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ABSTRACT 

 

 Modelling fibrous networks is crucial to understand the mechanics of soft 

materials like ligaments, connective tissues, alveolus sac and nonwoven fabrics. 

Simulation of these fibrous networks has been typical restricted to modelling them as a 

local continuum where the filaments are connected to the nearest neighbors. These 

methods do not capture the actual microstructure of the fibers, where there are non-local 

connections. Non-local connection refers to long fibers that connect cross-links that are 

not near each other. This thesis proposes modelling fibrous networks as a truss system 

with large deformation. A network of trusses will be able to capture the microstructure of 

fibrous networks more accurately. The strain energy of   the truss system will be assembled 

and solved by minimizing the total potential energy of the system. Modelling of local and 

non-local fibrous networks have been done in this work.  

 The random fibrous networks were generated from the probability distribution of 

cross-links identified in the SEM (Scanning Electron Microscope) images of the fibrous 

material. The nodes were then connected by truss elements based on the probability 

distribution of number of nodal connections as a function of distance. Various other 

methods for developing random fibrous network have also been proposed in this work. 

 A pulmonary alveolus sac of a human lung was modelled as a case of a local 

system. It was found that there were no significant differences between results obtained if 

linear response of fibers was used instead of non-linear response. Also, no significant 
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differences were exhibited between approximating the non-local system as a continuum 

versus modelling it as a network of trusses. 

A non-local system of type 1 collagen fiber was generated as a random truss 

network. It was found that there were significant differences between results obtained if 

linear response of fibers was used instead of non-linear. The deformation mode of non-

local fibrous network was different for linear and non-linear.  Also, significant differences 

were exhibited between approximating the non-local system as a continuum versus 

modelling it as a network of trusses. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

 Fibrous material networks are composites with filaments embedded in a soft base 

matrix [1]. These materials are commonly encountered in the field of engineering and 

biological systems. For example, in field of engineering, metallic foams (materials with 

high porosities levels) are being sought after for their application in building light weight 

structure. A wider list of fibrous material incorporate  day to day common material like 

wood, cloth polymer like nonwoven cloth and biological tissues. In the proposed thesis, 

the following fibrous networks materials will be modelled. 1) Soft tissues like collage 

fiber, it is the major load carrying element in wide variety of organs. 2) Nonwoven fabrics, 

they are fabric materials like felt that are made up of long fibers. 

The mechanical behavior of collagen fiber is characterized by low-stiffness initial 

region, followed by high stiffness region[2].The deformation is different at macroscopic 

levels and microscopic levels, for example, given a macroscopic deformation (sample 

characteristic length), the deformation (axial strain) at microscopic level (fiber filament 

scale) can be larger than the macroscopic deformation [3]. This characteristic of fibers 

network leads to injuries like grade 1 ligament tear [4], wear and tear of synovial joints 

causes fibers in cartilage to stiffen causing arthritis [5]. Other prominent examples on the 

importance of understanding mechanics of fibrous structures are: Malignant breast 

cancerous tumor tissues were found to be stiffer than the surrounding tissues [6], amniotic 

membrane used in skin grafts are primarily composed of collagen fibers [7] and alveolus 



 

2 

 

sac support made up of polygon shaped fibrous network faces risk of pressure injuries 

from deep sea diving [8]. Current models developed to study fibrous networks will be 

examined in the literature review. 

The structure of fibrous network can broadly classified into two categories:  

1) Random fibrous network (nonwoven fabrics and collagen fibers found in connective 

tissues of our body) as shown below in Figure 1 (a).   

2) Fibrous networks that can be approximated by simple geometric objects (pulmonary 

alveolus elastic fibers that can be approximated as polygons) as shown below in Figure 

1(b).   

 

  

   (a)        (b) 

Figure 1: (a) SEM of nonwoven geotextile SF32 [9] to illustrate an example of random 

fibrous network. (b) SEM of a toad’s lung inner surface [10], the septa(S) (made up 

of collagen and elastin fibers) that divide the alveolus sac from each other is in form 

of a polygonal network. (b) Is an example of well-defined fibrous networks that can 

be modelled by simple geometrical objects. 
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I.1 Literature Review 

 

In this section, major papers pertaining to this area will be listed below and a more detailed 

discussion of these papers will follow. 

A comprehensive guide to fibrous material, their classification and experimental 

techniques can be found in [1]. A recent review paper of fibrous materials and their 

mechanical properties can be found in [3].  Papers [9, 11-15] consists of various 

experimental research done to understand the mechanics of fibrous network. Papers [16-

20] consists of the various models developed to study fibrous network.  

 

I.1.1 Experimental Data Reviewed 

 

Tensile stress-strain experiments were performed for nonwoven fabric in [9]. This 

experiment performed on geotextile made of polypropylene fibers (SF32, commercial 

name). The fibers were of diameter 60 μm. Tensile experiment was performed on a matrix 

of 100x 200 mm2. The fibers showed a strain of 200% given a strain of 250 MPa. 

Experimental data of rat lung microscopic alveolar wall elasticity and macroscopic 

mechanical properties of the whole lung is done in [11].  Three-dimensional tensile 

properties of ECM (Extracellular Matrices) collagen is done in [12]. Figure 2 below shows 

the stress strain response of the collagen matrix. Another, collagen fiber data from human 

skin was presented in [13], the human skin had a maximum strain of 100% when the 

applied force was 6 MPa. Alveolar septal strain, stress data was measured in [14]. This 
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experiment was performed in vitro, the stress-strain relations were measured for a lung 

tissue of 200 𝜇m and a maximum stain of 60% was measured with a failure stress 

of 2.0 x10
5 dyn

cm2
 .   

 

 

Figure 2: Stress-Strain curve of collagen (2 mg/mL, pH 7.4) matrix of 20x40 mm dog-

bone specimen, tested at tensile strain rate of 38.5 percent/min [12]. 

 

  The data for type 1 collagen fiber was taken from [15]. The measurements were made 

with filaments with diameters ranging from 150-470 nm and gauge length ranging from 

5-21 𝜇𝑚 taken from isolated sea cucumber using a MEMS based method (Micro-Electro-

Mechanical-Systems). The filaments showed strain up to 30% given a stress of 200Mpa.  
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I.1.2 Previous Models Developed to Study Fibrous Networks 

 

In [16], a model was developed to study the mechanical response of a nonwoven fabric. 

They key problem in the paper was to understand fracture mechanics and progressive 

fracture that lead to the failure of the entire network. In this paper, all individual fibers 

were considered to have linearly elastic properties. In the reported results, however, 

although the individual fibers were linear, they experienced large deformations (up to 

100%). Another discrepancy noted was, on application of small macroscopic deformation, 

the deformation at microscopic level was large (when applied macroscopic strain was 

10%, some fibers experienced strain of up to 40%).   

 Work was done in [17], on nonlinear fibrous networks (Air-Lite polyester quilt 

batting). Where, the microscopic behavior of the fiber was described by theory of Elastica. 

However, this non-linear fibrous network theory focused on fibril’s where strain greater 

than 5% was considered as a failure of the fibril. Carbon fiber composites are an example 

of material with high stiffness fibrils.  

 In [18], the strain energy of the fiber network was taken as a sum of individual 

fibers are solved linearly using a FEM (Finite element Method) solver. The individual 

fibers were modelled both as linear Euler-Bernoulli and Timoshenko beams.  

