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ABSTRACT 

 Dionda diaboli is a threatened species of algivorous minnow endemic to spring-

fed creeks and rivers of the Rio Grande drainage in south central Texas and adjacent 

regions of Mexico. Populations of D. diaboli are decreasing due to drought, habitat 

degradation (including the introduction of invasive piscivorous fishes and over- pumping 

of water). Therefore, this species is the focus of a federal captive rearing and 

maintenance program. Development of controlled larval rearing protocols is crucial for 

successful captive rearing and ultimately wild stock enhancement and species survival. 

This study explores the utility of four different diets for use in captive rearing of D. 

diaboli. Sixteen-day-old post-hatchings were stocked for 130 days in 20, 7.8-L flow-

through tanks and fed four different diets, including two live feed diets (Artemia nauplii 

or mixed zooplankton) and two prepared feed diets (protein flakes or algal gel). During 

16-46 days post hatch (dph), specific growth rate (SGR) for length (SGRL) and weight 

(SGRW) of individuals was highest for fish fed a diet of Artemia nauplii (2.71 mm/d 

SGRL, 2.84 mg/d SGRW) and algal gel (2.21 mm/d SGRL, 2.41 mg/d SGRW). The SGRL 

of zooplankton-fed fish during this time was 2.04 mm/d followed by protein flakes at 

1.96 mm/d. SGRW for individuals fed protein flakes was 2.19 mg/d and was followed by 

individuals fed zooplankton at 1.96 mg/d. For successive time periods, there was a 

gradual shifting in highest to lowest grow rates per diet for both length and weight, with 

protein-flake-fed fish achieving the highest SGR for each successive sampling period 

beginning with the 46-76 dph time period for length (0.56 mm/d), and the 76-106 dph 

time period for weight (0.75 mg/d). Zooplankton fed fish achieved the poorest SGR for 
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both length and weight for all time periods after 46 dph, and never developed external or 

internal morphology beyond that equivalent to 64 dph in normal development. Overall 

survival was highest for fish fed a diet of algal gel (100%) followed by fish fed Artemia 

nauplii and protein flake (99.7%) and lowest for fish fed zooplankton (77%). The 

number and length of intestinal coils was considered “normal” for 136 dph juveniles fed 

on a diet of Artemia nauplii, algal gel and protein flakes, while number and length of 

intestinal coils for 136 dph juveniles fed on a diet of zooplankton were comparable to 

those of “typical” 64 dph larvae. Juveniles at 136 dph fed algal gel and protein flakes 

exhibited higher quantities of visceral fat than those juveniles fed on a diet of either 

Artemia nauplii or zooplankton. Though overall SGR for both length and weight was 

greatest with the algal gel diet (1.05 mm/d SGRL, 1.65 mg/d SGRW), observed growth 

trends throughout the study suggest that nutritional requirements may change continually 

throughout the development of D. diaboli, and an optimal diet should satisfy the 

physiological and metabolic demands of different ontogenetic stages to ensure optimum 

growth.  
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INTRODUCTION 

 

Dionda diaboli Hubbs and Brown is a threatened species of freshwater fish 

(USFWS 1999) endemic to a small portion of the Rio Grande drainage basin in Texas 

and Mexico. Known commonly as the Devils River minnow, D. diaboli is an inhabitant 

of clear spring - fed waters and is present in San Felipe and Pinto creeks and the Devils 

River of south central Texas, but is either rare or extirpated in Sycamore Creek in Texas 

and in the Río San Carlos and Río Sabinas in Mexico (Garrett et al. 1992, U.S. Fish and 

Wildlife Service 2005). Prior to 2001, only two populations of Devils River minnows 

were known; one in the Devils River and the other in San Felipe Springs. Garrett et al. 

(2004) reported the discovery of an additional population in Pinto Creek, Kinney 

County, Texas. At the current time, this population is considered to be the most 

threatened as a result of reduced spring flows resulting from excessive pumping from the 

associated aquifer (Garrett et al. 2004). Threats to the survival of the species include loss 

of habitat due to primarily reduced flow of springs, competition with introduced species, 

and degradation of water quality (Garrett et al. 1992). Hanna (2011) found the decline in 

the population in Pinto Creek has reached nearly three orders of magnitude and this 

population has lower genetic variation than the population in the Devils River. 

Individuals of D. diaboli were not found in Pinto Creek in the Fall of 2013, and only a 

small number of adults were observed during a survey conducted in Spring 2014 

(personal observation), of which three were brought back to SMARC (San Marcos 
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Aquatic Resources Center, USFWS). Recent surveys in Pinto Creek by USFWS staff 

resulted in few (2014) or no individuals (2015) of D. diaboli (personal observation). 

Very little is known about the biology of the Devils River minnow. Harrell 

(1978) described D. diaboli as a channel species that shifts to riffles after flooding, 

preferring fast-flowing spring - fed water over gravel. Cohen (2008) described Dionda as 

herbivorous, consuming detritus, algae, diatoms and plant material. McMillan (2011) 

reported the gut contents of adult D. diaboli from Pinto Creek to consist primarily of 

detritus (53%), blue-green algae (21%) and filamentous algae (7%), with some 

individuals also containing low numbers of aquatic invertebrates within their stomachs.  

Most herbivorous fishes begin their lives as carnivores (Horn 1989). As is typical 

in members of Cyprinidae, larvae of D. diaboli are zooplanktivorous post hatch and feed 

directly from the water column (personal observation). Herbivory (or algivory) in later 

life stages is the result of an ontogenetic dietary shift (German et al. 2014). Ontogenetic 

trophic shifts are changes in diet that occur during the life of an individual and are 

common amongst vertebrates that are herbivores as adults (White 1985). Such shifts 

present an opportunity to investigate the developmental and physiological requirements 

of herbivory, as they represent the point at which herbivory becomes a feasible trophic 

specialization (Day et al. 2011). Juvenile fish have an apparent inability to thrive on an 

herbivorous diet, and this may be due to a need to meet an elevated protein demand (Day 

et al. 2011) or the alimentary systems of juveniles may lack the ability to adequately 
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process plant matter, as trophic shifts tend to coincide with gut lengthening (German and 

Horn 2006).  

