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ABSTRACT

A common method to solving coupled radiation-hydrodynamics simulations is

to use the Implicit Monte Carlo method as the radiation solve and the BHR-2 mix

model for the hydrodynamics solve. This methodology has been shown to be sus-

ceptible to the stochastic noise inherent to IMC. This thesis shows why the BHR-2

is susceptible to the noise, and why linear filters are not the best solution to allevi-

ating this susceptibility. A finite element representation is derived to approximate

the gradient of the energy density, which is the coupling quantity between the ra-

diation and hydrodynamics solve. Results using this finite element estimator, are

presented for two problems of different complexity, and compared to results using a

finite difference method to approximate the energy density gradient. The estimator

is shown to reduce the variance in the gradient, which would lead to a decrease in

the computational cost of IMC/BHR-2 simulations, and increase their robustness to

stochastic noise.
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NOMENCLATURE

BHR Besnard-Harlow-Rauenzahn

FINMCOOL Fully Implicit Monte Carlo Object-Oriented Language

(IMC code developed at TAMU)

IMC Implicit Monte Carlo

jk jerk (unit of energy equivalent to 109 Joules)

KH Kelvin-Helmholtz

LANL Los Alamos National Laboratory

LTE Local Thermodynamic Equilibrium

QoI Quantity of Interest

RANS Reynolds-Averaged Navier-Stokes equations

RM Richtmyer-Meshkov

RT Rayleigh-Taylor

sh shake (unit of time equivalent to 10−8 seconds)

TAMU Texas A&M University

TRT Thermal Radiative Transfer
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1. INTRODUCTION

The ever-expanding capabilities of modern supercomputing machines have led to

a push for simulations to be able to simultaneously solve multiple physical phenom-

ena, typically in completely differing physical regimes. These capabilities in these

simulations, so-called multi-physics codes, are a driving force in the motivation for

this thesis. A solution technique for a specific physical model may be accurate when

the model is solved independently, however when the model is coupled in a multi-

physics code, the code may yield inaccurate results caused by the solution technique.

An example of such behavior is the coupling of a Reynolds-Averaged Navier-Stokes

(RANS) hydrodynamics model, such as BHR2, to a stochastic radiation transport

model such as Implicit Monte Carlo (IMC).

The ability to couple radiative transfer and hydrodynamics models has a wide

range of applications: inertial confinement fusion, astrophysical processes, and stock-

pile stewardship, to name a few. All of these applications hinge on the multi-physics

simulation’s ability to accurately treat the material boundary and the amount of

material mixing caused by turbulent processes.

This work shows why a manageable drawback to the IMC method, stochastic

noise in the energy density, is exacerbated when coupled to the BHR2 model via the

pressure gradient. Furthermore, it shows how the gradient of the net deposited energy

density can computed without a finite difference over noisy data using FINMCOOL,

an IMC code developed at Texas A&M University. This, in turn, leads to a smoother

pressure gradient term for the BHR2 model which leads to less noise-seeded Rayleigh-

Taylor instabilities at the material interface.
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1.1 The BHR2 Model

The BHR model [2], a turbulence model for variable density and compress-

ible flows developed at Los Alamos National Laboratory, is closed set of equa-

tions that evolve the quantities needed to close the Reynolds-averaged Navier-Stokes

(RANS) equations. BHR2 aims to model the physics involved in variable density

turbulence, including Kelvin-Helmholtz (KH) [5, 7], Rayleigh-Taylor (RT) [12, 16],

and Richtmyer-Meshkov (RM) [13, 11] turbulence-driven instabilities. The original

derivation of the governing equations and the assumptions used for closure of the

BHR model can be found in Ref. [2], as well as some variations of the original model

[15, 3, 8, 14, 1]. Therefore, the derivation of the BHR model will not be presented

here. However, it is important to note that RANS equations can employ ensemble

averaging using both Reynolds decomposition and Favre decomposition. An ensem-

ble average is typically determined following many experiments or simulations which

give a distribution of results consisting of a mean and a deviation (or fluctuation)

from the mean. Reynolds decomposition is a uniformly-weighted average,

X = X̄ +X ′, (1.1)

where X is a QoI, the overbar denotes the mean and the single prime denotes the

fluctuating component. Similarly, Favre decomposition is a mass-weighted average,

X = X̃ +X ′′, (1.2)

where the tilde is the mass-weighted average component of the QoI X,

X̃ = ρX

ρ̄
, (1.3)
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and the fluctuating component about X̃ is represented by the double prime. This

notation is used throughout the thesis. The three-dimensional BHR2 equations, as

implemented in RAGE, are given by,

∂ρ̄K

∂t
+ ∂ρ̄Kũn

∂xn︸ ︷︷ ︸
Advection

= an
∂P̄

∂xn︸ ︷︷ ︸
Buoyancy
Production

− Rin
∂ũn
∂xn︸ ︷︷ ︸

Shear
Production

+ ∂

∂xn

(
ρ̄νt
σk

∂K

∂xn

)
︸ ︷︷ ︸
Turbulent Transport

(Diffusion)

− ρ̄
K3/2

L︸ ︷︷ ︸
Turbulent
Dissipation

, (1.4a)

∂ρ̄L

∂t
+ ∂ρ̄Lũn

∂xn︸ ︷︷ ︸
Advection

= L

K

[ (3
2 − C4

)
an
∂P̄

∂xn︸ ︷︷ ︸
Buoyancy Production

−
(3

2 − C1

)
Rin

∂ũn
∂xn︸ ︷︷ ︸

Shear Production

]

− C3ρ̄L
∂ũn
∂xn︸ ︷︷ ︸

Shear
Production

+ ∂

∂xn

(
ρ̄νt
σε

∂L

∂xn

)
︸ ︷︷ ︸
Turbulent Transport

(Diffusion)

−
(3

2 − C2

)
ρ̄K1/2

︸ ︷︷ ︸
Turbulent
Dissipation

, (1.4b)

∂ρ̄ai
∂t

+ ∂ρ̄aiũn
∂xn︸ ︷︷ ︸

Advection

= Ca2b
∂P̄

∂xn︸ ︷︷ ︸
Buoyancy
Production

− Rin

ρ

∂ρ̄

∂xn︸ ︷︷ ︸
Production

− ρ̄an
∂(ũi − ai)

∂xn︸ ︷︷ ︸
Production

+ ρ̄
∂aian
∂xn︸ ︷︷ ︸

Transport

+ ∂

∂xn

(
νt
ρ̄σa

∂ai
∂xn

)
︸ ︷︷ ︸
Turbulent Transport

(Diffusion)

−Ca1ρ̄ai
K1/2

L︸ ︷︷ ︸
Turbulent
Dissipation

, (1.4c)

∂ρ̄b

∂t
+ ∂ρ̄bũn

∂xn︸ ︷︷ ︸
Advection

= 2ρ̄an
∂b

∂xn︸ ︷︷ ︸
Production

− 2 (b+ 1) an
∂ρ̄

∂xn︸ ︷︷ ︸
Production

+ ρ̄2 ∂

∂xn

(
νt
ρ̄σb

∂b

∂xn

)
︸ ︷︷ ︸
Turbulent Transport

(Diffusion)

