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ABSTRACT 

 

In this study, a series of laboratory measurements was conducted on residential 

air handling units (AHUs) and air conditioners to characterize their performance at 

typical installed conditions. In addition, performance models of blowers and air 

conditioners were developed from the laboratory measurements and integrated with 

building energy simulations to predict the energy consumption and the life cycle cost of 

ductworks with respect to different climates (Chicago, IL and Austin, TX), duct 

materials (e.g., sheet metal and flex ducts), flow resistances, and blower types (e.g. PSC 

and ECM blowers). 

The experimental results showed that PSC and ECM blowers have distinct 

airflow, power, and efficiency performance in response to increases in the external static 

pressure (ESP). The building energy simulation results showed that increasing the duct 

flow resistance from 0.3 to 0.9 in. w.g. (75 to 225 Pa) decreased airflow rates of PSC 

blowers and consequently decreased the annual blower electricity consumptions by 11% 

for the Austin home and 16% for the Chicago home. However, in systems with ECM 

blowers the same increase in the duct flow resistance increased the annual blower 

electricity consumptions by about 60% for both the Austin home and the Chicago home, 

primarily because ECM blowers maintained constant airflow rates over a range of 

pressures. For the same increase in the duct flow resistance, the electricity consumptions 

of condensing units in systems with PSC blowers increased by 2.7% for the Austin home 

and 5.5% for the Chicago home, while the electricity increase in systems with ECM 
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blowers were less dramatic, being 1.6% for the Austin home and 1.5% for the Chicago 

home. Also, the simulation results indicated that although the cost-effectiveness of a 

specific duct design is shown to be heavily dependent on initial duct fabrication and 

installation costs, the use of lower flow resistance ductworks generally leads to lifetime 

savings in the presence of supply and return leakages of 10%. Specifically, the lifetime 

savings is achieved in 6 out of 8 simulated cases for the Chicago home and all of the 

simulated cases for the Austin home by using ductworks at lower flow resistances. 
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NOMENCLATURE 

 A Dependent variable 

ACCA Air Conditioning Contractors of America 

ach air change per hour 

AFUE Annual fuel utilization efficiency 

AHU Air handling unit 

AHRI Air-Conditioning, Heating and Refrigeration Institute 

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning  

 Engineers 

ASP Available static pressure Cଵ, Cଶ … C௡ Empirical coefficients ܥௗ Discharge coefficient ܥ௅ Leakage constant ܿ௣ೌభ Specific heat of air entering the indoor side, Btu/lbm·°F (J/kg·°C) ܿ௣ೌమ Specific heat of air leaving the indoor side, Btu/lbm·°F (J/kg·°C) CapModCurve Capacity modifier curve ܣܨܥ Conditioned floor are, ft2 (m2) 

COP Coefficient of performance ܱܥ ௥ܲ௔௧௘ௗ Coefficient of performance at the rating condition ݐݏ݋ܥ௡ nth year energy cost, USD 

DB Dry-bulb temperature, °F (°C) 
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DOE Department of Energy 

EAE Average annual auxiliary electrical energy consumption, kWh ܧ௜ Power input, indoor side, W 

ECM Electronically commutated motor 

EER Energy efficiency ratio, Btu/(W·h) 

EIA U.S. Energy Information Administration EIRModCurve Energy input ratio modifier curve ܣܮܧ Effective leakage area, ft2 (m2) 

ESP External static pressure, in. w.g. (Pa) 

FF Flow fraction 

FR Friction factor ݃ Inflation rate ℎ௔ଵ Enthalpy, air entering the indoor side, Btu/lbm (J/kg) ℎ௔ଶ Enthalpy, air leaving the indoor side, Btu/lbm (J/kg) ℎ௥ଵ Enthalpy, refrigerant entering the indoor side, Btu/lbm (J/kg) ℎ௥ଶ Enthalpy, refrigerant leaving the indoor side, Btu/lbm (J/kg) 

HVAC Heating, ventilation, and air-conditioning 

IGain Internal heat gain, Btu/day (kW) 

IECC International Energy Conservation Code 

K Conversion factor for the latent cooling calculation, 63660 for I-P 

 unit and 2.47×106 for SI unit.  

LBNL Lawrence Berkeley National Laboratory 
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௕ܰ௥ Number of bedroom 

௅ܰ Leakage exponent 

PNNL Pacific Northwest National Laboratory 

PSC Permanent split capacitor 

PV Present value ܲ ௧ܸ௢௧௔௟ Total present value over lifetime ሶܳ  Blower airflow rate, ft3/min (m3/s) ሶܳ (%) Percentage airflow change, % ሶܳ ଶହ Blower airflow rate at 0.1 in. w.g. (25 Pa), ft3/min (m3/s) ሶܳ ௞௡௢௪௡ Know blower airflow rate at any pressure, ft3/min (m3/s) ሶܳ ௅ Leakage airflow rate, ft3/min (m3/s) ሶܳ ௅௥ Rated leakage airflow rate, ft3/min (m3/s) ሶܳ௠௔௫ Maximum system airflow rate, ft3/min (m3/s) ሶܳ௠௜ Airflow rate, indoor, measured, ft3/min (m3/s) ݍሶ௟௖௜ Latent cooling capacity, indoor side, Btu/h (W) ݍሶ௦௖௜ Sensible cooling capacity, indoor side, Btu/h (W) ݍሶ௧௖ Total cooling capacity, Btu/h (W) ݍሶ௧௖,௥௔௧௘ௗ Total cooling capacity at the rating condition, Btu/h (W) ݍሶ௧௖௜ೌ Total cooling capacity, indoor side, air side, Btu/h (W) ݍሶ௧௖௜ೝ Total cooling capacity, indoor side, refrigerant side, Btu/h (W) 

REEL Riverside Energy Efficiency Laboratory 
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R2 Coefficient of determination ݎ௅ Effective leakage ratio ܴܵܪ Sensible heat ratio ܴܵܪ௥௔௧௘ௗ Sensible heat ratio at the rating condition SHRModCurve Sensible heat ratio modifier curve 

SIR Savings-to-investment ratio ݐ௔ଵ Dry-bulb temperature of air entering the indoor side, °F, (°C) ݐ௔ଶ Dry-bulb temperature of air leaving the indoor side, °F, (°C) 

஽ܶ஻೚ Dry-bulb temperature of air entering the outdoor side, °F (°C) 

ௐܶ஻೔ Wet-bulb temperature of air entering the indoor side, °F (°C) 

TEL Total effective length, ft (m) 

TXV Thermostatic expansion valve U୅ Combined uncertainty for the dependent variable A ݑ௛ೝభ Uncertainty of the refrigerant enthalpy entering indoor side,  

 Btu/lbm (J/kg) ݑ௛ೝమ Uncertainty of the refrigerant enthalpy leaving indoor side,  

 Btu/lbm (J/kg) ܷ௤೟೎೔ೝ  Combined uncertainty for the total cooling capacity at the  

 refrigerant side U୶౟ Uncertainty for the independent variable xi ݑ௪ೝ Uncertainty of refrigerant mass flow rate, lbm/h (kg/s) 
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 ௡ Specific volume of air, ft3/lbm (m3/kg)ݒ

VFD Variable frequency drive ܹ Blower power, W ݓሶ ௥ Mass flow rate, refrigerant, lbm/h (kg/s) 

WB Wet-bulb temperature, °F (°C) x୧ ith independent variable ∆ ௦ܲ Static differential pressure, in. w.g. (Pa) ∆ ௦ܲ௥ Static differential pressure at the reference condition, in. w.g. (Pa) ߟ Overall efficiency ߩ Air density, lbm/ft3 (kg/m3) ߱ଵ Humidity ratio, air entering the indoor side ߱ଶ Humidity ratio, air leaving the indoor side 
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National standards specify a range of external static pressures (ESPs) for testing 

and rating residential forced-air heating and cooling equipment. For example, the unitary 

air-conditioning and air-source heat pump equipment up to 65 kBtu/h (19 kW) are tested 

within an external static pressure range of 0.1 to 0.2 in. w.g. (25 to 50 Pa) based on the 

unit capacity in accordance with the Air-Conditioning, Heating and Refrigeration 

Institute (AHRI) Standard 210/240 (AHRI 2008). Also, gas furnaces are rated within a 

pressure range of 0.18 to 0.33 in. w.g. (45 to 82 Pa) following the American Society of 

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 103 

(2007c).  

However, extensive field measurements have indicated that many residential 

systems operate at much higher external static pressures (ESPs). Table 1 summarizes the 

external static pressure (ESP) measurements in over 800 field surveys from 22 studies 

(DOE 2014). It shows that the external static pressure (ESP) in installed conditions 

varies from 0.31 to 1.12 in. w.g. (77 to 279 Pa) with a weighted average of 0.5 in. w.g. 

(125 Pa), which is well above the pressures specified in AHRI Standard 210/240 (AHRI 

2008) and ASHRAE Standard 103 (ASHRAE 2007c) for equipment testing and rating. 

The excess external static pressures (ESPs) observed in the field measurements imply 

that the equipment performance determined at the laboratory settings may not be 

achievable at installed conditions due to the impacts of excess duct flow resistances on 

the performance of blowers and air conditioners.  
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Table 1 Summary of field measurements of external static pressure (DOE 2014) 

No. Study 
Sample 

Size 
Measured ESP, in. w.g. (Pa) Note 

1 Blasnik et al. 1995 study 40 0.41 (103) 1 
2 Blasnik et al. 1996 study 28 0.48 (120) 1 
3 Parker 1997 study 9 0.55 (138) 1 
4 Proctor et al. 1995 study 40 0.53 (133) 1 
5 Proctor et al. 1996 study 36 0.51 (128) 1 
6 Proctor et al. 1998 Study  15 0.45 (113) 1 
7 Proctor 1998 study 36 0.42 (105) 1 
8 Proctor 2005 study 78 0.48 (120) 1 
9 Proctor et al. 2007 study 4 1.01 (253) 1,2 
10 Proctor 2000 study 5 0.50 (125) 1 
11 Proctor 2001 study 69 0.54 (135) 1 
12 Proctor 2003 study 69 0.53 (133) 1 
13 Proctor 1996a study 8 0.45 (113) 1 
14 Proctor 1996b study 92 0.31 (78) 1,2 
15 Wilcox et al. 2006 study 51 0.77 (193) 1 
16 Dickenhoff 1998 study 13 0.51 (128) 1 
17 Ueno 2008 study 4 0.9 (225) 1,2 
18 Ueno 2009 study 1 1.12 (280) 1,2 
19 Pigg 2005 study 37 0.53 (133) 1 
20 Pigg 2007 study 76 0.73 (183) 1 
21 Baylon et al. 2005 study 148 0.36 (90) 1,2 
22 Pigg 2003 study 31 0.55 (138) 1 

Weighted Average 890 0.5 (125)  
Note: 1= ESP measured including coil 
          2= ESP measured including filter  

 

 

1.2 Impacts of Excess Ductwork Flow Resistance on Equipment Performance 

1.2.1 Impact on Blower Performance 

Excess duct flow resistances directly affect the blower airflow and power 

performance, although this impact varies with blower types, namely blowers driven by 

permanent split capacitor (PSC) motors and electrically commutated motors (ECMs). 

For example, Walker and his colleague (Walker 2004, Walker and Lutz 2005, Walker 

2006, Walker 2008) conducted a series of laboratory tests on one PSC blower and one 
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ECM blower to quantify the airflow and power performance with respect to external 

static pressure (ESP) changes. Their results show that airflow rates of the PSC blower at 

1 in. w.g. (250 Pa) are less than half of the airflow rates at 0 in. w.g. (0 Pa), while the 

ECM blower is capable of maintaining relatively constant airflow rates over the entire 

pressure range.  

Also, their results show that as a result of increasing the external static pressure 

(ESP), the PSC blower power consumption decreases due to airflow reductions, while 

the ECM blower power consumption increases as the ECM blower maintains airflow 

rates. For example, at a pressure of 0.2 in. w.g. (50 Pa), the ECM blower used 60% less 

power than the PSC blower with power measurements of 750 W for the PSC blower 

versus 300 W for the ECM blower. However, at a pressure of 0.5 in. w.g. (125 Pa), the 

PSC blower used less power than the ECM blower, showing 550 W for the PSC blower 

versus 600 W for the ECM blower. Due to the pressure increase from 0.2 to 0.5 in. w.g. 

(50 to 125 Pa), the power of the PSC blower decreased by 27% from 750 W to 550 W, 

while the power of the ECM blower doubled from 300 W to 600 W 

 

1.2.2 Impact on Air Conditioner Performance 

It is important to note that the above laboratory measurements (Walker 2004, 

Walker and Lutz 2005, Walker 2006, Walker 2008) focused only on blower energy 

consumptions in the presence of excess duct flow resistances. Of even more importance 

is the impact of excess duct flow resistance on non-blower energy consumptions, which 

makes up 80-95% of the total energy use in a residential central HVAC system (Parker 
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et al. 2005, Stephens et al. 2010). The non-blower energy use that has not been 

thoroughly investigated in any of the above studies includes condensing unit electricity 

consumptions in cooling seasons and natural gas consumptions in heating seasons with 

respect to different types of system blowers (i.e., PSC or ECM blowers). The effect of 

different blower types on the non-blower energy use is made more obvious when one 

consider the fact that increases in the flow resistance reduce airflow rates of PSC 

blowers, resulting in decreasing cooling capacities and coefficients of performance 

(COP) because of insufficient evaporator airflows (Palani et al. 1992, Breuker and Braun 

1998, Siegel et al. 2002, Kim et al. 2009, Palmiter et al. 2011, Mowris et al. 2012). The 

negative effect of insufficient airflows is well documented, with one experimental study 

(Rodriguez et al. 1996) reporting that a 50% airflow reduction would lead to a decrease 

of 15% in the total cooling capacity and 14% in the COP for an air conditioner with a 

thermostatic expansion valve (TXV). For the same airflow reduction, the impact on a 

non-TXV unit was even more severe, showing a decrease of about 25% in the total 

capacity and 22% in the COP.  

