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ABSTRACT 

 

Secondary dust explosions in coal mines or industrial settings are known to cause 

greater catastrophic hazards than the coupled primary explosions themselves. The shock 

waves produced during a primary explosion, which are initiated by inadvertent stimuli in 

an explosive atmosphere such as methane, lift surrounding coal particles from 

neighboring areas, and if added in an effort to create an inert mixture, limestone as well. 

Dust dispersion can influence the severity of a secondary explosion as the particles can 

ignite from passing shock waves. A shock tube modified to evaluate dust dispersion 

provides the optical access to characterize the shock-wave/dust-layer interaction. This 

experimental study characterized the dust dispersion of coal-limestone mixtures and 

moisture-varied limestone dust as it is likely present in the hazardous environment. The 

dust rise height was measured with respect to time after the shock passage, where 

regardless of the sample, initial laminar dust growth rates increased with Mach number. 

Laminar and unstable regimes were also identified in the data samples. 

The moisture-varied limestone samples were tested at three shock Mach 

numbers, namely Ms = 1.1, 1.23, and 1.4, and the trending data show an average increase 

of 10% in overall lifting heights and 20% in initial linear growth rates for the moisture-

reduced, dried samples as compared to undried samples stored in standard temperature 

and pressure (STP) conditions. Conceivably, the effective moisture reduction in the 

samples led to fewer agglomerations and/or reduced densities, influencing the ability of 
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lift forces to act on the particles. In addition, limestone may bond or agglomerate more 

readily to coal particles when undried, reducing the likelihood of ignition. 

The coal-limestone mixture samples were tested at two shock Mach numbers, 

namely Ms = 1.24 and 1.57, with the 75% coal sample having the largest and 25% coal 

sample having the smallest combined dust dispersion parameters. Dust dispersion 

parameters affect how quickly the dust transitions to an unstable interface layer, readily 

increasing the chances of ignition through increased mixing and dispersion. As the 

limestone content is increased, dust grows faster, larger, and tend to transition into larger 

instabilities on the dust-gas boundaries. The highest dust growth rate, shortest transition 

time, and largest average dust height will affect the ability of the dust sample to ignite. 

Increasing undried limestone content while maintaining the lowest possible dust 

dispersion would both help the mixture remain inert and expose less coal particle surface 

area to the reactive atmosphere. These parameters are fluid-particle dispersion dynamics. 
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1. INTRODUCTION 

 

An explosive atmosphere can exist in coal mines or other industrial settings 

where gases like methane are released into the atmosphere as a by-product of coal 

extraction and processing. In these environments, coal particles are found on floors and 

other surfaces. The potential of mining equipment, and other apparatus, to inadvertently 

ignite gases such as methane, can lead to detonations or explosive events that initiate 

shock waves in the environment called primary explosions. 

 

1.1 Background 

 

Shock waves created during the primary explosion can traverse the near area and 

pick up coal dust particles left from processing activities, creating a secondary explosion 

hazard. In the event that these events occur in series, the resulting fuel-air mixture 

behind the shock wave brings about a potential to ignite the coal particles if a secondary 

ignition source is present. As this situation has occurred in the past, it is a well-known 

fact that safety mitigation is necessary to protect life and business operations from this 

occurrence. Dust explosion hazards are therefore explored in the material presented 

herein, and represent the experimental effects of dust dispersion due to differing shock 

wave speeds. In particular, a safety mitigation strategy of spreading limestone in these 

areas where the coal dust is located is chosen to render the dust mixture inert, and 
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prevent it from igniting in the event of a shock wave traversing the area. The procedure 

that creates the shock wave can follow the sequence below: 

1. Methane gas is released as by-product of mining or industrial processing 

2. Equipment produces friction\spark, igniting methane primary explosion 

3. Detonation or deflagrating wave produced from primary explosion 

4. Pressure wave continues beyond boundary of reactive gas 

5. Shock wave propagates in air, along adjacent surfaces 

6. Shock wave disperses dust and increases air temperature with one (1) 

possibility of two (2) of the following outcomes: 

a. A coal-limestone mixture exhibits partial or no reaction 

b. A coal only dust ignites and creates a secondary explosion 

The primary explosion, a result of the methane gas ignition, is the source for the 

secondary explosion. Once the secondary explosion has momentum, it can lead to a 

disastrous event such as a detonation wave, killing people and damaging much of the 

surrounding area. The mitigation strategy involves spreading the limestone to these areas 

to mitigate any such occurrence. Methane gas explosions in a coal mine are only one 

possible initiation source, and others should be considered as well. 

 

1.2 Experimental Study Review 

 

As stated, the dispersion of coal dust by a shock wave can create a secondary 

explosion. The current experimental study targets dust dispersion, and seeks to cover a 
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range of coal-limestone mixtures that might occur in the field. This information can give 

safety and simulation experts data to better predict dust dispersions, after explosive 

conditions are determined from knowledge of the environments considered. This dust 

explosion hazard study will focus on correlating data for those who are interested in dust 

dispersion parameters with known shock wave Mach numbers, which can be used to 

calibrate models that predict the ignition of coal dust in that environment. 