The 1998 Devils River minnow Conservation Agreement (USFWS 1999) 

recommended maintenance of captive populations of the Devils River minnow for 

reintroduction. In 2000, the San Marcos National Fish Hatchery and Technology Center 

(now the San Marcos Aquatic Resources Center, SMARC), U.S. Fish and Wildlife 

Service began captive propagation attempts in indoor systems. Since 2000, numerous 

techniques have been developed to improve survival and growth of hatchery-produced 

fish (Gibson et al. 2004; Gibson and Fries 2005; Fries and Gibson 2010). 

Despite its threatened status, very few studies have investigated captive 

reproduction of Devils River minnows. Those studies conducted to date have focused on 

abiotic factors associated with reproduction, including temperature tolerance (Fries and 

Gibson 2010), substrate preference (Gibson et al 2004) and water flow (Gibson and Fries 

2005). Surprisingly, there has been no attempt to investigate the effects of nutrition on 

captive reproduction in this threatened species.   

At present, after hatching, captive propagated Devils River minnow larvae are 

fed a diet of Artemia nauplii (newly hatched live brine shrimp) from week 1 after 

hatching (post egg sac adsorption) until about 2 months where a 60/40 mix of Pentair’s 

45% protein Spirulina flake and 41% protein krill/plankton flake is slowly introduced 

into their diet, becoming 100% flake after about 4 months. At the present time, the 

success rate of hatching fry to adulthood is approximately 1.5% (personal observation 
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and husbandry records). After 25 to 60 days post hatch (dph), the author noticed large 

percentages of larvae became very thin, stopped eating and eventually died. Past records 

and speaking to the previous minnow culturist revealed this was indeed a consistent 

pattern. External examination of live individuals, as well as histological examination of 

deceased individuals revealed no known parasite or virus that might be causing this 

situation (personal communication with Dr. Teresa Lewis Supervisory Fish Biologist, 

Southwestern Fish Health Unit Leader, Southwestern Native Aquatic Resources and 

Recovery Center, Dexter, NM). Based on the limited available information regarding the 

diet of adult D. diaboli, it is possible that an essential nutritional component is lacking 

from the diet of captive-raised individuals that needs to be introduced during the larval 

phase. In many species of fishes, poor growth rate and poor survival of early 

developmental stages occur as a result of inappropriate rearing conditions (Shields 

2001). Larval rearing is critical, and the development of rearing technology is essential 

for the conservation of threatened and endangered species of fishes.  

Success of larval rearing depends mainly on the availability of suitable diets that 

are readily consumed, efficiently digested and that provide the required nutrients to 

support higher growth and health (Sarkar et al. 2006.). Growth or net nutrient deposition 

is the most accurate and important tool in studying fish feed efficiency and nutrient 

requirements (Belal 2005). Due to the low number and possible extirpation of D. diaboli  

from Pinto Creek, is it imperative to develop successful propagation practices to increase 

the survival rate of captive propagated individuals. The present study aims to evaluate 
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growth performances and survival rates of D. diaboli post-hatchlings fed on four 

different diets comprising live and dry diet under experimental flow-through hatchery 

systems. There are no studies which have documented the ontogenetic changes (resulting 

in change in foraging strategies) in the trophic apparatus and gut of D. diaboli to assess 

at which point in development, morphological traits associated with the adult diet first 

appear. Ontogenetic shifts have been documented in other herbivorous fishes and have 

been attributed to differences in habitat use or nutritional requirements (Watson et al. 

2009); however the occurrence of ontogenetic shifts has never been suggested for any 

Dionda. 

 Because the Pinto population of D. diaboli is nearly extirpated, and culture 

methods are focused solely on this population, it is imperative that invasive techniques 

such as analyzing gut contents or mass examination of internal morphology be limited to 

more stable populations of D. diaboli, such as those found in the Devils River. McMillan 

(2011) did find differences in gut content between different Dionda populations, with the 

Pinto adults having a greater proportion of detritus and diatoms within the intestines.  

 It is the hope this study will shed light on an optimal diet that reflects 

developmental changes in behavior of captive-reared D. diaboli from the Pinto 

population, and whether the timing of ontogenetic shift can be traced to forced diet 

choices of growing larvae, translated into growth changes as larvae mature into 

juveniles. A greater understanding of larval diet requirements, and associated 
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developmental changes that occur in captive-reared fish might provide insight into 

habitat and foraging requirements for threatened D. diaboli in the wild. 
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MATERIALS AND METHODS 

 

Pilot Study 

Beginning in March 2014 through June 2014, batches of captive-reared larvae of D. 

diaboli were exposed to four diets from 16 days post-hatch (dph) until approximately 90 

dph. Larvae were kept in 18.6-L aquaria in various densities of 50 to 150 individuals. 

This prior exposure was to ensure all diets would be accepted readily by the different 

ages of larvae, and that no significant mortalities would result from feeding a certain 

diet. It was determined that larvae did not thrive on any diet except Artemia nauplii from 

day 8 (egg yolk absorption) to approximately day 16 dph. Artemia nauplii, ground 

protein flake and algal gel were accepted by larvae after 16 dph. It was found that 

zooplankton needed to be filtered to 150 um. All breeding culture activities of adult wild 

stock D. diaboli from Pinto Creek were suspended from July 2014 through September 

2014 to ensure a large batch of fry for the main experiment, which began in October 

2014. Measurements of total length (TL) and weight (WT) of a 20% subset (32 

individuals) of larvae were taken at 16 dph for later growth comparisons. 
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Feeding Experiment 

Beginning in October 2014, D. diaboli offspring were obtained from captive 

adults via induced spawning techniques developed by Gibson and Fries (2005). The 

post-hatchings were obtained from one spawning event that produced approximately 

nine hundred eggs which were divided between two 18.62-L aquaria. Eight days post 

hatch larvae (yolk sac was absorbed) were fed newly-hatched Artemia nauplii until day 

