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ABSTRACT 

  

We hypothesized that abomasal infusion of glucose, which would provide more 

glucose for absorption from the small intestine, would promote intramuscular (IM) 

adipose tissue development to a greater extent than ruminal infusion of acetate, 

propionate, or glucose. At 22 months of age, Angus crossbred steers (n = 24) were fitted 

with ruminal cannulas and adapted to a standard, corn/sorghum finishing diet over a 2-

week period.  Subsequently, the steers were infused with isocaloric amounts (3.76 

Mcal/d) of glucose, propionate, or acetate. Glucose was infused either into the rumen or 

into the abomasum, whereas propionate and acetate were infused into the rumen.  

Abomasal and ruminal infusion of glucose resulted in greater dry matter, organic 

matter, digestible energy, and gross energy intake than ruminal acetate infusion (P = 

0.02). Infusate had no effect on quality grade or marbling score (P= 0.18), though 

acetate-infused steers had numerically greater marbling scores. The rate of glucose 

incorporation into fatty acids was greater in IM adipose tissue of acetate and propionate-

infused steers than in abomasal or ruminal glucose-infused steers (P ≤ 0.02).    

Steaks from the acetate, abomasal glucose-infused, and ruminal glucose-infused 

steers were higher in the flavor attributes brown/roasted, fat-like, and overall sweet, and 

lower in bitter basic taste, than steaks from the propionate-infused steers.  

In a separate experiment, primals were taken from 4 USDA Select carcasses. 

Lean and fat trims were separated, and ground beef was formulated from each primal to 

contain 10, 20, or 30% total fat. Brisket patties contained higher proportions of 
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monounsaturated fatty acids and less saturated fatty acids than flank patties. There were 

no differences in n−6 or n−3 fatty acids across primal type or fat level. After cooking, 

brisket patties had higher bloody/serumy and fat-like flavor aromatics than flank patties. 

Plate patties generated higher amounts of lipid-derived volatiles than patties from the 

brisket or flank.  

In summary, abomasal infusion of glucose did not promote higher marbling 

scores, whereas propionate infusion promoted the greatest rates of fatty acid synthesis 

from glucose in IM adipose tissue. Additionally, individual primals can be used to 

formulate ground beef with unique compositional and flavor characteristics. 
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 CHAPTER I  

INTRODUCTION 

 

Information pertaining to nutritional concepts and differences in biochemistry 

and metabolism among ruminants has successfully been used to address various health 

problems in humans such as obesity, atherosclerosis and diabetes (Palmquist et al., 2005; 

Khor et al., 2008). Ground beef available in retail outlets is relatively high in saturated 

fatty acids (SFA) and low in monounsaturated fatty acids (MUFA). Commercial ground 

beef in the U.S. contains fat with a MUFA:SFA ratio of 0.85–0.90, whereas ground beef 

from cattle fed high-grain diets has a MUFA:SFA greater than 1.10, and ground beef 

from grass-fed cattle has a MUFA:SFA ratio less than 0.75 (Gilmore et al., 2011; Turk 

and Smith, 2009). 

We have demonstrated that fatty acid composition of ground beef can affect the 

concentration of high-density lipoprotein (HDL) cholesterol in men (Adams et al., 2010; 

Gilmore al., 2011) and women (Gilmore et al., 2013). Ground beef from grass-fed steers 

that was high in SFA and trans-fatty acids decreased HDL cholesterol in mildly 

hypercholesterolemic men, whereas ground beef from grain-fed cattle, naturally enriched 

with oleic acid (18:1n-9), returned HDL cholesterol concentrations to pre-intervention 

levels. Ground beef from grass-fed steers had no effect on HDL cholesterol 

concentrations in normocholesterolemic men, whereas high-oleic acid ground beef from 

grain-fed cattle increased HDL cholesterol (Gilmore et al., 2011), although ground beef 

from the grass-fed cattle contained three times as much α-linolenic acid (18:3n-3; ALA) 
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as ground beef from grain-fed cattle (90 vs 30 mg per patty). Our most recent study 

(Gilmore et al., 2013) provided further support for increasing MUFA in ground beef; 

ground beef from Akaushi cattle (MUFA:SFA ratio = 1.43) increased HDL cholesterol 

concentrations in postmenopausal women, while there was no effect of chub pack 

ground beef (MUFA:SFA ratio = 0.86) on HDL cholesterol. These studies demonstrated 

that practical increases in MUFA in ground beef have positive effects on risk factors for 

cardiovascular disease, and are consistent with previous research that demonstrated the 

health benefits of replacing SFA with MUFA in the diet (e.g., Allman-Farinelli et al., 

2005). 

In many species, the concentration of oleic acid in adipose tissue reflects the 

relative proportion of oleic acid in the diet (Go et al., 2012) but in ruminants, dietary 

oleic acid is hydrogenated to stearic acid by (18:0) ruminal microorganisms before 

reaching the small intestine (Ekeren et al., 1992). Any accumulation of oleic acid in 

tissues of ruminants is dependent on stearoyl-CoA desaturase (SCD) catalytic activity. 

Smith et al (1990) demonstrated that in cattle 12 mo of age, the concentration of stearic 

acid was lower, and oleic acid was concomitantly higher, in marbling adipose tissue of 

steers fed a corn-based diet for 4 mo than in steers that had grazed native pasture for 4 

mo. Stearoyl-CoA desaturase gene expression was virtually undetectable in adipose 

tissue of both weaned calves and in pasture-fed steers, but was highly expressed in 

adipose tissue of corn-fed steers, so differences in SCD activity between corn-fed and 

pasture-fed steers certainly contributed to differences in beef fatty acid composition.    
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Though health concerns are important to consumers, they also want a product 

that is highly palatable. The concentration of oleic acid in beef is positively correlated 

with overall palatability (Waldman et al., 1968; Westerling and Hedrick, 1979). Baublits 

et al. (2009) reported that the concentration of MUFA (and specifically oleic acid) in 

beef was positively correlated with beef/brothy and beef fat flavors, indicating that as the 

concentration of oleic acid increases, so do beefy flavors. Therefore, increasing the 

MUFA:SFA ratio would increase the palatability as well as the healthfulness of beef and 

beef products. In cattle, it has not been practical to increase oleic acid in beef by feeding 

high-oleic oil or oil seeds (Chang, Lunt, and Smith, 1992; St. John et al., 1987), although 

fatty acid composition varies considerably across carcass fat depots and changes with 

animal age (Smith et al., 2012; Turk and Smith, 2009). 

In the U.S., Australia, and many Asian countries, beef with higher degrees of 

intramuscular (IM) adipose tissue, the apparent portion also referred to as marbling, is 

associated with overall consumer acceptance. This is related to juiciness, flavor, 

tenderness and overall palatability of beef. Adipose tissue in beef cattle has historically 

been of scientific interest for the reason that beef carcass value is influenced by quantity 

and distribution of adipose tissue. Segments of the beef cattle industry are seeking 

effective and efficient methods to grow cattle to market weights that can increase 

economic returns by maximizing marbling scores and limit discounts due to increased 

carcass yield grade caused by excessive subcutaneous (SC) adipose tissue. Different 

management strategies have been proposed aiming to increase deposition of IM adipose 
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tissue without increasing SC adipose tissue and negatively affecting meat quality (Smith 

et al., 1984; Fluhartry et al., 2000).   

An essential part of ruminant diets are carbohydrates, which provide energy for 

both rumen microorganisms and the animal. The primary carbohydrate sources in 

ruminants are fibrous feeds and grains rich in starch. Digested carbohydrates are 

fermented in the rumen to volatile fatty acids (VFA). These VFA serve as the main 

precursors for fatty acid and/or glucose biosynthesis in ruminants. Early research from 

our laboratory demonstrated that high concentrate diets nearly doubled glucose 

incorporation into fatty acids in SC adipose tissue as measured in vitro, but had no effect 

on acetate incorporation into fatty acids in IM adipose tissue (Smith and Crouse, 1984).  

Intramuscular adipose tissue uses glucose for a greater proportion of the carbon source 

for de novo fatty acid biosynthesis than SC adipose tissue (Smith and Crouse, 1984; 

Rhoades et al., 2007, 2009).  However, it has been difficult to assess the actual effects of 

glucose on fat accumulation in growing beef cattle.   

We hypothesized that glucose infusion into the abomasum would increase 

carcass adiposity and beef juiciness, relative to ruminal infusions of acetate, propionate, 

or glucose.  Total IM lipid and fatty acid composition of IM and SC adipose tissues were 

measured to confirm results for carcass marbling scores, as increased marbling is 

associated with a higher concentration of MUFA in SC and IM adipose tissues (Brooks 

et al., 2011b).  Moreover, we also hypothesized that unique ground beef products could 

be formulated from brisket, flank, and plate primals. 
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Therefore, the objectives of these research projects were to demonstrate that 

supplemental glucose in the abomasum increases beef quality and juiciness by: 

-Increasing the delivery of glucose to the circulation to establish the relationship 

between supplemental glucose, marbling scores, fatty acid composition, and 

juiciness of beef; 

-Infusing a gluconeogenic precursor (propionate) into the rumen to establish the 

relationship between supplemental propionate, marbling scores, fatty acid 

composition, and juiciness of beef; 

-Infusing ruminal acetate to establish the relationship between supplemental 

acetate, marbling scores, fatty acid composition, and juiciness of beef; 

-Using 50/50 lean/fat trimmings taken from beef brisket, flank and plate primals 

to alter the fatty acid composition, flavor profile, and sensory characteristics of 

ground beef with three levels of fat (10, 20, or 30%). 



 

6 

CHAPTER II  

LITERATURE REVIEW 

 

Carbohydrate Metabolism in the Rumen  

The rumen is highly adapted to digest roughages and feeding highly digestible 

carbohydrate sources allow better energy consumption for cattle. The primary 

carbohydrate sources in ruminants are fibrous feeds containing cellulose and 

hemicellulose and grains rich in starch comprised of amylose and amylopectin.  

However, in ruminants limitations are placed on their capacity to digest and absorb 

carbohydrates. Grains contain about 57 to 77% of digestible dry matter; of these wheat 

has the highest starch content (77%), subsequent is corn and sorghum (72%), followed 

by barley and oats (57-58%) (Huntington, 1997). Ruminants digest 77% of starch and 

cellulose intake, fermented in the reticulorumen, which contains a range of microbial 

species and each species digests and metabolizes specific carbohydrates and produces 

specific end products (Huntington, 1997). The chemical structure of the starch and 

protein moieties within the kernel affect the extent of ruminal fermentation patterns and 

rate since the outer layers of grains are impermeable to bacterial degradation (Rooney 

and Pflugfelder, 1986; McAllister et al., 1994).  

The major VFA produced by rumen microorganisms are acetate, propionate, and 

butyrate, and ruminal microorganisms also produce NH3, CO, and CH4. These VFA are 

the products of ruminal fermentation, and serve as the main precursors of fatty acid 

and/or glucose biosynthesis in ruminants.  Only 5 to 20% of consumed dietary 
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carbohydrates are digested in the small intestines and feeding large amounts, especially 

highly processed grains, leads to increased amounts of starch escaping ruminal 

fermentation (Hurtaud et al., 1998; Knowlton et al., 1998; Meyer et al., 1965; Owens, 

1998; Slyter, 1976). The site, extent, and kinetics of digestion of carbohydrates highly 

impact the amount and profile of nutrients delivered to peripheral tissues.  

Microbes in the Rumen 

Functionally, the rumen provides an excellence anaerobic environment, constant 

temperature, and pH for sustainability of microorganisms. Ruminal microbes include 

bacteria (most significant for starch digestion), protozoa, and fungi (which aids in 

bacterial attachment) (Huntington, 1997; McAllister et al., 1994). The fermentation 

processes involve transfer of molecular H and generate metabolic energy in the form of 

adenosine triphosphate (ATP) that subsequently is utilized by microorganisms for their 

maintenance and growth. The VFA composition, and the subsequent loss of C in gasses, 

are mainly determined by the composition of the microbial population. The development 

of fibrolytic microorganisms causes high levels of acetate, whereas the development of 

amylolytic microorganisms results in an increase in the proportion of propionate, 

allowing increased utilization of excess reducing power.  Ruminal microorganisms 

ferment all carbohydrates and soluble carbohydrates are digested 100 times faster the 

storage carbohydrates (cereal grains), which are digested five times faster than structural 

carbohydrates (cellulose and hemicellulose) (Moren, 2005). However, only a few species 

of bacteria and fungi can produce amylases, cellulases, and hemicellulases, which 
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hydrolyze carbohydrates to monosaccharides. The diet of ruminants dictates the total and 

relative amount of each microorganism within the rumen.  

Starch enters the rumen and microbial organisms attach to the outer surface of 

the starch molecule. After attachment, bacteria secrete amylases and additional digestive 

enzymes to hydrolyze the starch. Simultaneous with hydrolysis of the starch molecule, 

glucose molecules freed are absorbed by the bacterial cells and fermented to VFA. High 

starch diets are characterized by relatively higher propionate production and higher fiber 

diets are characterized by relatively higher acetate production (Bergman, 1990).  

VFA are absorbed across the rumen wall or in the small intestine and are 

metabolized by the host as a major source of energy, and the proportions in which they 

are produced determine fat and protein synthesis in tissues. Ruminants depend on VFA 

for up to 80% of their maintenance energy requirements (Bergman, 1990). Cecum VFA 

provide, on average, 8.6% of metabolizable energy intake in ruminants (Siciliano-Jones 

and Murphy, 1989). Thus, the total and relative amounts of the VFA indicate dietary 

carbohydrates and subsequent rumen fermentation patterns.  

Substrates for Fatty Acid Biosynthesis  

VFA are absorbed across the ruminal wall rapidly and transferred to the liver via 

the blood stream. About 90% of butyrate is metabolized by the ruminal epithelium and 

converted to ketone bodies or CO2. The remaining butyrate and most of the acetate and 

propionate are transported to the liver (Bergman, 1990). Almost all of the propionate and 

butyrate are removed by the liver and insignificant amounts appear in peripheral 

circulation. Therefore, acetate comprises more than 95% of the VFA present in the 
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peripheral circulation. Most of the propionate taken up from the portal blood by the liver 

is used to synthesize glucose. In addition to their involvement as the major source of 

energy, all animals can utilize glucose and acetate to some extent and lactate very 

effectively as substrates for lipid biosynthesis (Smith and Crouse, 1984). In ruminants, 

propionate is the major substrate of hepatic gluconeogenesis (Herdt, 1988). However, 

feeding ruminants high starch diets also increases direct glucose absorption from the gut 

(Huntington, 1997). Thus, effective absorption of VFA from the abomasum and large 

intestine is essential for ruminants. Altogether, acetate, propionate, and butyrate play 

important roles as substrates for glucose and lipid metabolism. 

Adipose Tissue Growth and Development 

Adipocytes are derived from multi-potential stem cells, which form adipoblasts. 

Adipoblasts differentiate further to preadipocytes, which subsequently differentiate into 

lipid-filled adipocytes. Hence, preadipocyte division increases the number of adipose 

cells. Adipose tissue mass can expand by formation of new adipocytes from precursor 

cells and cell enlargement through lipid filling. Adipocytes are found primarily in four 

major depots: IM adipose tissue, SC adipose tissue, visceral adipose tissue, and 

intermuscular (seam) adipose tissue. 