In his review paper, Eckhoff [1] discussed prevention and mitigation efforts for 

secondary explosion hazards along with the importance of modeling dust dispersion in 

predicted environments. Knowledge of critical dust coverage which would lead to 

catastrophic explosions is needed to set safety standards. Current methods to mitigate 

explosive atmospheres include spreading limestone in these areas to create an inert 

mixture if such an accident were to occur, therefore limiting the possibility of a 

secondary explosion. Being able to predict or model numerically the dust dispersion 

behind a passing normal shock wave is therefore important, and high-quality 

experimental data are needed to validate such models. Dust-layer surface depth, coal-

limestone mixtures, and moisture content do have important effects on the lifting height, 

as their affects are illustrated herein. 

To predict dust entrainment into the post-shock gas flow, it is important to 

understand the initial motion of the particles. Previous work has been performed to 

enrich the fundamental knowledge of dust dispersion. However, it is still difficult to 

completely describe the dust entrainment mechanism. A conclusive model to accurately 

simulate the exact entrainment process has yet to be developed, although some recent 
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numerical models that capture the details of the shock-dust interaction are appearing in 

the literature [2,3]. Therefore, to ensure safety regarding dust explosion hazards, it is 

important to study the dust-lifting process experimentally and identify important 

parameters that will be valuable for development and validation of numerical predictions 

of this phenomenon. Former experimental works have studied the interaction of 

unsteady dust layers with different elements of gas-dynamic flows (e.g., shock, 

compression and expansion waves). 

Earlier shock and dust particle interaction experiments focused on understanding 

the phenomenon of dust lifting [3]-[11]. For example, Fletcher’s [5] explanation of the 

mechanism of dust lifting was based on experiments as well as theoretical analysis. He 

criticized Gerrard’s [4] conclusion that dust entrainment is under the action of a shock 

wave passing through the dust layer. Instead, he concluded that the dust is lifted by the 

rapid flow behind the propagating shock. Bracht and Merzkirch [6] identified the 

governing force in dust lifting as the Saffman force and supported their experimental 

work with a numerical model. The behavior of a coal-dust layer with a weak shock wave 

passing above it was studied by Hwang [7]; the coal dust particle size was up to 44 μm 

in that work. Later, the effect of particle size on dust dispersion [8] and Magnus force [9] 

were studied. Fedorov [10] in his review paper discussed the available body of work 

related to shock interaction with dust layers. According to Federov’s conclusion, the dust 

lifting from a packed bed does not depend on the layer depth. However, curving of the 

layer surface and particle density do have important effects on the lifting height. 
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Some of the other studies focused on the dust-lifting problem in conjunction with 

combustion problems and with detonation, which is usually called a layered detonation. 

In 2005 and 2012, Klemens et al. studied shock interaction with coal dust and silica dust 

in a shock tube to identify important parameters such as the time delay in lifting the dust 

from the layer and the dust concentration gradient behind the propagating shock [11]. 

For the numerical part of their research, they considered two approaches: Eulerian and 

Lagrangian for modeling the dispersion of coal dust. 

In spite of all the efforts, it is still difficult to describe the dust entrainment 

mechanism, and moreover, detailed data are still needed. As a result, a comprehensive 

model to simulate the exact entrainment process is yet to be demonstrated. The processes 

of dust lifting and two-phase flows were also comprehensively studied numerically 

[1,2,10-19]. Nonetheless, there is no mathematical model that can describe all stages of 

the process of dust lifting, including the propagation of waves on the layer, the processes 

of turbulent mixing, and the specific features of the force interaction of the phases [10]. 

However, using an Eulerian framework for computation, the very recent Houim and 

Oran [2] results trended well with recent data from the facility described herein at M = 

1.4 that were presented at a conference in 2014. Such a result shows promise in the 

ability to eventually model the phenomenon and the need for data such that the facility 

described in the present paper can provide. In addition, advancements in high-speed 

imaging have made possible the accumulation of large amounts of time-dependent dust 

growth data. 
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With these issues is mind, the current experimental study takes different mixtures 

of coal and limestone and varies the content by weight to see the effects on shock Mach 

numbers of Ms = 1.24 and 1.57. Also, limestone dust moisture content reduction is 

experimented to understand its effects at Ms = 1.1, 1.24, and 1.4. These particular Ms 

values were targeted for their range in possible shock speeds experienced in the actual 

environment. The parameters measured herein were shock Mach number (Ms), time 

(ms), dust height (Yd in mm), coal-limestone mixture weight percentages, Limestone 

moisture content, particle sizes (μm), dust growth rates (𝑑𝑑𝑌𝑌𝑑𝑑
𝑑𝑑𝑑𝑑

), and correlation parameters 

linking Ms and dust growth rates together. 

The experimental facilities included a shock tube, which propagates a shock 

wave over a dust layer. The dust dispersion was then measured by optical equipment, 

which was processed to construct time-varied results. The experimental techniques 

sought to consolidate possible dust dispersions encountered in industrial settings, as they 

can then be modeled by simulation, to better predict the physics of the phenomena. 

This thesis is constructed to evaluate the parameters as discussed and includes 

relevant test hardware, data analysis, and results. The thesis is divided as follows. First, 

the test facility hardware, measurement techniques, and the dust dispersion setup are 

discussed. Next, material characterization of the limestone only and coal-limestone 

mixtures are evaluated by SEM images showing particle sizes and dust interaction. 

Finally, the experimental data show dust growth behavior, and this is followed with the 

conclusion of results. 
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2. EXPERIMENTAL SETUP 

 

This section consists of the details of the shock-tube hardware and the procedures 

for performing the shock-wave/dust-layer interaction experiments. Described first is the 

shock-tube facility. Next, details on the technique for quantitative measurement of the 

dust height as a function of time are discussed using high-speed imaging and custom 

photo processing. Finally, the dust-layer setup inside the shock tube is presented. 