14, before the commencement of the experiment. Fry were starved for 2 days prior to 

beginning feed trials at 16 dph, in order to simulate a feed transition for those larvae that 

were continued to be fed Artemia nauplii for the duration of the study. Larval-rearing 

experiments were conducted across twenty 7.8-L tanks maintained on a common flow-

through system utilizing well water from the Edward’s Aquifer. Larvae were stocked at 

a density of eight individuals per 7.8-L and maintained at a temperature of 22 ±1 ˚C and 

subjected to a 12:12 hour light: dark cycle for the duration of the experiment. Water 

quality parameters (dissolved oxygen, percent saturation, pH, and conductivity) were 

measured once per week. Tanks were randomly assigned one of four different diet types 

(5 replicates per diet) and fishes were fed ad libitum twice per day. Each morning before 

first feeding, each tank was siphoned of leftover food from the day prior. The behavior 

of fish in each tank was noted 10 minutes before, during and 10 minutes after feedings. 

Twelve additional 7.8-L tanks were set up with three replicates of each food treatment, 

as a backup in the event of mortality in the twenty main treatment tanks in order to 

maintain densities. 
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(The remaining approximately 700 members of this cohort were reared in 

duplicate abiotic conditions, in 1.82 m x 0.6 m fiberglass tanks, with densities of 200 

individuals and fed a diet of protein flakes and algal gel after 30 dph). 

The four diet types consisted of the following: (1) Artemia nauplii (Great Salt 

Lake Artemia cysts) freshly hatched every 2 days; (2) zooplankton, (predominantly 

Daphnia sp.) produced in 0.04-ha ponds on hatchery grounds and then filtered through 

150-um screens before feeding to larvae; (3) ground protein flakes comprised 60/40 mix 

of Pentair’s 45% protein Spirulina flake and 41% protein krill/plankton flake, and mixed 

with water before feeding; and (4) an algal gel comprising a pureed protein/vegetable 

mix of kale (30%), spinach (30%) , mysis shrimp (15%), Nannochloropsis (25%), water 

and unflavored gelatin (for binding). A proximate analysis of each diet type (Table 1) 

was performed by the Fish Nutrition Laboratory (Department of Wildlife and Fisheries 

Sciences, Texas A&M University) and crude fiber composition was performed for the 

algal gel and protein flake diets (Table 2) by Eurofins Scientific Inc. (Des Moines, IA). 
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Table 1. – Proximate composition analysis of flake, algal gel, Artemia and zooplankton diets 

Sample Id Dry 
Matter 

Moisture Ash 
(Dry) 

Ash 
(Wet 
Basis) 

Protein 
(Dry- 
Matter 
Basis) 

Protein 
(Wet 
Basis) 

Lipid 
(Dry- 
Matter 
Basis) 

Lipid 
(Wet 
Basis) 

Flakes 95.35 4.64 12.59 12.01 45.03 42.93 11.49 10.96 

Gel 7.99 92.00 6.93 0.55 89.42 7.15 8.52 0.68 

Artemia 4.95 95.04 14.19 0.70 53.36 2.64 21.74 1.07 

Zooplankton 6.00 93.99 26.68 1.60 56.83 3.41 23.74 1.42 

 

 

Table 2. – Crude fiber analysis of algal gel and flake diets 

Sample ID Fiber,  Crude Fiber, Acid detergent 

Gel <0.2% 0.40% 

Flakes 1.30% 2.90% 

 

 

 At the termination of each 30-day feeding period (46 dph, 76 dph, 106 dph and 

136 dph), all individuals were removed from each treatment tank and immersed in 1 L of 

well-water containing 0.75 mg of analgesic MS-222(tricaine methanesulfonate, Western 

Chemical).The length of each individual was then measured using a pair of digital 

calipers to the nearest 0.01 mm. Weight was measured collectively at the end of the first 

30 days (46 dph) by transferring all individuals from a single tank to a fine mesh net 

(dried briefly on paper towels to reduce the amount of water) that was then placed on a 

Scout Pro SPE402 electronic scale (Ohaus Corporation, NJ). Individuals were allowed to 

fully recover in a container of fresh well water before being transferred back to the 

original treatment tank. Weight measurements taken on 76, 106 and 136 dph, were 

obtained individually, as individuals were large enough to survive this extra handling. 



  

11 
 

One way repeated measures ANOVA were performed using SPSS 20.0 to 

examine differences in length and weight over the course of the 4-month study. Dietary 

treatments were considered the fixed effect and blocks considered the random effects. 

Prior to the ANOVA, Chi-Square Goodness of Fit test was used to evaluate normality. 

Normality was violated for both data sets and therefore the data was transformed           

(-log10(x + 1) for resulting ANOVA analysis. Differences were considered significant at 

a P value < 0.05. Specific Growth Rate for Length or Weight (SGRL or SGRW) was 

calculated as follows: 

 

SGR(LorW) (%gain (L or W)/day) –  (LognFinal fish (L or W). – Logn Initial fish (L or W.) 100 
                                                                                              Time Interval 
 

 

 

 In addition, permission was obtained to perform necropsies on 38% of the fish in 

each treatment tank (for a total sample size of 60 juveniles) in order to compare external 

morphological characteristic as well as the shape and length of intestines (straightened 

and measured from esophagus to rectum) among individuals from the four different diet 

treatments. Gut length (GL) was measured for 136-dph juveniles at the end of the 

experiment (n = 60) and the arrangement of the coils or loops were examined 

qualitatively and the number of intestinal coils or loops quantified (a coil was defined as 

the intestine forming a complete oval shape which crossed over itself; a loop did not 

cross and appeared as an open “U” shape). General morphological examination and gut 
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length measurements were taken using an Olympus SZ-11 scope Nikon DS-5M digital 

camera with an ocular micrometer. Intestinal coils or loops were counted prior to 

removal of the viscera from the body cavity. The viscera were then removed and the 

intestine uncoiled, without stretching, and the total GL (± 0.5 mm) was measured from 

the beginning of the esophagus to the rectum. In addition, the presence/absence of fat 

deposits within the body cavity was also examined and quantified using a Mettler Toledo 

AB204 analytical precision balance. 
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RESULTS 

 

General Observations 

All individuals involved in the study from 16 dph to 136 dph, actively fed on all 

offered diets. Individuals typically remained in the upper portion of the water column, 

though those individuals fed protein flakes and algal gel remained low in the water 

column while feeding. Those fish fed Artemia nauplii generally appeared to be less 

active when compared with those fed zooplankton. Zooplankton-fed fish actively chased 

zooplankton in the upper water column. All individuals generally exhibited “protruding” 

full stomachs approximately 10 minutes after initial feeding. After approximately 68 dph 

larger individuals fed on the diet of Artemia nauplii started to exhibit “chasing” and 

territoriality behaviors with cohorts when Artemia nauplii were first introduced into the 

tank. Little to no chasing was observed in fish fed protein flakes or algal gel. 

