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ABSTRACT

In this thesis we consider the problem of neighbor discovery in synchronous single

hop wireless ad-hoc networks. The central problem is to establish a broadcasting

sequence such that only one transmitter broadcasts at a time while all others listen

and every transmitter in the network gets at least one chance to broadcast. We

consider the question: how fast we can achieve neighbor discovery with 𝑘 nodes in

the network, each having a unique 𝑖𝑑 assigned from an id space much larger than 𝑘

in radio communication models with and without collision detection. We take the

simulation route to answer this question. We implemented one randomized and two

deterministic algorithms for neighbor discovery and compared their performance in

terms of number of rounds required as a function of the number of nodes in the

network and the size of the space from which 𝑖𝑑𝑠 are chosen. Our simulation results

show that the randomized algorithm is most efficient and is easiest to implement. The

deterministic algorithm for the no collision detection model has round complexity

comparable to the size of the id space and is orders of magnitude less efficient than

the randomized algorithm. The deterministic algorithm for the collision detection

model is slower than the randomized algorithm by a factor of log(𝑛), where 𝑛 is the

size of the id space. Our analysis would be useful for choosing optimal algorithms

for field applications depending on the radio communication model and network

topology. It will reveal any large constants or second order terms discarded in the

asymptotic analysis of the algorithms, which reduces effectiveness of some algorithms

in applications.
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1. INTRODUCTION

A wireless add-hoc network consists of a set of mobile autonomous computing

nodes which communicate through wireless transmission. In contrast to traditional

cellular network models that rely on static wired base stations for communication,

ad-hoc networks are based on node-to-node wireless transmission and message for-

warding for communication. The absence of centralized co-ordination routers for

communication makes them specially attractive for military usage, as they are ro-

bust and easy to set up. In general ad-hoc wireless networks are employed when

setting up static network infrastructure is difficult or impractical like in defense, nat-

ural disasters or search and rescue. Other interesting applications include wireless

sensor networks, swarm based robotics and wearable computing devices.

In wireless networks the communication medium is shared and only one node can

transmit at any given time. The message becomes corrupted when more than one

node transmits simultaneously. This is termed as collision. Radio networks are fur-

ther classified into the collision detection model when nodes can distinguish between

interference noise and background noise or silence, and the no collision detection

model when nodes cannot distinguish between silence and interference noise. Nodes

in wireless ad-hoc networks are generally resource-constrained in terms of commu-

nication bandwidth, computational power and memory on board. So developing

resource-efficient algorithms is of paramount importance.

In wireless ad-hoc network it is not feasible to have all nodes within range of each

other due to transmission power requirement and battery life concerns. Moreover

in a mobile ad-hoc networks, nodes are continuously moving in arbitrary directions

and even maintaining neighbor knowledge and connectivity information can be a
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non-trivial exercise. A reliable communication protocol for a mobile ad-hoc network

consists of two parts, i) an initial neighbor discovery algorithm and ii) keeping track

of local neighborhood as topology of the network changes[1][2][3].

The initial neighbor discovery problem has been extensively studied for static

radio networks[4][5][6] and the proposed solutions can be broadly categorized as

deterministic and probabilistic. The deterministic algorithms terminate in a prede-

termined fixed number of communication attempts, while probabilistic algorithms

guarantee that with high probability, termination will occur in a certain number of

transmission rounds.

This work is motivated by work done in deterministic algorithms for reliable and

efficient communication in mobile ad hoc networks by Viqar [1][2] as part of her PhD

thesis. Viqar considered the more general problem of keeping track of neighbor-

hood topology in a synchronous mobile ad-hoc network with no collision detection

capability and an upper bound on the maximum speed, as nodes continuously move

in and out of each other’s transmission and interference range. She proposed a

modular solution in which a mobile neighborhood discovery layer is built on top of a

medium access layer, which handles broadcast collision. The mobile neighbor discov-

ery layer handles changing network topology due to mobility of nodes. She proposed

a region-based neighbor discovery protocol to keep track of changing neighborhood

information due to mobility of nodes.

The area of interest is tiled into disjoint hexagons and each hexagon[1, p. 58], is

assigned a unique color from the set {1, ...,𝑚}, where 𝑚 is a constant determined

by the transmission and interference radius of radio broadcast. Partitions which are

assigned same color are sufficiently separated in space so that they can transmit

simultaneously without interference(collision). Each color is then assigned a round

number by a scheduling algorithm which makes sure that no two colors are assigned
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the same round number. This ensures that nodes in partitions having different

colors never broadcast simultaneously and hence, never collide. Each round has a

fixed number of broadcast slots and nodes within a partition broadcast in the slot

determined by the relative rank of its id with respect to all the nodes present in that

partition.

All nodes maintain knowledge about the trajectory information of every node in

its own partition and its adjacent partition. Nodes assist each other in maintaining

neighborhood knowledge by announcing their trajectory, whenever they are about

to enter or leave any partition[3, p. 511]. The trajectory information is then used by

other nodes to add or remove nodes in its immediate neighborhood.

The mobile neighbor discovery protocol relies on an initial neighborhood dis-

covery protocol for initialization of neighborhood information. Deterministic initial

neighbor discovery in the no collision detection radio model is difficult due to the

inability of nodes to differentiate between interference noise due to multiple broad-

casts and background noise when no node is broadcasting. This symmetry is broken

by constructing a family of subsets (𝑆) of the id space (𝑈) which, when used as a

broadcast schedule ensures that all nodes gets to broadcast alone at least once.

Viqar presented a deterministic algorithm for neighbor-discovery which relied on

deterministic construction of combinatorial objects known as k-selectors.[1, p. 74].

Indyk presented an algorithm for deterministic construction of 𝑘-selectors of size

𝑂(𝑘 log3 𝑛)[7], where 𝑘 is the number of nodes in the network and 𝑛 is the size of

the id space. Indyk’s algorithm for 𝑘-selector construction used a bipartite graph

having random like properties called disperser. Ta-Shma presented an algorithm for

constructing dispersers for every 𝑘 ≥ 𝑝𝑜𝑙𝑦(log 𝑛
𝜖
)[8], where 𝜖 ∈ (0, 1). The disperser

used in [7] uses 𝜖 = 3
4
.

In this thesis we compare the performance of Viqar’s deterministic algorithm
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based on 𝑘-selectors against a simple randomized algorithm in terms of number of

rounds, number of nodes in the network and the size of the id space. Also we present

a deterministic algorithm which can outperform the 𝑘-selector-based algorithm in

the collision detection radio model. Note that the 𝑘-selector-based algorithm works

for both the no collision detection and collision detection models.

As part of our work comparing neighbor discovery algorithms, we study the com-

putational complexity involved in deterministic construction of combinatorial struc-

tures like k-selectors, dispersers and p-colliding family of functions used as building

blocks. These results may be of independent interest.

The deterministic neighbor discovery algorithm based on 𝑘-selectors for the no-

collision-detection radio model looks asymptotically efficient when expressed in big

oh notation 𝑂(𝑘 log3 𝑛) but it hides a large multiplicative factor of (482𝑑3), where

𝑑 is the degree of the disperser graph used, which significantly degrades its perfor-

mance when the size of the id space is less than 106. The big oh notation used to

specify asymptotic behavior of algorithms is helpful in predicting the scalability of

algorithms as the size of the input grows but can hide large constant factors that

hinders absolute comparison in terms of computation cycles with other algorithms.

Sometimes simple algorithms with bad asymptotic behavior can beat sophisticated

asymptotically efficient algorithms with large constant multiplicative factors in the

input range of interest. Since mobile ad-hoc network algorithms are used in a wide

array of devices, from hand-held radio devices with very little memory and process-

ing capability to vehicular ad hoc networks, our analysis will be useful for selecting

appropriate algorithm in practice.

