlantic and Gulf 

Coast (Smith et al. 2009). Longleaf slash pines have continued to decline due to wildfire 

and conversion of long leaf/slash pines to faster growing loblolly pines (Smith et al. 

2001). The predominant climatic zone in the Rocky Mountain region is the temperate 

and subtropical arid and semi-arid climate zones. Pinyon-juniper forests are the 

dominant forest type in this region, mostly founded in Arizona, New Mexico, western 

Colorado, Utah and Nevada (Smith et al. 2009). Douglas-fir and Ponderosa-pine are 

found in the high elevation of this region. Climate zones of the Pacific Coast region 

include temperate oceanic, Mediterranean, temperature, temperate arid, and semi-arid. 
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Climate zones of the Costal Oregon and the Washington are temperate oceanic. Climate 

zones of the Western California is Mediterranean and the eastern portion of the region is 

mix of temperate and subtropical arid and semi-arid. The major forest types of the 

Pacific costal region are Douglas-fir, ponderosa pine, and western hard wood.  

 

3.1.2 Data set for estimation and projection  

For model estimation, the climate, forestry and soil data are necessary. County level 

historical climate and forestry data from 1990 to 2011 are used for all counties in the 

continental U.S. For estimation, county level data are grouped according to 150 

ecological sub-regions, which have similar ecological characteristic (Rudis 1999). These 

ecological sub-regions are identified with a six-digit number developed by the U.S. 

Forest Service, Forestry Inventory and Analysis (FIA) based on the FIA hierarchical 

classification framework of ecological units for forest resource reporting purposes 

(McNab 2009). These numbers represent the domain, province, and section assigned to a 

U.S. county, based on the dominant ecological province and the dominant section within 

that province (Rudis 1999). The forest data are from Forest Inventory Data Online 

(FIDO) (USDA Forest Service 2015). Average annual net growth of growing-stock 

trees, area of forest land, tree count (number of growing stock trees) and above and 

belowground carbon in live trees are available in FIDO. The data and sources are 

explained in detail in Table A1. Soil data are from SSURGO database collected by the 

Soil Survey Staff, Natural Resources Conservation Service, United States Department of 
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Agriculture. Soil Survey is available online at the USDA web soil survey web page 

(NRCS 2013).  

 For historical temperature and precipitation, PRISM (Parameter-elevation 

Relationships on Independent Slopes Model) climate data are used. CO2 concentrations 

in the atmosphere data are from the NOAA-GMD program and the data are available at 

the NOAA-Earth System Research Laboratory (Tans and Keeling 2014). CanESM2, 

CCSM4, CESM1-CAM5, GFDL-CM3, HadGEM2-ES and MPI-ESM-MR) and three 

climate scenarios are used. These GCMs data are available at the CMIP5 climate and 

Hydrology Projection web page (CMIP5 Climate and Hydrology Projections 2013).  

 

3.1.3 Panel model specification test  

 Before proceeding to the model estimation, it is necessary to perform several tests 

on the data. First, the serial correlation of the data is tested. Under serial correlation in 

linear panel-data models, the estimation results become less efficient due to biases of 

standard errors (Drukker 2003). To detect possible serial correlation, the Wooldridge test 

for serial correlation in panel models (Wooldridge 2010) is used. The Wooldridge 

method uses the residuals from first differences. Consider the first differencing of the 

linear panel data model:  

(10) 1 1 1

1

( )it it it it it it

it it it

y y x x
y x

β ε ε
β ε

− −− = − + −
Δ = Δ + Δ

 

To detect serial correlations, I first regress ityΔ  on itxΔ  to estimate 1β  using equation 

(10) and obtain the error term ite . Then I regress the ite  on 1ite −
 . 
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 If there is no serial correlation, the coefficient on the lagged residuals is equal to -0.5.  

Second, the independence of the error term across cross-sections is checked. In case 

of small time period, T, and relatively large sample size, N, Friedman (1937) and 

Pesaran (2004) test methods should be applied to test the null hypothesis of cross-

sectional independence in panel-data models. If the test results reject the null hypothesis 

of cross sectional independence, it is necessary to take into account the cross sectional 

correlation.  

 The Wooldridge test result (F = 84.83; Pr = 0.000) rejects the null hypothesis of no 

first-order autocorrelation in panel data, indicating that the first order serial correlation 

exists in data set. Additionally, both Friedman (1937) and Pesaran (2004) tests reject the 

null hypothesis of cross-sectional independence at the 1% significance level, implying 

that the models are correlated across the panels.  

 

3.1.4 Estimation method and model specification  

To investigate climate and forest productivity, a panel data approach is employed. 

However, because the test results in previous section indicate the error terms are not 

i.i.d., applying the widely used Feasible Generalized Least Squares (FGLS) method to 

panel model is inappropriate because the standard errors generated from the FGLS 

method are extremely overconfident in the panel model. To overcome this problem, 

Beck and Katz (1995) suggested the OLS or Prais-Winsten estimates with panel 

correlated standard error (PCSE). If no autocorrelation is specified, this approach 

generates OLS estimates of the parameters. If correlation is specified, Prais-Winsten 
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estimates of the parameters are produced (Beck and Katz 1995). This approach allows 

for the errors term with heteroskedasticity across panels to autocorrelated within the 

panel. The parameters β  are estimated by OLS if no autocorrelation is detected while 

the parameters are estimated by Prais-Winsten when autocorrelation is detected.  

 A panel data model for panel i and time t is  

(11) ; 1,..., ;  1,...it it ity X i N t Tβ ε= + = = , 

where itX  is a vector of exogenous variables; ity  is the dependent variable; β  is a 

vector of coefficients; and itε  is the error term. Consider Ω  is an NT NT×  covariance 

matrix of the errors with elements ( )it jsE ε ε . Then, the covariance of the OLS or Prais-

Winsten coefficients is   

(12) 1 1Cov( ) (X X) X ΩX(X X)β − −′ ′ ′=  

If the errors follow spherical assumption (homoscedasticity and no correlation between 

observation), equation (12) becomes the standard OLS formula with  12 (X X)σ −′ , where 

2σ  is the error variance. However, this formula is not applicable unless the spherical 

error assumption is satisfied.   

 For a panel model with contemporaneously correlated and panel heteroscedastic 

errors, Ω  can be expressed as 
i iN N T T× ×Ω = Σ ⊗ Ι  when the panel is balanced. Here, Ω  is 

an NT NT×  block diagonal matrix and Σ  is an N N×  matrix of contemporaneous 

covariances. To estimate equation (12), the elements of Σ  are estimated using the 

formula, ( ) /ˆ
ij it t jt ije e TΣ =  , where ,i te  is the OLS residuals (for panel i  at time t ), and 
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ijT  is the number of residuals between the panels i  and j  that are matched by the time 

period. Then Ω is calculated by using Σ .    

The empirical regression model is    

(13) 
1 2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 2

2
0

2 2

2 2

2 2 2
1

2

2it t it it it

it it it it it it

it it it it it it

it it it it

y CO Air Biomass Biomass Den
SPT SMT FLT WNT SPT SMT
FLT WNT SPP SMP FLP WNP
SPP SMP FLP WNP

β β β β β
β β β β β β
β β β β β β

β β β β β

= + + + +

+ + + + + +

+ + + + + +

+ + + + + 22

23,

i

itj ij tj

SOI Drain
ForType

β
β ε

+

+ +

 

where  

ity  = average annual net growth of growing stock volume in timber land  

( 3m ha-1yr-1);  

i  = ecological sub-region (150 in total); 

t  = year (1990–2011); 

CO2Air = atmospheric CO2 concentrations (ppm);   

Biomass = above and belowground carbon in live trees (short ton) per hectare (ha) 

in timber land;  

Den = tree density: (number of trees on timberland, per ha)  

SPT = average spring temperature (°C); 

SMT = average summer temperature (°C); 

FLT = average fall temperature (°C); 

WNT = average winter temperature (°C);  

SPT2 = square of spring temperature;  
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SMT2 = square of summer temperature; 

FLT2 = square of fall temperature; 

WNT2 = square of winter temperature;  

SPP = total spring precipitation (mm); 

SMP = total summer precipitation (mm); 

FLP = total fall precipitation (°C); 

WNP = total winter precipitation (°C);  

SPP2 = square of total spring precipitation;  

SMP2 = square of total summer precipitation; 

FLP2 = square of total fall precipitation; 

WNP2 = square of total winter precipitation;  

SOI = available water storage 0–50 cm in soil (Weighted average1);  

Drain = soil drain class. 1 (poor drain) to 5 (excessively drain); and 

ForType = forestry type. 1 (Longleaf/slash pine group), 2 (Loblolly/shortleaf pine 

group), 3(Oak/hickory group), 4 (Oak/Gum cypress group), 5(Maple beach 

birch), 6 (Pinyon-Juniper), 7 (Fir-spruce), 8 (Douglass-fir), 9 (Ponderosa-Pine), 

10 (others). 

To create eco-sub-region panel, first, obtain county-level forest and climate data 

then a six-digit sub-region code is assigned to each county. The numeric sub-region code 

assigned to individual counties is based on Rudis (1999). Finally, counties with the same 

sub-region code are grouped together to generate a sub-region panel. The first digit of 

                                                 
1 The soil data reported is the weighted average of all components in the map unit (NRCS 2013).   
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sub-region code identifies the mountain and non-mountain province and next three digit 

identify the temperature domain. The last two digits identify a section2.     

The independent variable “average annual net growth” is used as measurement of 

forest productivity. Although there are a lot of indicator to assess forest productivity, 

there is a lack of a consistent definition of forest productivity (Grier et al. 1989). One of 

the widely used measurements of forest productivity is net primary productivity (NPP). 

NPP can be expressed as the sum of several components. That is NPP B M H= Δ − −

L V− − , where BΔ  is the net standing biomass increment; M, H, L, and V are losses due 

to mortality, herbivory, leaching, and volatilization, respectively (Kloeppel, Harmon, 

and Fahey 2007). Among the NPP components, forest managers are concerned about 

biomass increments, that account for the weight and volume of wood, bark, foliage and 

roots (Grier et al. 1989). However, measuring NPP in forest ecosystems is a challenge 

because several components of NPP are difficult to quantify (Kloeppel, Harmon, and 

Fahey 2007). With this limitation, this study uses annual net growth of growing-stock 

volume timberland to measure forest productivity. Annual net growths have similar 

characteristics to NPP.  

The formula for annual net growth is Annual net growth = Annual net change + 

Removal (USDA Forest Service 2015). The first component includes the increment in 

net volume of surviving trees plus the net volume of trees reaching the minimum size 

class minus the volume of trees that died and became cull trees during the specific year 

                                                 
2 A section is a part of province with similar geomorphology, geologic origin, drainage networks, 
topography, and regional climate. 
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on the timberland (Oswalt et al. 2014). The second term identifies removed trees 

harvesting and/or thinning. Growing stock trees are defined as all live trees of 

commercial species that meet minimum merchantability standard (Oswalt et al. 2014). 

The average annual net growth can have a negative number because this value is net 

growth and the negative growth values are usually due to mortality but live trees also 

loss in volume because of damage, rot, broken top, or other reasons (Oswalt et al. 2014).  

Biomass is defined as above and belowground carbon in live trees (short ton). The 

above and below ground carbon data is a measure of biomass above and belowground 

because carbon estimates can be converted to biomass estimates by dividing by 

approximately 0.05. This biomass variable represents an amount of a carbon sink3 in 

forests (offsetting global greenhouse gas emissions) that helps offset fossil fuel 

emissions (Oswalt et al. 2014). Forest productivity is closely related to biomass because 

the biomass is related to nutrient availability in the site (Birks and Birks 2004). There is 

positive relationship between biomass and NPP but the relationship is rather quadratic, 

increasing at a decreasing rate and then declining after a peak point (Keeling and Phillips 

2007). To reflect this relationship, the model includes the square term of the biomass 

variable.     