Detailed assessment of the shock tube is discussed in Chowdhury et al. [20]. 

 

2.1 Shock-Tube Facility 

 

The shock tube utilized for this study is ideal because its driven section is square 

in cross section. The key features of the test section include a large-windowed region for 

viewing the experiment. This test section is designed to handle incident-shock velocities 

up to Ms = 2 with an initial pressure of 1 atm (101.3 kPa), and it is capable of holding 

pressures up to 15 atm (1.52 MPa) behind the reflected shock wave. A schematic of the 

shock tube is provided in Fig. 1. 
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Figure 1 Shock-tube schematic (top) showing plumbing, relative distances, test-port 
location, 4 pressure transducers (PT1 – PT4), 3 velocity-detection timers, and a section-
cut of the dust-layer test section (bottom). 
 
 

Figure 1 (in the section view) shows the test section located at the end of the 

shock tube where the dust is leveled coincident with the incident shock wave path. Care 

is taken to create a uniform layer while minimizing compaction. At nominal test shock 

speeds, experiments up to 3 ms are achieved. The driven section, where the dust-layer 

test section is located, is approximately 10.8×10.8 cm and 4.05 meters long. The left and 

right windows are each 5.1×30.5 cm and allow for viewing of the dust layer and fluid 

interface, particularly for shadowgraph techniques. Dust is placed in an easy-to-remove 
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dust pan with a dust deposit area of 27.3×7.0 cm. Figure 2 shows a photograph of the 

shock-tube facility test section. 

 

 
 

Figure 2 Photograph of shock-tube test section 
 
 

The shock velocity is determined by a series of pressure transducers connected to 

three timing gates (Fluke PM6666 counters), depicted schematically in Fig. 1. Of the 

three timing intervals, one is before the dust-layer test section, one spans the test section, 

and one is after the test section. The shock wave velocity in the facility characterization 

discussed in Chowdhury et al. [20] has an uncertainty of ±1.2% (or about 5 m/s). This 

velocity uncertainty corresponds to a variation in stated Mach number of ±0.013 – 0.019 

for the range of Ms of interest herein (typically for Ms between 1.1 and 1.6). This overall 

Dust-Tray 
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uncertainty in Ms takes into account any slight variation across the test location (Fig. 1) 

and the uncertainty of the measurement system in detecting the arrival of the shock wave 

at each transducer port. 

 

2.2 Dust-Layer Measurement Technique 

 

A basic shadowgraph technique was employed for flow field visualization. The 

present experimental viewing area is approximately 76 mm wide by 50 mm high, with 

the image width being limited by the concave mirror diameter and the image height by 

the height of the window. The curved mirrors have a 76-mm diameter and 44-cm focal 

length, resulting in an F# of 5.8. A Photron Fastcam SA1.1 high-speed camera at a frame 

rate of 15,000 fps and 1-μs exposure is used in conjunction with a Mercury-Xenon, 70-

W lamp to capture the fluid and dust layer interaction. This framing rate provides a 67-

μs time difference between each image. The camera was set to an image area resolution 

of 768×624 pixels. 

To understand dust entrainment into the post-shock gas flow, particle lifting is 

typically measured with respect to time or with respect to the shock-wave propagation. 

For each experiment, images are captured of the nitrogen and dust-layer interaction 

behind the incident shock wave. A typical image sequence of the dust-gas interaction 

behind a shock wave of Ms = of 1.32 is shown in Fig. 3. It can be observed that a normal 

shock wave is followed by the subsequent movement of the dust in the vertical, or y, 

direction. Note that the shadowgraph method provides a very good resolution of the 
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boundary between the edge of the bulk dust surface and the gas above it, particularly for 

the earlier portion of the experiment. Dust surface transition to instability occurs from 

image (c) to (d), as this behavior is indicative of all experimental runs but occurring at 

different times depending on the shock speed. As seen in the last frame of Fig. 3, the 

reflected shock wave arrives at the test section, and the data acquisition portion of the 

experiment is concluded. 

 

 
 

Figure 3 Images of limestone dust interaction in the flow behind a shock; Ms = 1.32. All 
captured images were for 15,000 frames per second with a 1-µs exposure time. 
 
 

Dust height as a function of time is determined by examining the shadowgraph 

images. The corresponding shock wave propagation was derived from the shock velocity 

and time recorded by the camera using a known camera trigger location, which in the 

present tests is the pressure transducer upstream of the window, PT1 (see Fig. 1). 
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The initial and subsequent images taken during the experiments were analyzed 

frame-by-frame for spatially and temporally dependent dust measurements. Image 

analysis was performed by an in-house MATlab code designed to examine pixel-to-pixel 

variation and to identify the location of dust-gas boundaries and shock waves. A user-

created MATlab add-on application, Image Measurement Utility [21], was used to 

calibrate the distance of each pixel in the image setup. Figure 4 presents a typical 

calibration image taken with a pair of digital calipers opened to 10.00 mm. A calibration 

line was drawn between the measuring edges of the calipers, and with a known 10.00 

mm distance, a pixel calibration of 0.12 mm/pixel was established. Once this procedure 

establishes the image calibration, point-to-point calculations of post-shock dust height 

can be accurately made. 

