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ABSTRACT 

Micro-metastases are a significant problem in cancer therapy. These are cell 

clusters that can be found throughout the body, often arising from the primary tumor. 

They can go on to form radiologically discernable metastases. Our understanding of 

metastatic cancer is evolving, and therapeutic strategies need to evolve with it.   

Gold nanoparticles have been extensively used in the medical field. In this study, 

gold nanoparticles containing Auger emitting radionuclides of 125I or 117mSn were 

modeled for the treatment of micro-metastatic cancer. The Monte Carlo transport code 

Geant4-DNA was used to model the decay of these radioactive atoms, following each of 

the emissions along its particle track down to thermal energies. This open source “track 

structure” code was able to keep a detailed spatiotemporal report of energy depositions 

and secondary particle formation. The energy deposition data generated was visualized 

using the software VisIt.  

It was found that both radionuclides contained adequate energy for the treatment 

of circulating tumor cells and micro-metastases. However, depending upon micro-

metastatic tumor volume, they have different benefits. The energy deposition from 125I is 

much denser overall when there are a large number of decays. Compared to that, 117mSn 

has a less dense energy deposition for a large number of decays, but individual decays 

were generally a higher energy.  

The present analysis showed that very low energy electrons will not escape from 

the gold nanoparticle itself; they would excite tertiary particles and create thermal 

energy themselves, on the order of a few eV. The cascade of electrons generates what is 
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commonly referred to as a Coulomb explosion, inducing significant direct damage to 

molecules adjacent to the gold nanoparticle. The electrons that escape the gold 

nanoparticle would go on to also induce direct damage to the DNA if the particle is 

within several angstroms, or create free radicals if it is not. Based on the number of free 

radicals generated, indirect damage to the DNA of the cancerous lesion would also be 

quite substantial. The resulting dose enhancement indicates that use of radioactive gold 

nanoparticles for the therapeutic treatment of micro-metastatic cancer can be an 

excellent treatment strategy.  
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NOMENCLATURE 

atm Standard Atmosphere  

CPP Cell Penetrating Peptides 

CTC Circulating Tumor Cells 

CSDA Continuous Slowing Down Approximation  

EC Electron Capture 

eV Electron Volt 

FDA Food and Drug Administration  

d Day 

h Hour 

keV Kiloelectron Volt  

LET Linear Energy Transfer  

MeV Megaelectron Volt 

µA Micro Amperes  

MM Micro-metastases  

nm Nanometer 

NNDC National Nuclear Data Center 

PET Positron Emission Tomography  

RBE Relative Biological Effectiveness 

s Second 

SPECT Single-Photon Emission Computed Tomography 
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1. INTRODUCTION

1.1 Cancer Metastases 

The Center for Disease Control reported that 117 million Americans were living 

with at least one chronic disease in 2012 (1). The two most common chronic diseases, 

heart disease and cancer, make up 48% of fatalities across the nation (2). The medical 

expenses associated with these diseases makes up about 75% of the total medical 

charges in the country (3). In 2010, the cost of cancer was more than $120 billion, 

according to the National Cancer Institute (4).  

There have been significant advances in understanding the etiology and treatment 

of cancer, however the incidence and prevalence of cancer have not changed 

considerably in the last decade. There are 14.5 million Americans living with cancer, 

and 1.6 million new cancer cases will be diagnosed this year (5). It is expected that 

approximately 0.6 million people will die of cancer in 2015, or about 1600 people per 

day (6).  

Cancer treatment is a complex process that requires a clear understanding of 

organs, tissues and tumor anatomy, physiology and immunology.  The primary form of 

treatment is surgery (surgical resection) followed by chemotherapy and external beam 

radiotherapy or chemo-radiotherapy.  However, approximately 70% of all patients with 

cancer will develop metastases (7). Cancer deaths tend to occur as a secondary symptom 

of cancer metastases.  
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The treatment of metastatic cancer is a significant economical burden, as the 

disease becomes unmanageable and terminal in most patients. Therefore, metastases are 

the final frontier in cancer progression. 

Breast cancer is the most prevalent form of cancer in women, affecting about 

12.5% of the population (8). This cancer, specifically, is a burden on the US healthcare 

system resources. The National Cancer Institute projects that 17% of the more than 

200,000 women will die of breast cancer this year alone (5). Breast cancer will 

metastasize in about 30% of the patients, and the survival time is only a maximum of 

three years after that (9). Therapeutic strategies for this cancer are expensive, intensive 

and complex. The Food and Drug Administration (FDA) has approved more than a half 

a dozen drugs in the last few years for the treatment of metastatic breast cancer, 

including angiogenesis and aromatase inhibitors, specific receptor blocking agents, and 

cytotoxic treatments (10). Unfortunately, there has been a minimal effect from these 

therapeutic strategies on the overall survival and quality of life for patients with 

metastatic breast cancer (11) 

Prostate, lung and colorectal cancer continue to be the most prevalent cancers 

among men (6). In the case of prostate cancer, the curability is 100% if the primary 

tumor is locally or regionally confined; however, the 5-year survival rate drops 

considerably when a patient is diagnosed with bone metastases (12). Table 1 shows bone 

metastases incidence for various cancer types. This difference in survival is a remainder 

that metastases are the true culprit.   
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Recently, 223RaCl (Xofigo®), a new alpha-particle-emitting targeted-

radionuclide-therapy agent, was approved by the FDA for the treatment of bone 

metastases in castration-resistant prostate cancer (CRPC). Patients have seen excellent 

results, providing palliative care and a significant increase in median survival from 11.2 

to 14 months (13).  The effectiveness of the treatment relies on the ability of high-LET 

(linear energy transfer) alpha particles from 223Ra decay chain to kill cancer cells. 

Radium is favorably absorbed by bone by virtue of its chemical similarity to calcium 

creating a regional site of irradiation (14). The marginal increase in median survival is 

due to the fact that patients tend to suffer from other metastatic sites where 223RaCl is 

totally ineffective (13). Most patients in late stages of metastatic prostate cancer are 

found to have involvement in bone (90%), lung (46%), liver (25%), pleura (21%), and 

adrenals (13%) (15).  

Table 1. Bone metastases incidence among various cancers. 

Tumor 
Disease 

prevalence in 
the US (×103) 

Incidence of 
tumor bone 
disease (%) 

Median survival 
after diagnosis of 
bone metastases 

(months) 
Osteolytic Myeloma 75-100 70-95 24 

Renal 198 20-25 12 
Melanoma 467 14-45 6 

Bladder 582 40 6-9 
Thyroid 207 60 48 

Lung 386 30-40 7 
Breast 1,993 65-75 24 

Osteoblastic Prostate 984 65-75 36 
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Like prostate cancer, malignant melanoma can be completely removed and cured 

through surgical resection. However, if the cancer metastasizes, it is one of the most 

aggressive and drug-resistant cancers with a very poor overall survival. Malignant 

melanoma is known to metastasize to all organs of the human body with a high 

incidence to the lungs and liver. The median survival of metastatic malignant melanoma 

is between 6 and 9 months (16).  

It is important to understand how cancer metastases can be managed and treated. 

Based on the results obtained from the clinical trials carried out with the high-LET 

alpha-particle targeted-radionuclide-therapy compound 223RaCl (Xofigo®), as well as 

other studies using 211At and 125I, (3-6) it seems metastases can be managed.  High-LET 

targeted-radionuclide-therapy combined with advanced drug delivery systems based on 

nanotechnologies could provide organ-specific treatment strategies that could seek and 

destroy the early culprits of cancer metastases. This novel treatment has the potential to 

treat cancer metastases since nanoparticles are on the nanoscale, and can interact 

specifically with strands of DNA (17).  

1.2 Circulating Tumor Cells and Micro-metastases 

The concept of circulating tumor cells (CTC) was established as early as 1965 by 

Fisher and Fisher for liver metastases (18) and 1969 by Ketchman et al., for pulmonary 

metastases (19, 20). The discovery of CTC and their prognostic capacity to forecast 

cancer metastases has opened a new opportunity for the management of patients. 

Circulating tumors cells have been shown to predict cancer metastases in prostrate (21-
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23), breast (24), lung (25-29), melanoma (16, 30-33), sarcomas and osteosarcomas (34-

36), bladder (37-41), and colorectal cancer (42-56). As for the case of breast cancer, 

although primary tumors are diagnosed at an earlier stage, many women will have CTC 

and sub-clinical micro-metastases (MM) in other organs at the time the primary tumor is 

surgically removed. From examinations at time of autopsy, 62% will have bone 

metastases, 66% will have lung metastases, and between 40% and 60% will have liver 

metastases (57, 58). Table 1 shows the incidence of bone metastases for different 

cancers.  

Detection of CTC from peripheral blood samples, commonly referred as liquid 

biopsy, has been an area of extensive research. There are many commercial systems 

approved by the FDA capable of enriching, purifying and analyzing CTC from many 

primary tumor types.  The CellSearch® system was used to carry out several pivotal 

studies. A study was carried out for breast cancer patients (n = 177) with no clinical 

symptom of metastases (59). Blood samples from these patients were obtained (7.5 ml), 

and they were divided into two groups, those with CTC < 5 (n = 90) and the other with 

CTC ≥ 5 (n = 87) per sample. The results indicated that the median progression free 

survival for those patients with CTC < 5 was 7.0 months and 2.7 months for those with 

CTC ≥ 5 with a log-rank P value of 0.0001. Progressive disease among patients within 3 

months was 20% for CTC < 5 and 54% for CTC ≥ 5 with a Fisher’s exact P value of < 

0.001 (59).  For the case of prostate cancer, CTC were able to predict the overall survival 

benefit for treatment of castration-resistant metastatic prostate cancer (CRPC) (60).  The 
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overall median survival for those with CTC < 5 was 21.7 months versus 11.5 months for 

those CTC ≥ 5 with a P value of < 0.0001.   