Intramuscular adipose tissue results from accumulation of triacylglycerols (TAG) 

primarily located within adipocytes associated with the perimysium which surrounds 

bundles of muscle fibers in muscle tissue (Pethick et al., 2004). Intramuscular adipose 

tissue also is referred to as marbling, and is used as an indicator of beef quality.  The 

amount and distribution of marbling in the longissimus dorsi cross section is an 
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important determinant of quality grade (USDA, 1997). Marbling contributes to 

tenderness, juiciness, flavor, and overall palatability of beef, and consumers are willing 

to pay a premium for additional marbling (Feuz et al., 2004). Thus, higher IM adipose 

tissue deposition increases market value of beef. 

Subcutaneous adipose tissue is located under the skin. Yield grade is determined 

by SC adipose tissue measured at the 12th rib (Owens and Gardner, 2000), which 

provides an estimate of total carcass SC adipose tissue. Excess SC adipose tissue is 

usually trimmed, which consequently reduces profit margin. Production efficiencies 

ultimately are reduced due to feed consumed to synthesize SC adipose tissue. Further, 

the increase in health-concious consumers leads to high demand for lean beef (Vernon, 

1980). 

Subcutaneous adipocyte proliferation is complete around 8 mo of age in cattle, 

and further increases in adipose tissue mass occur by cell enlargement (Hood and Allen, 

1975). In comparison to the IM adipose tissue, SC adipose tissue as a proportion of 

mature composition was approximately 60% at 11 to 19 mo age steers. Cianzio et al. 

(1985) reported that SC adipocyte diameter increased after 13 mo of age, whereas IM 

adipocyte diameter increased after 15 mo of age. 

Lipogenesis 

Lipogenesis is the process by which simple sugars such as glucose are converted 

to fatty acids, which are subsequently esterified with glycerol to form the TAG that are 

packaged in VLDL and secreted from the liver or stored as lipid droplets in tissues such 

as adipose tissue.  Opposite to fatty acid β- oxidation, which occurs within the 
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mitochondria, de novo synthesis of fatty acids takes place within the cytosol. Exogenous 

fatty acids are also supplied by the diet.  

Acetate is converted to acetyl-CoA, which is the precursor of fatty acid synthesis, 

catalyzed by acetyl-CoA synthetase in the cytoplasm. Acetyl-CoA is converted to 

malonyl-CoA by acetyl-CoA carboxylase, which is the first committed step to fatty acid 

biosynthesis. Fatty acid synthase then catalyzes seven different reactions within the fatty 

acid synthase enzyme complex, whereby two carbon units from malonyl-CoA are 

condensed, ultimately to form palmitic acid.  

Glucose enters fatty acid synthesis via glycolysis, which produces pyruvate that 

is further transformed into acetyl-CoA within the mitochondria. Since the cell wall is 

impermeable to acetyl-CoA, two-carbon units have to be transported out of the 

mitochondria into the cytosol as citrate via a tricarboxylate translocase (citrate shuttle). 

In the cytosol, citrate is cleaved to oxaloacetate and acetyl-CoA. This reaction is 

catalyzed by ATP-citrate lyase (ATP-CL) and requires the hydrolysis of one ATP 

molecule.  

Glucose is required for the generation of reducing equivalents (NADPH) in 

ruminants via the pentose phosphate pathway.  The NADPH necessary for fatty acid 

synthesis produced by NADP-malate dehydrogenase, glucose 6-phosphate 

dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-dependent isocitrate 

dehydrogenase (Smith, 1983). Liver and adipose tissue can convert glucose into 

glycerol-3-phosphate (G3P) catalyzed by glycerol-3-phosphate dehydrogenase, which 

reduces dihydroxyacetone-phosphate from the glycolytic pathway. Glycerol-3-phosphate 
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combines with fatty acyl-CoA from fatty acid synthesis to yield 1-lysophosphotidic acid; 

two additional fatty acyl-CoA are used to generate a triacylglycerol. 

High carbohydrate diets induce lipogenesis through direct and indirect liver 

nutrient-sensing mechanisms (Flowers and Ntambi, 2009). Glucose is transported to the 

bloodstream from the small intestine, pancreatic β-cells sense the glucose which results 

increase in insulin secretion. Liver sensing of glucose in conjunction with increased 

hepatic insulin signaling promotes the activation of various receptors and enzymes 

including stearoyl-CoA desaturase (SCD), acetyl-CoA carboxylase, and fatty acid 

synthase (Flowers and Ntambi, 2009).  

Substrate Utilization by Adipose Tissues  

Acetate is the major substrate utilized as a precursor for fatty acid biosynthesis, 

with a smaller contribution from glucose for some of the NADPH and all of the G-3-P in 

ruminant adipose (Smith and Crouse, 1984).  Smith (1983) demonstrated that glucose is 

required as a precursor for G3P and a source of NADPH required for fatty acid synthesis 

in ruminant SC adipose tissue. Data from Smith (1983) indicated that without other 

exogenous substrates in the media, 12% of total glucose was metabolized in the pentose 

cycle, which increased to 22 - 37% when acetate and lactate were included in the media. 

With glucose in the media, 30% of NADPH was derived from the pentose cycle, and this 

increased to 72% when acetate and lactate were added to the media. The presence of 

glucose in the media stimulated acetate incorporation into fatty acids by 90% in SC 

adipose tissue slices (Smith, 1983). 
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Yang and Baldwin (1973) reported that glucose is an important stimulant of the 

incorporation of acetate into fatty acids in ruminant adipose tissues. When SC adipose 

tissue was incubated with acetate, the incorporation of acetate into fatty acids was 

increased by the presence of glucose and lactate in the media (Smith et al., 1984). Also, 

incubation of SC adipose tissue with glucose increased the glycolytic intermediates 

glucose-6-phosphate and fructose-6-phosphate, indicating that 6-phosphofructokinase 

limits the conversion of glucose to fatty acids in bovine adipose tissue (Smith, 1983)  

Smith and Crouse (1984) observed that acetate and glucose utilization by IM and 

SC adipose tissues was different. Intramuscular adipose tissue prefers glucose as a 

substrate for fatty acid synthesis, whereas SC adipose tissue prefers acetate. Acetate 

contributed 70 to 80% of acetyl units for in vitro lipogenesis in SC adipose tissue, 

whereas it contributed only 10 to 25% of the acetyl units in IM adipose tissue. On the 

other hand, glucose provided 50 to 75% of acetyl units for in vitro lipogenesis in the IM 

adipose tissue, but only 1 to 10% in SC adipose tissue. The observed ratio for fatty acid 

synthesis from acetate:glucose was 0.28 in IM adipose tissue but 32.95 in SC adipose 

tissue (Smith and Crouse, 1984). Therefore, this early research suggested that de novo 

fatty acid synthesis in IM and SC adipose tissue is controlled by different regulatory 

mechanisms. Song et al. (2001) also examined lipogenic substrate utilization in different 

adipose tissues in vitro from Hanwoo steers. The ratio of acetate:glucose use for 

lipogenesis in for SC adipose tissue vs IM adipose tissue averaged 1.25 and 1.27 

respectively. Ratios for incorporation of acetate and glucose into adipose tissue of 

Hanwoo steers were also studied by Lee et al. (2000), who reported acetate:glucose 
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incorporation ratios for SC adipose tissue and IM adipose tissue of 1.61 and 1.23, 

respectively. 

Fatty Acids 

Neural lipids (TAG) are the most abundant lipids in the body (Mottram, 1998). 

Their purpose is to act as sources of energy for the cell, contribute to cell membrane 

structure and function, or be involved in metabolic activity (Spector and Yorek, 1985). 

In animal adipose tissue, the SFA palmitic acid (16:0) and stearic acid are present in 

higher levels; lauric acid (12:0), myristic acid (14:0), or arachidonic acid (20:4n-6), are 

only present in small quantities (Wood et al., 2004). Palmitoleic (16:1n-7), oleic acid, 

linoleic acid (18:2n-6) and ALA are the predominant unsaturated fatty acids, with oleic 

acid being the most abundant fatty acid in the animal body (Wood et al., 2004). 

Since lipids are organic compounds comprised of hydrogen, carbon, nitrogen, 

oxygen, and phosphorus, they are soluble in organic solvents such as dichloromethane, 

chloroform, hexane, and diethyl ether. Lipids are insoluble in aqueous solutions. When 

extracting lipids, the type of solution used depicts what portion of the lipid will be 

extracted. Phospholipids are extracted using chloroform-methanol (polar) and TAG are 

extracted using hexane. Fatty acid methyl esters (FAME) are generated by the method 

developed by Morrison and Smith (1964). To prepare FAME, fatty acids are first 

hydrolyzed from TAG, phospholipids, or any other lipid compound during methylation, 

to form free fatty acids. Once the free fatty acids are acetylated to a methane group, a 

FAME is created. The FAME are separated using gas chromatography. Lipids are then 

categorized by the number of carbons, and by the presence or absence of double bonds. 
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Beef Flavor 

Beef flavor is not a single attribute, but rather multiple attributes and is, as a 

result, complex topic. Flavor research to understand what chemical compounds comprise 

positive and negative beef flavors is an ongoing process. Miller and Kerth (2012) 

identified positive and negative beef flavors from the beef lexicon (Adhikari et al., 

2011). The positive beef flavors identified in the beef lexicon are beefy, brown/roasted, 

bloody/serumy, fat-like, sweet, salty, and umami (Miller and Kerth, 2012). Attributes 

that are generally considered negative are metallic, liver-like, sour, barnyard, musty-

earthy/humus and bitter. Beefy, browned/roasted, bloody/serumy, sweet, salty and 

umami are associated with the lean portion of beef; fat like, liver-like, metallic and bitter 

are associated with the lipid portion (Miller and Kerth, 2012). Proteins, lipids, and 

carbohydrates play primary roles in flavor development, because they include numerous 

compounds that are capable of developing into important flavor precursors when heated 

(Mortem, 1998). 

Mottram (1998) divided flavor precursors into two major categories: water-

soluble components and lipids. Lipids and the volatiles produced during cooking greatly 

contribute to the odor and flavor of beef (Wood et al., 2004; Calkins and Hodgen, 2007). 

Adipose tissue acts as a solvent and traps the aromas that can be released during heating, 

therefore enhancing the intensity of the flavors present (Wasserman and Spinelli, 1972). 

Lipid-derived flavors have a higher odor threshold in comparison to water-soluble 

components (Shaidi, 1994). This makes lipid volatiles major precursors to the 

development of beef flavor (Mottram, 1998). 
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The interactions of the water- and lipid-soluble components interact to form 

lipid-derived aldehydes that play a vital role in the Maillard reaction and ultimately the 

overall aroma profiles of cooked meat. The Maillard reaction is a form of non-enzymatic 

browning that results from a chemical reaction between an amino acid and a reducing 

sugar, usually requiring heat. This reaction produces multiple hetercyclic compounds 

with long chain alkyl substituents, such as pyrazines, thiophenes, thiazoles, and 

thialzolines (Shahidi, 1994). 

In addition, water-soluble compounds from live animal feed ingredients 

deposited in lipid influence the fatty acid composition and contribute to beef flavor. 

Baublits et al. (2009) showed a positive correlation between the positive sensory 

characteristics, beefy/brothy and beef fat, and fatty acids palmitic, palmitoleic and eladic 

acid (18:1trans-9), and a negative correlation with pentadecanoic acid (15:0), ALA, 

arachidonic acid, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid 

(DHA; 22:6n-3). Baublits et al. (2009) concluded that positive beef flavor attributes 

were enhanced by increased percentages of SFA and MUFA, while polyunsaturated fatty 

acids (PUFA) had a greater effect on the perceived negative aspects of beef flavor. 

Benefits to Carcass Quality 

Feeding grain-based diets for extended periods effectively increases oleic acid in 

beef (Huerta-Leidenz et al., 1996; Chung et al., 2006; Brooks et al., 2011b; Smith et al., 

2012).  Grain feeding increases oleic acid production by promoting increased glucose 

absorption from the small intestine (Huntington et al., 2006; Corrigan et al., 2009) and 

thereby stimulating SCD gene expression and catalytic activity.  Thus, any production 
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method that increases marbling deposition also increases the concentration of oleic acid 

in beef (Chung et al., 2006; Brooks et al., 2011b). 

Prior and Scott (1980) infused glucose, propionate, acetate, and lactate into the 

veins of beef cattle and demonstrated that only glucose promoted fatty acid synthesis in 

SC adipose tissue.  Lemosquet et al. (2009) infused glucose into the abomasum and 

propionate into the rumen of dairy cows and documented that the whole body rate of 

glucose appearance was 24% greater in glucose-infused dairy cows.  Thus, even though 

propionate is the primary gluconeogenic precursor in ruminants (Huntington et al., 

2006), it is not as effective as glucose in increasing blood glucose and thereby promoting 

adipogenic gene expression in SC adipose tissue.  Moreover, to date no one has 

documented the effects of supplemental glucose, infused into the circulatory system or 

into the abomasum, on marbling scores or juiciness. 

Early research documented that a concentrate diet containing 78% ground corn 

strongly promoted carcass adiposity and ATP-CL and NADP-malate dehydrogenase 

(NADP-MD) activities in SC adipose tissue, relative to an alfalfa hay-based diet (Smith 

et al., 1984).  The activities of ATP-CL and NADP-MD are essential for the 

incorporation of glucose carbon into fatty acids (Smith et al., 1981).  Smith and Crouse 

(1984) demonstrated that a high concentrate diet nearly doubled glucose incorporation 

into fatty acids in IM adipose tissue, but had no effect on acetate incorporation into fatty 

acids in IM adipose tissue. More importantly, IM adipose tissue uses glucose as the 

primary carbon source for de novo fatty acid biosynthesis, whereas SC adipose tissue 

uses acetate as its carbon source for fatty acid synthesis (Smith and Crouse, 1984).  
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Although subsequent in vitro studies have confirmed these results (e.g., Rhoades et al., 

2007, 2009), it has been difficult to firmly establish the importance of glucose for 

marbling development in the live animal.  Consequently, understanding carbohydrate 

digestion, absorption, dietary glucose availability, and the involvement of 

gluconeogenesis in the regulation of glucose homeostasis is essential for the 

manipulation of marbling adipose tissue production. 

Benefits to Health 

At least 40% of per capita beef consumption in the U.S. (30 kg/y) is consumed as 

ground beef, and low-income households consume more ground beef per capita than do 

high-income households (USDA, 2011). Statistics from July 2009 to July 2010 indicate 

that 31.4% of ground beef consumed in the US contained 22-30% fat, while the next 

34.8% of ground beef consumed contained 16-22% fat (Beef Retail, 2010).  In contrast, 

ground beef containing 10% or less fat comprised about 18.8% ground beef consumption 

for that period (Beef Retail, 2010).  Research has shown that ground beef naturally 

enriched with oleic acid may reduce risk factors for cardiovascular disease (Adams et al., 

2010; Gilmore et al., 2011, 2013).  Risk factors include, but are not limited to, increased 

blood cholesterol and high intakes of SFA and trans-fats.  Oleic acid activates acyl-

coenzyme A: cholesterol acyltransferase (ACAT); this decreases the free cholesterol 

(FC) pool by converting cholesterol to cholesterol esters.  A decrease in FC is 

responsible for an increase in LDL uptake by the cell.  
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Benefits to Palatability 

More importantly, higher concentrations of oleic acid are positively correlated 

with overall palatability (Waldman et al., 1968; Westerling and Hedrick, 1979), whereas 

stearic acid is the primary determinant of fat hardness (i.e., lipid melting point) (Smith et 

al., 1998; Wood et al., 2004; Chung et al., 2006; Turk and Smith, 2009).  Baublits et al. 