Relative to PSC blowers, ECM blowers have better performance in terms of 

maintaining constant airflow rates over a pressure range, but the power of ECM blowers 

can significantly increase with the excess flow resistance. More importantly, this 

increased blower power imposes an additional cooling load on a system and tends to 

offset the sensible capacity by reducing the temperature difference between the supply 

and return air (Kendall 2004). Based on a combined approach of experimental 

measurements and empirical modeling, Yin et al. (2014a) quantified this effect by 
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showing that the heat gain from an ECM blower in a 60 kBtu/h (17.6 kW) air 

conditioner could decrease the sensible cooling capacity by up to 1.9% and the sensible 

COP by as much as 6.6%. Capturing this effect is of special importance because most 

residential air conditioning systems are controlled by thermostats that can only sense the 

sensible load. For a given sensible load, system runtime will increase with this reduced 

sensible capacity, and thus, result in more energy consumptions. Yin et al. (2014b) 

evaluated this energy penalty by integrating building energy simulations with 

experimental performance measurements taken on a residential air conditioner with an 

ECM blower and found that increases in the flow resistance from 0.3 to 0.9 in. w.g. (75 

Pa to 225 Pa) could decrease the airflow rate of the ECM blower by 11.2% in the heating 

mode and 17.7% in the cooling mode. Furthermore, the combined effects of decreasing 

airflows and increasing blower powers increased the annual system runtime by 6.8% and 

condensing unit electricity consumption by 7.5%.  

 

1.3 Impacts of Excess Ductwork Flow Resistance on Duct Leakages 

Beyond the aforementioned impacts on the performance of blowers and air 

conditioners, excess ductwork flow resistances can increase duct leakages, which widely 

exist in residential air distribution systems (Bryan and Perez 2001, Kinney 2005, Modera 

2005, Boudreaux et al. 2011, Stephens et al. 2011). For example, the group of Energy 

Performance of Buildings at Lawrence Berkeley National Laboratory took more than 

30,000 duct leakage measurements from 28 states and showed that an average duct 
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leakage rate for a single-family house is 0.07 ft3/min per ft2 at 0.1 in. w.g. (0.36 L/s per 

m2 at 25 Pa), accounting for 18% of the airflow rate from an AHU (LBNL 2013b). 

Because it is a common practice to place ducts outside of conditioned spaces, 

such as unconditioned attics, unconditioned basements, and crawl spaces, duct leakages 

have been recognized for years as a major source of energy loss in residential buildings 

(Modera 1993, Parker et al. 1993). It results in a loss of the conditioned air to the outside 

on the supply side and the infiltration of unconditioned air into the system on the return 

side. Several filed measurements quantified the energy impact of duct leakages in 

residential central HVAC systems. For example, the results of duct leakage testing and 

energy efficiency auditing on 43 homes in Louisiana show that an average energy cost 

due to duct leakages is $280/year per home, which is approximately 30% of the annual 

heating and cooling energy bill (Witriol et al. 2008). Another study recently conducted 

on 10 houses in the mixed-humid climate show that the energy cost due to duct leakages 

is in a range of 1.8 to 18.5% of the annual utility bills (Boudreaux et al. 2011). 

Extensive duct leakage tests confirm that duct leakages can be represented by 

Equation (1) (ASHRAE 2009a) 

 ሶܳ ௅ = ∆௅ܥ ௦ܲேಽ (1) 

where ∆Ps is the static differential pressure between the interior and exterior of duct 

walls, while CL and NL are leakage constant and leakage exponent, respectively, both of 

which are empirical coefficients and dependent on the geometry of a leakage hole. 

Equation (1) indicates that duct leakages are sensitive to pressures. Increases in the duct 

pressure will result in exponential increases in the duct leakage, which means more 
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energy losses are expected for systems operating at excess duct pressures compared with 

systems running at lower duct pressures. 

 

1.4 Research Objective and Significance 

Severely restrictive duct designs are considered to be the primary cause of 

substantially high flow resistances in residential air distribution systems (Parker et al. 

1997, Proctor and Parker 2000, Ueno 2010, Shapiro et al. 2012). The undersized 

ductwork indeed reduces the initial duct fabrication and installation costs, but meanwhile 

it increases system operating costs because of the impacts of excess duct flow resistance 

on the blower and air conditioner performance. Several studies have tried to quantify the 

energy impacts of excess duct flow resistance for the purpose of ductwork design and 

optimization (Lutz et al. 2006, Franco et al. 2008); however, these studies have been 

primarily limited to blower energy use only. The impact on energy consumptions of non-

blower components, such as electricity consumptions of condensing units in cooling 

seasons and natural gas consumptions of furnaces in heating seasons, has not been 

thoroughly investigated, although non-blower energy consumptions take up to 80-95% 

of the energy use in residential heating and cooling systems (Parker et al. 2005, Stephens 

et al. 2010). Of greater importance, the excess flow resistances in restrictive duct 

systems not only affect the performance of blowers and air conditioners, but also 

increase duct leakages, which are a major source of energy losses in residential buildings 

reported by Parker et al. (1993) and Modera (1993). But the effect of excess flow 

resistances on duct leakages has not been taken into consideration when economically 
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evaluating duct designs in previous studies conducted by Franco et al. (2008) and Lutz et 

al.(2006). 

Therefore, the objective of this study reported herein is to comprehensively 

evaluate energy and economic impacts of duct designs for residential central HVAC 

systems in response to various combinations of blower types (i.e., PSC and ECM 

blowers), duct flow resistances, duct materials (i.e., sheet metal and flex ducts), and 

climates. A series of laboratory experiments were conducted on residential air handling 

units (AHUs) and air conditioners to characterize their performance at typical installed 

conditions. For the air handling unit (AHUs) testing, the airflow, power, and overall 

efficiency of six PSC and six ECM blowers were measured over a pressure range of 0.1 

to 1.2 in. w.g. (25 to 300 Pa). For the air conditioner testing, the cooling performance 

characterized in terms of cooling capacities, condensing unit power, and sensible heat 

ratios (SHRs) were determined over an airflow range of 1000 to 2250 ft3/min (0.47 to 

1.06 m3/s). In addition to experimental performance evaluations, empirical models that 

describe the blower and air conditioner performance at different operating conditions 

were developed from the laboratory measurements and integrated with building energy 

simulations to investigate the impact of duct flow resistances on annual electricity 

consumptions of blowers and condensing units as well as natural gas consumptions of 

furnaces. With considering the energy loss caused by duct leakages respect to different 

duct flow resistances, the cost-effectiveness of each duct design was assessed in terms of 

15-year life cycle costs (LCCs), which includes both initial duct fabrication/installation 

costs and consequential lifetime operating costs of heating and cooling equipment. 
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By determining the effects of blower types (i.e., PSC and ECM blowers), duct 

flow resistances, duct materials (i.e., sheet metal and flex ducts), and local climates on 

energy consumptions and life cycle costs (LCCs) of duct designs, the study reported 

herein can facilitate the constructions of residential air distribution systems with the 

lowest cost of ownership. In addition, the collected experimental data and empirical 

models of blowers and air conditioners can be used by HVAC engineers for residential 

system designs and equipment selections. Moreover, this study have several broader 

impacts on the residential sector of HVAC&R industry, including supporting the 

development of improved components and providing professionals with efficient, long-

term, and cost-effective solutions when they face numerous tradeoffs and challenges 

associated with designing residential air distribution systems. 
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2. EXPERIMENTAL PERFORMANCE EVALUATIONS AND EMPIRICAL MODEL 

DEVELOPMENTS OF RESIDENTIAL FURNACE BLOWERS WITH PSC AND 

ECM MOTORS 

 
2.1 Overview 

The study reported herein is to experimentally evaluate and compare the 

performance of blowers driven by permanent split capacitor (PSC) motors and 

electronically commutated motors (ECMs) in residential non-weatherized, non-

condensing gas furnaces. As a first step, twelve different commercially available 

residential furnace blowers from four manufacturers were selected, with six having PSC 

blowers and the other six having ECM blowers. Then, these blowers were tested in a 

well-instrumented laboratory facility with a nozzle airflow chamber. The furnace blower 

performance was characterized in terms of measured airflow rates and blower powers 

over a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). Overall blower efficiencies 

were also determined from the airflow, pressure, and power measurements. The results 

of this study showed that PSC and ECM blowers have significantly distinct airflow and 

power performance in response to increasing external static pressures (ESPs). In addition 

to performance evaluations, empirical models that describe the airflow and efficiency 

behaviors of the PSC and ECM blowers with respect to external static pressures (ESPs) 

were developed from the experimental data taken over the pressure range of 0.1 to 1.2 

in. w.g. (25 to 300 Pa). Of special importance, these empirical models can be used for 

the investigation of energy consumptions in residential central HVAC systems with PSC 

and ECM blowers at various operating conditions. 
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2.2 Introduction 

In the United States, over 60% of homes have central warm-air furnaces for 

space heating and cooling, and furnace blowers account for an annual electricity use of 

3.81×1010 kWh nationwide, which is 2.6% of the site electricity consumption and 1.1% 

of the total energy use in the residential sector (EIA 2009). Traditionally, these blowers 

have been driven by permanent split capacitor (PSC) motors, which are split-phase 

alternate current (AC) induction motors with starting capacitors. Recently, a growing 

number of manufacturers have started to provide blowers equipped with electrically 

commutated motors (ECMs), which are brushless direct current (DC) motors with 

permanent magnet rotors and ball bearings.  

Compared with traditional PSC blowers, advantages of using ECM blowers are 

capabilities of maintaining constant airflow rates over a pressure range and of using less 

power at conditions of low flow resistances. For example, Biermayer et al. (2004) 

showed in a series of laboratory experiments that ECM blowers had less airflow 

decreases compared with PSC blowers as the flow resistance was increased. Also, 

Walker and his colleague (Walker 2004, Walker and Lutz 2005, Walker 2006, Walker 

2008) conducted a series of laboratory measurements on the power consumptions of 

PSC and ECM blowers. Their results showed that power consumptions of the PSC 

blower decreased as a result of increasing the flow resistance. In contrast, power 

consumptions of the ECM blower increased with the increasing flow resistance.  

Although previous experimental studies, such as laboratory measurements 

performed by Biermayer et al. (2004) and by Walker and his colleague (Walker 2004, 
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Walker and Lutz 2005, Walker 2006, Walker 2008), provide important information for 

characterizing the performance of PSC and ECM blowers, the breadth of currently 

available data may not be adequate for the development of national appliance rating 

standards and public policies due to the fact that only a small sample of furnace blowers 

has been tested (Walker 2008). For instance, the results reported by Biermayer et al. 

(2004) were based on only one PSC and one ECM blower, while the Walker’s studies 

(Walker 2004, Walker and Lutz 2005, Walker 2006, Walker 2008) measured only one 

PSC blower and two ECM blowers.  

Another concern arising out of having only a few experimental studies is whether 

the findings are typical enough to draw conclusions that can be applied in all cases. For 

example, Lutz et al. (2006) and Franco et al. (2008) reported measurements of constant 

airflow rates of an ECM blower over a pressure range of 0 to 1.0 in. w.g. (0 to 250 Pa). 

However, recent experimental results showed that even for an ECM blower increases in 

the flow resistance could result in airflow reductions as much as 25%, with increasing 

airflow reductions at conditions of higher blower speeds and higher flow resistances 

(Yin et al. 2014a). The discrepancy of airflow measurements from ECM blowers in two 

different studies indicates significant performance variations, even for the same category 

of blower type. Hence, it is necessary to extend laboratory measurements to more PSC 

and ECM blowers over a larger range of operating conditions in order to further 

characterize the blower performance.   

The study reported herein experimentally evaluates and compares the 

performance of PSC and ECM blowers. A total of twelve (12) different commercially 
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available furnace blowers, namely six PSC blowers and six ECM blowers, were tested in 

a well-instrumented laboratory setting. Blower airflow and power measurements were 

conducted over a range of external static pressures (ESPs) and blower speeds. The 

blower overall efficiencies were also calculated based on the measured airflow, pressure, 

and power data. In addition to experimental evaluations, empirical models that 

characterize PSC and ECM blower airflow and overall efficiency behaviors as a function 

of the external static pressure (ESP) were developed from the statistical analysis of the 

experimental data. 

 

2.3 Test Method 

All twelve (12) blowers tested in this study are from residential non-weatherized, 

non-condensing gas furnaces made by four major manufacturers in the United States. 

Out of the twelve units, six are PSC blowers while the other six are ECM blowers. All 

blowers are designed with forward-curved blades, although the blower wheel dimensions 

vary from unit to unit. Table 2 summarizes the key characteristics of blower assemblies 

that were tested in this study. 
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Table 2 Characteristics of furnaces and blowers tested in this study 

Blower Manufacturer 
Blower 
Motor 

Motor 
Size, 

hp (W) 

Blower 
Wheel Size, 

in. (mm) 
Speed 

Heating 
Output 

Capacity, 
kBtu/h (kW) 

Add-on 
Cooling 

Capacity, 
kBtu/h (kW) 

Blower 
#1 

A PSC 
1/3 

(249) 
10 × 6(254 × 152) 

4 speeds 

High: 54 
(15.83) 

36 (10.55) 
Low: 36 
(10.55) 

Blower 
#2 

A ECM 
1/2 

(373) 
10 × 6(254 × 152) 

4 speeds 

High: 54 
(15.83) 

36 (10.55) 
Low: 36 
(10.55) 

Blower 
#3 

A PSC 
1/3 

(249) 
10 × 6(254 × 152) 

4 speeds 54 (15.83) 36 (10.55) 

Blower 
#4 

A PSC 
1/3 

(249) 
10 × 7(254 × 178) 

4 speeds 48 (14.07) 36 (10.55) 

Blower 
#5 

A ECM 
3/4 

(559) 
11 × 8(279 × 203) 

4 speeds 54 (15.83) 48 (14.07) 

Blower 
#6 

A PSC 
1/3 

(249) 
10 × 6(254 × 152) 

3 speeds 54 (15.83) 36 (10.55) 

Blower 
#7 

B ECM 
1/2 

(373) 
10 × 8(254 × 203) 

3 speeds 58 (17.00) 
24-36 

(7.03-10.55) 

Blower 
#8 

B PSC 
1/3 

(373) 
10 × 10(254 × 254) 

4 speeds 

High: 74 
(21.69) 18-36 

(5.28-10.55) Low: 58 
(17.00) 

Blower 
#9 

B ECM 
1/2 

(373) 
10 × 10(254 × 254) 

4 speeds 

High: 97 
(28.43) 30-42 

(8.79-12.31) Low: 85 
(24.91) 

Blower 
#10 

C PSC 
1/3 

(249) 
10 × 6(254 × 152) 

4 speeds 56 (16.41) 36 (10.55) 

Blower 
#11 

C ECM 
3/4 

(559) 
10 × 10(254 × 254) 

4 speeds 92 (26.96) 
24-60 

(7.03-17.58) 

Blower 
#12 

D ECM 
1/2 

(373) 
11 × 8(279 × 203) 

4 speeds 

High: 47 
(13.77) 

36 (10.55) 
Low: 24 
(7.03) 
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2.3.1 Experimental Setup 

The experimental setup developed for testing these blowers was constructed with 

the ability to provide accurate measurements of pressure, airflow rate, and blower power. 