We also present a simple deterministic algorithm for the collision detection radio

model which terminates in 2𝑘 log(𝑛) rounds, where 𝑘 is the number of nodes in the

network and 𝑛 is the size of the id space, and a randomized algorithm that terminates
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with 1 − 𝜖 probability (𝜖 < 10−4) in 20𝑘 rounds for 𝑘 < 1000 . The randomized

algorithm is similar to the algorithm Rand-try presented in [9, p. 212] for the wake

up problem. The deterministic algorithm for the collision detection model uses ideas

similar to one used in [10] for consensus in radio networks and those used in [11] for

conflict resolution in multiple-access channels.
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2. RELATED WORK

Reliable communication in radio networks has been widely studied in the context

of distributed computing[9][12][13][14]. Widely studied aspects of radio communi-

cation include the wake-up problem, reliable broadcast and the neighbor discovery

problem.

In the wake-up problem some process wakes up spontaneously while others have

to be woken up[9]. Only awake processes can send message. Sleeping processes wake

up on receipt of the first messages. The objective is to wake up all processes in the

minimum number of rounds. The complexity of the wake-up problem is measured as

the number of rounds elapsed from the spontaneous wake-up of the first node to the

round when all nodes are awake. Jurdzinski and Stachowiak presented probabilistic

algorithms for the wake-up problem in single hop synchronous radio networks in

𝑂(log(𝑛) log 1
𝜖
) rounds [15], where 𝑛 is the number of nodes in the network and 𝜖 is

the probability of error.

The broadcast problem is how to propagate a message from a source to all nodes

in a multi-hop radio network[13]. It has been formulated in two flavors, spontaneous

protocols in which the starting time is known to all nodes and nonspontaneous, in

which there is a single source initiating the process. Some solutions to the broadcast

problem use a solution to the wake-up problem as a building block.

The neighbor discovery problem is to identify all the neighbors in a mobile device’s

transmission range[5]. It is an important first step in the initialization of a wireless ad

hoc network. Neighbor discovery differs from the wake-up problem in that all nodes

have woken up spontaneously but they don’t know each others’ ids, which have to be

communicated through radio broadcasts. Neighbor discovery in single hop wireless
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ad hoc networks is studied in [6], in heterogeneous cognitive radio networks in [4]

and in multi-channel radio networks in [5].

A common sub-problem found in the wake up problem, reliable broadcast and the

neighbor discovery problem is to establish a broadcast schedule such that all nodes

in the network gets to transmit alone at least once, without interference due to

simultaneous broadcast by any other node in its transmission or interference radius.

Randomized algorithms for discovering such schedules have been studied in [6][16].

Randomized algorithms for neighbor discovery based on birthday paradox is studied

in [17]. In [6] an asynchronous Aloha [17] like algorithm is presented which is slower

than the synchronous counterpart by a factor of two. Randomized algorithms for

neighbor discovery in the collision detection model is presented in [16].

Deterministic algorithms for finding such a schedule are based on id-based arbi-

tration in the collision detection model[10]. Radio broadcast in the collision detection

model is discussed in [18]. A tree based collision detection algorithm in which only

a subset of the nodes present in the network want to broadcast and the broadcast

probability is upper bounded is presented in [19] .

Deterministic algorithms for the no collision detection model is based on the

deterministic construction of combinatorial objects known as selective family of sub-

sets.[20]. Selective families were used for deterministic distributed broadcast in [13].

A selective family 𝑆 of a set 𝑈 is a family of subsets such that for any subset 𝐾 of 𝑈

of size ≤ 𝑘, there exists some subset in the family (𝑠𝑖 ⊂ 𝑈) which intersects subset

𝐾 at exactly one element. This property guarantees that at least one node in the

network will broadcast successfully, every |𝑆| rounds.

Interestingly in [20] the authors use a deterministic distributed broadcast algo-

rithm for special networks, to prove lower bounds on the size of the selective family

of any set 𝑈 .
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3. INITIAL NEIGHBOR DISCOVERY

A mobile ad-hoc radio network is modeled by a graph 𝐺 = (𝑉,𝐸). The vertices

in 𝑉 represent the transmitters and receivers in the network, also called processes

or nodes, and 𝐸 represents the connection or links between the the transmitters/re-

ceivers. We will use |𝑉 | = 𝑘 to denote the number of nodes and 𝑛 to denote the size

of the id space. Each node in the network has a unique id assigned from the id space.

The ad-hoc nature of the network implies that initially the nodes (vertices) don’t

know about the topology of the network. Additionally in a mobile ad-hoc network

the communication graph keeps changing over time as nodes move in and out of each

other’s transmission radius.

The deterministic reliable neighbor discovery protocol presented by Viqar [1,

p. 58] assumes the initial neighbor knowledge before the nodes start moving. The

algorithm presented by her then keeps track of the changing neighborhood con-

figuration as the nodes start moving. To justify this assumption she presented a

deterministic initial neighbor discovery algorithm [1, p. 74] which works for both the

collision-detection and the no-collision-detection models.

To minimize collisions due to simultaneous broadcast, the overall algorithm di-

vides the geographical/physical space into hexagons, whose size depends on trans-

mission and interference radius of radio transmitters/receivers. Then each hexagon

is assigned a time slot, which dictates the time window in which nodes belonging to

those regions can broadcast. This ensures that nodes belonging to different hexago-

nal partition never collide. This reduces the problem of deterministic initial neighbor

discovery of all nodes in the network, to deterministic neighbor discovery of nodes

in each hexagon. All the nodes belonging to same hexagonal partition are within
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each others’ broadcast and interference radius. Furthermore, nodes do not cross their

respective hexagonal partition during initial neighbor discovery phase.

The initial neighbor discovery algorithm assumed restricted motion during the

initial neighbor discovery phase, which allowed the connectivity graph for each local

neighborhood to be modeled by a complete graph. This implies that when a trans-

mitter node broadcasts alone, all receiver nodes within the transmission radius will

receive the message.

3.1 Problem Definition

Neighbor discovery problem : given a set of nodes each having a unique id and

sharing a common communication medium, find an algorithm which will lead to all

nodes successfully gaining the knowledge about every other node in the network.

In this thesis we follow Viqar’s lead and assume a complete communication graph

for the initial neighbor discovery problem. This complete graph based communication

model is also known as a single-hop radio network. When the communication graph

is not complete, it is termed as a multi-hop radio network.

The nodes in the network communicate in synchronous steps called rounds. In

each round a node may choose to transmit or receive. When a node is not transmit-

ting it is in listening mode (acting as a radio receiver). When a transmitter node

transmits alone, all the receiver nodes within transmission radius 𝑟𝑡𝑟𝑎𝑛𝑠 receive the

message. Radio network models are further classified into the collision detection

model and the no collision detection model. In the collision detection model nodes

can differentiate between background noise of silence and interference noise due to

two or more nodes broadcasting simultaneously(collision) whereas in the no-collision-

detection model nodes cannot differentiate between interference noise of collision and

background noise of silence. Algorithm 2 shows that collision detection capability
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greatly simplifies the deterministic neighbor discovery problem. The round complex-

ity for successful neighbor discovery in this model is significantly lower than in the

no collision detection model.

The neighbor discovery problem can be abstracted out and formulated in a num-

ber of ways depending on the radio network model used and the quality of the solution

desired. It can be viewed as finding a 𝑘 × 𝑙 binary matrix such that for each row 𝑟𝑖

there exists a column 𝑐𝑗 such that 𝑐𝑗[𝑟𝑖] = 1 and 𝑐𝑗[𝑟𝑘 ̸=𝑖] = 0. It is easy to verify that

given such a matrix it can be transformed into a correct neighbor discovery protocol.

Just assign each node in the radio network a distinct row of the given matrix and

ask it to broadcast in rounds corresponding to row indices having entry 1. Since

each row has an entry 1 at some index such that it is the only row with 1 in the

corresponding column of the binary matrix, it broadcasts alone.