 

1.3 Current Treatment Strategies 

Micro-metastatic disease is not clinically discernable by radiographic means and 

therefore a systemic treatment is needed irrespective of target organ (61).  There are 

multiple treatment options for treating metastases; however, these treatments depend on 

target organ. Targeted therapies using biological agents have been used to treat 

metastases in the past (62). 

 

Table 2. Physical characteristics of radiopharmaceuticals for palliative care (63). 

Radionuclide Carrier 
Physical 
half-life, 

days 

βmax 
(MeV) 

βmean 
(MeV) 

Mean 
range 

in 
tissue 
(mm) 

γ 
energy 
(keV) 
(%) 

89Sr Chloride 50.5 1.46 0.583 6.7 - 
153Sm EDTMP 1.95 0.8 0.224 3.4 103(28) 

32P Phosphate 14.28 1.71 0.695 7.9 - 
188Re HEDP 0.71 2.12 0.76 11.0 155(1) 
117Sn DTPA 13.6 NA NA 0.3 CE 159 

33P Phosphate 25.34 0.249 0.85 0.05 - 
223Ra Chloride 11.4 α-emitter (eff. 

energy 26.4 MeV) 
< 100 
µm - 

 

For bone metastases, treatment consists of bisphosphonates and low energy beta-

emitting radionuclides conjugated with bone-seeking compounds such as 89Sr, 153Sm-

ethylenediaminetetramethylenephosphonate, and the alpha-emitting radionuclide 223RaCl 
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(Xofigo ®). Table 2 presents the physical characteristics of the radionuclides used in the 

treatment of bone pain.  

The radionuclides mentioned in Table 2 are selected because of their physical 

properties, but most importantly because they do not need to be internalized into the cell 

to produce a cytotoxic effect. The range in tissue of the emitted beta and alpha particles 

are few to hundreds of cell diameters. However, cytotoxicity of these radiative emissions 

depends on their LET. The LET of beta particles is about 0.2 keV µm-1 and 100-200 keV 

µm-1 for alpha particles. The cytotoxic effectiveness of low LET particles and high LET 

particles is given in Figure 1 from the Linear Quadratic Model (LQM) for cell survival.  

 

 

Figure 1. Survival fraction for different types of LET radiations. The LET is based on 
the Linear Quadratic Model (LQM). These absorbed doses are broken into their alpha, 
beta, and gamma components with LET shown.  
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LET is one of the physical characteristics of radionuclides examined in therapy, 

as each radiation type has its own specific LET. The LET is defined as the amount of 

energy deposited in the material the particle is traversing per unit length. Figure 2 shows 

the representation of this.  

 

 

Figure 2. Energy deposition patterns for α, β, and Auger particles. Adapted from (64).  
 

From Figure 2, it can be seen how the LET varies from particle to particle. The 

beta particles have a relatively low LET, while the alpha particles have a very high LET. 

Auger electrons also have a very low LET, however, when an Auger cascade occurs the 

combined energy deposition of these electrons results in a localized energy deposition 

that resembles high LET particles, such as an alpha particle (65). This phenomenon is 

taken advantage of in this project, as the radionuclides chosen are Auger emitters.  
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1.4 Future Treatment Strategies Targeting Circulating Tumor Cells and Micro-
metastases Using Nanotechnologies 

New systemic treatment strategies must be developed to target micro-metastatic 

disease at its early stages, including CTC.  The treatment of MM and CTCs requires that 

therapies be localized or specific and effective on first “contact”, requiring no significant 

cumulative dose of a drug to induce a cytotoxic effect. These specific demands require 

that new therapies be binary in their mode of action. Unfortunately most of the cytotoxic 

drugs mentioned above have a non-specific distribution, a negative pharmacokinetic 

profile, and lack specificity. Thus, the development of compartmental or 

multicomponent, multi-modal nanoparticle-based drugs for the specific delivery of 

cytotoxic drugs to tumor cells is a favorable strategy. In here several examples are 

presented using surface receptors, cell penetrating peptides, and inhibitors in 

combination with nanoparticles for the treatment of CTC and MM. 

Cell surface receptors can be used as tagging agents. As an example, Peiris et al., 

(66) developed a flexible multi-chain nanoparticle system for the treatment of breast 

MM in an animal model.  The multi-chain nanoparticle used a tripeptide to target the 

αvβ3 integrin receptor on the cell surface of metastatic breast cancer cells. The nanodrug 

was able to gain access to and be deposited at MM sites. Using a radiofrequency 

triggering system, the cytotoxic cargo was released into these cancer cells. The results 

are very promising as the system was binary and its cytotoxic effect was confined to 

those regions where the nanodrug accumulated.  

Cell penetrating peptides (CPP) are used to bypass the lipophilic wall of cell 

membranes efficiently, and deliver a variety of agents. These peptides are capable of 
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introducing proteins, other peptides, and nanoparticles into the cell and its 

compartments. The CPP are basic, and rich in lysine- or arginine-, as well as being 

hydrophilic and lipophilic (67). CPP work in two different ways, by covalently linking to 

their cargo molecules, or by forming a complex with them. While CPP have great 

potential for drug delivery systems, they are still being investigated, as they penetrate 

almost all cell types non-specifically.  

Inhibitor loaded dextran-based polymeric nanoparticles have been used to treat 

metastatic osteosarcoma, where the slow release or dissociation of the nanoparticle 

within the confinement of the tumor site was able to deliver an inhibitor and suppress 

tumor growth and proliferation (68).  

Nanotechnology can be combined with radiation to effectively treat tumor cells 

through the delivery of radioactive atoms contained within nanoparticles that 

subsequently deposit energy in the cluster of tumor cells (69-73). Radioactive 

nanoparticles can be synthesized in two ways. The radioactive atoms can be integrated 

into the core or at the nanoparticle surface. The nanoparticle is then coated with specific 

biological agents for targeting purposes. This allows the nanoparticles to be administered 

to the patient and travel to the specified location and attach, or even penetrate, lesions or 

single tumor cells. The simplest method for manufacturing a radioactive nanoparticle is 

based on the synthesis of gold nanoparticles using the modified Turkevich method (74) 

with 198Au (69, 75).  This radioactive gold-in-gold approach is simple and requires no 

alloy formation. Radioactive 198Au-AuNPs have been studied in preclinical animal 

models for treating prostate cancer (69, 76) and have been combined with 
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chemotherapeutics (77).  These nanoparticles have been used for the treatment of 

localized breast cancer therapy after lumpectomy using radioactive liposomes loaded 

186Re and 188Re radionuclides (78).   

The spontaneous alloying of tin atoms into gold nanoparticles has been studied 

by Yasuda et al., (79, 80). The generation of Au-Sn alloy or AuSn compound 

nanoparticles has been carried out. It is possible to spike gold nanoparticles with 117mSn 

radioactive atoms to generate 117mSn-AuNP as an alloy or as an amorphous nanocluster.  

 

 
Figure 3. Schematic of a nanoparticle containing radioactive atoms. Examples include 
125I, 17mSn, or 211At. The nanoparticle is PEGylated for stability and its surface coated or 
“functionalized” with various substrates targeting different cell receptors, such as 
monoclonal antibodies, fragments, peptides, and cell penetrating peptides.  
 
 

Similarly, the generation of Gold(I)Iodide nanoparticles has been studied by 

Daniel and Astruc (81), showing that iodine surface absorption was possible by 

displacing citrate ions from AuNPs, leading to superstructures that are formed upon 
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addition of KI (82).  These studies show that it is possible to construct radioactive gold 

nanoparticles in the form of amorphous or alloy clusters.  

However, radioactive nanoparticles must be modeled to assess the energy 

deposition patterns and effects to the various structures they surround. These include the 

enhanced production of radical species within the immediate environment of the 

nanoparticle (83-85). Figure 3 is a representation of such a nanoparticle. Meisel et al., 

studied the charge or electron transfer in colloidal gold nanoparticles and its potential 

application and effects in radical production (84-86). It has been postulated that radical 

production by gold nanoparticles is enhanced, potentially increasing it cytotoxic effect. 

This is relevant when radioactive decay occurs within the core of the nanoparticle 

producing electron-hole pairs that travel through the nanoparticle and potentially escape 

from it, producing radical species.  

 

1.5 Summary  

The treatment of MM and CTC will require the development of multi-step 

combinatorial treatment strategies attacking different spatiotemporal targets during the 

cancer metastatic process. Single drug options, even single nanotechnology-based 

therapies, will not be able to tackle the different stages of metastatic evolution. The need 

to elucidate how metastases spread in pathophysiological and molecular terms is then 

fundamental for developing new strategies.   
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An analysis of the dosimetry of the potential utility of Auger electron emitters is 

presented. As indicated below, the Auger electron emitting radionuclides 125I and 117mSn 

could be powerful killers when introduced into the cell nucleus (87-91).  
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2. METHODS AND MATERIALS

The simulation of the energy deposition of a single radioactive decay of a 

radionuclide from a nanoparticle requires the use of Monte Carlo methods capable of 

tracking the energy deposition pattern at the nanoscale level. Therefore, the present 

project needs to be divided into multiple parts. The first part is to understand the 

radioactive decay of the radionuclides 125I and 117mSn, and the particle emitted through a 

single decay.  The second part is to carry out the simulation of the particle transport 

through water and calculate the energy deposition patterns around the nanoparticle. In 

the current work absorbed dose will not be calculated, as absorbed dose loses any 

meaning at the nanoscale level where direct and indirect effects are of relevance. The 

third part is the conceptual propagation of effects from physical to physicochemical, 

chemical, and finally to biological effects with an emphasis on probability of 

superimposition. The fourth part is the development of the mathematical framework for 

the spatiotemporal decay of multiple radioactive atoms under the principle of 

superimposition.    