Figure 2 is a schematic of the experimental test setup, which includes a test unit, supply 

and return ducts, and a nozzle airflow chamber, with all components in the horizontal 

position. Because the focus of this study is the blower performance only and the fact that 

the evaluation of heating and cooling performance is beyond the project scope, burners 

were not operating during the tests nor were the cooling coils installed. Conditioned 

laboratory air at a uniform and constant temperature was used in all tests. To simulate 

field installations, supply and return ducts with the same cross-sectional dimensions as 

the supply and return air openings on the furnaces were built and attached to the test 

units by following the requirements in ANSI/ASHRAE Standard 37 (2009b). Following 

the specifications in this standard, the length of the supply duct is 2.5 equivalent 

diameters, and the length of the return duct is 1.5 equivalent diameters. In addition, static 

pressure taps that were made according to ANSI/ASHRAE Standard 51 (2007b) were 

installed at the center of each surface on both supply and return ducts so that average 

static pressures could be measured. 
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Figure 2 Experimental setup with nozzle airflow chamber for airflow testing 
 

 

Blower airflow rates were measured by using a nozzle airflow chamber that was 

built in accordance with the requirements of ANSI/ASHRAE Standard 51 (2007b). This 

chamber has a nozzle board consisting of one 1-in. (25 mm), one 3-in. (76 mm), and four 

5-in. (127 mm) nozzles, which allows the same chamber to be used for the airflow 

measurement over an airflow range of 11 to 3300 ft3/min (0.005 to 1.557 m3/s). An assist 

blower, which is controlled by a variable frequency drive (VFD), is attached to this 

chamber and used to achieve variable external static pressures (ESPs). Ambient 

conditions were monitored by a stand-alone psychrometric station that featured two 

temperature transmitters, for dry-bulb (DB) temperature and wet-bulb (WB) temperature 

measurements, as well as a barometric transmitter. Air pressures were measured by 

using pressure transmitters with a 4-20 mA output, and the supply voltage to the furnace 

blower was stabilized at 115 ±0.5 V by using a variable transformer. 
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2.3.2 Test Procedures 

For each unit, the airflow rate and blower power were measured over an external 

static pressure (ESP) range of 0.1 to 1.2 in. w.g. (25 to 300 Pa) by using an incremental 

change of 0.1 in. w.g. (25 Pa) at each blower speed. Before initiating airflow tests, 

blowers were run for a 30-minute warm-up period in order to obtain steady-state 

conditions. The corresponding airflow rates through the known open-nozzle areas in the 

airflow chamber were calculated at each of the 12 pressure points by using 

measurements of pressure and temperature averaged over a 5-second interval. The 

measured airflow data were then converted to standard air with an air density of 0.075 

lbm/ft3 (1.2 kg/m3) so that the airflow performance of different units could be directly 

compared, regardless of environmental conditions occurring during data collections. 

While taking airflow measurements, the blower rotational speed was measured by using 

a non-contact digital tachometer, and the electrical performance was measured by using 

a power quality analyzer. The simultaneously measured and recorded electrical data 

included voltage, current, power factor, and both real and apparent power. Table 3 shows 

the instruments used in the airflow tests, along with their specifications and accuracies. 
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Table 3 Instrument specifications and accuracies 
Measurement Sensor Type Accuracy 

Barometric pressure Barometer, 600-1100 mb (0.6-1.1×105 Pa) ±1.5% 
Ambient DB and WB temperature 
Airflow chamber DB temperature 

Temperature transmitter, 20-120°F  
(-6.7-48.9°C) 

±0.3% Full Scale 

External static pressure (ESP) Air pressure transmitter, 0-3 in. w.g. (0-747 Pa) ±0.25% Full Scale 
Chamber nozzle differential pressure Air pressure transmitter, 0-3 in. w.g. (0-747 Pa) ±0.25% Full Scale 

Voltage Power quality analyzer, 0-1000 V ±0.6 V 
Current Power quality analyzer, 0.01-5 A ±0.5% Reading 
Power Power quality analyzer ±1% Reading 

Power factor Power quality analyzer, 0-1 ±0.1% Reading 
Blower rotational speed Tachometer, 5 – 999990 round/min ±0.50 round/min 

 

 

2.3.3 Uncertainty Analysis 

Uncertainties in the calculated airflow rate and overall efficiency were estimated 

based on instrument accuracies associated with temperature, pressure, and power 

measurements, along with the Kline and McClintock (1953) method described in 

Equation (2) 

 U୅ = ට∑ ቀப୅ப୶౟ ∙ U୶౟ቁ୨୧ୀଵ ଶ
 (2) 

where UA is the combined uncertainty for the dependent variable A, xi is one of the 

independent variables that affect the dependent variable A, and Uxi is the uncertainty for 

the independent variable xi. Depending on operating conditions and the calculated terms 

of airflow rate and overall efficiency, the measured parameters of temperature, pressure, 

and power contribute differently to the combined uncertainties in the airflow and 

efficiency results. Table 4 summarizes percentage contributions of different 

measurements to the combined uncertainties in airflow and efficiency results. As can be 

seen in Table 4, the measurement of nozzle differential pressure contributes to 85-90% 
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of the uncertainties in the airflow results, followed by the measurement of barometric 

pressure with a percentage of 8-10%. For the efficiency results, measurements of blower 

power and external static pressure (ESP) are the most important factors that influence the 

combined uncertainties. In general, at a confidence level of 95%, the combined 

uncertainty in the calculated airflow rate was within ±1%, and the combined uncertainty 

in the calculated overall efficiency was within ± 7%. 

 

 

Table 4 Contributions of experimental measurements to combined uncertainties in 
airflow and efficiency 

Parameter 
Barometric 

pressure 
Ambient 

DB 
Ambient 

WB 
Chamber 

DB 

External 
static 

pressure 
(ESP) 

Nozzle 
differential 

pressure 

Blower 
Power 

Airflow Rate 8-10% 0.01% 0.05-0.1% 1-1.5% 0.01% 85-90% - 
Overall 

Efficiency 
0.1-0.5% 0.01% 0.05-0.1% 0.05-0.1% 25-95% 0.1-4.5% 1-65% 

 

 

2.4 Experimental Results and Data Analysis 

The airflow and power performance of the twelve (12) blowers were determined 

over an external static pressure (ESP) range of 0.1 to 1.2 in .w.g. (25 to 300 Pa) by using 

the experimental setup and testing procedures that were described earlier in Section 2.3. 

Furthermore, blower overall efficiencies were calculated based on the measured airflow, 

pressure, and power data. This section presents the experimental results and discusses 

the performance characteristics of PSC and ECM blowers with respect to these 

important parameters, namely the airflow rate, blower power, and overall efficiency. 
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2.4.1 Airflow Results and Analysis 

Airflow measurements over a range of pressures and blower speeds for Blower 

#8 (PSC blower) and Blower #9 (ECM blower) are shown in Figure 3. The airflow and 

power performance of the other ten (10) blowers were also measured, but the results 

from Blower #8 and Blower #9 are presented as an example of typical PSC and ECM 

blower performance. It should be noted that the measured airflow rate at the medium 

high speed of Blower #9 at the lowest pressure of 0.1 in. w.g. (25 Pa) falls outside of the 

design range. Therefore, the results of airflow, power, and efficiency at this specific 

point for this specific blower were excluded from the data analysis.  

Airflow results presented in Figure 3 show the different airflow performance of 

PSC and ECM blowers in response to pressure changes in spite of having the same 

blower wheel size and housing configurations. As a result of increasing the external 

static pressure (ESP), airflow rates of the PSC blower decrease in all blower speeds. For 

example, the airflow rate at the high speed decreases by 46.5% from 1780 to 954 ft3/min 

(0.84 to 0.45 m3/s) as the external static pressure (ESP) is increased from 0.1 to 0.9 in. 

w.g. (25 to 225 Pa). In contrast to the PSC blower that has decreasing airflow rates with 

increasing pressures, the ECM blower maintains relatively constant airflow rates over a 

pressure range, which is represented by the more horizontal airflow curves in Figure 3. 

For instance, the airflow rate of the ECM blower at the high speed decreases less than 

1% as the pressure is increased, showing 1423 ft3/min (0.671 m3/s) at 0.1 in. w.g. (25 Pa) 

versus 1415 ft3/min (0.667 m3/s) at 0.9 in. w.g. (225 Pa). However, as the external static 

pressure (ESP) goes above 0.9 in. w.g. (225 Pa), airflow decreases of as much as 24% 
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relative to the measurement at 0.1 in. w.g. (25 Pa) occur in the medium high and high 

speeds. Even so, this airflow decreases for the ECM blower at the higher pressure is still 

less dramatic than the airflow reductions associated with the PSC blower over the same 

pressure range. 

 

 

 

Figure 3 Airflow comparison of PSC and ECM blowers over a range of external 
static pressure 
 

 

As mentioned earlier, one purpose of this study is to characterize the typical 

performance of PSC and ECM blowers, namely the airflow, power, and overall 

efficiency, based on extensive laboratory measurements performed on the six PSC and 

six ECM blowers. However, given the fact that each blower is designed differently in 
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terms of airflow rates, blower speeds, and motor sizes, it is difficult to describe the 

typical blower performance as a function of external static pressures (ESPs) by using 

direct airflow and power measurements. Therefore, the measured airflow rates of the 

twelve tested blowers were first transformed into a non-dimensional format by following 

the method described in Equation (3). 

 Performance change (%) = PerformanceespିPerformance25

Performance25
× 100% (3) 

where Performance25 represents the airflow and power measurements at 0.1 in. w.g. (25 

Pa), and Performanceesp is the airflow and power measurements at other external static 

pressures (ESPs). Next, the data for percentage performance changes were categorized 

by blower type and summarized in tables that show the observed 25%, 50% (the 

median), and 75% percentiles along with minimum and maximum values in the 

percentage performance changes. In addition to tables, the data of percentage 

performance changes were graphically presented in box-and-whisker plots, with the 

bottom and top of the box showing the 25% and 75% percentiles and the band inside the 

box representing the 50% percentile (the median). The ends of the whiskers represent the 

minimum and maximum values in the percentage performance changes at each pressure 

setting.  

Following the method described in Equation (3), percentage airflow changes over 

a pressure range of 0.1 to 1.2 in .w.g. (25 to 300 Pa) for the six PSC and the six ECM 

blowers were calculated and are shown in Figure 4 and Figure 5, respectively. In 

addition, these percentage changes are summarized in Table 5. A comparison between 

Figure 4 and Figure 5 indicates that increases in the external static pressure (ESP) have 
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less airflow impacts on ECM blowers than on PSC blowers, which is consistent with the 

observation in Figure 3. For example, Table 5 shows that even at the highest test 

pressure in this study of 1.2 in. w.g. (300 Pa), the median airflow decrease relative to the 

airflow rates at 0.1 in. w.g. (25 Pa) for ECM blowers is only 10%, while PSC blowers 

have a median airflow decrease of 84% at the same pressure. Moreover, for both PSC 

and ECM blowers, airflow changes due to pressure increases vary significantly. For 

instance, as a result of increasing pressures from 0.1 to 1.2 in .w.g. (25 to 300 Pa), the 

airflow decreases for PSC blowers vary from 61% to 97%, while the airflow decrease for 

ECM blowers range from 0.3% to 49% for the same pressure increases. The variations in 

the airflow performance may be caused by various designs from different manufacturers, 

such as blower wheel dimensions, motor sizes, furnace housings, and control 

mechanisms. 
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Figure 4 Percentage airflow changes for six PSC blowers over a range of external 
static pressures 
 

 

 

Figure 5 Percentage airflow changes of six ECM blowers over a range of external 
static pressures 
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Table 5 Percentage changes in airflow with ESP for PSC and ECM blowers 

Blower 
Type 

Statistical 
Measure 

External Static Pressure, in. w.g. (Pa) 
0.1 
(25) 

0.2 
(50) 

0.3 
(75) 

0.4 
(100) 

0.5 
(125) 

0.6 
(150) 

0.7 
(175) 

0.8 
(200) 

0.9 
(225) 

1.0 
(250) 

1.1 
(270) 

1.2 
(300) 

PSC 

Minimum 
(%) 

0 -3.7 -8.0 -12.2 -16.7 -22.4 -28.3 -38.2 -47.3 -62.6 -81.1 -97.3 

25% 
Percentile 

(%) 
0 -2.2 -5.3 -8.7 -12.5 -18.2 -25.6 -32.6 -42.0 -52.0 -73.1 -87.5 

50% 
Percentile 

(%) 
0 -1.3 -2.6 -5.9 -11.7 -16.6 -21.9 -29.8 -40.2 -50.6 -68.4 -83.7 

75% 
Percentile 

(%) 
0 -0.7 -1.7 -4.1 -6.6 -10.4 -17.1 -27.2 -37.4 -47.3 -60.4 -80.9 

Maximum 
(%) 

0 0.9 0.5 -1.0 -2.9 -6.0 -9.4 -12.5 -18.6 -27.6 -42.1 -60.7 

ECM 

Minimum 
(%) 

0 -4.5 -9.4 -12.8 -18.0 -22.5 -25.9 -30.8 -35.2 -39.1 -44.6 -48.7 

25% 
Percentile 

(%) 
0 -1.3 -3.6 -4.4 -5.4 -7.3 -8.1 -10.5 -13.4 -14.6 -19.1 -24.0 

50% 
Percentile 

(%) 
0 0.4 0.6 1.0 1.2 1.1 0.6 -1.2 -3.5 -4.7 -6.9 -9.5 

75% 
Percentile 

(%) 
0 1.2 2.2 2.7 2.5 2.5 1.9 1.0 -0.6 -2.3 -4.2 -5.4 

Maximum 
(%) 

0 2.5 4.9 4.7 5.2 3.6 3.7 2.2 1.9 1.1 0.2 -0.3 

 

 

2.4.2 Power Results and Analysis 

Blower power measurements over a range of pressures and blower speeds are 

presented in Figure 6 for Blower #8 (PSC blower) and #9 (ECM blower). It should be 

noted that these are the same two blowers whose airflow results were compared earlier. 