CO2Air is included to account for the impact of the increasing CO2 concentration in 

the atmosphere at the global level. From 1978, CO2 concentration in the atmosphere 

have gradually risen and reached 380ppm in 2013. The CO2 variable measures the 

                                                 
3 Carbon sink of above ground biomass could be calculated using allometric equation (Chave et al. 2006). 
The equation from Mokany et al. (2006) could be used to estimate carbon stock below ground.   
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carbon fertilization impact on forest productivity. Previous study evaluating the growth 

enhancement induced by carbon is 8.4–21.6 % in four major plantations from 1980 to 

2005 in Japanese forests (Fang et al. 2014). Seasonal temperature, precipitation, and 

square terms of seasonal temperature and precipitation are included to detect the 

nonlinear relationships between forest productivity and climate variable variables.  

SOI indicates available water storage with the depth of 0–50 cm in soil from the 

surface. It is an indicator of soil’s ability to store water within the plant’s root zone. 

Available water storage is determined by soil texture, abundance of rock fragments, soil 

depth and layers, and plant rooting depth (USDA NRCS 2008). Applying more water to 

the soil than its water storage capacity brings about leaching of nutrients beyond the root 

zone because of loss of water to deep percolation (Nyvall 2002). The soil drain class 

represents free water in soil. The coding of soil drain classes ranges from 1 to 5, 

including 1= poor drain, 2= moderately well drain, 3= well drain, 4= somewhat 

excessively drain, and 5=excessively drain. Excessively drain soil has very low available 

water storage capacity. The excessively draining soil is usually very sandy or gravely 

and has rapid surface flows during heavy rainfall (Soil Survey Staff 1993). Poorly 

draining soil usually has dark gray to black color. Soil moisture in poor draining soil is 

not largely affected by precipitation changes because excess water is available during a 

large part of the time (Agriculture and Agri-Food Canada 2013).   

The ForType variable is categorical representing the most dominant forest cover 

species in the target region. The major forest cover types in the Northern region are 

Maple beech birch, Oak-hickory, and Spruce-fir. Oak-hickory is the main forest cover in 
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the central and south region of the North. Maple beech birch forests include valuable 

hard wood species and account 31 percent of all north forests. Loblolly-shortleaf are the 

most predominant species in the Southern forest. Longleaf-slash pine, Oak gum cypress 

and Oak hickory are also major forest type in the Southern forests. Douglas fir, 

Ponderosa Pine, and Pinyon Juniper are major forest cover in Pacific Coast region. 

Douglas fir grow in magnificent in the coast of the Pacific Northwest.     

  

3.1.5 Assessment of climate change impact on forest productivity  

Climate change directly and indirectly influences tree productivity through changes 

in temperature, precipitation, and carbon concentration in the atmosphere.  

Aggregate average of six different climate models including CanESM2, CCSM4, 

CESM1-CAM5, GFDL-CM3, HadGEM2-ES and MPI-ESM-MR and three different 

climate scenarios including RCP4.5, RCP6.0 and RCP8.5 are applied to the assessment 

of climate change impacts on tree productivity. These are the same models and scenarios 

in the SPB analysis in the previous section. Future forest productivity for three time 

periods: 2012–2030, 2031–2060 and 2061–2090 are projected. The estimated 

coefficients from equation (13) are directly applied to the GCMs and the scenarios to 

calculate the future forest productivity changes. To project future CO2 concentration 

impacts on the productivity, we consider the future CO2 will change according to the 

following assumption. CO2 consternation in the atmosphere has been continuously rising 

from 315ppm in 1959 to 338 ppm in current year. CO2 concentration projected to 

steadily increase and reach, 500–1000 ppm, by the year 2100 (IPCC 2007). The 
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projected CO2 concentration is represented by several RCP scenarios: (1) RCP4.5: CO2 

concentration in the atmosphere will continuously increase to 520 ppm by 2070 then 

continue to increase but in a slower pace to reach 530 ppm by year 2100, (2) RCP6.0: 

CO2 concentration will increase slowly then reach 620 ppm by 2100, and (3) RCP8.5: 

This is the extreme scenario, where CO2 concentration in the atmosphere will 

dramatically increase and, reach 950ppm by 2100, approximately three times more than 

its than current level. All of these three CO2 concentration scenarios are described detail 

in Meinshausen et al. (2011).  

 

 

Figure 2 CO2 concentrations by scenario (ppm) 

 
 

Rising CO2 concentrations are likely to have a direct effect on the forest growth, 

physiology and chemistry, depending of its effects on climate (Ziska 2008). Increasing 

CO2 concentration has some positive impact on plants such as maintaining high 

photosynthesis rates with relatively lower stomatal conductance (Taub 2010). However, 
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the benefit from extra CO2 is limited. The Free-Air CO2 Enrichment (FACE) experiment 

shows that plant growth is elevated at the 475–600 ppm CO2 concentration level due to 

increasing leaf photosynthetic rate (Ainsworth and Rogers 2007). Another study using 

the FACE experiment also found that 40% and 29% enhancements of photosynthesis are 

detected at the 500 to 600 ppm CO2 concentration level (Ellsworth et al. 2004). Drake, 

Gonzàlez-Meler, and Long (1997) found that there would be 23% and 58% 

enhancements of photosynthesis when plants were grown at the 500 to 600 ppm CO2 

concentration level. Danyagri and Dang (2014) investigated the relationship between the 

change in CO2 concentrations in the atmosphere and the performance of mountain maple 

(Acer spicatum L.). They found that the magnitude of biomass response to light was the 

lowest under a higher CO2 concentration (784 ppm) and warmer soil. These results 

suggest that too elevated CO2 concentrations due to climate change might have a 

negative impact on the forest canopy of mountain maples. Together, these results 

suggest that there is a positive association between CO2 concentration and forest 

productivity but the CO2 fertilization impacts are limited to a certain CO2 concentration 

level (more than 600 ppm or 700ppm) in the atmosphere. Considering this, this study 

generates future CO2 concentration levels using IPCC scenarios (Figure 2), but sets a 

ceiling on the CO2 fertilization effect at 650 ppm. In other words, this study assumes that 

there is no more benefit from CO2 fertilization if the concentration level is more than 

650 ppm (Pessarakli 2014).   
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3.2 Results 

3.2.1 Estimation results  

To estimate the relationship between forest productivity and independent variables, 

I perform estimation based on both linear and quadratic equations and using stepwise 

estimation equation approach. Equation (13) is used for quadratic estimation. For linear 

estimation, the squared terms of temperature and precipitation are removed from 

equation (13). The stepwise approach involves several steps. First, I run estimation using 

equation (13), Second, statistically insignificant variables are removed one by one based 

on significance of coefficients using p-value at 10% significance level (Paquette and 

Messier 2011).  

PCSE does not provide a log-likelihood value because the statistical assumptions of 

PCSE does not equal to the assumption in OLS or Prais-Winsten model used to calculate 

the likelihood function. Therefore, R2, observed and fitted plots, and mean squared error 

are used to compare model fit. The plot of the observed and fitted values of forest 

productivity from the quadratic equation, linear equation, and stepwise approach is 

shown in Figure 3. The x axis indicates the fitted values from estimation and the y axis 

indicates the observed values form data. The fitted values from linear estimation seem to 

slightly under estimate the observed values. The plot of the observed values against the 

fitted one by region and forest type are shown in the Figures A7–A12. Table 9 shows the 

root mean square error and R2 from each estimation. The linear estimation has the 

highest R2, but also has the highest mean squared error. Together these results reveal that 
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the quadratic estimation is the better choice than linear or stepwise based on quadratic 

equation approach for the model.  

 

(a) Quadratic equation          (b) Linear equation                (c) Stepwise equation 

 

 

 

Figure 3 Observed vs. fitted plot 

 
 

Table 9 Root mean squared error and R2 from each estimation 

 Root Mean Squared Error R2 

Stepwise estimation 1.741 0.47 

Quadratic estimation 1.732 0.53 

Linear estimation 1.796 0.57 
 
 

Table 10 shows the PCSE estimation results of regression including quadratic 

temperature and precipitation terms. Because of the quadratic terms of seasonal 

temperature and precipitation are included in the model, the marginal effects of climate 

variables on forest productivity are not constant but vary across the range of the 

y  =1.41+0.42y,    R2=0.46 

RMSE: 1,89 

y  =1.56+0.41y,    R2=0.42 

RMSE: 1.13  

y  =1.39+0.43y,    R2=0.47 

RMSE: 1.09 
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variables. There is an association between climate and forest productivity. Increasing fall 

and winter precipitation is likely to lead to a significant increase in forest productivity (p 

< 0.05 for winter precipitation, p < 0.10 for fall precipitation), and the quadratic terms of 

fall and winter precipitation are not statistically significant. There is also a positive 

relationship between forest productivity and spring, fall and winter temperature while a 

negative relationship exists between forest productivity and spring temperature square 

and fall temperature square. These results imply that the relationship between forest 

productivity and, spring and fall temperature is concave rather than linear. The marginal 

impact of temperature, precipitation, and biomass are shown in Figure A13 in appendix. 

Only the variables having statistically significant square terms are shown in the Figure 

A13 because the linear relationships are easily interpreted to use Table 10.  

In Figure A13, as spring temperatures increase, forest productivity increases at a 

decreasing rate. Likewise, as fall temperatures go up, forest productivity increases at a 

decreasing rate. The linear and square terms of winter temperature are both positive.  

This implies that forest productivity responds to increasing winter temperature at an 

increasing rate but the magnitude of increment in marginal effect of winter temperature 

on forest productivity is not huge because the coefficient value of square term is small.  

The linear term of summer precipitation has a positive sign while the square term of 

summer precipitation is negative. This implies that forest productivity could be 

decreased at a decreasing rate as summer temperatures increase. However, because of 

the small value of coefficient for square term, the relationship is close to being linear.  

Forest productivity is increased with higher biomass at a decreasing rate.   
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Table 10 Estimation result with quadratic temperature and precipitation terms 

Variable description Independent 
variables 

Coefficient Panel 
Correlated 
Std. Error 

p-value 

density Den 0.030679 0.004393 0.000 
Biomass Biomass 0.082904 0.020086 0.000 
Biomass2 Biomass2 -0.001536 0.000685 0.025 
CO2 in Air CO2Air 0.010857 0.005078 0.032 
Spring Precipitation SPP -0.000482 0.000967 0.618 
Summer Precipitation SMP -0.005936 0.001208 0.000 
Fall Precipitation FLP 0.001489 0.000806 0.065 
Winter Precipitation WNP 0.002054 0.000568 0.000 
Spring Precipitation2 SPP2 0.000001 0.000001 0.334 
Summer Precipitation 2 SMP2 0.000007 0.000002 0.000 
Fall Precipitation 2 FLP2 -0.000002 0.000001 0.107 
Winter Precipitation2 WNP2 -0.000001 0.000000 0.104 
Spring Temperature SPT 0.189883 0.053003 0.000 
Summer Temperature SMT 0.016669 0.147115 0.910 
Fall Temperature FLT 0.240033 0.053679 0.000 
Winter Temperature WNT 0.098559 0.018442 0.000 
Spring Temperature2 SPT2 -0.010937 0.003177 0.001 
Summer Temperature2 SMT2 -0.003458 0.003630 0.341 
Fall Temperature 2 FLT2 -0.007564 0.002704 0.005 
Winter Temperature2 WNT2 0.002698 0.001109 0.015 
Available Water Storage 
0–50 cm 

SOI 0.317386 0.044639 0.000 

Soil Drain class Drain -0.236042 0.064133 0.000 
Forest Type ForType    

Longleaf/ Slash 1 0.050 0.283 0.859 
Oak/ hickory 3 -1.354 0.285 0.000 
Oak/Gum cypress 4 -1.661 0.180 0.000 
Maple beach birch 5 -2.161 0.360 0.000 
Pinyon juniper 6 -2.458 0.278 0.000 
Fir spruce 7 -3.739 0.332 0.000 
Douglass fir 8 -2.329 0.342 0.000 
Ponderosa pine 9 -1.473 0.377 0.000 
Other  10 -2.697 0.398 0.000 

Constant Constant -2.848 2.410 0.237 
R-square      0.531 

Number of observations    3278 
 

 

There is no statistically significant relationship between forest productivity and 

summer temperature at the 5% level. Frost damage caused by cold winter could be 



 

 57

prevented by a 2 ºC winter temperature increase (Kirschbaum 2000). Johnson, Cook, and 

Siccama (1988) indicated that the winter damage such as freezing injury is an important 

factor in red spruce decline between mid-1960s and mid-1980s in the mountain of New 

York and western England. Also warmer winter temperature enhances microorganism 

activity in the soil. It has been suggested that microorganism have limited ability to 

sequester substrates at cold temperature around 0 °C (Drotz et al. 2010). Therefore, 

increase in winter temperature would enhance forest productivity due to protecting 

winter damage and enhancing microorganism in soil.  