2.1 Auger-Emitting Radionuclides 

More than half of the radionuclides known decay by internal conversion and/or 

electron capture resulting in the emission of a cascade of extremely low energy 

electrons, a phenomenon commonly known as the Auger effect (92). These Auger, 

Coster-Kronig and super Coster-Kronig electrons typically have energies between few 

eV and 1 keV. These electrons travel short distances, up to ∼ 1000 nm from the decay 
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site and deposit all of their energy in a small spherical volume with a radius of 

approximately 2000 nm.  The relative biological effectiveness (RBE) of Auger electrons 

was initially ignored owing to their low electron energy. However, after observing in cell 

survival studies the lack of a shoulder (91), Auger electrons are considered extremely 

cytotoxic as they emulate high-LET radiation (2–25 keV/µm) imparting very high 

cytotoxicity to mammalian cells when the decay site is located in close proximity to the 

nuclear DNA (93, 94). These observations drove much of the interest in therapeutic 

potential of Auger electrons (95).  

2.1.1 Radionuclide 125I 

One of the most studied and used radionuclides in medicine is 125I. It has a 

physical half-life of 59.4 d. It decays by electron capture (100% EC) into 125mTe (t1/2 = 

1.6×10-9 s), and then into stable 125Te. The neutron-based production of 125I is based on 

the reactions  

124Xe(n,γ)→125mXe(57 s)→125I (59.4 d) 

and 

124Xe(n,γ)→125gXe(19.9 h)→125I (59.4 d) 

using natural xenon in a zirconium canister at about 100 atm.  125I has a variety of uses, 

mainly in the realm of radioimmunoassay, brachytherapy and targeted radionuclide 

therapy (91, 96). 125I is preferred for low dose rate brachytherapy treatments because the 

photons emitted have low energies (97). Since they are low energy and have a short 

range, brachytherapy seeds can be used to deliver a localized dose to treat specific sites 
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in the body. Along with the low energy photons, Auger electrons are also emitted. The 

Auger electron cascade affects a very small volume, because they have a very short 

range, on the order of few hundred nanometers (89). Both of these physical attributes are 

ideal, due to the fact that a large burst of energy can be deposited almost precisely where 

needed. Even though the Auger electrons have very low energy, they can cause serious 

biological damage as they produce a cluster of ionization simulating a high-LET event; 

thus, it can produce significant effects to sensitive targets, such as DNA.  

Within the iodine family, there are other radionuclides apart from 125I used in 

medicine. These include 123I (t1/2 = 13.13 h) and 124I (t1/2 = 4.18 d), and 131I (t1/2 = 8.019 

d). The radionuclide 123I is mostly used in diagnostic nuclear medicine. It is 

preferentially selected for nuclear imaging scans when dealing with the thyroid, since the 

thyroid readily uptakes iodine. The photons emitted from this isotope are ideal for 

diagnostics involving gamma cameras and SPECT (98). The radionuclide 124I is 

primarily used as a radiotracer in positron emission tomography (PET). This isotope has 

a long half-life and is known to be optimal for PET scanning, due to the way it can help 

directly image the thyroid (99). The last isotope of iodine used in nuclear medicine is 

131I. This isotope emits both photons and betas, making it suited for both diagnostics and 

therapy. It can be used in SPECT imaging, but is more commonly used for its 

therapeutic purposes for the therapy of differentiated thyroid carcinoma (100).  

The decay scheme for 125I is shown in Figure 4, obtained from the National 

Nuclear Data Center (NNDC).  
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Figure 4. Decay scheme of 125I. Adapted from the NNDC. 

The decay scheme of 125I contains conversion electrons and photons emitted from 

this radionuclide during decay. A more detailed report of the radiations emitted during 

the decay of 125I is shown in Table 3.  
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Table 3. Radiative emission, yields, and energies for 125I in MIRD format. Obtained from 
the NNDC. 

125I 
Half-life = 59.400 Days Feb-2011
Decay Mode: EC 
February 2011 

Radiations y(i) 
(Bq-s)-1 

E(i) 
(MeV) 

y(i) ×E(i) 
(MeV) 

γ 1 6.68×10-02 3.549×10-02 2.37×10-03 
ce-K, γ 1 7.81×10-01 3.679×10-03 2.87×10-03 
ce-L, γ 1 1.07×10-01 3.055×10-02 a 3.26×10-03 
ce-M, γ 1 2.13×10-02 3.449×10-02 a 7.35×10-04 
ce-N+, γ 1 4.66×10-03 3.532×10-02 a 1.64×10-04 
Kα1 X-ray 7.35×10-01 2.747×10-02 2.02×10-02 
Kα2 X-ray 3.94×10-01 2.720×10-02 1.07×10-02 
Kβ X-ray 2.56×10-01 3.100×10-02 * 7.93×10-03 
L X-ray 1.48×10-01 3.770×10-03 * 5.57×10-04 
Auger-K 1.97×10-01 2.270×10-02 * 4.47×10-03 
Auger-L 1.57 3.190×10-03 * 5.00×10-03 
Listed X, γ, and γ± Radiations 4.18×10-02 
Listed β, ce, and Auger Radiations 1.65×10-02 
Listed Radiations 5.83×10-02 
* Average Energy (MeV)
a  Maximum Energy (MeV) for subshell 
Tellurium-125 Daughter is stable 

The decay of 125I into 125mTe and then into 125Te produces a series of primary 

electronic vacancies. The probabilities of these vacancies were calculated using Monte 

Carlo methods by Charlton and Booz and they are shown in Table 4 (101). 
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Table 4. Primary vacancy yields after EC and IC of 125I 
decay. 

Atomic Shell EC to 125mTe IC from 125mTe 
K 0.808 0.795 
L1 0.154 0.095 
L2 0.004 0.007 
L3 - 0.004 
M1 0.035 0.019 
M2 0.001 0.004 
M3 - 0.001 

M4-5 - - 
N1 - 0.004 
N2 - 0.001 

Total 1.000 0.930 

2.1.2 Radionuclide 177mSn 

The radionuclide 177mSn (t1/2 = 13.76 d) is particularly new in the medical field, 

and has recently been used for its ability to treat painful bone metastasis (102). However, 

it has many of the same physical properties of 125I, including Auger electron emissions. 

117mSn is produced in a cyclotron using a highly enriched cadmium target of 116Cd (99%) 

via 116Cd(α,3n)117mSn with an alpha particle beam of 35 MeV, a minimum beam current 

of 5 µA and a 10° slope to the target surface.  117mSn is chemically separated and the 

target is recycled (103).  
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Figure 5. Decay scheme of 117mSn. Adapted from the NNDC. 

The decay scheme of 117mSn is shown in Figure 5, with decay occurring through 

isomeric transition. A more detailed report of the radiations emitted during the decay of 

117mSn is shown in Table 5.  
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Table 5. Radiative emission, yields, and energies for 117mSn in MIRD format. Obtained 
from the NNDC. 

117mSn 
Half-life = 14.00 Days Jan-2011
E (excitation) = 0.3146 MeV 
Decay Mode: IT 
January 2011 

Radiations y(i) 
(Bq-s)-1 

E(i) 
(MeV) 

y(i)×E(i) 
(MeV) 

γ 1 2.11×10-02 1.560×10-01 3.30×10-03 
ce-K, γ 1 6.57×10-01 1.268×10-01 8.34×10-02 
ce-L, γ 1 2.65×10-01 1.516×10-01 a 4.02×10-02 
ce-M, γ 1 5.79×10-02 1.551×10-01 a 8.98×10-03 
ce-N+, γ 1 1.11×10-02 1.559×10-01 a 1.73×10-03 
γ 2 8.64×10-01 1.586×10-01 1.37×10-01 
ce-K, γ 2 1.13×10-01 1.294×10-01 1.46×10-02 
ce-L, γ 2 1.56×10-02 1.541×10-01 a 2.40×10-03 
ce-M, γ 2 2.89×10-03 1.577×10-01 a 4.55×10-04 
ce-N+, γ 2 5.89×10-04 1.584×10-01 a 9.34×10-05 
γ 3 4.23×10-06 3.143×10-01 1.33×10-06 
ce-K, γ 3 4.05×10-06 2.851×10-01 1.15×10-06 
ce-L, γ 3 2.68×10-06 3.098×10-01 a 8.30×10-07 
ce-M, γ 3 5.74×10-07 3.134×10-01 a 1.80×10-07 
ce-N+, γ 3 1.05×10-07 3.142×10-01 a 3.31×10-08 
Kα1 X-ray 3.54×10-01 2.527×10-02 8.94×10-03 
Kα2 X-ray 1.89×10-01 2.504×10-02 4.74×10-03 
Kβ X-ray 1.20×10-01 2.850×10-02 * 3.41×10-03 
L X-ray 7.41×10-02 3.440×10-03 * 2.55×10-04 
Auger-K 1.08×10-01 2.100×10-02 * 2.26×10-03 
Auger-L 9.27×10-01 2.950×10-03 * 2.73×10-03 
Listed X, γ, and γ± Radiations 1.58×10-01 
Listed β, ce, and Auger Radiations 1.57×10-01 
Listed Radiations 3.14×10-01 
* Average Energy (MeV)
a  Maximum Energy (MeV) for subshell 
Tin-117 Daughter is stable 
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2.1.3 Energy Range of Auger Electrons in Liquid Water 

Auger electrons have a plethora of energies as indicated above and their range in 

water varies accordingly. The penetration of low energy electrons in water has been 

studied by Meesungnoen, et. al. Figure 6 shows these values, calculated using Monte 

Carlos and theoretical methods.  