 

Specific Growth Rate 

The Specific Growth Rate (SGR) was calculated to determine the growth 

performance (TL and WT) during the experimental period. Due to differences in SGR 

with regard to lengths and weights per diet treatment, these were first analyzed as 

separate dependent variables per time period (16-46 dph, 46-76 dph, 76-106 dph and 

106-136 dph). 
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Weight (WT) Measurements 

Standard weight of 16 dph mesolarave (20%, 32 individuals) averaged 7 mg ± 

0.2. Mauchly’s Test of Sphericity for the weight variable was violated for the within 

subject effect of weight vs time and therefore, corrected Greenhouse-Geisser values 

were used. 

Tests of between-subject effects for WT illustrate how treatment had a significant 

effect across the entire duration of the study (P<0.001) (Table 3). A value of P < 0.001 

for pairwise WT comparisons as a result of Bonferoni post hoc test show the mean 

difference between treatment levels (diet vs time) was statistically significant (P<0.005) 

for 80% of comparisons (Table 4). 

Table 3. Tests of between subject effects (WT) from one way repeated measures 
ANOVA 

Source Type III Sum of 
Squares 

df Mean 
Square 

F Sig. 

Intercept 259.66 1 259.66 17898.83 0 

Treatment 3.29 3 1.09 75.67 0 

Error 0.23 16 0.01 
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Table 4. Pairwise comparisons for weight (WT) of Devils River minnows fed four different diets 

Treatment I 
Treatment 
J Mean Difference 

Std. 
Error Sig. b 95% Confidence Interval 

    (I - J)     for difference b 

          
Lower 
Bound 

Upper 
Bound 

Artemia 
nauplii 2 0.139 0.038 0.002 0.058 0.219 

  3 0.051 0.038 0.201 -0.03 0.132 

  4 0.518 0.038 .000 0.437 0.598 

Protein 
Flakes 1 -0.139 0.038 0.002 -0.219 -0.058 

  3 -0.088 0.038 0.035 -0.169 -0.007 

  4 0.379 0.038 .000 0.298 0.46 

Algal gel 1 -0.051 0.038 0.201 -0.132 0.03 

  2 0.088 0.038 0.035 0.007 0.169 

  4 0.467 0.038 .000 0.386 0.547 

Zooplankton 1 -0.518 0.038 .000 -0.598 -0.437 

  2 -0.379 0.038 .000 -0.46 -0.298 

  3 -0.467 0.038 .000 -0.547 -0.386 

Italics. The mean difference is significant at the 0.05 level 
b 

Adjustment for multiple comparisons: Least Significant Difference 
 
 
 
 
 

Table 5 and Figure 1 display SGRW per diet treatment for each 30-day time 

period expressed as milligrams per day (mg/d). The 16-46 dph period growth rates for 

weight gain were the highest across all diets, with individuals fed a diet of Artemia 

nauplii achieving the most weight gain during this time period (2.84 mg/d) and fish fed 

the zooplankton diet the least (1.96 mg/d). The SGRW for zooplankton-fed fish dropped 

dramatically beginning 46 dph and continued to exhibit the lowest amount of weight 

gain for the entire 136-dph time frame (0.31 mg/d, 0.26 mg/d, 0.14 mg/d). SGRW of 

individuals fed the diets of Artemia nauplii, protein flake or algal gel decreased during 

46-76 dph, with Artemia-nauplii-fed fish conversely exhibiting the second lowest SGRW 
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(0.4 mg/d) during the 76-106 dph time period, while the individuals fed the protein flake 

or algal gel diets exhibited the same SGRW during this time (0.75 mg/d). Fish fed the 

diet of algal gel exhibited the highest SGRW for the entire study period (1.65 mg/d), 

compared to fish fed protein flake (1.60 mg/d), Artemia nauplii (1.59 mg/d) or 

zooplankton(1.13 mg/d). 

 

 

Table 5. Growth Rate (milligrams per day (mg/d)) for weight (SGRW) of Devils 
River minnows fed four different diets from 16 dph through 136 dph 

Treatment Time Period(dph) 

  16-46 46-76 76-106 106-136 Overall Growth Rate 

Artemia 2.84 1.39 0.4 0.19 1.59 

Flakes 2.19 1.25 0.75 0.62 1.6 

Gel 2.41 1.4 0.75 0.45 1.65 

Zooplankton 1.96 0.31 0.26 0.14 1.13 
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Figure 1. SGRW (mg/d) for four diet treatments; Artemia nauplii (A), protein flake (F), algal 

gel (G), and zooplankton (Z) from 46 dph through 136 dph 

46 



18 

Total Length (TL) Measurements 

Total length of 16 dph mesolarvae (20%) averaged 5.5 mm ± 0.3. Mauchley’s 

test of Sphericity for TL (Table 7) demonstrated a significant (P>0. 005) difference and 

thus sphericity was not violated. 

Source Type III Sum of 
Squares 

df Mean 
Square 

F 

Time 0.667 3 .222 1183.857 

Time*Treatment 0.063 9 .007 37.201 

Error(Time) 0.009 48 .000 

Tests of between-subject effects for length illustrate how treatment had a 

significant effect across the entire duration of the study (Table 7). A value of P < 0.002 

for pairwise length comparisons as a result of Bonferoni post hoc test showed the mean 

difference between treatment levels were statistically significant (P<0.005) for 80% of 

comparisons (Table 8). 