Positive relationships between forest productivity and spring and fall temperatures 

might be largely related to growing season length. Warmer spring and fall temperature 

could extend tree growing seasons. However, too high temperature during spring and fall 

season may increase the rate of respiration. If the rate of reparation level exceeds the 

optimum level, that might cause death of the tree (Hawkins et al. 2008). Grace and 

Zhang (2006) suggest that if annual temperature reaches 10–14 °C, net ecosystem 

productivity would be negative, under both normal and double CO2 concentration level, 

based on data from the boreal forest. Spring temperature is also related to snowpack 

melt. Usually, warming spring temperature can cause melting snowpack earlier than 

usual. The early melting increases soil frizzing in spring. This may possibly offset the 

positive effects of warming by damaging roots (Templer 2015). Way and Oren (2010) 

found that increased temperatures generally increase tree growth, except for tropical 

trees. The temperature effects on tree growth might be related to the effects of 

temperature on tree cell division and expansion (Körner 2003). Plant cells at higher 
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temperatures tend to divide more rapidly than at lower temperatures in spite of having 

same length of the cells (Bertin 2005). Temperature is also related to tree growing 

season length. For example, every 1 °C increase in average annual temperature leads to 

an increase in growing season length by five days in the eastern U.S. (White, Running, 

and Thornton 1999). Few studies investigate the direct impact of increased growing 

season length on forest productivity. The bud burst growth model simulations suggest 

that there is a positive relationship between the timing of bud burst, consequently, length 

of growing season, and tree growth (Menzel and Fabian 1999).  

The estimation results in this essay also confirm that seasonal precipitation is an 

important determinant of forest productivity. Even though forest productivity increases 

with an increase in temperature, patterns of precipitation in a changing climate may alter 

forest productivity (Way and Oren 2010). Positive correlations are found among density, 

CO2 concentration in the atmosphere and forest productivity.  The negative relationship 

between summer precipitation and forest productivity is related to flooding. Summer is 

usually the season with high precipitation. Increase in summer precipitation could lead to 

increase in flooding frequencies during summer season. Flooding could have negative 

impact on forest precipitation by increasing soil erosion. Short-duration floods might 

enhance forest productivity in wetland by providing additional water and nutrient while 

long-term flooding decrease forest productivity because of the physiological stress with 

anoxic soil condition (Megonigal et al. 1997). Increasing CO2 concentration in the 

atmosphere has positive impacts on forest productivity because CO2 in the air directly 

affects to plant. Increasing CO2 concentration in the atmosphere enhances 
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photosynthesis of trees and makes more efficient use of soil moisture (Wigley, Briffa, 

and Jones 1984). The recent increment of growth in the several high altitude forests 

might be directly related to current increasing trend of CO2 concentration in the 

atmosphere (Lamarche et al. 1984). Available water storage has a positive impact on the 

forest productivity while soil drain class has a negative impact on forest productivity. 

This result indicates that forest productivity is also significantly related to not only 

temperature but also soil water availability and soil moisture. In terms of forest type, the 

loblolly-slash pine forest shows higher productivity than any other forest type. Loblolly 

pines are fast growing trees, but these results also imply that the loblolly and slash pines 

could respond better to climate change than other major tree species in the U.S. in terms 

of annual net growth of merchantable timber.  

The PCSE estimation results of regression without quadratic temperature and 

precipitation terms are illustrated in Table 11. A significant (p < 0.05) positive 

correlations is found between fall precipitation, winter precipitation, fall temperature, 

winter temperature and forest productivity. For a 1mm increase in total fall precipitation, 

forest productivity would increase by 0.0008 3m ha-1yr-1. For a 1mm increase in total 

winter precipitation, forest productivity would increase by 0.0020 3m ha-1yr-1. On the 

other hand, a 1 mm increase in summer precipitation would reduce the forest 

productivity by -0.0020 3m ha-1yr-1. For a 1 °C increase in fall temperature, forest 

productivity would increase by 0.0943 3m ha-1yr-1. For a 1°C increase in winter 

temperature, forest productivity would increase by 0.0823 3m ha-1yr-1. There are positive 

correlations detected between density, CO2 in the atmosphere and forest productivity. As 
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CO2 in the atmosphere increases 1 ppm, forest productivity would increase by 0.0115 

3m ha-1yr-1. The forest productivity could be increased as biomass is increased but at a 

decreasing rate.   

 

Table 11 Estimation result without quadratic temperature and precipitation terms 

Variable description  Independent 
variable 

Coefficient Panel 
Correlated 
Std. Error 

p-value 

density Den 0.0298 0.0045 0.00 
Biomass Biomass 0.0639 0.0308 0.04 
Biomass2 Biomass2 -0.0011 0.0009 0.22 
CO2 in Air CO2Air 0.0115 0.0055 0.04 
Spring Precipitation SPP 0.0002 0.0004 0.57 
Summer Precipitation SMP -0.0020 0.0005 0.00 
Fall Precipitation FLP 0.0008 0.0004 0.04 
Winter Precipitation WNP 0.0020 0.0003 0.00 
Spring Temperature SPT 0.0140 0.0340 0.68 
Summer Temperature SMT -0.1728 0.0339 0.00 
Fall Temperature FLT 0.0943 0.0327 0.00 
Winter Temperature WNT 0.0823 0.0172 0.00 
Available Water Storage 0–50 cm SOI 0.3435 0.0451 0.00 
Soil Drain class Drain -0.2612 0.0641 0.00 
Forest Type ForType   

Longleaf/ Slash 1 -0.4958 0.2419 0.04 
Oak/ hickory 3 -0.5395 0.3154 0.09 
Oak/Gum cypress 4 -2.1159 0.1962 0.00 
Maple beach birch 5 -1.1575 0.2218 0.00 
Pinyon juniper 6 -1.4069 0.2776 0.00 
Fir spruce 7 -2.6579 0.2779 0.00 
Douglass fir 8 -1.1751 0.3112 0.00 
Ponderosa pine 9 0.0077 0.2832 0.98 
Other  10 -1.3826 0.3228 0.00 

R-square      0.572 
Number of observations    3278 
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3.2.2 Climate change impacts on forest productivity  

Projected future forest productivity using aggregated GCMs for three time periods 

including 2012–2030, 2030–2060 and 2061–2090 under each RCP scenario is shown in 

Figure 4. The observed forest productivity in the period 1990–2011 is used as the 

baseline scenario. The historical base line map shows that high forest productivity is 

mostly located in the South (Southeast and Southcentral) and Pacific coast (Pacific 

southwest and Pacific south east) forest regions while the arid Rocky mountain region 

(Inter-mountain and the Great Plains) has low forest productivity. The increasing trend 

of forest productivity is expected in the South and Pacific coast forest regions. 

Especially, ample precipitation in the humid area of the Pacific costa region is expected 

with a continuous increasing trend of forest productivity both in the long term and the 

short term under all RCP scenarios.  

In the short term (2012–2030), high forest productivity would be anticipated in the 

South and Pacific coastal regions. However, the Rocky Mountain region would have low 

forest productivity. The South and Pacific coast regions are expected to have high forest 

productivity in the mid-term (2031–2060) and the long term (2061–2098) in all climate 

scenarios. Several South states including LA, AL and SC show an increasing trend of 

productivity with each climate scenario in all three future time period. Productivity gains 

in these areas might be caused by expanding growing season, water availability and 

carbon dioxide fertilization due to increasing temperature, precipitation, and CO2 

concentrations in atmosphere as result of projected climate change.  
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However, the sub-tropical region in the southern FL are expected to have low forest 

productivity due to decreasing precipitation. Most of eco-climate zone in southern FL is 

sub-tropical and tropical forest; tropical forests are vulnerable to a warmer climate 

(Malhi et al. 2008). 

The forest productivity in the North (Northeast and Northcentral) would also 

increase in the long term under both low and high emission scenarios. The North forest 

might be largely affected by climate changes. Several long term climate datasets indicate 

that the temperature and precipitation in the Northeast region have become warmer and 

wetter (Hayhoe et al. 2006), and the climate models predict that the region would 

become even warmer and wetter in the future. Winter temperatures in the region are 

expected to increase significantly. The Great Plains apparently has been affected by 

climate change over the last few decades. Record preserved in tree rings, sediments, and 

sand deposit have shown evidence of expanding drought and altering wetter conditions 

(Woodhouse and Overpeck 1998). The historical record of low forest productivity might 

be affected by this trend. In the Great Plains, temperature is expected to continuously 

increase over this century.  

Precipitation changes are also projected but the changes would vary across the 

region. The northern part of the Great Plains would become wetter, but the southern part 

would be drier. Therefore, forest productivity in northern Great Plains is projected to 

increase while lower forest productivity is projected for the southern Great Plains. 

Increasing forest productivity is projected in some part of east central Intermountain 

(eastern AZ and CO) and southern Great Basin (southern NV) in the long term under 
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both low and high emission scenarios. This results might be related to by change in 

precipitation. Projected change in precipitation in this region is expected to be increase 

under climate change. Increased in precipitation are mostly to occur in winter while 

decreases or little change in precipitation is expected in this regions (Chambers and 

Pellant 2008).  

Taken together, the projection results suggest that there is an association between 

climate change and forest productivity. This change in forest productivity varies across 

the regions and the scenarios. In the short term, high forest productivity is mostly 

projected in the Pacific west coastal and southern forest where ample forest productivity 

recorded in historical data has also been high. Forest productivity in these regions is 

projected to increase continuously in the long term and under all scenarios. Forest 

productivity in several parts of the North, the east central Intermountain, and the 

southern Great Basin is also projected to increase compared to its historical record but 

the changes would be small in the short term. However, the productivity in this region 

would strongly increase from mid-term (2030–2061) under the high emission scenario 

(RCP8.5) and high productivity would be expected in the long term and under all RCP 

scenarios. The productivity in the arid central Great Plains are would continue to be low 

in the short term under most climate scenarios. However, the productivity is projected to 

increase in the southern Great Plains while the northern Great Plains would continue to 

experience low productivity in the long term.  This might be related to change in 

precipitation patterns in this region. Climate conditions are projected to become wetter in 
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the north while the southern part of the region is expected to become drier in the winter 

and spring in particular (Karl, Melillo, and Peterson 2009). 