 In [19], the mechanical behavior of three-dimensional cross linked fibrous network 

was studied in this work. The model consists of linear elastic fibers with deformation only 

in axial mode. The volume of the three-dimensional fibrous network was discretized using 

tetrahedral elements assigned linear elastic matrix properties. The fibers were assumed to 
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be along the edges of the tetrahedral elements. The model was deformed by imposing 

displacement boundary conditions. Simulations in this work was only done up to 10% 

strain. Figure 3 below shows the three-dimensional fibrous network and the model planar 

surface showing the discretized matrix. 

 

 

Figure 3: (a) Schematic representation of the fibrous network, comprised of linear 

response filaments and matrix. (b) Shows the discretized planar model surface, the 

red dots shows the fibrous filaments that were developed along the edges of the 

tetrahedral elements passing through the planar surface. 

 

In [20], the mechanical behavior of elastomer membrane (Elastomeric electro spun 

polyurethane) were simulated by quantifying the actual fibrous geometries. Simulation 

were performed on experimentally derived fibrous geometries which was developed using 

image analysis. The effect of fiber intersection, connectivity and orientation on the macro-

mechanics of the fibrous network were studied in this paper. Figure 4 below shows the 

quantification procedure used to quantify the fibrous microstructure from the actual SEM 

(Scanning Electron Microscope) image to the corresponding simulated topology.  
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Figure 4: Real (left) and simulated (right) topologies of Poly (ester-urethane) urea 

[20]. The fiber intersections were identified in the real image (shown in middle with 

purple color). The fiber connections were performed on the identified nodes using 

Delaunay triangulation algorithm.  

  

An incompressible Yeoh strain energy of form shown below in equation 1.1 was 

used. The model was implemented using Abaqus Finite Element Solver. 

Ψ= ∑ Ci0(Ic-3)i

3

i=1

                                                         1.1 

where, 𝐶𝑖0 represents the material parameter and 𝐼𝑐 first invariant of right Cauchy Green 

Stretch Tensor. The strain energy assumed the model was isotropic and incompressible, 

however in the paper, the same strain energy was used for an anisotropic fibrous network. 
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I.2 Proposed Work 

 

In the models discussed in section I.1.2, deformation due to non-local response is not taken 

into account. The constitutive equations developed for these models are based on classical 

continuum mechanics.  In classical continuum mechanics, for determining the stress at a 

given point, the contribution of stress from elements outside an arbitrary neighborhood 

are disregarded [21]. However, in case of random fibrous network as shown in Figure 4, 

the connections are non-local (there are long fibers going from one end of the matrix to 

the other), hence local continuum deformation models are not suitable for modelling 

random fibrous network. This is reflected in the simulated topologies of fibrous network 

shown in Figure 3 (b) and 4, where the resulting topologies are devoid of any non-local 

connections (absence of long fibers) and each fiber is connected to the nearest neighbor, 

unlike the actual microstructure of random fibrous network.  These developed models 

however, are more suitable for fibrous network with local connections like pulmonary 

alveolus sac. Figure 5 below shows the SEM (Scanning Electron Microscope) image of 

the alveolar sac and the resulting FEM simulation done in [15]. Hence, the existing models 

are unable to simulate the non-local response of random fibrous network nor are they able 

to represent the actual fibrous microstructure.  

 This characteristics of the existing models leads to the two major objectives of this 

thesis 

 Represent actual fibrous microstructure with non-local connections (if any). 

 Simulate non-local response of random fibrous network. 



9 

(a) (b) 

Figure 5: (a) Shows the SEM image of pulmonary alveolus sac. (b) Septal stress 

values in lung region of PTP (Pulmonary Transmissions Pressure) of 9 cm on 

deflation. The fibers were modelled as linear, fibers with unstressed length were 

omitted in the simulation [15]. This is a typical simulation of well-defined fibrous 

network as polygons.  A single support will be modelled in this thesis in 3-D as a 

dodecahedron.  *Large alveoli lacking cross bridges. 

To model nonlocal deformation of random fibrous networks nonlocal continuum 

mechanics can be used. However, it still poses a challenge in mimicking the actual fibrous 

network and the differential equation obtained might be complicated with unknown 

boundary conditions. Alternatively, as  a simple and more efficient way we can  model 

fibrous   network    as   a   large   deformation,   non-local    and    non-linear    truss   network.
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This thesis aims to answer the following research questions based on the 

hypothesis stated above. 

1. How to model large deformation of fibrous network? 

Fibrous networks can be modelled as a nonlinear truss network with large deformation. 

Large deformation of truss network is necessary since collagen fibers show 

deformation up to 30% [15]. Minimizing the potential energy is a simple method to 

solve the non-local problem in comparison to developing constitute equations based 

on non-local continuum mechanics.  

2. How does macroscopic failure in fibrous network occur? 

Studies have shown that there is a considerable difference between strains in individual 

fibers vs macroscopic average strain [10-16]. This disparity can be accounted for the 

non-local microstructure of random fibrous network. In this thesis, it is proposed that 

random fibrous network under uniaxial tension with non-local connections can be used 

to mimic ligament deformation. 

3. How accurate are linear models for studying the failure of finite 

deformation? 

Work done in [16, 18, and 19] have modelled the fibrous filaments with linear elastic 

material properties. A linear curve fit for the stress-strain response will be done and a 

linear model of the fibrous network will be done to compare accuracy with the non-

linear simulations.  
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CHAPTER II 

FIBROUS MATERIAL MODELLED AS A TRUSS NETWORK 

One of the objectives of this thesis was to construct the actual non-local 

microstructure of the random fibrous network.  In this chapter, the methodology used for 

generating random fibrous network will be discussed. 

The microstructure of the random fibrous network will be represented by a non-

local truss network. To generate the random truss network there are two requirements: 

 Nodal locations: These represent the intersection of the filaments in the fibrous

network. 

 Nodal connections: These represent how the nodal locations identified will be

connected. 

The above two requirements will be discussed in detail in this chapter. The developed 

fibrous networks based and the algorithm to develop the network will be presented. 

II.1 Generating Nodal Locations of Random Fibrous Network

Nodal locations represent the cross-link points in the actual fibrous network 

microstructure. Cross-link points are points were the filaments in the fibrous network 

intersect each other. The cross-link density depends on the actual material, not all 

overlapping fibers are fully bonded via a cross-link point but some fibers overlap and slide 



 

12 

 

across each other without friction. Figure 6 below shows the SEM (Scanning Electron 

Microscope) image of type 1 collagen fibers along with the cross-links identified.  

 

 

Figure 6: SEM of type 1 collagen fiber [22]. The red box represents the characteristic 

length of the matrix to be simulated.  Locations where the fibers overlap are modelled 

as contact points. Fibers originating from these contact points overlapping other 

fibers in the model are assumed to be sliding over each other without friction. 

 

As seen above in Figure 6, the nodal locations are identified from the above SEM 

image of type 1 collagen fibers. There are two methods to randomly generate nodes. 

 Homogenous nodal locations 

 Inhomogeneous nodal location 
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II.1.1 Homogenous Nodal Location Generation 

 

The definition of homogenous nodal location used in this thesis is: the probability of 

finding a node is the same everywhere. If the actual microstructure of the fibrous network 

has cross-links that are homogenously distributed. We can randomly generate the desired 

amount of points in the unit cell from a uniform probability distribution. This is 

accomplished in MATLAB by using the rand command. 