−Cbρ̄
K1/2

L
b︸ ︷︷ ︸

Turbulent
Dissipation

,

(1.4d)

and

∂ρ̄c̃k

∂t
+ ∂ρ̄c̃kũn

∂xn︸ ︷︷ ︸
Advection

= ∂

∂xn

(
ρ̄νt
σc

∂c̃k

∂xn

)
︸ ︷︷ ︸

Diffusion

, (1.4e)
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where

R = Reynolds stress tensor, (1.5a)

K = 1
2tr (R) = turbulent kinetic energy, (1.5b)

L = turbulent length scale, (1.5c)

a = turbulent mass flux velocity, (1.5d)

b = −ρ′
(

1
ρ

)′
= density-specific volume correlation, (1.5e)

x = position vector, (1.5f)

t = time, (1.5g)

ρ̄ = uniformly-weighted average fluid density, (1.5h)

P̄ = uniformly-weighted average pressure, (1.5i)

ũ = mass-weighted average fluid velocity, (1.5j)

νt = CµL
√
K = turbulent viscosity, (1.5k)

c̃ = mass-weighted species concentration. (1.5l)

and C1, C2, C3, C4, Ca1, Ca2, Cb, σa, σb, σc, σε, and σk are model parameters, i and

n are directional indices, and k is the material species index. The pressure term in

these equations is directly related to the material temperature through the equation

of state. In turn, radiative transfer equations affect the material temperature. This

is how a hydrodynamics solver, such as the BHR2 model, is coupled to a radiation

solver, such as Implicit Monte Carlo.

1.2 Thermal Radiative Transfer

The thermal radiative transfer (TRT) equations are introduced for one spatial

dimension (0 ≤ x ≤ X), which only requires a single angular variable, µ = cos θ,

4



where θ is the angle between the particle direction and the positive x-axis. This

geometry prescription is often called "slab geometry" and is made to simply repre-

sent the TRT equations. While simple, this problem geometry still allows one to

adequately investigate many problems of interest. It is assumed that no scattering

is present and the system is in local thermodynamic equilibrium (LTE). The LTE

assumption physically represents a material that is in thermal equilibrium, emitting

photons in a Planckian spectrum at the local material temperature. The equations

are

1
c

∂I

∂t
(x, µ, ν, t) + µ

∂I

∂x
(x, µ, ν, t) + σa (x, ν, T ) I (x, µ, ν, t)

= 2πσa (x, ν, T )B (ν, T ) + Q

2 (x, ν, t) , (1.6a)

cv (x, T ) ∂T
∂t

(x, t) =
∫ ∞

0

∫ 1

−1
σa (x, ν ′, T ) [I (x, µ′, ν ′, t)− 2πB (ν ′, T )] dµ′dν ′, (1.6b)

and have arbitrarily defined boundary conditions for I (x, µ, ν, t) and initial condi-

tions for I (x, µ, ν, t) and T (x, t). The terms in the TRT equations are:

I = chνn (x, µ, ν, t) = specific intensity, (1.7a)

n (x, µ, ν, t) = mean number of photons per unit phase space,

(1.7b)

c = 299.792458 cm/sh = speed of light, (1.7c)

h = 6.6260693× 10−35 jk-sh = Planck’s constant, (1.7d)

T = T (x, t) = material temperature (keV), (1.7e)
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B = B (ν, T ) = Planck’s function for radiation,

= 2hν3

c2

(
ehν/T − 1

)−1
, (1.7f)

Q = Q (x, ν, t) = isotropic photon source, (1.7g)

cv = cv (x, T ) = specific heat of material, (1.7h)

σa = σa (x, ν, T ) = absorption opacity,

= (probability of absorption per unit distance). (1.7i)

In this system of equations all of the quantities are problem-dependent prescriptions,

except for the specific intensity and the material temperature. At this point it is use-

ful to introduce the material and radiation energy densities, Um and Ur, respectively.

They are defined as,

∂Um
∂T

= cv, (1.8a)

Ur = aT 4, (1.8b)

where

a = 8π5k4

15h3c3 = 0.01372 jk
cm3 keV4 . (1.9)

1.2.1 The Gray Approximation

A common approximation for the TRT equations is to integrate B, I, and Q over

the entire frequency domain and assume the intensity is Planckian. This is frequently

referred to as the gray approximation. Under this approximation, Eqs (1.6) become,

6



1
c

∂I

∂t
(x, µ, t) + ∂I

∂x
(x, µ, t) + σa (x) I (x, µ, t)

= σa (x) ac2 T
4 + Q

2 (x, ν, t) , (1.10a)

cv (x, T ) ∂T
∂t

(x, t) =
∫ 1

−1
σa (x)

[
I (x, µ′, t)− ac

2 T
4
]
dµ′, (1.10b)

when

I (x, µ, t) =
∫ ∞

0
I (x, µ, ν, t) dν, (1.11a)

Q (x, t) =
∫ ∞

0
Q (x, ν, t) dν, (1.11b)

ac

4πT
4 =

∫ ∞
0

B (ν, T ) dν, (1.11c)

are applied. Equations (1.10) are commonly known as the gray TRT equations and

have arbitrarily-defined boundary and initial conditions for I and T .

1.3 Monte Carlo Methods

The Monte Carlo method is a widely used stochastic technique to solve complex

problems in the nuclear engineering field (and many others) which are too compu-

tationally expensive to solve deterministically. MCNP is arguably one of the most

widely used Monte Carlo software packages in the nuclear engineering community. In

MCNP, and other Monte Carlo software, random (technically pseudorandom) num-

bers and probability density functions (PDFs) are used to determine where in a zone

and at what energy a particle is born, in what direction it travels, how far the par-

ticle will travel before a collision, and what type of collision will occur. Depending

on the collision type, the particle history is finished (due to absorption or leakage)

or the particle is scattered, a new direction and length of travel are randomly gen-

7



erated, and the process is repeated until the particle dies (from absorption, leakage,

or variance reduction techniques such as weight windows and russian roulette). This

process is repeated many times to form a history, a quantity of interest (QoI) is

typically tallied for this history, and many histories are run to get an average tally

within some confidence interval. Effective multiplication factor keff, reaction rates,

particle current through a surface, particle flux in a zone, and energy deposition in a

material are typical tallies. Monte Carlo methods converge at a 1/
√
n rate, where n

is the total number of particles. Therefore, detailed problems can even be too com-

putationally expensive for modern supercomputing machines. For a more detailed

look at Monte Carlo methods please see Refs [17, 9]

1.3.1 Implicit Monte Carlo

The Implicit Monte Carlo (IMC) method was first published by Fleck and Cum-

mings in 1971 [4] and it approximated the photon absorption and remission process

with an "effective scattering" process. This allows one to approximate the photon

absorption and reemission process, which occurs on time scales typically too short

to easily resolve with a temporal discretization, with a much more computationally

feasible time step size. In essence, this allows one to characterize the thermal radia-

tive transfer equations similarly to the linear neutron transport equation. However,

IMC is a bit of a misnomer since all of the problem parameters are evaluated at the

beginning of the time step (making it an explicit method). Following the procedure

of Fleck and Cummings, the derivation begins with the gray, one-dimensional TRT

equations assuming no scattering and LTE:

1
c

∂I

∂t
+ µ

∂I

∂x
+ σI = 1

2σacT
4, (1.12a)

∂Um
∂t

= σ
(∫ 1

−1
I dµ− acT 4

)
+ S. (1.12b)

8



Here the only yet-to-be-defined term is S, which is an arbitrary source function. It is

useful to recast these equations in terms of the radiation energy, defined in Eq. (1.8b),

instead of the material temperature. Following that, it is beneficial to define

∂Um
∂Ur

= β−1.