Another way of formulating the problem is in terms of designing hash functions:

Find a hash function 𝑓 : {1..𝑛} ↦→ {1..𝑘}, where 𝑛 is the size of the id space and 𝑘 is

the number of nodes in the network, with some minimum progress guarantee, that is

given any set 𝑆 ⊂ {1, .., 𝑛}, 2 ≤ |𝑆| ≤ 𝑘 of 𝑘 ids belonging to the id space, the hash

function should map them to some element in the set {1, .., 𝑘} such that with high

probability at least two among the 2 ≤ |𝑆| ≤ 𝑘 items being hashed does not collide.

That is ∃𝑥1, 𝑥2 ∈ 𝑆 such that 𝑓(𝑥𝑖) ̸= 𝑓(𝑦),∀𝑦 ∈ 𝑆 ∖ {𝑥𝑖}, 𝑖 ∈ 1, 2. This ensures that

in every 𝑘 rounds at least two nodes broadcasts successfully. Now if the broadcasting

nodes include ids of all nodes they have received message from, then at least one node

learns about its successful broadcast every 𝑘 rounds and stops broadcasting in future

rounds. This can be used to implement a randomized neighbor discovery protocol

that terminates with high probability in 𝑘2 rounds. A neighbor discovery protocol

terminates when each node in the network knows about all its neighbors.

The difficulty in designing an initial neighbor discovery protocol for ad-hoc radio
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networks is the symmetry arising when more than one node within a transmission

radius try to transmit in the same round. This symmetry could lead to perpetual

collision. The deterministic algorithm has to terminate in a pre-determined number

of rounds and each node must know the id of every node in the network when the

algorithm terminates. The randomized algorithm has to terminate with probability

1− 𝜖 after 𝑛 rounds where 𝜖 is a function of 𝑛 and 𝜖(𝑛)→ 0 as 𝑛→∞.

We abstract out the problem definition into deterministic neighbor discovery and

randomized neighbor discovery to make it more amenable to solution algorithmically.

The deterministic version of the neighbor discovery problem can be formulated as:

Deterministic neighbor discovery: Given a set 𝑈 = {1, 2, 3, ...., 𝑁}, and a subset

𝐾 of 𝑈 , find a sequence of subsets of 𝑈 , 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑚; 𝑠𝑖 ⊂ 𝑈}, such that for

all elements 𝑥 in 𝐾 there exists a subset in 𝑆 such that 𝑠𝑖 ∩𝐾 = {𝑥}

The deterministic solution tries to find a family of subsets (𝑆) of the id space

such that for any arbitrary subset of size less than or equal to 𝑘(the number of nodes

in network) there always exists a subset in the family which intersects with the given

arbitrary set at only one element. Hence if we use this family of subsets as the broad-

cast schedule, every node in the network gets to broadcast alone. Algorithm 2 for the

collision detection model uses the information in 𝐾 to construct the trivial family

consisting of singleton elements of 𝐾. The algorithm for the no-collision-detection

model constructs a general family of subsets valid for all possible combinations of

𝑘-element subsets of the id space.

Randomized neighbor discovery : Given an integer 𝑘 find a function 𝑓 : N ×

{1, .., 𝑘} ↦→ [0, 1] such that if each node broadcasts with probability 𝑓(𝑖, 𝑗) in the 𝑖𝑡ℎ

round, with 𝑗 neighbors known to it before the beginning of round 𝑖, then after 𝑛

rounds of transmit/receive, the probability of successful neighbor discovery is 1−𝜖(𝑛),

where 𝜖(𝑛)→ 0 as 𝑛→∞. This corresponds to a random 𝑀 = 𝑘 × 𝑙 matrix where
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𝑀 [𝑟, 𝑗] = 1 with probability 𝑓(𝑖, 𝑗). Each round can be mapped to a column of the

matrix and each process corresponds to a row in the matrix.

The randomized solution tries to specify the probability of broadcast in each

round as a function of the round number and the number of successful broadcasts so

far. For example, initially if there are 𝑘 nodes in the network, all nodes may broad-

casts with probability 1
𝑘

and after successful broadcast by one node, the remaining

may broadcast with probability 1
𝑘−1

and so on. In the case when the number of

nodes in network is not known, all nodes may decide to broadcast in the first round

with probability 1
2
, in the second round with probability 1

4
and so on, until they hear

a successful broadcast or hit some lower bound based on the knowledge about the

maximum possible number of nodes in the network.

3.2 Trivial Solution

A trivial solution to the neighbor discovery problem is to use a schedule of length

𝑛, where 𝑛 is the size of the id space. S = {{1},{2},{3},.....,{n}}. The node with the

id 𝑖 broadcasts in round 𝑖. Since each node in the network has a unique id, at most

one node broadcasts in any round. The drawback of the trivial algorithm is that it

is a wasteful strategy as the number of nodes in the network is much smaller than

the size of the id space. Nevertheless, it serves as a good benchmark to measure the

efficiency of other solutions.

3.3 Randomized Algorithm

We attempt to find a randomized algorithm for the neighbor discovery problem

by using a constant probability function 𝑓(𝑛) = 𝑝; that is, in each round all nodes

broadcast independently with probability 𝑝 and listen with probability (1−𝑝). Since

there are 𝑘 nodes, the resulting communication pattern can be seen as a binomial

distribution over {0, ..., 𝑘}. The probability of 𝑚 nodes broadcasting simultaneously
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is given by the (𝑚 + 1)𝑡ℎ term in the binomial expansion of ((1− 𝑝) + 𝑝)𝑘 = 1.

((1− 𝑝) + 𝑝)𝑘 = (1− 𝑝)𝑘 + 𝑘(1− 𝑝)𝑘−1𝑝 +
𝑘(𝑘 − 1)

2!
(1− 𝑝)𝑘−2𝑝2 + ... + 𝑝𝑘

The probability of successful broadcast, that is, only one node broadcasting is given

by the second term on the right hand side of the above equation, which is 𝑘(1−𝑝)𝑘−1𝑝.

We would like to maximize the probability of successful broadcast to minimize the

round complexity of the algorithm. Hence differentiating 𝑘(1 − 𝑝)𝑘−1𝑝 with respect

to 𝑝 and setting it to 0 gives

𝑑

𝑑𝑝
((1− 𝑝)𝑘−1𝑝) = 0

(1− 𝑝)𝑘−2((1− 𝑝)− (𝑘 − 1)𝑝) = 0

𝑝 =
1

𝑘

Hence in each round we broadcast with probability 1
𝑘

and listen with probability

(1− 1
𝑘
). The expected number of rounds(𝑟) for successful broadcast will be

𝐸(𝑟) =
𝑘𝑘−1

(𝑘 − 1)𝑘−1
≤ 𝑒 ∀𝑘 ≥ 3

Since there are 𝑘 nodes, the expected number of rounds for all nodes to finish broad-

casting is less than 𝑒𝑘 rounds. To find the probability of successful broadcast after

𝑚 rounds we use the lower bound of 𝑃 (𝑠𝑢𝑐𝑐𝑒𝑠𝑠) ≥ 1
𝑒

in each round. The probability

of failure (𝜖) after 𝑚 rounds of broadcasts, that is, no node is able to broadcast alone
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in first 𝑚 rounds is (𝜖 = (1− 1
𝑒
)𝑚). Hence the probability of success of at least one

node after 𝑚 rounds is 𝑃 (|𝑠𝑢𝑐𝑐𝑒𝑠𝑠| ≥ 1) ≥ 1− (1− 1
𝑒
)𝑚.

1− 𝜖 = 1− (1− 1

𝑒
)𝑚

𝑚 =
log(𝜖)

log(𝑒− 1)− 1

Substituting 𝜖 = .0001 for 99.99% success probability, we get 𝑚 ≈ 20. Hence in

20𝑘 rounds, the randomized algorithm will succeed with probability 0.9999.