 

II.1.2 Inhomogeneous Nodal Location Generation 

 

In this thesis, inhomogeneous random points are generated from the probability 

distribution of the points originally identified in the microstructure. The probability of 

finding a node at a particular location is same as the probability distribution of the points 

in the original microstructure. Figure 7 (a) below shows the original nodes identified in 

the SEM (Scanning Electron Microscope) image and Figure 7(b) shows the random nodes 

generated from the probability distribution of nodes in 7(a). Figure 8 below shows the 

probability distribution of points in 7(a) for X & Y coordinate. A Kernel Epanechnikov 

probability function was used to fit that data, as it was a better fit than the normal 

distribution. Figure 9 below shows 1000 nodes generated from the probability distribution 

of 7(a).  As seen in Figure 8, the points are in homogenously distributed. 

  

 



 

14 

 

 

(a)                  (b) 

Figure 7: Random nodes generated from the PDF of the nodal connections identified 

in the SEM of fibrous network. (a) Shows originally identified nodes. (b) Shows nodes 

generated from (a). 

 

 

Figure 8: Probability distribution of points identified in 7(a).  Kernel Epanechnikov 

probability distribution was found the best fit for the given data.   

 

Figure 9 below shows 1000 nodes generated from the probability distribution of 

7(a).  As seen in Figure 8, the points are in homogenously distributed. The algorithms for 

generating random fiber network are shown below in Appendix A. 
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Figure 9: 1000 points generated from the probability distribution of points shown in 

Figure 8. The inhomogeneity in the distribution can clearly be seen as there are few 

points when x=1.  

 

II.2 Generating Nodal Locations of Random Fibrous Network 

   

Once the  nodal locations have been generated in the matrix. The random fibrous network 

is finally formed by connected the nodes. This thesis proposes two major ways for forming 

nodal connections 

 Symmetry 

 Nodal location 

Figure 10 below shows the flow chart developed for each connectivity method.  
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Figure 10: Flow charts developed for the two major categories for connecting 

random nodes generated. 

 

 The definition for each of the nodal connectivity categories is given below.  

1. Nodal Distribution 

a. Inhomogeneous: The nodal connection depends on the location of the nodes 

(e.g.: preference is provided to connect points at a certain location than other 

points). 

b. Homogenous: The nodal connection is independent on the location of the 

nodes, i.e. preference is not given to the location of the nodes when connecting 

the network. 

2. Symmetry 

a. Anisotropic: The nodal connection is based on distance/direction (e.g.: 

preference is given to connecting nodes that are below a certain angle).  

Nodal 
Connection

Nodal Distribution

Homogenous Inhomogeneous

Symmetry

Isotropic Anisotropic
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b. Isotropic: The nodal connection is independent of distance/direction. The 

connectivity is instead dependent on the probability distribution of number of 

nodal connections as a function of distance for every node. This is shown 

below in Figure 11.  

As seen from Figure 10, there exists different ways of forming nodal connections. The 

following types of nodal connection combinations can be generated. 

1. Homogenous and isotropic 

2. Homogenous and anisotropic 

3. Inhomogeneous and isotropic 

4. Inhomogeneous and anisotropic 

 

 

Figure 11: Probability distribution of nodal connections as a function of distance for 

nodes developed in 7(b). 
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Figure 12(a) below shows the homogenous and anisotropic and Figure 12 (b) shows the 

homogenous and isotropic connection for the random inhomogeneous nodes developed 

in Figure 7(b). 

 

 

(a) 

 

(b) 

Figure 12: Non-local fibrous network developed from the SEM (Scanning Electron 

Microscope) image of type 1 collagen fiber in Figure 6. (a) Shows homogenous and 

anisotropic connection. (b) Shows homogenous and isotropic connection. The nodal 

points generated were inhomogeneous. 
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In Figure 12 (a), the connectivity method used to develop the network was 

homogenous and anisotropic. Only nodes that had an angle of less than 30o degrees were 

connected. The nodal connection was independent of the location of the nodes. Figure 

12(b) the nodal connection were based on the probability distribution of number of nodal 

connections as a function of distance as shown in Figure 11. 

As seen from above Figure 12, the non-local (fibers are connected to nodes far 

away from originating node) nature of the fibrous network was captured in the proposed 

method. For example in figure 12 (a), nodal connections between nodes 20 and 23 are 

non-local. In Figure 12(b) connections between 5 and 25 are non-local. Hence, the first 

major objective of replicating the microstructure of random fibrous network with non-

local connections has been accomplished.  

In the next chapter, the large and non-linear modelling of the developed truss 

network will be discussed. 
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CHAPTER III  

ENERGY FORMULATION FOR THE TRUSS SYSTEM AND FINDING THE 

AVERAGE DEFORMATION GRADIENT 

 

 In the previous chapter, a generic fibrous material was represented by a network 

of randomly generated filaments forming a truss.  This truss network is solved by 

assembling the summation of strain energy of each member and minimizing it to obtain 

the current nodal configuration of the system.  In this chapter, the formulation of strain 

energy for the truss system, different measures of strain and finding the average 

deformation gradient to approximate the results as a continuum will be discussed. 

 

III.1 Principle of Minimum Potential Energy 

 

 The statement of minimum potential energy is “When the total potential energy of the 

system is minimized, the system is in a state of stable static equilibrium.” 

 The potential energy function V of external forces Fi (external global point force), 

w (external distributed loads) acting on displacement (Di and w) on the surface S of the 

elastic solid is given by equation (1). 

V=Σ FiDi+ ∫w v dS
s

                                                     3.1      

 Strain energy U is the energy stored by the system undergoing elastic deformation 

under an applied load. The strain energy density (strain energy per unit volume) is also 
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determined by the area under the stress strain curve. The equation for the strain energy is 

given below in in equation (2). 

U= ∫ ∫ σ(ϵ)Tdϵ dV
v

                                                        3.2 

The total potential energy is the difference between the strain energy U and the potential 

energy of external forces V. Minimizing this total potential energy for the non-linear 

elastic solid will give the equilibrium solutions to the random truss system developed in 

chapter II.  

 

III.2 Relation between Engineering Strain and Green Lagrange Finite Deformation 

 

To calculate the strain energy, finite deformation was used instead of engineering strain. 

However, the data in the papers presented in [15-17] the data given was in terms of 

engineering stress/strain. The following derivation provides insight into how the 

engineering strain was converted to Green-Lagrange strain for use in calculating the strain 

energy of the truss.  

The stretch ratio of a differential element is defined be the following equation 3.3 

λn=
dx

dX
                                                                   3.3 

where the dx is the deformed magnitude of the differential element in the reference 

configuration dX along the direction of the unit vector n. The engineering strain is given 

in the following equation 3.4 and it rewritten in terms of the stretch ratio defined above in 

equation 3.3 
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eeng=
dx-dX

dX
=λn-1                                          3.4 

The Green-Lagrangian Strain Tensor is given by the following equation 3.5.  

E=
1

2
(C-1)                                                     3.5 

where E is the Green-Lagrangian Strain Tensor and C is the Cauchy-Green deformation 

tensor. The stretch ratio is also defined by Cauchy-Green deformation given below in 

equation 3.6 

λn= √C11                                                         3.6 

Substituting equation 3.6 and 3.5 in 3.4 gives 

e=λ11-1= √C11-1=  √1+2E11-1                                    3.7 

In the above equation solving explicitly for E (Green-Lagrangian Strain Tensor) in terms 

of engineering strain gives the final relation between E and e.  The relation is given below 

in equation 3.9. 

2E11=
 (dx1)2-(dX1)2

(dX1)2
                                                   3.8 

E11= (
 dx1-dX1

dX1

) +
1

2
 (

 dx1-dX1

dX1

)
2

 = e+
1

2
 e2                      3.9 
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III.3 Strain Energy Formulation for a Truss (2-D) 

 

A generic truss with 3 members in its reference (material coordinates) configuration and 

current configuration (spatial coordinates) is shown below in Figure 13.  For solving the 

truss problem in 2-D and surface mesh triangular elements were used. For solving truss 

problem in 3-D tetragonal elements were used. 