In the case that the material is a perfect gas with a constant specific heat, the ma-

terial energy can be characterized by Um = bT , where b is temperature-independent.

Consequently, β becomes

β = ∂Ur
∂Um

= 4a3

b
= 4Ur
Um

.

Eqs. (1.12) can be rewritten, in terms of β, as

1
c

∂I

∂t
+ µ

∂I

∂x
+ σI = 1

2σcUr, (1.13a)
∂Ur
∂t

= βσ
(∫ 1

−1
I udµ− cUr

)
+ βS. (1.13b)

It is important to note that Eq. (1.13b) is now linear in β, though β is still a function

of temperature; if it integrated over a time step from tn to tn+1, where ∆tn = tn+1−tn,

it becomes

Un+1
r − Un

r =
∫ tn+1

tn
dtβσ

∫ 1

−1
I dµ− c

∫ tn+1

tn
dt βσUr +

∫ tn+1

tn
dt βS

where Un
r = Ur (x, tn) and Un+1

r = Ur (x, tn+1). If a time averaged function is defined

as,

f̄ = 1
∆tn

∫ tn+1

tn
f(t) dt,

9



and certain parameters are factored out of the integrands in Eq. (1.3.1), it becomes

Un+1
r − Un

r = ∆tnβ̄σ̄
∫
Īdµ− cβ̄σ̄

∫ tn+1

tn
dt Ur + β̄S̄∆tn. (1.14)

Here, Fleck and Cummings define

Ūr = αUn+1
r + (1− α)Un

r ,

where α is a user-defined parameter (α ∈ [0.5, 1.0]) that can vary the "implicitness"

of the model. It sets the time-averaged radiation energy value as some linear com-

bination of the current and previous time step values. This parameter is oft used

in its most implicit form of α = 1, which uses new radiation energy value as the

time-averaged value. Using this approximation, Eq. (1.14) becomes

Un+1
r − Un

r = ∆tnβ̄σ̄
{∫

Īdµ− c
[
αUn+1

r + (1− α)Un
r

]}
+ β̄S̄∆tn, (1.15)

which further simplifies to

Ūr = αβσ∆tn
1 + αβc∆tnσ

∫
Īdµ+ Un

r

1 + αβc∆tnσ
+ αβ∆tnS̄

1 + αβc∆tnσ
. (1.16)

It is commonplace to define a term that pervades the previous equations, and most

other IMC equations. The Fleck factor is defined as

f = 1
1 + αβc∆tnσ

. (1.17)

Implementing Eq. (1.16), in terms of f , as Ur in the right hand side of Eq. (1.13a), and

making the assumption that the instantaneous specific intensity can is representative

10



of the time-averaged Ī, which is a O (∆t) error, results in

1
c

∂I

∂t
+ µ

∂I

∂x
+ σI = σ

2 (αβc∆tnσf)
∫
Idµ+ 1

2
(
cσfUn

r + σαβc∆tnfS̄
)

(1.18)

It is important to note that the total cross section can be represented by effective

absorption and scattering cross sections:

σa = 1
1 + αβc∆tnσ

σ = fσ, (1.19)

σs = αβc∆tnσ
1 + αβc∆tnσ

σ = (1− f)σ (1.20)

A salient feature of Fleck and Cummings’ work is that as ∆t → ∞, Eq. (1.18)

becomes
1
c

∂I

∂t
+ µ

∂I

∂x
+ σI = 1

2σ
∫
I dµ+ 1

2σS̄ (1.21)

which, when S̄ = 0, is satisfied by

µ
∂I

∂x
+ σI = 1

2σ
∫
I dµ.

Furthermore, Eq. (1.18) is consistent because if one was to discretize Eqs. (1.12) in

time, and replace I with Ī in all non derivative terms from the start, they would

arrive at the same expression. Integrating Eq. (1.18) over direction gives

∂Um
∂t

= σf
∫
I dµ− cσfUn

r + fS̄. (1.22)
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Temporarily deviating from the f notation allows one to describe the physical terms

of Eq. (1.22):

∂Um
∂t

= σ

1 + αβc∆tnσ

∫
I dµ︸ ︷︷ ︸

Absorption Heating Rate

− cσ

1 + αβc∆tnσ
Un
r︸ ︷︷ ︸

Emission Heating Rate

+ 1
1 + αβc∆tσ S̄︸ ︷︷ ︸
Source Heating Rate

. (1.23)

As αβc∆tnσ → 0, this equation matches Eq. (1.12b) if the assumption used through-

out this derivation, Ūr = Ur and S̄ = S, is made. If Eq. (1.22) is integrated over a

time step, the result it

Un+1
m = Un

m + fσ
∫ tn+1

tn
dt
∫
I dµ− fc∆tnσUn

r + fS̄∆tn, (1.24)

which under the assumption that the material is a perfect gas with a constant specific

heat, becomes

T n+1 = T n + b−1
[
fσ

∫ tn+1

tn
dt
∫
I dµ− c∆tnfσUn

r + fS̄∆tn
]
. (1.25)

The salient takeaway from the Implicit Monte Carlo method, as noted by Fleck in

Cummings in their seminal work, is that although the name implies implicitness, the

final transport and energy balance solutions are entirely separate and independent.

12



1.4 1-D Stability Analysis

This work will begin with the model equations, Eqs. (1.4), reduced to one di-

mension, because the instabilities caused by Monte Carlo noise can be demonstrated

in 1-D slab geometry. The one-dimensional BHR equations, along the z-direction,

without the material species transport equation, are given by,

∂K

∂t
+ ∂Kw̃

∂z
= az

ρ̄

∂P̄

∂z
− Rzz

ρ̄

∂w̃

∂z
+ ∂

∂z

(
νT
σk

∂K

∂z

)
− K3/2

L
, (1.26a)

∂L

∂t
+ ∂Lw̃

∂z
= L

K

[(3
2 − C4

)
az
ρ̄

∂P̄

∂z
−
(3

2 − C1

)
Rzz

ρ̄

∂w̃

∂z

]

− C3L
∂w̃

∂z
+ ∂

∂z

(
νT
σε

∂L

∂z

)
−
(3

2 − C2

)√
K, (1.26b)

∂az
∂t

+ ∂azw̃

∂z
= Ca2

b

ρ̄

∂P̄

∂z
− Rzz

ρ̄2
∂ρ̄

∂z
− az

∂(w̃ − az)
∂z

+ ∂a2
z

∂z

+ ∂

∂z

(
νt
ρ̄2σa

∂az
∂z

)
− Ca1az

√
K

L
, (1.26c)

∂b

∂t
+ ∂bw̃

∂z
= 2az

∂b

∂z
− 2(b+ 1)az

ρ̄

∂ρ̄

∂z
+ ρ̄

∂

∂z

[
νT
ρ̄σb

∂b

∂z

]
− Cb

√
K

L
b, (1.26d)

In the presence of a constant pressure gradient (∂P̄
∂z
6= 0) and homogenous fields

(∇ (·) = 0) Eqs. (1.26) reduce to,

∂K

∂t
= az

ρ̄

∂P̄

∂z
− K3/2

L
, (1.27a)

∂L

∂t
= L

K

[(3
2 − C4

)
az
ρ̄

∂P̄

∂z

]
−
(3

2 − C2

)√
K, (1.27b)

∂az
∂t

= Ca2
b

ρ̄

∂P̄

∂z
− Ca1az

√
K

L
, (1.27c)

∂b

∂t
= −Cb

√
K

L
b. (1.27d)
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These equations model isotropic turbulent decay, but allow for the effects of a pres-

sure gradient. Eqs. (1.28) show the physical meaning of each term in Eqs. (1.27). A

simple model, such as this, is beneficial for analyzing the main production terms in

the BHR model.