Using typical values for broadcast radius and maximum speed of nodes, in a

vehicular wireless ad-hoc network from [1, p. 68], we approximate the number of

nodes in each hexagonal partition to be ≈ 20. Substituting 𝑘 = 20 for number of

nodes in one hexagonal cell in a vehicular ad-hoc network, in 99.99% of the trials it

will succeed in at most 400 rounds. So when the number of nodes in the network is

less than 5% of the size of the id space, this could be a good strategy.

Algorithm 1 gives the pseudo code for the randomized algorithm. Each node runs

an instance of the algorithm and broadcasts with probability 1
𝑘

in each round. Note

that the randomized algorithm does not require any knowledge about the size of the

id space. The broadcasting node includes the ids of all the nodes it has heard from in

its broadcast message. When a listening node finds its id in the received message, it

learns about its previous broadcast success and stops broadcasting in further rounds.

The number of successful broadcasts information is used to increase the broadcast

probability of the remaining nodes for faster termination.

Table 3.1 presents the simulation data for one hundred runs of Algorithm 1.

We observe that the average number of rounds for termination for one hundred

simulations is ≈ 𝑒𝑘 and all simulations terminate within 5𝑘 rounds. This is expected
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as the probability of success after 5𝑘 rounds is ≈ 0.9. Also we observe that Algorithm

1 performs better than expected. This is due to disabling of self broadcast by nodes

once they broadcast successfully and learn about their success in subsequent rounds.

Algorithm 1 Randomized neighbor discovery algorithm

1: procedure RandomizedDiscovery (𝑘, 𝑖𝑑)
2: ◁ k is number of nodes in network, id is unique process identifier
3: ◁ Broadcast(𝑖𝑑) and Listen() are primitives used for communication
4: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑡← {∅}
5: 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑢𝑐𝑐𝑒𝑠𝑠← 𝐹𝑎𝑙𝑠𝑒 ◁ store ids of neighbors discovered
6: while (|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑡| ≤ 𝑘) do
7: 𝑟𝑎𝑛𝑑𝑖𝑛𝑡← 𝑅𝑎𝑛𝑑𝑜𝑚(1, 𝑘2) ◁ From uniform distribution on 1 . . . 𝑘2

8: if 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 ≤ 𝑘 and 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 𝐹𝑎𝑙𝑠𝑒 then
9: Broadcast({𝑖𝑑 ∪ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑡})
10: else
11: 𝑚𝑒𝑠𝑠𝑎𝑔𝑒← Listen()
12: if 𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
13: insert(neighborSet, message.data)
14: if (𝑖𝑑 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑡) then
15: 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑢𝑐𝑐𝑒𝑠𝑠← 𝑇𝑟𝑢𝑒
16: end if
17: end if
18: end if
19: end while
20: return neighborSet
21: end procedure

15



𝑘 min rounds max rounds mean standard deviation

20 36 94 55 9
60 123 216 164 17
100 228 338 271 21
140 327 439 378 27
180 428 562 490 30
220 497 704 600 36

Table 3.1: Simulation data for randomized algorithm

Figure 3.1: Scatter plot of simulation data for 100 iterations

The drawback of this approach is that it requires knowledge of the number of

16



nodes 𝑘 in the network. This can be ameliorated by using an exponential back-off

based network size estimator. It can start with an estimate of 𝑘 = 2 and double the

estimate of 𝑘 every 5𝑘 rounds until it hears a successful broadcast or some upper

bound on estimate of 𝑘 is reached. We suggest 5𝑘 rounds of broadcast before doubling

the estimate as the probability of successful broadcast is approximately 0.90 when

the correct value of 𝑘 is reached. If we go for higher accuracy the required number

of rounds for each guess will increase significantly with marginal gain in accuracy as

𝑚 ∝ log(𝜖) and increase in accuracy by one significant digit will lead to doubling of

the number of rounds.

3.4 Deterministic Algorithm With Collision Detection

The deterministic algorithm for neighbor discovery using the collision detection

radio model uses unique ids of the nodes to dynamically discover the correct schedule

for the broadcast. The idea is similar to searching in a balanced binary search tree

as shown in figure 3.2. A similar strategy is used for reaching consensus in radio

networks in [10] and controller area network protocol arbitration[21]. The nodes use

the binary representation of their ids as initial input and based on the broadcast

status history of previous rounds take the broadcast decision in the next round

to minimize collision chances. All nodes use binary strings of the same length to

represent their ids, padding most significant bits with 0 when required.
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Figure 3.2: Broadcast progress with 3 bit id. Initially all nodes with 0 as most
significant bit broadcast. They observe collision as there are two nodes in the network
with 0 as msb (010,011). In the next round nodes with msb 00 broadcast and observe
silence, hence ids with prefix 00 are not present. Then nodes with msb 01 broadcast
and observe collision. Finally nodes with ids 010 and 011 broadcast alone.

Each node locally simulates the search operation on the binary search tree whose

leaf nodes have ids {1, ...,𝑚𝑎𝑥𝐼𝑑}, and agree on the subtree being searched in each

round. Initially all nodes having zero as the most significant bit(msb) broadcast

while those having 1 as msb listen. When they observe silence, it means no node

having 𝑖𝑑 in the left subtree is present and they start searching in the right subtree.

If they observe a collision then it is interpreted as more than one node with 𝑖𝑑 in

the left subtree is present and it is further divided into left and right subtree and

recursively searched. Observing a successful broadcast is inferred as only one node

was present in the active subtree(the subtree currently being searched) and that

subtree does not require further investigation.

The algorithm gurantees that at least one node is able to broadcast successfully

every ⌈2 log2(𝑛)⌉ rounds where 𝑛 is size of id space. The worst case occurs when nodes
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with maximum consecutive ids are present in the network. In that case, starting from

the msb, both 0 and 1 are tried at each bit position from the most significant to the

least significant bit and the conflict is finally resolved at the least significant bit in

the ⌈2 log2(𝑛)⌉𝑡ℎ round. Hence the algorithm gurantees that it will terminate in at

most ⌈2𝑘 log2(𝑛)⌉ rounds, where 𝑘 is number of nodes in the network.

Algorithm 2 gives the pseudo code for the deterministic algorithm for the collision

detection model. Each node in the network executes a copy of the algorithm locally.

We arbitrarily choose to traverse the left subtree before the right subtree. The

algorithm uses a stack to track the most significant bit prefix used to decide the

broadcast status in the current round, conveniently called current round prefix here.

When silence is heard or when a node broadcasts alone, all nodes pop the bit on

the stack top; this corresponds to discarding the subtree with prefix represented by

the current state of stack. When collision is detected all nodes push a one followed

by zero on the stack top. This corresponds to recursively exploring the left subtree

followed by the right subtree. The stack is initialized with {1, 0} to explore the left

subtree followed by the right subtree. For exploring the right subtree first followed

by the left subtree initialize the stack with {0, 1} and push zero followed by one on

collision detection. When a node broadcasts in a round, it always assumes collision

has occurred and explores ids with most significant bit prefix corresponding to the left

and the right subtree of the current round prefix. If it is the only node broadcasting

in a round then it will continue broadcasting once every two consecutive rounds

until it reaches its least significant bit in at most ⌈2 log2(𝑛)⌉ rounds. When a node

broadcasts the bit prefix corresponding to its id then it marks itself successful and

disables broadcasting. When a node listens to a single broadcast it waits until it

hears silence in two consecutive rounds. When a node is in the wait mode, it only

listens.
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Algorithm 2 Deterministic neighbor discovery with collision detection