(2009) reported that the concentration MUFA (and specifically oleic acid) in beef was 

positively correlated with beef/brothy (r = 0.37) and beef fat (r = 0.44) flavors, indicating 

that as the concentration of oleic acid increases, so do beefy flavors.  Therefore, 

increasing the MUFA:SFA ratio would increase the fat softness and thereby improve 

palatability of beef and beef products.  One goal of this research was to provide products 

to the consumers with greater quality (i.e., palatability) and consistency. 

Benefits to Production 

This laboratory demonstrated that pork and pork products from lean and fat trim 

from pigs fed high-oleic canola oil were highly palatable, as assessed by trained taste 

panels (St. John et al., 1987).  Feeding oils to pigs to change fatty acid composition 

proved to be impractical due to the cost of the oil and the presence of relatively high 

concentrations of PUFA, which caused undesirably oily carcasses. In cattle, it has not 

been practical to increase oleic acid in beef by feeding high-oleic oil or oil seeds (St. 

John et al., 1987; Chang et al., 1992), although fatty acid composition varies 

considerably across carcass fat depots (Turk and Smith, 2009; Smith et al., 2012).   

We have demonstrated that adipose tissue overlying the brisket is unusually high 

in MUFA, as indicated by the palmitoleic:stearic acid ratio, whereas the flank is low in 
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palmitoleic and high in stearic acid. The plate, which typically is used as raw materials 

for ground beef production, is intermediate in SFA content, whereas the flank typically 

contains more SFA (Turk and Smith, 2009). The fatty acid composition of brisket fat is 

virtually identical to that of fat depots in American Wagyu cattle, and MUFA 

concentration in brisket fat exceeds that which can be achieved in U.S. domestic cattle 

fed corn-based diets for over 16 mo (May et al., 1993; Chung et al., 2006).  Feeding 

grain-based diets for extended periods (Huerta-Leidenz et al., 1996; Chung et al., 2006; 

Brooks et al., 2011; Smith et al., 2012) or using trim from exotic breed types (May et al., 

1993; Chung et al., 2006) are effective strategies to increase oleic acid in beef, but these 

also may be impractical and/or not cost-effective. Research conducted by this laboratory 

has shown that the MUFA:SFA ratio of brisket is high and does not change significantly 

over animal age (Smith et al., 2012).  For this reason, brisket lean and fat trim can be 

taken at virtually any production age to supply producers with a product with a 

consistent fatty acid composition. Thus, the raw materials for producing high-oleic acid, 

high-quality ground beef are readily available.   

Summary and Hypotheses  

We hypothesized that glucose infusion into the abomasum would increase 

carcass adiposity and beef juiciness, relative to ruminal infusions of acetate, propionate, 

or glucose.  Total IM lipid and fatty acid composition of IM and SC adipose tissues were 

measured to confirm results for carcass marbling scores, as increased marbling is 

associated with a higher concentration of MUFA in SC and IM adipose tissues (Brooks 
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et al., 2011b).  Moreover, we also hypothesized that unique ground beef products could 

be formulated from brisket, flank, and plate primals.
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CHAPTER III  

ABOMASAL INFUSION OF GLUCOSE INCREASES INTRAMUSCULAR LIPID 

CONTENT AND ACETATE INCORPORATION INTO FATTY ACIDS IN 

SUBCUTANEOUS ADIPOSE TISSUE RELATIVE TO RUMINAL ACETATE 

INFUSION 

 

Introduction 

High-concentrate diets are highly digestible and nearly double glucose 

incorporation into fatty acids in SC adipose tissue as measured in vitro, but had no effect 

on acetate incorporation into fatty acids in IM adipose tissue (Smith and Crouse, 1984).  

Intramuscular adipose tissue uses glucose for a greater proportion of the carbon source 

for de novo fatty acid biosynthesis than SC adipose tissue (Smith and Crouse, 1984; 

Rhoades et al., 2007, 2009).  However, it has been difficult to assess the actual effects of 

glucose on fat accumulation in growing beef cattle.   

Propiogenic diets (such as high-grain diets) promote greater marbling 

development than acetogenic diets (e.g., Rhoades et al., 2007, 2009).  We predicted that 

“glucogenic” diets, which provide more glucose for absorption from the small intestine 

(e.g., dry-rolled corn; Huntington et al., 2006; Corrigan et al., 2009), would promote 

marbling development, hence juiciness, to a greater extent than propiogenic diets.  This 

hypothesis was tested directly infusing isocaloric amount of glucose and propionate into 

the digestive tract of young, growing steers.  Glucose was infused into the rumen 

(reflecting a high-starch diet) and into the abomasum, the latter treatment bypassing 
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ruminal metabolism of the infused glucose.  We also infused acetate into the rumen to 

directly provide substrate for fatty acid biosynthesis in SC and IM adipose tissues.  Total 

IM lipid and fatty acid composition of IM and SC adipose tissues were measured to 

confirm results for carcass marbling scores, as increased marbling is associated with a 

higher concentration of monounsaturated fatty acids in SC and IM adipose tissues 

(Brooks et al., 2011b).  We also measured the in vitro incorporation of glucose and 

acetate into fatty acids to confirm the effects of acetate, propionate, and glucose 

infusions on SC and IM adipose tissue metabolism. 

Materials and Methods 

Animals and treatments 

 This experiment tested the hypothesis that absorption of equivalent energy 

amounts of acetate, propionate, and glucose would have different effects on marbling 

development and metabolism in growing steers.  Specifically, abomasal infusion of 

glucose would more strongly promote marbling development, hence juiciness, than 

ruminal infusion acetate, propionate, or glucose.  Also, we predicted that effects of 

infusing propionate into the rumen would provide results that were intermediate between 

glucose and acetate. 

 Twenty-four Angus crossbred steers were grown using conventional diets until 

approximately 22 mo of age.  Steers were weighed at the start of the experiment and 

were housed in individual pens (2.1 by 1.5 m) in an enclosed barn with free access to 

water. The steers were fitted with ruminal cannulas as described previously (Bourg et al., 

2012) at the Texas A&M University Animal Research and Teaching Center.  Cattle were 
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adapted to a standard, corn/sorghum finishing diet containing ground milo, corn, 

cottonseed meal, cottonseed hulls, molasses, premix, ammonium chloride and R-1500 

over a 2-wk period while recovering from the placement of the cannulas. After the 

adaptation period, steers were infused with 5 L of water for 3 d.  The following 

treatments were continuously infused for the last 28 d of the finishing period: 

1. Acetate, 1.077 kg/d (16.7 mol/d; 3.76 Mcal/d) ruminal infusion (n = 6)  

2. Propionate, 0.758 kg/d (10.15 mol/d; 3.76 Mcal/d) ruminal infusion (n = 6) 

3. Glucose, 1.0 kg/d (5.55 mol/d; 3.76 Mcal/d) ruminal infusion; (n = 6) (control 

group)  

4. Glucose, 1.0 kg/d (5.55 mol/d; 3.76 Mcal/d) abomasal infusion (n = 6) 

One steer from the acetate group and two steers from the propionate group were 

excluded from the study because they demonstrated symptoms of poor health. 

 Treatments were brought to a volume of 5 L with water and infused using a 

peristaltic pump.  Ruminal infusions were accomplished by continuous infusion of 

substrate through infusion lines inserted through the cannulas.  Abomasal infusion lines 

were accomplished by continuous infusion of substrate through infusion lines through 

the cannula bypassing the rumen and secured into the abomasum. Steers were fed the 

finishing diet free choice. Fecal samples were collected every 8 h, with the sampling 

time advanced by 2 h each day, so that samples were obtained at 2-h intervals after 

feeding in a 24-h period during the 4-d collection period. Samples for each steer in each 

treatment were thawed, composited and dried at 55°C. Fecal output was estimated by 

feeding 10 g/d of titanium oxide, hand mixed into the diet of each steer immediately 
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before feeding on d 15 through 25.  Diet samples were composited by infusate, dried at 

55°C, and ground to pass through a 1-mm screen. Dietary and fecal samples were dried 

at 105°C in a forced-air oven to determine dry matter (DM), and ashed at 450°C for 8 h 

to determine organic matter (OM). Determination of non-detergent fiber (NDF) was 

conducted using an ANKOM fiber analyzer (ANKOM Technology Corp., Fairport, NY). 

Calculations of intake and digestion were based on observations from d 21 through 25.   

  At the end of the infusion period, the steers were transported approximately 9 

km to the Texas A&M University Rosenthal Meat Science & Technology Center, where 

the cattle were harvested by humane, industry standard procedures. Immediately post-

exsanguination, a portion of the 5th-8th rib section of the longissimus thoracis muscle was 

removed and transported to the laboratory in oxygenated, 37°C Krebs Henseleit buffer 

(pH 7.35 – 7.40) containing 5 mM glucose and 5 mM acetate.  Pieces of IM and SC 

adipose tissue were removed by dissection while still fresh, and incubated as described 

below.  Other samples of adipose tissue, liver and longissimus dorsi tissue (obtained 

fresh in the abattoir) were stored at -80°C for subsequent analyses.  Carcasses were 

graded after 48 h at 4°C, after which the strip loin was removed for sensory and fatty 

acid analyses.   

Lipogenesis in vitro   

At sample collection, lipogenesis in vitro was measured in IM and SC adipose 

tissue as described previously (May et al., 1995).  Adipose tissue pieces (~100 mg) were 

incubated with 5 mM glucose, 5 mM acetate, 10 mM HEPES, 1 μCi [U-14C]glucose or 1 

μCi [1-14C] sodium acetate (American Radiolabeled Chemicals, Inc.) in oxygenated 
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Krebs Henseleit buffer (pH 7.35-7.40). Adipose tissues were incubated in 3 mL of media 

for 2 h at 37.5°C in a shaking water bath. Neutral lipids in adipose tissues were extracted 

using the procedure of (Folch et al., 1957).  The total lipids were saponified as described 

previously (Smith and Prior, 1982) and glyceride-glycerol and glyceride-fatty acids were 

isolated and resuspended in 10 mL of scintillation cocktail (Bio-safe2, Research Product 

international Corp., Mount Prospect, IL). Radioactivity of lipid extracts was counted 

with a scintillation counter (Packard 1600TR Liquid Scintillation Analyzer, Downers 

Grove, IL). Results are reported as nmol/(100 mg adipose tissue•2h). 

Assay of enzyme activities 

 Previously frozen SC and IM  adipose tissue samples (~100 mg) were 

homogenized in 3 volumes (wt/vol) of 0.1 M K2HPO4 (pH 7.4) for subsequent enzyme 

analyses. The homogenate was centrifuged at 14,000g for 5 min (4ºC) and the pellet as 

well as the fat cake were discarded. The infranate was centrifuged at 14,000g for 30 min 

(4ºC), and the pellet and any remaining lipid layer were discarded. The infranatant 

fractions were used to undiluted for all enzyme assays.  

 Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate 

dehydrogenase (6PGDH) activities were determined by the procedure of Bernt and 

Bergmeyer (1974). Enzyme activities were measured as the reduction of NADP+ to 

NADPH + H+ using a Beckman DU-7400 Spectrophotometer (Palo Alto, CA). All 

enzyme activities are expressed as nmol of substrate converted to product per min per 

wet weight of tissue at 25ºC. Each reaction was determined to be linear over the period 

of incubation for the particular substrate concentrations tested.       
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Statistical analysis 

Carcass data, lipogenesis, and fatty acid composition were analyzed using the 

General Linear Mixed Models (GLMM) of SPSS statistics 20 (IBM, Armonk, NY) as 

appropriate for completely randomized designs. The model tested main effects of 

infusate. Means were separated by the Fisher’s protected LSD and considered different 

at P < 0.05.   

Results 

Nutrient intake and digestion 

Abomasal and ruminal infusion of glucose resulted in greater DM, OM, GE, and 

DE intake than ruminal acetate infusion (P = 0.02; Table 1).  DM, OM, GE, and DE 

were intermediate between acetate and glucose infusion in propionate-infused steers.  

Total tract digestion of DM, OM, NDF, ADF, and DE was not significantly affected by 

treatment. 

  

Table 1. Effect of ruminal acetate infusion, abomasal glucose infusion, ruminal 

glucose infusion, or ruminal propionate infusion on nutrient intake and digestion 

  
 Treatment1   

Item A P GR GA SEM P-value 

No. of observations 5 4 6 6   

Intake, g/kg MBW       

   DM 66.80b 79.38ab 92.66a 92.88a 8.93 0.02 

   OM  63.44b 75.18ab 87.70a 87.92a 8.42 0.02 
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Table 1. Continued    

 Treatment1   

Item A P GR GA SEM P-value 

GE, kcal/kg MBW2 265.96b 320.92ab 369.18a 370.72a 35.14 0.02 

DE, kcal/kg MBW 226.33b 261.93ab 303.12a 313.43a 28.03 0.02 

Total tract digestion, %       

   DM 86.58 82.38 83.00 85.16 2.19 0.20 

   OM 87.53 83.38 84.16 86.17 2.12 0.21 

   NDF 76.34 72.55 75.10 75.51 3.49 0.41 

   ADF 68.47 63.72 67.78 66.61 5.01 0.47 

   GE 85.92 82.01 82.31 84.49 2.30 0.21 

1A = acetate ruminal infusion; P = propionate ruminal infusion; GR = glucose ruminal 

infusion; GA = glucose abomasum infusion.  abcMeans in the same row with common 

superscripts are not different (P > 0.05). 
2Gross energy intake is sum of energy from diet and treatment. 

Carcass traits 

There were no significant differences observed in carcass weight, fat thickness, 

adjusted fat thickness, ribeye area or KPH among treatment groups (P ≥ 0.73) (Table 2). 

Yield grade values for acetate, propionate, abomasal and ruminal glucose-infused steers 

were 4.93, 4.06, 4.81 and 4.69, respectively (Table 2).  Infusate had no effect on quality 

grade or marbling score (P= 0.18), though acetate-infused steers had numerically greater 
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marbling scores and consequently higher quality grade. There were no differences in 

percentage intramuscular lipid across treatment groups (Table 2).  

 

Table 2. Effect of ruminal infusion of acetate, propionate, glucose, or abomasum 

infusion of glucose on carcass attributes 

  

  Treatments1   

Item A P GR GA SEM P-value 

Carcass weight, kg 327 333 342 353 11 0.27 

Fat thickness, cm 2.59 1.91 2.26 2.18 0.24 0.22 

Adjusted fat thickness, cm 2.67 2.03 2.56 2.43 0.24 0.25 

Ribeye area, cm2 68.9 73.7 70.3 71.8 2.3 0.46 

Kidney, pelvic, heart fat, % 2.40 2.13 2.08 2.00 0.30 0.73 

Yield grade 4.93 4.06 4.81 4.69 0.28 0.14 

Quality grade2 341 324 317 321 9 0.18 

Marbling score3 522 470 452 463 26 0.18 

Intramuscular lipid, % 5.66 6.03 4.10 4.25 1.7 0.13 

1A = acetate ruminal infusion; P = propionate ruminal infusion; GR = glucose ruminal 

infusion; GA = glucose abomasum infusion.  abcMeans in the same row with common 

superscripts are not different (P > 0.05). 
2Quality Grade:  300 = USDA Choice00 

3Marbling Score:  400 = Small00, 500 = Modest00 
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Glyceride-fatty acid and glyceride-glycerol biosynthesis 

Acetate incorporation into glyceride-fatty acids in IM adipose tissue was greater 

in glucose ruminal-infused steers (22.74 nmol/(100 mg adipose tissue•2 h)) than in 

acetate-infused or propionate-infused steers (10.48 and 10.28 nmol/(100 mg adipose 

tissue•2 h), respectively) (Table 3). Acetate carbon incorporation into glyceride-glycerol 

was significantly less in (P = 0.01) in IM adipose tissue of acetate-infused steers than in 

ruminal glucose-infused and abomasal-infused steers.  Glucose incorporation into 

glyceride-fatty acids was higher in IM adipose tissue of acetate and propionate-infused 

steers than in abomasal and ruminal glucose-infused steers.  Similarly, glucose 

incorporation into glyceride-glycerol was less in IM adipose tissue of abomasal and 

ruminal glucose-infused steers than in propionate-infused steers (P =0.02). 