 

3.3 Conclusions 

I have discussed the effects of CO2 and climate variables on forest productivity 

across the continental U.S. using panel data analysis in this essay. Also, the impact of 

projected future climate change on forest productivity is investigated using the output 

from GCMs. In this essay regression results derived from both the linear and quadratic 

models are reported. The regression results indicate that there is a significant correlation 

between climate variables and forest productivity. Generally, forest productivity 

increases as temperature increases and precipitation decreases. Forest productivity 

positively respond to increasing spring, and fall temperature initially but at a decreasing 

rate.  Increasing winter temperature have positive impact on forest productivity at an 

increasing rate. Tree density, CO2 concentration in the atmosphere, and available water 

storage have a positive impact on forest productivity while soil draining class has a 

negative impact. Biomass initially has a positive impact on forest productivity at a 

decreasing rate. These relationships are significant at the 5% significance level. In the 

regression without quadratic precipitation and temperature terms, a significant (p < 0.05) 

positive correlation is found between fall precipitation, winter precipitation, fall 

temperature, winter temperature and forest productivity. Significant (p < 0.05) negative 

relationships are detected between summer precipitation, summer temperature, and 

forest productivity.  
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How future climate change will influence future forest productivity is projected. The 

projection results show that climate change would lead to higher future forest 

productivity in several regions including the South, the Pacific Coastal, the North, the 

northern Great Plains, the central Intermountain, and the southern Great Basin but 

forests in the southern Great Plains and northern Intermountain are projected to have low 

forest productivity. Especially, the difference between the southern Great Plain and other 

regions would be widened in the long term and under the higher GHG emission 

scenarios.  

These results imply the possibility of an overall increase in forest productivity 

across the U.S. but the climate change will likely threaten the productivity in the 

southern Great Plains. This might be related to sharp change in precipitation in the 

region due to climate change. Given the uneven impacts of climate change on forest 

productivity, region-specific mitigation and adaptation strategies to climate change will 

be necessary, especially for the central region of the U.S.   

The main contribution of this study is to investigate the climate change impact on 

forest productivity in the U.S. using a large-scale data on climate, forest, and soil. 

Especially, considering changes in CO2 concentration pathways under different climate 

scenarios will help explore the potential future CO2 impact on forest productivity in the 

global scheme. Many studies show that increasing CO2 in the atmosphere will likely 

stimulate forest productivity if sufficient water and nutrients are available.  

This study has some limitations. One source of limitation is that it does not consider 

several external variables besides climate, soil and forest characteristic. For example, 
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forest productivity is also possibly related to wildfire and insect outbreaks. Additionally, 

human activity such as urbanization and land use change can transfer forest type and 

quality, altering forest productivity. Further studies should explore the impact of these 

factors on forest productivity. Other limitation is that possible endogeneity problem is 

not considered in the empirical model. If biomass is part of average annual net growth 

( ity ), the error in ity  ( itε ) may be correlated with itx  (biomass). If the biomass is 

endogenous variable, the estimated coefficient could be biased because of 

,cov( ) 0it itx ε ≠ . To overcome this problem, some statistical tests such as Durbin-Wu- 

Hausman test should be performed in the future study. If endogeneity is detected, several 

alternative approaches such as instrument variables and Heckman selection correction 

could be considered. Another source of weakness in this study is assumption of constant 

coefficients in the projection procedure. More sophisticated projection strategy will be 

necessary to overcome this problem. Also, adding interaction terms among climate 

variables to a regression model should be considered to expand understanding of the 

relationship among the variables.  
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4. FOREST CARBON SEQUESTRATION AND OPTIMAL HARVESTING 

DECISION CONSIDERING SPB DISTURBANCE: A REAL 

OPTIONS APPROACH  

 

Forest owners in the southern U.S. region are facing several risks and these risks are 

increasing in magnitude with climate change. Uncertainties associated with management 

decision are challengeable tasks of forest managers because inappropriate decision 

making can result in the loss of economic opportunities and profits. Moreover, the 

irreversible characteristic of forestry complicates the problems. For example, if forests 

have been cut, the opportunity of preserving them is lost (Conrad 2000) because it takes 

a long time for trees to regrow to their full size. Therefore, trade-offs between the social-

economic benefit of harvesting timber and the ecological benefit of preserving the 

forests are a fundamental challenge for forest resource management decision making 

(Morgan, Abdallah, and Lasserre 2007).  Moreover, as ongoing climate change tends to 

accelerate the uncertainties by altering forest disturbance and forest ecology. Therefore, 

examining strategic managerial decision making is paramount for forest owners to 

maximize their profit when they face uncertainties. To examine this need, this essay 

investigates a developed methodology to adopt for forest management strategy under 

uncertainties.     

There are several techniques for analyzing the management of forest ecosystems, 

and one of the most widely used methods is calculating net present value (NPV) of forest 

using static discount rate. The main weakness with this approach is that it fails to take 



 

 70

into account the flexibility of harvest decisions due to timber price fluctuations because 

the NPV assumes a constant pattern of future cash flows (Tee et al. 2014). In addition, 

the linear and static nature of the NPV does not fully consider the possibility of 

reversible investment opportunities (Duku-Kaakyire and Nanang 2004). Therefore, the 

NPV method cannot appropriately evaluate the value of a forest owner’s ability to 

change an initial strategy when future events become different from those initially 

predicted (Trigeorgis 1993).  

To overcome this limitation, one of the alternatives is the real options technique. 

The definition of real option is the value of being able to choose some characteristic of 

decision allowing flexible outcome (Saphores and Carr 2000). The term “real” refers to 

tangible assets such as facilities and natural resource, rather than financial instruments 

such as foreign exchange and stock. The best way to measure social benefit is option 

pricing when there are uncertainties (Graham 1981) because option pricing can evaluate 

the social values of the project without knowledge of future events. The real options 

methodology provides an adequate framework for valuing the flexibility of decision 

making through including the risk and uncertainty incorporated with management 

decision making in option formulation (Dixit and Pindyck 1994).  

Several studies have adapted a real options framework to the field of forestry. 

Developments real option study in forestry have increased the need for risk management 

to forest investment and forest business management for optimizing the financial 

performance of forest assets. Among the early authors who introduced the real options 

framework into forestry are Miller and Voltaire (1983). They examined the solution to 
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the rotation problem using a stochastic model. Brazee and Mendelsohn (1988) found that 

allowing for flexible harvest decisions can increase the net present value of expected 

return compared to traditional NPV approach under fixed harvest decision. Plantinga 

(1998) highlighted the role of option values in the optimal timing of harvests. He 

investigated that the option value is a premium over the expected net present value of a 

timber stand reflecting the opportunity cost of delaying harvesting until appropriate 

future stand value is revealed. Duku-Kaakyrie and Nanang (2004) compared forest 

investment values derived from the Faustmann NPV model and a real options model 

using the binomial tree method. Their study included four option strategies: to delay 

harvest, to expand planting size, to abandon harvest if timber prices decrease below a 

certain threshold, and one includes all the three above options. They found that forest 

flexible harvest decision (real option) add forest investment values. Especially, 

expanding planting size adds more value to the investment project among four option 

strategies. Morck, Schwartz, and Stangeland (1989) valued the forest resources as a 

function of stochastic price and inventory, and optimal production policy using a 

contingent claims approach. However, a limitation of their study is an assumption of 

geometric Brownian motion for timber price. An assumption of geometric Brownian 

motion is not realistic because the geometric Brownian motion assumes continuously 

rising expected price and variance over time without bounds (Insley and Rollins 2003). 

Unlike Morck et al. (1989), Haight and Holmes (2011), Gong and Yin (2004), and 

Newman and Yin (1996) showed that competitively determined timber price in the 

markets followed autoregressive (mean reverting) process rather than geometric 
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Brownian motion. Guthrie (2009) applied the binomial tree method to calculate the 

optimal harvest decision under a flexible harvest decision framework (real options). This 

approach is advantageous in that it is relatively easy and intuitively understandable.  

Currently, many of studies have attempted to incorporate of ecosystem service such 

as carbon sequestration into the real option analysis. Since the CO2 concentration in the 

atmosphere is treated as main source of global climate change, the social costs of climate 

change would become enormous. Forests play a significant role in carbon sequestration 

because trees absorb carbon during growth. Several studies (Alavalapati and Kant 2014; 

Tee et al. 2014; Petrasek and Perez-Garcia 2010) have asserted that we should consider 

forests not only as a source of timber but also a carbon pool. Therefore, the ability of 

forests for carbon sequestration should be included when we evaluate the forest values. 

The real option approach is very useful in understanding tradeoffs between timber and 

ecosystem services provided by forests to incorporate uncertainties and flexibility in 

timing (Alavalapati and Kant 2014). Petrasek and Perez-Garcia (2010) determined 

optimal harvest schedule including revenues from carbon trading in a real option model. 

Romero et al. (1998) examined an approach for the determination of optimal forest 

rotation considering both timber production and carbon sequestration for the climate 

change mitigation purpose. Tee et al. (2014) applied real options analysis to forestry 

carbon valuation under the New Zealand emission trading scheme. They incorporated 

both stochastic timber price and carbon value into calculating real option value of the 

New Zealand forests using the binomial tree method. However, most of the analyses so 

far only consider carbon sequestration in live standing trees. Damaged trees represent a 
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substantial proportion of the total carbon sink/source in forest stands, and these damaged 

trees will affect tree management decision such as harvesting age (Asante, Armstrong, 

and Adamowicz 2011). One of the main causes of tree damages in the southern U.S. is 

southern pine beetle (SPB) infestation (Preisler et al. 2012). Trees damaged by SPB will 

affect the amount of total carbon sequestration and the forestland value. Moreover, the 

forest owner’s decision will be affected because of the changing forest value due to SPB 

damages.     

The utility of the real options valuation approach to the field of forest management 

decision making considering various cases that forest owners might face is demonstrated 

in this essay. The term “valuation” means the value of bareland where loblolly pine, 

Pinus taeda, is planted. Loblolly pine is the most commercially important forest species 

in the southern U.S., and its native range extends throughout 14 states form southern 

New Jersey to central Florida and to eastern Texas (Baker and Langdon 1990). The 

objectives of the study are to find answers to the following questions:  

1) How does the sawtimber price volatility affect the bareland valuation of loblolly 

pine forests in the southern U.S.? 

2) How much could the bareland value be changed if we consider not only timber 

price but also the carbon sequestration ability of the forest and pine beetle 

outbreak risk?  

3) What is the optimal harvesting decision for loblolly pine plantations in the 

southern U.S. considering timber price volatility, carbon value, and pine beetle 

infestation risk?  
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Three general approaches are used to implement real option valuation including 

partial differential equation, simulation and binomial trees (Tee et al. 2014). Among the 

three approaches, binomial approach to calculate real option value is applied in this 

essay because the binomial tree is numerically efficient and conceptually undemanding 

technique to calculate option value. Also, the binomial tree approach is the 

computational ease and intuitively understandable when calculate the early exercise 

premium present in options (Mastro 2013). The binomial tree method developed by 

Guthrie (2009) is useful to calculate the valuation of flexible rotations; as such, the 

Guthrie’s approach for evaluating option value is used.   

 The main contribution of this study is to evaluate the optimal stand management 

decision considering timber price, carbon sequestration, and trees damaged by SPB. 