 

 
 

Figure 4 Image-Pixel calibration using calipers and the MATlab Image Measurement 
Utility. 
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To discern and measure a clear dust-gas boundary for recording dust-height 

variations, the images were converted from raw, indexed values to RGB. Pixel RGB 

values were examined to set thresholds correlating to shadowgraph density gradients. In 

Fig. 5, the incident-shock image is used to establish a fixed vertical reference plane at X 

= 460 to measure the fixed vertical height of the viewing window bottom and distance to 

the shock wave. Subsequent images continually measure dust heights from the vertical 

reference plane. The RGB image shown in Fig. 5 identifies the shock wave above a zero 

(0) threshold for green and blue pixel color values, as compared to the zero (0) green and 

blue values in the constant-density gas located in the space between the shock wave 

front at X = 134 and the vertical reference plane. The number of pixels at a constant 

height of Y = 368 are counted between the shock wave and vertical reference plane, and 

with the pixel calibration, shock wave distance is determined. The image frame rate, 

measured shock speed, and measured distance allow a precise time to be calculated to 

determine when the shock wave passes the vertical reference plane. As frames were 66.7 

microseconds apart for a 15,000 fps rate (~3 ms total test time), the post-shock images 

were corrected by the elapsed time between the shock wave passing this plane and 

subsequent time-stamped images. For example, a Ms = 1.32 wave presents an elapsed 

time of 90.9 microseconds, which is a typical value. 

 



 

14 

 

 
 

Figure 5 Incident Mach 1.32 shock wave raw indexed image (left) and RGB image 
(right) with RGB pixel values at vertical reference plane and shock wave. 
 
 

The left image in Fig. 6 identifies a pre-shock horizontal reference plane at Y = 

596, relative to which all subsequent dust-height measurements are referenced. This 

plane corresponds to the viewing window bottom and was identified to terminate in the 

gas at a zero (0) threshold blue pixel color value, as compared to the space between the 

image bottom and the horizontal reference plane. The right image in Fig. 6 is post-shock 

dust which is rising at the fixed vertical reference plane and above the horizontal 

reference plane, which is 1.45 mm above the top of the undisturbed dust layer. The zero 

(0) threshold blue pixel value is used on most of the subsequent images to identify the 

dust-gas boundary and to record dust-height measurements with time. Ultimately, the 

uncertainty in the determination of the dust-layer edge is within one pixel, since the 

RGB contrast goes to zero very dramatically at the dust-gas boundary. Therefore, the 

stated uncertainty for the dust height Yd is ±0.12 mm; note that this is the precision to 

which the dust-gas interface can be determined from the image resolution. There is 
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additional uncertainty involved in defining the interface when there are time-dependent 

fluctuations in this interface as a result of the fluid mechanics of a given experiment. 

Hence, the overall uncertainty in the dust-gas interface is higher, particularly at later 

times, as shown later in this study. 

 

 
 
Figure 6 Pre-shock horizontal reference plane (left) and post-shock dust height measure-
ment (right) with RGB pixel values at horizontal reference plane and dust-gas boundary. 
 
 

In some cases at longer observation times, a background dust cloud can enter the 

observation area, increasing the uncertainty. This cloud is caused by residual dust 

deposits on the shock-tube walls from previous experiments being lifted and carried into 

the observation area. This uncommon event is addressed by slightly modifying threshold 

values to account for increased sensitivity in density variations. This adjustment 

provides an accurate representation of the boundary between areas that were filled with 

dust lifted from the initial dust layer, and those which are composed of background dust. 

Data are presented as the dust height rises with time at the vertical reference plane, with 
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height = 0 at the horizontal reference plane (window bottom), and time = 0 when the 

shock wave reaches the vertical reference plane. 

 

2.3 Dust-Layer Setup 

 

Experimental variables from test to test include initial pressure (P1), shock Mach 

number (Ms), dust-layer thickness, and characteristics of the dust itself. A constant value 

of 67 kPa (500 torr) was used for P1 herein, or initial test section pressure. For the test 

gas, nitrogen was used to render the atmosphere inert. After each experiment that 

employed dust, the inner surfaces of the shock tube were vacuumed and cleaned 

thoroughly with acetone. The dust-layer depth remained constant at 3.2 mm with the 

geometry shown in Fig. 1 throughout the experiments. 

The coal-limestone mixtures were developed and tested in accordance with Table 

1. The five (5) types of mixtures include all coal, all limestone, and a ratio by weight for 

the varied coal and limestone mixture content. Densities are listed and computed as the 

mixtures were weighed and placed into the 60.14 cm3 dust tray shown in Fig. 1. 
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Table 1 Coal-limestone mixture test matrix with average mixture densities 
 

Dust Sample(s) 

Dust Parameters Test Cases 

Weight Mixture Ratio 
(Coal:Limestone) 

Average 
Mixture 
Mass (g) 

Average 
Mixture 
Density 
(g/cm3) 

Mach 
1.24 

Mach 
1.57 

Total 
Sample 
Tests 

100% Coal 1:0 24.8 0.413 2 2 4 

75% Coal / 
25% Limestone 3:1 19.8 0.329 2 2 4 

50% Coal / 
50% Limestone 1:1 15.2 0.253 2 2 4 

25% Coal / 
75% Limestone 1:3 11.8 0.197 2 2 4 

100% 
Limestone 0:1 11.1 0.188 1 1 2 

Accumulated Averages => 16.7 0.278 Total Tests = 18 

 
 