∂K

∂t
= az

ρ̄

∂P̄

∂z︸ ︷︷ ︸
Production

− K3/2

L︸ ︷︷ ︸
Dissipation

, (1.28a)

∂L

∂t
= L

K

[(3
2 − C4

)
az
ρ̄

∂P̄

∂z

]
︸ ︷︷ ︸

Production

−
(3

2 − C2

)√
K︸ ︷︷ ︸

Dissipation

, (1.28b)

∂az
∂t

= Ca2
b

ρ̄

∂P̄

∂z︸ ︷︷ ︸
Production

− Ca1az
√
K

L︸ ︷︷ ︸
Dissipation

, (1.28c)

∂b

∂t
= − Cb

√
K

L
b︸ ︷︷ ︸

Dissipation

. (1.28d)

After explicit time discretization the equations are,

K(n+1) −K(n)

∆t = a(n)
z

ρ̄(n)
∂P̄ (n)

∂z
−

(
K(n)

)3/2

L(n) , (1.29a)

L(n+1) − L(n)

∆t = L(n)

K(n)

[(3
2 − C4

)
a(n)
z

ρ̄(n)
∂P̄ (n)

∂z

]
−
(3

2 − C2

)√
K(n), (1.29b)

a(n+1)
z − a(n)

z

∆t = Ca2
b(n)

ρ̄(n)
∂P̄ (n)

∂z
− Ca1a

(n)
z

√
K(n)

L(n) , (1.29c)

b(n+1) − b(n)

∆t = −Cb
√
K(n)

L(n) b(n). (1.29d)

14



Solving for the updated (n+ 1) dependent variable in each equation gives,

K(n+1) = ∆t
[
az
ρ̄

∂P̄

∂z
− K3/2

L

]
+K, (1.30a)

L(n+1) = ∆t
[
L

K

[(3
2 − C4

)
az
ρ̄

∂P̄

∂z

]
−
(3

2 − C2

)√
K

]
+ L, (1.30b)

a(n+1)
z = ∆t

[
Ca2

b

ρ̄

∂P̄

∂z
− Ca1az

√
K

L

]
+ az, (1.30c)

b(n+1) = b−∆tCb
√
K

L
b, (1.30d)

where the (n) superscripts are dropped for conciseness. The growth rate (or amplifi-

cation factor) of each QoI is the ratio of the QoI evaluated at the current time step

to the QoI at the previous time step: gf = f (n+1)/f (n). More intricate discretization

methods can be performed, however the explicit Euler method provides a worst-case,

bounding approximation of the maximum stable time step.

Solving for the growth rate of each QoI gives,

gK = ∆t
[
az
ρ̄K

∂P̄

∂z
−
√
K

L

]
+ 1, (1.31a)

gL = ∆t
[(3

2 − C4

)
az
ρ̄K

∂P̄

∂z
−
(3

2 − C2

) √
K

L

]
+ 1, (1.31b)

ga = ∆t
[
Ca2

b

ρ̄az

∂P̄

∂z
− Ca1

√
K

L

]
+ 1, (1.31c)

gb = 1−∆tCb
√
K

L
. (1.31d)

Further algebraic manipulation of Eqs. (1.31), allows for the expression of the time
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step in terms of the growth factor of each QoI:

∆tK = (gK − 1)
[
az
ρ̄K

∂P̄

∂z
−
√
K

L

]−1

, (1.32a)

∆tL = (gL − 1)
[(3

2 − C4

)
az
ρ̄K

∂P̄

∂z
−
(3

2 − C2

) √
K

L

]−1

, (1.32b)

∆ta = (ga − 1)
[
Ca2

b

ρ̄az

∂P̄

∂z
− Ca1

√
K

L

]−1

, (1.32c)

∆tb = L (1− gb)
Cb
√
K

. (1.32d)

Upon inspection of Eqs. (1.32a) - (1.32c), it is easy to see that the denominator

must be negative for the time step to remain positive with a bound growth rate

(where |g| < 1). For Eq. (1.32d), so long as the growth rate is bound (|g| < 1),

the time step will be larger than zero. Consequently, the maximum stable time step

is given by t = min (∆tK ,∆tL,∆ta,∆tb). The stability of this system depends on

the dissipation terms (those with
√
K/L) being larger than the production terms

(those with the pressure gradient). If this occurs, the denominator remains negative

and a stable time step is realized. However, if the signs of az and the pressure

gradient oppose one another, the production term can cause the denominator to

become positive, in which an unphysical (negative) time step is required. Therefore,

the salient point is that az and ∂P̄ /∂z pointing in the same direction guarantees

stability. This task is made much more difficult by stochastic noise in the pressure

term, which is exacerbated by a gradient via finite difference, causing the direction

of the pressure gradient to incorrectly flip directions (contrary to the flow of material

- the sign of az). Noise reduction in the energy density results of the Implicit Monte

Carlo simulation, which directly feeds into the BHR-2 pressure term, is critical in

increasing the robustness of the coupled system.
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1.4.1 Filtering the Pressure Term

If it is not possible to reduce the error in the stochastic IMC process, a logical

solution to reducing the noise in the pressure term would be to filter it as it passes

from the radiation solve (IMC) to the hydrodynamics solve (BHR-2). There are

a myriad of filter options, but three popular choices are the mean, median, and

Gaussian filters.

The mean filter can be expressed as a convolution. Let f (x, y, z) be an arbitrary

function and

g(x, y, z) =


1

(2a)3 |x| ≤ a, |y| ≤ a, |z| ≤ a,

0 otherwise,
(1.33)

therefore the convolution of g(x, y, z) is

(f ∗ g) (x, y, z) =
∫ x+a

x−a
dx′

∫ y+a

y−a
dy′

∫ z+a

z−a
dz′

1
2a3f(x′, y′, z′). (1.34)

Alternatively, the Gaussian filter can also be represented as a convolution by defining

g(x, y, z) = 1
(2π)3/2 σ3

exp
(
−x

2 + y2 + z2

2σ2

)
. (1.35)

Thus, as a convolution the Gaussian filter is given by

(f ∗ g) (x, y, z) =
∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ ∞
−∞

dz′
1

(2π)3/2 σ3
exp

(
−x

2 + y2 + z2

2σ2

)
f (x′, y′, z′) .

(1.36)

Nevertheless, the median filter cannot be represented as convolution. As such, col-

lapsing the Gaussian and mean filters down to one dimension allows you to qualita-

tively compare the three filters. The mean filter takes a value and its two neighbors

and replaces that value with the mean of itself and its neighbors. The median is the
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same process except the value is replaced by the median of itself and its neighbors,

instead of the mean. The Gaussian filter takes a subset of data, possible a value

and its neighbors, and calculates the mean and standard deviation for the subset,

and represents it with a normal distribution. These three filters are used to filter

the pressure term generated from material temperature data exported from RAGE

for a CH/Al interface problem that exhibits very noisy behavior. This behavior is

illustrated in Fig 1.1.