Acetate incorporation into glyceride fatty acids was less in SC adipose tissue of 

acetate-infused than in propionate-infused steers, ruminal glucose-infused and abomasal 

glucose infused steers than in acetate-infused steers in SC adipose tissue (P = 0.002) 

(Table 3).  Acetate incorporation into glyceride-glycerol was less in SC adipose tissue of 

acetate-infused steers than in SC adipose tissue of propionate, abomasal and ruminal 

glucose-infused steers (P = 0.007).  Glucose incorporation into glyceride-fatty acids was 

less in SC adipose tissue of acetate and propionate-infused steers than in abomasal and 

ruminal glucose-infused steers (P=0.03) (Table 3). Glucose incorporation into glyceride-

glycerol was higher in SC adipose tissue of acetate and propionate-infused steers than in 

SC adipose tissue of abomasal and ruminal glucose-infused steers (P=0.005).   
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6PGDH activity in IM adipose tissue was greater in abomasal glucose- infused 

steers than in acetate- infused steers ( P= 0.02) (Table 4). G6PDH activity was greater in 

i.m adipose tissue of abomasal glucose-infused steers than in acetate, propionate and 

ruminal glucose-infused steers (P = 0.002). There were no differences in 6PGDH and 

G6PGDH activity among treatments in SC adipose tissue (P ≥ 0.14).   

 

Table 3. Effect of ruminal infusion of acetate, propionate, or glucose, or abomasum 

infusion of glucose on glyceride-fatty acid and glyceride-glycerol synthesis from 

acetate and glucose in intramuscular and subcutaneous adipose tissues 

 

 Treatment1   

    

Item A  P GR GA SEM P-value 

Intramuscular adipose tissue 

Acetate incorporation2       

   Glyceride-fatty acids 10.48b 10.28b 22.74a 19.14a 1.80 0.02 

   Glyceride-glycerol 0.51c 0.56bc 0.71b 0.92a 0.05     0.01 

Glucose incorporation       

   Glyceride-fatty acids 1.94a 2.44a 1.46b 1.17b 0.17 0.01 

   Glyceride-glycerol 2.17ab 2.40a 2.01b 1.75b 0.33 0.02 

Subcutaneous adipose tissue 

Acetate incorporation        

   Glyceride-fatty acids 41.15b 150.61a 130.47a 158.02a 11.59 0.002 

   Glyceride-glycerol 0.51b 0.91a 0.75a 0.80a 0.05 0.007 

Glucose incorporation       

   Glyceride-fatty acids 1.51b 1.94ab 2.02a 2.01a 0.10 0.03 

   Glyceride-glycerol 5.95a 6.48a 4.46b 4.72b 0.30 0.005 
1A = acetate ruminal infusion; P = propionate ruminal infusion; GR = glucose ruminal 

infusion; GA = glucose abomasum infusion.  abcMeans in the same row with common 

superscripts are not different (P > 0.05). 
 2Rates are expressed as nmol glucose or acetate incorporated into glyceride-fatty acids 

or glyceride-glycerol per 100 g adipose tissue per 2 h incubation. 
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Table 4. Effect of ruminal infusion of acetate, propionate, or glucose, or abomasum 

infusion of glucose on lipogenic enzyme activity in intramuscular and subcutaneous 

adipose tissues 

 

 Treatment1   

Item A P GR GA SEM P-value 

Intramuscular adipose tissue  

   6PGDH 265.2b 273.0ab 359.5ab 532.5a 64.16 0.02 

   G6PDH 720.0b 1,251.0b 1,226.0b 2,575.5a 310.2 0.002 

Subcutaneous adipose tissue  

   6PGDH 322.8 477.7 402.5 457.0 75.40 0.51 

   G6PDH 1,299.0 1,831.0 1,728.5 2622.5 403.34 0.14 
1A = acetate ruminal infusion; P = propionate ruminal infusion; GR = glucose ruminal 

infusion; GA = glucose abomasum infusion.  abcMeans in the same row with common 

superscripts are not different (P > 0.05). 

Discussion 

In previous studies, we demonstrated that the extent of carcass adiposity is 

associated with rates de novo fatty acid biosynthesis in vitro (Smith and Crouse, 1984; 

Smith et al., 1984; May et al., 1995). The acetate carbon incorporation into glyceride-

fatty acids was less in then acetate- infused steers, though acetate-infused steers had 

numerically higher quality grades and marbling scores, which indicates that the 

increased availability of acetate for fatty acid synthesis was sufficient to promote greater 

carcass fatness than was seen with the other treatments.  It also is possible that the 

greater fatness of the acetate-infused steers caused the depression in de novo fatty acid 

synthesis.  In an early study (Smith et al., 1984), we demonstrated a sharp decline in 

fatty acid biosynthesis in SC adipose tissue in older, fatter cattle.   
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Contrary to our hypothesis, marbling scores were higher in the acetate-infused 

steers compared to glucose-infused groups of steers.   However, the rate of acetate 

incorporation into fatty acids in SC adipose tissue of the acetate-infused steers was less 

than 25% of the rate in the other treatment groups.  Also, propionate infusion, and not 

glucose infusion, caused the greatest rates of glyceride-fatty acid synthesis from in SC 

adipose tissue.   

Prior and Scott (1980) infused glucose, propionate, acetate, and lactate into the 

veins of beef cattle and demonstrated that only glucose promoted fatty acid synthesis in 

SC adipose tissue.  Lemosquet et al. (2009) infused glucose into the abomasum and 

propionate into the rumen of dairy cows and documented that the whole body rate of 

glucose appearance was 24% greater in glucose-infused dairy cows.  This suggests that, 

even though propionate is the primary gluconeogenic precursor in ruminants 

(Huntington et al., 2006), propionate would not be as effective as glucose in increasing 

blood glucose and thereby promoting adipogenic gene expression in SC adipose tissue.   

In early research, we demonstrated that the rate of acetate incorporation into fatty 

acids greatly exceeds the rate of glucose incorporation into fatty acids in vitro in SC 

adipose tissue (Smith and Prior, 1982; Smith, 1983; Smith and Crouse, 1984).  We also 

demonstrated that glucose incorporation into fatty acids was higher in IM adipose tissue 

than in SC adipose tissue (Smith and Crouse, 1984; Rhoades et al., 2007), although other 

studies (Miller et al., 1991; the current study) have demonstrated greater rates of fatty 

acid synthesis from acetate than from glucose.  Regardless, in all studies from this 

laboratory, glucose a greater proportion of the carbon for fatty acid biosynthesis in IM 
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adipose tissue than in SC adipose tissue.   In the current study, less than 50% of the 

glucose carbon was recovered in glyceride-fatty acids, indicating that, in these cattle, 

there was a limitation in the ability of IM and SC adipose tissues to utilize glucose for 

fatty acid biosynthesis. 

G6PDH and 6PGDH are enzymes in the pentose phosphate pathway and their 

anabolic activity generate nicotinamide adenine dinucleotide phosphate (NAPDH). The 

synthesis of long chain fatty acids is dependent on adequate amounts of NAPDH, the 

reducing equivalent for fatty acid synthesis (Flatt and Ball, 1964).  Smith (1983) 

indicated that without other exogenous substrates in the media, 12% of total glucose was 

metabolized in the pentose cycle, which increased to 22 - 37% when acetate and lactate 

were included in the media. With glucose in the media, 30% of NADPH was derived 

from the pentose cycle, and this increased to 72% when acetate and lactate were added 

to the media. The lesser G6PDH activity in IM adipose tissue relative to SC adipose 

tissue was consistent to our early report (Smith and Crouse, 1984).  Additionally, the IM 

adipose tissue pentose cycle activities were highest in steers receiving abomasal infusion 

of glucose, indicating that glucose availability was especially effective in promoting 

lipogenic enzyme activities in IM adipose tissue.  

Conclusions 

Contrary to our hypothesis, marbling scores were not different in acetate-infused 

steers and the glucose-infused steers. However, the rate of acetate incorporation into 

fatty acids in IM and SC adipose tissues of the acetate-infused steers was less than the 
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rate in the adipose tissues of the abomasal-infused steers.  These data confirm that 

provide additional glucose for absorption promotes adipogenesis in beef cattle. 
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CHAPTER IV 

INCREASING GLUCOSE OR GLUCOSE PRECURSORS TO INCREASE BEEF 

QUALITY AND JUICINESS 

 

Introduction 

In the U.S., Australia, and many Asian countries, beef with higher degrees of IM 

adipose tissue, the visible portion also referred to as marbling, is associated with overall 

consumer acceptance.  Segments of the beef cattle industry are seeking effective and 

efficient methods to grow cattle to market weights that can increase economic returns by 

maximizing marbling scores and limit discounts due to increased carcass yield grade 

caused by excessive SC adipose tissue. Different management strategies have been 

proposed aiming to increase deposition of IM adipose tissue without increasing SC 

adipose tissue and negatively affecting meat quality (Smith et al., 1983; Fluharty et al., 

2000).  Due to the efforts of researchers to meet the beef quality demands of the 

American consumers, the 2012 National Beef Quality Audit reported that the percentage 

of USDA Prime plus Choice carcasses was at a 20‐year high (61.1% for NBQA 2011 vs 

54.5% for NBQA 2005; Gray et al., 2012). 

Smith et al. (1983) reported that higher marbling scores lead to dramatic 

decreases in undesirable beef flavors.  As marbling scores increased from Practically 

Devoid to Moderately Abundant, the undesirable ratings decreased from 55% to zero. 

The amount of marbling also has an impact on juiciness scores of meat. Miller (1994) 

proposed a mechanism whereby increased marbling causes salivary stimulation within 
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the mouth and gives the perception of increased juiciness of meat while chewing.   This 

mechanism was described as the lubrication effect of marbling.  Beef with higher quality 

grades will sustain salivary stimulation and perceived juiciness.  Therefore, because 

species-specific flavors are located in the lipid portion of beef, i.m adipose tissue 

impacts beef flavor.  

Propiogenic diets (such as high-grain diets) promote greater marbling 

development than acetogenic diets (Rhoades et al., 2007, 2009).  In ruminants, the major 

VFA produced by rumen microorganisms are acetate, propionate, and butyrate. These 

VFA are the products of ruminal fermentation, and serve as the main precursors of 

glucose and fatty acid biosynthesis in ruminants.  In animals on grain-based diets, some 

starch escapes fermentation and is digested to and absorbed as glucose from the small 

intestine. Little glucose is absorbed from the small intestine in ruminants, so 

gluconeogenesis provides the glucose needed to support essential functions. 

Intramuscular adipose tissue uses glucose for a greater proportion of the carbon source 

for de novo fatty acid biosynthesis than SC adipose tissue (Smith and Crouse, 1984; 

Rhoades et al., 2007, 2009b).  However, the impact of directly providing glucose for 

absorption from the small intestine on carcass quality and lipogenesis in vitro has not 

been documented.   

 We hypothesized that “glucogenic” diets, which provide more glucose for 

absorption from the small intestine (e.g., dry-rolled corn; Huntington et al., 2006; 

Corrigan et al., 2009), would promote marbling development, hence juiciness, to a 

greater extent than propiogenic diets.  This hypothesis was tested directly infusing 
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isocaloric amount of glucose and propionate into the digestive tract of young, growing 

steers.  Glucose was infused into the rumen (reflecting a high-starch diet) and into the 

abomasum, the latter treatment bypassing ruminal metabolism of the infused glucose.  

We also infused acetate into the rumen to directly provide substrate for fatty acid 

biosynthesis in SC and IM adipose tissues.   

We predicted that glucose infusion into the abomasum would increase carcass 

adiposity and beef juiciness, relative to ruminal infusions of acetate, propionate, or 

glucose.  Total IM lipid and fatty acid composition of IM and SC adipose tissues were 

measured to confirm results for carcass marbling scores, as increased marbling is 

associated with a higher concentration of MUFA in SC and IM adipose tissues (Brooks 

et al., 2011b).   

Materials and Methods 

Animals and treatments 

This experiment tested the hypothesis that absorption of equivalent energy 

amounts of acetate, propionate, and glucose would have different effects on marbling 

development and metabolism in growing steers.  Specifically, abomasal infusion of 

glucose would more strongly promote marbling development, hence juiciness, than 

ruminal infusion acetate, propionate, or glucose.  Also, we predicted that effects of 

infusing propionate into the rumen would provide results that were intermediate between 

glucose and acetate. 

Twenty-four Angus crossbred steers were grown using conventional diets until 

approximately 22 mo of age.  Steers were weighed at the start of the experiment and 
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were housed in individual pens (2.1 by 1.5 m) in an enclosed barn with free access to 

water. The steers were fitted with ruminal cannulas as described previously (Bourg et al., 

2012) at the Texas A&M University Animal Research and Teaching Center.  Cattle were 

adapted to a standard, corn/sorghum finishing diet containing ground milo, corn, 

cottonseed meal, cottonseed hulls, molasses, premix, ammonium chloride and R-1500 

over a 2-wk period while recovering from the placement of the cannulas. After the 

adaptation period, steers were infused with 5 L of water for 3 d.  The following 

treatments were continuously infused for the last 28 d of the finishing period: 

1. Acetate, 1.077 kg/d (16.7 mol/d; 3.76 Mcal/d) ruminal infusion (n = 6)  

2. Propionate, 0.758 kg/d (10.15 mol/d; 3.76 Mcal/d) ruminal infusion (n = 6) 

3. Glucose, 1.0 kg/d (5.55 mol/d; 3.76 Mcal/d) ruminal infusion; (n = 6) (control 

group)  

4. Glucose, 1.0 kg/d (5.55 mol/d; 3.76 Mcal/d) abomasal infusion (n = 6) 

One steer from the acetate group and two steers from the propionate group were 

excluded from the study because they demonstrated symptoms of poor health. 

Treatments were brought to a volume of 5 L with water and infused using a 

peristaltic pump.  Ruminal infusions were accomplished by continuous infusion of 

substrate through infusion lines inserted through the cannulas.  Abomasal infusion lines 

were accomplished by continuous infusion of substrate through infusion lines through 

the cannula bypassing the rumen and secured into the abomasum. Steers were fed the 

finishing diet free choice.  
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At the end of the infusion period, the steers were transported approximately 9 km 

to the Texas A&M University Rosenthal Meat Science & Technology Center, where the 

cattle were harvested by humane, industry standard procedures. 

