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ABSTRACT

Heavy and extra heavy oil are fluids with high ranges of viscosity at both reservoir and surface conditions.
These fluids have complex production processes due to factors such as high sulfide content, carbon dioxide
(or other fluid injection reactions), flow assurance, and water breakthrough. The rheological properties of
heavy and extra heavy oil modify the fluid in such a manner that these fluids cannot be treated as traditional
Newtonian fluids. The behavior of such fluids is well documented in the petroleum industry and serves as

the motivation for this work.

This work develops and presents a new reservoir model which accounts for the behavior of a non-Newtonian
fluid within a double porosity reservoir. We propose a new interporosity function for "pseudosteady-state"
flow with non-Newtonian phenomena. The non-Newtonian fluid type that we have chosen to use in this

work is the "pseudoplastic” plastic fluid type.

We review and adopt certain aspects from the prior studies that have been performed to describe the behavior
of a non-Newtonian fluid through porous media in a homogeneous reservoir system. We also provide an
extensive literature review on this topic and the behavior of "double porosity" (or "naturally fractured")
reservoir systems. In this work we only consider the classic case of "pseudosteady-state" interporosity flow

introduced by Warren and Root as this represents the "base" case (or starting point).

Specifically, in this work, we derive the partial differential equation for non-Newtonian flow within a double
porosity reservoir under pseudosteady-state interporosity transfer conditions. All solutions assume the
"constant rate" inner boundary condition, the outer boundary conditions used in this work include the
infinite-acting reservoir, circular reservoir with a "no flow" outer boundary, circular reservoir with a
"constant pressure” outer boundary. "Type curve" plots are provided to illustrate the behavior of the

dimensionless pressure and dimensionless pressure derivative behavior as a function of dimensionless time.

Illustrative examples are provided using synthetic cases. In these examples the entire workflow is illustrated,

including diagnostic identification and radial flow analyses.
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CHAPTER |

INTRODUCTION

1.1 Motivation

The motivation of this work originally started generating a model which was able to characterize only fluids
with high ranges of viscosity. As part of the development of the research, in the classification of non-
Newtonian fluids are integrated fluids whether are produced (heavy and extraheavy oils) or injected (EOR
methods: polymers and foams) therefore the statement of the problem can assist characterizing fluids which
rely on the classification of non-Newtonian, specifically in this study for pseudoplastic fluids. More detailed

of this classification is found in the basic concepts chapter.
1.2 Objectives

The main objectives of the work are to:
¢ Develop a double porosity model to describe the physics of pseudosteady state interporosity transfer for
non-Newtonian fluid.
e Provide an interporosity transfer model for depicting the non-Newtonian effects experienced during
interaction between the fracture and the matrix.

¢ Generate solutions suitable for pressure transient analysis.
1.3 Basic concepts

In order to generate a model which takes into account the behavior of non-Newtonian fluids and their nature

this chapter define basic concepts to understand such phenomena.

Rheology may be defined as the study of the flow and deformation of materials. There are two basic kinds
of flow with relative movement of adjacent particles of liquid; they are called shear and extensional. Shear
flows liquid elements flow over or past each other, while in extensional flow, adjacent elements flow towards
or away from each other. All flows are resisted by viscosity, stating that for a given velocity, the resulting
force increases when the viscosity is increased, whereas for a given force, the velocity is reduced when the
viscosity is increased. Consider a pair of large parallel plates, each one with area A, separated by a distance
Y as shown in Fig. 1. This system is initially at rest, at t=0 the lower plate is set in motion in the positive x-
direction at a constant velocity V under laminar flow conditions. As time proceeds, the fluid gains momentum
and ultimately the linear steady-state velocity profile is established. When the final state of steady motion

has been attained, a constant force F is required to maintain the motion of the lower plate. The force should



be proportional to the area and to the velocity, and inversely proportional to the distance between the plates.

The constant of proportionality y is a property of the fluid defined as viscosity:

where: F/A is the shear rate, and V/Y is the shear stress.

The model given by Eq. 1 is used to determine the viscosity of Newtonian fluids, i.e., for fluids with constant

viscosity regardless the shear rate and shear stress.

Y <0 Fluid initially at rest

Lower plate set in
motion

h 4

small  Velocity buildup in
t unsteady state

Large  Finally distribution
steady flow

X

Fig. 1 — Laminar flow steady state (modified from Bird et al., 2002)

Therefore, the viscosity can be defined as a measure of the energy dissipated by a fluid in motion as it resists
an applied shearing force. Shear stress is the force per unit area applied to the deformed body, where the
force is applied tangentially to the surface of the body. Shear rate is the rate of relative deformation. Hence,

eg.1 can be expressed as:



Eq.2 is often called Newton's Law of Viscosity and the fluids that have this behavior are called Newtonian
fluids. This expression is known as a rheological model and describes the flow behavior of a liquid in a
linear relationship between shear rate and shear stress. Typically x is known as viscosity and it is commonly

used to characterize the fluid’s resistance to flow.

On the other hand, non-Newtonian fluids are those which do not obey the Newton's Law of Viscosity, it
means that, even under isothermal conditions, when shear rate or shear stress varies, viscosity changes by

many orders of magnitude.

A classification of the non-Newtonian fluids is given as follows:
1. Time-Independent non-Newtonian Fluids (see Fig. 2).
a. Pseudoplastic fluids: apparent viscosity decreases with increase of shear rate.
b. Dilatant fluids: apparent viscosity increases with increase of shear rate.
c. Bingham plastics: no relation between shear rate and shear stress
2. Time-Dependent non-Newtonian Fluids
3. Viscoelastic non-Newtonian Fluids: have the effect of partial elastic recovery and may be non-

Newtonian and time-dependent.

Bingham Plastic
Pseudoplastic

Newtonian

Dilatant

Shear Stress

»
L

Shear rate

Fig. 2 — Time-Independent non-Newtonian fluids



The shear rate ant the shear stress are parameters that have been investigated for a variety of fluids, and there
are some important rheological models that describe the fluid flow behavior. Due to the assumptions that
we will make for our mathematical model, we will focus only on power law models. Next are described

several rheological models which not obey to the Newtonian’s Law of viscosity.

1.4 Rheological models

Bingham Model. This model plastic materials which behave as solids, unless a stress greater than the yield

stress is applied: The viscosity for these fluids is known as plastic viscosity, s, (Paes).

A Bingham plastic fluid will not flow until the applied shear stress z exceeds a certain minimum value z
known as the yield stress. After the fluid has been exceed, changes in shear stress are proportional to changes

in shear rate; a graphical representation is shown on Fig. 3.

Shear Rate, 7

Shear Rate, »

Fig. 3 — Bingham model graphical representation

Power Law (de Waele). For most of the fluids, the relations hip between shear stress and shear rate is not
the linear form shown in Eq.1.2, many fluids show rapid changes in viscosity as a function of the shear rate.

The next expression is used to represent the behavior of such fluids:

where:

H the consistency coefficient (Paes") and



n flow behavior index (dimensionless).

Shear Rate, 7

Shear Rate, y

Fig. 4 — Power law graphical representation

The deviation of the flow behavior index characterizes the degree to which the fluid behavior is non-
Newtonian. For power law fluids, n<lindicates that the viscosity decreases as shear rate increases. This is
called a pseudoplastic fluid. When n>1 the fluids are called dilatants, showing an increase in viscosity as
the shear rate increases. The Newtonian fluid relies when n=1. Fig. 2 and Fig. 5 shows graphically this
explanation.

A
Dilatant
52
i § Newtonian
Pseudopasltic

Shear rate

Fig. 5 — Viscosity behavior as function of the shear rate

Hershel-Buckley Model. In this model when z< 7, the material does not flow.



‘z'=z'y+H7}n. ................................................................................................................................... (1.7)

The model combines the characteristics of the Bingham and power law models and requires three parameters
for fluid characterization. The Herschel-Bulkley model can be used to represent a yield-pseudoplastic fluid
(n<1), a dilatant fluid (n>1), a pseudoplastic fluid (7 = 0, n<1) a plastic fluid (n=1), or a Newtonian fluid

(=0, n=1). Eq. (1.7) is valid only for laminar flow.

Like the Bingham plastic model, a fluid represented by this model will not flow until the applied shear stress
rexceeds a minimum value 7, which is called the yield stress. The fluid behaves like a solid until the applied
force is high enough to exceed the yield stress. The Herschel-Bulkley model is represented graphically in

Fig. 6.

Shear Rate, 7

Shear Rate, y

Fig. 6 — Herschel-Bulkley graphical representation

Generally, the rheological parameter that characterizes a model are determined by using analytical equations
based on a data set of measurements from rotational viscometer, as reported by the API 13 standards.
However, to improve the accuracy of calculation on the rheological parameters, statistical regression
methods are used. They are applied to complete set (z, ) of measurements performed on a sample of the
fluid in the rotational viscometer. Outcomes are higher accuracy in determining the rheological parameters
that characterizes the behavior of the tested fluid, and as consequence a better evaluation of flow parameters

such as velocity profile, flow regime, and pressure drop.

Casson Model. Is often used to simulate drilling fluids and cement slurries with plastic behavior, with

higher accuracy than the Bingham plastic model. The model is defined by:



Eq. 1.8 is valid only for laminar flow. Generally, the model is plotted with coordinates (72, 5*?) instead of
(7 7) to still maintain the liner trend. Like the Bingham model, Casson model requires two parameters for
fluid characterization. A fluid represented by this model requires a finite shear stress, z below it will not
flow. Above the finite shear stress, referred to as the yield stress, changes in shear stress are proportional

to changes in shear rate, and the constant of proportionality is called the plastic viscosity, 4. A graphical

representation is shown in Fig. 7.

1/2
s T

112

Shear Stress

172 172
Shear Rate , y

Fig. 7 — Casson model graphical representation

In addition to the model previously reported, there are many other empirical mathematical descriptions

that can describe with high accuracy the behavior of the viscous forces of some petroleum fluids.

Three-Parameter models. These models require three constant parameters for fluid characterization The

Graves Collins model is defined by:

The constants parameters are m, «and . The model can approximate with good accuracy pseudoplastic

fluids at low shear rates and plastic fluids at high shear rates.

The Gucuyener model is defined by

1L
rm :r{,n B 77 2P (1.10)



The constant parameters of the model are z;, 77 and m. The model predicts the behavior of yield-
pseudoplastic fluids. In addition, it can be used to represent pseudoplastic fluids ( z;=0) plastic fluids (m=2)

and Newtonian fluids (7 =0, m=2).

The Sisko model is defined by

The constants parameters of the model are a, b and c. The model can describe the behavior of
pseudoplastic fluids (a=0) and Newtonian fluids (b=0).

Four-Parameter Models. These models require four constant parameters for fluid characterization. The

Shulman model is defined by:

The constant parameters of the model are w, 7, m, and n. The model approximates with high accuracy the
properties of yield-pseudoplastic fluids (n=1), pseudoplastic fluids (7%=0, n=1), plastic fluids (h=m=1 for
Bingham plastic fluids, and n=m=2 for Casson fluids), and Newtonian fluids ( %=0, n=m=1).

The Zhu model is defined by

r=ro-e" M)+ nle_tlyy ............................................................................................................... (1.13)

The constant parameters of the model are w, 71, m and ti. The model can approximate with high accuracy
the behavior of yield-pseudoplastic fluids.
Five-Parameter models. These models require five constant parameters for fluid characterization. The

Maglione model is defined by

11 1 1
- = = 1

E - WL € 1 70 T (o3 7 1L PR (1.13)

The five constant parameters of the model are a, b, ¢, n and m. The parameter a is the yield stress,
parameters b and c are related to the fluid viscosity, and n and m are related to the flow behavior index of
the fluid. The model approximates with high accuracy the properties of yield-pseudoplastic fluids (c=0,
n=1), pseudoplastic fluids (a=c=0, n=1), plastic fluids (c=0, and n=m=1 for Bingham plastic fluids, c=0
and n=m=2 for Casson fluids), and Newtonian fluids (a=c=0, n=m=1).



1.5 Power law model

The Blake and Kozeny (1956) model is a semi-empirical flow model for Newtonian fluid through a packed
bed was extended by Christopher et al. (1965), to be applied when there is a power-law fluid flowing in a

porous media. Such modification is given by:

n+l 1
ng [ Dpd 1 n [ 6apTn
3n+1|31-4¢) LstLJ

&
1

Particle diameter [cm]

-
1

Length [cm]

Pressure change [g/cm e s?]

>
©
I

And the permeability is given by:

Combining Eq.1.7 and Eq.1.8, we obtain:

1
[ k prn

Where i is the effective viscosity, and is defined by:

31"

i{g + H (150 k¢)

1-n
12 2

Heff =
C e eeterereterererererererererererereeetereeeeeeetereetetterettttttetttrtttttrtettt—trt—t—t—.—t—————... (1.17)

We state that Eq.1.9 can be written in radial coordinates as follows:

k o
et
H ef (1.18)

Eq. 1.18 is the analog for Darcy's Law using a Non-Newtonian fluid. It is important to note that this equation

was used for the development of the proposed model.



CHAPTER 11

LITERATURE REVIEW

This chapter summarize the models found in the literature to characterize a double porosity model and a
non-Newtonian fluid through porous media.

11.1 Double porosity model with pseudosteady-state interporosity transfer

Double porosity flow models can be categorized in three main types: pseudosteady-state (Warren et al., 1963
and Najurieta, 1980), transient (Cinco-Ley et al., 1982, Serra, et al., 1983 and Streltsova, 1982) and
interporous skin (Moench, 1984, Cinco-Ley et al., 1985), nevertheless this work will focused in

pseudosteady-state.