The limestone mixed into the coal in Table 1 was undried and stored at standard 

temperature and pressure (STP) conditions. As the limestone moisture content is 

reduced, dust dispersion is expected to change. Table 2 shows the test cases for the dried 

limestone samples at the respective Mach numbers shown. Undried limestone samples 

were tested at the same Mach numbers for comparison. Positive numbers indicate the 

moisture content was removed from the samples prior to the experiments. All samples 

were dried at elevated temperatures for approximately 192 hours. The weight data for 

the dried samples are recorded in Table 2, and moisture content for the dried samples 

was calculated in accordance with Equation 1. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡−𝐷𝐷𝐷𝐷𝐷𝐷 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡

× 100       (Equation 1) 
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Table 2 Dried limestone test cases with percent moisture content 
 

Mach Number 
Dust Parameters 

Sample Weight (g) Moisture Content 
1.1 17.01 0.52% 
1.23 19.85 1.02% 
1.4 24.81 1.00% 

 
 

All limestone used in the test cases from Tables 1 and 2 used the same size, 

batch, and type of limestone acquired from the same vendor. All undried limestone was 

stored at standard temperature and pressure (STP) conditions. The coal-limestone 

mixtures and limestone-only samples were evenly spread and leveled with the top of the 

dust-tray, which is coincident with shock tube’s bottom surface. This positioned the dust 

to be recessed below the incident shock wave. Once the shock wave entered the test 

section, the dust was dispersed and measurements were made. 

 Figure 7 shows the dust trays loaded with the appropriate mixtures from Table 1. 

The 100% limestone image is undried. As the coal content is reduced, and the limestone 

content increased, the dust tends to maintain a more limestone-only-like texture with a 

grey, uniform color exhibiting a well-mixed sample. 
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Figure 7 Images of coal-limestone mixtures in the dust-tray for test cases from Table 1. 
In a clockwise direction, starting at the top left, 100% limestone, 100% coal, 50% coal, 
25% coal, and 75% coal representative samples. 
 
 

Once the dust tray was loaded for each experiment, the tray was placed into the 

bottom of the shock tube and sealed into the bottom section of the shock tube as shown 

in Section 3.1. All data are then captured and processed as detailed in Section 3.2. As the 

experimental setup is concluded, the focus now shifts to material characterization and 

the experimental results in the following chapter. 
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3. MATERIAL CHARACTERIZATION 

 

For the present study, dust layers were limestone dust obtained off-the-shelf, and 

the coal was Wyoming bituminous. For the limestone, the SEM images in Fig. 8 and a 

Beckman coulter counter assessment suggested an average particle size of 4.2 microns. 

Figure 8 displays SEM images of the limestone dust particles in the coal-limestone 

mixtures and undried samples used in the experiments described herein. Images show a 

spore-like shape. 

 

 
 

Figure 8 SEM images of 100% undried limestone powder utilized herein, at two 
different magnifications. Average particle sizes closer to the measured value of 4.2 
microns are evident in the image, with some agglomerations of approximately 20-30 
microns, which may affect dust lifting height in contrast to a loose, unadhered, 4.2-
micron sample. 
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The coal was pulverized and sieved to a target maximum size of 150 μm. Figure 

9 shows an SEM for a 100% coal sample with particles ranging from roughly 50-200 

μm. The coal surface appears to be rough with uneven surfaces. 

 

     

Figure 9 SEM images of 100% Coal. Coal particles range from 50-200 μm (left image) 
with rough and uneven surfaces (right image). 
 
 

 Figure 10 shows the coal-limestone mixture of 25% coal. Networks of particles 

are forming, with limestone particles agglomerating to coal particles. 
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Figure 10 SEM coal-limestone mixture images of 25% coal / 75% limestone. Limestone 
appears to adhere to coal particles (right image) with clusters of 500 μm and networks 
forming (left image). 
 
 

 Figure 11 shows the coal-limestone mixture of 50% coal. Limestone is covering 

coal particles, and networks of particles are larger than 800 μm. 

 

     

Figure 11 SEM coal-limestone mixture images of 50% coal / 50% limestone. Limestone 
appears to adhere to coal particles (right image) with clusters of 200 μm and networks 
larger than 800 μm (left image). 
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 Figure 12 shows the coal-limestone mixture of 75% coal. Limestone is covering 

coal particles, with clusters of 400 μm and networks of particles are larger than 500 μm. 

 

     

Figure 12 SEM coal-limestone mixture images of 75% coal / 25% limestone. Limestone 
appears to adhere to coal particles (right image) with clusters of 400 μm and networks 
larger than 500 μm (left image). 
 
 

 Based on the SEM images, the overall trend is that the limestone (undried state) 

adheres to the coal, causing agglomerations. These agglomerations are good for the 

likelihood of the coal having less surface area available for ignition in the events 

discussed in Chapter 1. The lifting force is also expected to be affected by the 

agglomerations, and the following results section shows the relative dust lifting heights 

between the different coal-limestone mixtures and the effect of moisture reduction on the 

limestone. 



 

24 

 

4. EXPERIMENTAL RESULTS 

 

 The experimental results were intended to quantify the dust dispersion from the 

different coal-limestone mixtures, and coupled with the dried limestone only dispersion, 

should help in understanding what factors affect dust growth rates and overall dispersion 

heights. The first result is for the coal-limestone mixtures (see Fig. 13 and 15 later), 

which correspond to the Table 1 test matrix. The second result is the dried and undried 

limestone comparison (see Fig. 17), in which the dried samples moisture content 

corresponds to Table 2. These two results illustrate the overall dust dispersion behind a 

moving shock wave, as the wave passes, and the dust is lifted into the atmosphere over a 

final time ranging from about 2.8 - 3.2 ms per test. Linear dust growth regions, which 

exhibit laminar behavior, were fit to an R-squared value of 0.95 or better. 