Fatty acid composition 

Total lipids of IM and SC adipose tissues were extracted by a modification of the 

method of Folch et al. (1957).  One hundred milligrams of tissue were homogenized and 

extracted in chloroform:methanol (2:1, vol/vol) and lipid content was measured 

gravimetrically.  Fatty acid methyl esters (FAME) were prepared as described by 

Morrison and Smith (1964), modified to include an additional saponification step 

(Archibeque et al., 2005). The FAME were analyzed using a Varian gas chromatograph 

(model CP-3800 fixed with a CP-8200 auto sampler, Varian Inc., Walnut Creek, CA). 

Separation of FAME was accomplished on a fused silica capillary column CP-Sil88 [100 

m × 0.25 mm (i.d.)] (Chrompack Inc., Middleburg, The Netherlands), with hydrogen as 

the carrier gas (flow rate = 1.2 mL/min). Initial oven temperature was set at 150°C and 

increased at 1°C/min to 160°C.  After temperature reached 160°C, oven temperature was 

increased at 5°C/min to 220°C and held for 30 min. Total run time was 52 min. Injector 

and detector temperatures were at 270°C. Individual fatty acids were identified using 

genuine external standards (Nu-Chek Prep, Inc., Elysian, MN). 

Slip points 

Melting points of the adipose tissue lipids were approximated by determining slip 

points (Smith et al., 1998). After heating to approximately 45°C, extracted lipids were 

drawn 1 cm into glass capillary tubes and frozen at -20°C. After freezing, the capillary 
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tubes were suspended vertically in a chilled water bath with the portion of the tube 

containing the lipid submerged. The water bath was heated gradually and the 

temperature of the water was monitored with a glass thermometer (model 9095-564, 

VWR International, Radnor, PA).  Slip point is defined as the temperature at which the 

lipid began to move up the capillary tube. 

Tenderness and sensory analyses 

Warner-Bratzler shear force determination.  Steaks designated for shear force 

evaluation were cooked in electric skillets (Rival, Inc., Boca Raton, FL., Model 

CKRVSK11 Skillet).  Steaks were turned once at 40ºC and brought to an internal 

temperature of 71ºC. Internal temperatures were monitored by iron-constantan 

thermocouples (Omega Engineering, Stanford, CT) inserted into the geometric center of 

each patty and monitored using a digital thermometer (Omega Engineering, model 

HH501BT type T, Stamford, CT) with a type T thermocouple (Omega Engineering, 

model TMQSS).   Once internal temperature was reached, steaks were allowed to cool to 

room temperature.  Six, 1.27-cm-diameter cores were taken from each steak.  Cores were 

removed parallel to the muscle fibers.  Each core was sheared once perpendicular to the 

grain of the muscle fiber using a Warner-Bratzler shearing machine. 

Sensory evaluation. Sensory evaluation was conducted at the Texas A&M 

University Meat Products Evaluation Laboratory.  Descriptive flavor analysis was 

conducted by a trained, 5-member descriptive panel for 2 consecutive days after 5 d of 

training.  Panelist evaluated samples using a descriptive flavor analysis, using the 

Spectrum Universal intensity scale where 0 = none and 15 = extremely intense for each 
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attribute (Adhikari et al., 2011; AMSA, 1995).  Each panelist evaluated 24 different 

samples, each coming from a different source of infusate. Samples were assigned 

randomly to a different order for each day of sensory evaluation. Each sample was 

presented with a three-digit random code and placed in a small clear plastic serving cup.  

Panelists were seated in individual booths separated from the sample preparation area.  

Panelists were also given salt-free saltine crackers and double-distilled, deionized water 

as palate cleansers to be used prior to evaluation of each sample. The steaks were thawed 

for 4 h in a cooler at 4°C on each day of the evaluation.  Steaks were cooked in electric 

skillets (Rival, Inc., Boca Raton, FL., Model CKRVSK11 Skillet) set at 204°C to an 

average internal temperature of 71ºC. Internal temperatures were monitored by iron-

constantan thermocouples (Omega Engineering, Stanford, CT) inserted into the 

geometric center of each steak and monitored using a digital thermometer (Omega 

Engineering, model HH501BT type T, Stamford, CT) with a type T thermocouple 

(Omega Engineering, model TMQSS). Once steaks reached 71°C, they were cut into 

eight individual pieces, providing two samples for each panelist. Samples were served a 

minimum of 4 min apart.  A 5-member, trained sensory panel was used to evaluate a 

second steak for juiciness, muscle fiber tenderness, overall tenderness, and connective 

tissue amount, and overall flavor using a 15-point scale, as described above
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Statistical analysis 

Data were analyzed using the Proc GLM procedure of SAS (v9.3, SAS Institute 

Inc., Cary, NC) with an alpha < 0.05.  An initial analyses was conducted to examine the 

effects of panelist and panelist by infused metabolite to validate the sensory panel data.  

Panelist x infusate interactions were not significant (P > 0.05). Therefore, sensory data 

were averaged across panelists within a sample.  In the final analysis, the main effect 

was infusate; this was analyzed as a fixed effect.  Sensory day and order served were 

defined as random effects. Least squares means were calculated and when significance 

was defined in the Analysis of Variance table, least squares means were separated using 

the pdiff function of SAS. 

Results 

Fatty acid composition and slip points 

There no differences in fatty acid composition among treatment groups (P ≥ 

0.12) (Table 5).  Correspondingly, there were no differences in lipid melting points (slip 

points) among treatment groups (P = 0.26).  

 

Table 5. Effect of ruminal infusion of acetate, propionate, or glucose, or abomasum 

infusion of glucose on the fatty acid composition and subcutaneous adipose tissue 

 

 Treatment1   

Item A GA GR P SEM P-value 

Intramuscular adipose tissue 

   Myristic (14:0) 5.82 4.79 5.33 5.29 0.84 0.86 

   Palmitic (16:0) 33.9 33.6 33.5 34.1 1.82 0.99 

   Palmitoleic (16:1n-7) 2.96 2.67 2.62 2.66 0.29 0.86 

   Stearic (18:0) 16.9 17.0 17.0 15.4 2.00 0.94 

   trans-18:1 2.52 2.33 2.50 2.53 0.20 0.86 
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Table 5. Continued 

 

 Treatment1   

Item A GA GR P SEM P-value 

   Oleic (18:1n-9) 30.1 31.2 29.2 31.2 2.08 0.86 

   cis-Vaccenic (18:1n-7) 0.53 0.99 0.89 0.80 0.15 0.89 

   Linoleic (18:2n-6) 2.12 1.93 2.09 2.32 0.18 0.54 

   -Linolenic (18:3n-3) 0.32 0.32 0.31 0.30 0.02 0.87 

Slip point, °C 42.0 41.8 43.6 43.5 0.82 0.26 

 

Subcutaneous adipose tissue 

   Myristic (14:0) 6.35 5.49 4.14 5.51 0.83 0.31 

   Palmitic (16:0) 33.1 32.0 28.6 32.4 1.53 0.16 

   Palmitoleic (16:1n-7) 2.94 2.04 1.8 2.22 0.32 0.12 

   Stearic (18:0) 16.3 18.7 21.4 19.1 1.66 0.20 

   trans-18:1 2.70 2.47 3.1 2.79 0.19 0.13 

   Oleic (18:1n-9) 30.1 29.5 32.3 28.7 2.11 0.65 

   cis-Vaccenic (18:1n-7) 0.69 0.81 0.71 0.98 0.15 0.59 

   Linoleic (18:2n-6) 2.06 1.77 2.33 2.17 0.25 0.44 

   -Linolenic (18:3n-3) 0.22 0.76 0.28 0.25 0.30 0.53 

Slip point, °C 42.5 41.8 43.7 43.3 0.82 0.26 
1A = acetate ruminal infusion; GA = glucose abomasum infusion; GR = glucose ruminal 

infusion; P = propionate ruminal infusion There were no treatment effects for any fatty 

acids (P > 0.05)
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Tenderness and sensory analyses 

Table 6 contains the definitions and reference standards for meat descriptive 

flavor aromatics and basic taste sensory attributes and their intensities. Ribeye steaks 

from abomasal glucose-infused steers had higher shear force values (2.62 kg) than steaks 

from ruminal glucose-infused or propionate-infused steers (2.15 and 2.33 kg, 

respectively; P ≤ 0.05) (Table 7).  Ribeye steaks from the acetate, abomasal glucose-

infused, and ruminal glucose-infused steers were higher in the flavor attributes 

brown/roasted, fat-like, and overall sweet, and lower in bitter off-flavor, than steaks 

from propionate infused steers (P ≤ 0.05).  Steaks from acetate-infused steers were 

higher in the flavor attribute bloody/serumy than steaks from abomasal and ruminal 

glucose-infused steers (P ≤ 0.07).  Steaks from propionate-infused steers were higher in 

metallic off-flavor than steaks from ruminal glucose-infused steers (P = 0.03), and were 

higher in sour off-flavor than abomasal and ruminal glucose-infused steers (P ≤ 0.02).  

For taste panel texture analysis, ribeye steaks from acetate infused steers had higher 

juiciness scores than steaks from all other infusion groups (P ≤ 0.04), and had higher 

myofibrillar and overall tenderness scores than steaks from abomasal glucose-infused 

steers (P ≤ 0.08).  Steaks from propionate-infused steers had higher myofibrillar and 

overall tenderness scores than steaks from abomasal glucose infused steers (P ≤ 0.006), 

whereas steaks from acetate and propionate-infused steers had higher connective tissue 

scores than steaks from ruminal glucose-infused steers (P ≤ 0.06) (Table 7). 
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Table 6. Definition and reference standards for meat descriptive flavor aromatics and basic taste sensory attributes 

and their intensities where 1 = none and 15 = extremely intense (Adhikari et al., 2011) 

 

Sensory 

Attributes 

Definition Reference, standard flavor scale 

value unless otherwise defined 

Beef identity  Amount of beef flavor identity in the sample. Swanson’s beef broth = 5.0  

80% lean ground beef = 7.0  

Beef brisket = 11.0  

Brown/roasted A round, full aromatic generally associated with beef suet that 

has been boiled.  

Beef suet = 8.0 

80% lean ground beef = 10.0 

Bloody/serumy The aromatics associated with blood on cooked meat products.

 USDA choice strip steak = 5.5  

Closely related to metallic aromatic. 

USDA choice strip steak = 5.5  

Beef brisket = 6.0 

Fat-like The aromatics associated with cooked animal fat. Hillshire farms Lit’l beef smokies = 

7.0 Beef suet = 12.0  

Metallic The impression of slightly oxidized metal, such as iron, copper 

and silver spoons.   

0.10% potassium chloride solution 

= 1.5 

USDA choice strip steak = 4.0  

   

Umami Flat, salty, somewhat brothy. The taste of glutamate, salts of 

amino acids and other molecules called nucleotides. 

0.035% accent flavor enhancer 

solution = 7.5 

Overall sweet A combination of sweet taste and sweet aromatics. The 

aromatics associated with the impression of sweet.  

Hillshire farms Lit’l beef smokies = 

3.0  

SAFC ethyl maltol 99% = 4.5 

(aroma) 

Post-shredded wheat spoon size = 

1.5 

Sweet The fundamental taste factor associated with sucrose. 2.0% sucrose solution = 2.0 

Bitter The fundamental taste factor associated with a caffeine 

solution. 

0.01% caffeine solution = 2.0  

0.02% caffeine solution = 3.5 
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Table 6. Continued 

Sensory 

Attributes 

Definition Reference, standard flavor scale 

value unless otherwise defined 

Sour The fundamental taste factor associated with citric acid. 0.015% citric acid solution = 1.5  

0.050% citric acid solution = 3.5 

Salty The fundamental taste factor of which sodium chloride is 

typical. 

0.15% sodium chloride solution = 

1.5  

0.25% sodium chloride solution = 

3.5  

Tenderness The opposite of the force required to bite through the sample 

with the molars 

 

                                                                                                                                                                                                                                                                           

Juiciness  The amount of moisture released by the sample after the first 

two chews 

Carrot = 8.5; Mushroom = 10.0; 

Cucumber = 12.0; Apple=13.5; 

Watermelon=15.0 

Connective tissue 

amount 

The amount of connective tissue perceived before swallowing  
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Table 7. Effect of ruminal infusion of acetate, propionate, or glucose, or abomasum 

infusion of glucose on sensory panel attributes, texture analysis, and Warner-

Bratzler shear force of cooked ribeye steaks  

 

 Treatment1  

Item A GA GR P SEM 

Warner-Bratzler shear force, kg 2.37 2.62 2.15 2.33 0.07 

Flavor descriptors and off-flavors2 

   Beef identity 5.10 5.10 5.13 5.00 0.06 

   Brown/roasted 1.07 1.10 1.23 0.47 0.08 

   Bloody/serumy 1.57 1.23 1.23 1.50 0.08 

   Fat-like 1.10 0.87 1.30 0.80 0.07 

   Metallic  1.87 1.83 1.70 2.03 0.06 

   Umami 0.53 0.57 0.37 0.40 0.07 

   Overall sweet 0.60 0.30 0.50 0.17 0.05 

   Sweet 0.23 0.13 0.23 0.13 0.04 

   Sour 2.17 2.00 1.87 2.40 0.07 

   Salty 1.43 1.23 1.47 1.40 0.05 

   Bitter 1.73 1.87 1.80 2.13 0.06 

Texture analysis3      

   Juiciness 10.97 10.12 10.05 10.83 0.15 

   Myofibrillar tenderness 11.93 11.20 11.70 12.10 0.14 

   Overall tenderness 11.83 11.32 11.65 12.10 0.14 

   Connective tissue 11.93 11.72 11.05 11.90 0.16 
1A = acetate ruminal infusion; GA = glucose abomasum infusion; GR = glucose 

ruminal infusion; P = propionate ruminal infusion abcMeans in the same row with 

common superscripts are not different (P > 0.05). 
20 = absent and 15 = extremely intense. 
31 = extremely dry, tough, tough, abundant; and 15 = extremely juicy, tender, tender, 

none.  
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Discussion 

The effect of IML, i.e. quality grade, on fatty acid concentrations has been 

reported previously (Wood et al., 2008; Scollan et al., 2006), which revealed that as IML 

increases, concentrations of all fatty acids increase accordingly. However, MUFA and 

SFA increase to a much greater extent than PUFA because of a direct result of TAG 

accumulation during animal fattening. Feeding grain-based diets for extended periods 

effectively increases oleic acid in beef (Huerta-Leidenz et al., 1996; Chung et al., 2006; 

Brooks et al., 2011b; Smith et al., 2012)by promoting increase glucose absorption from 

the small intestine (Huntington et al., 2006; Corrigan et al., 2009) and thereby 

stimulating SCD gene expression and catalytic activity (Brooks et al., 2011b). Stearoyl-

CoA desaturase encodes the ∆9- desaturase responsible for the synthesis of oleic acid and 

other MUFA. In general, production methods that increase marbling deposition also 

increase the concentration of oleic acid in beef.  However, the relationship between fatty 

acid composition and marbling scores can be demonstrated only across large variations 

in marbling scores (Chung et al., 2006; Brooks et al., 2011b).  In the current study, there 

were no significant differences in marbling scores across treatment groups; similarly, 

there were no differences across treatments for MUFA, either in IM or SC adipose 

tissue. 