Two classes of porosity are described:
1. Matrix: Intergranular and controlled by deposition and lithification.
2. Fracture: “foramenular’ (which means, orifice, perforation or small opening) and controlled by

fracturing, jointing and/or solution

S / >

Matrix

Fracture —\—

Matrix

ﬁ Fracture

Vug

Fig. 8 — Idealization of heterogeneous porous media

Fig. 8 represents the idealization of a heterogeneous porous media. Such idealization provides a starting

point to model the complexity of multiporosity reservoirs.
I1.1.1 Pseudosteady-state interporosity transfer in double porosity media flow model (Warren et al. 1963)

This model is based on the following assumptions:

Matrix blocks are in a systematic array of identical rectangular parallelepipeds.

Matrix blocks are homogeneous and isotropic.

Matrix blocks contain matrix porosity ¢m.

Fracture network is arrayed as an orthogonal system of continuous and uniform fractures.

10



Fracture porosity is expressed as ¢.

The double porosity character is assumed to be homogeneously distributed throughout the media.
Flow occurs towards the wellbore only through fractures.

Flow occurs between the matrix blocks and fractures, but there is no flow between matrix blocks.

The parameters and solution of Warren et al. (1963) model are presented below, and the detailed
derivation of the model is given in Appendix A. The dimensionless diffusivity equation for the flow of
fluid in the fracture is defined by

1 o op ]l AP )
- - o B . Lo (11.1)
rD 6rD 6rD 6tD 6tD

where @ is the storativity ratio expressed as:

(gct) ¢
I SO PSSPSTPRIN (1.2)
(get) ¢ + (fct)m
Whereas, the dimensionless interface condition is given by:
P mD km 2 (#Ctdm + (fCt)s
L e 0] T Ty = IO (11.3)
otp ke (#c)m m
where the interporosity flow coefficient (1) is:
k
A T T oo (11.4)
Ky
The solution of Eq. 1.1 in the Laplace domain is given by:
_ 1 Kg(rpafu f(u))
pip (rp.,u)=— ) ettt eeEeeeeEeeeateeeareeeteeeaeeateeaareeateeaateeateeanteeateeateeareeareeans (11.5)
uJu U)Ky fu))
where the interporosity flow function is:
L (11.6)
ul-w)+ 4
An approximate solution of Eq. 11.5 in the real domain is:
1 [atg] 12 [ 2 11 2 |
i) —Ih|——|-—E t —E ED |+ eerrrrrreemnrreennrre e 1.7
P (Ip.tp) 2n|Le7 IrDJ| 5 ILw(l—w) DJ+2 1&1_0)) DJ (1.7)

Well testing derivative of time:

11
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Double Porosity Reservoirs: Warren et al.(1963) SemiLog Plot
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Fig. 9 — Double porosity reservoir semilog plot A cases

Fig. 9 shows the effect of the interporosity flow coefficient in the dimensionless pressure response along
time in semi-log scale with no wellbore storage and no skin factor. For all the cases w=1x103. The
interporosity flow coefficient controls the speed of the fluid transfer interaction from the matrix through the
fracture network. For example, when A is equal to zero the dual porosity model converges to a homogenous
model. The reason why an interporosity flow coefficient approaches to zero could be because there is a

fracture-vugular dominated system, and the matrix system will take much more time to appear.
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Double Porosity Reservoirs:
Log-Log Plot Dimensionless Pressure Derivative (Warren et al., 1963)
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Fig. 10 — Double porosity reservoir log-log dimensionless pressure derivative

Fig. 10 shows the log-log plot of the pressure derivative function of the model proposed by Warren et al.
(1963). Selected cases for the storativity ratio and the interporosity flow coefficient are plotted. It should be
noticed that the higher w values the less abrupt are the chan ges in the pressure derivative response. The
storativity ratio values, may go from 0 to 1. A » =0 would imply that there is no expansion within fracture

network; a @ =1 means that all the expansion in the reservoir is attributed to the fracture expansion
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Double Porosity Reservoirs Log-Log Plot A cases
and Wellbore Storage (Warren et al.,1963)
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Fig. 11 — Double porosity reservoir log-log plot with wellbore storage

Fig.11 shows the log-log plot of the dimensionless pressure and pressure derivative function versus

dimensionless time of the model proposed by Warren et al. (1963) including wellbore storage for selected

values of interporosity flow coefficient A. It is observed that the shape of the pressure derivative is the

same but the response is delayed.

11.2 Flow of non-Newtonian fluids through homogeneous reservoirs

Ikoku et al. (1979) proposed a model to characterize homogeneous reservoirs where a non-Newtonian fluid

is flowing. They combined the motion expression proposed by Christopher et al. (1965) for non-Newtonian

fluids and the continuity equation. The resulting model is defined by:

2

0 n o

o ne_gan
or2 ror ot

where apparent hydraulic diffusivity coefficient is:

1-
o _ Mootk 2] "
k q ’

The dimensionless form of Eq. 11.9 is given as:
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The general solution of Eq. 11.11 assuming uniform pressure distribution, constant flowrate and infinite

acting reservoir in the Laplace domain is defined by:

1-n 3-n 1
- = , |
2
I"D K 1— 3-n \/JJ
Ppnn (rp.u) = 3 L e e e et e e et e et e e e e et et e (1.12)
o 2
u2K x/a—|
3-n J
Non-Newtonian Log-Log Dimensionless Pressure, n variations
Ikoku-Ramey Model,1978
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Fig. 12 — Dimensionless pressure vs dimensionless time for pseudoplastic non-Newtonian fluids in

an infinite acting reservoir

Fig. 12 shows the impact of the flow behavior index for the dimensionless pressure response. The impact in

semi log scale is shown in Fig. 13.
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SemiLog Plot Dimensionless Pressure
Flow behavior Index n Cases (lkoku et al., 1978)
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Fig. 13 — Semi-log plot non-Newtonian cases

11.3 Flow of non-Newtonian fluids within a double porosity reservoir with pseudosteady-state

interporosity transfer and Newtonian interaction between media

After Ikoku et al. (1979) some efforts have been made in order to model the flow of non-Newtonian fluids
within a double porosity reservoir. Escobar et al. (2011), introduced the pseudosteady-state interporosity
transfer function for double porosity systems, into the non-Newtonian radial diffusivity model for

homogeneous reservoir. The proposed equation is defined by:

Pow (1) =— 3-n T — (11.13)
u},/uf WK {32 Juf (u)M
£ [3-n
L 3-n J

where the interporosity flow function is exactly the same defined previously by Warren et al. (1963):

7 ul-w)o + 4
- ul-w)+ 1

f () ettt et (11.14)
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Fig. 14 shows the response of the pressure derivative function for different values of w, according to the

model developed by Escobar et al. (2011).

Log-Log Dimensionless Pressure Derivative Plot
(Escobar et al., 2011)
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Fig. 14 — Log-log dimensionless derivative pressure (Escobar et al., 2011)
11.4 Flow of non-Newtonian fluids within a double porosity reservoir with transient interporosity
transfer and Newtonian interaction between media

Olarewaju (1992) included the non-Newtonian effect in the fracture network of the transient interporosity

transfer model. The equation proposed is defined by:

1
2 e Int
0 n o _n O k n oA
e SR I Pl I By N S (11.15)
6[’2 o or ot kaJ Oaf

whose dimensionless form is:
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2
°p op [ op top 1
DLl o - 0) Ap [—2 (1) Fp (tp ~ DT [0, e (11.16)
arDz 'p 6rD L 6tD 0 J
and its general solution in the Laplace domain is given as:
2
Kion [ yu h(“)}
—13-n
Pup (U) = : 8-n S (11.17)
ui,/uh(u)K ) {32 ,/uh(u)M
I P ]
where the interporosity transfer function is:
L L
1- 1-
T N L ) (11.18)
L 3u J A

Fig. 15 and Fig. 16 show the log-log plot of the dimensionless pressure and dimensionless pressure
derivative, respectively, for different values of the flow behavior index taking into account wellbore storage
effects through a double porosity reservoir.
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Fig. 15 — Dimensionless pressure, n selected cases (Olarewaju, 1992)



Double Porosity Dimensionless Pressure Derivative Response, n cases
(Olarewaju, 1992)
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Fig. 16 — Dimensionless pressure derivative, n selected cases (Olarewaju, 1992)

Other relevant works related to the flow of non-Newtonian fluids in reservoirs are the ones published by
Vongvuthipornchai et al. (1987), Liu Ci-qun (1988) and Valdes-Perez et al., (2013).
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CHAPTER I1I

PROPOSED MODEL

For the proposed model, a description of fluid flow through porous media may be obtained from the
following physical principles:

e Law of Conservation of Mass.
® Transport Equation.
e Equation of State.

A conservation equation may be derived from the Law of Conservation of Mass which, in combination with
the Transport Equation and the Equation of Sate yield a partial differential equation which represents the
time-dependent flow through a given porous media. The proposed model describes the flow behavior of
non-Newtonian fluids using a specialized interporosity transfer which considers "pseudosteady-state"
conditions. The detailed derivation of the proposed model is found in Appendix C.

111.1 Assumptions
The following specific assumptions are made in this work:

e A vertical well penetrates the entire thickness of the reservoir.

e The reservoir thickness is uniform (constant).

e The matrix blocks are in a systematic array of identical rectangular parallelepipeds.

e The matrix blocks are homogeneous and isotropic.

e The matrix blocks have a constant porosity (¢m).

e The fracture network is array as an orthogonal system of continuous and uniform fractures.

e The fracture porosity (¢) is unique to the fracture system (i.e., is constant)

e The double porosity media is considered to be homogeneously distributed.

e Flow to the wellbore occurs only through the fracture network.

e Flow occurs only between the matrix blocks and fracture network (no flow between matrix blocks).

e The reservoir (matrix) and fracture permeabilities are constant.

e The system contains a "slightly compressible" fluid.

e The effects of gravity are negligible.

e The pressure gradients are small.

e Non-Newtonian fluids obey the Oastwald de Waele power law relationship over the flow regime
of interest.

e The fluid is considered to be pseudoplastic, which means that it is non-time dependent and the flow
behavior index values are from 0 to 1, being 1 the Newtonian fluid. .

An scheme of the proposed model is shown in Fig. 17
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Fig. 17 — Schematic representation of the proposed model

111.2 Partial differential equation

The proposed model is a double porosity medium and takes into account two networks: the fracture system,
which is the main flow path, and the matrix system, which is the source term. Combining the physical

principles and following the assumptions that were established previously, the partial differential equation

for the double porosity medium is defined by:

0?2 P n-1 o
Pr_ njoe | e [ g 1 P e ap—”‘} ........................................ (11.1)

+— = (#cy)
or2  r| or ki Laatr | L YT ot at

and the equation which takes into account the source term adding fluids to the fracture is defined by:

a1
\qm| (P = P ) cereeeeerire i

ot (FCdm Her LAL? |

9 K
Pm __ @ Em (11.2)
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In the process of deriving Eq. 111.2, we proposed a linearization in order to obtain the pressure difference
between the fracture and the matrix elevated to 1. The validation of Eq. 111.1 and Eq. I11.2 is that when the
fluid behaves as a Newtonian fluid, both equations collapse and become the well-known Warren et al. model
(1963). The detailed derivation can be found in Appendix C.

111.3 Dimensionless analysis

In order to transform Eq. I11.1 and 111.2 to a dimensionless form, following dimensionless variables have

been stated.

Dimensionless pressure in the fracture network,

(27h) " k¢
P =ﬁ(pi—pf), .................................................................................................... (|“3)
a4 Heff Tw

dimensionless pressure in the matrix,

(27h) " k¢

DD = ———(Pi = P ) s eeeeeeereresietiresestess st st s et st e sttt sttt (111.4)
n 1-n
q° Heff 'w

dimensionless time,

a' "k
tp = S (111.5)

n(gey)y )" werr T

where the total expansion of the reservoir is;
(BC1)t = (BCL)§ + (DL m 1 oeereererererrereeieee sttt (111.6)

and the dimensionless radius is

F = o+ ceeeeeeeee ettt (11.7)

Tw

If we substitute the dimensionless variables in Eq. I11.1 and Eq. 111.2, the dimensionless form of the proposed

model is defined, respectively, by;

2
9P n 9P .o Pmp |

2 il L Lo (111.8)
arD rD 8rD 6tD 6tD
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where the storativity ratio is defined as;

(#cy)
B SO (111.9)
(dci)t
For the source term the dimensionless form is defined by;
oP pm ni 1-n
—o=-——D - ) ettt et eh ettt oot ettt b et et b et et b et e e b et e et bere et e b e e rebene s 111.10
ot Coa) (Pfo ~ PmD) ( )
where the interface interporosity coefficient A is
I(m 2
A @ et (11.11)
K¢
and the dimensionless matrix contribution, D, defined as;
LY (111.12)
g aL?

The dimensionless form of the source term (Eqg. 111.10) differs from the dimensionless form of the
conventional source term because Eq. 111.10 takes non-Newtonian behavior into account. The dimensionless
matrix contribution D, describes the non-Newtonian behavior through the matrix and functions as a

linearization to obtain a partial differential equation.
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CHAPTER IV

SOLUTIONS AND RESULTS

This chapter summarizes the solutions of the proposed model using the Laplace transform definition. Initial
and boundary conditions are defined to obtain the specific solution for each case. Plots presented show the

non-Newtonian behavior in a double porosity reservoir.