As can be seen in Figure 6, the blower power behaviors with respect to pressure changes 

are quite different for PSC and ECM blowers. For the PSC blower, the power 

consumption continuously decreases with increasing pressures. For example, the power 
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decreases by 40.5% from 740 to 440 W at the high speed as the external static pressure 

(ESP) is increased from 0.1 to 0.9 in. w.g. (25 to 225 Pa). The same trend is also 

observed at other speeds but to a lesser degree. Unlike the PSC blower, increasing 

pressures lead to increases in the ECM blower power. For instance, the blower power at 

the high speed almost doubles from 320 to 630 W as a result of a pressure increase from 

0.1 to 0.9 in. w.g. (25 to 225 Pa). 

 

 

 

Figure 6 Power comparison of PSC and ECM blowers over a range of external 
static pressure 

 

 

Following the same approach described in Equation (3), percentage power 

changes over a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa) are graphically 
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presented in Figure 7 and Figure 8 for the six PSC and six ECM blowers, respectively. 

Furthermore, these percentage power changes are summarized in Table 6. A comparison 

between Figure 7 and Figure 8 shows that the power consumptions of PSC and ECM 

blowers behave differently with respect to increasing pressures. Specifically, increasing 

pressures result in decreasing power consumptions of PSC blowers, while power 

consumptions of ECM blowers continuously increase as the pressure is increased. For 

example, the statistical summary of results presented in Table 6 shows that the median 

percentage change for PSC blower power is a decrease of 57% as a result of a pressure 

increase from 0.1 to 1.2 in. w.g. (25 to 300 Pa), while the median percentage change for 

ECM blower power is an increase of 208% for the same pressure increase. These results 

are consistent with the trends previously shown in Figure 6. It should also be noted that 

power changes for ECM blowers have a greater degree of scatter compared to that of 

PSC blowers. For instance, at the external static pressure of 1.2 in. w.g. (300 Pa), power 

decreases for PSC blowers vary within a range of 38 to 66% relative to the 

measurements at 0.1 in. w.g. (25 Pa), while power increases for ECM blowers are in a 

range of 40 to 383%. The wider range of percentage power changes for ECM blowers 

found in this study can be attributed to considerable differences among ECM units in 

terms of housing designs, delivered airflow rates, motor sizes, and speed control 

mechanisms. 
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Figure 7 Percentage power changes of six PSC blowers over a range of external 
static pressures 
 

 

 

Figure 8 Percentage power changes of six ECM blowers over a range of external 
static pressures 
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Table 6 Percentage changes in power with ESP for PSC and ECM blowers 

Blower 
Type 

Statistical 
Measure 

External Static Pressure, in. w.g. (Pa) 
0.1 
(25) 

0.2 
(50) 

0.3 
(75) 

0.4 
(100) 

0.5 
(125) 

0.6 
(150) 

0.7 
(175) 

0.8 
(200) 

0.9 
(225) 

1.0 
(250) 

1.1 
(270) 

1.2 
(300) 

PSC 

Minimum 
(%) 

0 -8.1 -11.6 -17.7 -20.2 -26.0 -30.6 -38.0 -44.0 -50.0 -60.0 -66.0 

25% 
Percentile 

(%) 
0 -5.1 -9.4 -14.3 -18.8 -24.4 -29.4 -35.7 -42.9 -48.2 -55.3 -60.4 

50% 
Percentile 

(%) 
0 -3.8 -7.8 -11.8 -16.9 -22.0 -25.9 -34.0 -40.3 -44.6 -53.6 -57.1 

75% 
Percentile 

(%) 
0 -2.5 -6.3 -9.8 -14.3 -18.5 -24.4 -30.5 -35.6 -40.7 -47.3 -53.7 

Maximum 
(%) 

0 0.1 -2.3 -4.5 -6.8 -9.1 -13.6 -18.2 -20.5 -27.3 -32.4 -38.2 

ECM 

Minimum 
(%) 

0 3.0 6.0 12.1 15.3 18.3 24.3 27.3 30.4 33.6 36.4 39.5 

25% 
Percentile 

(%) 
0 10.0 23.3 33.3 43.3 52.5 60.0 66.7 73.3 77.5 87.5 97.5 

50% 
Percentile 

(%) 
0 23.2 38.6 61.6 60.0 100.0 130.0 160.0 180.0 186.4 204.0 207.6 

75% 
Percentile 

(%) 
0 30.0 66.7 99.8 130.0 160.0 199.5 220.0 240.0 266.7 299.5 333.3 

Maximum 
(%) 

0 68.2 100.0 113.6 150.0 200.0 225.0 275.0 300.0 325.0 350.0 383.3 

 

 

2.4.3 Overall Efficiency Results and Analysis 

Fan and motor efficiencies are often required for the calculation of blower power, 

but separate fan and motor efficiencies are rarely provided by furnace manufacturers. 

Specifically, for blowers with small fractional horsepower motors as found in residential 

furnaces, fans and motors are typically evaluated as a unit rather than separately. 

Therefore, the fan/motor overall efficiency was calculated based on the measurements of 

airflow, pressure, and power by following Equation (4) 
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ߟ  = ொሶ ∆௉ೞௐ × 100% (4) 

where ߟ is the overall efficiency, the ሶܳ  is the measured blower airflow rate, the ∆ܲ is the 

measured external static pressure across the test units, and the W is the measured blower 

power. Another interpretation of this efficiency equation is that the ideal work into the 

working fluid (i.e., air) is divided by the actual work into the unit. 

The overall efficiencies for Blower #8 (PSC blower) and #9 (ECM blower) are 

plotted in Figure 9 against external static pressures (ESPs) in a range of 0.1 to 1.2 in. 

w.g. (25 to 300 Pa). The results presented in Figure 9 show that the overall efficiency 

mostly increases with increasing pressures for both the PSC and ECM blowers. 

However, unlike the ECM blower, the PSC blower has a maximum efficiency of 25% at 

a pressure of 1.0 in. w.g. (250 Pa), and then the efficiency drops sharply to a range of 10 

to 20% as the pressure increases further. Also, for any given external static pressure, 

efficiencies of the PSC blower at all speeds collapse into a small range, which indicates 

that the overall efficiency of the PSC blower is independent of blower speeds. However, 

for the ECM blower at the same pressure, efficiencies are increased as the blower speed 

is decreased. For example, at 1.0 in. w.g. (250 Pa), the efficiency of 30% at the low 

speed is 13% higher than the efficiency of 26% at the high speed. 

The results presented in Figure 9 can also be used to compare PSC and ECM 

blower efficiencies. It can be seen in Figure 9 that the ECM blower has higher 

efficiencies compared with the PSC blower at pressures below 0.5 in. w.g. (125 Pa). For 

example, the overall efficiencies of the ECM blower at 0.5 in. w.g. (125 Pa) are in the 

range of 16 to 23% depending on the blower speed, while the efficiencies of the PSC 
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blower at the same pressure are 14 to 15%, which is approximately 12% to 34% lower 

than the efficiencies of the ECM blower. The above example is at a mid-range pressure; 

however, the efficiency advantage of the ECM blower becomes marginal as a result of 

increasing external static pressures (ESPs). For instance, the efficiencies of the ECM 

blower at a pressure of 1.0 in. w.g. (250 Pa) for all speeds, except for the low speed, are 

essentially the same as the efficiencies of the PSC blower, with efficiencies being 23-

26% for PSC blowers versus 24-26% for ECM blowers. 

 

 

 

Figure 9 Efficiency comparison of PSC and ECM blowers over a range of external 
static pressures 
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Overall efficiencies for the six PSC and six ECM blowers tested were determined 

by using Equation (4) along with the experimental measurements of airflow rate, blower 

power, and external static pressure (ESP). These results are graphically presented in 

Figure 10 and Figure 11 for PSC and ECM blowers, respectively. In addition, the 

statistical efficiency results are summarized in Table 7, which shows the values of 25%, 

50% (median), and 75% percentiles along with the minimum and maximum efficiencies 

in a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). The efficiency behaviors of PSC 

and ECM blowers in Figure 10 and Figure 11 are consistent with the trends previously 

shown in Figure 9. For example, results in Figure 10 and Figure 11 show that ECM 

blowers tend to have higher efficiencies than PSC blowers, especially at lower pressures. 

For instance, Table 7 shows that the efficiencies of PSC blowers at 0.2 in. w.g. (50 Pa) 

vary from 4.6 to 6.2% with a median efficiency of 5.7%, while efficiencies of ECM 

blowers are in a range of 8.7 and 23.0% with a median efficiency of 15.2%. A simple 

comparison of these median values indicates that ECM blowers are almost three times 

more efficient than PSC blowers at 0.2 in. w.g. (50 Pa). However, at a higher pressure of 

0.9 in. w.g. (225 Pa), the median efficiency of 29.7% for ECM blowers is only 20% 

higher than the median efficiency of 24.5% for PSC blowers.  

Moreover, as discussed previously, one can observe in Figure 10 and Figure 11 

that ECM blowers have greater levels of scatter in the overall efficiencies compared to 

the scatter in PSC blower efficiencies. This larger scatter for ECM blowers is not 

surprising considering that ECM blowers tend to have higher efficiencies at lower 

speeds, while efficiencies of PSC blowers are independent of blower speeds. Of special 
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importance, various designs in ECM blowers from different manufacturers may add the 

variability to this efficiency results. 

 

 

 

Figure 10 Overall efficiencies of six PSC blowers over a range of external static 
pressures 
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Figure 11 Overall efficiencies of six ECM blowers over a range of external static 
pressures 
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Table 7 Overall efficiencies of PSC and ECM blowers varying with ESP 

Blower 
Type 

Statistical 
Measure 

External Static Pressure, in. w.g. (Pa) 
0.1 
(25) 

0.2 
(50) 

0.3 
(75) 

0.4 
(100) 

0.5 
(125) 

0.6 
(150) 

0.7 
(175) 

0.8 
(200) 

0.9 
(225) 

1.0 
(250) 

1.1 
(270) 

1.2 
(300) 

PSC 

Minimum 
(%) 

2.3 4.6 7.0 9.7 11.9 14.2 16.3 17.9 19.2 19.3 13.0 2.7 

25% 
Percentile 

(%) 
2.5 5.2 8.1 10.9 13.8 16.5 19.2 21.2 22.3 23.1 19.0 9.8 

50% 
Percentile 

(%) 
2.8 5.7 8.7 11.9 14.6 18.0 20.6 23.0 24.6 23.8 20.7 12.5 

75% 
Percentile 

(%) 
2.9 5.9 9.1 12.2 15.5 18.6 21.3 23.8 25.0 25.8 23.0 13.7 

Maximum 
(%) 

3.2 6.2 9.6 12.8 16.1 19.6 23.1 25.3 26.7 28.0 26.5 23.8 

ECM 

Minimum 
(%) 

4.7 8.7 11.2 14.0 16.0 17.7 19.4 21.0 23.0 24.1 24.7 23.7 

25% 
Percentile 

(%) 
6.2 10.9 14.2 17.8 19.9 22.0 24.3 25.4 26.1 27.4 28.0 29.3 

50% 
Percentile 

(%) 
8.6 15.2 20.1 22.9 25.0 26.9 27.9 28.6 29.7 30.0 30.2 30.0 

75% 
Percentile 

(%) 
12.3 18.0 23.4 25.7 27.9 29.1 29.9 30.9 31.3 31.7 31.4 31.6 

Maximum 
(%) 

14.7 23.0 26.5 32.8 30.3 32.0 35.3 34.1 35.3 35.5 35.7 36.6 

 

 

2.5 Empirical Model Development 

In the above experimental studies and comparative analysis, the performance of 

six PSC and six ECM blowers were investigated in terms of airflow rates, blower power, 

and overall efficiencies over a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). In 

addition to performance evaluations, another important goal of the study reported herein 

is to develop empirical models that can be used to characterize the typical airflow and 

energy performance of PSC and ECM blowers. In this section, empirical models of 
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airflow and efficiency were developed for both PSC and ECM blowers based on the 

experimental results. Due to significant blower design variations from different 

manufacturers, such as multiple blower speeds, airflow ranges, and blower wheel 

dimensions, measurements of airflow and overall efficiency vary at any given external 

static pressure (ESP) even for blowers with the same motor type. These variations 

indicate that it is impractical to use a single curve or correlation to represent the 

performance characteristics of the entire category of PSC blowers or ECM blowers. 

However, it was found that comprehensive performance representations of both airflow 

and efficiency could be developed from the statistical results presented previously in 

Table 5 and Table 7. Specifically, three best-fit curves were generated by using the 25%, 

50% (median), and 75% percentiles in the corresponding statistical results of airflow and 

efficiency over an external static pressure (ESP) range of 0.1 to 1.2 in. w.g. (25 to 300 

Pa). Because the developed models are designed to capture typical airflow and efficiency 

behaviors of PSC and ECM blowers, extreme performance that are characterized by the 

minimum and maximum values in airflow and efficiency measurements were not used 

for the model development. 

 

2.5.1 Development of Airflow Models 

The purpose of the airflow models is to characterize the airflow behaviors of PSC 

and ECM blowers as a function of external static pressures (ESPs). However, because 

the direct airflow measurements from each blower at any given pressures vary over a 

wide range due to different blower designs and speed settings, it is difficult to correlate 
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direct airflow measurements of PSC and ECM blowers with external static pressures 

(ESPs). Therefore, rather than using direct airflow measurements, percentage airflow 

changes relative to the airflow measurements at 0.1 in. w.g. (25 Pa) calculated according 

to Equation (3) were used for the model development.  