1: ◁ Broadcast(𝑖𝑑) and Listen() are primitives used for communication
2: ◁ Variables used
3: 𝐼𝑑𝑆𝑖𝑧𝑒, 𝑓𝑙𝑎𝑔𝐵𝑖𝑡, 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥, 𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥← 0
4: 𝑒𝑛𝑎𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡← 𝑇𝑟𝑢𝑒
5: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← 𝐹𝑎𝑙𝑠𝑒
6: 𝑏𝑖𝑡𝑆𝑡𝑎𝑐𝑘 ← {1, 0}
7: procedure DeterministicWithCD (𝑘, 𝑖𝑑,𝑚𝑎𝑥𝐼𝐷) ◁ main function
8: ◁ k is number of nodes in network, id is unique process identifier
9: ◁ maxID is maximum id in id-space
10: 𝐼𝑑𝑆𝑖𝑧𝑒←Binary(𝑚𝑎𝑥𝐼𝐷)
11: 𝑖𝑑𝑏𝑖𝑡𝑠←Binary(𝑖𝑑) ◁ pad to make it same as 𝐼𝑑𝑆𝑖𝑧𝑒
12: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑠𝑡 = ∅ ◁ store ids of neighbors discovered
13: while (|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑠𝑡| ≤ 𝑘 − 1) do
14: 𝑚𝑦𝐶ℎ𝑜𝑖𝑐𝑒←BroadcastStatus()
15: if 𝑚𝑦𝐶ℎ𝑜𝑖𝑐𝑒 = 𝑇𝑟𝑢𝑒 then
16: Broadcast(𝑖𝑑)
17: 𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥← 𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥 + 1
18: 𝑏𝑖𝑡𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ([1, 0]) ◁ explore left subtree before right subtree
19: 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥← 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥 + 1 ◁ descend into sub tree
20: else
21: 𝑚𝑒𝑠𝑠𝑎𝑔𝑒← Listen()
22: if 𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
23: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑑𝑎𝑡𝑎)
24: Wait for 𝐼𝑑𝑆𝑖𝑧𝑒− 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥 rounds
25: ◁ wait until broadcaster disables itself
26: if 𝑏𝑖𝑡𝑆𝑡𝑎𝑐𝑘.𝑝𝑒𝑒𝑘() = 1 then
27: 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥← 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥− 1
28: end if
29: 𝑏𝑖𝑡𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝() ◁ successful broadcast, hence no node in same sub

tree
30: else if 𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 then
31: 𝑏𝑖𝑡𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ([1, 0]) ◁ descend into sub tree
32: 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥← 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥 + 1
33: end if
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34: end if
35: end while
36: return 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑠𝑡
37: end procedure
38: procedure BroadcastStatus( )
39: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒 then
40: 𝑒𝑛𝑎𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡← 𝐹𝑎𝑙𝑠𝑒 ◁ Always listen after successful broadcast
41: else
42: 𝑓𝑙𝑎𝑔𝐵𝑖𝑡← 𝑏𝑖𝑡𝑆𝑡𝑎𝑐𝑘.𝑝𝑒𝑒𝑘()
43: if 𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥 < 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥 then ◁ id not in active sub tree
44: 𝑒𝑛𝑎𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡← 𝐹𝑎𝑙𝑠𝑒
45: else if 𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑑𝑒𝑥 then
46: 𝑚𝑦𝑐ℎ𝑜𝑖𝑐𝑒← 𝑖𝑑𝑏𝑖𝑡𝑠[𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥]
47: if 𝑚𝑦𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓𝑙𝑎𝑔𝐵𝑖𝑡 then
48: 𝑒𝑛𝑎𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡← 𝑇𝑟𝑢𝑒 ◁ id in active sub tree
49: else
50: 𝑒𝑛𝑎𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡← 𝐹𝑎𝑙𝑠𝑒
51: end if
52: end if
53: if 𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥 = 𝐼𝑑𝑆𝑖𝑧𝑒 then
54: 𝑒𝑛𝑎𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡← 𝐹𝑎𝑙𝑠𝑒 ◁ reached lsb, broadcast success
55: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← 𝑇𝑟𝑢𝑒
56: end if
57: end if
58: end procedure
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𝑘 min rounds max rounds mean standard deviation 𝑘 log(𝑛)

20 902 959 927 11 640
60 2599 2708 2656 20 1920
100 4269 4389 4325 28 3200
140 5872 6037 5956 30 4480
180 7483 7646 7562 35 5760
220 9083 9275 9156 40 7040

Table 3.2: Simulation data for the deterministic algorithm with collision detection

Table 3.2 presents the simulation data for this deterministic algorithm. Figure

3.3 presents the plot of rounds required for completion as a function of the number of

nodes in the network, with ids picked from an id space of size 32 bits. For simulation

ids were chosen randomly from the uniform distribution on {1, ..., 232}. As expected

the round complexity in each run is between 𝑘 log(𝑛) and 2𝑘 log(𝑛). The average

round complexity for 100 runs of the algorithm was observed to be ≈ 1.35𝑘 log(𝑛).

For id space greater than 5 bits long(max id greater than 31), the deterministic

algorithm is expected to be slower than the randomized algorithm presented in the

previous section(Algorithm 1), since 𝑘 log2(𝑛) > 5𝑘 for 𝑛 > 32.
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Figure 3.3: Simulation result for the deterministic algorithm. Ids picked randomly
from the uniform distribution on {1, ..., 232}

3.5 Deterministic Algorithm For No Collision Detection Radio Model

The deterministic algorithm for neighbor discovery in the no collision detection

model is based on a deterministic construction of combinatorial objects known as k-

selective family of subsets[20] and k-selector family of subsets[7]. A 𝑘-selective family

of subsets of any set 𝑈 has the property that for any arbitrary subset 𝐾 ⊂ 𝑈, |𝐾| ≤ 𝑘,

there always exists a subset in the 𝑘-selective family that intersects with 𝐾 at exactly

one element. A 𝑘-selector family of subsets has the property that given any arbitrary
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subsets 𝑋 and 𝑌 of 𝑈 , there always exists a subset in the 𝑘-selector family that

intersects with set 𝑋 at exactly one element but has no element in common with set

𝑌 . It is easy to show that 𝑘-selective and 𝑘-selector family of subsets always exist as

the trivial family of subsets consisting of singleton elements of 𝑈 is a 𝑘-selective as

well as 𝑘-selector. An asymptotically efficient deterministic algorithm for neighbor

discovery in the no-collision-detection model is based on constructing a 𝑘-selective

or 𝑘-selector family of size polynomial in log(𝑛), where 𝑛 = |𝑈 | is the size of the id

space. In [14], the authors prove the existence of selectors of size 𝑂(𝑘 log(𝑛)) using

probabilistic methods.

Viqar gave an 𝑂(𝑘 log(𝑛)) algorithm [1, p. 74] for deterministic neighbor discovery

using a 𝑘-selector family of subsets, where 𝑘 is the number of nodes in network and

𝑛 = |𝑈 | is the size of the id space.

Definition 1 A family 𝑆 = 𝑆1, 𝑆2, ..., 𝑆𝑙 of subsets of a set 𝑈 ,|𝑈 | = 𝑛, is called k-

selective if for any subset 𝑋 of 𝑈 , |𝑋| ≤ 𝑘, there exists 𝑆𝑖 ∈ 𝑆 such that |𝑆𝑖∩𝑋| = 1.

[20, p. 711].

Definition 2 A family 𝑆 = 𝑆1, 𝑆2, ..., 𝑆𝑙 of subsets of 𝑈 , |𝑈 | = 𝑛, is called a k-

selector if for any pair 𝑋, 𝑌 of disjoint subsets of 𝑈 such that 𝑘
2
≤ |𝑋| ≤ 𝑘 and

|𝑌 | = 𝑘, there exists 𝑆𝑖 such that |𝑆𝑖 ∩𝑋| = 1 and |𝑆𝑖 ∩ 𝑌 | = 0. [7].

From the definition of 𝑘-selective and 𝑘-selector family of subsets, it follows that

one can construct a 𝑘-selective family of subsets by taking the union of (2𝑖, 𝑛)𝑘-

selectors for 𝑖 = 1, ..., log(𝑘). Hence if we have a deterministic algorithm for con-

structing 𝑘-selectors for any value of 𝑘, we can use it for deterministic construction

of a 𝑘-selective family of asymptotically the same size.