1V.1 General solution

The general solution obtained in the dimensionless form and the Laplace domain is defined by:

1-n
2

Pp (rp,u) =rp? [Caly, (r5h(U)) + CoKy (FER(U)) [, v (Iv.1)

where u is the Laplace variable and the variables v ¢and h, are defined as:

1-n
- e e V.2
Gt (IvV.2)
3-n
- e e V.3
6= (IvV.3)
1) = 20 0 i (IV.4)

3-n

and the interporosity flow function, g is defined by:

1-n
mm:”a_m”+”ii ........................................................................................................ (IV.5)
Ul-@)+niD "

The constants C; and C, will depend on the inner and outer boundary conditions, which are defined below.
1V.2 Initial and boundary conditions

Given the general solution in the Laplace domain, initial and boundary conditions are given in the same

domain. For all the cases, the Initial Condition is:

BfD (rD,u=O)=0, ........................................................................................................................ (|V6)

the reservoir has uniform pressure distribution.

Similar to the initial condition, the inner boundary condition will be the same for all the cases defined by:
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d P (.
FrD L (IV.7)
u

dr
D p=1

the flowrate is constant at any time.

Three outer boundary conditions are established: Infinite Acting Reservoir (no outer boundaries felt), Closed
Reservoir (no flux at the outer boundary) and Constant Pressure (the bottomhole pressure is constant at any

time). Infinite Acting Reservoir is defined by:

lim EDf (rD ,U) PP PPSPRPPTPR (IV8)

I’D —> 0
Closed reservoir is defined by:

dpp(rp,u)
dr
b D =TeD

where rep is the dimensionless external radius drainage.

Constant Pressure at the outer boundary is defined by;
5fD (rD :reD,u):O ..................................................................................................................... (IV].O)

1.3 Solution for infinite acting reservoir and constant flowrate

If we use Eq. IV.7 and Eq. 1V.8, the constants C; and C; are:

L1 = 0 yveveeeeeeesssssseesee e (IV.11)
and
cp-t 1( T (IV.12)
u o 2
ug(u)Ki{ 3uf;(u)J
3-n

Therefore the solution in the Laplace domain for an infinite acting reservoir with constant flowrate at the

well is defined by;
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1-n [ 3-n 1
o |2 e
p "i-n|'D 3_n |

3—nL J

P (rp.u) =

Toinverteq. 1V.13 into the real domain, the Gaver-Stehfest numerical inversion is used because the equation
cannot be solved directly from tables. Next are presented plots describing the behavior for selected variables

in an Infinite Acting Reservoir.

The first variable is the dimensionless matrix contribution, D, and is evaluated for several values of the flow
behavior index, going from n=0.10 to n=1. Fig. 18 through Fig.22 depict this variation in a Log-log plot for
dimensionless pressure and dimensionless pressure derivative. The interporosity flow coefficient A = 5x10°
6 and the storativity ratio «=1x103.were kept constant Wellbore storage and skin effects are not considered

yet.
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Dimensionless Matrix contribution D, n=0.25
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Fig. 19 — Log-log plot for selected values of dimensionless matrix contribution D, n=0.25
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Dimensionless Matrix contribution D, n=0.75
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Fig. 21 — Log-log plot for selected values of dimensionless matrix contribution D, n=0.75
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From Fig. 18 to Fig. 22 the plots in time may be divided as early, middle and late time. Early time is when
the fracture system is expanding; middle time is when the interporosity transfer under pseudosteady-state
conditions between the matrix and fracture is underway (valley); the late time is when the total system is
being expanded, which translates as the sum of expansions between the matrix and the fracture. The
variations went from 1x1076 to 10°. The dimensionless matrix contribution is defined by a ratios of flowrates
(matrix-total) and an area ratio (wellbore-matrix blocks). Here, the numbers are simply variations, and the

physical meaning is based on these ratios. A low number means that we have a total flowrate higher than
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the matrix, and when we have a greater number physically, it may be explained as we have a wellbore area

higher than a matrix block.

The ‘valley’ is defined by the interporosity flow coefficient A and the storativity ratio . However, the
impact on the response or delay of the valley also depends on the dimensionless matrix contribution, which
is highly related to the flow behavior index. As we can see in Eq. IV.5, D is also related to the interporosity
flow coefficient. For that reason, when the value approaches to 0, the behavior of the plot relies as a
homogeneous reservoir with non-Newtonian or Newtonian behavior, whatever the case may be. In Fig. 21,
two variations are shown; when D=1 the model behaves just as the Warren et al. model (1963), and when

D=0 the model behaves as a homogenous reservoir.

The next variation is the interporosity flow coefficient A, which goes from 1x10° to 1x10° for selected cases
of the flow behavior index. From Fig. 23 to Fig.27 depict these variations in a Log-log plot for the
dimensionless pressure and the dimensionless pressure derivative. The dimensionless matrix contribution
D=1x10* and the storativity ratio «=1x10- were kept constant. Wellbore storage and skin effects are not

considered yet.
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Interporosity Flow Coefficient, 4, n=0.75
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Fig. 26 — Log-log plot for selected values of interporosity flow coefficient A4, n=0.75
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Fig. 27 — Log-log plot for selected values of interporosity flow coefficient 4, n=1.0

From Fig. 23 to Fig. 27 similar to the dimensionless matrix contribution, the impact of the interporosity

flow coefficient 4 is dependent in how fast or delayed the response of the interporosity transfer is. This is

due to the permeability ratio to the matrix system and the fracture system. It should be noted that the

interporosity flow coefficient is exactly the same as that derived by Warren et al (1963).

The next variation is the storativity ratio @, which goes from 1x10 to 1x10° for selected cases of the flow

behavior index. From Fig. 28 to Fig.32 depict these variations in a Log-log plot for the dimensionless

pressure and the dimensionless pressure derivative. The dimensionless matrix contribution D=1x10* and
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the interporosity flow coefficient A=5x10 were kept constant. Wellbore storage and skin effects are not

considered yet.
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Storativity Ratio, o, n=1
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Fig. 32 — Log-log plot for selected values of storativity ratio @, n=1.0

10°

The storativity ratio affects the interporosity transfer. The effect is shown in each log-log plot on the size of

the “valley”. The size of the “valley” is due to the storativity ratio, which physical meaning is the ratio to

the expansion of both systems, fracture and matrix. If the valley is relatively large, that means that the

fracture system is small compared to the total system. When the valley is relatively small may be

approaching a homogeneous reservoir. Note that this storativity ratio is exactly the same as the one derived

by Warren et al

1V.4 Solution for closed reservoir and constant flowrate

If we use Eq. IV.7 and Eq. V.9, the constants C; and C; in this particular case are:

:
|

]

o1 ] Ky _1(rS h(w))
1= ’
URWE | K,y () 1, (h)rG) ~ K, g (hw)rE) 1, _y (h(u) |
and
L] 115 h()
Cp= | eD

uh(u)e { Ky 1 (h@) 1, _g (h()rg) - Ky, _g (h(u)ry) Iv_l(h(u))J

.................................... (IV.14)

L e (IV.15)

Therefore the solution in the Laplace domain for a closed reservoir with constant flowrate at the well is

defined by;
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pmp(rp.u)=ry

1-n
2

1 |r*<V_1(re‘i)r1(u>)lv(h(u)rg)+Iv_l(r;Dh(u))Kv(h(u)r[‘iﬂ|

Uh@e] K, 4 (@) 1, 1 (@E) - Ky 1 (h@)rE) 1, 1 (hw) |

In order to invert Eq.1V.16 into the real domain, the Gaver-Stehfest numerical inversion is used because the

equation cannot be solved directly from tables. Plots describing the behavior for selected variables in the

closed reservoir at the outer boundary case are presented next.
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Closed Reservoir and Constant Flowrate, selected values of n
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Fig. 34 —Closed reservoir and constant flowrate at the wellbore for selected values of n, reo=10000

Fig. 33 and Fig. 34 show the effect of a closed boundary at the outer boundary, and constant flowrate at the
wellbore in a log-log plot where the external drainage radius rep is 5000 and 10000 respectively The
interporosity flow coefficient A = 5x10, the storativity ratio w=1x103.and the dimensionless matrix

contribution D=1x10"* were kept constant Wellbore storage and skin effects are not considered yet.
1.5 Solution for constant pressure at the outer boundary and constant flowrate

If we use Eq. IV.7 and Eq. 1V.10, the constants C; and C; in this particular case are:

. L Ky (r2 hu) | v
1 = - R R P TP RN .
uh(u) & LKV(r:D h(u) 1,1 (h(u)) + Ky, _g (hu)1, (g h(u))J
and
[ | ¢ h 1
Cpo—t | v (Tep 1) e (IV.18)

uh(u) & {KV (rap NN Ty g (h()) + K,y (h) T, (r h(u))J

Therefore the solution in the Laplace domain for constant pressure at the outer boundary with constant

flowrate at the well is defined by;
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1-n
2

1 I—Iv(regDh(u))Kv(h(u)rS)— Kv(regDh(u))IV(h(u)rS)T‘ .

. 2 (1V.19)
uh(u)e [ K, (rep h(u) 1, _1 (h(u)) + K, _g (h(u)) 1, (rep h(u))

Pip (rp.u) = D

In order to invert Eq.1V.16 into the real domain, the Gaver-Stehfest numerical inversion is used because the
equation cannot be solved directly from tables. The plots describing non-Newtonian flow behavior for

selected variables of Constant Pressure at the outer boundary are presented next.
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Fig. 35 — Constant pressure at the outer boundary and constant flowrate at the wellbore, reo=5000
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Constant Pressure and Constant Flowrate, selected values of n
and r,,=10000
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Fig. 36 — Constant pressure at the outer boundary and constant flowrate at the wellbore, reo=10000

Fig. 35 and Fig. 36 show the effect of constant pressure at the outer boundary, and constant flowrate at the
wellbore in a log-log plot where the external drainage radius rep is 5000 and 10000 respectively The
interporosity flow coefficient 4 = 5x107, the storativity ratio w=1x102.and the dimensionless matrix

contribution D=1x10"* were kept constant wellbore storage and skin effects are not considered yet.
1.6 Early and long time approximations from Laplace domain to real domain

In order to approach a suitable solution from the Laplace domain to the real domain at early times, the
Laplace variable was approached to infinity. (u ~ o). Early approximations in real domain are presented
next. The detailed derivation can be found in APPENDIX H

P (1) ~ (0 ) 37 s ereceeseseesssseessss oo (IV.20)

and the derivative of Eq. 1V.20 for well testing purposes is
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r (w)3-" 1-n

o BP0 ® [a=n][a-n] L P (IV.21)
P atg 2 20-2)1 |3-n]'P

The early time approximation plots are shown in Fig. 37 for the dimensionless pressure and Fig. 38 for the

dimensionless pressure derivative.
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Fig. 37 — Early time approximations for dimensionless pressure, selected values of n
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Early Term Approxi i Di ionless Pressure Derivative,
selected cases n
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Fig. 38 — Early time approximations for dimensionless pressure derivative, selected values of n

For the long time approximation, the Laplace variable was approached to zero. (u= 0). Long approximations

in real domain are presented next. The detailed derivation can be found in APPENDIX |

2(1-n)
P Ll
sy o
- (tD)z%tg_n S, (IV.22)
I'N—— (@-n)
[3-n]

and the derivative of Eq. 1VV.20 for well testing purposes is

—(1+n)

1-n
dpr tp) (3_m) 3-n
o — 07 B L8 e (1V.23)
dtp F{ 2 }
3-n

The long time approximation plots for selected values of the flow behavior index n are shown in Fig. 39 for

the dimensionless pressure and Fig. 40 for the dimensionless pressure derivative
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V.71

The di

Frn

D

where

nclusion of effects around the wellbore
mensionless wellbore storage of the proposed model is defined by:

1

n
dpip (tp) ] c dpip (tp)
d rD dtD
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Cp =

24C

T I — (1V.25)
n(gce) (27h)ry,

Detailed derivation can be found in APPENDIX F. The plots showing the wellbore storage are presented

next for selected values of the flow behavior index. The storativity ratio o, the interporosity flow coefficient

A and the dimensionless matrix contribution D were kept constant.
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The skin factor is defined by:

s = Apg

n
[27h ] Heff 1-n

q k

o et (IV.25)

Where Aps is the additional pressure drop that results across the skin zone. Detailed derivation can be found
in APPENDIX G.
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CHAPTER V

SYNTHETIC CASE

This chapter presents a synthetic case of a non-Newtonian fluid within a double porosity reservoir under
pseudosteady-state transfer conditions.