The 25%, 50% (median), and 75% percentile statistical results for the percentage 

airflow changes presented previously in Figure 4 and Figure 5 and summarized in Table 

5 were fitted into a second order polynomial by taking the percentage airflow changes as 

the dependent variable and the external static pressure (ESP) as the only independent 

variable, as shown in Equation (5) 

 ሶܳ (%) = ଵܥ + ଶܥ × ܲܵܧ + ଷܥ ×  ଶ (5)ܲܵܧ

Consequently, three airflow curves presenting the three statistical percentiles were 

generated for each type of blowers so that comprehensive descriptions of airflow 

behaviors as a function of the external static pressure (ESP) can be developed. These 

airflow models for PSC and ECM blowers share the same format but with different 

empirical coefficients, which were determined from a regression analysis by using the 

least-squares approach. Figure 12 and Figure 13 show these airflow model curves for 

PSC and ECM blowers respectively. Also, shown in Figure 12 and Figure 13 are the 

statistical results of the percentage airflow changes that were previously presented in 

Table 5 and used here to develop the model. The empirical coefficients and the R2 values 

for these airflow models are shown in Table 8 for both PSC and ECM blowers. 

The airflow curves generated from the developed models and plotted in Figure 

12 and Figure 13 have good agreement with the experimental data. Further evidence of 



 

39 

 

this good agreement is presented in Table 8, which shows that the R2 values for PSC 

blower models are all above 0.99 while the R2 values for ECM blower models are all 

above 0.98. The results in Figure 12 and Figure 13 as well as the high R2 values as listed 

in Table 8 indicates that the developed airflow models are capable of predicting PSC and 

ECM blower airflow performance as a function of the external static pressure (ESP) over 

a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). 

 

 

 

Figure 12 Percentage airflow changes as a function of ESP for PSC blowers 
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Figure 13 Percentage airflow changes as a function of ESP for ECM blowers 
 

 

Table 8 Empirical coefficients and R2 values for airflow models 
Blower Type Percentile C1 (-) C2 (Pa-1) C3 (Pa-2) R2 

PSC 

25% -3.918 0.0934 - 0.00122 0.994 

50% -3.389 0.105 - 0.00122 0.997 

75% -5.053 0.162 -0.00135 0.997 

ECM 

25% -0.649 -0.00798 -0.000218 0.985 

50% -1.654 0.0576 -0.000279 0.989 

75% -1.275 0.0642 -0.000267 0.989 
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2.5.2 Development of Efficiency Models 

As the next step to characterize the performance of PSC and ECM blowers, 

efficiency models were developed from the experimental data over an external static 

pressure (ESP) range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). Following the same approach 

used previously to develop airflow models, the statistical efficiency results for both PSC 

and ECM blowers shown in Figure 10 and Figure 11 and Table 7 were used for the 

model development. Specifically, the 25%, 50% (median), and 75% percentile results for 

the efficiencies were fitted into a third-order polynomial shown in Equation (6), with the 

efficiency as the dependent variable and the external static pressure as the independent 

variable. 

ߟ  = ଵܥ + ଶܥ × ܲܵܧ + ଷܥ × ଶܲܵܧ + ସܥ ×  ଷ (6)ܲܵܧ

Similar to the airflow models in Equation (5) developed previously, the efficiency 

models for PSC and ECM blowers have the same format, but with different empirical 

coefficients, which were found by applying the least-squares approach to the data in 

Table 7. 

Efficiency curves as a function of the external static pressure (ESP) generated 

from these models are shown in Figure 14 and Figure 15 for PSC and ECM blowers, 

respectively. As can be seen, the efficiency curves in Figure 14 and Figure 15 are 

consistent with the statistical efficiency results that were used to develop the 

correlations. In addition, the empirical coefficients for the efficiency models of PSC and 

ECM blowers are tabulated in Table 9, along with R2 values. The R2 values in Table 9 

are all in a range of 0.97 to 0.99, which along with results shown in Figure 14 and Figure 
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15 is strong evidence that the developed efficiency models can provide accurate 

performance representations of PSC and ECM blowers. Therefore, these efficiency 

models along with the airflow models that were developed in the previous section can be 

used to predict energy consumptions of PSC and ECM blowers in future studies, dealing 

with building energy simulations and equipment performance modeling. 

 

 

 

Figure 14 Overall efficiencies as a function of ESP for PSC blowers 
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Figure 15 Overall efficiencies as a function of ESP for ECM blowers 
 

 

Table 9 Empirical coefficients and R2 values for efficiency models 
Blower Type Percentile C1 (-) C2 (Pa-1) C3 (Pa-2) C4 (Pa-3) R2 

PSC 

25% 3.824 -0.0536 0.00165 -0.00000462 0.977 

50% 3.528 -0.0334 0.00156 -0.00000444 0.989 

75% 3.687 -0.0346 0.00160 -0.00000450 0.982 

ECM 

25% 0.962 0.228 -0.000702 0.000000853 0.999 

50% 1.846 0.320 -0.00127 0.00000173 0.997 

75% 5.426 0.315 -0.00131 0.00000183 0.996 

 

 

 

 



 

44 

 

2.5.3 Model Application 

The value of the empirical models developed and presented herein is that they 

can be used by HVAC engineers to determine the typical blower airflow and efficiency 

behaviors as a function of external static pressures (ESPs). For example, the airflow 

model provides an approach to characterize blower airflow performance over a pressure 

range of 0.1 to 1.2 in. w.g. (25 to 300 Pa) for both PSC and ECM blowers based on the 

knowledge of a single airflow rate at any external static pressure (ESP). The procedure 

for determining the airflow performance is to use Equation (5), along with appropriate 

coefficients from Table 8, for the calculation of percentage airflow change at the known 

pressure relative to the airflow rate at the pressure of 0.1 in. w.g. (25 Pa). Next, utilizing 

the airflow rate at 0.1 in. w.g. (25 Pa), one can easily calculate the median airflow rate 

for a PSC blower or an ECM blower, along with statistical bounds, namely 25% and 

75% percentiles that one might expect. 

It should be noted that it is not necessary to know the airflow rate at 0.1 in. w.g. 

(25 Pa), rather one can use any point on the airflow curve as long as one knows an 

airflow rate at a known pressure. For example, the percentage airflow change at any 

known pressure can be calculated by using Equation (5) in conjunction with coefficients 

in Table 8. And then, the airflow rate at 0.1 in. w.g. (25 Pa) can be calculated from the 

airflow rate at the known pressure and the corresponding percentage airflow change, as 

shown in Equation (7). 

 ሶܳ ଶହ = ொሶ ೖ೙೚ೢ೙ଵିொሶ (%) (7) 
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With the knowledge of the airflow rate at 0.1 in. w.g. (25 Pa), the full airflow curve can 

be determined from the developed airflow model by using coefficients from Table 8. 

In addition to the prediction of airflow performance, the developed efficiency 

model, which correlates the over efficiencies of both PSC and ECM blowers with 

external static pressures (ESPs), can be used to calculate blower power consumptions 

over a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). Before one can determine the 

blower power consumption at a known pressure, the airflow rate at the known pressure 

should be known or calculated by using the developed airflow model. As the next step, 

the blower overall efficiency at the known pressure is determined according to Equation 

(6) along with coefficients from Table 9. With the knowledge of both airflow rate and 

overall efficiency at the known pressure, Equation (4) can be rearranged into Equation 

(8) and used for the calculation of blower power. 

 ܹ = ொሶ ∆௉ೞఎ × 100% (8) 

 

2.6 Conclusions 

In this study, the performance of six PSC and six ECM blowers from four 

different manufacturers were experimentally evaluated over a range of blower speeds in 

a well-instrumented laboratory environment with a nozzle airflow chamber. Airflow and 

blower power measurements were taken over an external static pressure (ESP) range of 

0.1 to 1.2 in. w.g. (25 to 300 Pa), and then blower overall efficiencies were determined 

from the measured airflow, pressure, and power data. Also, the airflow, power, and 

efficiency data were statistically analyzed and presented in terms of 25%, 50% (median), 



 

46 

 

75% percentiles, along with the minimum and maximum values at each external static 

pressure (ESP) in a range of 0.1 to 1.2 in. w.g. (25 to 300 Pa). To complement the 

experimental investigation, empirical models that characterize the airflow and efficiency 

behaviors of PSC and ECM blowers as a function of external static pressures (ESPs) 

were developed from the statistical analysis of airflow and efficiency results. The major 

findings are summarized below: 

• The airflow performance responding to changes in the external static pressure 

(ESP) for PSC and ECM blowers are significantly different. Specifically, airflow 

rates for PSC blowers decrease as the external static pressure (ESP) is increased, 

while ECM blowers are able to maintain relatively constant airflow rates 

regardless of pressure changes.  

• Power consumptions of PSC blowers decrease as the external static pressure 

(ESP) is increased because of the substantial airflow reductions that occur. In 

contrast, ECM blowers require more power to maintain airflow rates at higher 

flow resistances.  

• The overall efficiencies of both PSC and ECM blowers increase with increasing 

external static pressures (ESPs). For PSC blowers, all speeds essentially have the 

same level of efficiencies, while ECM blowers tend to have higher efficiencies at 

lower speeds. In addition, for the same pressure, ECM blowers tend to have 

higher efficacies than PSC blowers, especially at the low end of the pressure.  

• Among blowers with the same motor type, there are great variations in the 

performance of airflow, power, and efficiency with respect to changes in the 
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external static pressure (ESP). These performance variations are because of 

varying designs of housings, blower wheel dimensions, airflow ranges, motor 

sizes, and speed control mechanisms. 

The experimental data taken and analyzed in this study reported herein provides 

essential and necessary information for the development of rating standards to regulate 

electricity consumptions of PSC and ECM blowers. Also, of great importance, the 

airflow and efficiency models developed and reported herein provide an effective 

approach to predict typical PSC and ECM blower performance based on external static 

pressures. These models can be used by HVAC engineers for residential system designs 

and equipment selections. Also, the developed airflow and efficiency models can be 

easily integrated with building energy simulations for future studies that evaluates the 

savings potential of ECM blowers over PSC blowers in residential central HVAC 

systems. 
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3. IMPACT OF DUCT FLOW RESISTANCE ON RESIDENTIAL HEATING AND 

COOLING ENERGY USE IN SYSTEMS WITH PSC AND ECM BLOWERS 

 

3.1 Overview 

Extensive field measurements indicate that excess duct flow resistances widely 

exist in residential air distribution systems and directly affect the blower airflow and 

power performance. More importantly, the excess flow resistance also indirectly impacts 

equipment efficiencies and cooling capacities, and thus, affects cooling energy 

consumptions. However, the energy impact of excess duct flow resistance on a system is 

still unclear because of complex relationships among duct flow resistances, airflow rates, 

blower efficiencies, system runtime, condensing unit electricity consumptions, and 

furnace natural gas consumptions. In addition, the different performance characteristics 

of PSC blowers and ECM blowers add more complexity to these relationships. 

Therefore, the objective of this study is to provide understanding and solutions to these 

complex relationships by quantifying the impact of duct flow resistance on residential 

heating and cooling energy use in systems with PSC and ECM blowers. Experimentally 

determined cooling performance results for a unitary air conditioner were integrated with 

building energy simulations of two homes (Austin, TX and Chicago, IL) to predict the 

annual space heating and cooling energy use for ductworks with four different levels of 

flow resistance of 0.3, 0.5, 0.7, and 0.9 in. w.g. (75, 125, 175, and 225 Pa) in two 

extreme climate conditions. An analysis of these predictions shows that increasing the 

duct flow resistance from 0.3 to 0.9 in. w.g. (75 to 225 Pa) decreased airflow rates of 
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PSC blowers and consequently decreased the annual blower electricity consumptions by 

11% for the Austin home and 16% for the Chicago home. However, in systems with 

ECM blowers the same increase in the duct flow resistance increased the annual blower 

electricity consumptions by about 60% for both the Austin home and the Chicago home, 

primarily because ECM blowers maintained constant airflow rates over a range of 

pressures. In addition, the system electricity savings of ECM blowers relative to PSC 

blowers decreased from 17% to 9% for the Austin home and from 27% to 13% for the 

Chicago home as a result of increasing the duct flow resistance from 0.3 to 0.9 in. w.g. 

(75 to 225 Pa).  

 

3.2 Introduction 

Substantially high duct flow resistances widely exist in residential central 

heating, ventilating, and air-conditioning (HVAC) systems due to combinations of 

inappropriate designs and installations, undersized ducts, and pressure drops caused by 

major system restrictions, such as cooling coils, heating elements, filters, supply 

registers, and return grilles. This excess duct flow resistance directly affects the blower 

power as documented in the past studies of laboratory blower power measurements over 

a pressure range of 0 to 1.2 in. w.g. (0 to 300 Pa) conducted by Walker and his colleague 

(Walker 2004, Walker and Lutz 2005, Walker 2006, Walker 2008). These studies 

demonstrated that the power of blowers with permanent split capacitor (PSC) motors is 

decreased with increasing pressures due to decreases in airflow rates, while the power of 

blowers driven by electronically commuted motors (ECMs) is increased as airflow rates 
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are maintained. For example, at a pressure of 0.2 in. w.g. (50 Pa), which represents the 

flow resistance of ideal ducts, the ECM blower used 60% less power than the PSC 

blower with power measurements of 750 W for the PSC blower versus 300 W for the 

ECM blower. However, at a pressure of 0.5 in. w.g. (125 Pa), which represents the flow 

resistance of real-world duct installations, the PSC blower used less power than the 

ECM blower, showing 550 W for the PSC blower versus 600 W for the ECM blower. 

Due to the pressure increase from 0.2 to 0.5 in. w.g. (50 to 125 Pa), the power of the 

PSC blower decreased by 27% from 750 W to 550 W, while the power of the ECM 

blower doubled from 300 W to 600 W (Walker 2008).  