A 𝑘-selector family of subsets when used as the schedule for deterministic radio

broadcast provides a progress guarantee for neighbor discovery. This was proved in

[12, lemma 1].
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Lemma 1 : Let 𝑆 be a 𝑘-selector over {1, 2, ..., 𝑁} and let 𝑍 be any subset of

{1, 2, ..., 𝑁} such that 𝑘 ≤ 𝑍 ≤ 2𝑘. Let 𝑌 be the set of all elements 𝑦 ∈ 𝑍 such that

there exists a set 𝑠𝑖 in 𝑆 such that |𝑠𝑖 ∩ 𝑍| = 1. Then 𝑌 contains more than half of

the elements of 𝑍.

The above lemma provides a guarantee that at least half of the nodes present

in the network are able to broadcast successfully when a 𝑘-selector family of sub-

sets is used as the broadcast schedule. Given a 𝑘-selector family of subsets for

𝑈 ={1, ..., 𝐼𝑑𝑀𝑎𝑥}, we can use it to schedule deterministic broadcast in the no-

collision-detection radio network. We order the 𝑘-selector family of subsets in any

arbitrary order such that all nodes agree on the ordering and then the subset at

index 𝑖 decides which set of nodes broadcast in the 𝑖𝑡ℎ round. When a node’s id is

present in the subset at index 𝑖, it broadcasts in round 𝑖. This ensures that at least

𝑘
2

nodes present in the network broadcast alone in |𝑆| rounds, where |𝑆| is the size of

the selector. We then repeat this process with a 𝑘
2
-selector and so on until all nodes

broadcast successfully in less than 2𝑘 log(𝑛) rounds.

Indyk gave a deterministic algorithm[7] for the construction of 𝑘-selectors of size

𝑂(𝑘𝑑3 log3 𝑛) using an (𝑛, 𝑘, 𝑑) disperser, where 𝑑 is the degree of the disperser graph,

and a p-colliding family of functions. The dependency graph of the deterministic

algorithm[1, p. 74] based on 𝑘-selectors is presented in figure 3.4.
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Figure 3.4: Dependency graph of the deterministic algorithm for neighbor discovery
in the no-collision detection model based on deterministic construction of 𝑘-selectors.

A disperser is a bipartite graph with strong random like properties and a 𝑝-

colliding family of functions is like a universal hash function and provides a guaran-

tee that the probability of two elements in the domain getting mapped to the same

element in the range is less than some constant 𝑝 ∈ (0, 1). Ta-Shma gave an algo-

rithm[8] for the explicit construction of an (𝑛, 𝑘, 𝑑) disperser for all 𝑑 ≥ 𝑝𝑜𝑙𝑦 log(𝑛
𝜖
)

and 𝑘 ≥ 𝑝𝑜𝑙𝑦 log(𝑛
𝜖
), where 𝑘 is the number of nodes in the network, 𝑛 is the size of

the id space and 𝜖 = 3
4
.

The pseudocode for the construction of a 𝑘-selector is presented in Algorithm 3

and is based on the deterministic construction of a 𝑘-selector presented by Indyk in

[7]. Figure 3.5 gives a plot of the expected size of the 𝑘-selector as a function of the

number of nodes in the network(𝑘) for id space 𝑈 = {1, ..., 10000}. The algorithm

uses the deterministic construction of a disperser presented in [8] and the 𝑝-colliding

family of functions presented in [7, p. 3]. The expected size of the deterministic
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Algorithm 3 k-selector Construction algorithm

1: procedure KSelelector(𝑛, 𝑘)
2: ◁ |𝐴| = 𝑛, |𝐵| = 𝑘, common degree = 𝑑
3: ◁ Return family of subsets of 𝐴
4: 𝐷(𝐴,𝐵,𝐸)←Disperser(𝑛, 𝑘)
5: 𝑑← 𝛿(𝑣), 𝑣 ∈ 𝐴 ◁ all vertices in A have same degree
6: ℎ𝑖 : 𝐴 ↦→ 𝐵, ℎ𝑖(𝑥) = Γ𝐷(𝑥)𝑖

𝑡ℎ
◁ order edges of each vertex in A arbitrarily

7: 𝐺←PcollidingFamily( 1
48𝑑

, 𝑛)
8: ℎ𝑎𝑠ℎ𝑀𝑎𝑝← {∅} ◁ key = pair(int,int), Value = Set ⊂ 𝐴
9: for (𝑣 in 𝐴) do
10: ℎ𝑥 ← ℎ(𝑣)
11: for (𝑔𝑖 in 𝐺) do
12: 𝑔𝑥 ← 𝑣 mod 𝑔𝑖
13: ℎ𝑎𝑠ℎ𝑀𝑎𝑝[(ℎ𝑥, 𝑔𝑥)].𝑖𝑛𝑠𝑒𝑟𝑡(𝑣)
14: end for
15: end for
16: 𝑆 ← {∅}
17: for (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) in ℎ𝑎𝑠ℎ𝑀𝑎𝑝 do
18: 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑎𝑙𝑢𝑒)
19: end for
20: return 𝑆
21: end procedure4
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𝑘-selector is 482𝑘 log6(𝑛). The constant factor associated with this method is large

and dominates the round complexity when the size of the id space is less than 10000.

When the size of the id space is less than 10000, the deterministic Algorithm 3 yields

the trivial selector consisting of the singletons {{1}, {2}, ..., {n}}, 𝑛 ≤ 105. Figure

3.6 plots the expected size of the 𝑘-selector as a function of the size of the id space.

The large expected size of the 𝑘-selector family of subsets of the id space 𝑈 obtained

by the deterministic construction makes us conclude that it is no better than the

trivial algorithm in which the node with id 𝑖 broadcasts in round 𝑖 when the size of

the id space is in the range (1,105).

Figure 3.5: Expected 𝑘-selector size as function of 𝑘
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Figure 3.6: Expected 𝑘-selector size as function of id space

Since the size and computational complexity of the deterministic construction of

𝑘-selectors depends on the disperser and 𝑝-colliding family of functions constructions,

we now analyze the computational complexity involved in their construction.

Definition 3. A (𝑛, 𝑘, 𝑑)-disperser is a bipartite graph 𝐺 = (𝐴,𝐵,𝐸) such that

|𝐴| = 𝑛, |𝐵| = 𝑘 and for any 𝑍 ⊂ 𝐴 such that |𝑍| = 𝑘
2
, the size of the set Γ𝐺(𝑍) of

neighbors of 𝑍 has size at least 𝑘
4
. The degree of each node in 𝐴 is 𝑑. [8]
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Definition 4 . p-colliding family of functions is 𝐺 = {𝑔0, 𝑔1, ..., 𝑔𝑟−1}, 𝑔𝑖 : 𝐴→ [𝑢]

such that for any 𝑥, 𝑦 ∈ 𝐴 and 𝑥 ̸= 𝑦 , we have 𝑃𝑟𝑔∈𝐺[𝑔(𝑥) = 𝑔(𝑦)] ≤ 𝑝. [7, p. 3]

A 𝑝-colliding family of functions (𝐺) of size 𝑂(1
𝑝

log(𝑛)) is constructed by selecting

𝑟 = ⌈1
𝑝

log(𝑛)⌉ consecutive prime numbers {𝑝1, 𝑝2, ..., 𝑝𝑟} such that the smallest of

them is greater than 1
𝑝

log2(𝑛) . We then define 𝑔𝑖 ∈ 𝐺, 𝑔𝑖 = 𝑥 mod 𝑝𝑖, 𝑥 ∈ 𝑈 .