Figure 6. Electron penetration as a function of initial electron energy. Adapted from 
(104).   

The Auger electrons emitted from the radionuclides have a very specific range to 

travel and deposit their energy. This is the basis of this work, and must be very well 

understood. The electron ranges for 125I and 117mSn are shown in Table 6.  
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Table 6. Electron range based on specific Auger electron energies. Adapted from (104, 
105). 

Radionuclide Radiation Average Energy 
(MeV) Yield Penetration 

Range (nm) 
125I Auger-K 2.270×10-02 1.97×10-01 14000 
125I Auger-L 3.190×10-03 1.57 420 

117mSn Auger-K 2.100×10-02 1.08×10-01 7000 
117mSn Auger-L 2.950×10-03 9.27×10-01 250 

2.1.4 Energy Range of Low Energy Electrons in Matter 

For low energy electrons below 5 keV the usual Bethe-Bloch formula is 

inadequate for calculating the energy loss per unit path length; therefore, for low energy 

electrons a complex dielectric function is required to calculate the energy response of the 

material to a given energy transfer and momentum transfer. The dielectric function is 

determined solely by material properties, and how light traverses through the material 

(106). In a relatively constant field this variable describes to what degree a material will 

concentrate electric flux. This formalism is then used to calculate the continuous slowing 

down approximation (CSDA) range is given as  

R0 E( ) = d ′E
S ′E( )10  eV

E

∫ , (1) 

where S E( )  is the electron stopping power, which has been calculated for many

materials, including gold (107, 108).  The CSDA ranges from 15 eV to 6 keV are shown 

in Figure 7 for polystyrene, collodion, silicon, and gold.  However, it is indicated that 

these estimates can be used with confidence down to 100 eV and errors up to 100% can 

be expected for energies at 10 eV. Nevertheless, these energy-range calculations are 
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suitable for our modeling purposes. The energy-range relationship will be used to 

estimate the energy of Auger electrons that will be stopping within the gold nanoparticle. 

Figure 7. CSDA range for electron energies between 15 eV to 6 keV. 

2.2 The Time Scale of Effects in Radiobiology 

In radiobiology, there are three phases typically considered when radiation 

interacts with matter. These phases are a) physical, b) chemical, c) physiochemical, and 

d) biological. The time scale for each process is given in Figure 8.
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Figure 8. Time scale and events of radiation biology. Adapted from (109). 

2.2.1 Energy Deposition 

The first step is direct action, where particles interact with matter directly, 

physically damaging DNA by breaking bonds. This is referred to as the physical process, 

and its typical duration is 10-16 s (109). 

2.2.2 Radical Generation 

The next stage is the physiochemical stage, an in between stage where the 

physical processes are ending and the beginnings of the chemical stage are occurring. 

This process lasts for about 10-12 s. The chemical stage is next, continuing for about 10-6

s. In it, the particles from radioactive decay are no longer directly damaging the DNA,

but have produced secondary particles are free radicals through excitation and ionization 

that go on to damage the DNA. Figure 9 shows the radiolysis of water, and the radicals 

generated from it.  
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Figure 9. Products from the radiolysis of water. Adapted from Le Caër (110). 

It is important to model indirect effects, as they also contribute to DNA damage. 

The radicals are produced via secondary electron interactions with molecules other than 

the actual DNA, such as water within the cells. When these energetic electrons interact 

with water, for example, radicals such as hydroxyls are produced (111). These radicals 

then go on to damage the DNA themselves. For this model κ will be used as the variable 

to describe the number of radicals generated.  

GH2O
→G

H • +Geaq
− +G

H + +G•OH
+GH2

+GH2O2 , (2)

where: 

G
H •  is the number of hydrogen radicals produced 

G
eaq
−  is the number of hydrated electrons produced 

G •OH  is the number of hydroxyl radicals produced 
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GH2  is the number of hydrogen atoms produced  

GH2O2  is the number of hydrogen peroxide atoms produced 

The variables above represent the radical products that will be present at the beginning 

of the chemical phase (112). However, the G-values are dependent upon the type of 

radiation interacting with the water (110). Thus, the radicals produced by the Auger 

electrons during the decay of 125I or 117mSn are clustered and therefore may be different 

than those produced by sparse radiations from photons produced by 60Co or 137Cs. The 

G-values for various radicals from irradiation of neutral water with a 60Co source are 

listed in Table 7.  

Table 7. G-values for various radical species. 
Adapted from Meesungoen, et. al. (112) 

Variable Yields (molecules/100 eV) 
G

H • 0.60 
G

eaq
− 2.65 

G•OH 2.80 
GH2 0.45 
GH2O2 0.68 
G−H2O 4.14 

The spatiotemporal evolution of the chemical species from electrons in pure water has 

been studied using Monte Carlo methods by Terrisol and Beaudré (113).  They showed 

that the G values for the production of different species for a 10 keV electron changed 

considerably as a function of time.  The radical generations can be seen in Figure 10.  
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Figure 10. Spatiotemporal development of chemical species. The species was generated 
by one 10 keV electron track in liquid water. Each dot represents one species and N is 
the number of molecules present at the time considered. Adapted from (113).   

2.2.3 Biological Effects 

The last step is the biological phase, in which the damage takes effect and 

consequences can be seen. This stage lasts anywhere from minutes to hours to weeks to 

years. For these calculations, it was assumed to be 106 s. The biological phase can last up 

to years, when late effects and carcinogenesis become prevalent. However, early effects 

are seen sooner, from days to weeks. Due to this, 106 s was chosen.  

It is extremely important to assess radical production in modeling the energy 

deposition from gold nanoparticles since it is a major indirect effect and plays a large 

role in DNA damage. In this model, it will be represented by ζ. 

The Auger electron spectrum of the radionuclide 125I is well studied and for its, 

subsequent direct effects (114). However, if the radioactive iodine molecule is at a 

distance longer than a few nanometers from DNA, where the direct effects cannot occur, 
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the radical production will surely arise. If this happens, it is imperative that the radical 

production be taken into account. The numbers of radicals produced needs to be known, 

and the energy deposition from them should be accounted for. These are both important 

to understand so the degree of damage to the DNA can be properly assessed.  

The molecular changes can occur anywhere from seconds to hours after the 

initial radiation exposure (111).  Molecular changes lead to DNA damage, such as single 

and double strand breaks and aberrations, and other early physiological effects. These 

effects are considered reversible, because the damage inflicted can usually be repaired 

(115). In repair, there are two general cases that can occur. The cell can repair itself and 

continue to function in a healthy manner, or the damage will not be repaired correctly, 

and mutations have the chance to occur cellular generations later. However, if the 

damage is too intense for the cell to repair, the cell may die by means of apoptosis, 

which is programmed cell death, or mitotic catastrophe (111). Repair to the cells are 

usually completed in a matter of hours, but mutations in the DNA, such as genetic 

damage and neoplastic transformations can persist for years (115).  

There are several effects that can come from DNA damage, all in varying forms 

of severity. Some of the most common damages are single strand breaks that can easily 

be repaired. However, double strand breaks can also occur, which are more difficult to 

fix, and other aberrations such as dimers can occur (111). While these types of damage 

can be repaired, they take longer to fix and there is a higher chance of error occurring 

during the repair process, since the damage is more complicated. 
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2.2.4 Probability of Superimposition 

For the simulations of the radioactive nanoparticles, each nanoparticle was 

assumed to contain one radioactive atom. This was done for theoretical purposes, so the 

energy deposition from a single decay could be analyzed. However, we must also look at 

the probabilities for multiple radioactive atoms contained within the nanoparticle. The 

Poisson distribution is followed for several reasons. This distribution calculates the 

probability that a certain event will occur within a specific time range, if the events are 

independent. Since radioactive decay is independent, the Poisson distribution is a perfect 

model.  

! !; ! = !!!!!
!! (3) 

In Equation (3), x represents the actual number of decays, ! is the expected 

number of decays, and ! !; !!  is the probability that exactly x number of decays happen 

when the expected number of decays is !. The following equation was used to determine 

!: 

! = Δt ∙ λ (4) 

The calculation for the average number of decays occurring is shown in Equation 

2. The variables that make up this equation are !", the duration of a process occurring,

and !, the decay constant of the radionuclide. Equation 2 only holds true when ! is much 

less than 1, which is satisfied in both cases.   
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With this information, the expected number of decays from Equation 2 can be 

calculated, which can then be used to find the Poisson distribution. The final calculations 

can be found in Table 8.  

Table 8. Poisson probabilities of multiple decays occurring. 

Probability of Superimposition 

Process Time 
(sec) x=0 x=1 x=2 x=3 

125I 117mSn 125I 117mSn 125I 117mSn 125I 117mSn 
Physical 10-16 0 0 0 0 0 0 0 0 

Physiochemical 10-12 0 0 0 0 0 0 0 0 
Chemical 10-6 0 0 0 0 0 0 0 0 
Biological 106 0.874 0.558 0.118 0.325 0.008 0.095 0.000 0.0184 

From Table 8, it can be seen that the probabilities only matter when looking at 

the biological effect. Therefore, new methods must be used to calculate energy 

deposition, such as Monte Carlo transport of ultra low energy electrons to account for a 

single decay. Other methods, such as point kernels, would be irrelevant on such a small 

time scale, and the results from such approaches would be skewed since they cannot be 

accurately calculated.  