In addition to the experimental results reported by Walker and his colleague 

(Walker 2004, Walker and Lutz 2005, Walker 2006, Walker 2008), Lutz et al. (2006) 

and Franco et al. (2008) took the performance comparison of PSC and ECM blowers a 

step further by simulating the blower energy use at different duct flow resistances. For 

example, in a comparison of blower energy consumptions at different duct flow 

resistances of 0.3, 0.5, and 0.8 in. w.g. (75, 125, and 200 Pa), along with 16 house 

locations in the U.S., they showed that the blower electricity savings from ECM blowers 

relative to PSC blowers decreased with increasing duct flow resistances and varied 

widely with weather conditions. Specifically, they found that nationally ECM blowers 

consumed 45% less electricity at the low flow resistance of 0.3 in. w.g. (75 Pa) , 35% 

less electricity at the medium flow resistance of 0.5 in. w.g. (125 Pa), and 6% less at the 

high flow resistance of 0.8 in. w.g. (200 Pa) compared to PSC blowers.  
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It is important to note that the above laboratory measurements (Walker 2004, 

Walker and Lutz 2005, Walker 2006, Walker 2008), along with the simulation results 

from Lutz et al. (2006) and Franco et al. (2008) focused only on blower energy 

consumptions in the presence of excess duct flow resistances. Of even more importance 

is the impact of excess duct flow resistance on non-blower energy consumptions, which 

makes up 80-95% of the total energy use in a residential central HVAC system (Parker 

et al. 2005, Stephens et al. 2010). The non-blower energy use that has not been 

thoroughly investigated in any of the above studies includes condensing unit electricity 

consumptions in cooling seasons and natural gas consumptions in heating seasons with 

respect to different types of system blowers (i.e., PSC or ECM blowers). The effect of 

different blower types on the non-blower energy use is made more obvious when one 

consider the fact that increases in the flow resistance reduce airflow rates of PSC 

blowers, resulting in decreasing cooling capacities and coefficients of performance 

(COP) because of insufficient evaporator airflows (Palani et al. 1992, Breuker and Braun 

1998, Siegel et al. 2002, Kim et al. 2009, Palmiter et al. 2011, Mowris et al. 2012). The 

negative effect of insufficient airflows is well documented, with one experimental study 

(Rodriguez et al. 1996) reporting that a 50% airflow reduction would lead to a decrease 

of 15% in the total cooling capacity and 14% in the COP for an air conditioner with a 

thermostatic expansion valve (TXV). For the same airflow reduction, the impact on a 

non-TXV unit was even more severe, showing a decrease of about 25% in the total 

cooling capacity and 22% in the COP.  



 

52 

 

Relative to PSC blowers, ECM blowers have better performance in terms of 

maintaining constant airflow rates over a pressure range, but the power of ECM blowers 

can significantly increase with the excess flow resistance. More importantly, this 

increased blower power imposes an additional cooling load on a system and tends to 

offset the sensible capacity by reducing the temperature difference between the supply 

and return air (Kendall 2004). Based on a combined approach of experimental 

measurements and empirical modeling, Yin et al. (2014a) quantified this effect by 

showing that the heat gain from an ECM blower in a 60 kBtu/h (17.6 kW) air 

conditioner could decrease the sensible cooling capacity by up to 1.9% and the sensible 

COP by as much as 6.6%. Capturing this effect is of special importance because most 

residential air conditioning systems are controlled by thermostats that can only sense the 

sensible load. For a given sensible load, system runtime will increase with this reduced 

sensible capacity, and thus, result in more energy consumptions. Yin et al. (2014b) 

evaluated this energy penalty by integrating building energy simulations with 

experimental performance measurements taken on a residential air conditioner with an 

ECM blower and found that increases in the flow resistance from 0.3 to 0.9 in. w.g. (75 

Pa to 225 Pa) could decrease the airflow rate of the ECM blower by 11.2% in the heating 

mode and 17.7% in the cooling mode. Furthermore, the combined effects of decreasing 

airflows and increasing blower powers increased the annual system runtime by 6.8% and 

the condensing unit electricity consumption by 7.5%.  

Although previous studies have identified energy impacts of excess duct flow 

resistances on blowers and air conditioners separately, the system-level energy effect 
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caused by excess duct flow resistances in residential central HVAC systems is still 

unclear, especially for the non-blower energy consumptions, because of the complex 

relationships among duct flow resistances, airflow rates, blower efficiencies, system 

runtime, condensing unit electricity consumptions, and furnace natural gas 

consumptions. More importantly, these relationships vary with the type of installed 

blowers, namely PSC or ECM blowers. Therefore, the objective of the study reported 

herein is to comprehensively quantify the impact of excess duct flow resistances on the 

heating and cooling energy use in residential central HVAC systems by using a 

combined approach of experimental measurements performed on HVAC systems and 

building energy simulations that provides heating and cooling loads for the specific 

buildings at specific ambient conditions. 

As a first step, empirical correlations linking cooling performance and evaporator 

airflow rates were developed over an airflow range of 1000 to 2250 ft3/min (0.47 to 1.06 

m3/s) from well-instrumented laboratory measurements. Then, these experimental results 

were integrated with public-domain building energy simulation models to estimate the 

annual electricity consumptions of blowers and condensing units as well as furnace 

natural gas consumptions in residential central HVAC systems as a consequence of PSC 

and ECM blowers that were paired with ductworks of different flow resistances. 

 

3.3 Experimental Study 

Although several studies have investigated air conditioner cooling performance 

at reduced evaporator airflow conditions, none of them have provided empirical curves 
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or correlations relating the cooling performance with evaporator airflow rates, even 

though this relationship is required so that system energy penalties caused by airflow 

reductions with PSC and ECM blowers can be accurately determined for ductworks with 

excess flow resistances. Hence, the purpose of the experimental study part of the project 

reported herein is to characterize the cooling performance of a typical air conditioner for 

a range of evaporator airflows, which serves as an important input for the building 

energy simulation study developed later. The unit tested in this study is a 60 kBtu/h 

(17.6 kW) R410a unitary air conditioner with a nominal airflow rate of 2000 ft3/min 

(0.94 m3/s). Well-instrumented laboratory measurements were taken on both the air side 

and the refrigerant side to determine the cooling performance in terms of cooling 

capacities, condensing unit powers, and sensible heat ratios (SHRs) with respect to 

airflow rates that varied from 1000 to 2250 ft3/min (0.47 to 1.06 m3/s).  

 

3.3.1 Experimental Setup 

All laboratory tests were conducted in two identical, heavily-insulated 

environmental control rooms (i.e. psychrometric chambers) that were capable of 

achieving controllable indoor and outdoor ambient conditions. ANSI/ASHRAE Standard 

37 (2009b) and AHRI Standard 210/240 (2008) were used as guidelines for the 

experimental setup and testing procedures. The cooling capacity at any given airflow 

rate was determined by using two independent methods, namely the indoor air enthalpy 

method and the refrigerant enthalpy method.  
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For the indoor air enthalpy method, the cooling capacities were calculated based 

on air enthalpy changes and airflow rates through the evaporator coil. The enthalpy 

changes were determined by measuring the dry-bulb (DB) and wet-bulb (WB) 

temperatures of the supply and return air. Specifically, two 12-element type-T 

thermocouple grids were installed upstream and downstream of the evaporator to 

determine the average DB temperature of the air side. Psychrometric stations with 

sampling devices built in accordance with ASHRAE 41.1 (ASHRAE 1996) were used to 

measure the average WB temperature. Evaporator airflow rates were measured by using 

a nozzle airflow chamber that was built in accordance with the requirements of 

ANSI/ASHRAE Standard 51 (ASHRAE 2007b). This nozzle airflow chamber was 

equipped with multiple nozzles of different sizes to cover an airflow measurement range 

of 200 to 4000 ft3/min (0.09 to 1.89 m3/s). An assist blower controlled by a variable 

frequency drive (VFD) was attached to the nozzle chamber and used to obtain variable 

airflow rates. In addition to air-side DB and WB temperature measurements on the 

evaporator, the condenser inlet air DB and WB temperatures were measured and 

averaged by using an air sampling unit as described in ASHRAE 41.1 (1996).  

For using the refrigerant enthalpy method, refrigerant-side cooling capacities 

were calculated from refrigerant enthalpy changes and mass flow rates. Refrigerant 

enthalpy changes were determined by measuring the refrigerant temperatures and 

pressures entering the TXV and leaving the indoor coil. Refrigerant temperature 

measurements were made by inserting T-type thermocouple probes into the centerline of 

copper elbows. Elastomeric pipe insulations were installed 2 in. (51 mm) before and 
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after each temperature measurement point in order to minimize the measurement errors 

carried by the ambient temperature. Pressure transducers were directly connected to the 

refrigerant stream to obtain accurate pressure measurements. The refrigerant mass flow 

rate was recorded by a coriolis mass flow meter installed at the bottom of a vertical 

downward loop in the liquid line. After the refrigerant-side instrument installation, the 

refrigeration system was sealed, vacuumed, and charged with 9.9 lbm (4.5 kg) of R410a 

by following the manufacturer’s instructions. 

 

3.3.2 Test Procedures 

Cooling performance tests were conducted at six different evaporator airflow 

rates ranging from 1000 to 2250 ft3/min (0.47 to 1.06 m3/s) by using airflow increments 

of 250 ft3/min (0.12 m3/s). The same temperature settings were maintained in all tests 

based on the “A Test” condition prescribed by AHRI Standard 210/240 (2008), namely 

80°F (26.7°C) for the indoor DB, 67°F (19.4°C) for the indoor WB, and 95°F (35°C) for 

the outdoor DB.  

For each test, after reaching the target indoor and outdoor temperatures as 

specified in AHRI Standard 210/240 (2008), the psychrometric room reconditioning 

apparatus and the test unit were continuously operated for one hour at steady state. Then, 

the air-side and refrigerant-side measurements were taken and recorded at equal intervals 

of 30 seconds until completing a 30-minute testing period. Air properties, such as the 

density, specific heat, enthalpy, humidity ratio, and relative humidity, were calculated by 

using equations in ASHRAE Handbook-Fundamental (ASHRAE 2009a). The 
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REFPROP software developed by National Institute of Standards and Technology (NIST 

2007) was used for the enthalpy calculation of R410a. A customized computer program 

was used to perform real-time calculations of psychrometrics, refrigerant enthalpies, and 

cooling capacities based on measurements of temperatures, pressures, and mass flow 

rates for both air and refrigerant sides. While measuring the cooling performance, the 

power consumptions of compressor, condenser fan, and indoor blower were 

simultaneously and individually measured.  

Test results were considered valid only if the two cooling capacities as 

determined from the two independent methods, namely the indoor air enthalpy method 

and the refrigerant enthalpy method, agreed to within 6% based on the guidelines 

provided by AHRI Standard 210/240 (2008). Once a test was completed, calculation 

results were saved into a spreadsheet, along with the measured raw data. Table 10 shows 

the instruments used in the experimental study and their accuracies. 

 

 

 

 

 

 

 

 

 



 

58 

 

Table 10 Instrument specifications and accuracies 
Measurement Instrument Specifications Accuracies

Barometric pressure Barometer, 600-1100 mb a (0.6-1.1×105 P) ±0.15% 
Air DB temperature Calibrated RTD probe, 32-140°F (0-60°C) ±0.4°F (±0.2°C) 
Air WB temperature Calibrated RTD probe, 32-140°F (0-60°C) ±0.4°F (±0.2°C) 

Airflow chamber temperature Calibrated RTD probe, 32-140°F (0-60°C) ±0.4°F (±0.2°C) 
Refrigerant temperature Calibrated thermocouple, 32-140°F (0-60°C) ±0.4°F (±0.2°C) 

Refrigerant pressure 
Gauge pressure transmitter  
0-1000 psi (0-6.9×106 Pa) 

±0.3% Full Scale 

Refrigerant mass flow rate 
Coriolis mass flow meter  

0-26 lbm/min (0-12 kg/min) 
±0.2% Reading 

External static pressure Air pressure transmitter, 0-1 in. w.g. (0-250 Pa) ±0.25% Full Scale 
Airflow chamber static pressure Air pressure transmitter, 0-3 in. w.g. (0-750 Pa) ±0.25% Full Scale 

Chamber nozzle differential pressure Air pressure transmitter, 0-3 in. w.g. (0-750 Pa) ±0.25% Full Scale 
Compressor power Power transducer, 0-4 kW ±0.2% Full Scale 

Indoor blower power 
Condenser fan power 

Power transducer, 0-1 kW ±0.2% Full Scale 

Voltage Voltage transducer, 0-300 V ±0.25% Full Scale 

 

 

3.3.3 Data Reduction and Uncertainty Analysis 

A series of calculations was performed by using the measurements of 

temperature, pressure, mass flow rate, and power to characterize the cooling 

performance in terms of the total cooling capacity, condensing unit power, and sensible 

heat ratio (SHR). For example, the air-side sensible, latent, and total capacities were 

determined according to Equations (9) to (11), respectively.  

ሶ௦௖௜ݍ  = ொሶ ೘೔(௖೛ೌభ௧ೌభି௖೛ೌమ௧ೌమ)௩೙  ௜ (9)ܧ+

ሶ௟௖௜ݍ  = ொሶ ೘೔௄(ఠభିఠమ)௩೙  (10) 

ሶ௧௖௜ೌݍ  = ொሶ ೘೔(௛ೌభି௛ೌమ)௩೙  ௜ (11)ܧ+

The refrigerant-side cooling capacity was calculated by using Equation (12). 
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ሶ௧௖௜ೝݍ  = ሶݓ ௥(ℎ௥ଶ − ℎ௥ଵ) (12) 

In addition, the sensible heat ratio (SHR), defined as the ratio of the sensible cooling 

capacity to the total cooling capacity, was calculated by using Equation (13). 

ܴܪܵ  = ௤ሶ ೞ೎೔௤ሶ ೟೎೔ೌ (13) 

It should be noted that the above performance parameters are based on the gross cooling 

performance, which is determined without considering the heating effect caused by the 

indoor blower.  

The combined uncertainties in the above calculated terms, namely cooling 

capacities and the SHR, were resulted from instrument accuracies associated with 

measurements of temperature, pressure, mass flow rate, and power. The Kline and 

McClintock (1953) method was used to estimate the uncertainty propagation. For 

example, the uncertainty for the refrigerant-side cooling capacity was determined as 

following 

 ܷ௤೟೎೔ೝ = ටቀడ௤೟೎೔ೝడ௛ೝమ ∙ ௛ೝమቁଶݑ + ቀడ௤೟೎೔ೝడ௛ೝభ ∙ ௛ೝభቁଶݑ + ቀడ௤೟೎೔ೝడ௪ሶ ೝ ∙ ௪ሶݑ ೝቁଶ
 (14) 

The ݑ௛ೝమ and ݑ௛ೝభ terms are uncertainties associated with refrigerant enthalpies, which 

are dependent on the uncertainties of the refrigerant temperature and pressure 

measurements, while the ݑ௪ሶ ೝ term is the uncertainty of the refrigerant mass flow rate 

based on the flow meter’s accuracy. At a confidence level of 95%, the combined 

uncertainties in the final results were calculated and summarized in Table 11. 
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Table 11 Uncertainties for calculated terms 
Calculated Term Uncertainty at 95% confidence interval 

Evaporator airflow rate ±1.0% 
Air enthalpy ±1.0% 

Air humidity ratio ±1.5% 
Sensible cooling capacity ±1.5% 
Latent cooling capacity ±10.0% 

Total cooling capacity, air side ±3.0% 
Total cooling capacity, refrigerant side ±1.0% 

Sensible heat ratio (SHR) ±3.5% 

 

 

3.3.4 Experimental Results 

The cooling performance was characterized in terms of the total cooling capacity, 

condensing unit power, and SHR, all of which were determined from the experimental 

measurements of temperature, pressure, mass flow rate, and power along with the 

calculations performed in Equations (9) to (13). To investigate airflow impacts on the 

cooling performance, three performance parameters, namely the total cooling capacity, 

condensing unit power, and SHR, were plotted against the evaporator airflow rate. 