Figure 1.1: Material temperature, as calculated by RAGE, at the interface of Al/CH
[10].

The material temperature is updated following the IMC solve via the material

energy balance equation. It relates to the pressure, P , by

P = (γ − 1) ρcvT, (1.37)

where a is the radiation energy density constant, as defined in Eq. 1.9, γ = 1.4, and
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ρcv = 0.3 GJ/cm3-keV. Using this formulation, a lineout of the pressure at x = 0.001

cm in Fig. 1.1 is given in Fig. 1.2. Clearly, the data is very noisy. Figure 1.3 shows

that the noise is exacerbated when the gradient is estimated with a simple finite

difference. Throughout this thesis, the only finite difference method investigated

uses a simple central finite difference stencil. Not only is the noise exacerbated, but

the gradient oscillates around zero, leading to a number of sign changes (which were

shown to be a driver of instability earlier).
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Figure 1.2: Unfiltered pressure lineout at x = 0.001 cm.

19



0.000 0.005 0.010 0.015 0.020
y (cm)

−8

−6

−4

−2

0

2

4

6
∂
P ∂
z

(G
P

a/
cm

)

×109

Unfiltered

Figure 1.3: Unfiltered pressure gradient lineout at x = 0.001 cm.

Applying the filters mentioned above could alleviate this issue. Figure 1.4 shows

the pressure gradient after one application of the mean, median, and gaussian filters,

in comparison to the unfiltered gradient. The median filter drastically reduced the

spikes while the mean and gaussian filters reduced the peaks, but not as drastically.

Recursively applying these filters, could further reduce the noise, to an acceptable

level. Figure 1.5 shows the pressure gradient after 100 applications of all three filters,

compared to the unfiltered gradient. The median profile has hardly changed from the

single application, however the mean and the gaussian profiles are now substantially

reduced. Table 1.1 shows a summary of the pressure gradient profiles are recursive

applications of linear filters. The maximum of the pressure gradient is shown because

of its importance in the BHR-2 time step determination and the mean of the pressure

gradient is shown as a surrogate of the data lost in the filtering process. If the mean
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changes drastically during the filtering process, is the filtered data really providing

an accurate, but less noisy, picture of the unfiltered data?
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Figure 1.4: Pressure gradient after 1 filter: F (∇P ).
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Figure 1.5: Pressure gradient after 100 recursive filters: F (∇P ).

Upon inspection of Table 1.1, it is apparent that filtering can severely maim the

original data. For example, with 100 recursive applications of the mean filter, the

mean of the data changed 134% by filtering prior to the gradient, but changes less

than 0.01% if filtered after the gradient. This is in direct contrast to the median

filter characteristics which resulted in the exact opposite (negligible change in the

mean for filtering after the gradient, drastic change when filtering prior).
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Table 1.1: Effects of recursive linear filters on pressure data from RAGE.

Type Number F (P ) ∇F (∇P )
Maximum Mean Maximum Mean

Mean

1 5.272E+09 -5.911E+06 5.272E+09 -2.190E+06
5 3.122E+09 1.981E+07 3.122E+09 -2.190E+06

10 2.173E+09 1.157E+07 2.173E+09 -2.190E+06
25 1.081E+09 1.008E+07 1.081E+09 -2.190E+06
100 2.390E+08 7.538E+05 2.807E+08 -2.190E+06

Median

1 4.563E+09 -2.200E+06 4.563E+09 -4.653E+06
5 4.563E+09 -2.199E+06 1.692E+09 7.261E+05

10 4.563E+09 -2.199E+06 1.692E+09 7.261E+05
25 4.563E+09 -2.199E+06 1.692E+09 7.261E+05
100 4.563E+09 -2.199E+06 1.692E+09 7.261E+05

Gaussian

1 4.067E+09 -3.737E+06 4.067E+09 -2.190E+06
5 2.721E+09 -8.692E+05 2.721E+09 -2.190E+06
10 1.956E+09 -6.128E+05 1.956E+09 -2.190E+06
25 1.007E+09 -1.080E+06 1.007E+09 -2.190E+06

100 2.595E+08 -4.888E+05 2.595E+08 -2.190E+06
Unfiltered: Maximum = 5.9803E+09, Mean = -2.1897E+06

The maximum pressure gradient directly corresponds to the maximum time step,

as shown in Eqs. (1.32). The growth factor, g, affects the magnitude of the time

step size, but does not affect the changes in the size due to the pressure gradient, so

long as it is consistent throughout. Consequently, the best-case scenario of g = −1,

rapid decay of the QoI’s, is chosen to illustrate how the maximum pressure gradient

can change the maximum stable time step in the BHR-2 system. To do this, BHR-

2 model parameters are chosen following Stalsberg-Zarling’s recommendations [15],

shown in Table 1.2, and Eqs. (1.32) are solved for the maximum stable time step

using the maximum pressure gradients shown in Table 1.1. The results are shown in

Table 1.3 where the Pct. Increase columns indicate the percent increase in the time

step size, compared to the unfiltered time step.
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Table 1.2: BHR model parameter values (from Ref. [15]).

K L az C2 C4 Ca1 Ca2 ρ b Cb

0.001 0.5 0.001 1.92 1.05 6.0 1.0 1.0 0.06 2.5

Table 1.3: Effects of recursive linear filters on the BHR-2 time step size.

Type Number ∇F (P ) F (∇P )
∆t Pct. Increase ∆t Pct. Increase

Mean

1 6.32271E-12 113% 6.32271E-12 113%
5 1.06769E-11 192% 1.06769E-11 192%
10 1.53398E-11 275% 1.53398E-11 275%
25 3.08356E-11 553% 3.08356E-11 553%
100 1.39470E-10 2502% 1.18751E-10 2130%

Median

1 7.30514E-12 131% 7.30514E-12 131%
5 7.30514E-12 131% 1.97006E-11 353%
10 7.30514E-12 131% 1.97006E-11 353%
25 7.30514E-12 131% 1.97006E-11 353%
100 7.30514E-12 131% 1.97006E-11 353%

Gaussian

1 8.19605E-12 147% 8.19605E-12 147%
5 1.22504E-11 220% 1.22504E-11 220%
10 1.70416E-11 306% 1.70416E-11 306%
25 3.31016E-11 594% 3.31016E-11 594%
100 1.28452E-10 2305% 1.28452E-10 2305%

Unfiltered: ∆t = 5.57386E-12
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2. COUPLING BHR-2 AND IMC

2.1 The Issues of Coupling BHR2 and IMC in Practice

A commonly-run problem, which also exhibits the drawback of coupling BHR-2

and IMC, was run in the RAGE radiation-hydrodynamics code (Radiation Adaptive

Grid Eulerian) [6]. This problem consists of a 0.03 cm cube with 0.002275 cm

aluminum foil on the right hand side. To to the left of the aluminum exists 0.0275

cm of CH foam, while to the right of the foil is a 400 eV source. This problem was

run with Implicit Monte Carlo with 102 groups and only 100 particles per time step,

as well as gray diffusion. Furthermore, it was run with both transport methods with

both no mix and BHR-2 mix model. When the turbulent kinetic energy parameter

in the BHR-2 model is set sufficiently high (5× 105 ergs/cm), the problem proceeds

through time and the BHR-2 model damps some of the noise present in the no mix

results. This is shown in Fig. 2.1.