Higher concentrations of oleic acid are positively correlated with overall 

palatability (Waldman et al., 1968; Westerling and Hedrick, 1979), whereas stearic acid 

is the primary determinant of fat hardness (i.e., lipid melting point) (Smith et al., 1998; 

Wood et al., 2004; Chung et al., 2006). Therefore, increasing the concentration of oleic 
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acid and/or decreasing stearic acid in beef would increase the fat softness and thereby 

increase juiciness of beef and beef products.  However, in this study the concentrations 

of stearic and oleic acid in IM adipose tissue were unaffected by treatment. 

Correspondingly, treatments had no effect on lipid melting points. The greater rate of 

fatty acid synthesis observed in cattle infused with glucose (ruminally or abomasally) 

should have affected both IM and SC fatty acid composition (see Table 3).  However, at 

the initiation of treatments, these steers were older than most steers studied in this 

laboratory (22 mo vs 12 mo).  It is apparent that these steers had been fed pasture-based 

diets for an extended period before being fed the grain-based, finishing diet, based on the 

fatty acid composition of their adipose tissues.  Subcutaneous adipose tissue of grain-fed 

cattle typically contains approximately 40% oleic (Chung et al., 2006; Brooks et al., 

2011b), whereas the SC adipose tissue of the steers in the current study contained only 

30% oleic acid).  In steers this age, the adipose tissues would have been relatively 

mature and lipid-filled, so any contributions to total fatty acid composition during the 

28-d duration of this experiment.  

Brooks et al. (2011a) demonstrated that juiciness was the only sensory attribute 

that differed between rib steaks from calf-fed (corn-fed for 8 mo) and yearling-fed steers 

(corn-fed for 5.5 mo, beginning at 12 mo of age).  Rib steaks  from calf-fed steers 

contained more total lipid than yearling-fed steers (9.98 vs 7.75%; Brooks et al., 2011a) 

and the lipids in muscle from calf-fed steers contained more oleic acid than in yearling-

fed steers (40.6 vs 38.2%; Brooks et al., 2011a).  However, even though beef from the 

calf-fed steers contained more IM lipid than beef from the yearling-fed steers (as 
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predicted), the beef from the yearling-fed steers had a higher USDA marbling score than 

beef from the calf-fed steers (Small25 vs Small00; Brooks et al., 2011a).   

Beef flavor is not a single attribute, but it is composed of multiple attributes that 

can be dynamic.  Little research has been conducted to determine the effects of glucose 

and gluconeogenic precursors on flavor attributes. It is important that none of the 

treatments caused increases in linoleic acid.  Research has demonstrated that increasing 

linoleic acid leads to negative beef flavor attributes (Melton et al., 1982; Baublits et al., 

2009). We previously demonstrated that linoleic acid and arachidonic acid were 

negatively correlated with cooked beef fat flavor and demonstrated an increase in beef 

identity flavor attribute if these fatty acids were replaced with monounsaturated fatty 

acids (Blackmon et al., 2015). Baublits et al. (2009) also reported that positive beef 

flavor attributes were enhanced by increased percentages of SFA and MUFA, whereas 

PUFA had a greater effect on the perceived negative aspects of beef flavor.  

Polyunsaturated fatty acids oxidize readily and can increase alkanals four-fold in the 

aroma extracts from steaks (Elmore and Mottram, 2000). Cooked beef from animals fed 

lipid supplements high in n-6 PUFA contain higher levels of 2-alkyl-(2H)- thiapyrans 

and 2-alkylthiophenes in the volatiles (Elmore & Mottram, 2000). While thiapyrans have 

low odor potency, the reactions that form from them may remove potent aroma 

compounds, which modify meat aroma profile. The net effect is that positive attributes, 

such as beef flavor, decrease whereas negative attributes, such as rancid flavors, 

increase.  
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Conclusions 

Although there were no treatment effects on adipose tissue fatty acid 

composition, propionate infusion generally decreased positive flavor attributes and 

increased negative flavor attributes.  Thus, although propionate is a gluconeogenic 

precursor, oversupply of propionate in the rumen may negatively affect beef flavor. 
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CHAPTER V  

GROUND BEEF PATTIES PREPARED FROM BRISKET, FLANK, AND PLATE 

HAVE UNIQUE FATTY ACID AND SENSORY CHARACTERISTICS* 

 

Introduction 

Approximately 40% of per capita beef consumption in the U.S. (30 kg/y) is 

consumed as ground beef, and low-income households consume more ground beef per 

capita than do high-income households (USDA, 2011). Furthermore, most of the ground 

beef available in retail outlets is relatively high in SFA and low in MUFA. Commercial 

ground beef in the U.S. contains fat with a MUFA:SFA ratio of 0.85–0.90, whereas 

ground beef from cattle fed high-grain diets has a MUFA:SFA greater than 1.10, and 

ground beef from grass-fed cattle has a MUFA:SFA ratio less than 0.75 (Gilmore et al., 

2011; Turk and Smith, 2009).  

We have demonstrated that fatty acid composition of ground beef can affect the 

concentration of high-density lipoprotein (HDL) cholesterol in men (Adams et al., 2010; 

Gilmore et al., 2011) and women (Gilmore et al., 2013). Ground beef from grass-fed 

steers that was high in SFA and trans-fatty acids decreased HDL cholesterol in mildly 

hypercholesterolemic men, whereas ground beef from grain-fed cattle naturally enriched 

with oleic acid  returned HDL cholesterol concentrations to pre-intervention levels. 

Ground beef from grass-fed steers had no effect on HDL cholesterol concentrations in 

                                                 
* Reprinted with permission from “Ground beef patties prepared from, brisket, flank and plate have unique 

fatty acid and sensory characteristics” Blackmon, T.L., R.K. Miller, C.R.., Kerth, and S.B., Smith, 2015. 

Meat Sci., 103, 46-53, Copyright 2015 by Elsevier Ltd. 



 

54 

normocholesterolemic men, whereas high-oleic acid ground beef from grain-fed cattle 

increased HDL cholesterol (Gilmore et al., 2011), although ground beef from the grass-

fed contained three times as much ALA as ground beef from grain-fed cattle (90 vs 30 

mg per patty). Our most recent study (Gilmore et al., 2013) provided further support for 

increasing MUFA in ground beef; ground beef from Akaushi cattle (MUFA:SFA ratio = 

1.43) increased HDL cholesterol concentrations in postmenopausal women, while there 

was no effect of chub pack ground beef (MUFA:SFA ratio = 0.86) on HDL cholesterol. 

These studies demonstrated that practical increases in MUFA in ground beef have 

positive effects on risk factors for cardiovascular disease, and are consistent with 

previous research that demonstrated the health benefits of replacing SFAs with MUFAs 

in the diet (e.g., Allman-Farinelli et al., 2005).  

Though health concerns are important to consumers, they also want a product 

that is highly palatable. The concentration of oleic acid in beef is positively correlated 

with overall palatability (Waldman et al., 1968; Westerling and Hedrick, 1979). Baublits 

et al. (2009) reported that the concentration of MUFA (and specifically oleic acid) in 

beef was positively correlated with beef/brothy (r = 0.37) and beef fat (r = 0.44) flavors, 

indicating that as the concentration of oleic acid increases, so do beefy flavors. 

Therefore, increasing the MUFA:SFA ratio would increase the palatability as well as the 

healthfulness of beef and beef products. 

In cattle, it has not been practical to increase oleic acid in beef by feeding high-

oleic oil or oil seeds (Chang et al., 1992; St. John et al., 1987), although fatty acid 

composition varies considerably across carcass fat depots and changes with animal age 
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(Smith et al., 2012; Turk and Smith, 2009). Adipose tissue overlying the brisket is 

unusually high in MUFA, especially oleic acid, and low in palmitic and stearic acid 

(Smith et al., 2012; Turk and Smith, 2009). The plate, which is typically used as raw 

materials for ground beef production, is intermediate in SFA content, whereas the flank 

has the highest proportions of SFA (Turk and Smith, 2009). Furthermore, the proportion 

of MUFA in SC adipose tissue overlying the brisket is high even in young cattle (Smith 

et al., 2012). For this reason, brisket fat trim can be taken at virtually any production age 

to produce ground beef consistently high in oleic acid. However, we do not know if the 

fatty acid compositions of the lean trims from the brisket, flank, and plate are similar to 

that of the overlying SC adipose tissues. The objective of this study was to determine the 

fatty acid composition, trained panel flavor descriptors, and lipid-derived and Maillard-

derived volatiles of ground beef patties produced from lean and fat trims of brisket, 

flank, and plate primals. Additionally, we tested the effects of fat level (10, 20, and 30%) 

on fatty acid and flavor attributes of ground beef. We hypothesized that individual 

primal lean and fat trims can be used to formulate ground beef with unique fatty acid and 

sensory characteristics. 

Materials and Methods 

Sample collection 

The study was carried out as a randomized complete block design in a 3 × 3 

factorial arrangement. Four carcasses were selected and graded at random from 

carcasses being processed at Sam Kane Beef Processors Inc. at Corpus Christi, TX. The 

carcasses graded USDA Select and represented a variety of Bos taurus breed types and 
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backgrounds, produced at the Texas A&M University Research Center at McGregor. 

Primals were collected from both sides of the carcass and included the brisket, flank, and 

plate. After collection, carcasses were transported to Texas A&M University on ice, 

where they were frozen at -20°C. 

Sample preparation 

The day before the separation of lean and fat trim, primals were tempered at 

4°C. Lean and fat trims were separated by dissection, and the lipid content of each fat 

and lean trim was measured by gravimetric chloroform:methanol lipid extraction (Folch, 

Lees, & Stanley, 1957). Lean and fat trims were combined to contain 10, 20, or 30% 

total fat, coarse ground (1.27 cm), vacuum packaged and stored at -20°C. A final grind 

(0.32 cm) was performed and patties were formed into 136-g patties, vacuum packaged 

and stored at -20°C until further testing, typically less than 14 d after sample collection. 

The ground beef preparation was divided into 5 production days. 

Lipid extraction/fatty acid composition 

Total lipids of raw patties were extracted by a modification of the method of 

Folch et al. (1957). One hundred milligrams of homogenized, fresh ground beef was 

extracted in chloroform:methanol (2:1, vol/vol) and FAME were prepared as described 

by Morrison and Smith (1964), modified to include an additional saponification step 

(Archibeque et al., 2005). The FAME were analyzed using a Varian gas chromatograph 

(model CP-3800 fixed with a CP-8200 auto sampler, Varian Inc., Walnut Creek, CA). 

Separation of FAME was accomplished on a fused silica capillary column CP-Sil88 [100 

m × 0.25 mm (i.d.)] (Chrompack Inc., Middleburg, The Netherlands), with hydrogen as 



 

57 

the carrier gas (flow rate=35 mL/min) (split ratio 20:1). The initial oven temperature was 

150°C; oven temperature was increased at 5°C/min to 220°C and held for 22 min. Total 

run time was 52 min. Injector and detector temperatures were at 270°C and 300°C, 

respectively. Individual fatty acids were identified using genuine external standard GLC-

68D (Nu-Chek Prep, Inc., Elysian, MN). This method did not separate the 18:1trans-10 

and 18:1trans-11 peaks in all samples, so these fatty acids were combined. 

Slip points 

Melting points of the subcutaneous adipose tissue lipids were approximated by 

determining slip points (Smith et al., 1998). After heating to approximately 45°C, 

extracted lipids were drawn 1 cm into glass capillary tubes and frozen at -20°C. After 

freezing, the capillary tubes were suspended vertically in a chilled water bath with the 

portion of the tube containing the lipid submerged. The water bath was heated gradually 

and the temperature of the water was monitored with a glass thermometer (model 9095-

564, VWR International, Radnor, PA). Slip point is defined as the temperature at which 

the lipid began to move up into the capillary tube. 

Trained sensory analysis 

Descriptive flavor analysis was conducted by a trained, 4-member descriptive 

panel for 4 consecutive days after 5 d of training. Panelist evaluated samples using a 

descriptive flavor analysis, using the Spectrum Universal intensity scale where 0=none 

and 15=extremely intense for each attribute (Adhikari et al., 2011; AMSA, 1995). Each 

panelist evaluated 36 different samples, each coming from a different source of primal 

and fat percentage. Samples were assigned randomly to a different order for each day of 
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sensory evaluation. Each sample was presented with a three-digit random code and 

placed in a small clear plastic serving cup. Panelists were seated in individual booths 

separated from the sample preparation area. Panelists were also given salt-free saltine 

crackers and double-distilled, deionized water as palate cleansers to be used prior to 

evaluation of each sample. The patties were thawed for 4 h in a cooler at 4°C on each 

day of the evaluation. Patties were cooked in electric skillets (Rival, Inc., Boca Raton, 

FL., Model CKRVSK11 Skillet) set at 204°C to an average internal temperature of 

71°C. Internal temperatures were monitored by iron-constantan thermocouples (Omega 

Engineering, Stanford, CT) inserted into the geometric center of each patty and 

monitored using a digital thermometer (Omega Engineering, model HH501BT type T, 

Stamford, CT) with a type T thermocouple (Omega Engineering, model TMQSS). Once 

patties reached 71°C they were cut into eight individual pieces, providing two samples 

for each panelist. Samples were served a minimum of 4 min apart. 

Gas chromatography with mass spectrometry 

Samples were thawed and cooked the same as described for consumer sensory 

analysis at the same time samples were prepared for sensory analysis. Once samples 

were cooked, they were placed in a glass jar (473 mL) with a Teflon piece under the 

metal lid and then placed in a water bath at 60°C, where the headspace was collected 

with a solid-phase micro-extraction (SPME) Portable Field Sampler (Supelco 504831, 

75 μm Carboxen/polydimethylsiloxane, Sigma- Aldrich, St. Louis, Mo). Upon first 

receiving the SPME fibers, each fiber was conditioned for 1 h at 280°C in the GC 

injection port. The headspace above each meat sample in the glass jar was collected for 2 
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h on the SPME. Upon completion of collection, the SPME was injected in the injection 

port, where the sample was desorbed at 280°C. The sample was loaded onto the multi-

dimensional gas chromatograph into the first column (30m× 0.53mmID / BPX5 [5% 

phenyl-polysilphenylene-siloxane] × 0.5 μm, SGE Analytical Sciences, Austin, TX), 

which is nonpolar and separates compounds based on boiling point. Through the first 

column, the temperature started at 40°C and increased at a rate of 7°C/min until reaching 

260 °C. Upon passing through the first column, a program was designed to leave the 

heart-cut and cryo-trap open to forward the compounds to the second column (30 m × 

0.53 mm ID [BP20-polyethylene glycol] × 0.50 μm, SGE Analytical Sciences), which 

separates compounds due to polarity. The gas chromatography column was then split at 

a three-way valve with one column going to the mass spectrometer (Agilent 

Technologies 5975 series MSD, Santa Clara, CA) and one column going to each of the 

two sniff ports, which were heated to a temperature of 115°C, and fitted with glass nose 

pieces. The sniff ports and software for determining flavor and aroma are a part of the 

AromaTrax program (MicroAnalytics-Aromatrax, Round Rock, TX) (Harbison, 2012). 
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SAS Institute Inc., Cary, NC) with an alpha < 0.05. An initial analysis was conducted to 

examine the effects of panelist and panelist × primal and fat level interaction to validate 

the sensory panel data. Panelists × primal and fat level interactions were not significant 

(P > 0.05). Therefore, sensory data were averaged across panelists within a sample in the 

final analysis, the main effects were primal, fat level; the model also tested the fat level 

× primal interaction; these were analyzed as fixed effects. Sensory day and order served 

were defined as random effects. Least squares means were calculated and when 

significance was defined in the Analysis of Variance table, least squares means were 

separated using the pdiff function of SAS. The effects of primals and the fat level for 

lipid derived volatiles and Maillard derived volatiles were analyzed using JMP® 

Software (JMP®, Version 9.0.0, SAS Institute Inc., Cary, NC, 1989–2010). 