Table 6. Sphericity Assumed values (TL) for tests of within-

subjects effects 
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Table 7. Tests of between subject effects (TL) from one way repeated measures ANOVA 

Source Type III Sum of 
Squares 

df Mean 
Square 

F Sig. 

Intercept 137.131 1 137.131 134360.599 .000 

Treatment .251 3 .084 81.885 .000 

Error .016 16 .001 

Table 8. Pairwise comparisons for length (TL) of Devils River minnows fed four different diets 

Treatment I 
Treatment 
J Mean Difference 

Std. 
Error Sig. b 95% Confidence Interval 

(I - J) for difference b 

Lower 
Bound 

Upper 
Bound 

Artemia 
nauplii 2 0.055 0.010 0.000 0.034 0.077 

3 0.038 0.010 0.002 0.016 0.059 

4 0.152 0.010 .000 0.130 0.173 

Protein 
Flakes 1 -0.055 0.010 .000 -0.077 -0.034 

3 -0.017 0.010 0.103 -0.039 0.004 

4 0.097 0.010 .000 0.075 0.118 

Algal gel 1 -0.038 0.010 0.002 -0.059 -0.016 

2 0.017 0.010 0.103 -0.004 0.039 

4 0.114 0.010 .000 0.093 0.136 

Zooplankton 1 -0.152 0.010 .000 -0.173 -0.130 

2 -0.097 0.010 .000 -0.118 -0.075 

3 -0.114 0.010 .000 -0.136 -0.093 

Italics. The mean difference is significant at the .05 level 
b 

Adjustment for multiple comparisons: Least Significant Difference 
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Table 9 and Figure 2 demonstrate the SGRL per diet treatment for each 30-day 

time period. For the 16-46 dph period, SGRL was the highest across all diet treatments; 

Artemia nauplii (2.71 mm/d), algal gel (2.21 mm/d), zooplankton (2.04 mm/d) and 

protein flake (1.96 mm/d). The Artemia-nauplii-fed fish had the highest SGRL (2.71 

mm/d) during this time period and protein flake-fed fish the lowest SGRL (1.96 mm/d). 

The SGRL for zooplankton fed fish decreased dramatically beginning at 46 dph and 

continued to exhibit the lowest SGRL (0.25 mm/d, 0.11 mm/d, 0.10 mm/d) for the entire 

136-dph time period. The SGRL for fish fed Artemia nauplii, protein flake or algal gel 

decreased during the 46-76 dph, 76-106 dph and 106–136 dph time periods. Protein- 

flake-fed fish displayed the highest SGRL at 46-76 dph (0.56 mm/d), 76-106 dph (0.34 

mm/d) and 106-136 dph (0.21 mm/d) time periods. SGRL for algal-gel-fed fish was 

second to protein-flake-fed fish during these time periods (0.52 mm/d, 0.32 mm/d, 0.18 

mm/d, respectively), while SGRL for Artemia-nauplii-fed fish was third (0.53 mm/d, 

0.17 mm/d, 0.10 mm/d) and SGRL for zooplankton-fed fish was fourth (0.25 mm/d, 

0.11mm/d, 0.10 mm/d). The Artemia-nauplii and algal-gel-fed fish exhibited the highest 

overall SGRL for the entire study period (1.05 mm/d). 
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Table 9.  Growth Rate (millimeters per day (mm/d)) for length (SGRL) of Devils 
River minnows fed four different diets from 16 dph through 136 dph  

Treatment Time Period (dph) 

16-46 46-76 76-106 106-136 Overall Growth Rate 

Artemia 2.71 0.53 0.17 0.1 1.05 

Flakes 1.96 0.56 0.34 0.21 1.04 

Gel 2.21 0.52 0.32 0.18 1.05 

Zooplankton 2.04 0.25 0.11 0.1 0.9 

Figure 2. SGRL (mm/d) for four diet treatments; Artemia nauplii (A), protein flake (F),  

algal gel (G) and zooplankton from (Z) 46 dph through 136 dph 

46 
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Mortality 

The mean survival of D. diaboli post-hatchings fed the four different diets during 

the experimental period varied from 100% to 77.5%. All individuals fed the algal gel 

diet survived to the end of the 136-day study. Those individuals reared on the diet of 

Artemia nauplii or protein flakes exhibited similar survival (97.5%) and those fish fed on 

a diet of zooplankton exhibited the lowest survival (77.5%). 

Morphology 

External morphology differences were exhibited by 136-dph juveniles fed 

zooplankton in comparison to juveniles fed the diets of Artemia nauplii, protein flakes or 

algal gel. Juveniles fed Artemia nauplii, protein flakes or algal gel exhibited similar size 

ranges and morphometric and melanophore characteristics to those of typical juveniles 

of D. diaboli (based on 128-dph juveniles described by Hulbert et al. 2007) (Figure 3). 

However, juveniles fed the diet of zooplankton exhibited size range and morphometric 

characteristics similar to 64-dph juveniles and melanophore characteristics similar to 32-

dph metalarvae (Hulbert et al 2007). All 136-dph juveniles, regardless of diet type, 

exhibited a rounded or wedge-shaped dark caudal spot at the base of the caudal fin. 

However, only those juveniles fed the diets of Artemia nauplii, protein flakes or algal 

gel, also exhibited prominent melanophores along the posterior edge of dorsal and lateral 

body scales and were prominent on the dorsum and extending to just below the 
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midlateral stripe, which was dark and densely populated with melanophores. Such 

characteristics were not observed in 136-dph zooplankton-fed juveniles (Figure 4). 