Figure 2.1: RAGE Radiation-hydrodynamics code highlighting BHR-2 damping
some of the noise present with no mix model when the turbulent kinetic energy
is set sufficiently high [10].
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Figure 2.1 shows a readout at t = 2.9 × 10−10 seconds and shows that the gray

diffusion results look very smooth and BHR-2 has little effect, however it is missing

the turbulent mixing that is known to occur at those material interfaces. The multi-

group IMC captures this turbulent mixing, at the expense of have too much mixing.

The drastic variation in shock interface in the no mix, IMC case is likely caused by

the low number of particles, however BHR-2 damps this noise to an extent as shows a

non-uniform, but cohesive shock front, even with only 100 particles. Unfortunately,

this is not the case when the turbulent kinetic energy is not set sufficiently high.

Figure 2.2 shows the same problem as before, but with K = 1.0 ergs/cm. The left

panel of the figure shows that at t = 3.41 × 10−12 seconds, the gray diffusion and

BHR-2 model with 100,000 IMC particles show smooth results. The noise caused by

IMC is present in the lower lefthand panel, where the results are not so smooth for

only 100 IMC particles. From this, one might say problem solved; just use 100,000

particles and the noise is gone. Unfortunately, by inspecting the right panel, one

can see that this does not solve the problem. It helps, since 100,000 particles makes

it further before crashing (1.65 × 10−11 vs. 1.11 × 10−11 seconds), but in the end

they both crash while the gray diffusion method with BHR-2 runs to completion.

These two problem runs confirm what was shown in the stability analysis section:

coupling BHR-2 and IMC works for some, but not all, problems. A prescription for

the gradient of the energy density could alleviate the noise application properties of

finite difference methods on the radiation pressure term, which couples to the BHR-2

model, but not diffusion.

2.2 Energy Density Estimator

As shown by the filtering results, finite difference methods are susceptible to noise.

Another popular approximation technique is finite elements. A first-order finite
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Figure 2.2: RAGE Radiation-hydrodynamics code crashing using BHR-2 when cou-
pled to IMC, but not with gray diffusion when the turbulent kinetic energy is low
[10].

element representation of the radiation energy in a zone, E, can be approximated as

E (r) = E (x, y, z) = a0 + a1 (x− xc) + a2 (y − yc) + a3 (z − zc) , (2.1)

where the a coefficients have units of energy per length, x, y, z define the particle

position and xc, yc, zc define the center of the zone. These positions can also be

represented in vector format: r and rc, respectively. The ai coefficients represent the

directional gradients of the zone energy. Integrating over all space against a basis

function in each direction, which represents the energy absorbed in each direction,
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results in

∫ xR

xL

dx
∫ yR

yL

dy
∫ zR

zL

dz (x− xc) [a0 + a1 (x− xc) + a2 (y − yc) + a3 (z − zc)] = a1

12∆x3,

(2.2a)∫ xR

xL

dx
∫ yR

yL

dy
∫ zR

zL

dz (y − yc) [a0 + a1 (x− xc) + a2 (y − yc) + a3 (z − zc)] = a2

12∆y3,

(2.2b)∫ xR

xL

dx
∫ yR

yL

dy
∫ zR

zL

dz (z − zc) [a0 + a1 (x− xc) + a2 (y − yc) + a3 (z − zc)] = a3

12∆z3,

(2.2c)

where ∆x = xR − xL, ∆y = yR − yL, and ∆z = zR − zL are the zone dimensions. In

order to relate these quantities to a particle history, one must integrate the energy

lost by the particle (absorbed in the material) over its path against a basis function

in each direction. This is given by

∫ s

0
ds′ [x (s′)− xc]E0e

−σs′ = −E0

σ

[
Ωxse

−σs +
(

Ωx

σ
+ (x0 − xc)

)(
e−σs − 1

)]
,

(2.3a)∫ s

0
ds′ [y (s′)− yc]E0e

−σs′ = −E0

σ

[
Ωyse

−σs +
(

Ωy

σ
+ (y0 − yc)

)(
e−σs − 1

)]
,

(2.3b)∫ s

0
ds′ [z (s′)− zc]E0e

−σs′ = −E0

σ

[
Ωzse

−σs +
(

Ωz

σ
+ (z0 − zc)

)(
e−σs − 1

)]
,

(2.3c)

where σ is the zone’s opacity and the particle begins at position r0 = (x0, y0, z0)

with an initial energy E0 and travels along Ω = (Ωx,Ωy,Ωz) for a distance (also

known as a step length) s. This derivation assumes the popular implicit capture

technique, in which a particle’s weight is reduced by the fraction of particles which
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scatter instead of undergoing absorption. Relating the particle history to the finite

element representation by combining Eqs. (2.2) with Eqs. (2.3), followed by some

algebraic manipulation, results in

∂U (r)
∂x

= a1 = 12E0

σV (∆x)2 [Ωx − (Ωx + σΩxs+ σ (x0 − xc)) exp (−σs) + σ (x0 − xc)] ,

(2.4a)
∂U (r)
∂y

= a2 = 12E0

σV (∆y)2 [Ωy − (Ωy + σΩys+ σ (y0 − yc)) exp (−σs) + σ (y0 − yc)] ,

(2.4b)
∂U (r)
∂z

= a3 = 12E0

σV (∆z)2 [Ωz − (Ωz + σΩzs+ σ (z0 − zc)) exp (−σs) + σ (z0 − zc)] ,

(2.4c)

where U (r) is the energy density in the zone and V is the zone volume. For imple-

mentation into a Monte Carlo code which is discretized in time, Eqs. (2.4) represent

the change to the energy density during that time step. The estimator, in vector

form, is given by


Absorbed

Energy Density

Rate Gradient

 = cσ∇U (r) = 12cU0

(∆r)2 [Ω − (Ω + σΩs+ σ (r0 − rc)) exp (−σs)

+ σ (r0 − rc)] , (2.5)

where ∆r = (∆x,∆y,∆z). The right hand side of Eq. (2.5) has units of

energy/ (volume− length− time), which represent the gradient of the energy ab-

sorption rate density (as shown on the left hand side).
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3. RESULTS

3.1 The FINMCOOL IMC Code

FINMCOOL is an Implicit Monte Carlo code, written in C++, which was devel-

oped at Texas A&M University. It currently can solve 3-D grey transport problems,

on either a cartesian or cylindrical grid, for multiple immiscible materials. Addition-

ally, it has several variance reduction techniques (weight windows, implicit capture,

roulette, etc.) and source tilting. An important feature of FINMCOOL is that

it allows for setting of the random number seed. Consequently, running the same

simulation with different random number seeds allows for an ensemble average and

standard deviation in the results to be taken. This allows for direct comparison of the

variance of gradient estimation methods. The output from FINMCOOL consists of

.silo and .txt files, of which the .txt files are parsed using Python and visualized

in Visit.