This chapter presents two synthetic cases of a non-Newtonian fluid within a double porosity reservoir under
pseudosteady-state transfer conditions. The first one as a base case with no skin or wellbore storage effects,

and the second with wellbore storage and skin factor. Table 1 shows the reservoir and fluid properties.
Reservoir properties:
#=0.080 (fraction) r,=0.2917 ft h=150 ft
Oil properties: (initial reservoir pressure unknown)
B,=1.19 RB/STB 1=0.120 cp ct=24.5x10 psia
Production parameters:

Drawdown Test Sequence
0,=5000 STB/D (constant)

Case 1: Well Test Data (Base Case No skin or Wellbore storage effects)

Point t, hr Ap, psi Ap'(t), psi
0 0.00028 7.471 1.104
1 0.00033 7.600 1.041
2 0.00040 7.895 1.042
3 0.00048 8.067 0.894
4 0.00058 8.245 1.145
5 0.00069 8.404 1.287
6 0.00083 8.695 0.970
7 0.00100 8.919 1.273
8 0.00119 9.094 0.967
9 0.00143 9.305 1.119
10 0.00172 9.384 1.296
11 0.00206 9.705 1.143
12 0.00248 9.901 1.269
13 0.00297 10.143 1.115
14 0.00357 10.220 1.202
15 0.00428 10.640 1.275
16 0.00514 10.695 1.364
17 0.00616 10.959 1.292
18 0.00740 11.306 1.321
19 0.00887 11.402 1.141
20 0.01065 11.735 1.239
21 0.01278 11.874 1.134

Table 1 — Well test data for case 1(no skin or wellbore storage effects)
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Point t, hr Ap, psi Ap'(t), psi
22 0.01534 12.197 0.969
23 0.01840 12.299 1.337
24 0.02208 12.468 1.192
25 0.02650 12.864 1.361
26 0.03180 12.951 1.259
27 0.03816 13.337 1.181
28 0.04579 13.379 1.056
29 0.05495 13.558 1.021
30 0.06594 13.884 1.101
31 0.07913 13.955 1.004
32 0.09495 14.343 0.955
33 0.11394 14.375 0.915
34 0.13673 14.594 1.120
35 0.16407 14.682 0.786
36 0.19689 14.904 0.709
37 0.23627 15.081 0.799
38 0.28352 15.063 0.492
39 0.34022 15.484 0.878
40 0.40827 15.618 1.007
41 0.48992 15.526 1.039
42 0.58791 15.753 1.386
43 0.70549 16.153 1.085
44 0.84659 16.345 1.509
45 1.01591 16.376 1.372
46 1.21909 16.831 1.443
a7 1.46290 17.186 1.642
48 1.75549 17.314 1.522
49 2.10658 17.507 1.666
50 2.52790 17.871 1.492
51 3.03348 18.097 1.551
52 3.64018 18.409 1.536
53 4.36821 18.967 1.771
54 5.24185 19.019 1.875
55 6.29022 19.525 2.063
56 7.54827 19.885 2.214
57 9.05792 20.168 2.011
58 10.86951 20.367 1.788
59 13.04341 20.859 2.034
60 15.65209 21.074 1.507
61 18.78250 21.751 1.619
62 22.53901 21.891 2171
63 27.04681 22.255 2.191
64 32.45617 22.678 2.484
65 38.94740 23.184 2.318
66 46.73688 23.322 1.846
67 56.08426 24.049 2.043
68 67.30111 24.549 3.209
69 80.76133 24.795 3.452

Table 1 Continued
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Fig. 45 — Pressure drop and pressure drop derivative vs time
Solution:

The log-log plot shown in Fig. 45 depicts a non-Newtonian behavior. The slope v from the straight line

observed at late times is equal to 0.0691. Also the slope v in terms of the flow behavior index is defined by:

The slope from the pressure drop data at late times in the log-log plot is v=0.0691 and solving for the flow

behavior index gives:

_1-3v 1-3(0.0691)
1-v  1-(0.0691)

The next step consists to obtain a relation between the time and the pressure drop. Recalling the
approximation at late times Eq. 1V.22,

2(1-n)

3_ 3-n
por €99~ L0 v3)

th_n}(l—n)

Substituting Eq.V.3 by Eq.111.3 and Eq.111.5 gives the next expression:
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2(1-n) 1-n

(zﬂh)nkf 3_n) 3-n ql—nkf 13-n
ﬁ(pi—pf): ( ) | - 3—nt‘ ........................... (V.4)
0" ket o 2l e @an™™ ug v
[s-n]
An slope mg_ is obtained from Eq.V.4 as follows:
(pi — Pt )
Mg = n J h e e e e e e e e e e e (V5)
30

and having known the compressibility and the porosity we may calculate the mobility ratio with this

equation:
n-3 ZTl_in n+1
k 5 (3= 2 e
r_ mSer 2 T(1_n)1 ) e I (V.6)
Heff L LS—n J L N ¢cy J 27h

25_||||1|l]| LI L L L L L L l]l]l[l]lll[l[l'l]l TTTT T T T T T[T T T T T T T T[T T TLEITT 7]
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Fig. 46 — Specialized graph

From the specialized graph Ap vs t"the slope mg_ is equal to 23.751 [psi/hr¥] and substituting in Eq.V.6 in
field units:
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0.852-3
latm € 1hr (f-0691U o 2 U2

2 =&3.751 psi 1 000918 " ' X {1- 0.852)0
my & st b 4 soepsiBas0secl 8- 0.852t )H

. L
< (3- 0.852)2 ne
£0.852(0.08)(24.5" 10 ® psi” 1)(14.696 psi) i

(V7
, 0.852+1
é é 3 0 u g
eso00[s7p]e0 01080 (30.48/)° 1D Vi g 1o RB
é & 1/  (lem)® 24hr3600secy  STBU 618"
2 30.48/i o =818
é 2p(150 /1) u
é lem u
é a

For this synthetic case the effective viscosity is known but in the real field data in order to get the
permeability the consistency factor H has to be known. At reservoir conditions this parameter may be very

difficult to find. Calculating the permeability in the fracture form the effective mobility in field units is:

[ 1darcy |
*| 1000 md |

= Ket [op ]{8.188 %} = (1000 md )(0.12 cp){8.188 %} =982 .52Md oo, (V.8)

Fig. 47 shows semi-analytical early and long time approximation in a log-log plot.
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Case 2: Well Test Data (effects around the wellbore). The same reservoir and well properties are used for

this example.

Point t, hr Ap, psi Ap'(t), psi
0 0.00028 0.342 0.300
1 0.00033 0.407 0.429
2 0.00040 0.493 0.502
3 0.00048 0.583 0.577
4 0.00058 0.695 0.695
5 0.00069 0.837 0.835
6 0.00083 0.999 0.989
7 0.00100 1.196 1.184
8 0.00119 1.424 1.360
9 0.00143 1.680 1.583
10 0.00172 2.005 1.905
11 0.00206 2.355 2.208
12 0.00248 2.801 2.532
13 0.00297 3.278 2.956
14 0.00357 3.826 3.371
15 0.00428 4519 3.894
16 0.00514 5.210 4.346
17 0.00616 6.072 4.760
18 0.00740 6.984 5.196
19 0.00887 8.064 5.783
20 0.01065 9.074 6.187
21 0.01278 10.415 6.629
22 0.01534 11.467 6.563
23 0.01840 12.635 6.566
24 0.02208 13.927 6.419
25 0.02650 15.005 5.817
26 0.03180 16.093 5.580
27 0.03816 17.191 4871
28 0.04579 17.855 4.327
29 0.05495 18.785 3.618
30 0.06594 19.301 2.830
31 0.07913 19.783 2.661
32 0.09495 20.162 1.868
33 0.11394 20.311 1.698
34 0.13673 20.815 1.435
35 0.16407 20.926 1.242
36 0.19689 21.224 1.206
37 0.23627 21.438 1.008
38 0.28352 21.516 1.334
39 0.34022 21.784 0.439
40 0.40827 22.007 0.688
41 0.48992 22.229 0.801
42 0.58791 22.153 0.824
43 0.70549 22.463 1.512
44 0.84659 22.631 1.387
45 1.01591 22.819 1.497
46 1.21909 23.130 1.450
47 1.46290 23.514 1.620
48 1.75549 23.565 1.754
49 2.10658 24.146 1.623
50 2.52790 24.133 1.648
51 3.03348 24.880 1.463
52 3.64018 25.045 1.624

Table 2 — Well test data for case 2 (effects around the wellbore)
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Solution:

The log-log plot shown in Fig. 48 depicts a non-Newtonian behavior. Plotting early data for wellbore storage

calculations.

Fig. 48 — Pressure drop data vs time
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Point t, hr Ap, psi Ap'(t), psi

53 4.36821 25.446 2.340

54 5.24185 25.682 2.164

55 6.29022 25.985 1.996

56 7.54827 26.503 2.134

57 9.05792 26.482 1.725

58 10.86951 27.107 1.647

59 13.04341 27.471 1.935

60 15.65209 27.764 2.091

61 18.78250 28.034 1.527

62 22.53901 28.734 2.425

63 27.04681 28.815 2.353

64 32.45617 29.472 1.683

65 38.94740 29.750 2.813

66 46.73688 29.858 2.311

67 56.08426 30.175 1.505

68 67.30111 30.995 0.413

69 80.76133 31.077 -1.709

Table 2 continued
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Early-Time Cartesian Plot (Wellbore Storage)
Synthetic Case 2
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Fig. 49 — Early data- Cartesian plot

From the early data in the Cartesian plot, the slope from the wellbore storage is mws=1,188.213 [psi/hr].

Calculating the wellbore storage:

c __ GB 5000 STB /D(1.19RB /STB)
S 24 mys 24(1,188 .213 psi / hr)

=0.2086 RB / PSi +evveoevereeemreeneeneeeseensessenieneens (V.9)

Calculating in field units the dimensionless wellbore storage from the unit slope:

B
Cp = 003728 — {ﬁ} ........................................................................................... (V.10)
n(gce)ehry Ap usl
Substituting the reservoir properties in Eq.V.10
o (0.03723 )1000 (STGB /D)(1.19RB /STB) [ 0.00033 hr | 8463 38 (V.11)

0.852 (0.08)(24.5x 10 ~° psi "1)(150 ft)(0.2917 ft)? | 0.410 psi
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The slope v from the straight line observed at late times is equal to 0.0691. Also the slope v in terms of the

flow behavior index is defined by:

The slope from the pressure drop data at late times in the log-log plot is v=0.0691 and solving for the flow

behavior index gives:

G (V.13)

1-v  1-(0.0691)

The next step consists to obtain a relation between the time and the pressure drop. Recalling the

approximation at late times Eq. 1V.22,

2(1-n)
(3-n) 3-n

P pf (tD):rz—tDin .................................................................................................. (V14)

FLS—n}(l_n)

Substituting Eq.V.14 by Eq. 111.3 and Eq. I11.5 gives the next expression:

2(1-n) n
(220) kg son) . | ot "k Ta-n
1 (Pi—p)= ( 2n) §-n_| - ot e (V.15)
0" et T r[ 3 ](1_n)[n(¢cot<2nh) et T " |
-n

An slope mg_ is obtained from Eq.V.12 as follows:

An having known the compressibility and the porosity we may calculate the mobility ratio with this equation:

n—3|_ Tl_in n+1
1 T21@-m%127q 12
1- [ e V.17
1900 oo | Lo (v.17)

kf ={ms|_ F[

N

Heff 3-n
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Fig. 50 — Specialized graph

From the specialized graph Ap vs t"the slope ms_ is equal to 23.623 [psi/hr*] and substituting in Eq.V17 in

field units:
) 0.852-3

ke S ¢ ' (P069LY ¢ ‘ u

Y &3 623 psi | 5006918 Laim §3 Lar 7 UGE%E@ 0.852)4

mg & £14.696 psi €3600sec g €3- 0.852 4
1-n

é _ 2 Uy

€0.852(0.08)(24.5" 10™ ° psi” ~)(14.696 psi)f

i 0.852+1

e é 3 u u o

85000[ STB]:5.615BbZ (30.4871)° 1D 1hr .19 RB G

é &8 17  (lem)® 24hr3600secy  STBU md

é : 304877 a =8.187—

¢ 2p(150f1)—; u K4

é lem u

e u

For this synthetic case the effective viscosity is known but in the real field data in order to get the
permeability the consistency factor H has to be known. At reservoir conditions this parameter may be very

difficult to find. Calculating the permeability in the fracture form the effective mobility in field units is:
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[ 1darcy [ md | [ md |
— = 8.187 — | = (1000 md )(0.12¢p )| 8.187 — | = 983.52Md ..cecveverrrrerennan. V.19
| To00 ma |~ M [cp]t cpJ ( X p)L cpJ (V.19)
Also a pressure drop occurred near the wellbore. A skin factor may be calculated using the intercept of the

plot Ap vs t¥, which is Ap=0)= -0.816[psi].

n
_Ap=0) [ 270 | kg 1
r\%,_n aB | e 1-n

Using Eq.V.20 and calculating the skin factor s in field units is:

é d?
-0, 816@_8 1874y @ 2 8150 30.48 iU G
cp U E e 3
é 30480 " &€ 5615578 (3048/1)° 1D 14 W .
g).2917 " 00 (30.48/1)° ’ 119R8/ T8 (v-21)
1em H e@ 1 ﬁ3 (1cm)3 24hr 3600sec
1
+——— =597
1- 0.852
Fig. 51 shows semi-analytical long time approximation in a log-log plot.
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Fig. 51 — Semi-analytical approximation
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CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK

Summary

A consistent reservoir flow model has been developed for the production of a non-Newtonian fluid from
a double porosity reservoir. This solution utilizes the concept of the Warren and Root (1963)
"pseudosteady-state” interporosity transfer function to develop the interporosity transfer model for the
case of a non-Newtonian fluid. This is the base model for this concept, additional models can and should
be proposed for the interporosity transfer flow behavior for the case of a non-Newtonian fluid. As a
consistency check, our proposed model is confirmed to reduce to the Warren and Root model for the

case of a Newtonian fluid (n=1).

In this work we provide a new dimensionless variable (D) which represents the dimensionless matrix

contribution and is defined as:

D = o o e eeee oot s et (111.12)

The proposed flow model is presented using various suites of "type curves" (dimensionless solution
plots) where the model parameters are varied to show the behavior of different regions of the solution.
Early-time and long-time approximations were developed and are validated by comparison to the full
solution. The early-time and long-time approximations are used to develop flow diagnostic trends and

can be used to estimate the properties of the system using specialized plots.

A workflow is proposed and synthetic examples are generated for non-Newtonian fluid flow in an
infinite-acting dual porosity reservoir (with and without wellbore storage and skin effects) to demon-

strate the proposed interpretation and analysis workflow.

Conclusions

e The non-Newtonian solution for a dual-porosity reservoir provides a unique performance signature.
e The "early-time" approximation is valid, but may be obscured by wellbore storage and skin effects.

e The "late-time" approximation is valid, and can be used to estimate the mobility ratio and skin factor.