There are many studies that evaluate the value of the forests using the real options theory 

but researchers have not treated damaged trees in detail. Insect infestation directly 

affects forest owner’s profit because it reduces timber productivity. In terms of forest 

carbon sequestration, dead trees do not release large amounts of CO2 into the atmosphere 

than expected because dead trees hold their carbon for a long time and prevent it from 

quickly being released into the atmosphere (Moore et al. 2013). Without considering 

this, the carbon sequestration ability of forest could be underestimated. This essay 

provides guidelines for forest owners for improving their timber harvest decisions to 

consider some cases they could face under climate change including timber price 

volatility risk, benefit from mitigation CO2 due to forest carbon sequestration, and SPB 

outbreak risk.  
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4.1 Model setting up  

4.1.1 Binomial tree of price movement  

Timber price volatility is one of the critical uncertainties that forestland owners 

could face. Assume that a forestland owner is confronted with the timber price risk. 

Suppose that (0,0)X  is the current price of sawtimber ($/m3). ( , )X i n  denotes the 

sawtimber price at the node (i, n), where i is the number of downward price moves and n 

is the time step. Sawtimber price can move upwards with probability ( , )U i nθ , and can 

move downwards with probability ( , )D i nθ . Suppose that ,U D  are the size of up move 

and down movement where  tmU eσ Δ=   and   tmD e σ− Δ=  , respectively.  Sawtimber 

could be either increased or decreased with probability  ( , )U i nθ  or  ( , )D i nθ  at each 

node.  If sawtimber will be increased at the node (i, n+1), the sawtimber could be 

( , 1) ( , )X i n X i n U+ =   and the sawtimber could be ( 1, 1) ( , )X i n X i n D+ + =  when 

sawtimber will be decreased. The binomial tree of sawtimber price movement process 

for n = 2 is described in Figure 5.  

 

 

Figure 5 Two-step price binomial tree 

X(0,0)

X(0,1)

X(1,1)

X(0,1)

X(1,2)

X(2,2)

Ɵu

ƟD

Ɵu

ƟD

Ɵu

ƟD



 

 76

The forestland owners expect some profits from the sales of forest products; the 

amount of the profit depends on the timber price movement in the market. Assume that 

this timber price follows a mean-reverting series. Schwartz (1997) suggested strong 

mean reversion in the commercial commodity prices.  The mean-reverting price process 

implies that unlike the random walk price process, shocks to mean-reverting timber spot 

prices are not permanent. In other words, sudden increase in timber price leads to an 

increase in supply as well so the market price of timber will move back towards the 

timber’s long-run marginal cost of production in long-term. Likewise, a sudden decrease 

in timber price causes a reduction in supply that triggers increase in future timber price. 

Therefore, a sudden increase (decrease) in timber spot price is not long lasting (Guthrie 

2009).  

 Under the mean-reverting price assumption, the logarithm of the price follows a 

mean reverting process (first order autoregressive):  

(14) 1 0 1 1

2
1 ~ (0, )

j j j j

j

P P P u

u N

α α

φ
+ +

+

− = + +
 

where jp  is the market price of sawtimber, ju  is the error term that follows normal a 

distribution with mean=0 and variance= 2φ .  After obtaining OLS estimated 

coefficients, 0α̂ , 1α̂ , and 2φ̂ , from equation (14), we can calculate Ornstein-Uhlenbeck 

parameters with the following equation using the OLS coefficients: 

(15) 1/201 1

1 1 1

ˆˆ ˆˆˆlog(1 ) 2 log(1 )ˆ , , ( )
ˆ ˆ(2 )ˆd d

a b
t tα

σ
α

αα αφ
α

−− + += = =
Δ + Δ

  
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Where a = mean reversion rate, b = long-term level price, σ  = volatility of the  

Ornstein-Uhlenbeck parameters, and tΔ  = size of time step. From the solution to 

equation (15), the binomial tree parameters,U , D , and ( , )U i nθ  are calculated by the 

following equations:  

(16)  

 


 


 

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
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2 2
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2 22 2

1 (1 )(b log(X(i, n))1 if 1
2 2
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e
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e
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σ σ

σ
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−

− Δ

− −

= =

 − −+ ≤ 
Δ 

 
− − − − = + < + < 

Δ Δ 
 

− − + ≥ Δ 

 

4.1.2 Calculating risk neutral probability using capital asset pricing model (CAPM) 

 The risk neutral probability is probability of future outcome under the assumption 

that underlying risk asset has the same expected return as riskless assets such as 

Treasuries bills (Hull 2008). Capital Asset Pricing Model (CAPM) can be applied to 

calculate the risk neutral probability. The risk neutral probability UΠ  is calculated by 

subtracting a Market Risk Premium adjustment ( adjMRP ) from the valuation binomial 

tree’s probability Uθ  (Guthrie 2009):    

(17) ,  and
1 .

U U adj

D U

MRPθΠ = −

Π = − Π
  

The adjMRP  is obtained by regressing returns on the market portfolio (Guthrie 2009) . 

The common stock indices such as S&P 500 and NASDAQ are widely used as a proxy 
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for the market portfolio. This study uses the S&P 500 index as a proxy of the market 

portfolio.  

 

4.1.3 Binomial tree of valuation movement  

The forest value in each node is denoted by ( , )V i n , and ( , )V i n  is related to timber 

price movements ( , )U i nθ  and ( , )D i nθ . The two-step valuation binomial tree (n=2) is 

shown in Figure 6. The forest value could be increased with probability ( , )U i nθ  or 

decreased with probability ( , )D i nθ . n is time steps and i is the number of down 

movements.  

 

 

Figure 6 Two-step valuation binomial tree 
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Because the risk neutral probability can be expressed as U U adjMRPθΠ = −  and 

1D UΠ = − Π , the two-step valuation binomial tree with risk neutral probability is shown 

in Figure 7.  

 

 

Figure 7 Two-step valuation binomial tree with risk neutral probability 
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where fR  = (1+discount rate). 

At node ( , )i n , the forestland owner faces two alternative situations. The first 

alternative is harvesting. If she/he decides to harvest the forest, she/he must pay harvest 
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costs H per timber volume. Total costs are equal to ( )HQ n  where ( )Q n  is the total 

volume of timber harvested. She/he gains some revenue from selling the timber, which is 

equal to ( , )Q(n)X i n , where ( , )X i n  indicates the market timber price in the n th time 

period. B  is the bareland value after harvest. After harvest, the forestland is turning into 

bareland worth B  per hectare. She/he also must pay taxes at a tax rate of T. All in all, 

the harvest payoff equation is  

(19) (1 )( ( , ) ) ( )T X i n H Q n B− − + . 

The second alternative is that the forestland owner decides not to harvest, rather 

postpone the harvest until an appropriate timber price is going to be reached. In this case, 

she/he must pay forest maintenance cost per hectare. After one period, the timber price is 

going to move either up and down. So the corresponding forest value is either ( , 1)V i n+  

or ( 1, 1)V i n+ + . Thus, the expected payoff from postponing harvest is    

(20) ( , ) ( , 1) ( , ) ( 1, 1)(1 )C u

f

di n V i n i n V i nT
R

Π + + Π + +− − +  

for all 1n N= −  where N  is the terminal node and C is the forest maintain cost. The 

payoff at the terminal node is  

(21) (1 )( ( , ) ) ( )T X i N H Q N B− − + . 

At each node, the decision to harvest or not harvest is re-evaluated. If the present value 

of the cash flows from harvesting is larger than the present value of the cash flows from 

not harvesting at the node, the optimal decision is to harvest at this node. On the other 

hand, if the present value of the cash flows from not harvesting is larger than the present 



 

 81

value of the cash flows from harvesting, the optimal decision is not harvesting at this 

node. Therefore, the valuation at each node ( , )V i n  is   

(22) (1 )(( ( , ) ) ( )) ,
( , ) ( , 1) ( , ) ( 1, 1)( , ) max .(1 ) u d

T
f

T X i n H Q n B
i n V i n i n V i nV i n T M

R

− − + 
 + + + +=  − −


Π+ 


Π  

The first line in the max function, equation (22), implies the cash flow from harvesting. 

On the other hand, the second line represents the cash flow from not harvesting. The 

forest owner makes a decision by comparing the present values of the corresponding 

expected future cash flows at every node. This problem is solved by calculating ( ),V i n  

backwards, starting from the terminal node where n N=  and ending at ( )0, 0V .  

 

4.1.4 Market value of bareland  

The backward procedure is conducted recursively over multiple iterations and each 

iteration represents one harvest/planting rotation. Calculating the market value of 

bareland follows these steps: (1) The bareland value is zero when calculating value for 

the first iteration. (2) After finishing first iteration, ( )0, 0V  (The market value of the 

forest at date 0) is obtained. (3) The bareland value is estimated by 

( )0, 0 (1 )B V T G= − −  which implies ( )0, 0V  minus the cost of replanting the forest. 

This first iteration bareland value implies real option value for a single rotation (the 

value for single rotation forest with flexibility). When calculating the value of the second 

iteration, the bareland value derived from the first iteration is used as the new initial 

value instead of 0. This process is repeated until the bareland values converge. This 
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converged bareland value is the real option value with infinite rotation (value of an 

infinite rotation forest with flexible harvest).  

 

4.1.5 Value of flexibility  

The value of flexibility is calculated by comparing bareland value from fixed 

harvest with the value of real option. The valuation method for fixed harvest follows the 

same process with real option but assumes the harvest date is fixed. Suppose that the 

harvest decision is fixed at node M (e.g., 30 years or any years smaller than the terminal 

node N, M<N), the terminal condition is (1 )( ( , ) ) ( )T X i M H Q M B− − +  and the years 

larger than M are ignored. The terminal condition is still not different from that used in 

the real option method except M instead of N is used. However, at all nodes earlier than 

M, there is no reevaluation of the decision since the harvest date is fixed. Therefore, the 

decision to “wait” is only at nodes n<M and the recursive equation at nodes n = (M-1) to 

n=0 becomes  

(23) ( , ) ( , 1) ( , ) ( 1, 1)( , ) (1 ) u d
T

f

i n V i n i n V i nV i n T M
R

Π + + + += + Π− −  

The value of bareland converges to the value under the infinite rotation after certain 

number of iterations. This value is Land Expectation Value (LEV) of infinite rotation 

(Tee et al. 2014). The difference between LEV and real option (flexible harvest decision) 

value is the value of flexibility.   
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4.2 Application of real option to flexible harvest decision   

Forests absorb CO2 from the atmosphere through photosynthesis (IPCC 2000b). 

Therefore, the stock of stored carbon in trees should be considered when we choose the 

optimal harvest age. Many studies have examined the relationship between optimal 

harvest age and carbon storage ability of standing trees, but most analyses have focused 

on carbon sequestration only in living trees. Dead trees, however, represent a crucial 

proportion of the total carbon stored in a forest (Asante and Armstrong 2012). Therefore, 

stored carbon by dead trees may be important when determining optimal harvest age. 

This study aims to establish three different real options models to compare optimal 

harvest ages and bareland prices.  

 

4.2.1 Timber only  

The valuation function for timber only is the same as equation (22) discussed in the 

previous section:  

  

4.2.2 Timber and carbon storage in living trees  

Carbon of trees provides additional benefit to forest owners. Carbon benefits are 

usually considered the amount of carbon per unit volume of biomass (Amacher, 

Ollikainen, and Koskela 2009). I denote ( )Q n  as a growth function of a forest at time n  

and cQ  as the carbon stock (t/ha) in the forest of volume ( )Q n . Therefore, the change in 

(24) (1 )(( ( , ) ) ( )) ,
( , ) ( , 1) ( , ) ( 1, 1)( , ) max (1 ) u d

T
f

T X i n H Q n B
i n V i n i n V i nV i n T M

R

− − + 
 + + + +=  − − +

Π



Π



. 
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the benefit from sequestrated carbon in living trees is a function of time n :

( ) ( 1)([ ])s c cQ n Q nX −−  where sX  is the social cost of carbon. The stored carbon in 

standing living trees are derived from a forest ecosystem yield table. The forest 

ecosystem yield table (Smith et al. 2006) provides tabulated carbon density at different 

stand age and timber volume. The, the real option valuation function for carbon 

sequestration by trees is:  

(25) (1 ){( ( , ) ) ( ) X ( 1)} ,

(1 )( [( , ) max
( , ) ( , 1) ( , ) ( 1, 1

(
)

) ( 1)])

s c

T s c c

u d

f

T X i n H Q n Q n B

T M X QV i n
i n V i n i n V

n Q n
i n

R

−

− − − − + 
 
  − − − +=  
 + + + + +
  

−
Π Π

. 