3.2 1-D Pure Absorber Problem

Verification is an important process in code development. Verification is used to

test if the software (or a new capability of the software) performs how the developers

expect. For example, this can be accomplished by verify convergence rates as meshes

are refined. Verification does not prove the accuracy of the software. FINMCOOL

has a test suite which routinely performs verification tests for existing capabilities.

For new capabilities, such as the gradient estimator, verification tests must be pre-

scribed and confirmed before being implemented. For the gradient estimator, a

one-dimensional, pure absorber problem with a boundary source was selected as a

verification problem. The problem was set up as a pure absorber by setting the sin-

gle material to have an extremely large cv which effectively makes it improbable for
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the material to re-emit absorbed energy (remember re-emission of absorbed energy

is how IMC models photon scattering). Because of the problem’s simplicity, an an-

alytical solution to the particle intensity (and consequently the energy density) can

be found. The derivation starts with the 1-D steady-state transport equation, with

no scattering or source term,

µ
∂I (µ, x)
∂x

+ σI (µ, x) = 0, (3.1)

for x ∈ [0, `] and µ = cos θ ∈ [−1, 1] where θ is the angle between the particle

direction and the positive x-axis. The boundary conditions,

I (µ, 0) = acT 4

2 , 0 < µ ≤ 1,

I (µ, `) = 0, −1 ≤ µ < 0,

are also imposed, where a and c are the radiation constant and the speed of light,

respectively. Equation (3.1) is solved by

I (µ, x) = C exp
(
−σ
µ
x

)
. (3.2)

Integrating Eq. (3.2) over all positive angles gives,

σU (x) = C
∫ 1

0
dµ exp

(
−σ
µ
x

)
= CE2 (σx) , (3.3)

where E2 is the second-order exponential integral function. Taking the derivative of

this solution gives,

∂

∂x
σcU (x) = −σ2CE1 (σx) = −σ2acT

4

2 E1 (σx) , (3.4)
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where E1 is a first-order exponential integral function. With this analytical solution,

the accuracy of the estimator can be determined for this simple problem. Further-

more, by running many different cases of this problem, a verification study can be

performed since the tally should become more accurate as the time and space grids

are refined. The 15 cases which were performed span different combinations of time

step sizes (∆t), grid spacing (∆x), and material opacities (σ). These cases allow

for direct comparison of the benefits of the estimator over typical finite difference

methods. However, the stochastic noise should be almost negligible due to the prob-

lem’s simplicity. As a consequence of this, the reduction in solution variance with

the estimator, versus finite difference, may be low.

Fifteen different cases of the 1-D absorber problem were performed. The varied

parameters were prescribed by: ∆t = (0.001, 0.005, 0.01) s, ∆x = (0.01, 0.01) cm

(Note: ` = 1 cm), and σ = (1, 2, 10) cm−1. Each case was run with 20 different

random number seeds to gather a mean and variance for both gradient calculation

methods. The results from both methods, with each seed, were compared to the

analytic solution for the case. Across all 300 runs, the estimator results had a average

variance 0.4% larger than the finite difference results. Nevertheless, the error (when

compared to the analytic solution) from the mean finite difference results was up to

1013% larger than the mean estimator results. This shows a drastic improvement

from the finite difference method to the estimator method, with only a slight increase

in the variance (which is expected to decrease as the problem complexity increases).

The average error in the estimator ranged from 0.2 - 3.6%, compared to 0.4 - 40.1%

for the finite difference method. The estimator errors decrease as the grid is refined;

the most accurate case had ∆t = 0.05 s, ∆x = 0.001 cm, and σ = 2 cm−1. This

demonstrates a successful verification test. Overall, this simple problem provided

tremendous insight, as well as confidence in the estimator. That being said, the one
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downside was the lack of variance reduction.

The mean percent error (MPE) and the mean percent standard deviation (MPSD)

for all fifteen cases are summarized in Table 3.1. The two rightmost columns show

the differences in MPE and MPSD between the estimator and the finite difference

methods. A positive number represents an increase in the error or variance in the

estimator when compared to the finite difference, and a negative value represents a

reduction in the error or variance. Generally speaking, the goal for the estimator

would be to reduce both the error and the variance of the method. However, over

the fifteen cases, the error is reduced, sometimes substantially, at the expense of a

slight increase in the mean percent standard deviation of the results.

Something to recognize is that the results do not change substantially as the time

step changes (row by row). This may be caused by the three ∆t values are situated on

a plateau and a much smaller time step could yield different behavior. In addition,

there is little difference between σ = 1 and σ = 2, however σ = 10 yields quite

different results. Because of this, it may be beneficial to investigate more optically

thick zones.
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Figure 3.1: Net Deposited Energy Density Gradient for 1-D Absorber problems with
σ = 1 cm−1 where MPE is the mean percent error and MPSD is the mean percent
standard deviation.
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Figure 3.2: Net Deposited Energy Density Gradient for 1-D Absorber problems with
σ = 2 cm−1 where MPE is the mean percent error and MPSD is the mean percent
standard deviation.
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Figure 3.3: Net Deposited Energy Density Gradient for 1-D Absorber problems with
σ = 10 cm−1 where MPE is the mean percent error and MPSD is the mean percent
standard deviation.
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Table 3.1: Summary of 1-D Absorber results.
∆x ∆t σ Estimator Finite Difference E - FD
(cm) (sh) (cm−1) MPE MPSD MPE MPSD MPE MPSD

1

0.01 0.005 0.5 1.4 0.5 0.9 0.0 0.5
0.01 0.010 0.4 1.0 0.4 0.7 0.0 0.3
0.10 0.001 0.5 2.4 2.4 1.2 -1.9 1.2
0.10 0.005 0.2 1.4 2.0 0.7 -1.8 1.3
0.10 0.010 0.4 1.1 2.0 0.7 -1.6 0.4

2

0.01 0.005 0.4 0.8 0.4 0.5 0.0 0.3
0.01 0.010 0.4 0.6 0.4 0.4 0.0 0.2
0.10 0.001 0.3 1.3 4.0 0.7 -3.7 0.6
0.10 0.005 0.3 0.9 4.0 0.5 -3.7 0.4
0.10 0.010 0.2 0.7 4.0 0.4 -3.8 0.3

10

0.01 0.005 0.4 0.4 0.2 0.3 0.2 0.1
0.01 0.010 0.5 0.3 0.3 0.3 0.2 0.0
0.10 0.001 3.6 1.1 40.1 0.8 -36.5 0.3
0.10 0.005 3.3 0.7 39.8 0.5 -36.5 0.2
0.10 0.010 3.5 1.0 40.0 0.7 -36.5 0.3

3.3 2-D Tophat Problem

The so-called "tophat" problem contains an area of optically thick material which

surrounds a path of optically thin material that surround an optically thick island.

A source is located on the left plane of the optically thin region of Fig. 3.4. This

is a popular benchmark problem in thermal radiation transport and even though it

lacks an analytical solution, the absorbed energy density gradient can be qualita-

tively evaluated. At very early times, there will be large gradients near the source at

the material interface, which point toward the center of the optically thin region. As

the time progresses, and the particles stream to the right, the gradients will follow

down the material interfaces still pointing toward the middle of the optically thin

region. As the particles begin to stream into the optically thick island, the gradient
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at that material interface will point toward the island, where more particles are being

absorbed. This is the type of behavior expected from the estimator implementation.