 

 

Figure 13: 2-D Truss with 3 members in reference and current configuration. 

The dotted, straight lines represent current and reference configuration respectively 
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As seen from above in Figure 13, the member with a straight lines represent the 

truss in its material configuration and the members with dashed lines represent the truss 

in its spatial configuration.  Each of global nodes represented by R1, r1, R2, r2, R3 and r3 

have 2 local nodes in the coordinates x and y respectively.   

 

III.3.1 Strain Energy of the Truss 

 

Strain energy of the truss system given in above Figure 13 is given by the following 

equation 3.10. Note that all the strain given henceforth in the thesis are by default Green-

Lagrange strain unless mentioned otherwise.  The strain energy used below is an example 

of a strain energy (𝑈 =
1

2
𝐴𝐸 𝑒2). However, the nonlinear case in which the strain energy 

will be of form 𝑈 = 𝑓(𝑒)  was developed and shown in a later section.  

U=
1

2
AE (e1

2+e2
2+e3

2)                                                  3.10 

where 𝑒1, 𝑒2, 𝑒3 represent the strain of each member in the truss in Figure 9. The strain of 

each member in the truss using equation 3.8 is given as: 

2e1= 
‖r1-r2‖2-‖R1-R2‖2

‖R1-R2‖2
                                              3.11 

2e2= 
‖r2-r3‖2-‖R2-R3‖2

‖R2-R3‖2
                                              3.12 

2e3= 
‖r1-r3‖2-‖R1-R3‖2

‖R1-R3‖2
                                                 3.13 
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where,  

‖r1-r2‖2=(x1-x2)2+(y1-y2)2                                        3.14 

‖r2-r3‖2=(x2-x3)2+(y2-y3)2                                        3.15 

‖r1-r3‖2=(x1-x3)2+(y1-y3)2                                        3.16 

Similarly equations can be developed for the reference configuration{‖R1-R2‖, 

‖R2-R3‖, ‖R1-R3‖}. These reference configuration value are provided by the user in the 

form of nodal values Xi,Yi (i=1:3) and denote the square of length of each member 

Substituting [3.11-3.16] in 3.10, the total strain energy of the system is given by 3.17. 

 

U=
1

2
AE { [

(x1-x2)2+(y1-y2)2-length1
2

2length1
2

]

2

 

                 + [
(x2-x3)2+(y2-y3)2-length2

2

2length2
2

]

2

 

+ [
(x1-x3)2+(y1-y3)2-length3

2

2length3
2

]

2

}                             3.17  

 

 These reference configuration value are provided by the user in the form of nodal 

values𝑋𝑖, 𝑌𝑖 (𝑖 = 1: 3). The potential energy function of the external forces is given by  

V=Fi(Global)xi                                                     3.18  

The potential energy for the Figure 9 is given by  

V=F1x1                                                            3.19  
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 The required unknowns, current configuration values 𝑥𝑖 , 𝑦𝑖 are found by minimizing the 

total potential energy of the system as shown below 

Π=U-V                                                              3.20 

The minimization of 3.20 was done in MATLAB using fminunc function with quasi-

newton algorithm. The algorithms for minimizing are shown below in Appendix B. 

 

 

 

Figure 14: Time taken to solve fibrous network along with the number of elements. 
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Figure 14 above shows the solver time taken for fibrous network with different 

element sizes. The quasi-newton algorithm is an alternative to newton’s method and does 

not require jacobian/hessian input to minimize the objective function. If fibrous network 

of larger size (approx. 100,000) were to be minimized the jacobian could be assembled 

and provided to the solver for faster solving times.  

 

III.4 Strain Energy for Linear and Non-Linear Response 

 

One of the research questions to be answered was the accuracy of using strain energy of 

linear response in simulating the response of fibrous networks.  The stress strain data 

obtained from [15]. The linear and non-linear curve fit of the stress-strain data is shown 

below in Figure 15. The linear model had a coefficient of determination (indication of how 

well the data fit the model) of 94% and the non-linear model has a coefficient of 

determination of 99%. Although there was only an error of 5% in choosing either of the 

models, significant difference in the simulation results for non-local random fibrous truss 

network was present, this is shown in detail later on in chapter IV. The quadratic strain 

energy strain energy derived by integrating the stress-strain response is shown below in 

Equation 3.21. The strain energy of the non-linear stress-strain response is shown below 

in Equation 3.22. Odd polynomials were used to model the non-linear stress-strain 

response. 
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Figure 15: Linear and non-linear curve fit using odd polynomials of stress-strain data 

of individual collagen fibrils.  

 

U=AL(339.75e2)                                                    3.21 

U=AL (1.249e8-0.41e6+.047e4+.0011e2)x10
5
                   3.22 

where U refers to the strain energy, A refers to area, L refers to length of the fiber and e 

represents strain.  
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III.5 Finding Average Deformation Gradient 

 

Another objective of this thesis was to compare the solution obtained if the fibrous 

network was modelled as a continuum. To obtain the approximate solution of the truss 

network as a continuum, the average deformation gradient was calculated from the exact 

solution found by minimizing the truss network using a least squares fit. The derivation of 

the average deformation gradient is shown below. 

The solution of the truss network if modelled as a continuum is given by the 

following equation 3.23. 

xc=FX+B                                                              3.23  

where 𝑥𝑐the solution if modelled as a continuum, F is is the average deformation gradient, 

X is the reference configuration and B is the translation.  The average deformation gradient 

is found by minimizing the following equation 3.24 with respect to the average 

deformation gradient F and translation B. xt represents the solution found by minimizing 

the strain energy of the truss system. 

‖xc-xt‖
2                                                          3.24 

Index notation will be used from here. For the ith node the reference location is 

given as Xα and the truss solution for ith node is given by xα . Upon substituting 3.23 into 

3.24 and minimizing with respect to F gives 

∂

∂Fjp

 ∑[FiAXA
α +Bi-xi

α][FiAXA
α +Bi-xi

α]

α

=0                                  3.25 

∑[δijδAPXA
α ][FiBXB

α +Bi-xi
α]+[FiAXA

α +Bi-xi
α][δijδBPXB

α ]=0          3.26

α
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∑[FjBXB
α +Bj-xj

α]Xp
α =0 3.27

α

 

FjB ∑ XB
α XP

α+ ∑ BjXP
α

α

+ ∑ xj
αXP

α  

αα

=0         3.28 

Upon replacing ∑ 𝑋𝐵
𝛼𝑋𝑃

𝛼
𝛼 with matrix M and ∑ 𝑥𝑗

𝛼𝑋𝑃
𝛼  𝛼 with N equation 3.28 can be 

written as 

FM=N-BXT 3.29 

Similarly upon minimizing equation 3.24 with respect to B gives. 

∂

∂Bj

δij[FiBXB
α -Bi-xi

α]=0 3.30 

B=F ∑ XB
α -xi

α

α

 3.31 

B=F ∑ Xα-xα

α

3.32 

Hence, upon substituting 3.32 into 3.28, the average deformation gradient is found to be 

FM=N-F[ ∑ Xα-xα]

α

XT  3.33 

Using the average deformation gradient found above in equation 3.33, the solution of the 

system if approximated as a continuum can be found and used for comparison purposes to 

the actual solution from the truss system.  The following chapter IV and V show the 

simulations done for a local and non-local fibrous network using methodologies developed 

in this chapter. 
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CHAPTER IV  

DEFORMATION OF A LOCAL SYSTEM 

 

 In this chapter, a locally connected system (where the nodes are connected only 

to the nearest neighbor) will be simulated and the following comparisons will be made in 

the results obtained 

 Comparison between deformation mode in linear and non-linear system 

 Compare truss solution to the solution obtained by approximating the system as a 

continuum. 