2.3 The Geant4-DNA Monte Carlo Transport Code 

In the first phase of the project, Geant4-DNA was used to calculate the energy 

deposition from gold nanoparticles containing 125I and 117mSn. In doing this, a complete 

understanding of the decay scheme of both radionuclides will be necessary, as well as a 

full understanding of the Auger electrons emitted from them. Once these schemes are 
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clear, Geant4-DNA was utilized to generate the energy deposition from these Auger 

electrons emitted in radioactive decay from 125I or 117mSn to the DNA.  

2.3.1 Geant4-DNA Overview 

To simulate and model the energy deposition from the radioactive gold 

nanoparticles, Geant4-DNA was employed. This is an extension toolbox to the original 

Geant4 (GEometry ANd Tracking 4) code published CERN (116). This extension code 

was mainly created for radiobioligcal work, and is imperative in the field of micro and 

nanodosimetry. The Geant4-DNA architecture is based upon C++.  The classes used in 

Geant4-DNA can be seen in Figure 11.  
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Figure 11. Geant4 class category diagram. Adapted from CERN. 

The main physical processes are represented by classes, of which there are three 

types:  discrete, continuous, and at-rest. Examples of these include Compton scattering, 

continuous electromagnetic energy loss, and at-rest disintegration, respectively. The 

process types can also be combined to form more complex interactions (117, 118). 



34 

2.3.2 Classical Trajectory Monte Carlo Methods 

Geant4-DNA uses a Classical Trajectory Monte Carlo approach when dealing 

with paritcles. Ions and their trajectories are created under specific limits. The particle 

movement is characterized by Newtonian laws. The Classical Over-Barrier criteria is 

used to choose if a single or double ionization event will occur (119). The position of the 

binding energy of the target electron relative to the maximum of the Coulomb potential 

barrier that exists between the ion projectile and molecular barrier are connected. This 

method is used to track and simulate the proton interactions between hydrogen atoms 

from liquid water (119).  

Monte Carlo codes have been relied upon as the basis of radiation transport 

calculations for some time, due to their ability to compute the absorbed dose to a 

macroscopic area or record the detailed track structure in a microscopic area. This is 

important because while the macroscopic codes sum up smaller events, on a molecular 

level these small events are the very basis of radiobiology, and have to be completely 

understood. With that, electrons formed in the process of radiation particles slowing 

down in matter are also of consequence to the DNA. This is because at this small of a 

range, in the nanometers, dose is simply too large of a parameter to calculate.  Geant4-

DNA is one of the first codes that allow particles to be tracked down to the energy of a 

few eV’s, which subsequently allows for the radiation to be studied at the cellular and 

sub-cellular levels (116). This code can reproduce both direct and indirect effects on 

DNA when damaged by ionizing radiation, on both the cellular and molecular level. 

These biological effects can also be visualized with Geant4-DNA (120).   
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2.3.3 Track Structure Code in Geant4-DNA 

Recently, there has been a greater need to simulate ionizing radiation on the 

cellular level so we are aware of radiobiological interactions occurring. Due to the 

stochastic nature of radiation, Monte Carlo codes are commonly used to calculate 

various parameters (121). General-purpose Monte Carlo codes that have been used in the 

past for these simulations are not able to give detailed tracking information required for 

radiobiological purposes. This is due to several factors. When working at the nanoscale 

level, discrete energy deposition cannot be treated as a binary process, as it is in general 

Monte Carlo methods (122). Usually, the electronic binding energies are magnitudes of 

order smaller compared to the discrete energy deposition previously mentioned, but this 

is not the case on the molecular scale, or when there are extremely low energies (122).  

The solution to this is a “track structure” code, where some Monte Carlo 

techniques are taken into account, and energy deposition over the track length is 

recorded, along with where free radical species are produced. When Monte Carlo 

methods are used in track structures, the principle of superposition is generally used 

(123). This code transforms the way that tracking particles is done, primarily since it is 

able to track particles event-by-event and compile a detailed particle history, along with 

the secondary electrons (124). Large energy depositions also occur from secondary 

particles, so they too need to be tracked. All physical processes, either leading to energy 

deposition in the medium or directional changes, are taken into accunt to produce an 

extrememly detailed and precise particle history and track structures (121). Since the full 

particle history is available, essentially the damage on the cellular level, a better idea of 
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the damage to the DNA can be gained (123). One way this was accomplished was by 

reducing the volume and lowering the energy threshold that a general Monte Carlo code 

would work with (124).  

With this, the Geant4 Monte Carlo simulation toolkit can mimic, event-by-event, 

the transportation of particle along with their successive particle cascade in liquid water 

or other mediums (125). This toolkit is extremely versatile, and can be changed readily 

to fit the user’s needs. Parameters such as geometry, particle type/energy, run 

management, and energy range can be changed (126). The ability to change the 

radioactive decay model implemented and low-energy physics classes also makes it a 

valuable tool (127). 

Geant4 can compute discrete interactions in the low energy range, if the 

appropriate corresponding low energy cross-sections are developed (123). Various 

papers have come up with their own way to do this, as well as employing the built-in 

Geant4 methods. Dealing specifically with electrons, it is important to be able to track 

them event-by-event. The electron slowing-down spectrum is the energy distribution of 

the electrons, when it satisfies the conditions of electronic equilibrium. Electronic 

equilibrium is fulfilled when the number of electrons that deposit their energy and stop 

moving is equal to the number of electrons set in motion. This information is needed in 

radiobiological work because it records the energy distribution of the electrons entering 

the cells (128). In Geant4, electrons can be tracked down to thermal energies, which 

occur around 0.025 eV (124). When electrons have reached these thermal energies, they 

can still be looked at in terms of vibrational excitations and dissociative attachments are 
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simulated (121). Specifically, vibrational excitation occurs from 2 eV to 100 eV, and 

electron attachment occurs from 4 eV to 13 eV (123). Excitation for electrons occurs 

starting at 9 eV, and ionization for electrons occurs beginning at 11 eV. Both of these 

processes go up to 1 MeV (128). The final position of the electron is also known, which 

is imperative in the radiobiological field. This is not only important to see where the 

final energy is deposited, but also for physiochemical and chemical stages, processes 

that will be available in later expansions (121).  

2.3.4 Electron Processes 

The four electron processes considered in Geant4-DNA include inelastic 

scattering, elastic scattering, which is modeled with the analytical Screened Rutherford 

model or Champion model, excitation, and ionization (120, 129). The former two are 

both interpolated. One method introduced to calculate the cross-sections for inelastic 

scattering included the Plane-Wave First Born Approximation following the dielectric 

formalism, for both ionization and excitation, and when it failed at very low energies 

they were based on semi-empirical models (130). When the electrons were in the low 

energy range, corrections were made using the exchange term from ICRU Report 37, 

along with a Coulomb field correction (117, 118). The classic Coulomb field correction 

is used to account for perturbation effects because it takes into account the potential 

energy gained by electrons in the field of the target molecule (130).   

Elastic scattering occurs frequently with low energy electrons, and although 

energy is not lost, it is important to simulate. This was done using the screened 
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Rutherford and Champion models (117, 118). When the electrons go under 8 eV, the 

energy in the shell of the target material becomes too large, and the electrons cannot 

ionize it. However, vibration and rotation are still available, and phase-scaling 

procedures are used on experimental cross-sections of ice targets (117, 118). Electron 

dose point kernels were used to test the accuracy of Geant4-DNA models for low energy 

elastic and inelastic processes. While inconsistencies were found in other Monte Carlo 

codes, the results from Geant4-DNA were found to be consistent for electrons from 10 

keV to 100 keV, when compared to the dose point kernel results (131). 

2.3.5 Water Model in Geant4-DNA 

The only medium available for use in Geant4-DNA is liquid water, due to the 

availability of approximate cross-sections. It is modeled in a very specific way, with an 

equal number of excitation and ionization shells. There are five excitation levels that are 

used. Each discrete energy transition has a specific total cross-section for excitation 

calculated for it, with correction factors applied at low energies (122). Tracks from 

primary events, as well as secondary events, are recorded here (132). This information 

can later be superimposed onto a DNA geometry model. In the physics list for electrons, 

ionization is also included, as mentioned above. The cross-sections used here are based 

on semi-empirical models, using the dielectric formalism for the valence shells and 

binary approximations for the K-shell (122). The dielectric formalism is used for both 

excitation and ionization for the K-shell models. It employed ICRU Report 55 and others 

for the correction factors (117, 118). 
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2.3.6 Geometrical Models of DNA 

Apart from the need to track events and implement low energy physics, 

geometrical models are also needed. A model for B-DNA was created to use in 

conjunction with Geant4-DNA for ionizing radiaiton simulations. A variety of particles 

can be used with this geometric model, as long as the medium can be human genetic 

material. With this model, the chemical and radical species can also be viewed (125).  

2.3.7 Physics Models used in Geant4-DNA 

The cross-sections are also very important to consider when using Geant4, as 

they are directly tied into the interactions. The Binary-Encounter-Bethe and Deutsch-

Mark models were used as the ionization cross-section models of choice. With these 

models, an ionization cross-section library was made that could possibly be implemented 

in future version of Geant4 (133).  