 

4.2.3 Timber and carbon storage in living trees and dead trees damaged by SPB  

The SPB infestation risk affects both the amount of carbon sequestration in trees 

and timber/wood products per unit forest land area. The trees killed by SPB have a lower 

merchantable value and carbon storage than healthy trees, but these dead trees still 

represent a substantial proportion of the total carbon stored in forest stands (Asante and 

Armstrong 2012) and can/will be replaced by new trees naturally and with human 

assistance. Assume that the percent of trees killed by SPB in each year is given by δ %, 

the forest owners may clear cut damaged trees in the same year or delay the harvest to a 

future year. In this case, one should separate two carbon sequestration pools: 1) carbon 

pool from live standing trees, and 2) carbon pool from trees killed by SPB.  
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The timber production in year n  will decrease due to SPB damage. Assume that 

average yearly SPB damage is given by δ %, the total timber production ( 3m /ha) in year 

n  will decrease according to equation (26). Therefore, the total tree production will be 

* ( )Q n  instead of ( )Q n  as the following: 

(26) *( ) ( ) ( )n Q n nQ Qδ= − . 

The value of the live standing tree pool is 

(27) * *( ) ( 1)s c cX Q n Q n − −  . 

Equation (27) implies the value of carbon stored in live standing trees in each year. 

* *[ ( ) ( 1)]c cQ n Q n− −  is carbon density (t/ha) and sX  is the social cost of carbon ($/t). The 

carbon storage of live trees can be calculated by using the “forest ecosystem yield table” 

from USDA Forest Service. The forest ecosystem yield table (Smith et al. 2006) 

provides tabulated carbon density at different stand ages and timber volumes by carbon 

pools including live trees, standing dead trees, soil organic matters and so on. If timber 

age or volume is not explicitly provided on a table, the carbon stock is estimated using 

an interpolation method. Assume that average yearly SPB damage is given by δ %, the 

total volume of live trees on the site in year n  is *( ) ( ) ( )Q n Q n Q nδ= − . Therefore, the 

carbon density stored in live trees, * ( )cQ n  is calculated from the forest ecosystem yield 

table with the corresponding volume * ( )Q n  using an interpolation method.  

The damaged tree pool (DTP) implies carbon stored in standing dead trees killed by 

SPB. The trees killed by SPB are assumed to decompose at a rate of η  per year, and 
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trees killed by SPB are added to the DTP each year. Therefore, the DTP pool grows 

according to  

(28) ( 1) (1 ) ( ) (n 1)D n D n Qη δ+ = − + + . 

where ( )D n  represents carbon stored in the damaged tree pool. The estimated 

decomposition rate is η  =0.00578, which is derived from Asante, Armstrong, and 

Adamowicz (2011). δ  is be average SPB risk. The change in DTP for the no harvest 

case is ( ) ( )nD n D Q nη δΔ = − + , which implies 
0

( ) ( (0) ( 1))n r
n

D n e D e Q nη ηηΔ = − + −

( )Q nδ+  where r = the discount factor. Combining all equations above yields the real 

options value function under SPB risk:       

(29) **

**( )

(1 ){( ( , ) ) ( ) X [ ( 1) D(n 1)]} ,

( , ) max (1 )( ([
( ,

( 1)]
) ( , 1) ( , )

( ))
1)

)
( 1,

s

T s

d

c

cc

u

f

n

T X i n H Q n Q n B

V i n T M X Q
i n V i n i n V i

Q n D n
n

R

− − + Δ
Π Π

 − − − − + − +
 
  = − − − + 
 + + + + +
  

. 

Because the SPB risk δ  is assumed to be constant, sensitive analysis is performed. 

(Starkey et al. 1997) examined that at least 10 percent of the slash and/or loblolly pine 

forest was infected by SPB in southern U.S. Reed (1979) simulated the spread of SPB 

infestation using a nonlinear spot growth model. He tested the model on 11 infestation 

spots from northern Georgia and projected 6% of total number of tree killed by SPB. 

However, it was not very precise model to estimate damages from individual infestation 

(Thatcher 1981). There are not many studies to investigate the SPB infestation in 

loblolly pine forest only and previous studies cannot reflect the current trend of SPB 
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infestation in loblolly pine forest. With this limitation, this essay assumes 3% of SPB 

damages. This number may reflect the current overall trend of SPB infestation risk in the 

southern U.S.  

 

4.3 Data and cash flows   

4.3.1 Timber volume and mean carbon stock in the South and South Central region 

The mean volume of timber growth and estimated carbon stock for loblolly pine in 

the southern U.S. are shown in Figure 8 and Figure 9, respectively. The mean volume of 

timber growth and estimated forest carbon stock of southern (or loblolly) pines are 

obtained from “Forest Ecosystem Carbon Tables” from USDA Forest Service (Smith et 

al. 2006). The Tables provide the estimated mean volume of timber and corresponding 

carbon stock for common forest types in each of U.S. region. The Tables were developed 

using a national-level forest carbon accounting model (FORCARB2), a timber projection 

model (ATLAS), and USDA Forest Service, Forest Inventory and Analysis (FIA) 

Program’s database of forest survey(FIADB) (Smith et al. 2006).   
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Figure 8 Estimates of timber volume for loblolly pine stands in southern U.S. 

 

 

Figure 9 Estimates of carbon stock for loblolly pine stands in southern U.S. 

 

4.3.2 Costs and cash flows  

Forest management costs and cost cash flows are shown in Tables 12 and 13. These 
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0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ti
m

be
r v

el
om

e 
(m

3/
he

ct
ar

e)

Harvest age (year)

0

20

40

60

80

100

120

140

Ca
rb

on
 st

oc
k 

(t/
ha

)

Mean volume of Tree: m3/ha  



 

 89

 

Table 12 Forest management costs 

Management cost description Cost ($) 

Regeneration cost (including the cost of site 
preparation, seedling, planting and weed control), G 

$618/ha 

Forest management cost, TM  $22/ha 
Tax rate, T 28% 
Harvest cost, H $68.67/m3 
Discount factor ( Risk free interest rate base on 
current 20 year U.S. treasury rate), r 

2.5% 

 
 

Table 13 Cost cash flow 

Year 0 1 … 15th 
rotation

… 24th

rotation
… 90th

rotation 
Planting Cost (618) (618) … (618) … (618) … (618) 
Maintenance  
Cost, TM  

(22) (22) … (22) … (22) … (22) 

Timber 
Revenue 

$ $ … $ … $ … $ 

Harvest Cost $ $ … $ … $ … $ 
    
 

Carbon stocks are calculated based on the timber volume for the loblolly pine forest 

(living and dead trees, m3/ha) using the forest carbon table in “Methods for Calculating 

Forest Ecosystem and Harvested Carbon with Standard Estimates for Forest Types of the 

United States” (Smith et al. 2006). Average stumpage prices for sawtimber sold by 

National Forests, arranged by selected species, 1965–2012 (Figure 10) are used. Using 

equation (15) and a mean reverting timber price assumption, the Ornstein-Uhlenbeck 

parameters with â  = 0.074, b̂  = 0.42, and σ̂  = 0.15. Using these parameters, the 
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estimated long run timber price is exp( ˆ)b  = $136.88/m3, and upward and downward 

movement factors are U  =1.16 and D  = 0.87. The market risk premium is assumed as 

3.5% and estimated market risk premium adjustment (MRPA) from regression of price 

changes on stock market return (S&P 500) is 0.027. Based on these values, the risk-

neutral probability of an up or down movement ( UΠ  or DΠ ) are calculated.    

The average stumpage price of southern pine sawtimber price movement is shown 

in Figure 10. $150 is long - term level price of southern pine sawtimber stumpage price 

calculated by equation (15). The timber stumpage price is an ideal state variable for 

calculating forest value because the timber stumpage price is price of timber while it is 

still standing so the stumpage price does not reflect additional cost such as cost of 

harvesting and transporting log to mill (Guthrie 2009). The social costs of carbon 

(Figure 11) used in the model are obtained from the Interagency Working Group’s 

Technical Support Report (Interagency Working Group 2013).  
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Figure 10 Average stumpage price of sawtimber (Source: Howard and Westby 2013) 

 

 

 

Figure 11 Revised social cost of CO2, 2010–2050 (in 2007 dollars per metric ton of CO2) 
(Source: Interagency Working Group 2013) 
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4.4 Results 

4.4.1 Land value (real option), harvest threshold and value of flexibility  

 The results for the flexible harvest (real option) of infinite rotation. For the timber 

only cases, the bareland value converges to $5329/ha, after nine cycles/rotations of 

harvest-and-replant are shown in Figure 12. For the timber plus carbon case ($75/of 

carbon cost is assumed), the bareland value converges to $7408/ha, after eight cycles of 

harvest-and-replant. For the case considering damage of SPB case (a 3% of SPB 

damaged is assumed), the bareland value converges to $6918/ha, also after eight cycles 

of harvest-and-replant. To consider the carbon storage ability of forest, the forest value 

would increase by 39%, compared to the case of considering only timber price. The SPB 

risk would decrease the forest value. The bareland value damaged by SPB would 

decrease by 6% compared to the case of the timber plus carbon forest. However, the SPB 

damaged forest has a higher value than the timber only case because even if the forest is 

damaged by SPB, the forest still has the ability of carbon storage. Thus, the value of 

carbon storage would compensate the price loss from damaged timber by SPB. 
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Figure 12 Infinite rotation values for bareland :  

 
 

The results for the flexible harvest (real option) of infinite rotation. For the timber 

only cases, the bareland value converges to $5329/ha, after nine cycles/rotations of 

harvest-and-replant are shown in Figure 12. For the timber plus carbon case ($75/of 

carbon cost is assumed), the bareland value converges to $7408/ha, after eight cycles of 

harvest-and-replant. For the case considering damage of SPB case (a 3% of SPB 

damaged is assumed), the bareland value converges to $6918/ha, also after eight cycles 

of harvest-and-replant. To consider the carbon storage ability of forest, the forest value 

would increase by 39%, compared to the case of considering only timber price. The SPB 

risk would decrease the forest value. The bareland value damaged by SPB would 
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damaged by SPB, the forest still has the ability of carbon storage. Thus, the value of 

carbon storage would compensate the price loss from damaged timber by SPB.    

The market value of forests for fixed harvest of infinite rotation in Figure 13. The 

infinite rotation problem is commonly known as the Faustmann rotation, which is 

defined “choosing the harvest period to maximize the net present value of a series of 

future harvest” (Grafton et al. 2008, 138; Gane, Gehren, and Faustmann 1968). In his 

study, the NPV of a forest could be indicated as a sum of discount net cash flow over an 

infinite time horizon (Viitala 2006). For evaluating the value of forests for fixed harvest, 

the same process is used with flexible harvest but the fixed harvest case assumes the 

harvest decision is fixed at the node t = fixed harvest age. Thus, the backward 

evaluations are started from node t (e.g., 60 years, 50 years) rather than N, without no re-

evaluation of a harvest decision. Thus, the valuation equation for each node is  

(28) ( , ) ( , 1) ( , ) ( 1, 1)( , ) (1 ) u d
T

f

i n V i n i n V i nV i n T M
R

Π + + + += + Π− − . 