 

IV.1 Locally Connected Fibrous Network of Pulmonary Alveolus Sac 

 

Alveolus (Pulmonary alveolus) plays a major role in the operation of the lung, these 

hollow cavity like structures are found at the terminal ends of the respiratory systems in 

the lungs and are responsible for the gas exchange between the air in the lungs and the 

pulmonary capillaries. The surface of the alveolus is supported by a network of collagen 

fibers that closely resemble the shape of dodecahedron. These fibers are responsible for 

the elastic action of the alveolus during exaltation of air [14]. A typical alveoli with the 

supportive elastic fibrous structure is shown below in Figure 16. 
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Figure 16: Alveoli structure, red bands show the elastic fiber support [13]. 

 

IV.1.1 Modelling an Alveolus Sac Elastic Support as a Dodecahedron 

 

A single alveolus’s (Pulmonary alveolus) elastic fiber support network was examined 

using a dodecahedron. A dodecahedron was chosen, since most lung studies modelled 

alveolus as a regular dodecahedron [23, 24]. The stress-strain data for the fibrils 

supporting the alveolar surface has been obtained from [15].The dodecahedron had a 

volume of 8.735 x10
6
 μm3 with an edge length of 104.6 μm. Strain energy from equations 

3.22 was used for modelling the non-linear response of the dodecahedron. Figure 17 shows 

the dodecahedron to be modelled. Radially expanding forces were applied from the middle 

of the dodecahedron to simulate expansion of alveolus sac.  
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Figure 17: Elastic support of alveolus modelled as a dodecahedron.  

 

 Upon application of the forces the color coded deformation is shown below in 

Figure 18.  

 

 

Figure 18: Repose of dodecahedron upon applying radially expanding forces from 

the centroid. Filaments in red experience higher strain than filaments in blue. 
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Figure 19 below shows the macroscopic strain, maximum and minimum microscopic 

strain of the dodecahedron computed for different loads applied evenly at the nodes to 

mimic the expansion of alveolus sac during inhalation of air.  

 

 

Figure 19: Macroscopic vs microscopic stress-strain of dodecahedron. 
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IV.2 Comparison between Deformation in Linear and Non-Linear Systems 

 

The non-linear response has been modelled and is shown above in Figure 18 and 19. To 

simulate the response of the dodecahedron if it was assumed to have linear system, the 

strain energy in equation 3.21 was used. If the individual fibers were assumed to have 

linear stress-strain response, the deformation predicted by the linear response simulation 

was found to be the same as non-linear response simulation in Figure 18. Figure 20 below 

shows the maximum strain experienced by individual fibers in the dodecahedron. 

 

 

Figure 20: Maximum microscopic strain for linear and non-linear responses.  
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As seen from above Figure 20, modelling a local system using a linear response 

gives the same prediction as the non-linear response up to 30%. The deformation of 

individual fibers using a linear response was found to be the same as using non-linear 

response.  

 

IV.3 Comparison between Deformation Predicted by Truss Network and 

Approximating as a Continuum 

 

To compare the results if the system was approximated as a local continuum, the average 

deformation gradient was found using equation 3.33. From the average deformation 

gradient the solution of the system modelled as a continuum is calculated using equation 

3.23. Figure 21 below shows the solution obtained by minimizing the strain energy (blue 

line) and the solution if approximated as a local continuum (red line).  

 

 

Figure 21: Shape of dodecahedron deformed by minimizing the strain energy (blue 

line) and approximating as a local continuum (red line). 
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 For a local system, it was found that there were no significant differences between 

results obtained if linear response of fibers was used instead of non-linear response for up 

to 30% strain, as shown in Figure 20. Also, approximating the local system as a continuum 

exhibited no significant differences from if the system was instead modelled as a network 

of trusses, as shown in Figure 21. Hence, for a local system, modelling it as a simple local 

continuum with linear response fibers would have sufficed.  
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CHAPTER V  

DEFORMATION OF A NON- LOCAL SYSTEM 

 

 In this chapter, a non-locally connected system (where the nodes can be connected 

to nodes far away from originating node) will be simulated and the following comparisons 

will be made in the results obtained 

 Comparison between deformation mode in linear and non-linear system 

 Compare truss solution to the solution obtained by approximating the system as a 

continuum. 

The inhomogeneous, isotropic and non-local random fibrous network developed in Figure 

12(b) is used in this chapter. 

 

V.1 Comparison between Deformation in Linear and Non-Linear System Reponses 

 

The random fibrous network was modelled similar to chapter IV. The non-linear response 

was simulated using the strain energy presented in 3.22. The linear response was simulated 

using quadratic strain energy presented in 3.21. The random fibrous network was 

deformed by applying uniaxial tensile forces at the edges of the fiber mesh. Figure 22 

below shows the percentage of fibers in the random fibrous network failing given a tensile 

load for linear and non-linear response. Failure is determined when the strain in the 

individual fiber exceeds 30%. 
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Figure 22: Percentage of fibers failing (strain>30%) given an applied load for linear 

and non-linear response. 

 

 The failure mode is also different for the linear and non-linear response. This is 

shown below in Figure 23 for an applied tensile load of 7.5e-4N. Unlike the local system 

in chapter IV, even for small loads there is a significant difference in the percentage of 

fibers failing as seen in Figure 22. Also the failure modes predicted by the linear response 

and non-linear response are entirely difference as seen in Figure 23. 
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             (a)         (b) 

Figure 23: Deformation mode of linear (a) and non-linear (b) response given a tensile 

load of 7.45e-4N.  

 

V.2 Comparison between Deformation Predicted by Truss Network and 

Approximating as a Continuum 

 

To compare the results if the system was modelled as a local continuum, the average 

deformation gradient was found using equation 3.33. From the average deformation 

gradient the solution of the system modelled as a continuum is calculated using equation 

3.23. Figure 24 below shows the solution obtained by minimizing the strain energy (blue 

line) and the solution if approximated as a local continuum (red line).  
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Figure 24: Deformed shape of dodecahedron by minimizing the strain energy (blue 

line) and approximating as a local continuum (red line). 

Modelling the local system as a continuum exhibited no significant difference if 

the system was instead modelled as a network of trusses, as shown in Figure 24. To further 

quantify the difference continuum model and actual solution obtained by minimizing the 

potential energy of the truss network, a graph of actual strain vs average strain is calculated 

and is shown below in Figure 25. The average strain is calculated by using the following 

equation 5.1. 

eavg=λ
2
-1=E(F

T
F)ET-1                                 5.1 

where F is the average deformation gradient, E is the unit vector of each fiber. 
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Figure 25: Plot of average strain calculated using the deformation gradient vs 

actual strain. 

 

For a non-local system, it was found that there were significant differences 

between results obtained if linear response of fibers was used instead of non-linear, as 

shown in Figure 22. The deformation mode of non-local fibrous network was different for 

linear and non-linear response as shown in Figure 23. Also, approximating the local 

system as a continuum exhibited significant differences from if the system was instead 

modelled as a network of trusses, as shown in Figure 24. The plot of average strain 

calculated using the deformation gradient showed no correlation between average strain 

and actual strain found by minimizing the potential energy of the truss network as shown 
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in Figure 25. For a non-local system, modelling it as a simple local continuum with linear 

response fibers would not have sufficed. Hence, a non-local fibrous network has to be 

modelled as a network of trusses with non-linear response, where minimizing the total 

potential energy will provide solution to the system. 
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CHAPTER VI  

CONCLUSION 

 

 In this work, fibrous networks have been modelled as a truss system with large 

deformation. The two major objectives of this work listed below have been met: 

 Represent actual fibrous microstructure with non-local connections (if any). 