 

 

 

Figure 3. 136-dph juveniles fed zooplankton (a), protein flakes (b), Artemia nauplii (c) and 

algal gel (d) 

 

 

a 

b 

c 
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Figure 4. Melanophore characteristics in 136-dph zooplankton-fed juvenile resembling 64-dph 

larvae in pigmentation 

 

 

Internal morphology characteristics, specifically intestinal length and intestinal 

coiling (or loops) of 136-dph juveniles fed the diet of zooplankton also differed in 

comparison to juveniles fed diets of Artemia nauplii, protein flakes or algal gel. On 

average, fish fed on zooplankton had much shorter intestines (8.2 mm ± 1.2) than those 

fed Artemia nauplii (23.5 mm ± 1.9), protein flakes (32.4mm ± 2.8) or algal gel (24.1 

mm ± 2.4) (Table 10). Also, 136-dph juveniles fed diets of algal gel or protein flake 

exhibited three to four intestinal coils (Table 10;Fig 5a, 6a); whereas, those fed Artemia 

nauplii exhibited two to three coils (Table 10; Fig 5b, 6b). The 136-dph fish fed the diet 
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of zooplankton developed an uncoiled intestine with only a single loop (Table 10; Fig 5c 

and 6c). 

 

 

Table 10. Internal morphological intestinal characteristics (mean ± SD) of 136-dph juveniles 
fed four different diets 

Diet N Coils Intestinal Length (mm) 

    
 

Mean Range SD 

Artemia nauplii 15 2.5-3.5 23.51 20-26 1.9 

algal gel 15 3.5-4 24.09 21-28 2.4 

protein flakes 15 3.5-4 32.36 27-36 2.8 

zooplankton 15 0 8.2 6-10 1.2 
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Figure 5. Intestinal coiling of 136-dph juveniles fed protein flakes and algal gel (a), Artemia           
nauplii (b) and zooplankton (c)  

 

a 
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Figure 5. Continued 
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Figure 6. Drawing of coiling in fish fed protein flakes and algal gel (a), Artemia nauplii (b) and 
loop in zooplankton-fed fish (c) at 136 dph 
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The presence/absence of fat deposits in the body cavity of 136-dph juveniles was 

also examined (Table 11). The 136-dph juveniles fed the diets of Artemia nauplii or 

zooplankton exhibited little (1.6 mg ± 0.49) or no fatty deposits, respectively, within the 

body cavity (Fig. 7a and 7b). In comparison, 136-dph juveniles fed a diet of protein 

flakes or algal gel exhibited greater quantities of fatty deposits (7.94 mg ± 0.81 and 

11.04 mg ± 1.48, respectively) throughout the body cavity (Fig 7c and 7d). 

 

 

Table 11. Quantitiative comparison of visceral fat observed in 136-dph juveniles fed four 
different diets 

Diet N Visceral fat (mg) 

    Mean Range SD 

Artemia 
nauplii 

15 1.6 0.7-2.4 0.49 

algal gel 15 11.04 8.0-13.2 1.48 

protein 
flakes 

15 7.94 6.3-9.7 0.81 

zooplankton 15 0 0 0 
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Figure 7. Fatty deposits in 136-dph juveniles fed Artemia nauplii (a), zooplankton (b), protein 

flakes (c) or algal gel (d). 
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Figure 7. Continued 
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DISCUSSION 

This is the first study on the rearing of D. diaboli from fry through juvenile 

stages, utilizing different diets in an attempt to achieve maximum growth rates. The 

success of captive propagation efforts is essential to the recovery of this species, and 

providing essential dietary requirements at the appropriate life history stages is 

imperative to the successful development from fry to juvenile. 

Growth 

 SGRW was initially highest for 46-dph larvae fed Artemia nauplii (2.84 mg/d), 

compared to those fed algal gel (2.41 mg/d), protein flakes (2.19 mg/d) or zooplankton 

(1.96 mg/d). Overall, the gel diet produced the highest SGRL (1.05 mm/d) and SGRW 

(1.65 mg/d) by 136 dph. During the first few days of exogenous feeding, larval fishes are 

frequently reported to exhibit high growth rates, in some cases up to 60% of body mass 

per day (Terjesen et al. 1997) and multiply their body mass to adult size by a factor of 

10
5
 - 10

7 
(Finn et al. 2002) . The SGRW values for fish fed Artemia nauplii are in line

with growth rates for larvae of other species of fish during this time period. It was 

expected a priori that 46-dph larvae fed zooplankton would perform equally as well as 

those fed Artemia nauplii. However, 46-dph larvae fed zooplankton exhibited the lowest 

weight gain during this time period. Protein content (wet basis) for the zooplankton diet 

(3.4%) was actually higher than the Artemia nauplii (2.6%), so one would expect that 

higher protein concentration in a prey item would correlate with better growth at this 
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stage of development. Ostaszewska et al. (2008) found that growth increased with 

increased protein consumption in the cyprinid Vimba vimba, but it was the type and 

quality of protein that mattered most. Cowey (1994) suggested it was the type of amino 

acids present within the protein source that was of most importance for growth in fishes, 

especially during the initial growth stage. Fishes experience an exponential increase in 

growth that diminishes as an individual approaches sexual maturity (Diana 2004). It is 

interesting that during the 46-76 dph, 76-106 dph and 106-136 dph time periods, there 

was a subtle shift in the growth performance of fish fed the Artemia nauplii, algal gel 

and protein flake diets. As can be observed from table 5, during those successive three 

time periods the SGRW from highest to lowest were algal gel (1.4 mg/d), Artemia nauplii 

(1.39 mg/d), then protein flake (1.25 mg/d) for the 47-76 dph period, algal gel and 

protein flake (0.75 mg/d), then Artemia nauplii (0.4 mg/d) for the 76-106 dph time 

period, and then protein flake (0.62 mg/d), algal gel (0.45 mg/d) and Artemia nauplii 

(0.19 mg/d), during the 106-136-dph period. It is possible that this change in SGRW 

among fish fed these three diets may be reflective of the ontogenetic changes 

(morphological, physiological and functional) that may occur as larvae shift from 

carnivorous to omnivorous, to herbivorous feeding habits. The change in diet from 

carnivory to herbivory has been explained by several authors as being related to 

nutritional, energetic and ecological considerations (Hofer 1982; German et al. 2014; 