Recommendations

e The analytical solution presented in this work should be validated by a numerical model.
e A complete approximation (for all times) should be pursued for this problem.

e Additional interporosity transfer function models should be proposed for non-Newtonian fluids.
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e This work should be exhaustively applied to field cases of heavy oil in double-porosity reservoirs.
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NOMENCLATURE

A = Area, L? [m?] or [ft?]
Am. = Cross-sectional area matrix to fracture, L? [m?] or [ft?]
A, = Reservoir area, L? [m?] or [ft?]
D = Dimensionless Matrix contribution from eg. 39, dimensionless
D, = Particle Diameter, L [cm] or [in]
E; = Exponential integral, dimensionless
F = Force, ML/t? [Newton] or [Ibf]
H = Variable of consistency [Pa e s"]
lo = Modified Bessel Functions of the first kind, zero order, dimensionless
I. = Modified Bessel Functions of the first kind, first order, dimensionless
I, = Modified Bessel Functions of the first kind, v order, dimensionless
Ko = Modified Bessel Functions of the first kind, zero order, dimensionless
K1 = Modified Bessel Functions of the first kind, first order, dimensionless
K, = Modified Bessel Functions of the first kind, v order, dimensionless
L = Length, L [m, cm] or [ft, in]
V = Velocity, L/t [m/s] or [ft/s]
Vr = Rock volume, L3 [m®] or [ft%]
Y = Distance, L [m] or [ft]
Co = Fluid compressibility, (M/Lt?)* [Pa] or [psi*]
¢ = Formation compressibility , (M/Lt?) [Pa] or [psi*]
¢t = Total compressibility, (M/Lt?) [Pa] or [psi*]
e = Exponential, 2.71828...
h = Net pay thickness, L [m] or [ft].
k = Permeability, L2 [mD] or [m?]
ki = Fracture permeability, L? [mD] or [m?]
km = Matrix permeability, L2 [mD] or [m?]
= Radial Permeability, L2 [mD] or [m?]
j = Number of fractures, dimensionless

= Flow behavior index, dimensionless

= Pressure, M/Lt? [Pa] or [psi]
pr = Pressure in the fracture, M/Lt? [Pa] or [psi]
pi = Initial pressure, M/Lt? [Pa] or [psi]
pm = Pressure in the matrix, M/Lt? [Pa] or [psi]
po = Dimensionless pressure, dimensionless
ponn =Dimensionless non-Newtonian pressure, dimensionless
pio = Dimensionless pressure in the fracture, dimensionless
pmo = Dimensionless pressure in the matrix, dimensionless
ps = Pressure in the skin zone, M/Lt? [Pa] or [psi]
pwo = Dimensionless wellbore pressure, dimensionless
q = Flowrate, L3t [m3/sec] or [ft%/s]
gm = Matrix flowrate, L3/t [m3/sec] or [ft%/s]
r = Radial distance, L [m] or [ft]
rw = Wellbore radius, L [m] or [ft]

A
5

==
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reo = Dimensionless external radius drainage, dimensionless
ro = Dimensionless radius, dimensionless

s = Skin factor, dimensionless

t = Time, t[sec]

to = Dimensionless time, dimensionless

tonn = Dimensionless Non-Newtonian time, dimensionless
ur = Radial velocity, L/t [m/s] or [ft/s]

u, = Laplace transform variable

Vo = Superficial velocity, L/t [m/s] or [ft/s]

v, = Radial velocity, L/t [m/s] or [ft/s]

AL = Length, L [m] or [ft]

Ap = Pressure differential, M/Lt? [Pa] or [psi]

a = shape factor, dimensionless

7 = Shear rate, t [s]

y = Euler's constant, 0.577216...

& = Newtonian Viscosity, M/Lt [cp] or [Ibm/ftes]
1app = Apparent Viscosity, M/Lt [cp] or [Ibm/ftes]
weti = Effective viscosity, M/Lt [cp] or [Ibm/ftes]

A = Interporosity flow parameter, dimensionless
6 = Ellis model Parameter, dimensionless

¢ = Porosity, fraction

# = Fracture Porosity, fraction

#m = Matrix Porosity, fraction

p = Density, M/L3 [kg/m®] or [lbn/ft%]
po = Initial Density, M/L® [kg/m®] or [lbom/ft%]
o = Storativity ratio, dimensionless

ns = Shear stress when z=p005, M/Lt2 [N/m?] or [lbs/ft?]
r = Shear stress M/Lt?> [N/m?] or [lb¢/ft?]

r = Convolution variable

% = Yield shear stress M/Lt? [N/m?] or [lb¢/ft?]
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APPENDIX A
DERIVATION OF A RADIAL FLOW-DUAL POROSITY MODEL

(PSEUDO-STATE INTERPOROSITY FLOW)

This Appendix presents the derivation of the pseudosteady-state double porosity model proposed by Warren

and Root (1963). The continuity equation for a double porosity reservoir is given as:

kf 2 apf *
—V P = (¢Ct)f Oy o f e e e (Al)
Y7 ot

Where qp,_¢ is the volumetric flowrate, and is defined by:

* Um-f
Om-f = e e e e e e e e e e e e e e e e e R e e e e ey (A2)
VI’

Considering the effects of expansion, g can be expressed as:

m-f

o
Am_t = (#C)mVr % .................................................................................................................. (A3)

Substituting Eq.A.3 into Eq.A.2, the volumetric flowrate becomes:

OPm

Am_t = (@) m TP PP PP (A4)

Substituting Eq.A.4 into Eq.A.1, the fracture network diffusivity equation becomes:

k

f_2 opg 0Pm
—V = B A.5
p ps = (dct)s ol (#ct)m p” (A5)

Based on Darcy's Law, the flow from the matrix to the fractures can be expressed as:

. Apm—t [ Am—it 1
R T e Y (AS6)
i AL [ALA, |

"Lumping" variables, Eq. A.6 can be expressed as:

* k
UMt = O (g = Py ) s eoereeeereseseseseesssessssssesessesesas e sase s ese s s s s s et et s e st s et s st s et s e (A7)
u
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Where:

From Warren and Root (1963), assuming uniformly spaced fractures and allowing variations in the fracture
width, the shape factor is defined as:

a:iz4j(j+z), ............................................................................................................................ (A.9)
|

where j is the number of sets of fractures and | is the characteristic dimension of heterogeneous region.

. . . o
Equating Eg.A.4 with Eq.A.7 and solving for Zm
t

, the interface condition is given by:

Pm kp (Pf = Pm)

=a
ot H (¢Ct)n

ettt (A.10)

In order to transform Eq. A.5 and Eq. A10 to dimensionless form, the following dimensionless variables are
used:

Dimensionless pressure in the fracture:

27Z'kf h

qBoﬂ

Pip =

Dimensionless pressure in the matrix:

2ﬂ'kf h

Pmp =

CT 1S (A.12)
Bou

Dimensionless time:

2

tp = £ lw S OONY (A.13)
ke [(dedm + (dee)t ]

Dimensionless radius:

r

ED = — e oot eeeeeeeee et ettt e e (A.14)

f'w
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Substituting Egs. A.11-A.14 into Eq. A5 yields:

1 ol oppl] ap 8
SN Rt (A.15)
rD al'D |_ al’D J 6tD 6tD

where w is the storativity ratio, and is given by:

(dci) s
0=—
(get)m + (dct) ¢

Making similar substitutions, Eq. A.10 becomes:

ame A
—mb _ - O OOOOOOOOOOOONY A7
oty @ PP PmD) (A.17)

Where A is defined as the interporosity flow coefficient and is given by:

In order to provide a solution suitable for well test analysis, the following initial and boundary conditions

are established in dimensionless form:

Initial Condition: Uniform pressure distribution
P (rD,tD =0)=0 g e e e e e e e e e e e e e e e e e e e E e e e e e e e e e e e e e e e e ee e e e e e (Alg)

Inner Boundary Condition: Constant Flowrate

[ dpip (rptp) |
1o D D oo (A.20)
dl’D

Outer Boundary Condition: Infinite-Acting Reservoir

lim pr (rD ‘tD) E O PPt (A21)

'p >x©

The Laplace transform is applied to solve Eq. A.15 and Eq. A.17. Taking the Laplace transform of Eq. A.17:

Upmp (rp U) = Pmp (rp ,0) = (PD (I U) = PmD (FD v UD) 5 ceeerereereeterieeste et (A.22)

(- o)
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Where u is the Laplace transform parameter. Solving for p,p (rp.u) ., Eq. A.22 becomes:

— A —
me(rD,U):mpr (rD,u) ........................................................................................... (A23)

Applying the Laplace transform to Eq. A.15 yields:

1 od [ dpp (o) _
=y 2P 6 Wb (1) - P (15 0) ]+ A= @) [UBmp (T W) = P (1 0] --(A.24)
rp drp | drp ]

Substituting Eq. A.23 into Eq. A.24, and reducing terms:

1 d [ dppp (rp,u)] _ [
———rp fD—DJl - 0B (rp. )]+ =

_ 1
e ——— A.25
u(l—a))+/1upr (rD'u)J (A.25)

Rearranging Eq. A.25, we have:

[ dp u)l
LI MJ T T N T (T NS (A.26)
rD er er

Where the interporosity flow function given by:

T P L (A.27)
l-w)u+ 1

Multiplying Eq.A.26 by ré :

d [ dpp (rp.u) ] _
m—| —J:u f(u)ré PAD (1D 1 U) 4 eeierereeiesie e (A.28)
er er

And defining:

R Y LV (1 NPT (A.29)

Or:
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Eq. A.28 can be expressed as:

2— —
d pp (a) dpsp (a) _
a? fD2 +a D - a? PAD (B) 4rererreerenieeiei et (A.31)

da
Where the general solution of Eq. A.28 is:

PD (8) = Al G(A) + BK g(8) 1 ecuririeiriiiieiiie it s (A.32)
Or, in terms of rp and u we have:

Pip (o) = Al g(rp /U F(U) )+ BK g (Fp 4/U F(U) ) coeririiiini e s (A.33)

In order to obtain a particular solution in the Laplace domain, boundary conditions must be transformed to

the Laplace domain as well. Therefore, inner boundary condition becomes:

[ dpip (rp,u) | 1
e TS (A.34)
drp " u

And the outer boundary condition is given as:

M DD (FD U) = 0 i e (A.35)

p >

Applying the outer boundary condition to Eg.A.32, we obtain:

lim [Pp (rp,Wl=A 1lim lg(rp4/u f(U))+B lim Kg(rpu f(U) ) = 0w, (A.36)

p > p > 'p >

Analyzing the behavior of Bessel functions for large arguments, it can be concluded that, A=0. Therefore,

reduced solution for this case is given by:

BfD (rD,U)ZBKo(I’DﬂU f(U)) ...................................................................................................... (A37)

. .. dpp
Taking the derivative

p of Eg. A.37 and multiplying by rp:
)

dp. ,
TDM:—BI’DﬂU f(U) Kl(l’DﬂU f(U)) ........................................................................... (A38)

er
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Applying inner boundary condition to Eq. A.38, we have:

[ dp Ju)
rDM = B () Ky (0 T0) ) = = st (A.39)
drp - u

Solving Eq. A.39 for the "B" coefficient, we have:

B o L (A.40)
uyu f(u) Ky(u fu))
Substituting Eq.A.40 into Eq.A.37, the particular solution for this case is:
_ 1 Kqg(rp /u f(u))
P (rp,u) = 0D et (A41)

u U ) Ky (Ju )

In order to provide a solution in the real domain, we consider the approximation (Abramowitz and Stegun,
1972):

Ki(x) = %for D PSP O PP PR PRPRRPRPN (A.42)

Rearranging Eq. A.42, we obtain:
XKL(X) =L it (A.43)
Substituting Eq. A.43 into Eg. A.41 we obtain the "line source solution” for this case:

_ 1
P (I’D,U)IEKO(I’DﬂU f(u)) .................................................................................................... (A44)

Moreover, for small arguments, we have: (from Abramowitz and Stegun, 1972)

1 4 ]
KO(Z)zEIn\‘ZZeZ}/J ..................................................................................................................... (A45)

Substituting Eq. A.45 into Eq. A.44, we obtain

SR |
fD\'D> 2{2

=}
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Using the properties of logarithms and expanding, Eq. A.46 becomes:

— 1 ;—1 I— 4 —I —}
p u)=—1=—I - +In( f PN A.4T
D (rD u) U ntrz 927J (In(u) + In( (U))J ( )

For reference, Eq. A.28 can also be expressed as:

1- u
70)( @) +1

_ A
D T (A.48)
R

A

Therefore, substituting Eq. A.48 into Eq. A.47 yields:

[ |
— 1 4 1 1T

, =—|| |__| 1
P (rp.u) oy n{ré ez}’J » n(U)+2ULnL1+

G-oul {1 N Mq .................. (A.49)

A A

Using Laplace transform tables, we find that the inverse of Eq. A.49, which is given as:

[ i
1 4 [ 4 T 1 T 2 i
pio (o, tp) = —Inl | +In(e”t )+_E - ZE; T (A.50)
DD, 12 e o) Ry P 2 wa-e) P
Or, in a more compact form, Eg. A.50 becomes:
[y 1 1o [ 2 T 1 T 2 |
Pps (F t)——ln| —tp |+ = tp |- —E; B [+ eerererrerereieeeeeeereree e, (A.51)
Pree 2o P 2 e ®] 2 eamw
Taking well-testing derivative of the solution (Eq. A.51), we have:
dlpp(p.tp)] 2 1 [ -2 L S = A
' ip)=tp ————=~ —+— tp |- — ED | ceeveeremrenerenenns A.52
P'p ('o-o) =to dtp 2 2% oa—e) ? | 2™ ey P (A52)
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APPENDIX B
DERIVATION OF A RADIAL MODEL FOR NON-NEWTONIAN FLUID

THROUGH POROUS MEDIUM

This Appendix presents the derivation of the radial flow model for power law fluids in homogeneous

reservoirs, proposed by Ikoku and Ramey (1979). The main assumptions for the model are:

o Well penetrates the entire thickness of the formation.

e Uniform thickness.

e Permeability is constant throughout the entire porous medium.

e Compressibility of the fluid is small.

e Effects of gravity are negligible.