Statistical analysis 

For fatty acid data, data were analyzed by single-factor analysis of variance by 

the Super Anova program (Abacus Concepts, Inc., Berkeley, CA), with primal and fat 

percentages as the main effects; the model also tested the primal × fat percentage 

interaction. Means were separated by the Fisher's Protected LSD method contained in 

the same software program. Differences between means were considered significant at P 

< 0.05. For sensory data, data were analyzed using the GLM procedure of SAS (v9.3, 
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in plate fat trim. Lean trim contained a greater proportion of arachidonic acid and EPA 

than fat trim (P ≤ 0.04) (Table 8).    

Results 

Fatty acid composition of ground beef patties 

There were several differences in fatty acid composition in the fat and lean trims 

from the brisket, flank and plate (Table 8). The proportion of oleic acid was greatest in 

brisket and least in flank trims (P = 0.02); the plate was intermediate (data pooled across 

fat and lean trims). The brisket contained lesser proportions of palmitic acid and stearic 

acid than the flank or plate (P ≤ 0.003). The brisket and flank contained greater 

proportions of ALA than the plate, and the brisket and plate contained greater 

proportions of DHA than the flank. Primal × fat trim interactions were observed for 

stearic acid and ALA (P ≤ 0.04). Stearic acid was highest in the flank fat trim and lowest 

in the brisket fat and lean trims, whereas ALA was highest in brisket fat trim and lowest 
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Table 8.  Fatty acid composition of lean and fat trim from the brisket, flank, and plate 

Brisket Flank Plate P-values 

Fat Lean Fat Lean Fat Lean SEM1 Primal Trim Primal 

X trim 

Fatty acids (g/100 g of total lipid) 

14:0 4.23 3.78 4.11 4.36 4.36 3.89 0.10 0.76 0.10 0.76 

14:1n-5 1.10 1.02 0.95 2.98 1.03 0.81 0.36 0.46 0.45 0.39 

16:0 25.1 25.3 27.5 27.7 27.6 26.1 0.50 0.001 0.42 0.26 

16:1n-7 3.74 3.44 3.53 3.00 3.27 2.66 0.20 0.50 0.27 0.95 

18:0 12.5c 12.4c 16.4a 14.2ab 13.1b 14.7ab 0.40 0.003 0.76 0.05 

18:1t10 + t11 3.49 3.18 4.37 3.68 3.12 3.51 0.20 0.11 0.50 0.36 

18:1n-9 39.1 40.0 34.3 36.7 38.7 36.0 1.70 0.02 0.82 0.17 

18:1n-7 0.71 0.40 0.23 0.36 0.29 0.08 0.20 0.12 0.36 0.41 

18:2n-6 2.64 3.45 2.96 3.43 2.78 4.25 0.20 0.51 0.01 0.47 

18:3n-3 0.22a 0.16ab 0.19ab   0.12bc 0.05c 0.13bc 0.02 0.02 0.45 0.04 

20:4n-6 0.26 0.39 0.08 0.28 0.32 0.53 0.10 0.08 0.04 0.89 

20:5n-3 0.03 0.22 0.01 0.06 0.05 0.11 0.01 0.12 0.01 0.18 

22:6n-3 0.42 0.27 0.01 0.03 0.09 0.04 0.08 0.04 0.51 0.17 

MUFA:SFAd 1.07 1.08 0.81 0.94 0.97 0.89 0.03 0.004 0.65 0.19 
1SEM, standard error of the mean.  Data are means, n = 4 for each primal and trim.abcMeans in the same group (Primal or 

Trim) with common superscripts are not different (P > 0.05). 
dMUFA= total monounsaturated fatty acids (14:1n-5 + 16:1n-7 + 18:1n-9 + 18:1n-7 + 20:1n-9). SFA= total saturated fatty 

acids (14:0 + 16:0 + 18:0 + 20:0)
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Fat percentage had no effect on the proportion of fatty acids in ground beef 

patties formulated from the brisket, flank and plate (P ≥ 0.13; Table 9). Brisket ground 

beef contained higher proportions of palmitoleic acid and oleic acid (P < 0.001) and 

lesser proportions of palmitic acid and stearic acid (P ≤ 0.04) than ground beef 

formulated from the flank or the plate. The MUFA:SFA ratio was highest for the brisket 

and lowest for the plate, but there was no difference in the n-6:n-3 ratio across primals or 

fat levels (Table 9). 

Slip points 

The mean slip point values for lipids from the brisket, flank, and plate were 

33.7°C, 38.0°C and 34.9°C, respectively (Table 9). The slip point was highest for the 

flank and lowest for the brisket; the plate was intermediate and not different from either 

the brisket or the flank (P = 0.001). Fat percentage had no effect on slip point (P = 0.41). 

Trained panel sensory panel attributes 

Table 7 contains the definitions and reference standards for meat descriptive 

flavor aromatics and basic taste sensory attributes and their intensities. The brisket and 

plate had higher fat-like values than the flank (P = 0.006), and the brisket had higher 

bloody/serumy values than the flank (P = 0.02) (Table 10). Although the descriptor 

scores were very low, the brisket patties also had higher green hay-like flavors than the 

flank (P ≤ 0.02), but the brisket and plate were not different for these flavor descriptors. 

Fat level increased fat flavor values (P = 0.008) and green hay-like flavor values (P = 

0.01), which increased as fat level increased. 
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Table 9. Fatty acid composition of raw ground beef patties formulated at three fat levels from the brisket, flank, and 

plate 

 

 Primal  Fat percent                  P-values1 

   Brisket   Flank   Plate  10 20 30 SEM2 Primal Fat % 

Fatty acids (g/100 g of total lipid) 

14:0 3.43 3.63 3.61 3.48 3.55 3.64 0.08 0.54 0.70 

14:1n-5 0.77 0.56 0.68 0.67 0.74 0.60 0.04 0.14 0.38 

16:0 23.6b 25.1a 24.2ab 24.2 24.3 24.5 0.23 0.04 0.80 

16:1n-7 3.33a 2.46c 2.97b 2.88 2.94 2.98 0.09 0.001 0.93 

18:0 14.2c 19.1a 16.4b 16.3 16.5 16.6 0.44 0.001 0.65 

18:1t10 + t11 4.65 4.63 4.42 4.47 4.57 4.66 0.21 0.89 0.93 

18:1n-9 39.4a 34.6c 37.1b 37.2 37.2 36.8 0.49 0.001 0.66 

18:1n-7 0.22 0.17 0.25 0.19 0.29 0.17 0.05 0.87 0.62 

18:2n-6 3.47 3.45 2.99 3.58 3.21 3.09 0.16 0.44 0.48 

18:3n-3 0.42 0.36 0.40 0.39 0.42 0.38 0.02 0.42 0.69 

20:4n-6 0.16 0.16 0.15 0.16 0.15 0.16 0.01 0.75 0.88 

20:5n-3 0.12 0.12 0.11 0.11 0.11 0.12 0.01 0.80 0.85 

22:6n-3 0.13 0.06 0.10 0.11 0.07 0.11 0.02 0.26 0.50 

MUFA:SFA3 1.03a 0.77c 0.99b 0.91 0.91 0.89 0.02 0.001 0.64 

n-6:n-34 5.49 6.68 5.20 6.21 5.73 5.32 0.27 0.09 0.45 

Cooking loss 30.3 34.4 33.1 30.0 32.9 34.9 1.01 0.24 0.14 

Slip point 33.7b 38.1a 34.9ab 34.9 36.1 35.4 0.47 0.001 0.41 
1Primal x Fat % interactions were not significant (P > 0.05).  abcMeans in the same row with common superscripts are not 

different (P > 0.05).   
2SEM, standard error of the mean.  Data are means, n = 12. 
3MUFA= total monounsaturated fatty acids (14:1n-5 + 16:1n-7 + 18:1n-9 + 18:1n-7 + 20:1n-9). SFA= total saturated fatty 

acids (14:0 + 16:0 + 18:0 + 20:0).  4n-6:n-3 = (18:2n-6 + 20:4n-6)/(18:3n-3 + 20:5n-3 + 22:6n-3).
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Table 10. Flavor descriptors and off-flavors in cooked ground beef patties formulated from the brisket, flank, and 

plate 

 

 Primal Fat Percent  P-values1 

 Brisket Flank Plate 10 20 30 RSME2 Primal Fat % 

          

Beef identity 7.14 7.44 7.44 3.71 3.59 3.55 0.57 0.47 0.43 

Brown/roasted 0.72 0.82 0.78 0.82 0.56 0.62 0.83 0.37 0.70 

Bloody/serumy 1.84a 1.33b 1.55ab 1.65 1.58 1.49 0.35 0.02 0.72 

Fat-like 3.53a 2.97b 3.64a 3.01b 3.37b 3.77a 0.38 0.006 0.008 

Metallic 2.06 1.85 2.02 1.99 1.95 1.99 0.33 0.40 0.94 

Green hay-like 0.07a 0.01b -0.01bc -0.02c 0.04b 0.05ab 0.04 0.004 0.01 

Umami 0.02 0.11 0.08 0.08 0.08 0.04 0.19 0.60 0.90 

Overall sweet 0.38 0.64 0.51 0.46 0.54 0.53 0.26 0.13 0.80 

Sweet 0.40 0.67 0.39 0.40 0.47 0.60 0.25 0.07 0.35 

Bitter 1.59 1.36 1.47 1.44 1.28 1.71 0.39 0.47 0.11 

Sour 2.06 1.49 2.06 1.96 1.69 1.96 0.52 0.06 0.45 

Salty 1.29 1.38 1.42 1.33 1.43 1.34 0.24 0.56 0.60 

Sour Aromatic 0.09 0.04 0.22 0.12 0.15 0.08 0.17 0.16 0.75 

Heated Oil 0.12 0.20 0.11 0.07 0.23 0.14 0.23 0.70 0.36 

Warmed-over Flavor 0.11 0.04 -0.01 0.09 0.03 0.03 0.13 0.20 0.55 

Refrigerator_Stale 0.15 0.25 0.03 0.19 0.09 0.16 0.21 0.20 0.60 

Medicinal 0.10 0.21 0.02 0.04 0.19 0.11 0.15 0.09 0.12 

Burnt 0.18 -0.01 0.37 0.06 0.07 0.41 0.66 0.57 0.53 
1Primal x fat % interactions were not significant (P > 0.05).  Data are means, n = 12.  abcLeast square means in the same row 

with common superscripts are not different (P > 0.05). 
2RMSE = Root Mean Square Error. 



 

66 

Correlations among fatty acids, trained panel descriptive sensory panel flavor 

attributes, and slip points 

Beef identity increased as linoleic acid and arachidonic acid decreased (P < 0.05) 

(Table 11), and patties with higher proportions of arachidonic acid had higher values for 

bloody, metallic and sour flavors (P < 0.01). As myristoleic acid increased, salty flavor 

decreased, and myristic acid and myristoleic acid were moderately and positively 

correlated to metallic flavors (P < 0.05). The proportion of palmitic acid was not 

correlated to any sensory panel flavor attributes, but palmitoleic acid was negatively 

related to umami, sweet, and salty flavors and positively related to sour flavors. As 

stearic acid increased, umami, overall sweet, sweet, and heated oil flavors increased and 

sour flavor decreased. Higher proportions of 18:1trans-10 plus 18:1trans-11 resulted in 

lower burnt flavors, and higher proportions of oleic acid resulted in lower heated oil and 

medicinal flavor attributes. Slip points were positively correlated with the proportions of 

palmitic acid and stearic acid and negatively correlated with oleic acid (Table 11). 

Lipid-derived volatiles 

Patties from the brisket had less 2-heptenal, decane, nonane, 2-octanone, 

dodecane, nonenal, heptanal, pentanal, octane, and octanal, but more butanoic (butyric) 

acid and 2-nonenal than those from the plate; flank patties were intermediate (P < 0.05) 

(Table 12). Patties with 20 or 30% fat generally had greater amounts of lipid-derived 

volatiles except for dodecane and nonenal (tallow, fatty). The 20% fat patties had higher 

amounts of nonane, octane, and octanal than the 10 or 30% fat patties (P ≤ 0.01). 
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Table 11. Simple correlations coefficients between fatty acid composition, trained descriptive sensory panel flavor 

attributes, and slip points 
 

 Fatty acids 

Flavor descriptors 14:0 14:1n-5 16:0 16:1n-7 18:0 18:1trans 18:1n-9 18:1n-7 18:2n-6 20:4n-6 

Beef  0.04 -0.24 -0.03  -0.07  0.20  0.08 -0.01  0.09 -0.32* -0.38* 

Brown  0.17 -0.04  0.20   0.10 -0.01 -0.10  0.01 -0.09 -0.29 -0.05 

Bloody -0.07  0.17 -0.02  -0.08 -0.07 -0.10 -0.07 -0.03  0.31  0.38** 

Fat -0.08  0.05 -0.03   0.07 -0.15 -0.13  0.05 -0.03  0.01  0.15 

Metallic  0.35*  0.36*  0.24   0.13 -0.15 -0.14 -0.08 -0.23  0.08  0.33** 

Green Hay -0.17 -0.01 -0.22   0.01 -0.09  0.25  0.04  0.27  0.01  0.10 

Umami -0.11 -0.25 -0.08  -0.33*  0.34* -0.04 -0.27 -0.08  0.03 -0.27 

Osweet -0.04 -0.10  0.02  -0.20  0.31*  0.06 -0.14 -0.25 -0.11 -0.24 

Sweet -0.23 -0.23 -0.06  -0.41**  0.40** -0.02 -0.26 -0.13  0.10 -0.05 

Sour  0.27  0.28  0.02   0.32* -0.35*  0.08  0.13  0.01  0.01  0.39** 

Salty -0.23 -0.35*  0.05  -0.33*  0.28  0.09 -0.31 -0.09  0.27  0.01 

Bitter -0.01  0.02 -0.01   0.06 -0.15 -0.10  0.09 -0.01  0.01  0.25 

Sour A  0.13 -0.01 -0.05   0.15 -0.14 -0.03  0.08 -0.22 -0.09 -0.16 

Heated Oil  0.05 -0.05  0.16  -0.30  0.31*  0.30 -0.36* -0.06 -0.05  0.07 

WOF  0.01  0.18 -0.16   0.24 -0.27  0.05  0.23  0.14  0.15  0.13 

Medicinal  0.20 -0.09  0.31  -0.29  0.27  0.10 -0.45** -0.03  0.06  0.05 

Burnt -0.09  0.02  0.13   0.03 -0.06 -0.41** -0.07 0.02  0.03  0.19 

Refrigerator Stale  0.09  0.12  0.09   0.02  0.14  0.20 -0.05  0.03 -0.05  0.04 

Slip points  0.19 -0.08  0.36* -0.31  0.53*** -0.27 -0.39*  0.10 -0.30 -0.18 

*P < 0.05 

**P < 0.01 

***P < 0.001
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Table 12. Lipid-derived volatiles of cooked ground beef patties formulated from the brisket, flank, and plate3 

 

 Primal  Fat Percent                  P-values1 

 Brisket Flank Plate  10 20 30 RSME2  Primal  Fat % 

2-Heptenal (soapy, 

fatty, almond, fishy) 