The pseudocode for the construction of a 𝑝-colliding family is presented in Algo-

rithm 4. The probability of collision used in Algorithm 4 is 𝑝 = 1
48 log(𝑛)

, where 𝑛 is

the size of the id space. It tests primality of 48 log2(𝑛) numbers of order 𝑂(log3(𝑛)).

Since primality testing of a number 𝑚 has computational complexity 𝑂(log6(𝑚))

using the AKS algorithm[22], 𝑝-colliding family of functions has computational com-

plexity of order 𝑂(log2(𝑛) log6 log(𝑛)).

The 𝑝-colliding family of functions contribute a large constant multiplicative fac-

tor 482 and a poly-logarithmic factor 𝑂(log5(𝑛)) to the size of the deterministic

𝑘-selector. Finding an optimal size 𝑝-colliding family of functions may lead to much

smaller constant factor and reduced size of deterministic 𝑘-selector.

The pseudocode for the construction of a disperser is presented in Algorithm

5. The simplest disperser is the complete bipartite graph. Efficient construction of

dispersers requires the degree of the bipartite graph to be of order 𝑂(log(𝑛)). Con-

structing a sparse explicit disperser is a non-trivial exercise. The explicit construction

of a disperser presented in [8] uses the construction of combinatorial objects known

as extractors and block-wise extractors. Extractors take as input a source with low

randomness and a uniform probability distribution function on {1, ..., log(𝑛)} and

outputs a uniform random distribution on {1, ...,𝑚}, where 𝑚 > log(𝑛).The exact

value of 𝑚 is dependent on the amount of randomness present in the input ran-

dom source. Hence extractors act as randomness-extracting devices. The disperser

construction in Algorithm 5 uses a uniform random distribution on {1,...,𝑘}, where
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Algorithm 4 𝑝-colliding family of functions

1: procedure PcollidingFamily(𝑝, 𝑛)
2: ◁ 𝑝 is probability of collision and 𝑛 is size of id space
3: 𝑟 ← 1

𝑝
log (𝑛)

4: 𝑢← 1
𝑝

log2 (𝑛)

5: 𝑙𝑖𝑠𝑡𝑂𝑓𝑃𝑟𝑖𝑚𝑒𝑠← ∅
6: if (𝑢 ≡ 1 mod 2) then
7: 𝑥← 𝑢
8: else
9: 𝑥← 𝑢 + 1
10: end if
11: while |𝑙𝑖𝑠𝑡𝑂𝑓𝑃𝑟𝑖𝑚𝑒𝑠| < 𝑟 do
12: if IsPrime(𝑥) then
13: 𝑙𝑖𝑠𝑡𝑂𝑓𝑃𝑟𝑖𝑚𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)
14: end if
15: 𝑥← 𝑥 + 2
16: end while
17: return 𝑙𝑖𝑠𝑡𝑂𝑓𝑃𝑟𝑖𝑚𝑒𝑠
18: end procedure

𝑘 is the number of nodes in the network. The computational complexity for the

construction of dispersers is of order 𝑂(𝑛), where 𝑛 is the size of the id space.

3.5.1 An Interesting Observation

While trying to reduce the size of 𝑘-selectors, we observed that if we replace the

𝑝-colliding family of functions with the first log2(𝑛) primes, we get a family of subsets

of the id space of size ≈ 2*𝑘 log(𝑛) log log 𝑛 with selector-like properties. Using such

a family of sets as a broadcast schedule leads to successful broadcast more than 90%

of the time. The plot of the number of rounds required for neighbor discovery using

such a family of subsets is presented in figure 3.7.
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Algorithm 5 Disperser construction using pseudorandom numbers

1: procedure Disperser(𝐴,𝐵)
2: ◁ |𝐴| = 𝑛, |𝐵| = 𝑘
3: 𝐺← BipartiteGraph(𝐴,𝐵)
4: 𝑑← 𝑚𝑖𝑛(𝑘

2
, log𝑘 (𝑛))

5: for (𝑣𝐴 in 𝐺.𝐴) do
6: for 𝑖 in {1, ..., 𝑑} do
7: 𝑣𝐵 ← Random(1, 𝑘) ◁ from uniform distribution on 1..𝑘
8: Add edge (𝑣𝐴, 𝑣𝐵) to 𝐺
9: end for
10: end for
11: return 𝐺
12: end procedure

Figure 3.7: Size of subset family obtained by replacing 𝑝-colliding family by first
log2(𝑛) primes

This idea is inspired by the algorithm Prime-Steps presented in [9] and the

proof of the deterministic 𝑘-selector construction provided in [7]. The algorithm
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Prime-Steps[9, page. 214] tried to solve the wake-up problem in the synchronous,

no-collision-detection model. It exploited the property of sequences of the form

𝑝1, 2𝑝2, ... and 𝑝2, 2𝑝2, ..., where 𝑝1 and 𝑝2 are prime numbers, that they collide once

every 𝑝1𝑝2 rounds. The algorithm finds a sequence of prime multiples of sufficient

length such that all nodes wake up successfully.

The proof of the deterministic algorithm presented in [7, p. 700] used the disperser

property to prove that any arbitrary subset 𝐾 of the id space will be separated into

at least 𝑘
4𝑑

distinct groups by the disperser, where 𝑑 is the degree of the disperser.

Then it used the 𝑝-colliding family of functions to further subdivide these 𝑘
4𝑑

subsets

into even smaller subsets such that at least one element ends up as a singleton set.

This subset will then correspond to subset 𝑠𝑖 such that |𝑠𝑖 ∩𝐾| = 1.

Now if we replace the p-colliding family by the first log2(𝑛) primes, then for most

of the random 𝑘-element subsets of the id space, we expect at least one prime(𝑝𝑖) in

first log2(𝑛) primes to map at least one element in the given 𝑘-element subset to a

unique number modulo 𝑝𝑖.

Variations of this method may be tested for accuracy, like using the first log2(𝑛)

primes greater than 𝑘, the number of nodes in network.
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4. CONCLUSION

The simulation results make us conclude that the randomized algorithm is most

efficient in terms of round complexity and should be the algorithm of choice un-

less some factor other than communication efficiency is of prime importance. The

randomized algorithm is simple to implement, is light on local computation and

outperforms the deterministic algorithms in both collision detection and no-collision

detection models.

For deterministic neighbor discovery, the algorithm for the collision detection

model is efficient in terms of local computation and communication rounds. It is

slower than the randomized algorithm by a factor of log(𝑛) but faster than the

deterministic algorithm for the no-collision-detection model by a factor of log5(𝑛). If

deterministic neighbor discovery is desired and the cost of communication is expected

to be more than the cost of upgrading to the collision detection model, then it should

be the algorithm of choice.

The deterministic algorithm for the no-collision-detection model has a large con-

stant factor which makes it no better than the simplest strategy of serially trying all

possible ids, when the size of the id space is less than 105. The large multiplicative

constant factor in the deterministic construction of 𝑘-selectors comes from using a

𝑝-colliding family of functions which additionally contributes a multiplicative fac-

tor of order log5(𝑛). The combinatorial building blocks required for constructing

𝑘-selectors is computationally demanding, as the disperser construction takes cpu

cycles in the order of the size of the id space. Computing and storing a disperser

graph for a 32 bit id space could take up billions of cpu cycles and gigabytes of

memory.
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Efficient practical deterministic neighbor discovery protocol for the no-collision-

detection model that works for all sizes of the id space is still an open problem.