Figure 16 shows the total cooling capacity and the condensing unit power consumption 

over an airflow range of 1000 to 2250 ft3/min (0.47 to 1.06 m3/s). As can be seen in 

Figure 16, variations in evaporator airflow rates affect these two performance parameters 

differently. For example, the condensing unit power, which is the sum of power 

consumptions of the compressor and the condenser fan, remains almost constant over the 

entire airflow range, with only a 3% increase from 4.27 to 4.40 kW in response to 

increasing airflows from 1000 to 2250 ft3/min (0.47 to 1.06 m3/s). In contrast, the total 

cooling capacity continuously increases with increasing airflow rates, showing a 20% 
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increase in the total cooling capacity from 50.5 to 60.4 kBtu/h (14.8 to 17.7 kW) as the 

airflow rate is increased from 1000 to 2250 ft3/min (0.47 to 1.06 m3/s). 

 

 

 

Figure 16 Cooling capacity and power consumption for a range of evaporator 
airflow 
 

 

Figure 17 shows the behavior of SHR with changes of evaporator airflow rates. 

As can be seen, increasing airflows lead to increases in SHR. For instance, SHR is 

increased by 29% from 0.62 to 0.80 as a result of airflow increases from 1000 to 2250 

ft3/min (0.47 to 1.06 m3/s). Due to decreases in the contact time between the air stream 
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and the cooling coil at conditions of increased airflow rates, part of latent cooling is 

converted to sensible cooling and consequently results in continuous increases in SHR. 

 

 

 

Figure 17 SHR for a range of evaporator airflow 
 

 

3.3.5 Model Development 

As mentioned earlier, the purpose of the experimental study phase of the research 

presented in this paper is to develop empirical models that can then be used to 

characterize the performance of residential air conditioners at different airflow and 

temperature conditions for simulation studies. Previous studies in the literature 

(Henderson et al. 2000, Kruis 2010, LBNL 2014) modeled the air conditioner 
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performance by using the rated performance data and a group of empirical curves. The 

rated performance data refers to the nominal airflow rate, total cooling capacity, SHR, 

and COP at the “A Test” condition specified in AHRI Standard 210/240 (2008), namely 

indoor temperatures at 80°F (26.7°C) DB / 67°F (19.4°C) WB and the outdoor 

temperature at 95°F (35°C) DB. Empirical curves that are modifier curves of cooling 

capacity, energy input ratio, and SHR as functions of flow fraction (FF) and 

temperatures were used in the past studies to account for variations in evaporator and 

condenser heat exchanger performance under varying environmental and building 

conditions. Specifically, these curves were used to calculate the actual cooling 

performance at conditions that deviate from the rating condition of airflow rate and 

temperature. Using the rated performance data and empirical curves, the actual cooling 

capacity at any airflow and temperature conditions is calculated as 

ሶ௧௖ݍ  = ሶ௧௖,௥௔௧௘ௗݍ ∙ CapModCurve(FF)∙CapModCurve( ௪ܶ௕೔, ௗܶ௕೚) (15) 

In a similar way, the electricity consumption of the condensing units is calculated by 

using the following equation 

 Pݎ݁ݓ݋ = ௤ሶ ೟೎,ೝೌ೟೐೏஼ை௉ೝೌ೟೐೏ ∙ EIRModCurve(FF)∙EIRModCurve൫ ௪ܶ௕೔, ௗܶ௕೚൯ (16) 

Also, the SHR at specific airflow rates and temperatures is calculated as  

ܴܪܵ  = ௥௔௧௘ௗܴܪܵ ∙ SHRModCurve(FF)∙SHRModCurve( ௪ܶ௕೔, ௗܶ௕೚) (17) 

The same approach as documented in the literature (Henderson et al. 2000, Kruis 

2010, LBNL 2014) and as described above was used in this study for modeling the air 

conditioner performance. The performance at the rating condition was experimentally 

determined, while the corresponding empirical curves were derived from both the 
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experimental data and the manufacturer’s catalog data. The modifier curves of cooling 

capacity (CapModCurve(FF)), energy input ratio (EIRModCurve(FF)), and SHR 

(SHRModCurve(FF)) as a function of the flow fraction were directly derived from the 

experimental results. As a first step, the measured total cooling capacity, condensing unit 

power, and SHR were normalized against the corresponding results at the rated airflow 

rate of 2000 ft3/min (0.94 m3/s) at the “A Test” condition. Then, these normalized results 

were fitted into second order polynomials as shown in Equation (18) with the 

independent variable of flow fraction, which is the ratio of the actual airflow rate to the 

rated airflow rate.  

 ቐCapModCurve (FF)EIRModCurve (FF)SHRModCurve (FF)ቑ = Cଵ ∙ FFଶ + Cଶ ∙ FF + Cଷ (18) 

The coefficients for Equation (18) were estimated from a regression analysis by 

using the least-squares approach, and they are summarized in Table 12, along with R2 

values ranging from 0.97 to 0.99. 

 

 

Table 12 Coefficients and R2 for performance modifier curves as a function of flow 
fraction 

Performance parameters 
Empirical coefficients ܴଶ Cଵ  Cଶ Cଷ 

CapModCurve -0.406 0.925 0.481 0.996 
EIRModCurve -0.0497 0.123 0.928 0.978 
SHRModCurve 0 0.403 0.601 0.996 
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Figure 18 shows the results of normalized total cooling capacity, condensing unit 

power, and SHR plotted against the flow fraction, along with the resulting empirical 

curves. As can be seen in Figure 18, the developed curves have good agreement with the 

experimental data. Also, the high R2 values above 0.97 listed in Table 12 indicates that 

the developed curves are capable of charactering the behaviors of total cooling capacity, 

condensing unit power, and SHR over an airflow range of 1000 to 2250 ft3/min (0.47 to 

1.06 m3/s). 

 

 

 

Figure 18 Normalized performance and empirical curves 
 

 

The modifier curves of cooling capacity (CapModCurve( ௐܶ஻೔, ஽ܶ஻೚)), energy 

input ratio (EIRModCurve( ௐܶ஻೔, ஽ܶ஻೚)), and SHR (SHRModCurve( ௐܶ஻೔, ஽ܶ஻೚)) as 
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functions of indoor WB and outdoor DB temperatures were derived from the 

manufacturer’s catalog data, which include power consumptions, total and sensible 

cooling capacities at various combined conditions of the indoor WB temperature in a 

range of 57 to 72 °F (13.8 to 22.2 °C) and the outdoor DB temperature in a range of 75 

to 125 °F (23.9 to 51.7 °C). Similar to the development of modifier curves as functions 

of the flow fraction, the catalog data at various combined indoor WB temperature and 

outdoor DB temperature conditions were normalized against the measured performance 

data at the “A Test” condition with an airflow rate of 2000 ft3/min (0.94 m3/s). Then, the 

normalized results of total cooling capacity, energy input ratio, and SHR were fitted into 

Equation (19), with indoor WB and outdoor DB being independent variables.  

 ൞CapModCurve ൫ ௐܶ஻೔, ஽ܶ஻೚൯EIRModCurve ൫ ௐܶ஻೔, ஽ܶ஻೚൯SHRModCurve൫ ௐܶ஻೔, ஽ܶ஻೚൯ ൢ  = C1+C2 ∙ ௐܶ஻೔ + C3 ∙ ௐܶ஻೔ଶ + C4 ∙ ஽ܶ஻೚ + C5 ∙ ஽ܶ஻೚ଶ +
C6 ∙ ௐܶ஻೔ ∙ ஽ܶ஻೚  (19) 

As before, the empirical coefficients in Equation (19) were estimated from a 

regression analysis on the normalized results by using the least-squares approach, and 

they are shown in Table 13, along with the R2 values for the developed performance 

curves. As noted, the R2 values in Table 13 are all above 0.9, which indicates the 

developed empirical curves are in good agreement with the normalized catalog data. 
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Table 13 Coefficients and R2 values for performance modifier curves as functions 
of temperature 

Performance parameters 
Empirical coefficients ܴଶ Cଵ Cଶ (°C-1) Cଷ (°C-2) Cସ (°C-1) Cହ (°C-2) C଺ (°C-2) 

CapModCurve 1.666 -6.78×10-2 2.94×10-3 -3.03×10-3 -7.79×10-6 -5.14×10-4 0.999 
EIRModCurve 0.516 -1.05×10-2 4.11×10-4 1.27×10-2 9.69×10-5 -4.61×10-5 0.999 
SHRModCurve 2.022 -2.52×10-2 -1.72×10-3 -4.48×10-3 4.50×10-5 3.04×10-4 0.904 

 

 

3.4 Building Energy Simulation 

The second important step, which follows the first step of developing cooling 

performance curves, required for investigating the impact of excess duct flow resistances 

on residential heating and cooling energy use is the development of 16 building energy 

simulations in EnergyPlus (LBNL 2013a). Also in this step, the simulations were 

integrated with the empirical performance curves in Equations (18) and (19) and 

corresponding coefficients in Table 12 and Table 13, along with performance models of 

PSC and ECM blowers that were developed in the previous study (DOE 2014). This 

section provides detailed information on the building model development and an 

extensive discussion of simulation results. 

 

3.4.1 Building Model Development 

Two building models were developed to represent typical residential dwellings in 

the Midwestern region (cold climate) and the Southern region (hot climate) of the United 

States. Specifically, Chicago, IL, and Austin, TX were selected as the representative 

locations in each region. Considering the great impact of local climates on the residential 

heating and cooling energy use (Franco et al. 2008), the selection of these two regions 
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with extreme climate conditions provides the best opportunity for comparing the 

regional energy consequences of different duct flow resistances.  

Both the Chicago and Austin homes were simulated as single-story buildings 

consisting of rectangular conditioned zones topped with unconditioned attics. The 

Chicago home had dimensions of 90 ft × 35 ft × 8 ft (27.3 m × 10.8 m × 2.4 m) with an 

unconditioned basement, while the Austin home was a slab-on-grade house with 

dimensions of 87 ft × 35 ft × 8 ft (26.4 m × 10.8 m × 2.4 m). Both homes were assumed 

to have four bedrooms. The thermal and physical properties of the building envelop, 

such as exterior walls, floors, roofs, windows, doors, ceilings, attics, and underground 

walls, were directly adopted from the residential prototype building models developed 

by the Pacific Northwest National Laboratory (Mendon and Taylor 2014, PNNL 2015) 

according to the 2012 International Energy Conservation Code (ICC 2011). Table 14 

summarizes the characteristics of the Chicago and Austin homes that were simulated in 

the study reported herein. 

 

 

Table 14 Characteristics of simulated homes 
Building characteristics Chicago home Austin home 

Climate zone 5A 2A 
Number of bedrooms  4 4 
Floor area, ft2 (m2) 3150 (293) 3045 (283) 

Foundation type unconditioned basement slab on grade 
Wall insulation, ft2·°F·h/Btu (m2·K/W) 20 (3.5) 13 (2.3) 

Ceiling insulation, ft2·°F·h/Btu (m2·K/W) 49 (8.6) 38 (6.7) 
Floor insulation, ft2·°F·h/Btu (m2·K/W) 30 (5.3) 13 (2.3) 

Window U-value, Btu/h· ft2·°F (W/m2·K) 0.32 (1.8) 0.40 (2.3) 
Window SHGC 0.4 0.25 

Door U-value, Btu/h· ft2·°F (W/m2·K) 0.32 (1.8) 0.4 (2.3) 
Underground wall insulation, ft2·°F·h/Btu (m2·K/W) 15 (2.6) 0 
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Infiltration, ventilation, and internal heat gains were also determined and added 

to the simulated buildings. The 2012 IECC (ICC 2011) specifies an infiltration rate of 

five air changes per hour (ach) for Climate Zone 2 and three air changes per hour (ach) 

for Climate Zone 5, respectively, at a pressure of 0.2 in. w.g. (50 Pa). These infiltration 

rates were converted into effective leakage areas (ELA) at a pressure of 0.016 in. w.g. (4 

Pa) by using Equation (20), resulting in an effective leakage area (ELA) of 1.09 ft2 (0.1 

m2) for the Chicago home and 1.76 ft2 (0.16 m2) for the Austin home for the simulation 

purpose. 

ܣܮܧ  = 0.186 ∙ ሶܳ௅௥ ටఘ ଶ∆௉ೞೝൗ஼೏  (20) 

In addition, a constant rate of 0.15 air changes per hour (ach) was added to the 

conditioned space in both the Chicago and Austin homes to account for occupancy-

caused infiltrations, such as door/window openings and exhaust fans (ASHRAE 2007a). 

A ventilation rate of 69 ft3/min (0.033 m3/s) for the Chicago home and a rate of 

68 ft3/min (0.032 m3/s) for the Austin home were determined according to Equation (21) 

from the 2012 IECC (ICC 2011) with an assumption of four bedrooms in each home. 

 Ventilation (݂3ݐ/min) = 0.01 × ܣܨܥ + 7.5 × ( ௕ܰ௥ + 1) (21) 

Heat gains from lights, equipment, and occupants were estimated according to 

Equation (22) based on the 2012 IECC (ICC 2011), leading to an internal heat gain of 

109 kBtu/day for the Chicago home and 107 kBtu/day for the Austin home.

 IGain (Btu/day) = 17900 + 23.8 × CFA + 4104 × Nୠ୰ (22) 
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In addition, 20% of the internal heat gain was assumed to be latent load while the rest 

was sensible load (ASHRAE 2007a). A daily internal heat-gain profile was adopted from 

ASHRAE Standard 90.2 (2007a) so that the hourly heat again could be calculated by 

multiplying the daily overall heat gain by the corresponding fraction factor from the 

profile. 