0b 7,543ab 20,910a  3,437 16,223 8,792 16,205 0.03 0.25 

Decane 0b 537b 6,269a  1,293 2,208 3,304 5,106 0.02 0.68 

Nonane (sour, burnt, 

cracker) 

0c 2973b 6,999a  339b 8,407a 1,225b 2,342 0.001 0.001 

2-Octanone (fruity, 

musty) 

0b 897a,b 4,354a  3,811 897 541 3,763 0.04 0.14 

Dodecane 0 0 3,076  2,316 0 759 3,146 0.06 0.28 

Nonenal (tallow, 

fatty) 

6,588b 24,027ab 49,214a  27,852 26,536 25,440 33,891 0.04 0.98 

Butanoic acid 

(putrid, vomit) 

144 954 124  366 378 477 279 0.08 0.95 

2-Nonenal 

(cardboard, paper) 

40,088a 1,459b 0b  516 4,379 36,652 35,668 0.04 0.07 

Heptanal (nutty, 

fatty, green) 

48,857b 348,699a 608,451a  24,777 521,378 236,853 290,064 0.001 0.08 

2-Octene 2,912 30,043 14,937  7,575 13,038 27,279 24,579 0.08 0.21 

Pentanal (almond, 

malt, pungent, acrid) 

52,873b 151,822a 75,703b  58,414 135,802 86,182 68,880 0.01 0.07 

Octane (meaty) 69,044b 153,473a,b 237,684a  102,345b 235,892a 102,345b 96,101 0.004 0.01 

Octanal 

(orange,soapy, 

lemon,green) 

244,414b 455,150a 531,138a  315,838b 561,526a 353,339b 157,458 0.002 0.006 

1Primal x fat% interactions were not significant (P > 0.05).  Data are means, n = 12.  abcLeast square means in the same row 

with common superscripts are not different (P > 0.05). 
2RMSE = Root Mean Square Error   3Units are equivalent to total ion counts.
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Table 13. Maillard-derived volatiles of cooked ground beef patties formulated from the brisket, flank, and plate3 

 

 Primal  Fat Percent                  P-values1 

 Brisket Flank Plate  10 20 30 RSME2 Primal Fat 

% 

Trimethyl pyrazine  

(nutty, roasted, smokey, 

burnt) 

0b 9,609ab 66,841a 0b 7,6450a 0b 62,821 0.05 0.02 

Butyl-cyclopentane 0b 724ab 4,250a 0b 4,363a 612b 3,849 0.05 0.05 

1-

Butylpentyltrifluoromethane 

sulfonate 

0b 717a 0b 0b 717a 0b 650 0.04 0.04 

Hexamethyl-cyclotrisiloxane 987b 5,151ab 10,519a 4,204ab 11,725a 728b 7,843 0.04 0.02 

Thiobis-methane 1,609a 0b 414ab 1,100 923 0 1,429 0.05 0.21 

2-Furancarboxaldehyde  

(meaty, caramel) 

8,838a 1,349b 9,558a 6,798 5,518 7,428 7,313 0.05 0.84 

Benzene, methyl 11,080b 7,957b 34,489a 32,749a 17,290ab 3,488b 21,620 0.03 0.02 

1-(1H-pyrrol-2-yl)-Ethanone 39,046 13,646 21,370 38,391 22,275 13,396 26,545 0.13 0.13 

Benzeneacetaldehyde 65,336b 45,403
b 

147,840a 121,161a 114,853a 22,564b 87,543 0.04 0.03 

Benzene ethanol 906.4 590 152 633 0 1,016 1,173 0.38 0.19 

3-Hydroxy-2 butanone 

(buttery) 

248,338 170,13

8 

41,757 87,559 100,224 272,449 189,973 0.07 0.08 

Trimethyl pyrazine  

(nutty, roasted, smokey, 

burnt) 

0b 9,609ab 66,841a 0 76,450a 0b 62,821 0.05 0.02 

Butyl-cyclopentane 0b 724ab 4,250a 0 4,363a 612b 3,849 0.05 0.05 
1Primal x fat % interactions were not significant (P > 0.05).  Data are means, n = 12.  abcLeast square means in the same row 

with common superscripts are not different (P > 0.05). 
2RMSE = Root Mean Square Error.  3Units are equivalent to total ion counts.
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Maillard-derived volatiles 

Trimethyl pyrazine (an important nutty, roasted, smokey, burnt aroma), butyl-

cyclopentane, and 1-butylpentyltrifluoromethanesulfonate were absent in samples from 

the brisket, and thiobis-methane was not present in flank patties, while each was present 

in the other beef patty types (P ≤0.05) (Table 13). Brisket patties had higher amounts of 

2-furancarboxaldehyde (a meaty, caramel aroma) than flank patties (P < 0.05), whereas 

the plate patties generally contained more Maillard-derived volatiles than the other patty 

types. 

Discussion 

One finding of this study is that ground beef derived from each of the three 

primals had unique profiles of lipid-derived and Maillard-derived volatiles. Though 

water-soluble compounds are responsible for the “meaty” flavor, lipids produce the 

species-specific flavors (Koutsidis et al., 2008).  When lipids undergo oxidation or 

Maillard reaction during cooking, the volatile compounds they produce contribute to 

create unique flavor profiles (Wood et al., 2004). In this study, MUFA were not 

associated with beef flavor attributes. This is in contrast to the findings of Melton et al. 

(1982), who demonstrated that palmitoleic acid and oleic acid were positively correlated 

and stearic acid negatively correlated with beef flavor attributes. Instead, in this study 

stearic acid was positively associated with umami, sweet, and heated oil attributes. 

Similar to Melton et al. (1982), linoleic acid and arachidonic acid were negatively 

correlated with cooked beef fat flavor. Overall, stearic acid was highly correlated with 
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beef flavors, contrary to our hypothesis that oleic acid would be positively correlated to 

cooked ground beef flavor attributes. 

Aroma descriptors associated with each aromatic compound are reported based 

on previous research by others (see Calkins and Hodgen, 2007; Moon et al., 2006 for 

review). Aromas and flavors associated with beef are derived from a complex interaction 

of volatiles. Many of the individual compounds (e.g., butyric acid) by themselves may 

have an undesirable aroma but contribute significantly to the positive beef aroma. Many 

of the most important volatiles contain sulfur (rotten egg aroma) at high concentrations, 

but have meaty/brothy aromas at very low concentrations. Raw meat has very little 

flavor or aromas (Mottram, 1998). Aroma/flavor compounds are generated during the 

cooking process through the heating of the meat product and are generated through two 

general paths: thermal degradation of lipid and non-polar compounds; and Maillard 

reaction products. The latter are derived from the thermal reaction of amino acids with 

carbohydrates (mostly sugars, especially ribose, derived from the degradation of 

DNA/RNA) at higher temperatures and in the absence of water. In general, ground beef 

patties from the plate generated higher amounts of lipid-derived volatiles than those 

from the brisket. Brisket patties had greater 2-furancarboxaldehyde (a meaty, caramel 

aroma) and 2-nonenal (cardboard, paper), whereas patties from the plate generally had 

greater amounts of both lipid-derived and Maillard-derived volatiles. 

Because of the direct relationship between lipids and the lipid-derived 

classification of volatiles, it was expected that the fat percentage in the ground beef 

would affect the amounts of lipid-derived volatiles. Mottram (1998) reported that the 
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amount and types of fat interfere with many of the chemical reactions that generate 

volatiles; while this is mostly recognized in Maillard products, it is plausible that higher 

concentrations of fat (> 20%) block the formation of some of these lipid-derived 

volatiles. This phenomenon also can be seen in the impact of fat percentage on the 

Maillard products reported here; patties that contained the highest fat level also had the 

least volatiles in all but one of the detected Maillard compounds. This agrees with 

Mottram (1998) in that the formation of many of the Maillard products is retarded as the 

percentage fat in the meat increases, as it directly interferes with chemical reactions 

within the Maillard reaction. 

We previously demonstrated that fat trim from the brisket contained a higher 

percentage of MUFA than fat trim from the flank and plate (Smith et al., 2012; Turk and 

Smith, 2009), and these results were confirmed in this study. Oleic acid is the most 

abundant fatty acid in ground beef produced from fat and lean trim of commercial beef 

cattle (reviewed in Adams et al., 2010; Turk and Smith, 2009). This is due to the high 

SCD activity present in adipose tissue and muscle of beef cattle (Archibeque et al., 2005; 

St. John et al., 1991). Stearoyl-CoA desaturase is responsible for the synthesis of MUFA 

from SFA in animal tissues and its activity is highly sensitive to dietary manipulation 

and animal age. In beef cattle fed grain-based diets, the concentration of MUFA (and 

especially oleic acid) increases with time on feed (Chung et al., 2006; Gilmore et al., 

2011; Huerta-Leidenz et al., 1996; Smith et al., 2012), as SCD activity and gene 

expression increase with time fed a high-grain diet (Brooks et al., 2011; Chung et al., 

2007). Slip point values differ between adipose tissue depot depending on the size and 
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extent of differentiation of adipocytes (i.e., larger adipocytes have higher concentrations 

of MUFA) (Smith et al., 2006).  As the percentage of stearic acid decreases in adipose 

tissue, slip point also decreases due to the high melting point of stearic acid 

(approximately 70 °C) (Wood et al., 2004). The current study is consistent with earlier 

studies (Chung et al., 2006; Smith et al., 1998; Wood et al., 2004) that reported that the 

proportion of stearic acid in lipids has the greatest effect on lipid melting points. 

The MUFA:SFA ratio of brisket fat trim was unusually low in the current study 

(1.07). In previous studies, we demonstrated that the MUFA:SFA ratio in brisket was 

greater than 1.4 at 9 mo of age, and increased to over 1.6 by 14 mo of age (Smith et al., 

2012; Turk & Smith, 2009). Similarly, the MUFA:SFA ratios of the flank and plate were 

less than that reported previously (Smith et al., 2012; Turk and Smith, 2009). The 

primals used for the current study were obtained at random from a commercial abattoir, 

and graded USDA Select. We have demonstrated that the MUFA:SFA ratio increases 

with USDA Quality Grade (Brooks et al., 2011; Chung et al., 2006), and the low 

MUFA:SFA ratios observed in the current study in part can be explained by the lesser 

quality grades of these beef carcasses. However, the unusually low MUFA:SFA ratios 

also suggest that these cattle spent a limited amount of time on a grain-based diet; 

pasture feeding of cattle strongly depresses SCD activity and the concentration of 

MUFA in beef cattle (Brooks et al., 2011; Chung et al., 2006, 2007; Duckett et al., 2009; 

Gilmore et al., 2011; Leheska et al., 2008). 

The MUFA:SFA ratios we observed across types of ground beef (0.77–1.03) 

were of sufficient magnitude to elicit different responses in risk factors for 
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cardiovascular disease. In normocholesterolemic men, consumption of low-MUFA 

ground beef produced from pasture fed cattle (MUFA:SFA = 0.71) had no effect on 

HDL-cholesterol concentrations, but consumption of high-MUFA ground beef from 

grain-fed cattle (MUFA:SFA = 1.10) significantly increased HDL-cholesterol 

concentrations (Gilmore et al., 2011). In that study, the ground beef patties contained 

24% total fat, so ground beef from grass-fed and grain-fed cattle contained 10.1 and 13.3 

g oleic per 114 g patty. In the current study, 10, 20, and 30% fat ground beef from the 

brisket would have contained an estimated 4.1, 9.0, and 13.4 g oleic acid per 114 g patty, 

so the amount of oleic acid in 30% fat brisket ground beef was similar to that in ground 

beef from grain-fed cattle used in our previous study. 

The ground beef formulated in this study contained small but perhaps significant 

amounts of ALA. We estimate that 30% ground beef (regardless of primal source) would 

have contained 130mg ALA per 114 g patty. This is higher than we reported previously 

for 24% fat ground beef from grass-fed cattle (90 mg per 114-g patty). We do not know 

the background of these cattle, but the relatively high proportion of ALA suggests that 

they spent a significant amount of time consuming grasses before entering the feedlot. 

The Daily Reference Intake (RDI) for ALA (average for men and women, all ages) is 1.4 

g/d (reviewed by Gebauer et al., 2006), so a ground beef patty from this study containing 

30% total fat would provide approximately 9% of the RDI for ALA. Thus, ground beef 

formulated from the brisket not only contributes to dietary oleic acid intake, but also 

provides at least a portion of the RDI for ALA. 



 

75 

Conclusions 

The results from this study have demonstrated that ground beef produced from 

brisket, flank and plate had unique fatty acid and functional characteristics. Brisket had a 

higher fat-like flavor attribute than the flank, and also was lower in unpleasant 

headspace volatiles and highest in pleasant headspace volatiles. We conclude that these 

primals can be used to produce ground beef products with distinctive compositional and 

flavor attributes. Furthermore, the differences in fatty acid composition are sufficient to 

elicit different responses in risk factors for cardiovascular disease. The current study and 

our previous research with brisket adipose tissue (Smith et al., 2012; Turk and Smith, 

2009) will provide the impetus for the industry to produce beef products that include 

brisket lean and/or brisket fat trim.
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CHAPTER VI  

SUMMARY 

  

We predicted that “glucogenic” diets, which provide more glucose for absorption 

from the small intestine would promote marbling development, hence juiciness, to a 

greater extent than propiogenic diets.  High concentrate diets doubled glucose 

incorporation into fatty acids in subcutaneous adipose tissue as measured in vitro, but 

had no effect on acetate incorporation into fatty acids in intramuscular adipose tissue.  

Intramuscular adipose tissue uses glucose for a greater proportion of the carbon source 

for de novo fatty acid biosynthesis than SC adipose tissue. 

Contrary to our hypothesis, marbling scores were not different among treatment 

groups, although the acetate-infused steers had the highest fat thickness and yield grades. 

The greater adiposity of the acetate-infused steers indicates that the increased availability 

of acetate for fatty acid synthesis was sufficient to promote greater carcass fatness than 

was seen with the other treatments.  It also is possible that the excessive fatness of the 

acetate-infused steers caused the depression in de novo fatty acid synthesis. 

 The rate of acetate incorporation into fatty acids in subcutaneous adipose tissue 

of the acetate-infused steers was less than 25% of the rate in the other treatment groups.  

Also, propionate infusion, and not glucose infusion, caused the greatest rates of 

glyceride-fatty acid synthesis in intramuscular adipose tissue. 
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Infusion of acetate elicited the highest taste panel juiciness and steaks from the 

acetate, abomasal glucose-infused, and ruminal glucose-infused steers were higher in the 

flavor attributes brown/roasted, fat-like, and overall sweet, and lower in bitter off-flavor, 

than steaks from the propionate-infused steers. This study demonstrated that propionate 

infusion decreased positive flavor attributes, even though propionate is a gluconeogenic 

precursor. 

Though consumers want to enjoy a palatable meal, they are very health 

conscious. Ground beef from cattle fed high-grain diets has higher MUFA:SFA ratios 

than conventional ground beef.  Practical increases in MUFA, especially oleic acid, have 

been shown to increase HDL cholesterol and other positive risk factors for 

cardiovascular disease. Though not practical to increase oleic acid in beef by feeding 

high-oleic oil, fatty acid composition varies considerably across carcass fat depots. The 

results from these studies have demonstrated that ground beef produced from brisket, 

flank and plate had unique fatty acid and functional characteristics and positive flavor 

characteristics. 
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