 Simulate response of random fibrous network. 

 It has been shown than the actual microstructure of the fibrous network can be 

modelled as a network of trusses with non-local connections. The random fibrous 

networks were generated from the probability distribution of cross-linked identified in the 

SEM (Scanning Electron Microscope) image of the fibrous microstructure. The nodes 

were then connected by truss elements based on the probability distribution of number of 

nodal connections as a function of distance. Various other methods for developing random 

fibrous network have also been proposed in chapter 2. 

 The simulation of non-local response of random fibrous network was 

accomplished by minimizing the total potential energy of the system. Two types of fibrous 

networks were examined:  

 Local system 

 Non-local system 

 A pulmonary alveolus sac of human lung was modelled for the case of a local 

system. In the case of local system (network were fibers are connected to the nearest 

neighbor), it was found that there were no significant differences between results obtained 
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if linear response of fibers was used instead of non-linear response for up to 30% strain, 

as shown in Figure 20. Also, approximating the local system as a continuum exhibited no 

significant differences from if the system was instead modelled as a network of trusses, as 

shown in Figure 21. Hence, for a local system, modelling it as a simple local continuum 

with linear response fibers would have sufficed.  

A non-local system of type 1 collagen fiber was generated using methods presented 

in chapter 2. For a non-local system, it was found that there were significant differences 

between results obtained if linear response of fibers was used instead of non-linear, as 

shown in Figure 22. The deformation mode of non-local fibrous network was different for 

linear and non-linear response as shown in Figure 23. Also, approximating the non-local 

system as a continuum exhibited significant differences from if the system was instead 

modelled as a network of trusses, as shown in Figure 24. The plot of average strain 

calculated using the deformation gradient showed no correlation between average strain 

and actual strain found by minimizing the potential energy of the truss network as shown 

in Figure 25. For a non-local system, modelling it as a simple local continuum with linear 

response fibers would not have sufficed. Hence, a non-local fibrous network has to be 

modelled as a network of trusses with non-linear response, where minimizing the total 

potential energy will provide solution to the system. 
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APPENDIX A 

 

 In this appendix, the following supplementary material regarding generation of 

fibers network will be given.  

 Algorithm for random node generation from a given set of nodes. 

 Algorithm for generating random fibrous network. 

 

A.1 Algorithm for Generating Random Nodes 

 

The input to the program is the nodal coordinate of the nodes identified in the image.  The 

following steps are taken by the program in generating the inhomogeneous random nodes. 

1. Obtain nodal data from N. 

2. Split the nodal data N into x and y coordinates array. 

3. Use the ‘fitdist’ function in MATLAB to fit the given data to a probability 

distribution. MATLAB has various probability distribution fits to match the 

pattern of the given data. For example, normal fit for data that looks like a normal 

distribution, kernel Epanechnikov fit for data that looks like a kernel distribution. 

It is left to the discretion of the user to decide which preset fits their data accurately. 

4. Obtain the probability distribution function using the command ‘pdf’ in 

MATLAB. 

5. Generate random nodes from the probability distribution using the command 

‘random (pdf,N1)’. Where n1 represents the array of random numbers desired. 
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6. Remove all negative numbers from the generated random number if the user wants 

only positive coordinates.  

 

A.1.2 Sample Code for Generating Random Nodes 

 

%% Nodal data of the random mesh identified from the SEM image 

nodaldata_mat=[  1.0000    0.100    0.100; %% Step 1 
    2.0000    0.0500    0.9200; 
    3.0000    0.1000    0.7500; 
    4.0000    0.1900    0.5500; 
    5.0000    0.2100    0.7500; 
    6.0000    0.2300    0.8500; 
    7.0000    0.3500    0.8200; 
    8.0000    0.3200    0.1700; 
    9.0000    0.3700    0.2300; 
   10.0000    0.4200    0.4900; 
   11.0000    0.4500    0.5500; 
   12.0000    0.6000    0.8000; 
   13.0000    0.7000    0.9500; 
   14.0000    0.9000    0.9800; 
   15.0000    0.8500    0.7000; 
   16.0000    0.8000    0.1200; 
   17.0000    0.9500    0.2200; 
   18         .75       0.0001; 
   19          .48      0.0001; 
   20          .55      1; 
   21           1       0.52; 
   22           .0001       .39; 
   23           .0001       .61; 
   24           .0001       .92; 
   25           .0001      .82; 
   26           .0001       .06; 
   27           .45     1;   
   28           .2      0.0001; 
   ] 

  
x=nodaldata_mat(:,2);  %% Step 2 
y=nodaldata_mat(:,3); 

  
plot(x,y,'o') 
 

 

figure  %% Step 3 
pdx=fitdist(x,'Kernel','Kernel','epanechnikov') 

pdy=fitdist(y,'Kernel','Kernel','epanechnikov') 
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X=pdf(pdx,x); %% Step 4 
Y=pdf(pdy,y); 

 
x2=random(pdx,[1,5000]) %% Step 5 
y2=random(pdy,[1,5000]) 

  
 

final_x=[]; 
final_y=[]; 
 for i=1:min(size(x2,2),size(y2,2)) 
    if x2(i)>0 && y2(i)>0 && x2(i)<=1 && y2(i) <=1 
    final_x(i)=x2(i); 
    final_y(i)=y2(i); 
    end 
end 
final_x(final_x==0)=[]; 
final_y(final_y==0)=[]; 
figure 
plot(final_x,final_y,'o') 

 

 

A.2 Algorithm for Generating Random Fibrous Network 

 

The input to the program is the nodal coordinate of the nodes generated from the previous 

program.  The following steps are taken by the program in generating the inhomogeneous 

random nodes. 

1.  Obtain nodal data P (n x 3 array) from program in A1. 

2. Obtain the probability distribution function as desired (if the user choose to 

generate isotropic network, then the PDF of number of nodal connections as a 

function of distance must be given). Else, the user can connect the nodes based on 

angle/distance between them. This will be shown below in section A.2.1 as the 

sample code. 

3. Generate connectivity node based on the following for loop 
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4.  Nested for loop start 

4.1. For i=node 1: end node number 

4.2. Generate random integer from [1-3] 

4.3. For j= node 1:end node number 

4.3.1. Case 1 (when random integer =1) 

If length between nodes i&j is between mean-1*standard deviation 

of probability density function (pdf) node i & j are connected. 

4.3.2. Case 2(when random integer =2) 

If length between nodes i&j is between mean+1*standard deviation 

of probability density function (pdf) node i & j are connected. 

4.3.3. Case 2(when random integer =2) 

 If length between nodes i&j is between mean-.5*standard 

deviation and .5* standard deviation of probability density function 

(pdf) node i & j are connected. 