Efficient construction of explicit dispersers of low degree is another very important

problem having application in construction of expander graphs, leader election and

other interesting applications discussed in the survey paper [23].
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APPENDIX

The python code for simulating deterministic neighbor discovery in the collision
detection model.

import random
import sys
import os
import math

class node :
IdS i z e = int (math .pow(2 , 32 ) )
cho iceVector = l i s t ( )
broadcasterID = l i s t ( )
maxIdLength = len ( str (bin ( IdS i z e ) ) )−2
def i n i t ( s e l f , i d ) :

s e l f . currentRoundBit = 1
s e l f . g l oba lB i t Index = 0
s e l f . ID = i d
s e l f . binStrID = str (bin ( i d ) ) [ 2 : ]
i f ( len ( s e l f . b inStrID )<node . maxIdLength ) :

padd = ’ 0 ’ *( node . maxIdLength−len ( s e l f . b inStrID ) )
s e l f . b inStrID = padd + s e l f . binStrID

s e l f . knownID = [ i d ]
s e l f . l o c a l B i t I n d e x = 0
s e l f . broadcastEnable = True
s e l f . b roadcas tSucces s = False
s e l f . d e t e c t C o l l i s i o n = False
s e l f . b i tS tack = [ 1 , 0 ]
s e l f . b roadcas tHi s t = [ ]
s e l f . waitForWinner = False

def prepareNextRound ( s e l f ) :
i f ( s e l f . b roadcas tSucces s ) :

return
i f ( s e l f . waitForWinner ) :

s e l f . broadcastEnable = False
else :

try :
s e l f . currentRoundBit = s e l f . b i tS tack [−1]

except IndexError :
s e l f . printDebug ( )
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i f ( s e l f . l o c a l B i t I n d e x < s e l f . g l oba lB i t Index ) :
s e l f . broadcastEnable = False

e l i f ( s e l f . l o c a l B i t I n d e x == s e l f . g l oba lB i t Index ) :
myChoice = int ( s e l f . b inStrID [ s e l f .

l o c a l B i t I n d e x ] )
i f ( myChoice == s e l f . currentRoundBit ) :

s e l f . broadcastEnable = True
else :

s e l f . broadcastEnable = False
else :

print ” Error l o c a l index g r e a t e r than g l o b a l
”

i f ( s e l f . l o c a l B i t I n d e x == node . maxIdLength ) :
s e l f . broadcastEnable = False
s e l f . b roadcas tSucces s = True
#pr in t ” Success ID :” , s e l f . ID

def makeBroadcastChoice ( s e l f ) :
i f ( s e l f . b roadcas tSucces s ) :

node . cho i ceVector . append (0 )
return False

i f ( s e l f . broadcastEnable ) :
node . cho i ceVector . append (1 )
node . broadcasterID . append ( s e l f . ID)
return True

else :
node . cho i ceVector . append (0 )
return False

def p r o c e s s S i l e n c e ( s e l f ) :
s e l f . d e t e c t C o l l i s i o n = False
s e l f . b roadcas tHi s t . append ( Fa l se )
i f (not s e l f . waitForWinner ) :

va l = s e l f . b i tS tack . pop ( )
i f ( va l == 1) :

s e l f . g l oba lB i t Index −= 1
i f ( len ( s e l f . b roadcas tHi s t ) > 2) :

i f ( ( s e l f . b roadcas tHi s t [−1] == False ) and
( s e l f . b roadcas tHi s t [−2] == False ) ) :
i f ( s e l f . b roadcas tHi s t [−3] == True ) :

# two consecu t i v e s i l e n c e a f t e r
broadcas t means winner o f round x−2

41



s e l f . b roadcas tSucces s = True
s e l f . broadcastEnable = False
#pr in t ” Success ID :” , s e l f . ID

else :
s e l f . waitForWinner = Fal se

def decideWinner ( s e l f ) :
i f (not s e l f . broadcastEnable ) : # Receiv ing Mode

broadcastCount = sum( node . cho i ceVector )
i f ( broadcastCount == 1) : # succes s

i f (not s e l f . waitForWinner ) :
va l=s e l f . b i tS tack . pop ( )
i f ( va l == 1) :

s e l f . g l oba lB i t Index −= 1
s e l f . knownID . append (sum( node . broadcasterID ) )
s e l f . d e t e c t C o l l i s i o n = False
s e l f . b roadcas tHi s t = [ ]
s e l f . waitForWinner = True

e l i f ( ( broadcastCount > 1) ) : # co l l i s o n
s e l f . d e t e c t C o l l i s i o n = True
s e l f . b roadcas tHi s t = [ ]
s e l f . waitForWinner = False

else : # s i l e n c e
s e l f . p r o c e s s S i l e n c e ( )

else : # Transmit Mode
s e l f . b roadcas tHi s t = [ True ]
s e l f . d e t e c t C o l l i s i o n = False
i f ( s e l f . l o c a l B i t I n d e x == node . maxIdLength ) :

s e l f . b roadcas tSucces s = True
#pr in t ” Success ID :” , s e l f . ID
s e l f . broadcastEnable = False

def endRound ( s e l f ) :
a s s e r t ( ( s e l f . broadcastEnable and s e l f .

d e t e c t C o l l i s i o n ) == False )
node . cho i ceVector = [ ]
node . broadcasterID = [ ]
i f ( s e l f . broadcastEnable ) :

s e l f . l o c a l B i t I n d e x += 1
s e l f . b i tS tack . append (1 )
s e l f . b i tS tack . append (0 )
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s e l f . g l oba lB i t Index += 1
i f ( s e l f . d e t e c t C o l l i s i o n ) :

s e l f . b i tS tack . append (1 )
s e l f . b i tS tack . append (0 )
s e l f . g l oba lB i t Index += 1

i f ( s e l f . l o c a l B i t I n d e x == node . maxIdLength ) :
s e l f . b roadcas tSucces s = True
#pr in t ” Success ID :” , s e l f . ID

def c a l l ( s e l f ) :
#s e l f . printDebug ()
i f s e l f . b roadcas tSucces s :

return ( s e l f . ID , True )
return (0 , Fa l se )

def printDebug ( s e l f ) :
print ” currentRoundBit : ” , s e l f . currentRoundBit
print ” g loba lB i t Index : ” , s e l f . g l oba lB i t Index
print ”ID : ” , s e l f . ID
print ” binStrID : ” , s e l f . b inStrID
print ”knownID : ” , s e l f . knownID
print ” l o c a l B i t I n d e x : ” , s e l f . l o c a l B i t I n d e x
print ” broadcastEnable : ” , s e l f . broadcastEnable
print ” broadcas tSucces s : ” , s e l f . b roadcas tSucces s
print ” d e t e c t C o l l i s i o n : ” , s e l f . d e t e c t C o l l i s i o n
print ” b i tStack : ” , s e l f . b i tS tack
print ” broadcas tHi s t : ” , s e l f . b roadcas tHi s t
print ”waitForWinner : ” , s e l f . waitForWinner

class Broadcast :
def i n i t ( s e l f , node count =100 , b i t s i z e =32) :

node . IdS i z e = math .pow(2 , b i t s i z e )
s e l f . nodeCount = node count
s e l f . nodes = l i s t ( )
s e l f . d i s cove r ed = [ ]
i d d i c t = dict ( )
for i in range (1 , node count+1) :

i d = random . randint (1 , node . IdS ize −1)
i f i d in i d d i c t :

i d d i c t [ i d ] += 1
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i −= 1
else :

i d d i c t [ i d ] = 1
s e l f . nodes . append ( node ( i d ) )

def s imulate ( s e l f ) :
rounds = 0
r e s = dict ( )
count = 0
while ( count != s e l f . nodeCount ) :

for node i in s e l f . nodes :
node i . prepareNextRound ( )

for node i in s e l f . nodes :
node i . makeBroadcastChoice ( )

for node i in s e l f . nodes :
node i . decideWinner ( )

for node i in s e l f . nodes :
node i . endRound ( )

for node i in s e l f . nodes :
idS , i s S u c c e s = node i ( )
i f ( i s S u c c e s ) :

s e l f . nodes . remove ( node i )
count +=1
r e s [ idS ] = 1
s e l f . d i s cove r ed . append ( idS )

rounds += 1
return rounds

def p r i n t S t a t e ( s e l f ) :
for node i in s e l f . nodes :

node i . printDebug ( )
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