 

4.1 Coal-Limestone Mixture Results 

 

The Mach 1.24 coal-limestone mixture results in Fig. 13 show an increasing 

trend in the linear portions of the growth rates (𝐝𝐝𝐘𝐘𝐝𝐝
𝐝𝐝𝐝𝐝

) of the dust height prior to 2.5 ms, as 

limestone content is increased in the mixtures. The 75% coal mixture has over a 40% 

increase in growth rate as compared to the 100% coal. Overall dust heights show an 

increasing trend with an increase in the limestone content. Table 3 has the linear growth 

rates for each sample. The delay time when dust growth is first observed after the 

passing normal shock wave, and the transition time at which the linear growth portion 



 

25 

 

turns to a fluctuating, unsteady behavior and the time span between the two are included 

in Table 3 (linear time span). 
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Figure 13 Coal-limestone mixture results at Ms = 1.24. Solid lines show overall trend of 
each mixture from Table 1. 
 
 

 As noted in Table 3, the linear growth rates increase as the limestone content 

increases from 100% coal to 100% limestone. As the growth rates increase, linear time 

spans decrease and the tendency for the dust to transition to unsteady behavior begins 

earlier as limestone content increases in the mixtures, except in the 25% coal mixture 
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where the span and transition times are larger and later than the lower content limestone 

samples. The 25% coal sample has the lowest delay time. Following the same trend, the 

delay and transition times reduce with an increase in limestone content. The unsteady 

period after the transition time, for each sample, increased in average overall dust height 

with increased limestone content as Fig. 13 exhibits. 

 

Table 3 Coal-limestone linear growth region characteristics for Ms = 1.24 
 

Dust Sample(s) 
Linear Growth 

Rate dY/dt 
(mm/ms) 

Linear 
Time Span 

(ms) 

Delay 
Time 
(ms) 

Transition 
Time (ms) 

100% Coal 2.25 2.13 0.48 2.61 
75% Coal / 

25% Limestone 3.96 1.60 0.34 1.94 

50% Coal / 
50% Limestone 3.98 1.53 0.30 1.83 

25% Coal / 
75% Limestone 4.33 2.07 0.08 2.14 

100% Limestone 5.38 1.60 0.16 1.76 

 
 

Figure 14 shows a shadowgraph of the dust behavior just after the transition time 

periods noted in Table 3. As the limestone content is increased, dust grows faster, larger, 

and tend to transition into larger instabilities on the dust-gas boundaries. In comparing to 

the Fig. 14 dust dispersion, the 100% coal sample exhibits small particles above the dust 

boundary, as compared to the samples with limestone which tend to bind the mixture 

together. 
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Figure 14 Coal-limestone unsteady post-transition time shadowgraphs for Ms = 1.24. 
From left to right, top to bottom: 100% coal, 75% coal, 50% coal, 25% coal, and 100% 
limestone. 
 
 

The Mach 1.57 coal-limestone mixtures in Fig. 15 show an increasing trend in 

the linear portions of the growth rates (𝒅𝒅𝒀𝒀𝒅𝒅
𝒅𝒅𝒅𝒅

) of the dust growth regime prior to 0.85 ms, 

as limestone content is increased in the mixture. The 75% coal mixture has nearly a 40% 

increase in growth rate as compared to the 100% coal. Further increase in limestone 

content has a small effect on growth rate. Overall dust heights show an increasing trend 

as limestone content increases, except the 25% coal sample which is nearly even with 

the 50% coal data. The 100% limestone samples exhibit similar growth rates as the 25% 
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and 50% coal samples, and then disperse high above all other samples in the unsteady 

region. Table 4 has the linear growth rates for each sample. The delay time when dust 

growth is first observed after the passing normal shock wave, transition time at which 

the linear growth portion turns to a fluctuating unsteady behavior and the time span 

between the two are included in Table 4 (linear time span). 
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Figure 15 Coal-limestone mixture results at Ms = 1.57. Solid lines show overall trend of 
each mixture from Table 1. 
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 As noted in Table 4, the linear growth rates increase as limestone content 

increases from 100% coal to 100% limestone, except at 100% limestone where it is 

slightly lower than the trend. As the growth rates increase, linear time spans decrease 

and the tendency for the dust to transition to unsteady behavior begins earlier as 

limestone content increases in the mixtures, except in the 50% coal mixture which has 

span and delay times that are larger and earlier than the trend. The 50% coal sample has 

the lowest delay time, with the other samples at nearly constant values. The transition 

times reduce with an increase in limestone content. The unsteady period after the 

transition time, for each sample, increased in average overall dust height with increased 

limestone content as Fig. 15 exhibits. 