One group looked into the hydroxyl radicals that cause damage to the DNA, 

modeling it with Geant4-DNA. Since the energy deposition must occur within a specific 

distance to cause damage, the spatial distribution of the ions located within simulation 

voxels were calculated with this tool. The ion coordinates on the nanoscale level were 

also generated. From this work, a first principles computational model was developed to 

study the interaction between ionizing radiation and the DNA molecules at the cellular 

level, which delved into the DNA damage occurring at the atomic level (134). 
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2.3.8 Gold Nanoparticle Models Used in Geant4-DNA 

Geant4 was used to calculate energy deposition to DNA from radioactive atoms 

of 125I or 117mSn housed within gold nanoparticles. Particle tracking was confined to 

1000 nm, commonly referred to as the world in computational Monte Carlo transport. In 

order to visualize the energy deposition patterns, the code VisIt was used. The energy 

deposition (eV) patterns were stored for further analysis. In here the gold nanoparticle 

serves as a point of decay with no significant effect in energy deposition patterns outside 

of it. 

The main purpose of this project is to calculate the potential damage to DNA 

from decays within a single nanoparticles. At the nanoscale level, energy is deposited in 

spatiotemporal terms where one decay cannot be superimposed over another. It is more 

important to be able to identify the energy deposition to certain structures within the cell, 

the most radiosensitive being the DNA. Another reason that energy deposition is 

calculated, and not the dose, is that a certain amount of information is available when the 

energy deposition is known. Factors such as the type of damage inflicted to the DNA, as 

well as the possible number of damages can both be found from this code, using energy 

deposition. Past experiments have shown how much energy is needed to induce specific 

types of damage to DNA, and from this code it was modeled. Other features that Geant4-

DNA is capable of modeling include the formation of free radicals, and how they affect 

DNA. This is imperative to understand when modeling ionizing radiation, as it is the 

leading indirect effect that damages DNA. Also, the use of Auger electrons, which 
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produces a cascade of events, will be more likely to produce a free radical species at 

some point.  

In this project, only the Auger electrons from the radionuclides are being 

considered for energy deposition; the photons are all negligible. This is because the 

range of these photons is greater than a few hundred nm, and will travel outside the 

region of interest. This is a realistic assumption as we are solely looking on the 

nanoscale of the energy deposition and damage. The photons all have large enough 

energies to where they would not affect the cell that the nanoparticle attaches to, so they 

are not being considered. We are only interested in the Auger electron cascades and how 

they affect the cell.  

Geometrical models of DNA can be used to view how the particles will interact 

with various DNA molecules, and other molecules within the cell, generally modeled as 

water. This work with Geant4-DNA is very important to radiobiology and future cancer 

therapy treatments, as it deals with the potential use of Auger electrons in cancer 

treatment.  
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3. RESULTS

One of the most important features about Geant4-DNA is that radioactive decay 

is modeled as independent, single events. Particulate emissions are not average 

estimates, and the energy of each emitted particulate is estimated based on ENSDF 

library using Monte Carlo methods (135, 136).  Figure 12 and 13 show a comparison on 

the electron emissions calculated by Geant4 with those found in the open literature.  

Figure 12. Energy of electrons emitted by 125I for 1000 independent decays. The 
calculations were based using Geant4-DNA Radioactive Decay routine (136).  
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Figure 13. Average energies of electrons emitted by 125I for 104 decays. These energies 
were calculated using theoretical methods (137).  

Figure 12 shows the electron energies from the decay of 125I simulated in Geant4-

DNA, and Figure 13 shows electron energies from the decay of 125I from previous 

calculations (137). The same clusters of electron energies are present in both graphs, 

proving that Geant4-DNA consistently simulates the decay of 125I. Geant4-DNA code 

tracks each decay to completion, and the decays are independent. With this, the energy 

deposition from the radioactive atoms within the nanoparticles can be assessed. The y-

axis is not normalized in Figure 12; it simply goes to 1 because each energy peak shown 

is sampled independently. The energies are not averaged together, like Figure 13, so 

each bar shown in a separate decay. One thousand decays were simulated due to 

computational time. Running the code with 104 decays was not plausible at the time.  
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Geant4-DNA was used to simulate the decay of 117mSn, as well. Figure 14 shows 

the frequency of the electron energies from the simulation of 1000 decays, as it was 

computationally efficient. Again, the y-axis is not normalized; it shows the frequency of 

a specific energy occurring from radioactive decay. Since these electron energies are not 

averaged, and are independently selected from the ENDSF library, the figure shows the 

discrete electron energies emitted from the decay of 117mSn.   

Figure 14. Energy of electrons emitted by 117mSn for 1000 independent decays. The 
calculations were based using Geant4-DNA Radioactive Decay routine (136).  

Figure 15 shows the comparison of the electron energies emitted via radioactive 

decay of the two radionuclides.  
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Figure 15. Energy of electrons emitted by 125I and 117mSn. 1000 decays were simulated 
using calculations based on the Geant4-DNA Radioactive Decay routine (136).  

Graphs were also created to easily visualize the energy of the electrons, and the 

frequency they occur at. Figures 16-19 below show the data from this perspective, with 

125I and 117mSn combined on the same plot. Each successive plot shows a different 

energy range.  In Figure 16, the energy thresholds for the ionization of both gold and 

water are shown, for reference.  
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Figure 16. Electron energy plot for 125I and 117mSn in 0-50 eV energy range. 

Figure 16 shows the energies of the electrons emitted from the radioactive decay 

of the radionuclides studied. The blue curve represents 125I and the pink curve represents 

117mSn. The detailed energy range viewed is from 0-50 eV. It can be seen that a large 

portion of the electrons from 125I are under the threshold for ionization of gold, so they 

will go on to liberate free radicals from the gold. This process is described later.  
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Figure 17. Electron energy plot for 125I and 117mSn in 50-100 eV energy range. 

In Figure 17, the specific energy range of 50-100 eV is shown. This graph shows 

that a larger number of electrons are emitted from 125I compared to 117mSn in this energy 

range.  

Figure 18 is the next continuation to the previous two figures, showing the 

electron energies in the range of 100-1000 eV. Again, it can be seen that there are more 

electrons emitted from 125I in this energy range. For both radionuclides, after 600 eV 

there are few electrons emitted.  

The last energy range shown is 1000-10000 eV, graphed in Figure 19. There are 

peaks of electrons emitted around 3000 eV for 125I, and electrons emitted around 2000 

eV for 117mSn, which steadily decrease.  

I-125
Sn-117m

Fr
eq

ue
nc

y 
pe

r 1
00

0 
de

ca
ys

0

20

40

60

80

100

120

Energy (eV)
50 60 70 80 90 100



48 

Figure 18. Electron energy plot for 125I and 117mSn in 100-103 eV energy range. 

Figure 19. Electron energy plot for 125I and 117mSn in 103-104 eV energy range. 

I-125
Sn-117m

Fr
eq

ue
nc

y 
pe

r 1
00

0 
de

ca
ys

0

100

200

300

400

Energy (eV)
100 200 300 400 500 600 700 800 900 1000

I-125
Sn-117m

Fr
eq

ue
nc

y 
pe

r 1
00

0 
de

ca
ys

0

50

100

150

200

Energy (eV)
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000



49 

As described above, Geant4-DNA was employed to simulate the decay of both 

125I and 117mSn radionuclides within a gold nanoparticle. The radioactive atom was 

placed in the center of the gold nanoparticle, so the energy deposition could be viewed 

surrounding each nanoparticle. From this, it could also be seen how far the electrons 

would need to travel, at the greatest case. The radius of the nanoparticle was modeled to 

be 15 nm. This radius was chosen to make the nanoparticle small enough for 

physiological reasons. Each simulation contains a single decay, and follows it through 

the whole track taking into consideration secondary particles produced. From these 

simulations, files were made to use in VisIt. The images below from VisIt show the 

energy deposition for various simulations.  

In the images below from VisIt, the volume functionality was used to visualize 

the energy deposition values and locations from the decay of the radionuclides. The 

splatting method was chosen for rendering purposes, and within that 90,000,000 samples 

were used. This divides the data into smaller bins, so a more accurate assessment of 

energy deposition can be seen. With less samples, the data is averaged together, so using 

a higher number of samples will help to visualize the data more accurately.  

The energy depositions shown in Figures 20-33 are in units of eV. These energy 

depositions were recorded in a specific location, such that the x, y, and z positions were 

attributed to a specific energy deposition.  
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Figure 20. Energy deposition from 1000 independent decays of 125I. The nanoparticle 
mesh is shown in the center of the image. 90,000,000 samples were used to create this 
image.   

In Figure 20, the energy deposition is very dense in an immediate 250 nm radius 

around the nanoparticle. There are spots of green that form a ring around the energy 

deposition, where the Auger electron deposits the bulk of its energy. There are also 

smaller energy depositions that occur along the Auger electron tracks. The individual 

decays simulated in Geant4-DNA also had files associated with them to be used in VisIt, 

for visualization and analysis purposes. There are visible lines near the top of the image, 
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which could be an artifact of the number of VisIt samples used, or the random number 

generator in Geant4-DNA.  

Figure 21. Energy deposition from a single decay of 125I. The nanoparticle mesh is 
shown in the center of the image. 90,000,000 samples were used to create this image. 

From Figure 21, it can be seen that the energy deposition from one decay of 125I 

is quite strong. The energy deposition is quite clustered, occurring in about 100 nm. The 

energy deposition goes as high as 100 eV, which has important effects for therapy. This 
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energy deposition could potentially be targeted specifically towards the DNA, which 

would cause a large amount of damage.  

Figure 22. Energy deposition from another single decay of 125I. The nanoparticle mesh is 
shown in the center of the image. 90,000,000 samples were used to create this image.  

In Figure 22 a different 125I atom decay is shown. There are more sites of 

deposited energy, compared to Figure 21, and there is a spot where about 178 eV of 

energy deposition. Apart from this large bulk deposition, there are smaller energy 
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depositions along the track, about 40 eV, followed by a bulk deposition around 90 eV at 

the end of the track, typical of Auger electrons.  