Infante et al. 2008; Hjelm et al. 2000; Drewe et al. 2004). Numerous species of fishes 

that consume microalgae increase the algal (fiber) proportion of their diet as they 

increase in size (Horn 1989). 
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 One would expect the rate of weight gain to slow as the larvae pass into juvenile 

stages. However, it is the progression and sequence of this SGRW when compared to diet 

that may be insightful: from a live, low-fiber diet (Artemia nauplii), to one of higher 

fiber (algal gel) to the protein flake diet (highest fiber and lipid content) showing the 

highest SGRW at the juvenile stage (106-136 dph), when compared with the other diets 

during this period. The SGRL followed a similar pattern, in that the fish fed the Artemia 

nauplii diet exhibited the highest SGRL during the 16-46 dph time period (2.71 mm/d) 

with fish fed the algal gel diet being second (2.21 mm/d) followed by the zooplankton 

fed fish (2.04 mm/d). As illustrated in table 9, during the successive time periods after 

16-46 dph, the protein-flake-fed fish led consistently, followed by the algal-gel-diet fed 

fish. Again this represents a gradual increase in the utilization of fed diets exhibiting the 

highest crude fiber and lipid content. Crude fiber content is an important source of 

dietary fiber (Toko et al. 2008). Dietary studies on the Rio Grande silvery minnow 

(Hybognathus amarus) have demonstrated that the timing of the introduction of 

manufactured feed (after initial feeding with Artemia nauplii) is more important for 

growth and survival than feed type (Caldwell et al. 2005). Brett and Groves (1979) 

proposed that both omnivorous and herbivorous species of catfish and carp appear to be 

able to use dietary carbohydrates as an effective energy source, and that protein content 

was less important in these species. A general diet relationship between natural feeding 

habits and dietary protein requirements has been noted where herbivorous and 

omnivorous species of fishes are able to use lower concentrations of dietary proteins, 

while more carnivorous species may require higher concentrations of proteins (Royes 
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and Murie 2006). Gatlin (2001) suggested that herbivorous and omnivorous species of 

fish have an optimum crude protein requirement that ranges between 25 - 35% of the 

diet; whereas, more carnivorous species of fishes may require higher levels of crude 

protein between 40 - 50%.  

Very little is known about the feeding habits of D. diaboli in the wild. McMillan 

(2011) investigated the gut contents of adult individuals of D. diaboli from two different 

localities (Devils River and Pinto Creek) which revealed a number of unexpected 

differences between the localities. Individuals examined from Pinto Creek had narrower 

diet breadths and consumed a larger proportion of amorphous detritus, than individuals 

from the Devils River.  

It is unclear why fish fed the zooplankton diet exhibited the poorest growth (both 

SGRL and SGRW) and highest mortality throughout the entire length of the study. 

Hokanson and Lien (1986) found that fish fed zooplankton diets yielded significantly 

poorer growth than other diet treatments, and were inferior in diet quality to Artemia. 

They suggested that both the taxa and size composition of zooplankton are important 

attributes influencing both growth and survival of larvae. Dabrowski (1984) suggested 

that nutritional composition of zooplankton were dependent on origin, season and 

species. Similar diet studies on the Rio Grande silvery minnows (H. amarus) concluded 

that mortality was very high when larvae were fed live rotifers (Caldwell et al. 2005). 

The same authors concluded that Artemia nauplii were essential for the successful 

rearing of Rio Grande silvery minnows from time of yolk resorption through the end of 
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the larval stage (approx. 15 dph) (Caldwell et al. 2005). Observations of D. diaboli made 

during actual feeding times illustrated those individuals fed zooplankton exhibited high 

energy expenditure when “chasing” zooplankton and had the most swimming activity 

when compared to those post-hatchlings fed Artemia nauplii, algal gel and protein flake 

diets. Zooplankton were fed at the same density as Artemia nauplii (approximately 110 

individuals/0.05 ml), but perhaps were of poorer nutritional quality. Also, the bright 

color of Artemia nauplii and their continuous movement has been suggested to render 

them more perceptible to larval fishes (Leger et al. 1987). Though the zooplankton 

ponds from which zooplankton were obtained for this study were fertilized with the 

same quantity and quality of materials that are used by other aquaculturists (personal 

communication A.E. Woods Fish Hatchery, Texas Parks and Wildlife, San Marcos, TX), 

it is possible that essential nutritional elements were lacking in the 150 um sized 

zooplankton fed to D. diaboli in this study, perhaps the result of poor nutrient absorption 

by adult zooplankton (Lukas et al. 2013). At the end of the study, it was determined, 

through molecular assays, that the zooplankton population produced in the ponds at 

SMARC, were infected with microsporidia. Though initial analysis currently suggests 

that fish fed zooplankton have not become infected with microsporidia, there is evidence 

to support the premise that bacterial infection of zooplankton, such as Daphnia, affects 

its body stoichiometry, altering levels of carbon, nitrogen and phosphorus (Frost et al. 

2008). These chemical changes are dependent on the food source of Daphnia and the 

extent and progression of the bacterial infection (Frost et al. 2008). It is possible, though 

difficult to confirm, that the presence of microsporidia was another factor responsible for 
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the poor growth exhibited by individuals of D. diaboli fed the diet of zooplankton in this 

study. 