 

Table 4 Coal-limestone linear growth region characteristics for Ms = 1.57 
 

Dust Sample(s) 
Linear Growth 

Rate dY/dt 
(mm/ms) 

Linear Time 
Span (ms) 

Delay 
Time 
(ms) 

Transition 
Time (ms) 

100% Coal 6.99 0.73 0.10 0.83 

75% Coal /  
25% Limestone 11.46 0.60 0.12 0.72 

50% Coal /  
50% Limestone 14.32 0.67 0.01 0.68 

25% Coal /  
75% Limestone 14.52 0.53 0.11 0.64 

100% Limestone 13.46 0.53 0.07 0.60 
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Figure 16 shows a shadowgraph of the dust behavior just after the transition time 

periods noted in Table 4. As the limestone content is increased, dust grows faster, larger, 

and transition more quickly into larger instabilities on the dust-gas boundaries. In 

comparing Fig. 16 dust dispersion, the 100% coal sample exhibits small particles above 

the dust boundary, as compared to the samples with limestone which tend to bind the 

mixture together. This is the same result as the Mach 1.24 coal-limestone mixture test 

cases. 

 

 

Figure 16 Coal-limestone unsteady post-transition time shadowgraphs for Ms = 1.57. 
From left to right, top to bottom: 100% coal, 75% coal, 50% coal, 25% coal, and 100% 
limestone. 
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4.2 Dried and Undried Limestone Results 

 

As the limestone content was shown to have an effect on the coal-limestone 

mixtures, the limestone was further investigated. This experimental campaign was based 

on reducing the moisture content of the limestone, by oven drying, to see the effects on 

dust growth. Table 2 represents the moisture content in the three (3) targeted Ms = 1.1, 

1.23, and 1.4. Corresponding to the Table 2 samples, Fig. 17 shows the time-evolved 

data from the limestone-only tests, which include undried samples tested at the same Ms 

as the dried. 

These results represent the differing of dust dispersion heights due to the dried 

and undried limestone samples and shock Mach number. Based on the three Mach 

numbers, namely 1.1, 1.23, and 1.4, the trending data show an increase in lifting height 

for the dried samples, as compared to the undried samples. Dried sample dust heights 

varied from -30 to +32, -15 to +44, and -36 to +45 percent differences from undried 

samples for Ms = 1.1, 1.23, and 1.4, respectively. The majority of the data points are 

greater values for the dried samples. The solid lines in Fig. 17 represent initial linear 

growth rates, or 𝑑𝑑(𝑌𝑌𝑑𝑑)
𝑑𝑑𝑑𝑑

, where the dust-gas boundary remains laminar. The growth rates 

are larger for the dried samples, as compared to the undried samples. 

When the dust height is plotted as a function of time, the initial trend appears to 

be linear, as seen in Fig. 17. However, at some later time (about 2 ms for Ms = 1.23) the 

rate of growth slows down considerably. In this second regime, note also that the data 
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representing the dust height have much larger scatter, due primarily to the surface 

structures that begin to appear. 

Figure 17 also illustrates the transition from the higher growth rate to the lower 

one appearing to be dependent on the shock Mach number, where the higher Ms leads to 

a transition point at earlier times when compared to the lower Ms cases. These results are 

typical of the experiments performed to date in the facility [20]. The transition points 

appear to increase for the dried samples at Ms = 1.1 and 1.23, with Ms = 1.4 following 

the opposite trend, as compared to the undried samples at a constant Mach number. 
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Figure 17 Dried and undried limestone sample comparison for measured dust height, 
Yd, as a function of time for three different Ms (1.1, 1.23, and 1.4). Dried sample linear 
growth regimes (solid lines) increase in the laminar regions, as compared to the undried 
samples at the corresponding Mach numbers. 
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As noted in Table 5, the linear growth rates are larger for the dried samples, as 

compared to the undried samples at constant Mach numbers. Both undried and dried 

sample categories exhibited increased growth rates as Mach numbers increased. Delay 

times were greater for dried samples at Mach 1.1 and 1.4, with the opposite trend at 

Mach 1.23. Transition times were difficult to extract from data, as the exact moment of 

the laminar transition may vary. Nonetheless, whether the samples are dried or undried, 

the data show a decrease in transition times as the shock Mach numbers are increased. 

Also, the dried limestone transitioned later, as compared to the undried samples, except 

the dried sample at Mach 1.4 where the transition time was the lowest of all the samples. 

 

Table 5 Dried and undried correlated values presented in Fig. 18 to predict dust growth 
rates with known shock Mach numbers ranging from 1.1 to 1.4. Time values indicate 
dust delay rise times after passing normal shock and transition times from laminar to 
unstable regimes. 
 

Undried Limestone Dried Limestone 
Correlation Critical Times Correlation Critical Times 

Mach d(Yd)/dt 
(mm/ms) 

Delay 
Times 
(ms) 

Transition 
Times 
(ms) 

Mach d(Yd)/dt 
(mm/ms) 

Delay 
Times 
(ms) 

Transition 
Times 
(ms) 

1.1 2.40 0.27 3.13 1.1 3.27 0.31 3.25 
1.23 4.33 0.27 2.01 1.23 5 0.16 2.16 
1.4 7.44 0.06 1.39 1.4 9.37 0.11 1.31 

        
D(Yd)/Dt 16.87   D(Yd)/Dt 20.63   
Intercept -16.24   Intercept -19.76   

 
 

In Fig. 18, correlations are shown for the linear growth regions for a given shock 

Mach number, Ms. Linear growth rates varied from 3.27 to 2.4, 5 to 4.3, and 9.4 to 7.4 
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mm/ms for Ms = 1.1, 1.23, and 1.4, respectively; where the larger values at specific 

Mach numbers were the dried samples. Clearly, the dried samples are rising faster and 

maintaining larger overall dust height values at the corresponding Mach numbers. 