4.4 Close the double for loop 

      5.  The output of this algorithm is the random connectivity member list 

 

A.2.1 Sample Code for Generating Anisotropic Random Network 

 

The following code shown below generate anisotropic network given the nodal data. The 

anisotropic network is generated by connected nodes within .25-.33 rad angle. 
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%% Nodal data of the random mesh identified from the SEM image 

nodaldata_mat=[     1.0000    0.7500    0.8500; 
    2.0000    0.7500    0.2200; 
    3.0000    0.7000    1.0000; 
    4.0000    0.5500    0.5500; 
    5.0000    0.9000    0.5500; 
    6.0000         0         0; 
    7.0000    0.4800    0.9500; 
    8.0000    0.3500    0.2200; 
    9.0000    0.3700    0.2200; 
   10.0000    0.2300    0.8000; 
   11.0000    0.8500    0.1200; 
   12.0000    0.1900    0.1200; 
   13.0000    0.9000    0.9800; 
   14.0000         0    0.8200; 
   15.0000    0.7500    0.9800; 
   16.0000    1.0000         0; 
   17.0000    0.9000    0.8000; 
   18.0000    0.4500         0; 
   19.0000    0.3200    0.2200; 
   20.0000         0    0.5200; 
   21.0000    0.4800    0.4900; 
   22.0000         0    0.5500; 
   23.0000    0.9500    0.8000; 
   24.0000    0.3200    0.9200; 
   25.0000    0.4500    0.1200; 
   26.0000    0.1900    0.7000; 
   27.0000    0.1000    0.5500; 
   28.0000    0.4200    0.8000; 

  

    
]                              
%% Splitting nodal matrix into x & y array  
p=[]; 
p(:,1)=[1:1:28]' 
p(:,2)=nodaldata_mat(:,2) 
p(:,3)=nodaldata_mat(:,3) 
x = p(:,2); 
y = p(:,3); 
 

%% For loop for connecting nodes based on vertical angle  

 

for i=1:size(p,1) 
    

%%Generating a random number from 1-5 to create randomness. 

  
   a=randi([1,5]) 
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 %% Nested for loop to match each node with other nodes and compare 

angles       

 for j=1:size(p,1) 
         length=sqrt( (p(i,2)-p(j,2))^2+(p(i,3)-p(j,3))^2); 
        

%%case 1   
         if a==1 

                       
             if abs((p(i,3))-(p(j,3)))<0.25 
             avglength(i1)=length 
             t2(i1,1)=i1; 
             t2(i1,2)=i; 
             t2(i1,3)=j; 
             i1=i1+1; 
             end 

   end 

%% case 2   
         if a==2 

          

             
             if abs((p(i,3))-(p(j,3)))<0.3 
             avglength(i1)=length 
             t2(i1,1)=i1; 
             t2(i1,2)=i; 
             t2(i1,3)=j; 
             i1=i1+1; 

             

             
         end 
         end 

          
 %% case 3 
         if a==3 

          

             
             if abs((p(i,3))-(p(j,3)))<0.27 
             avglength(i1)=length 
             t2(i1,1)=i1; 
             t2(i1,2)=i; 
             t2(i1,3)=j; 
             i1=i1+1; 

              
         end 
         end 

 

%% case 4 
            if a==4 
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            if length>=m+s && length<=m+2*s 
             if length>0 
             if abs((p(i,3))-(p(j,3)))<0.35 
             avglength(i1)=length 
             t2(i1,1)=i1; 
             t2(i1,2)=i; 
             t2(i1,3)=j; 
             i1=i1+1; 

              
          end 
          end 

%% case 5 
            if a==5 

          

             
             if abs((p(i,3))-(p(j,3)))<0.33 
             avglength(i1)=length 
             t2(i1,1)=i1; 
             t2(i1,2)=i; 
             t2(i1,3)=j; 
             i1=i1+1; 

              
         end 
         end 
        end 

         

         
    end 

     

  
  t5=[]; 
  t5=t2; 
  temp=[]; 
  temp(:,1)=t2(:,2); 
  temp(:,2)=t2(:,3); 

%% Sorting to prevent repetitive entries. 
temp=unique(sort(temp,2), 'rows'); 
t6=[]; 
t6=temp; 
sizt2=size(temp,1); 
t2=zeros(sizt2,3); 
t2(:,1)=[1:1:sizt2]'; 
t2(:,2)=temp(:,1); 
t2(:,3)=temp(:,2); 

  
%% Finally creating matrix showing the nodes each member is connected 

to 
memberdata_mat=t2; 
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APPENDIX B 

 

 In this appendix, the following supplementary material for assembling the strain 

energy of the truss system and solving it. 

 Algorithm for assembling the strain energy of the system and minimizing it. 

 Forces applied to the dodecahedron to deform it. 

 

B.1 Strain Energy Assembly Algorithm 

 

To formulate the strain energy of a large truss system an automated algorithm was 

generated programmed. 

Note:  They user has the option  to either supply the program with the following inputs, 

or use the existing random mesh  program algorithm shown in chapter 2 .  

Input If user choose to enter data manually:  

1. Nodal matrix (nx3 or n x 4 array for 2-D and 3-D respectively) containing node 

number and coordinate position. 

2. Connectivity matrix  (nx2 array) 

3. Force matrix (nx3 or n x 4 array for 2-D and 3-D respectively) containing force 

magnitude and direction applied at a node. 

4.  Constrained node matrix (n x 3) containing node list and nodes being 

constrained. 

Output The program gives the list of current nodal data, by minimizing the strain energy 
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Algorithm  

1. Using nodal data and member connectivity data, find the length of each member. 

The length of the each member is required to find the strain. The  length is found 

by calculating the distance between two nodes given in the connectivity matrix by 

the following matrix  in a for loop 

for i=1: size of connectivity matrix  

 𝑥𝑖 =   NodaldataMatrix(Connectivity Matrix (i,2),2); 

 𝑥𝑖+1 = NodaldataMatrix(ConnecticityMatrix(i,3),2); 

 𝑦𝑖 =   NodaldataMatrix(Connectivity Matrix (i,2),3); 

 𝑦𝑖+1 = NodaldataMatrix(ConnecticityMatrix(i,3),3); 

𝑧𝑖 =   NodaldataMatrix(Connectivity Matrix (i,2),3); 

 𝑧𝑖+1 = NodaldataMatrix(ConnecticityMatrix(i,3),3); 

 𝑙𝑒𝑛𝑔𝑡ℎ(𝑖) = 𝑠𝑞𝑟𝑡((𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)
2); 

end 

2. The values supplied by the user in the force matrix and constraint matrix are in 

terms of global nodes. Each global node 𝑅𝑖 has 3 local nodes (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)  associated 

with it in 3-D and 2 local nodes in 2-D (𝑥𝑖, 𝑦𝑖). For example, the user specifies a 

force is applied at node R1 with magnitude Mx, My and Mz in the (x,y,z) direction. 

However, the strain energy being minimized utilizes local nodes indices. The 

relationship between global nodes and local nodes in 3-D is given by the following 

equation (B.1-B.5). 
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𝑥𝑖 = 3𝑅𝑖 − 2                                                 𝐵. 1 

𝑦𝑖 = 3𝑅𝑖 − 1                                                 𝐵. 2 

𝑧𝑖 = 3𝑅𝑖                                                        𝐵. 3 

The relationship between global nodes and local nodes in 2-D is  given by the 

equations (B.4-B.5) 

𝑥𝑖 = 2𝑅𝑖 − 1                                                   𝐵. 4 

𝑦𝑖 = 2𝑅𝑖                                                           𝐵. 5 

3. The potential energy function for external forces is  calculated by the  following 

for loop 

forcefunction=[]; 

For i=1:size of ConnecticvityMatrix 

f= local node index number* global force value; 

forcefunction=forcefunction+f; 

End  

The local node index number is calculated by the relations given above. Similarly 

using the above for loop the strain energy for each member in the truss network is 

calculated (refer equations 3.17-3.20). 