The value of bareland converges to infinite rotation NPV of fixed harvest.  
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Figure 13 Market value of bareland (fixed harvest, infinite rotation) 

 
 

In contrast to the real option case, fixed harvest age is assumed. In the timber only 

case, the net present value (NPV) of the forest is the highest, $3220/ha, around age 30. 

In timber plus carbon case, the net present value of forest is at its maximum, $4812/ha, 

at age 40. In the case of timber plus carbon under SPB risk, the net present value of the 

forest is the highest, $4308/ha, at age 40. If allowed for flexible harvest (real option), the 

market value of the bare land is $5329/ha for the timber only case, $7408/ha for the 

timber plus carbon case, and $6918/ha for the case of timber plus carbon under SPB risk, 

respectively. Thus, timber harvest flexibility adds approximately 65% to the value of 

bareland for the timber only case (54% for the timber plus carbon case, 61% for the case 
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using information of various price levels. If timer prices are low, the forest owners can 

postpone harvest while they hasten harvest when prices are high.  

Using these results, we can estimate the optimal harvest/rotation age as well. The 

NPV of the forest is maximized at the point of optimal rotation age both fixed rotation 

and infinite rotation. The optimal rotation age is 30 years for the timber only case, 40 

years for the timber plus carbon case and 40 years for the case of timber plus carbon 

forest under SPB risk. The optimal rotation age increases when considering the carbon 

storage ability of the forest. In the case of SPB damage, the optimal rotation is similar to 

the carbon forest case, but the forest value is lower than that under the carbon forest case 

at the optimal rotation age. The value of flexibility also increased if we consider carbon 

storage ability of the forest because capacity to be flexible can increase the value of 

investment when uncertainty and irreversibility become larger (Tee et al. 2014).  

Figures 14–16 show the optimal harvest threshold for infinite rotations, timber only 

case, carbon plus timber case and carbon plus timber under SPB risk. The values are 

rounded off to the nearest whole number. These figures show the harvest threshold price 

for all possible ages of the forest. The shaded area implies the range of sawtimber price 

that is optimal to harvest for a given forest age. In every case, if the forest is very young, 

the threshold price is high so the optimal choice is not to harvest. However, as the age of 

the forest increases, the threshold price falls. For example, in Figure 14, if the timber 

price is above $258/mଷ at forest age between 20 to 26 years old, the optimal decision is 

harvest while the optimal decision would be deferring harvest if the timber price is 

below $258/mଷ at forest age between 20 to 26 years.  
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Figure 14 Sawtimber threshold prices for the timber-only case 

 
 

 

Figure 15 Sawtimber threshold prices for the carbon-forest case 
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Figure 16 Sawtimber price threshold for the case of carbon-forest under SPB risk 
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timber only case because dead trees provide carbon sequestration. The benefit from 

carbon sequestration of standing tree partially compensates the lost from reducing total 

volume of harvest by SPB damage.   

 

  

Figure 17 Comparisons of price threshold changes (timber only vs carbon forest under SPB vs 
carbon forest) 

 
 

Table 14 Comparison of timber price threshold ages 

Age Timber only Carbon Forest Carbon forest 
 under SPB risk 
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89 125 167 144 
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4.4.2 Sensitive analysis for carbon social cost   

Figure 18 presents infinite rotation valuation for fixed harvest under various levels 

of social cost of carbon. As the social cost of carbon increases from $50/t to $75/t, the 

expected NPV of the forest increases from $4224/ha to $5164/ha at 2.4% discount rate. 

The optimal rotation age does not change; as the social cost of carbon increases, the 

value of the forest increases.  

The bareland price changes for flexible harvest (real option) of infinite ration under 

various levels of social cost of carbon are shown in Figure 19. The bareland price 

changes for fixed harvest under various levels of social cost of carbon are shown in 

Figure 18. If the carbon social cost is $50/t, the bareland value converges to $6699/ha, 

after eight cycle of harvest-and-replant. If the carbon social cost is $75/t, the bareland 

value converges to $7408/ha, after eight cycle of harvest and replant. If the carbon social 

cost is $90/t, the bareland value converges to $7841/ha, after eight cycle of harvest-and-

replant. Compare to fixed harvest case, flexibility adds approximately 59% to the value 

of bareland under a $50/t social cost, 54% under a $75/t social cost, 51% under a $90/t 

social cost.  
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Figure 18 Market value of bareland under various levels of social cost of carbon 

 
 

 

Figure 19 Market value of bareland change under various social costs of carbon 
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The timber price threshold changes for all possible ages of the forest under various 

level of social cost of carbon are presented in Figure 20. If the timber price is above the 

dotted line, the forest owner’s best decision is to harvest. On the other hand, if the timber 

price is below the threshold at a given age, the optimal decision is to postpone harvest 

until the threshold price is reached for the respective age. The harvest price threshold 

decreases as the social cost of carbon decreases. There is no significant difference 

between harvest threshold prices if the age of the forest is young (less than 20 years old). 

If the forest age is 36 years, the timber price threshold is $257/m3 for a $90/t of carbon 

social cost, $223/m3 for a $50/t of carbon social cost, and $223/m3 for a $75/t of carbon 

cost, respectively. The timber price threshold decreases as the trees grow. The higher 

social cost of carbon increases the opportunity cost to harvest trees. Therefore, it requires 

a higher timber price is necessary to compensate the loss of the opportunity cost 

associated with cutting trees down. Therefore, as the carbon social cost increases, the 

forest owner would consider delay timber harvest if anything else remains the same. 
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Figure 20 Timber price threshold by different social costs of carbon 
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determine if the rate of return from continuing the investment in the forest is worth more 

than the rate of return received from an alternative investment (Jacobson 2015). 

Therefore, incentives from continuing to grow the trees would decrease under high SPB 

infestation risk by decreasing the future expected rate of return from continuing the 

investment in the trees. Thus, forest owner’s choice is seeking other opportunities to 

invest, for example, stock markets, mutual funds, or other alternatives instead of 

deferring harvest.   

    

 

Figure 21 Value of bareland (fixed harvest) at various SPB risks 
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Figure 22 Market value of bareland (flexible harvest) changes at various SPB risks 

 
 

The timber price threshold for harvesting at various SPB damage rates. For 
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the forest is younger than 55 years.  
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Figure 23 Optimal harvest price flow at various SPB damage rates 
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incorporating stochastic price movement is allowed because the value of flexibility adds 

to forest values when flexible harvest decision is allowed.  

The CO2 sequestration ability of a forest enhances the bareland value while SPB 

outbreaks reduce the bareland value. However, if we consider the carbon sequestration 

ability of damaged trees, the bareland value is still higher than that without considering 

carbon storage of damaged trees. The value of standing trees is higher as the carbon 

social cost increases due to increasing opportunity cost of carbon sequestration on trees.  

As the global CO2 concentration increases under climate change, the value of 

carbon storage of forest would increase. Therefore, at higher social cost of carbon, 

higher timber price is required to warrant harvesting. Moreover, the high social cost of 

carbon also adds value to wood products because the wood products also contribute to 

carbon storage. Frank Werner (2005) analyzed GHG impact of a use of wood products in 

Switzerland. They found that the material substitute effect of wood products offsets CO2 

emissions by 0.6 Mt of avoided CO2 emissions per year in Switzerland. Higher SPB risk 

tends to reduce the bareland value of forest. The higher bareland value of carbon forest 

provides an incentive to forest owner to plant new forests and perform intensive 

treatments to keep forests healthy and productive. When social cost of carbon is high, 

the incentive from converting abandoned agricultural land to forest land and using wood 

products instead of other material would become higher. U.S. forests currently absorb 

10% of national GHG emissions (Ingerson 2009). Increasing forest rotation age by 

increasing value of standing trees could enhance forests CO2 storage by deferring 

harvest. This might provide positive impacts on CO2 mitigation in the southern U.S. This 
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study confirms that standing forests could provide social benefit by absorbing CO2. 

However, planting new forests and keeping them healthy may require additional cost 

such as cost of pesticide and fertilization. This might carry an extra burden to forest 

owners. Therefore, policy makers should establish legislation that provide additional 

incentives to forest owners to offset extra burden by differing harvest and planting new 

forest. Emissions trading may be one of the solutions. Under emissions trading, the 

forest owners could earn carbon credit by standing forest and sell them in domestic and 

international market. The carbon trading has been employed in some countries. For 

example, in New Zealand, the government passed the New Zealand Emission Trading 

Scheme (NZETS) in 2008. Under the NZETS, the post-1989 forests (planted on and 

after 1st January 1990) are qualified as carbon credit that could be accumulated or 

immediately sold in carbon market (Tee et al. 2014). This could provide extra income to 

forest owners and the extra cash flow might generate incentives to forest owner to 

harvest new forests.      

 A limitation of this study is the absence of considering various different forest 

management schemes including pruning, thinning and fertilizing. Also, the pesticide 

control impact should be considered for the case of SPB outbreak risk in future research.  

The impact of CO2 fertilizations on forest productivity might be included in real option 

valuation equations as well. As shown in the second essay, section 4, increasing CO2 at 

the atmosphere would enhance forest productivity and thus provide extra profit to forest 

owners. The increments of timber products may offset the loss from timber damages by 
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SPB infestation under climate change. To consider these factors, more sophisticated real 

option valuation modeling approaches will be necessary in the further studies.  
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5. OVERALL SUMMARY AND CONCLUSIONS 

 

The purpose of this study is to assess the impact of climate changes on U.S. forests 

including different aspects of changes in southern pine beetle (SPB) outbreak patterns, 

forest productivity and the forest owner’s decision under various uncertainties. The 

impact of climate change on the risk of SPB infestation and the cyclical pattern of the 

outbreaks using generalized linear models (GLM) and spectral analysis is evaluated in 

the first essay. One major finding of this essay is that there is a positive relationship 

between SPB outbreak and unsalvaged volume of trees killed by SPB, average spring 

temperature, minimum winter temperature, maximum spring temperature a year ago and 

maximum winter temperature while the negative relationship is detected between SPB 

outbreak and spring precipitation, winter precipitation a year ago, and average fall 

temperature in the current year. The second major finding indicates that the risk of SPB 

outbreaks would not respond to climate change in one direction, but in general, short- 

and mid-term (2012–2060 and 2031–2060) future risk would be larger than the long-

term (2061–2098) future risk for all climate scenarios while the magnitude of damages 

vary across the southern U.S. Under the projected global climate change, SPB outbreaks 

tend to occur more frequently, from 6–7 years to 2–5 years. The conclusions are: 1) the 

southern U.S. forests would be exposed to SPB risk at a higher probability in the short- 

and mid-term future (2012–2060, 2031–2060) than in the long-term future (2061–2098); 

2) SPB outbreak in the region responding to climate change will occur with a higher 
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frequency; and 3) the magnitude of infestations would vary temporally and spatially 

without a significant hike point.  

The second essay investigates the effects of CO2 fertilization and climate variables 

on forest productivity across the U.S. using panel data analysis and future climates 

projected by GCMs. The estimated panel data models indicate that there is a significant 

correlation between climate variables and forest productivity. Generally, forest 

productivity increases as temperature increases, precipitation decreases in both quadratic 

and linear estimation models. Also, biomass, CO2 concentration in the atmosphere, soil 

moisture and soil water storage availability have a positive correlation with forest 

productivity. The projection results suggest that global climate change, in general, would 

enhance future forest productivity in several U.S. regions including the South, the Costal 

Pacific, the northern Great Plains, the North, the central Intermountain, and the southern 

Great Basin although forest productivity in the southern Great Plains will be likely 

threatened by global climate change. The findings suggest that appropriate mitigation 

and adaptation strategies to climate change will be necessary, especially for the southern 

Great Plains of the U.S.   