 

Figure 18 Dried and undried limestone sample comparison for laminar correlated linear 
growth rates, 𝐃𝐃(𝒀𝒀𝒅𝒅)

𝐃𝐃𝐃𝐃
, as a function of Mach number, Ms (1.1, 1.23 and 1.4). Dried sample 

correlations result in larger growth rates, as compared to undried samples at a selected 
Mach number range from 1.1 to 1.4. 
 
 

Based on three shock Mach numbers, namely Ms = 1.1, 1.23, and 1.4, the trending 

data show an average increase of 10% in overall lifting heights and 20% in initial linear 

growth rates for the moisture-reduced, dried samples, as compared to undried samples 

stored in standard temperature and pressure (STP) conditions. 
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5. CONCLUSION 

 

 Dust growth behavior studied in the shock tube discussed led to many important 

results toward a better understanding of what factors affect coal dust dispersion in areas 

where secondary explosion hazards exist. The variation of Ms from 1.1 to 1.57 was 

selected to capture the various conditions a blast wave may produce in coal mines or 

industrial settings during a primary explosion. In industrial settings, limestone is 

introduced in intimate contact with surrounding loose coal particles and used as a 

mechanism to mitigate the ignition of coal particles lifted and heated from a passing 

shock wave. The limestone is expected to render the coal inert. Results presented in the 

previous chapter attempt to simulate these energetic conditions by matching the shock 

wave speeds (not temperature and pressure), while varying coal-limestone mixture ratios 

and studying the effect that limestone moisture content has on dust dispersion. 

 The coal-limestone mixtures and limestone moisture presented in Tables 1 and 2, 

with test results in Figures 13, 15, and 17 are summarized in Table 6 for select 

parameters affecting dust dispersion. Overall dust dispersion heights increase with 

increasing Mach number for all samples tested. Table 6 targets time parameters that 

effect how quickly the dust transitions to an unstable boundary layer, readily increasing 

the chances of ignition through increased mixing and dispersion. Transient high 

temperatures behind a shock wave can quickly appear and vanish, removing the 

necessary ignition temperature for the particles to react. Ignition mitigation criteria 

would be reducing dispersion and increasing time at which transition occurs. 
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 The highest growth rate, shortest transition time, and largest average dust height 

will increase the ability of the dust sample to be better mixed with the gas above it. 

Highlighted values which pose the most danger for ignition are shown in Table 6. 

Increasing limestone content while maintaining the lowest possible dust dispersion 

would both help the mixture remain inert and expose less coal particle surface area to the 

reactive atmosphere. 

With these issues in mind, the most unfavorable conditions are a coal-limestone 

mixture of 75% coal and dried limestone. The most favorable conditions are a coal-

limestone mixture of 25% coal and undried limestone; however, note that the transition 

times for undried limestone are less than the dried ones creating a possible unfavorable 

condition. These parameters were chosen with no consideration of the likelihood of the 

mixture to react, instead, they were chosen in respect to the fluid-particle dispersion 

dynamics. A reactive study would be necessary, and therefore recommended, for a 

complete understanding of the fluid-particle and chemical interactions.  In addition, 

limestone may bond or agglomerate more readily to coal particles when undried, 

reducing the likelihood of ignition. 
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Table 6 Critical time parameters for time-sensitive dust dispersion 
 

Sample Linear Growth Rates 
d(Yd)/dt (mm/ms) Transition Time (ms) Average Dust Height 

(mm) 

Limestone 
Mixture 

Percentage 
(by weight) 

MS = 
1.24 

MS = 
1.57 

% 
Change 

MS = 
1.24 

MS = 
1.57 

% 
Change 

MS = 
1.24 

MS = 
1.57 

% 
Change 

0 2.25 6.99 68% 2.61 0.83 -213% 4.69 6.45 27% 
25 3.96 11.46 65% 1.94 0.72 -169% 5.46 8.60 36% 
50 3.98 14.32 72% 1.83 0.68 -170% 6.27 10.02 37% 
75 4.33 14.52 70% 2.14 0.64 -232% 7.54 9.90 24% 

100 5.38 13.46 60% 1.76 0.60 -194% 8.29 13.75 40% 
Limestone 

Only Samples 
MS = 
1.1 

MS = 
1.23 

MS = 
1.4 

MS = 
1.1 

MS = 
1.23 

MS = 
1.4 

MS = 
1.1 

MS = 
1.23 

MS = 
1.4 

Undried 
Limestone 2.40 4.33 7.44 3.13 2.01 1.39 5.58 6.92 9.64 

Dried 
Limestone 3.27 5.00 9.37 3.25 2.16 1.31 6.34 7.88 10.12 

 
 

 In conclusion, the coal-limestone mixtures were combined to have homogenous 

mixtures, as field conditions may have a top-layer of limestone above the coal. This 

would affect the dynamics conceived above. Also, it is convenient that undried 

limestone is more favorable than dried; however, in dry or hot environments this 

unfavorable condition may present itself. Conceivably, the effective moisture reduction 

in the samples led to fewer agglomerations and/or reduced sample densities, influencing 

the ability of lift forces to act on the particles. The moisture-reduced effect increases dust 

dispersion and growth rates. As the dried limestone increased dust dispersion, this is 

effectively increasing the likelihood of promoting secondary explosion hazards. Since 

reduction of secondary explosion hazards is important, future studies and safety 
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precautions should focus on reactive chemistry and understanding the mitigation 

techniques for the specific environment, respectively. 
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