Figure 23. Energy deposition from a third single decay of 125I. The nanoparticle mesh is 
shown in the center of the image. 90,000,000 samples were used to create this image.  

The energy deposition shown in Figure 23 is much more clustered than either 

Figure 21 or Figure 22, with some particles escaping the gold nanoparticle to release 

energy right next to it. The average energy liberated at these sites is about 44 eV.  
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The next set of plots that are important to consider for the therapeutic use of gold 

nanoparticles containing radioactive atoms is the energy contour plots.  

Figure 24. Energy contour for 0-50 eV of 125I. 90,000,000 samples were used to create 
this image.  

Figure 24 shows the contour for 125I from the energy deposition values from 

Figure 20, with only energies in the of 0-50 eV.  Energies higher than 50 eV were 

removed from this specific contour, to obtain the locations of the lower energy 
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discharges. A significant amount of damage will come from these low energy electrons, 

so it is imperative to know the location of where they will be. The cluster of low energy 

deposition can again be seen in a radius of 250 nm. At the edge of this cluster, the higher 

energy depositions can be seen even more clearly. 

Figure 25. Energy contour for 50-100 eV of 125I. 90,000,000 samples were used to create 
this image. 



56 

Figure 25 shows the contour of energy deposition for the 125I decays in the 50-

100 eV range. Any energy depositions that were less than 50 eV and greater than 100 eV 

were hidden. It can be seen that most of this energy deposition occurs within a ring, from 

about 100-500 nm. There are several sparse energy depositions beyond 500 nm, but the 

majority of energy is depositing within the ring.  

Figure 26. Energy contour for 100-150 eV of 125I. 90,000,000 samples were used to 
create this image. 
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In Figure 26, the contoured energy deposition for the energy level of 100-150 eV 

can be seen. These occurrences are very sparse. Most of the energy from the Auger 

electrons is lower, and has already been released.  

Figure 27. Energy deposition from 1000 independent decays of 117mSn. The nanoparticle 
mesh is shown in the center of the image. 90,000,000 samples were used to create this 
image.   
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Figure 27 shows that the energy deposition from this radionuclide is much more 

sparse, compared to the energy deposition from 125I. Based on the energy deposition 

histograms, this is to be expected. There were more low energy electrons present in the 

decay of 125I, which are visibly clustered near the nanoparticle. In this decay, there are 

groups of higher energy electrons, although fewer, which is why the energy deposition is 

sparser, but located further from the nanoparticle. There are denser regions of energy 

discharge however where an electron tracks have been produced. These tracks generally 

end with a green dot, which indicates a larger energy deposition around 285 eV. This is 

characteristic of Auger electrons. The following figures show several individual decays 

of 117mSn atoms, as it is important to understand how much energy will be released from 

these decays, and where it will occur.  

The particular decay shown in Figure 28 is interesting, due to the long range of 

the electron emitted in the radioactive decay. About 78 eV is deposited in several 

locations along the electron track, followed by a bulk deposition up to 157 eV. This is a 

typical Auger emission, defined by its short track length and bulk amount of energy 

deposited at the end of the track.  
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Figure 28. Energy deposition from a single decay of 117mSn. The nanoparticle mesh is 
shown in the center of the image. 90,000,000 samples were used to create this image.  
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Figure 29. Energy deposition from another single decay of 117mSn. The nanoparticle 
mesh is shown in the center of the image. 90,000,000 samples were used to create this 

image.  

In Figure 29, an energy deposition very similar to that of Figure 28 can be seen, 

although overall with lower energies. There are a few more spots of energy deposition 

along the track, with the typical majority of the energy deposited at the end.  
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Figure 30. Energy deposition from a third single decay of 117mSn. The nanoparticle mesh 
is shown in the center of the image. 90,000,000 samples were used to create this image.  

Figure 30 shows the energy deposition for another independent decay of 117mSn. 

This is more sparse than both decays shown in Figure 28 and Figure 29, with only two 

locations of energy deposition around 40 eV, and a third location, where double that 

amount of energy was deposited.  
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The energy deposition contours were then plotted to visualize the locations and 

probabilities in different ranges of energies. These contours were broken up into three 

groups, and can be seen below in Figures 31-33.  

Figure 31. Energy contour for 0-50 eV of 117mSn. 90,000,000 samples were used to 
create this image. 

Figure 31 shows the contour for the energy deposition from the decay of 117Sn 

atoms in the energy range of 0-50 eV.  In this contour, any energy that was greater than 
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50 eV was removed, for the purpose of obtaining the locations of the lower energy 

releases. From the contours, it is easy to see the characteristic Auger electron tracks. The 

majority of the track is green, symbolizing a smaller energy deposition, followed by a 

large bulk deposition at the end of the track, going up to 40 or 50 eV in some cases.  

Figure 32. Energy contour for 50-100 eV of 117mSn. 90,000,000 samples were used to 
create this image. 
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In Figure 32, the contour is shown for energies in the range of 50-100 eV and 

energies not within this range were excluded from this plot. These are the middle 

energies, and it can be seen that they are further away from the gold nanoparticle. This is 

because these electrons have a longer range, due to their higher energies, and are able to 

travel further. Compared to the other radionuclide, 125I, the energy depositions are much 

more sparse. This is to be expected, based on the decay schemes.  

Figure 33. Energy contour for 100-150 eV of 117mSn. 90,000,000 samples were used to 
create this image. 



65 

From these simulations, there was only one spot of energy deposition within the 

range, however, it was significantly larger than the spots found in the contour for the 

same energy range of the other radionuclide studied. In Figure 33, the energy deposition 

at this location is around 130 eV, if not larger, with approximately a 100 eV deposition 

in the center.  

It is important to note that in Figures 20-33 above, while the electrons look like 

they escape the nanoparticle, this may not be the case. In Geant4-DNA, the only 

available medium is water, so the nanoparticle was modeled as water. However, the 

nanoparticle is actually composed of gold and will attenuate most of the lower energy 

electrons, so they will not escape, and thus not be seen in visualizations of the data. In 

the discussion below, these changes are accounted for.  
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4. DISCUSSION

4.1 Predicate Studies with Gold Nanoparticles as Dose Enhancers 

There have been numerous studies where gold nanoparticles have been used as 

dose enhancers or radio-sensitizers where low energy electrons are produced by the 

interaction of orthovoltage or megavoltage x-ray or high energy electrons with gold 

nanoparticles, gadolinium, and rare earth metals where in vitro experimental studies 

have shown that gold nanoparticles are capable of producing an enhanced cytotoxic 

effect (138-149). In these studies the nanoparticles are used as radiation dose modifiers 

or enhancers by producing photoelectron, Auger electrons, and fluorescent x-rays that 

further interact with tissue.   

On the other hand, the present research is focused in studying the effects of 

radioactive decay of Auger electron emitting radionuclides 125I and 117mSn within a gold 

nanoparticle and assessing the dosimetry effects.  Whereas the use of x-rays is limited to 

a well-defined anatomical structure within the radiation field in solid tumors, the use of 

functionalized radioactive nanoparticles allows for the treatment of minimal residual 

disease, MM and CTC as a targeted radionuclide therapy.  

4.2 Electron Ranges & Electron-Hole Recombination 

From the histogram showing the electron energy distribution, it can be seen that a 

large portion of the electrons will have a very low energy, under 10 eV. With this, it is 

important to calculate how much energy will actually escape the nanoparticle to be 

deposited within the MM. For this model, it is assumed that the gold has a density of 20 
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g/cm3, and water a density of 1g/cm3. The nanoparticles modeled in this simulation have 

a radius of 15 nm, but they can be manufactured with different diameters. Various radii 

are used for gold nanoparticles, as seen in the table below. The radioactive atom is 

placed within the nanoparticle, and the electrons emitted from the decay must travel 

within the gold first, to escape outside into the water. Table 9 shows the radius of the 

gold nanoparticle, and the corresponding distance the electron would have to travel in 

water. The assumption was made that multiplying the radius of the gold by the density of 

gold would give a reasonable estimate for the same distance in liquid water. Due to the 

electron density differences between these two materials however, this is a rough 

estimate. Figure 36 portrays a more accurate relationship between the electron energy 

and range in gold.  

Table 9. Electron range as a function of energy. 

Gold (radius) Water (radius) Electron Energy 

5 nm 100 nm 250 eV 

10 nm 200 nm 550 eV 

15 nm 300 nm 2000 eV 

This information is important to have and understand. The corresponding 

electron energies must be known for these ranges. As shown above, the larger the radius 

of the nanoparticle, the higher the energy needed for escaping into the surrounding 

medium. Based on the electron energy histograms for the two radionuclides, there will 

be plenty of low energy electrons that do not escape, and go on to cause excitations and 



68 

produce free radicals from electron-hole pair recombination. However, there are also 

large portions of electrons that will have plenty of energy to escape, and will directly 

damage the DNA through the breaking of bonds, or indirectly damage the DNA through 

free radical production if the distance is too large. This phenomenon is important to 

consider because of the electron hole-pair recombination that occurs. This is when an 

electron and an electron hole (the pair, mentioned earlier) give up their combined energy 

to a third electron in the same conduction band, to recombine. When this occurs, the 

energy of the third electron is increased. This is known as Auger recombination. Figure 

34 shows this phenomenon.  

Figure 34. Gold nanoparticle schematic and recombination. 
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As previously stated, the third carrier is excited to a higher energy level, but does 

not move to a new band. The third electron generally gets rid of any excess energy 

though thermal vibrations. This can add heat to the nanoparticle, which must be taken 

into account. But with the amount of excitations occurring from recombination, and the 

higher energy electrons escaping, it is clear that this method is an effective therapeutic 

strategy.  