Morphology 

The external appearance of 136-dph juveniles of D. diaboli reared in this study 

on diets of Artemia nauplii, algal gel, or protein flakes were comparable to 128-dph 

juveniles described by Hulbert et al. (2007). The external appearance of 136-dph 

juveniles raised on a diet of zooplankton during this study differed markedly from 

“typical” juveniles. Externally, these juveniles exhibited pigmentation patterns and 

lengths comparable to those of much earlier stages in Hulbert et al. (2007), 32 and 64 

dph, respectively (figure 3 and 4). This “stunted” external appearance might be related to 

nutritional deficiencies and/or extra energy expenditure associated with the capture of 

live zooplankton. Though larvae of D. diaboli have not been observed free swimming in 

the wild, observations on larvae (≤30mmTL) in self-perpetuating populations maintained 

in 12.2m concrete outdoor raceways suggest that they feed and seek refuge within dense 

patches of aquatic vegetation (pers. obs.). Contrary to older juvenile and adult 

individuals of D. diaboli, larvae were rarely seen emerging from planted areas when 

offered supplemental feed (pers. obs.). When yearly counts are performed on these 

outdoor populations, individuals greater than 30 mm TL are often caught by seine while 

juveniles less than 30 mm TL must be physically separated from within the plant 

material (pers. obs.). 
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Interestingly, there were also marked differences in the visceral anatomy of 136-

dph juveniles fed the diet of zooplankton, compared to those fed the other diets. These 

differences involved the length of the gut and the number of intestinal coils or loops, 

which were shorter and less coiled in juveniles fed the diet of zooplankton (Figures 5c, 

6c) compared to juveniles fed the diet of Artemia nauplii, algal gel or protein flake (Fig 

5a, 5b, 6a, 6b). Such differences in visceral anatomy could be the results of multiple 

different factors. During development, the digestive tract is considered to play an 

important role in the maintenance of body homeostasis in fishes (Ostaszewska et al. 

2008). An inappropriate diet composition may induce disturbances in digestive tract 

development and function, which may result in reduced growth and development 

(Ostaszewska et al. 2008). The structure and relative length of the intestinal tract in 

teleost fishes is not only influenced by diet but also by the form and size of the body and 

by phylogeny (Goldschmid et al. 1984). Short guts are generally indicative of carnivory 

in fishes, while longer guts are generally indicative of diets with high proportions of 

indigestible material, such as in omnivory and herbivory, where longer guts are 

considered important for extracting nutrients from nutrient-poor foodstuffs that require 

greater digestive processing times (Hofer 1982; Horn 1989). In cyprinids, intestinal 

loops and coils are proportional to the relative length and space available within the 

body cavity; the longer the gut, the more complex the coiling pattern (Junger et al. 

1989). Intestines of omnivorous cyprinids are generally straight throughout most of the 

larval period and eventually develop an S-shaped loop by, or during, the juvenile period 

(Junger et al. 1989). Members of the genus Dionda are classified as herbivores based on 
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the lack of a defined stomach and the presence of a long coiled intestine, however, little 

quantification of their diets has been published to verify this (McMillan 2011). In D. 

diaboli, the initially straight intestine first develops a single loop at approximately 32 

dph before transferring into a multi-looped, convoluted intestine by 128 dph (Hulbert et 

al. 2007). When comparing the intestines of the 136-dph juveniles (~18 mm TL) fed a 

zooplankton diet in this study to that of the stages in the development of a typical D. 

diaboli available from Hulbert et al. (2007), it is clear that the intestinal tract of the 

former never progressed passed the single loop stage of a typical 32-dph larvae (~12 mm 

TL), regardless of the differences in size.  

In comparison to those individuals fed zooplankton, it is interesting that Artemia- 

nauplii-fed fish developed the degree of intestinal coiling (and TL) seen in cohorts on an 

herbivorous diet. Observations conducted before the first and second daily feeds, showed 

that individual D. diaboli fed a diet of Artemia nauplii continued to feed on dead 

Artemia on the bottom of the tanks between feedings. As Artemia deteriorate, nitrogen 

concentrations increase (Frost et al. 2008). Nitrogen enrichment has been documented in 

organisms that are nutrient limited and must use fat reserves to persist (Gannes et al. 

1997). Perhaps the decaying Artemia nauplii partly provided the nutritional requirements 

similar to those found in herbivorous diets, and hence the developments of intestinal 

coils were comparable to those of D. diaboli individuals fed a diet of algal gel or protein 

flakes. 
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Lastly, there were significant differences in the quantities of visceral fat observed 

within the body cavities of the 136-dph juveniles fed Artemia nauplii, algal gel, protein 

flake or zooplankton. Fish fed the diet of zooplankton accumulated little to no detectable 

fat bodies (which were not quantified). Fish fed a diet of Artemia nauplii exhibited very 

low visceral fat deposits (1.6 mg ± 0.49). In comparison, there were much greater 

deposits of fat in the viscera of 136-dph juvenile fish fed the diets of protein flake or 

algal gel (Table 11). Visceral fat deposits have not been observed in wild caught adult D. 

diaboli (personal communication Randy Gibson SMARC and McLean Worsham TSU), 

and the status of visceral fat deposits in larvae or juveniles born and raised in the wild is 

unknown. Caldwell et al. (2005) determined visceral fat quantities to be highest in Rio 

Grande silvery minnow juveniles fed Aquatic Ecosystems (Pentair) protein flakes, when 

compared with other feeds. When 2% of fish from this study and their cohorts (which 

were released into outdoor concrete raceways at 180 dph) were examined at 270 dph, 

none exhibited any evidence of visceral fat. Perhaps the accumulation of fat correlates to 

being reared in small systems on manufactured feeds, and once juveniles are moved to a 

larger more “natural” environment, these stores are then depleted. 
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CONCLUSIONS 

 

It is evident from this study that live feed is essential for best growth during the 

first 30 days of rearing D. diaboli larvae. Although this study demonstrates that D. 

diaboli fed Artemia nauplii exhibited the highest growth rate for the 46 dph time period, 

it was the individuals fed the plant-based diets (algal gel or protein flakes) that attained 

the highest growth rates for the 76 dph, 106 dph and 136 dph time periods, possibly 

suggesting that an optimal diet for captive D. diaboli is one which transitions from 

predominantly animal protein to plant based, as the larvae develop toward the juvenile 

stage. Captive propagation techniques need to incorporate and reflect the changing 

foraging strategies and diet requirements that occur in wild populations if mass 

production and reintroduction of this species is to be successful and long lasting. Dietary 

requirements and trophic ecology of Dionda diaboli are important, not only to the 

conservation of the species, but to provide insight into the ecology of other members of 

the genus, as well as other spring-associated species of minnows that are subject to the 

same threats as D. diaboli. 
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