The real options valuation approach to management decision making of U.S. 

southern loblolly pine forests considering uncertainties including timber price volatility, 

forest carbon sequestration ability, and impacts of SPB damage on forest value is 

demonstrated in the third essay. The results show that forest owners can face a mixed 

outcome of these uncertainties when they make forest management decision, and the real 

option approach helps the forest managers consider future consequence through allowing 
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the flexible harvest decision. Generally, a higher bareland value is generated if a flexible 

harvest decision making (real option) is allowed compared to a fixed harvest. The 

standing forest has CO2 sequestration ability and this ability could generate extra value 

in the forest while SPB outbreaks reduce the bareland value. The extra carbon value 

increases as the carbon social cost increase. Therefore, as climate change becomes more 

looming due to CO2 concentration in the atmosphere, the value of standing forests would 

increase due to enhanced opportunity cost of carbon sequestration ability of forests. 

Continuous efforts of pest management for forests are necessary since a higher SPB risk 

tends to reduce the bareland value of forests. Also, employing marketable climate policy 

such as emissions trading is necessary to create a market carbon price and offset extra 

cost to keep forest.  

The general finding is that predicted climate change will likely affect U.S. forests 

via various pathways. It might alter forest disturbances, forest productivity, and forest 

land value. Climate change, however, will have a mixed impact on U.S. forests and 

different impacts across regions, which calls for region-specific adaptation and 

mitigation strategies. Continued monitoring would be necessary for the regions expected 

to hot and dry condition in the future. These regions might experience severe SPB 

outbreaks and the SPB infestation could accelerate continuous decline of forest 

productivity as climate change progresses. A decrease in forest productivity due to SPB 

outbreaks and climate change translates into profit loss to regional forest owners.  

This study can be enhanced in several areas. For the first essay, finer resolution data 

would help establish a greater accuracy on SPB studies. The interaction terms between 
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seasonal climate and precipitation variables could expand our knowledge of 

understanding about relationships among the variables in the empirical model. Applying 

time varying coefficient modeling to estimation and projection strategies allows us to 

examine more long term impacts of climate change on SPB infestation risk and provide 

more realistic projection results.  For the second essay, further studies regarding the role 

of external variables including wildfire, insect outbreaks, and human activity on forest 

productivity would be worthwhile. Including interaction terms or applying time varying 

coefficients would allow us to obtain more realistic estimation and projection results. In 

the third essay, including various forest management schemes such as thinning and 

fertilization in real option model would enhance the model accuracy. In addition, 

evaluating forest owner’s cash flow incorporating CO2 fertilization impact on forest 

productivity and damage from SPB risk could be a valuable research topic.   
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APPENDIX 

 

(a) Spring temperature in year 2010                     (b) Spring temperature from RCP4.5        

   

(c) Spring temperature from RCP 6.0                    (d) Spring temperature from RCP 8.5       

   

 

Figure A1 Projected average monthly spring temperature from GCMs under different scenarios 
for 2020-2060, °F 
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(a) Summer temperature in year 2010                  (b) Summer temperature from RCP4.5        

   

(c) Summer temperature from RCP6.0                 (d) Summer temperature from RCP8.5        

   

 

Figure A2 Projected average monthly summer temperature from GCMs under different scenarios 
for 2020-2060, °F 
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(a) Fall temperature in year 2010                          (b) Fall temperature from RCP4.5        

   

(c) Fall temperature from RCP6.0                         (d) Fall temperature from RCP8.5        

 

Figure A3 Projected average monthly fall temperature from GCMs under different scenarios for 
2020-2060, °F 
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(a) Winter temperature in year 2010                     (b) Winter temperature from RCP4.5      

     

(c) Winter temperature from RCP6.0                    (d) Winter temperature from RCP8.5       

   

 

Figure A4 Projected average monthly winter temperature from GCMs under different scenarios 
for 2020-2060, °F 

  



 

 134

 (a) Spring precipitation in year 2010                     (b) Spring precipitation from RCP4.5        

   

 

(c) Spring precipitation from RCP 6.0                   (d) Spring precipitation from RCP 8.5       

   

 

Figure A5 Projected average monthly winter precipitation from GCMs under different scenarios 
for 2020-2060, mm 
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Table A1 Average marginal effect of SPB risk (full model) 

 

Variable description Independent 
variable 

 Average 
marginal effect

Delta-Method 
S.E P-value 

Unsalvaged volume in current year USV 0.0456 0.0127 0.0000 
Spring temperature SPT 0.0118 0.0051 0.0200 
Summer temperature SMT -0.0138 0.0085 0.8710 
Fall temperature FLT -0.0141 0.0058 0.0500 
Winter temperature WNT -0.0504 0.0028 0.0750 
Minimum spring temperature MinSpring -0.0249 0.0023 0.2890 
Minimum summer temperature MinSummer 0.0015 0.0039 0.7060 
Minimum fall temperature MinFall 0.0037 0.0214 0.1510 
Minimum winter temperature MinWinter 0.0035 0.0015 0.0160 
Maximum spring temperature MaxSpring 0.0007 0.0029 0.8020 
Maximum summer temperature MaxSummer 0.0027 0.0060 0.6460 
Maximum fall temperature MaxFall -0.0002 0.0026 0.9420 
Maximum winter temperature MaxWinter -0.0010 0.0022 0.6380 
Spring temperature one year ago SPT1 0.0040 0.0053 0.7500 
Summer temperature one year ago SMT1 -0.0243 0.0092 0.0080 
Fall temperature one year ago FLT1 -0.0130 0.0061 0.0330 
Winter precipitation one year ago WNT1 -0.0006 0.0002 0.0100 
Min spring temperature one year ago MinSpring1 0.0024 0.0054 0.6560 
Min summer temperature one year ago MinSummer1 0.0007 0.0041 0.8730 
Min fall temperature one year ago MinFall1 0.0036 0.0019 0.0560 
Min winter temperature one year ago MinWinter1 0.0042 0.0014 0.0040 
Max spring temperature one year ago MaxSpring1 -0.0023 0.0030 0.4370 
Max summer temperature one year ago MaxSummer1 0.0079 0.0075 0.2960 
Max fall temperature one year ago MaxFall1 0.0016 0.0026 0.5280 
Max winter temperature one year ago MaxWinter1 0.0036 0.0014 0.0080 
Spring temperature two year ago SPT2 -0.0027 0.0038 0.4730 
Summer temperature two year ago SMT2 0.0226 0.0097 0.1670 
Fall temperature two year ago FLT2 -0.0034 0.0047 0.4780 
Winter temperature two year ago WNT2 -0.0066 0.0023 0.5210 
Min spring temperature two year ago MinSpring2 -0.0035 0.0022 0.1200 
Min summer temperature two year ago MinSummer2 -0.0085 0.0040 0.0710 
Min fall temperature two year ago MinFall2 -0.0009 0.0023 0.7020 
Min winter temperature two year ago MinWinter2 0.0029 0.0015 0.0580 
Max spring temperature two years ago MaxSpring2 0.0088 0.0033 0.0070 
Max  suumer temperature two years ago MaxSummer2 -0.0080 0.0061 0.1920 
Max fall temperature two years ago MaxFall2 0.0031 0.0030 0.3100 
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Max winter temperature two years ago MaxWinter2 -0.0028 0.0023 0.2260 
Spring precipitation SPP 0.0002 0.0003 0.4280 
Summer precipitation SMP -0.0001 0.0003 0.7770 
Fall precipitation FLP -0.0007 0.0003 0.0300 
Winter precipitation WNP 0.0001 0.0002 0.8110 
Spring precipitation one year ago SPP1 -0.0004 0.0003 0.1470 
Summer precipitation one year ago SMP1 -0.0007 0.0003 0.0140 
Fall precipitation one year ago FLP1 -0.0003 0.0003 0.3780 
Winter precipitation one year ago WNP1 -0.0004 0.0002 0.0780 
Spring precipitation two year ago SPP2 0.0004 0.0003 0.1840 
Summer precipitation two year ago SMP2 -0.0003 0.0003 0.2060 
Fall precipitation two year ago FLP2 -0.0005 0.0003 0.1270 
Winter precipitation two year ago WNP2 0.0001 0.0003 0.6810 
Unsalvaged volume one year ago USV1 0.0040 0.0105 0.7070 
Unsalvaged volume two year ago USV2 0.0143 0.0097 0.1390 
State Dummy1  d1 0.0033 0.0015 0.0250 
State Dummy2 d2 0.0015 0.0012 0.1880 
State Dummy3 d3 0.0061 0.0025 0.0150 
State Dummy4 d4 0.0028 0.0015 0.0640 
State Dummy5 d5 0.0033 0.0022 0.1380 
State Dummy6 d6 0.0029 0.0016 0.0620 
State Dummy7 d7 0.0022 0.0009 0.0100 
State Dummy8 d8 0.0030 0.0014 0.0290 
State Dummy9 d9 0.0004 0.0007 0.5180 
State Dummy10 d10 0.0021 0.0016 0.1850 
Catastrophic Dummy  ci 0.0020 0.0002 0.0000 
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Figure A7 Fitted vs observed plot by region (quadratic estimation, by region) 
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Figure A8 Fitted vs. observed plot (quadratic estimation, by forest type) 
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Figure A9 Fitted vs. observed plot by region (stepwise estimation, by region) 
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Figure A10 Fitted vs. observed plot (stepwise estimation, by forest type) 
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Figure A11 Fitted vs. observed plot by region (linear estimation, by region) 
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Figure A12 Fitted vs. observed plot (linear estimation, by forest type) 
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Figure A13 Marginal effects of temperature (fall, spring, winter), precipitation (summer), and 
biomass on forest productivity 
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Table A2 Variables in essay 2. 

Variables Variable description Values for Estimation Data 
Source 

Average 
annual net 
growth 

“Average annual net growth of growing-
stock trees (at least 5 inches d.b.h.), in 
cubic feet. Average annual net cubic-foot 
growth of growing-stock trees on 
timberland”.  
 

Convert Average annual net 
growth(cf) into (m3) then 
divide by timberland 
area(ha) 

Forest 
Inventory 
Data 
Online 4 

Biomass5  “Above and belowground carbon in live 
trees (at least 1 inch d.b.h./d.r.c), in short 
tons. Carbon in the belowground portion 
of the tree. The carbon (pounds) of coarse 
roots > 0.1 inch in root diameter. 
Calculated for live trees with a diameter 
>=1 inch, and dead trees with a diameter 
>=5 inches, for both timber and woodland 
species”. 
 
Tree 
A woody plant usually having one or more 
erect perennial stems, a stem diameter at 
breast height of at least 3.0 inches, a more 
or less definitely formed crown of foliage, 
and a height of at least 15 feet at maturity. 
” 

Above and below ground 
carbon/ area(ha).  
The carbon above and 
below ground value are 
calculated by “Above and 
below ground biomass”*0.6. 
Therefore above and below 
ground carbon can be 
measurement of above and 
below ground biomass 

Forest 
Inventory 
Data 
Online 

Density  Area: area of timberland, in acres (acre) 
Tree count: Number of growing-stock 
trees (at least 5 inches d.b.h.) 

Tree count /Timber land 
area(ha) 

Forest 
Inventory 
Data 
Online 

CO2 
concentration 
in 
atmosphere 

The increasing amount of CO2 in the 
atmosphere in global level 

 Earth 
system 
research 
laboratory, 
NOAA6 

 

 

                                                 
4 The forest variables are available at Forest Inventory Data Online (FIDO) (USDA Forest Service 2015). 
5 Above and below ground Biomass × 0.6 = Above and below ground Carbon  
6 CO2 concentration data is available at Tans and Keeling (2014). 
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