® Pressure gradients are small.

o Non-Newtonian fluids obey the Oastwald de Waele (power law) relationship.
e The fluid is considered to be pseudoplastic.

The continuity equation in radial coordinates for a homogeneous reservoir is:

10 0
o (FP VL) = = (D) 1 erereerere sttt s (B.1)
r or ot

According to Christopher et al. (1965);

The definition of fluid compressibility is:

__1ldp (B.4)

Co = o ) e e e e e e e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e s
Integrating this definition (Eq. B.4), the equation of state for a slightly compressible fluid is obtained:

0 = 08 P TP e (B.5)
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Assuming that the compressibility is small, then ¢, and p may be treated as constants. Expanding Eq. B.5:

r 1] 1
| T Tn | [ Tn
VLK BTGB L B BV L 2 aTep] L (B.6)
r or | | Heff 6rJ | | Heff | or 6rJ ot ot
I J
Eqg. B.6 can be reduced to:
| |_ _Il—I i 1+n
I 8 LT R L r_a_p} "oy 0 e B.7)
ror| L Hef ar J LyeﬁJ or ot ot

Applying the chain rule to the last term on RHS of Eq. B.7:

1 1+n r 13

| [ op]n LI

—Cy| - — = | | B Cp s B.8
J COL 6rJ LY J 7 ot (B8)

n-1
Multiplying Eq. B.10 byL a—p} n
-
" 5% ] 2 . .~
1f ap] 1] 8% [ op] et \n [ apln op
—-— 1+ - - -— =- -— o et eteteretrter————————————————————————————— B.11
i A e e [kr]m ol (B4
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Ikoku and Ramey (1979) proposed a linearization form as follows:

1 1 1
[ a_pT;_rﬂeﬁ Tn ~F#ef‘f Tn q
Y rJ _t er ert er R R (B.13)
Or
[ op] Het [ g 1"
L__rJ_ . 27rhrJ TR (B.14)

Substituting Eq. B.14 into Eq. B.12 and simplifying terms gives:

2

0 n o _n O
LT (B.15)
or2 ror ot

Where the apparent hydraulic diffusivity coefficient is defined as:

1-
7¢,ueff cenl2zh] "
Ky q

G

In order to transform Eq. B.15 to dimensionless form, following dimensionless variables are used.

Dimensionless Pressure:

P b
PONN = e (B.17)
[ g T Heff "w
2ah |k,

Dimensionless Time:

t

3-n
Gry

tonn =

Dimensionless Radius:
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Based on Eqgs. B.17-B.19, the dimensionless form of Eq. B.15 becomes:

2
O PONN 0 OPDNN _ (o0 ZPDNN || ovnensensenssnsensnsensensensensens s enscnson (B.20)
org ‘b 9drp 9tDNN

In order to provide a solution suitable for well test analysis the following initial and boundary conditions

are established:

Initial Condition: Uniform pressure distribution

PDNN (rD ‘tD = O) e (B.Zl)

Inner Boundary Condition: Constant Flowrate

{rD M} L e (B.22)
o) rp=1

Outer Boundary Condition: Infinite-Acting Reservoir

lim PDNN (rD,tD):O ............................................................................................................... (823)

D >®
Applying the Laplace Transform to Eq. B.20:

2— —_
d°ppnn (fpou) - nodppyn (PpsU)  1n =
er 4 — = rD n U PDNN (rD,u) PP (B.24)

D

'd er

In order to obtain a particular solution in the Laplace domain, the Laplace transform of the boundary

conditions are required. The Laplace transform of the inner boundary condition is:

g PO (1D ) | e (B.25)
L er Jl’D -1 u

The Laplace transform of the outer boundary condition is:

lim BDNN (I"D ,U) 0 PPN (826)

p >x
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Multiplying Eq. B.24 by r

2— _
2 d"ppny_ (rp . U) d ppny (rpau)
r& ————— 4+ pn——————
drg )

Therefore, Eq. B.27 can be expressed as:

2 — —
2d7p (rp,u) dp (rp.U)  3-n —
B —— DI (1= 26)rp ——PH =P = 157 u Py (1 1 u)

dr,% drp

The following transform function is defined:

EDNN (rD,u) = ED(Z), .............................................................

Where the transform variable is defined as:

Substituting Eqgs. B.30 and B.31 into Eq. B29, we have:

)
,24%Gp ()

dG, —
+(l—2v)zﬂ: 22
2 dz

dz

Where the v parameter is defined as:

= r;—n UBDNN (rD,u). ................................................ (B.27)

To set the coefficient of first derivative term in Eq. B.32 to one, the following equation is proposed:

v

T R T

7
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where:

Applying the transformation given by Eqgs. B.34 and B.35 to Eq.B.32, we obtain the form:

2

2
d“B dB
;2 p (2) . p (2)

2
2 0 FZ)BD (Z) 1 e (B.36)

= (v

Where the general solution of Eq. B.36 is:
BD(Z):C1|V(2)+C2KV(Z). ......................................................................................................... (B37)

Using the transform definition (i.e., Eq.B.34), Eq. B.37 becomes:

G_D(z)=Z7[cllv(z)+czr<v(z)], .................................................................................................. (B.38)

Therefore in terms of forms given by Eq.B.27, we have:

1-n[ [ 3-n 1 [ 3-n 11
_ — | — 2u — 2Ju ||
pDNN (rD,U)—r 2 |C1I17nirD2 3_nI+C2K1_7n}I'D2 3_ni‘ ........................................ (839)
IR ] -n| Il
Applying the infinite-acting outer boundary condition to Eq.B.39, we have:
Lonf [ T [3n T
lim  ppyn (rp.u) =rp 2 }Cl lim Il_nIrD2 ZJJI+C2 lim Kq nIrDz 2\/EH:O.(BAO)
rp > L rp > o 7L 3—nJ rp — o 37nL S_nJJ

Considering the behavior of Bessel functions for large arguments, we conclude thatC, =0. As such,

Eqg.B.39 reduces to:

o
]
P
P4
—~
=
U
=
N—
I
o
o]
(@]
N
A
T
=}
-
O
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Taking the derivative of Eq. B.41 with respect to rp, and applying the inner boundary condition:

_ |
TS B S O X TR T Nl B.42)
L drp o =1 u I_ 2 n 3-n} EL3fnJ J|
Or, in a more compact form, we have:
|
Lol ik, \Fz‘m\, ....................................................................................................... (B.43)
u L ELS—nJJ

1 1
o o T ——————— (B.44)
u [ 1
Juk |2‘/E
Zla-n)
3-n
Substituting Eq. B.44 into Eq. B.41 yields the solution for this case in the Laplace domain.
[ 3-n i
|2 2u |
Ki_nir
1-n i=n|'D g
=
EDNN (rD,U)=rD2 3nL J ..................................................................................... (B45)
E FZ\/JT
usK 5 | 3 |
——1]3-n
37n|- J
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APPENDIX C
PROPOSED DUAL POROSITY MODELINCLUDING NON-NEWTONIAN FLUID FLOW

(PSEUDOSTEADY-STATE INTERPOROSITY FLOW)

This Appendix presents the proposed model for a Non-Newtonian fluid through a Double Porosity Medium

taking into account the interporosity transfer conditions under pseudosteady-state.

The continuity equation for a double porosity reservaoir is:

10 [0 d ]
-—— =—]— — PRSP PP UR PSP (o
—(rovr) |5 P91+ 5 (oo (C.1)
According to Christopher et al. (1965);
L (C.2)
Heff or
Substituting Eq.C.2 into Eq.C.1 yields:
|r [ TUI
10 ki opg In o
——|rp|— f f | |= [— p¢f)+—(p¢m)} ................................................................... (C.3)
r 6r|L | Heff OF | J| 0

As permeability and viscosity are constant, expansion of Eq.C.3 yields the form:

ir 1 1 1-n
[k —|n|£I—3l~In [opt InTap] plops T |r o?

—}
|
Lﬂeﬁji_rLarJ I_arjtarj npoor | {ENZJ

E(pmw—(pasm)}

Eqg. C.4 will be handled in two parts, first the left-hand-side (LHS) and second the right-hand-side (RHS).
Applying the chain rule to the LHS yields:

1 1 1-n

.
ﬁI—apf Tn I—apf T‘ |r op W‘I_apf il prapf 1 |r I
rpoor | J [ L or | n|oor | L or? J|
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Multiplying Eq.C.5 by £ gives us the following form:
P

B nit n 1
wfop o oo 1o 1fop ] afep T [o%p ||
r

| +| | = |

| or | | or | plopg | n|or | Larz JJ

Assuming compressibility and pressure gradients are small, Eq.C.6 becomes:

L
[ K¢ anapﬂ n ‘Fii_@zpf —I+£|—@P_f—|—I

p{_g‘ La_rJ tnLGrZJ r“r JJ .......................................

Expanding the RHS of Eq.C.4 we have:

Applying the chain rule to Eq.C.8:

[ ogs op op P 04 @ op opy |
| P f f + P f +p Sm OPm . L OPm
L ops ot ops ot opy ot opy, ot J

#m [ 4

................................... (C.7)

Factoring the pg-product for the fracture and matrix, respectively in Eq.C.9, we have:

[ 1 a¢ 0 aps | i 7
f oPf 1 0 Pf 1 O0¢y Op 1 6p 0p
pbe | — L= 9P + ph| — m m, - 9 m

P
| $¢ opf Ot popy Ot | $m OPm Ot  p Opy Ot

Collecting terms, Eq.C.10 becomes:

op
ot

.
plgc)s
L

Where:

Ct = G T G v e
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+(9C)m 6—{“J| ....................................................................

................................... (C.12)



Equating the LHS of Eq. C.7 and the RHS of Eq. C.11, we have:

{ |

1 £ ops op |
pl-— | |— " 1= |~ o] (gcp) PO m I (C.13)
o Lot R e e

L ]
Re-arranging Eq. C.13 gives us:

Lo
1] pf | afooe ] [ mer Infope Ta f

R e

Ikoku and Ramey (1979) proposed the following linearization:

op opm |
L) ﬂJ ................................. (C.14)
t ot

= — r R -

b
e (C.15)
or K¢ Ky LZ;rhrJ

82pf nlops | nue [ g 1n—1|- opp |
— = _ L L TSRS C.17
.2 + rI_ o | Th LZﬂhrJ IL(¢Ct)f +(4c)m J (C.17)

The volumetric flow from the matrix (source term) may be defined as follows:

* q
B T TP OO OO OO PSP TP PP PETPTPRPUPTPPRRPTPOOR C.18
Um- f v, ( )
Recalling the Blake and Kozeny modified velocity power law (Christopher et al. 1965):
APm—
T (C.19)

Heff AL
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Considering the effects of expansion, the flowrate (q) can be expressed as:
- %Pm C.20
q—(¢Ct)mVr7. ......................................................................................................................... ( . )

As an analog with Darcy's Law, Eqg. C.19 is substituted into Eq. C.18 to yield:

1 1
S L L S S (C.21)
m—f = et e e e —e e eee e eeeeeeeeeeeiteeiieeeieeei eeeirare s teeiteesaeeaaeeirns .
,ueff J AL AL A(Z
Where
Vi = AL A s oottt (C.22)

- 1
« |— k —|n — A —f
qm_f=|_,uer:fJ| (pm—pf)nﬂT, ................................................................................. (C.23)
AL N A,
o AL?
Multiplying Eq.C.23 by ——:
2
AL
i n-1
. [ Kn Tn —
Am_t =| (ps - pm)JI A AL U ettt (C.24)
Heff
Where:
Am_
e (C.25)
ALZ A,

Substituting Eq. C.20 into Eq. C.18 and equating this result with Eq.C.24, we have:

1
oo ke o ™t
(e —2 = | (Pt = Pm) | @ AL ™ s (C.26)
ot Ll‘eff J
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oPm

Solving Eqg. C.26 for the term, we have:

1
op o e Tn n-1 1
M- | =M | AL M (g = D)™ e (C.27)
ot (#Ct)m I_ﬂeff J

We immediately note that Eq.C.27 has a pressure difference elevated to a power, which will present a very
significant challenge in our quest to find a solution. In order to eliminate this situation, the following

linearization is presented:

(Pt = Pm) | Heff [ am 1"

=  r et e ereeEe e r b e Re R e e Rt R e e Rt Re et e R e R e e R e e Eet e R e eRe e e R e e Re et eReebe e e R e be e erentens C.28
AL km LaL? ( )
Solving for ps - p,, in Eq. C.28
br —po = Heff qr?] (C 29)
f m = km ALG_l .......................................................................................................... .
. Pt = Pm
Multiplying Eq. C.27 by ———:
Pt = Pm
1 1-n
E Mk, I [Pt —Pm 1 n
Pm __ @ L L (C.30)
ot (¢Ct)m Lﬂeff J AL
Substituting Eq.C.29 into Eq.C.30, we obtain:
S Ln
P [k In [ Heff no 1 n
e et I T T R (C.31)
ot (#Ct)m Lﬂeff J L Km aL“" J

Reducing terms and simplifying Eq.C.31 yields the dimensionless non-Newtonian interface condition:

Py @ kp | ap |
ot (#C)m Heff LALZJ

In order to transform Eq. C.17 and Eq. C.32 into dimensionless forms, the following dimensionless variables

are used.
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Dimensionless Pressure: Fracture network

(27h) " ks

n 1-n
q Heff Tw

P> = €T T (C.33)

Dimensionless Pressure: Matrix system

(27) " k¢

n 1-n
q Heff Tw

PmDp = (pl - pm), ...................................................................................................... (C34)

Dimensionless Time:

1_
g "k

n(ge)r (270" pege T

tp = St

Where the total expansion term for the reservoir is given as:
(¢Ct)t = (¢Ct)f + (¢Ct)m o E e e e e e e e e R e e e R e e e e e R e R e e e e e R e e ey (C36)

Dimensionless Radius:

Solving py, pm, tand r respectively in order to transform Egs. C.17 and C.32:

qn# o r1—n

eff 'w

PE = Pl = o PD e (C.38)
(27h) kf

n 1-n
q Heff Mw

Pm - D) +ererereee ettt bbbttt (C.39)
(22h)" Kk
1-n 3-n
n (¢ci); (27h) I, Heff
= — D oot (C.40)
q- kg
L o Y TV OO (C.41)
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Egs.C.38-C.41 are substituted into the LHS of Eq. C.17 to yield:

1- 1-
Z‘F a" ef Tw —I | q" e rwin —I
Tl T
L ! L0 ! e (C.42)
rv\z, or? D fw a(rprw)
Simplifying Eqg. C.42, we have:
) 0" et T " {iazpr 1 9P 1| (C.43)
@a)"k¢ | g o) rpry 9o J
Egs.C.38-C.41 are substituted into the RHS of Eq. C.17 to yield:
I— I— qn'“eff rv:b_n —I I— q Heff "vlv_n —I —}
o1l O Pi-——— P ol pi — n |
nuer [ g | | @)k | | @)k |
k 27h J |(¢Ct)f [ 1-n 3-n +(#m 1-n 3-n 11
f zhrpry | 6| n (¢c)¢ (27h) Ny Heff 6| n(¢ci)¢ (27h) Ny  Heff . H
- _ D
{ L ql N L ql nkf J
TSSOSO PO TSP PEPPPTRO (C.44)
Simplifying Eqg. C.44, we have:
Heff n 1 [ o p
qn ——— o T e Lo (C.45)
Ke (2z0)" ry o Twl otp otp |
Equating the forms given by Eq.C.43 Eq.C.45, we obtain:
q" tesf Ty " ‘Fiﬁzpof .1 %o 1|7
(22h)" k¢ Lrv\z, org rpra Orp J
SRS (C.46)
n [ o !
Heff q 1 P pf L (- ) 6me
ke (2720)" rD 7t rlg_l r2 L otp otp J
Rearranging Eq.C.45, we have:
o’pip n P 1.0l P op
+— =" F 1= @) =B s (C.47)
aré 'p 6rD L 6tD 6tD J
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Where the storativity ratio (w) is defined as:

(gce) ¢
@ = ’
(gce)t

In order to transform the interface condition into dimensionless form the interface condition, we recall the
LHS of Eq. C.32 and substitute Egs. C.39 and C.40 to obtain;

F
[ p. —
a{p, (27h)" k¢ meJ

e ) |

L ql—nkf tDJ

il

n 1-n
q Heff Tw |

Simplifying Eqg. C.49, we have:

d ' 2Pmp | (C.50)
n(gcy)y (27h)r2 { otp J

Substituting Eq.C.38 and C.39 into the RHS of Eq. C.32, we have:

a Km |—qm 1 |
(90t )m Het LALZ

Simplifying Eq. C.51, we have:

1- -
a km|—qm—| nI—_an\,lvﬂ

(o0m Kt | aL?) | @m)" |

Equating Egs. C.50 and C.52, we obtain:

I-n[ n 1-n7
q L N e L P (C53)

n(¢ct)t(2;zh)r\,§ otp :(¢Ct)m;LAL2J L (2;rh)"J

d
Solving for Eq. C.53 for %yields:
D

1-n
1-n 1-n

%Pmp__ (0t ak_mr2rq_m} C R C2 1) S LD YC T T S (C.54)

- w
otp (¢cdm ki LAL2
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Where 4, the interface interporosity flow coefficient is defined as:

Substituting Egs. C.53 and C.54 into Eq. C.52 yields:

op ni rq 27zhr, Tl_n

mD m 7N Ty

= -m S P ) et C.56
otp o g ALZJ (Pfp — PmD) ( )

Where the dimensionless interporosity flowrate is:

Defining a dimensionless variable which we term the dimensionless matrix contribution, we combine Eqg.
C.57 and Eq. C.58 to yield:

Using the definition given by Eq. C.59, then Eq.C.56 becomes:

oppm _ N4

- pl" L DD ) eereereeteer et e ettt e et e et e et e e e e en e C.60
oty a-o) (Pfp — PmD) (C.60)

In order to provide a solution suitable for well test analysis the following initial and boundary conditions
are established in dimensionless variables:

Initial Condition: Uniform pressure distribution
P (I"D,tD :0):0 § e Ee e e Nt n e e Ee NN e N e e SN e RS eaE R BN e e e SN SN e S eSO SRS E NS e N e N seNIeareNserIeRNseRsanns (C61)

Inner Boundary Condition: Constant flowrate

[ d rn,tn) ]
o D D D) e (C.62)
dl’D

84



Outer Boundary Condition: Infinite acting reservoir

lim pr (rD ’tD) E O Y (C63)

'p >

The Laplace Transform is used to solve Eq.C.46 and Eq. C.60. Taking the Laplace transform of Eq.A.46:

2= _
dppp(rp,u) n dpgp (rp,u)
+— -

5 ré_n[w(u pPip (p,u) +(l-w)(u EmD(rD,u))], .................. (C.64)
dr D drp
Substituting Eg. C.60 into Eq. C.64:
d?Pp (rp . u) n dpp(rp,u)
dr 'D drp (C65)
17nr ) F - ) e ————— .
5 lo(upp(rp.u))+@-o)lu ——PiD (rp.u) |
L u(l-w)+nAD
Factoring the u p¢p (u) term from Eq.C.65 yields
2 — —
d°pp (p.u)  n dpp(p.u) 4 [ 1- apt "]
szD P DAL :ré n\upr(rDu)u( @)o + T Ly, (C.66)
drp o} drp u(l-w)+nAD J

Where the interporosity flow function for this case is given by:

1-n
G(U) = L ) O D (C.67)

U(l—a))+n/1D17n

Substitution of Eq. C.67 into Eq.C.66, we have:

2_ _
d“pp (rp,u)  n dpgp(rp.u)
L _

1— _
2 - i =5 n [u gu)pp (rp,u) ], ...................................................... (C.68)
D
Multiplying Eq. C.68 by r/ gives us:
2_ —_
d"pp (rp,u) dpep (rp,u) _ _
ré 5 +nrp :rg n[u g(u) pr(rD,u)] ................................................. (C.69)

er er
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Taking the Laplace transform of Eq. C.60:

— n
UPmp (rp.U) = Pmp (rp .0) = -
Solving for the p,,p (u) function in Eq. C.70 we have:

nipi"

Pmp (rp»u) = P D (D U) ittt

ul-w)+n2a pt"

In order to solve Eq. C.69 the s parameter is defined as:

Using the & parameter, Eq. C.69 can be expressed as:

2= _
d rp.u d rp.u
2 pDNNZ(D )+(1_25)rD Ponn (fp.u)

er er

Similar to Ikoku and Ramey (1979), we define the following transform function:

DD (D U) = H D (Z) 1 evveereeereeeseeseessessesssssees s

Where this form uses the transformation variable (z):

,_ 2w

3-n

O

Using the definitions prescribed by Egs. C.74 and C.75, we obtain:

9 —
,2 d"Hp(2)
dz

+(l—2v)zm= 2y
z

Where, as in the case of Ikoku and Ramey (1979), we obtain:

86
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DT (Pp (D U) = PmD (FD v U)) 4 ceeereeneeienenieieens
o)

3-n, —
rD U PpNN (rD,u), .......................

z HD(Z), .................................................................



To set the coefficient of first derivative term in Eq. C.73 to one, the following equation is proposed:

L Vauff]“ }3 " (C.79)

Therefore Eq. C.76 can be expressed in terms of Eq. C.78 as:

”— _
d°B dB
;2 D(Z)+Z p (2)

= " = (2 4 22)B (2) srerrereersssennssssissssssissssss s (C.80)
z

Where the solution is given by:
BD (2) = C1ly (2) # CoKy (Z) covreerereesesesesiessseesssesssssss s ssesessseses s (C.81)

Recalling the change of variable from Eg. C.78 and Eq. C.80, we have:

1-n

Hp (2) = 152 [C11y (2) 4 CoK oy (2)], conmrrrrreieeieieiiossissssssssecesssssssssssssssssssssss s (C.82)

And Eqg. C.82 may be written as:

1-n[ [ 3—7n 1 3-n  — ]
pp(rp,u)=rp? iClluI rp? 3ug w) }+ 2K1nTp %} .................................... (C.83)
L 3- nL J 3-n J

In order to solve for the coefficinrEq. C.83 it is necessary to use initial and boundary conditions.

Initial Condition: Uniform pressure distribution
BfD (rD,u=O)=0, ......................................................................................................................... (C84)

Inner Boundary Condition: Constant flowrate

[ dpgp(rp,u)]
e T (C.85)
er rD=1 u
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Outer Boundary Condition: Infinite-acting reservoir system

M PDf (FD 1 U) = 0y ettt r etttk r et n et (C.86)

p >x

Applying the outer boundary condition to Eq.C.83 we conclude that C; = 0 to assure "bounded-ness" of the

solution. Simultaneously, applying the inner boundary condition (constant flowrate), we have:

3-n

2 \/ug (u)

r
|1n .
| —— 5 +Kq
i

_I
|
J

c||—\

5
-n | D
3-
ol "
Using the properties of Bessel functions to reduce Eq.C.87:

:

L, I[ Jug (WK LZV”g(“ [ r————— (C.88)
u

3-n

Solving for C,:

1 1
Cyp=— ettt E b e E oL e R e R e Rt R R e Rt eEe e e Rt RenE e R e e Re e e R e Rt e Re et e e R bt re et e (C.89)
u 2. Jug (u) |
Jogk , | 2w
_Z | 3= J
3-n
Substituting Eq.C.89 into Eq.C.83 yields the particular solution in the Laplace domain
1-n [ 3-n 1
2 |2 2Jug(u) |
r Ki_nit
D 7“[ D 3_n J|
3-n
pr (rD U)f .................................................................................... (C 90)
[ 1
o 5 |28
3—nL J

As validation, we note that when note that when n=1, Eq. C.90 reduces to the general solution for

pesudosteady-state double porosity model (i.e., the Warrant and Root case).
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APPENDIX D
CLOSED RESERVOIR AT THE OUTER BOUNDARY AND

CONSTANT RATE AT THE WELLBORE

This appendix presents the outer boundary case referred as constant pressure at the reservoir boundary.
Recalling the general solution obtained for the double porosity model including non-Newtonian fluid flow
(pseudosteady-state interporosity flow):

1-n

P (rpu) =152 [Caly (FEN(U)) + C oKy (FENU) [ (D.1)

Where:

1-n
U(l-w)w +nA D
gu) = PSR (D.2)
ul-@)o+ni D"

1-n
e e D.3
b (D.3)
B 2 et e et (D.4)
2
And
B0) = 2 0 (D.5)

3-n
In order to obtain the constants from Eq.D.1, it is necessary to use boundary conditions.

Inner boundary condition, constant flowrate;

dpp(rp,u) 1
e N, (D.6)
drp u

p=1
And outer boundary condition, closed reservoir

dpp (rp,u)

er

'D=reD
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Deriving Eq.D.1

-1-n -1-n
=Cyrp 2 Ih(u)e ré Iv,l(h(u)ré)]—CZrD 2 [h(u)g ré Kv,l(h(u)ré) s (D.8)

dp ip (rp ., u)

er

Applying inner boundary condition, constant flowrate,

& & 1
Cylh(u)e 1,1 (h(u)rg )]—c2 [h(u)g K, 1 (h(u)rg )]: B (D.9)

Applying outer boundary condition, closed reservoir, rpo=rep;

—1-n —-1-n
Cirgp® Wergy 1y a(hu)rgy )]_CZreDZ [h(“)g rep Kyt (NUTEE )= 0 v (D.10)
Solving for Cy;

Ky _1(rgph(u))

C;=C .
P [ “h
v—l(reD (U))

.............................................................................................................. (D.11)

Substituting Eq.D.11 in Eq.D.9, rp=1

K, _1(riyh(u)) 1
C, 1+D[h(u)g 1 (h(u)]=Colh(u)e Ky, 1 (h(U)]= = = (D.12)
ly_1(rgp h(u)) u

Arranging and factorizing terms:

I—Kv—l(regD h(u)) 1,1 (h(u)) - K, 3 (h(u)) |V71(h(u)ré T‘ 1
2 = e (D.13)
{ ly_1(rgp (W) j uh(u)e
Solving for C,
[ [ “h 1
Cp=—r—| v-1(rgp hw)) e (D.14)

uh(u)e Lval(h(u)) Ly (hWrg) =K, g (hu)r)) Iv,l(h(u))J '
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Hence substituting Eq.D.14 in Eq.D.11 gets

] Ky 1 (r5 h(u)) 1
C - —+ | v TeD e (D.15)
uh(u)e LKV_l(h(u)) Ly (h(u)rg) =K, g (h(u)rg) I,,_l(h(u))J
Therefore substituting C; and C; into Eq. D.1, we obtain the solution in the Laplace domain:
tn 1 FK‘,,l(rSDh(u))lv(h(u)r;)+ ly_1(rap h(u))KV(h(u)rS)T
Pp(rp.u)=rp? | : e ... (D.16)

uh(u)e L Ky (h) 1, g (hu)rS) =K, g (hu)r3) 1,21 (h(u) J
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APPENDIX E
CONSTANT PRESSURE AT THE OUTER BOUNDARY AND

CONSTANT RATE AT THE WELLBORE

This appendix presents the outer boundary case referred as constant pressure at the reservoir boundary.
Recalling the general solution obtained for the double porosity model including non-Newtonian fluid flow
(pseudosteady-state interporosity flow):

1-n

P (rp u)=rp2 [Cely (F5h(U)) + Co Ky (FEN(UD) [y (E.1)

Where:

17
e (E.2)

Ul-@)+niDi "
1-n
= ) h et eeeEEreeeteeeieieEbeeeeeeeeeiiehEeeteeeeesiaehbeeLeeteeeaaaheLeeeteeeee i heLaeteeeeee e bbb e e e e e e e e s e bbb e ree e e e e e e b braaeraes E.3
b (E3)
3-n
= ) ettt eteteeeeeeeeeteteetesteeeesssteestetetetetetetete s et e tetet et et etetetetee et e tee et et ee et e ee e et et e tet et e nee et e e rreaeaerererrrrrarrrrres E.4
£=— (E.4)
And
2,/
D) = 200 (E.5)

3-n
In order to obtain the constants from Eq.E.1, it is necessary to use boundary conditions.