Figure 35. Stopping power and range as a function of energy. 

The stopping power and range for the electrons is shown in Figure 35. The 

stopping power was integrated to find the range of the electrons in gold.  
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Figure 36. Range of electrons in gold as a function of energy. 

Figure 36 shows the electron range in gold, as a function of electron energy. The 

nanoparticles modeled had a radius of 15 nm, which was found on the y-axis (range). 

Finding the corresponding energy, it can be seen that any electrons under 800 eV of 

energy will not escape the nanoparticle. These electrons will become part of electron-

hole pair recombination, and become part of the radical generation that will take place at 

the surface of the gold nanoparticle.  

From the information in Table 9 and Figure 36, after electrons with high enough 

energies escape the nanoparticle, the expected range would be on the order of a few 

hundred nm. Depending of the location of the nanoparticle, this would be plenty of 

energy to directly damage the DNA, or produce secondary particles in water radiolysis.  

The number of excitations and ionizations generated inside the gold nanoparticle 

by the Auger electrons generate what is commonly referred as a Coulomb explosion 
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(150). This phenomenon has been suspected as the principal mechanism of direct 

damage of Auger emitting radionuclides. The gold nanoparticle will become highly 

charged, generating a significant Columbic potential that in turn will dissipate its energy 

to other molecules, including water. The charge buildup generated by the decay of 125I 

and 123I has been simulated by Kümmerle and Pomplun using models of 5-tellurouracil, 

5-telluro-2’-deoxyuridine, and  5-telluro-2’-deoxyuridine-3’,5’-biphosphate (151). Their 

results indicate that Coulomb explosion is a significant phenomenon that needs to be 

further experimentally studied.  

4.3 Radiation Protection 

There are very specific guidelines that must be followed when dealing with these 

radionuclides. The radiation protection that must be employed when using this 

radionuclide is straightforward and easy to follow. It is important to note that 125I has a 

half-life of about 60 d, and emits a photon with a maximum energy of 0.035 MeV. 125I is 

also known for its Auger electron cascade (152). The major concern when dealing with 

this radionuclide is unnecessary exposure. However, this can be handled in a few ways. 

The first step to protect against unnecessary exposure is to maintain the ALARA 

principle, and only work with the material when needed. Shielding should also be used, 

as this will drastically reduce the dose an employee or patient will get to an area that 

should not be exposed. Lead is used to attenuate photons, and can be used to reduce the 

amount of radiation to specific areas. Another precautionary step that can be taken is to 

wear lab coats and monitor dose with badges. 125I can easily be detected with either a 
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sodium iodide scintillation detector or Geiger-Muller tube, so surveys should be done 

with either instrument to ensure that contamination has not occurred.  

There are rules that should be followed when working with 125I, so accidental 

exposures do not occur. There are also guidelines put into effect by the government, in 

10 CFR 35, for dealing with 125I, specifically applying to brachytherapy seeds (153). For 

example, the document specifies how the 125I seeds should be handled. Since the use of 

nanoparticles would be handled in a similar manner, it is important to understand these 

procedures. They include having a trained and accredited radiologist handling the seeds, 

shielding the seeds pre-implantation, and making use of radiation warning signs. When 

dealing with any radioactive material, film badges should be used to supervise the dose 

the staff receives, as well as using appropriate protective garments and lead shields to 

reduce the dose.  

In addition to the aforementioned techniques, certified personnel should perform 

swipe tests (154). Typically, a radiation safety officer will be at the facility to enforce 

NRC regulations and ICRP recommendations through treatment plans (155). Dosimetry 

of the specific situation along with calculated energy deposition should be calculated if 

further radiation protection is needed.  

Although 117mSn has different physical characteristics including a 13.67 d half-

life with an average photon emission of 158 keV, the protection should still be similar, 

as it too is an Auger emitter.   
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4.4 125I in Brachytherapy 

When using radioactive iodine for therapy, it is not used alone, but rather in 

conjunction with other materials. In brachytherapy, 125I is simply the source of energy. 

The seeds used in this procedure contain two main elements: the core and the shell. The 

core is coated in the radioactive isotope while the shell is a biocompatible material, 

usually titanium (156). The core is housed within the shell, which is then inserted into 

the tumor where it will remain. There are various materials and structures used in 

producing these seeds, and they vary by company. In other therapy types, such as 

treatment with radioactive nanoparticles, there are many compounds and solutions that 

go into the preparation of the nanoparticles. In this model, the gold nanoparticles are 

composed of a core of gold synthesized together with the radioactive iodine, to produce 

a uniform distribution of radioactive material inside the center. The gold nanoparticles 

are then coated with a substrate such as PEG, or polyethylene glycol, so they are not a 

biohazard when entering the body. The outer layer of the nanoparticles consists of 

different tagging agents to functionalize the nanoparticle, such as proteins or antibodies, 

to effectively target the correct position of the tumor so the nanoparticles can correctly 

attach (157).  

This project is a type of brachytherapy, and can be considered brachytherapy on 

the nanoscale range. Brachytherapy is simply defined as a specialized type of 

radiotherapy, in which the radiation source is placed next to the treatment area. In this 

project, nanoparticles are used to treat the cancerous areas, and different types of 

solutions coat the nanoparticles to guide them to the areas where the tumors are located. 
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In doing this, the nanoparticles, containing radioactive material, deposits virtually all of 

their energy to the cancerous cells, in essence, brachytherapy on the nanoscale. The 

difference is that generally the energy in brachytherapy comes from photons, while in 

this model the energy deposition to the DNA will be done primarily through Auger 

electrons.  

4.5 Energy Deposition 

It is important to discuss the energy deposition from the gold nanoparticles in 

terms of how many electrons will escape the actual nanoparticle. In Geant4-DNA, the 

only medium available is water, so the whole system was modeled as liquid water. 

However, in reality, the electrons will have to travel through material that is almost 20 

times denser than water, so not all the electrons will escape. Calculations were made 

above in Table 9, as to understand which energy electrons would be able to escape. It 

was found that the lower energy electrons would not escape nanoparticle, and will most 

likely give off thermal energy and excite other particles, through electron hole pair 

recombination. However, there are still large portions of electrons that will escape, the 

higher energy electrons. These electrons will go on to produce direct damage, if the 

nanoparticle is within a suitable distance. For the electrons that have a very short range 

after escaping the nanoparticle, the nanoparticle would need to be within several Å of the 

DNA. However, if the electron has a higher energy, this means it will travel a greater 

distance before depositing its energy, meaning the nanoparticle could be further away. 

The electrons that never make it to direct damage will also ionize particle along its path 
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length, and free radical generation will occur. These free radicals species have been 

studied, and cause great damage the DNA, as well. With this, even though not all the 

electrons are escaping from the nanoparticle, thermal energy will be created, which will 

also disrupt the physiological processes of the tumor cells, but indirect damage will 

occur.  

Figure 37. Free radical generation using G-values for radical species. 

There are also free radicals generated from the interaction of the electrons with 

the water surrounding the nanoparticle, such as radical species from water radiolysis. 

The G-values for the radical species formed in Table 7 were used as functions in VisIt to 
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generate a visual representation of the radicals formed during the radioactive decay of 

125I. Figure 37 shows the values of the all the radical species combined.  

4.6 Micro-metastasis Targeting 

One of the challenges in cancer therapy is the lack of targeting associated with 

micro-metastases. Since these metastases cannot be readily detected, they cannot be 

treated effectively with current strategies. There are detection limitations associated with 

these specific metastases, as they are on the micro- scale and cannot be detected in CT 

scans, for example. Since they are so small, treatment is also not plausible. Regardless of 

the treatment modality chosen, there is not a way to achieve the cytotoxic dose of 

radiation needed to kill the tumor cells while leaving the majority of surrounding healthy 

tissue alive. This is a major problem in cancer therapy when it comes to micro 

metastases. While there are methods under review to improve targeting, such as CPPs, 

once we are able to reach a point in medicine where these micro metastases can be 

identified and located, any radionuclide and nanoparticle packaging would work well.  
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5. CONCLUSION

A decay of radioactive atoms contained within a gold nanoparticle was simulated 

using Geant4-DNA. These files were then used in VisIt, to visualize and analyze the 

results. From these studies, it was found where energy deposition occurred from Auger 

electron emissions of the two radionuclides used, 125I and 117mSn. With this data, it could 

be determined how much damage to the DNA there would be.  

The code simulated a single decay at a time. This is critical, as the nanoparticles 

only housed one radioactive atom. Most codes are not able to track particles down to 

extremely low energies, but as this is a “track structure” code, the results were detailed 

and contained all the pertinent information needed. The decay was sampled from the 

Geant4-DNA decay list, so all samples were independent and used actual energies, not 

averaged. Individually, the energies emitted are not averaged, and the structures within 

the cells will see discrete energy depositions, not averaged energy depositions. These 

results were validated with other sources.  

It was also important in this work to compare the two radionuclides. Overall, 125I 

would be the better choice for a radioactive nanoparticle, based on the results obtained. 

For further work, I would simulate more radionuclides and focus on different 

particle emissions. Within Geant4-DNA, the radical generation and G-values could be 

analyzed more. From this analysis, the amount of radicals produced from the decay of 

125I and the higher energy electrons that would escape from 117mSn could be compared. 

Biological models could also be generated in Geant4-DNA, to accurately assess the 

number of strand breaks to the DNA. Modifications could be made to the actual 
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nanoparticle, including changing the location of the radioactive atom and changing the 

radius of the nanoparticle. It would also be beneficial to take these studies into the 

laboratory by synthesizing the gold nanoparticles and testing them in various situations. 
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