 

4. The constrained nodal value is replaced in the above function with the value given 

in Nodal Matrix. Using find function in MATLAB. 
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5. The  initial value to be supplied to the minimizer is converted from a [nx3] array 

to [1xn] array using the following for loop 

For  i=1:size of Nodal Matrix 

j=1; 

int(j)=NodalMatrix(i,2); 

int(j+1)=NodalMatrix(i,3); 

int(j+2)=NodalMatrix(i,4); 

j=j+3; 

end 

6. The total potential energy is then formulated according to equation 3.20 and 

minimized using the following command in matlab 

[x_new]=fmiunc(total potential function,initial value) 

7. Plot old and new members using the line command 

 

Summary of algorithm 

1. Accept input from randommesh program presented in chapter 2, force and 

constrained node details OR in addition to force and constrained nodes, accept 

Nodal matrix and connectivity  

2. Find length of given members 

3. Convert given global nodal coordinates  to local coordinates 

4. Construct total potential energy of the system by running the for loop command 

for external force function and strain energy function of the truss. 
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5. Replace the constrained nodal indices given by the user with the value from Nodal 

Matrix. 

6. Initial value array [1 xn] is created by converting the Nodal Matrix [nx3] array 

7. New location of the nodes is found by utilizing the matlab solver fminunc. 

8. Plot Data 

 

B.1.1 Sample Code of a Dodecahedron 

 

The following myfun function assembles the strain energy 

 

function [ f ] = myfun( x,m_dat,f_mat,length ) 
  

%%%Description of Variables Used 

%% X= Objective function var, m_dat= Nodes each member is connected to 

%% f_mat=external forces applied. Length=length of each truss element 

f1=0; 

 
m=size(f_mat,1); 

 
%%%%%Assembling strain energy due to external forces %%%%% 

 
for i=1:m 
    f2=x(3*f_mat(i,1)-2)*f_mat(i,2)+x(3*f_mat(i,1)-

1)*f_mat(i,3)+x(3*f_mat(i,1))*f_mat(i,4); 
   f1=f1+f2; 
end 

  
size_plot=size(m_dat,1); 
 

%%%%%Assembling strain energy of the members %%%%% 

%Strain energy form U=(.016Xe8-.00538Xe6+6.4e-4Xe4+1.4e-5Xe2)Length 

 

  
j=1; 

  
h1=0; 
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for i=1:size_plot 
     h2=(length(j)*.016*(((x(3*m_dat(i,2)-2)-x(3*m_dat(i,3)-2))^2 

+(x(3*m_dat(i,2)-1)-x(3*m_dat(i,3)-1))^2 + (x(3*m_dat(i,2))-

x(3*m_dat(i,3)))^2 -length(j)^2)/length(j)^2)^8+length(j)*-5.385*10^-

3*(((x(3*m_dat(i,2)-2)-x(3*m_dat(i,3)-2))^2 +(x(3*m_dat(i,2)-1)-

x(3*m_dat(i,3)-1))^2 + (x(3*m_dat(i,2))-x(3*m_dat(i,3)))^2 -

length(j)^2)/length(j)^2)^6 +length(j)*6.4*10^-4*(((x(3*m_dat(i,2)-2)-

x(3*m_dat(i,3)-2))^2 +(x(3*m_dat(i,2)-1)-x(3*m_dat(i,3)-1))^2 + 

(x(3*m_dat(i,2))-x(3*m_dat(i,3)))^2 -length(j)^2)/length(j)^2)^4 + 

length(j)*1.4*10^-5*(((x(3*m_dat(i,2)-2)-x(3*m_dat(i,3)-2))^2 

+(x(3*m_dat(i,2)-1)-x(3*m_dat(i,3)-1))^2 + (x(3*m_dat(i,2))-

x(3*m_dat(i,3)))^2 -length(j)^2)/length(j)^2)^2); 
j=j+1; 
h1=h1+h2 ; 
end 

  

  
f= -f1+h1;  

  
end 

  

 

The following script calls the assembly function and minimizes the strain energy. 

%%Data Entry 
%% Supply Location of nodes, forces applied, member connected to which 

%%nodeand constrained node. 

 
nodaldata_mat=p1;  
memberdata_mat=t1; 
n=size(memberdata_mat,1); 
p=nodaldata_mat; 
removaldata_mat=[]; 

  

  

   
%%%%%%%%%%%%Start Simulation for new nodes%%%%%%%%%%%%%%%%%%%%%%%% 
%memberdata_mat=t1 

 

%%Forces being applied to dodecahedron 

 
fx= 2*10^-2; 
f_mat=[1 -fx 0 0; 2 -fx 0 0; 20 fx 0 0; 19 fx 0 0; 12 0 fx 0; 11 0 fx 0 

; 10 0 -fx 0; 9 0 -fx 0; 13 0 0 -fx; 7 0 0 -fx; 14 0 0 fx; 8 0 0 fx; 
       3 -.5*fx -.5*fx -.5*fx; 
       5 -.5*fx .5*fx -.5*fx; 
       15 .5*fx -.5*fx -.5*fx;  
       17 .5*fx .5*fx -.5*fx; 
       4 -.5*fx -.5*fx .5*fx; 
       6 -.5*fx .5*fx .5*fx; 
       16 .5*fx -.5*fx .5*fx; 
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       18 .5*fx .5*fx .5*fx]; 
j=1; 
n=size(memberdata_mat,1); 

 

 

%% ploting dodecahedron to show to the user. 
x_plot=[]; 
y_plot=[]; 
z_plot=[]; 
length=[]; 
m=size(f_mat,1); 

  

  
for i=1:1:n 

     
    x_a=nodaldata_mat(memberdata_mat(i,2),2); 
    x_b=nodaldata_mat(memberdata_mat(i,3),2); 
    y_a=nodaldata_mat(memberdata_mat(i,2),3); 
    y_b=nodaldata_mat(memberdata_mat(i,3),3); 
    z_a=nodaldata_mat(memberdata_mat(i,2),4); 
    z_b=nodaldata_mat(memberdata_mat(i,3),4); 

     
    x_plot(j)=nodaldata_mat(memberdata_mat(i,2),2); 
    x_plot(j+1)=nodaldata_mat(memberdata_mat(i,3),2); 
    y_plot(j)=nodaldata_mat(memberdata_mat(i,2),3); 
    y_plot(j+1)=nodaldata_mat(memberdata_mat(i,3),3); 
    z_plot(j)=nodaldata_mat(memberdata_mat(i,2),4); 
    z_plot(j+1)=nodaldata_mat(memberdata_mat(i,3),4); 
    j=j+2; 

     
    length(i)=sqrt( (x_a-x_b)^2+(y_a-y_b)^2 + (z_a-z_b)^2); 

     
end 
 

%% Formulating the initial conditions  
int=[]; 
n=size(nodaldata_mat,1) 
j=1; 

  
for i=1:n 

  
    int(j)=nodaldata_mat(i,2); 
    int(j+1)=nodaldata_mat(i,3); 
    int(j+2)=nodaldata_mat(i,4); 
    j=j+3; 
end 
m_dat=memberdata_mat 

 

%%Calling the myfun function defined above & minimizing 

  
f=@(x)myfun( x,m_dat,f_mat,length) 
[x0,fval] = fminunc(f,int); 



 

63 

 

  
 n=size(nodaldata_mat,1); 
 new_nod=zeros(n,4); 

 

%% Using the values obtained to construct a new nodal matrix 

%%containing the node value and the coordinates associated with it 

  
 for i=1:n 
        new_nod(i,1)=i; 
     new_nod(i,2)=x0(3*i-2); 
     new_nod(i,3)=x0(3*i-1); 
     new_nod(i,4)=x0(3*i); 
 end  

 

 