Inner Boundary Condition: Constant flowrate

dpmp (rp,u)
L (E.6)
er u
r,=1

Outer Boundary Condition: Constant pressure at the reservoir boundary

5fD (I'eD,U):O e e e e e eraEea e e e e e e e e et (E?)
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Applying the outer boundary condition to Eq.E.1

1-n
P (rp =Tep ) =Ty [Cily (rgp () + Co Ky, (Fa N(UD) [= 0 v (E.8)
Solving for C;
K, (ri5h(u))
c1=—c2%. ............................................................................................................... (E.9)
Iy (rgp h(W)
Taking the derivative of Eq. E.1 with respect to rp, we have:
05 ( ) -1-n —-1-n
P 'p,u
fDdr—Dcher 2 herS 1, g (hyrg)|-Corg 2 herS Ky g (hu)rg)|, e (E.10)
Hence applying inner boundary condition to Eq.E.10:
dpp (rp =1,u) 1
r[’; — - Cylh(ue 1, _1(h))]-Cylh(u)e K, _q1(h(u))]= s (E.11)
D
Reduction of Eq.E.11 yields:
1
Cllv—l(h(u))_CZKV—l(h(U)):_ e et e e e e e e s eea e e e e e e e e e s (E12)
uh(u) e
Substituting Eq. E.9 into Eq. E.12:
Ky (regD h(u))
_Czg—lv_l(h(u»_Csz_l(h(U))z_uh(u) ) et eaeereraaeerreaeeerr e (E13)
Iy (rop h(u)) €
Factoring for C,, we have:
[ € € |
C,! Ko (rep NNy 1 (00D + Ky 1 0Oy (ep NOD | 1 et (E.14)
{ Iv(regDh(u)) J uh(u)e
Solving for C,, we have:
[ I, (r h(u 1
Cpo—t | v ep MWD e (E.15)

uh(u) e LKV (ragp NN, 1 (h () + Ky, _g (h(u) 1, (ropy h(u))J
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Substituting Eq. E.14 into Eq. E.9 yields

[ € ]
1] Ko (rep (1) e (E.16)
uh(U)ELKV(r:Dh(u)nv_l(h(u))Jr Kv_l(h(u))lv(r:Dh(u))J
Therefore substituting C; and C; into Eq. E.1, we obtain the solution in the Laplace domain;
= 1 (5 hW)IK, (h)r ) = K, (15 @)1, (hw)rs) |
Bip (rp.u)=rp?2 ——| D v D/ "V ieD v R (E.17)

uh(U)SL Ky (rap DU Ty, _g () + K, g (h(u) 1, (rap h(u)) J
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APPENDIX F

WELLBORE STORAGE

This appendix adds the wellbore storage for a Dual Porosity with PSS Interporosity Transfer Non-Newtonian
Model. The total flowrate is given by:

O = Oyl OGF 1 verrerererseresenraseensaseseasesesessesesea s e s e e s e e s e e e R et n e b et e R e R e e R Rt e R Rt R Rt R Rt R Rt ner et (F.1)
Where qun(t) is the rate in the wellbore and gs(t) is the sandface rate. Multiplying Eq. F.1 by B,:

OBg = Oubh Bo + Usf B v (F.2)
The rate in the wellbore is given by:

dpf
Qwh Bo =-24C BOT, .............................................................................................................. (F.3)

Where C is the storage coefficient defined as:

|
¢ By =270 | -
sf Po L Heft or J

Therefore, substituting Eq.F.3 and Eq.F.5 in Eq.F.2:

1
dp [ kg o Opg Tn
+2zh|- r [ B e vttt (F.6)

qB, = -24C B
° ° | Heff or |

In order to obtain an expression in dimensionless form for Eq.F.6 we recall dimensionless variables.

Dimensionless Time:

ql—nkf
tp = LSRR (F.7)

1— —
n(gey) g (270) " e Ty "
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Dimensionless Pressure: Fracture system

(27h) " k¢

BID =~ (B = P ) oo (F.8)

n _
q Heff Tw

Dimensionless Radius:

Solving for t and pr, respectively;

1- 3-
n(pey) (27h) " " ey

= L8 YRR T TSP PP PP PP PRTPRPO (F.10)
ql—nkf
q Heff Tw
Pf = Pj— PD 5 ereerrmiiii i (Fll)
(270)" k¢
L o Y TV OO (F.12)

Substituting Egs. F.10 and F.11 into Eq. F.3;

Qwh Bo=-24C B,

‘F qn/“eff rvlv7n —I
d‘ Pi-——— P |
L (Zﬂh) kf J
— e (F.13)
S o0 A" G e 1

{ 0t kg
Arranging terms in Eq.F.11:

q dp tp

Qwp Bo=24C B, 2 d
n(¢ci)t (27h)ry, D
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Substituting Eq. F.11 and Eq. F.13 into the sandface rate relation, Eq. F.5, we obtain:

1
{— n_n I— 9 Heff rvl" —Hﬂ
|rWde|p|_ n PtD ||
Mok ] L (27h)" k¢ 1]
Ug By =27zh |- \| | B e, (F.15)
| Heff J| d(r rp) |
| J
Arranging terms in Eq.F.15:
L
[ 1
P
dsf By = 0By | rlg el TS (F.16)
|_ d 't J
Substituting Eq.F.14 and 16 in Eq.F.6 gives:
1
dp [, dop ]
qB, = -24C B, d © +aBo|r) © | e (F.17)
n (¢cy), (2z0)r2 Ao |~ drp |
Finally the equation Eq.F.17 may be written as:
1
dpp (tp) [ dpgp (tp) ]
D LD +\rlg bD | = L s (F.18)
dtD L d rD J
Where
24 C
C D = T e ettt a et R et R et bRt ettt aene e s (F.19)

n (gcy)y (27h)r2
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APPENDIX G

SKIN FACTOR

This appendix shows the derivation of the skin factor effect. Around the wellbore there is a zone called the
skin zone, which means that there is a pressure drop Aps near the wellbore. This pressure drop is due to

adverse drilling and completion conditions. The pressure drop is defined by:

APg = AP] = AP D 1 ottt (1)
Where
T 1" et we s ]
Apl_LZth . r InLrWJ, ................................................................................................... 2)
And
[ 1" et wer s ]
Apz_tZ;th . r |n{rWJ .................................................................................................... 3

Apz pressure drop from a radius rs to the wellbore radius rw, which would normally occur because of flow
through the altered zone. Ap: pressure drop from a radius rs to the wellbore radius rw, which would have

occurred had there been no change in permeability in the altered zone. Substituting 2 and 3 into 1 gives:

q Tn HMeff  w-1 |—r_s~| q -|n Heff Pl

[ [
SR ) B PO I PPN

Factorizing and arranging terms in 4 we get the expression as follows:

g 1" et woqlke T T ]
Aps—tﬁj Tr |\Z_1‘||n‘\a

Defining a skin factor from the properties of the altered zone:

| S
—~
Ul
~
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Combining Eq.5 and Eq.6, and solving for s

201" ki e
S:ApSL_J oo ettt )
q Heff

Eq.7 is the definition of skin factor for this .
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APPENDIX H

EARLY-TIME APPROXIMATIONS

This appendix presents the "early-time" approximation for the dual porosity, non-Newtonian model.

Recalling the General Solution in the Laplace Domain:

1-n [ 3-n ]
BPRRE IO
I’D Kﬂ| - I’D |

| ]

Where:

1-n
g(u) = “mw)wmwl ........................................................................................................... (H.2)
ul-w)+niD" "

When rp=1 Eqg.H.1 reduces to:

‘szlug(uﬂ|
3-n

1-n J
Pip (u) = e ———————————————— et (H.3)
[2.f i
uu g(u)K 2 3ug(u)J
— -n
3-n

Eqg.H.2 can be rearranged as follows:

) i B S L (H.4)

ul-@)+napt "

Considering Eq. H.4, as u—co (short times), we have:

1-n
glu—> ©)=0w+(1-o) L (H.5)

w(l-w)+niDi "

The second term of Eq.H.5 goes to zero and the result of the limit is:
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Eq.H.6 is then substituted into Eq. H.3, which yields:

Rearranging Eq.H.9, we obtain:

n+l n+1

f1-n 1l 1 Ts-n 3
Non lsa] W

3-n 3-n

umr[Bfn} |

P ()=

Simplifying Eq.H.10 in terms of u, we have:

LR
el
P (u)=~
rr 2
[3-n]
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Using Laplace Transform tables, Eg. H.11 can be inverted to yield:

n+l n-1
NESLE NS - Lon
b (tp) ~ [a-n]l3-n] D) (H.12)
oo 2 Jo2m-2)]

=) " an

Eq.H.12 is the approximation at “early-time" for the dual porosity non Newtonian model. For well test
purposes a derivative is calculated. Taking the derivative multiplied by dimensionless time from Eq.H.12

for the "early-time" approximation as follows:

fon 1l 1 To o

1-n 1 3 n B

t WW“WNFB Sy © ‘”a)i% (H.13)

D dtD ~ ’_ 2 _|F|_ 2(n72)_| L3_nJ D ® SEeEsESIENeNsEN NI ERERRORORRERIRRORRES .
L3 nJ -n
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APPENDIX I

LATE-TIME APPROXIMATIONS

This appendix presents the "late-time" approximation of the dual porosity non-Newtonian model in order to

yield a direct Laplace transform inversion. Recalling the general solution in the Laplace domain:

K17| }
EDf (I'D ,u) = i L ’_ _|J ) e (Il)
u\/ug_K , 2,3/ug(u
sl 270
where:
1-n
g(u) = u(l—a))w+n/1D1 ........................................................................................................... (1.2)
U@-®)+niD "
When rp=1 Eq. 1.1 reduces to:
2,ug (u) |
L
Pof (U) = e ———————— et (1.3)
|—2 —|
oK JSEH !
— -n
3-n

Considering Eq. 1.2, as u—0 (large of "late" times), we have:

1-n
G 0) = L D (1.4)

0l-w)+niD* "

Substituting Eq.1.4 in Eq.1.3 yields:

et e e eeeeee e e eeeeereeeee (1.5)
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Recalling the Bessel functions when u —0
-V
................................................................................................................ (1.6)

K, (z)= %F(v){%z}

Substituting Eq.1.1.6 in Eq.1.5:

n-1
1 [ }Fl 2u 13-n
2 23-n
Ppr (U) = " | P (1.7)
a2 H@MW‘E
2 L3—nJ|_2 3—nJ
Simplifying Eq.1.7
F[l_n} n+l 2(n-2)
3-n][ 1 T3-p 3
P Df (u)—r|_ ; ﬂsfnJ (u) LSS (1.8)
[3-n]

Using the identity for the T'(n) function, we have:

R A T 11 B (1) T TS U TP PR T TP TP PR PRPRPRO (1.10)

In order to use Eq.1.10, it is necessary to reform Eq.1.9 as follows:

FI'l—n"l 17
3
bor (tp) = ERY T D e (1.11)
F[sz }(3—n)3 e J
-n
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Using the property shown by Eq.1.10 in Eq.1.11, we have:

1{1”} 1=n
3-n tS‘”
P Df (tD): r ) —| L—i—l ’_l_n_lrl_l_n_| ......................................................................... (|12)
3_n)3-n _ _
th_nJ( n) LS nJ LS nJ
Finally rearranging terms in Eq.1.12 and simplifying, we have:
2(1-n) B
3 3-n -
P pf (tD):%tD_n .................................................................................................. (|13)
1-—
FLS—nJ( n)

Eq.1.13 is the approximation at long or "late-times" for our proposed dual porosity non Newtonian model.
For application purposes, we require a derivative formulation as well. Taking the derivative multiplied by

dimensionless time from Eq.1.13 yields the "late-time" approximation for this case:

2(1-n) 27

Por (tp)  (3-nm) 30 [1-n oo
br o’ _ (-1 |10 50 ItD .......................................................................... (1.14)

[2_.'D
dt p F[e,_zn}(ln)f n J

tp

Reducing similar terms and simplifying Eq.1.14:

—(1+n) B
Ao (tg)  (3_n) 3-n
o — 0’ B L8 e (1.15)
dtp F{ 2 }
3-n
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