The problem is run with 20 different random number seeds, similar to the 1-D ab-

sorber problem, and the results from FINMCOOL are output as .txt files. They

are read into a Python script which calculates the time-dependent gradients in each

zone. These results are then visualized in Visit and the aforementioned phenomena

are expected to be present.

Figure 3.4: Schematic of the 2-D Tophat problem.

FINMCOOL’s ability to set the random number seed allows for the same problem

to be run with different seeds, which forms an ensemble mean and variance of the

results. 20 simulations of the Tophat problem, with randomly selected seeds, were

run with ∆x = ∆y = 0.125 cm and 100,000 particle histories per time step. The

38



ensemble mean of the results is equivalent to running a single problem with 2× 107

particle histories, except with the added benefit of the standard deviation of the

results.

3.3.1 Noise Reduction via Ensemble Averaging

Both gradient approximation methods are susceptible to stochastic noise from

IMC, although reducing noise’s effect is different for the two methods. The estimator

is based on tallying particle histories, therefore increasing the number of particles in

each time step is the key to reducing the variance of the estimator results. Finite

difference is a linear approximation of the gradient, thus the spacing over which the

linearization takes place is directly proportional to the error. As the grid spacing

becomes smaller, the variance in the finite difference results is reduced. Further

compounding the problem for the estimator, is that as the grid size becomes smaller,

the total track length of particles in each zone is reduced, which exacerbates the noise

problem for the estimator. A simulation with small grid spacing and a low number of

particles would be the bane of the estimator. A simulation with these characteristics

is compared against the ensemble average results for the finite difference method via

a line out of the gradient magnitude at x = 0.2 cm and y = 2.5 cm in Fig. 3.5 and

for the estimator in Fig. 3.6.

Figures 3.5 and 3.6 show that both methods are susceptible to noise, however

the noise can be suppressed by performing an ensemble average and setting the

simulation parameters correctly. Furthermore, they also show that the magnitude

changed substantially between the two runs, which indicates the error in the 105

particle run may be quite high. It is likely, but difficult to prove, that the estimator

results are more accurate than the finite difference results, since this behavior was

observed in the 1-D absorber problem. The two methods should converge as the
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Figure 3.5: Net deposited energy density rate gradient magnitude, calculated with
finite difference, over time.

number of particles is increased (for the estimator) and the grid is refined (for the

finite difference method). However, it is computationally expensive to do so.

3.3.2 Ensemble Average Results

Figures 3.5 and 3.6 show that ensemble averaging can remedy the effects of

stochastic noise on the net deposited energy density rate gradient. Figure 3.7 shows

the magnitude of the gradient vector at x = 0.2 cm at various time steps. It illus-

trates that at early times the magnitudes are comparable between the simple finite

difference (FD) and estimator (Est) methods, but that the results diverge over time.

Figure 3.7 shows that the magnitude of the vector is not consistent between the

two methods. This confirms the results shown in Figs. 3.5 and 3.6. But, because

an analytic solution is not available for this problem, it is unknown which method
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Figure 3.6: Net deposited energy density rate gradient magnitude, calculated with
the estimator, over time.

is more accurate. However, this could be determined with enough computational

resources. That being said, the direction of the gradient is equally important as the

magnitude. Figure 3.8 shows the gradient vectors for the finite difference method (in

reds) and the estimator (in greens) overlaid on the net deposited energy density rate

at t = 0.137476 shakes.

From this is can be seen that the gradient direction is consistent between the two

methods, and even the relative scaling between the methods is consistent (the size of

the vector arrows are consistent between the methods) which implies there may be a

systematic error in one of the two methods that is causing the magnitude difference

between the two methods, since the relative magnitudes and directions are consistent

between the finite difference and the estimator methods. With this data in hand, the
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Figure 3.8: Net deposited energy density rate gradient approximations, estimator in
greens and finite difference in reds, at t = 0.137476 shakes.
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important question is, what is the benefit of the estimator over the finite difference

method? The next section compares the variance of the two methods, which is the

main driver of instability in the BHR-2 model.

3.3.3 Variance Comparison

With the ensemble average, the mean and standard deviation of the net deposited

energy density rate Gradient in each zone was recorded for all 428 time steps. From

this the relative standard deviation (RSD = σ/µ) was calculated in each zone and

then spatially-averaged for each time step. To understand if the estimator reduced

the variability (or noise) in the gradient, compared to the finite difference method,

the difference in the relative standard deviation was taken between the two methods:

Estimator - Finite Difference. If the result is negative, the estimator reduced the

variance. This is visualized in Fig. 3.9. The average difference, over all time steps,

was a 312 % reduction. Thus, the estimator reduces the variance of the net deposited

energy density rate gradient for a complex problem such as the Tophat. This is

critical because of the direct coupling of the energy density to pressure gradient term

in the BHR-2 model. Reducing the variance in the pressure gradient term was shown

to directly increase the maximum stable time step. This decrease in computational

cost is crucial to the ability to perform accurate and timely radiation-hydrodynamics

simulations using IMC and BHR-2. The few large positive spikes are likely caused

by time steps in which many spatial locations have a near zero or a large value.

This can artificially skew the RSD difference, while the σ difference is not drastically

different.
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4. CONCLUSIONS

In conclusion, the BHR-2 model was shown to have stability issues that stem

from the pressure gradient term changing signs in relation to the mass-flux veloc-

ity. Reducing the variance in the pressure gradient term, reduced the possibility

of this sign change, which in turn increased the maximum stable time step for the

system. This increased time step size provides a decrease in the computational cost

of radiation-hydrodynamics simulations using IMC and BHR-2.

To attempt to reduce the variance in the pressure gradient term, linear filters

were applied to data from RAGE for a CH/Al shock tube problem. The filters were

shown to be effective in reducing the variance, but they were an ad-hoc solution. The

type of filter and number of times one should recursively apply the filters depended

on the data, and simulation parameters. This type of ad-hoc, a posteriori solution

is not a robust method for alleviating the scourge of IMC/BHR-2 noise.

Practical examples of RAGE simulations where BHR-2/IMC calculations crash,

whereas other methods such as diffusion or no mix models do not crash, were pre-

sented. These problems were the impetus of the work presented herein. A finite

element representation of the absorbed energy density was derived, because of the

“tally-able” nature of Monte Carlo methods. This finite element estimator was im-

plemented in FINMCOOL, an IMC code developed at Texas A&M, and run on a

verification problem. The verification problem showed that the estimator was more

accurate than finite difference methods, but at the expense of a slightly higher vari-

ance. It was expected that this increase in variance would decrease as the problem

complexity increased. This assertion was verified after the results from a more com-

plicated Tophat problem was investigated. The estimator was shown to be equally
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affected by noise in low-fidelity problems, but after an ensemble averaging, the vari-

ance in the estimator results were 312% smaller than for the finite difference results.

An analytic solution for the Tophat is not known, thus is was not possible to compare

the accuracy of both methods, but because of the verification problem, it is expected

that the estimator is also more accurate than the finite difference method.

4.1 Future Work

Future work should consist of generating a high-fidelity solution to the Tophat

problem to estimate a convergence rate of both methods. Doing this would also

allow one to compare the error in the ensemble average results for the estimator

and finite difference results. This estimator may be implemented into radiation-

hydrodynamics codes, such as RAGE, to decrease the computational cost associated

with IMC/BHR-2 runs.
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