 

3.4.2 Equipment Selection and Performance Modeling 

After establishing the building models, load calculations were performed in 

EnergyPlus (LBNL 2013a) for the purpose of equipment selection. The climate design 

conditions of 99% heating dry-bulb temperature and 1% cooling dry-bulb temperature, 

with mean coincident wet-bulb temperatures, were taken from the ASHRAE handbook 

(ASHRAE 2009a) for Chicago, IL and Austin, TX and used for the whole house load 

calculation at each location. Following the 2012 IECC (ICC 2011), thermostats were set 

at 72°F (22.2°C) for heating and 75°F (23.9°C) for cooling. A heating oversizing factor 

of 1.3 and a cooling oversizing factor of 1.1 were applied to the calculated loads, which 

resulted in a heating load of 83 kBtu/h (24.3 kW) and a sensible cooling load of 37 

kBtu/h (10.8 kW) for the Chicago home along with a heating load of 65 kBtu/h (18.9 

kW) and a sensible cooling load of 42 kBtu/h (12.3 kW) for the Austin home.  

Based on the results from load calculations, appropriate heating and cooling 

equipment were identified. For the Chicago home, a 93 kBtu/h (27.3 kW) gas furnace 

and an air conditioner of 48 kBtu/h (14.1 kW) total cooling capacity were selected. The 

same type of equipment was chosen for the Austin home, with the heating and cooling 
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capacities being 72 kBtu/h (21.1 kW) and 60 kBtu/h (17.6 kW), respectively. For the 

purpose of simplification, duct leakages were assumed to be zero at both locations. The 

detailed heating and cooling equipment characteristics for both homes are presented in 

Table 15. 

 

 

Table 15 Characteristics of heating and cooling equipment in simulations 
 Chicago, IL Austin, TX 

Heating equipment 
Gas furnace 

93 kBtu/h (27.3 kW) output 
80% AFUE 

Gas furnace 
72 kBtu/h  (21.1 kW) output 

80% AFUE 

Cooling equipment 

Air conditioner 
48 kBtu/h (14.1 kW) 

SHR=0.77 
COP=4.01 

Air conditioner 
60 kBtu/h  (17.6 kW) 

SHR=0.77 
COP=4.01 

Duct leakage 0 0 

 

 

A series of performance parameters were input into EnergyPlus (LBNL 2013a) 

so that the performance of gas furnaces, air conditioners, and blowers could be 

accurately modeled. The heating performance of gas furnaces was determined from the 

nominal output heating capacity and the annual fuel utilization efficiency (AFUE), both 

of which were assumed to be constant and independent of airflow rates. The air 

conditioner cooling performance at different combined conditions of temperatures and 

airflow rates were determined by using the empirical curves developed earlier and 

shown in Equations (18) and (19). Specifically, modifier curves of cooling capacity, 

energy input ratio, and SHR as functions of temperatures and flow fractions, along with 
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the performance data at the rating condition, were used to determine the actual cooling 

capacities and power consumptions.  

The typical airflow and power performance of PSC and ECM blowers over a 

pressure range were determined from the DOE’s “virtual model” (DOE 2014), which is 

developed based on broad reviews of a large quantity of performance data for both PSC 

and ECM blowers from various manufacturers. This model correlates airflow rates 

(ft3/min) and efficacies (Watts per ft3/min) with external static pressures (in. w.g.) by 

fitting manufacturers’ catalog data into a second order polynomial, as shown in Equation 

(23). 

ݕ݂݂ܿܽܿ݅ܧ ݀݊ܽ ݓ݋݈݂ݎ݅ܣ  = ଵܥ × ଶܲܵܧ + ଶܥ ×  ଷ (23)ܥ+ܲܵܧ

Although the DOE’s “virtual model” (DOE 2014) does not provide the blower power as 

a function of external static pressures explicitly, the blower power can be calculated by 

using the airflow and efficacy at the same external static pressure. 

Blowers with nominal airflow rates of 1600 ft3/min (0.76 m3/s) and 2000 ft3/min 

(0.94 m3/s) were selected for the Chicago and Austin homes, respectively, so that they 

are compatible with the pre-sized heating and cooling equipment. As noted, Table 16 

lists the corresponding coefficients (C1, C2, and C3) used in Equation (23) for the PSC 

and ECM blowers that were selected for simulations. In addition, the airflow and power 

performance of the selected PSC and ECM blowers in both cooling and heating speeds 

were plotted against the external static pressure and are shown in Figure 19 and Figure 

20. 
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Table 16 Coefficients of airflow and efficacy curves for blowers 

Blower Location Performance 
Cooling Speed Heating Speed Cଵ Cଶ Cଷ Cଵ Cଶ Cଷ 

PSC blower 
Chicago home 

Airflow -570 49 1718 -570 49 1500 
Efficacy 0.19 -0.2 0.55 0.19 -0.2 0.55 

Austin home 
Airflow -570 49 2118 -570 49 1883 
Efficacy 0.19 -0.2 0.57 0.19 -0.2 0.57 

ECM blower 
Chicago home 

Airflow -103 99 1576 -103 99 1464 
Efficacy -0.01 0.25 0.13 -0.01 0.25 0.13 

Austin home 
Airflow -103 99 1976 -103 99 1832 
Efficacy -0.01 0.25 0.15 -0.01 0.25 0.15 

 

 

 

Figure 19 Airflow and power performance of PSC blowers from the DOE’s virtual 
model 
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Figure 20 Airflow and power performance of ECM blowers from DOE’s virtual 
model 
 

 

3.4.3 System Performance Determination for Different Duct Flow Resistance 

After selecting gas furnaces, air conditioners, and blowers for the Chicago and 

Austin homes, system performance, such as airflow rates, blower powers, cooling 

capacities, condensing unit powers, and SHRs, at different levels of duct flow resistance 

were determined, resulting in annual energy consumptions as a function of the ductwork 

flow resistance. As a first step, four reference system curves that describe the 

relationship between airflow rates and system flow resistances were generated at design 

pressures of 0.3, 0.5, 0.7, and 0.9 in. w.g. (75, 125, 175, and 225 Pa), which represent 

low, medium-low, medium-high, and high flow resistance ductworks, respectively. 

Then, airflow curves for PSC and ECM blowers were plotted and intersected with these 
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system curves at the design pressures for the cooling speed, which is shown in Figure 21 

as an example. The intersections of the blower airflow curves and the ductwork system 

curves are operating points, which represent unique operating conditions of airflows and 

pressures when a blower is connected to a ductwork of a specific flow resistance.  

 

 

 

Figure 21 Example of system and fan curves interaction 
 

 

Following the approach demonstrated in Figure 21, eight operating points were 

determined for each of the Chicago and Austin homes respectively with combinations of 

two blower types (i.e., PSC and ECM blowers) and four duct flow resistances (i.e., low, 

medium-low, medium-high, and high). At each point, the duct pressure, airflow rate, and 
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blower power were estimated. Also, blower overall efficiencies that are required by 

EnergyPlus (LBNL 2013a) for the modeling of blower power performance were 

calculated by using Equation (4) along with the results of duct pressure, airflow rate, and 

blower power at each operating point. Table 17 shows the performance of PSC and ECM 

blowers at each operating point that were used in the simulations. In addition, the 

standby power was assumed to be 5 W for PSC blowers and 9 W for ECM blowers. 

The blower performance data in Table 17 were input into EnergyPlus (LBNL 

2013a) for the simulation of PSC and ECM blowers at various duct flow resistances. 

Moreover, the knowledge of actual airflow rate enabled the calculation of actual cooling 

performance at each operating point, which is calculated from the rated data in 

conjunction with the developed empirical curves according to Equations (15) to (17). 
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Table 17 Blower performance data at each operating point 

Home Type 
Duct 
flow 

resistance 

Performance data 

Cooling mode Heating mode 

Duct 
pressure, 
in. w.g.

(Pa) 

Airflow, 
ft3/min
(m3/s) 

Power,
W 

η 
% 

Duct 
pressure, 
in. w.g.

(Pa) 

Airflow, 
ft3/min 
(m3/s) 

Power, 
W 

η 
% 

Austin, 
TX 

PSC 

Low 
0.3  
(75) 

2077 
(0.98) 

1097 6.7 
0.24 
(60) 

1865 
(0.88) 

992 5.3 

Medium 
low 

0.5 
(125) 

1992 
(0.94) 

1035 11.4 
0.41 
(102) 

1801 
(0.85) 

940 9.3 

Medium 
high 

0.7 
(175) 

1865 
(0.88) 

980 15.8 
0.59 
(147) 

1716 
(0.81) 

889 13.4 

High 
0.9 

(225) 
1695 
(0.80) 

925 19.5 
0.78 
(194) 

1568 
(0.74) 

835 17.3 

ECM 

Low 
0.3  
(75) 

1992 
(0.94) 

447 15.8 
0.26 
(64) 

1843 
(0.87) 

396 14.2 

Medium 
low 

0.5 
(125) 

1992 
(0.94) 

545 21.7 
0.43 
(108) 

1865 
(0.88) 

475 19.9 

Medium 
high 

0.7 
(175) 

1992 
(0.94) 

639 25.8 
0.61 
(151) 

1865 
(0.88) 

552 24.0 

High 
0.9 

(225) 
1992 
(0.94) 

727 28.9 
0.77 
(193) 

1843 
(0.87) 

623 27.0 

Chicago, 
IL 

PSC 

Low 
0.3  
(75) 

1674 
(0.79) 

853 7.0 
0.23 
(57) 

1483 
(0.7) 

762 5.2 

Medium 
low 

0.5 
(125) 

1610 
(0.76) 

796 11.9 
0.4 

(100) 
1420 
(0.67) 

715 9.4 

Medium 
high 

0.7 
(175) 

1483 
(0.7) 

741 16.4 
0.58 
(145) 

1335 
(0.63) 

666 13.7 

High 
0.9 

(225) 
1293 
(0.61) 

681 20.3 
0.77 
(192) 

1208 
(0.57) 

611 17.8 

ECM 

Low 
0.3  
(75) 

1589 
(0.75) 

326 17.3 
0.26 
(65) 

1483 
(0.7) 

288 15.8 

Medium 
low 

0.5 
(125) 

1589 
(0.75) 

404 23.4 
0.43 
(108) 

1483 
(0.7) 

351 21.6 

Medium 
high 

0.7 
(175) 

1589 
(0.75) 

479 27.5 
0.61 
(152) 

1483 
(0.7) 

413 25.8 

High 
0.9 

(225) 
1589 
(0.75) 

549 30.6 
0.79 
(197) 

1483 
(0.7) 

474 29.0 

 

 

3.4.4 Simulation Results 

By integrating the performance models of blowers and air conditioners with the 

established building models, a total of 16 simulations were conducted using EnergyPlus 
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(LBNL 2013a) to predict the annual heating and cooling energy use in the Chicago and 

Austin homes for various combinations of blower types and duct flow resistances. Table 

18 shows the number of variations in each key parameter and the total number of 

accomplished simulation runs. The energy impact of duct flow resistance was evaluated 

in terms of the electricity consumptions of indoor blowers and condensing units, along 

with natural gas consumptions of furnaces. For the purpose of comparisons, the 

simulation results of the low-flow resistance ductwork were used as a baseline scenario, 

and then changes at other conditions of flow resistance relative to the results at the low-

flow resistance were determined. 

 

 

Table 18 Variations in key parameters and number of simulation runs 
Parameter Description Number of variations 

Blower type PSC and ECM blowers 2 
Duct flow resistance Low, medium-low, medium-high, and high 4 

Location Austin, TX and Chicago, IL 2 
Total number of simulation runs 16 

 

 

3.4.4.1 Blower Electricity Consumption 

The energy impact of duct flow resistance varies with blower types, namely PSC 

and ECM blowers. Table 19 summarizes the annual blower electricity consumptions in 

the standby, cooling, and heating modes at different levels of duct flow resistance for the 

Austin home and the Chicago home. On account of differing local climates, the blower 

electricity consumptions in the heating and cooling modes are different for the Austin 
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home and the Chicago home. For example, the Austin home uses a significant amount of 

electricity in the cooling mode, showing about 71-77% of the total annual blower 

electricity consumption in the cooling mode and 21-22% in the heating mode, while the 

Chicago home consumes more electricity in the heating mode than in the cooling mode, 

showing 35-41% for cooling and 56-59% for heating. It should be emphasized again that 

the above comparisons are for blower electricity comparisons only and do not include 

the energy used by other system components. 

 

 

Table 19 Annual blower electricity consumptions 

Location 
Blower 
Type 

Duct flow 
resistance 

Operating Mode 
Standby, 

kWh 
Cooling, kWh Heating, kWh Total, kWh 

Austin, 
TX 

PSC 

Low* 34.4 1572 440.4  2046.8 
Medium low 34.4 (-0.1%) 1497.5 (-4.7%) 420.5 (-4.5%) 1952.4 (-4.6%) 
Medium high 34.2 (-0.4%) 1442.1 (-8.3%) 400.6 (-9.0%) 1876.9 (-8.3%) 

High 33.9 (-0.9%) 1407.7 (-10.5%) 374.5 (-15.0%) 1816.1 (-11.3%) 

ECM 

Low* 62.1  603.8 181.6 847.5 
Medium low 62.0 (-0.1%) 748.6 (24.0%) 216.9 (19.4%) 1027.5 (21.2%) 
Medium high 62.0 (-0.1%) 891.2 (47.6%) 251.1 (38.3%) 1204.3 (42.1%) 

High 62.0 (-0.1%) 1031.6 (70.9%) 282.3 (55.5%) 1375.9 (62.3%) 

Chicago, 
IL 

PSC 

Low* 34.4  607 904.6 1545.9 
Medium low 34.2 (-0.3%) 575.7 (-5.2%) 851.0 (-5.9%) 1460.9 (-5.5%) 
Medium high 34.1 (-0.3%) 553 (-8.9%) 794.3 (-12.2%) 1381.4 (-10.6%) 

High 33.9 (-0.9%) 536.7 (-11.6%) 730.6 (-19.2%) 1301.2 (-15.8%) 

ECM 

Low* 61.5 223.6  358.6 643.7 
Medium low 61.5 (0.0%) 278.2 (24.4%) 436.7 (21.8%) 776.4 (20.6%) 
Medium high 61.4 (-0.1%) 331.2 (48.1%) 514.4 (43.4%) 907.1 (40.9%) 

High 61.3 (-0.2%) 381.5 (70.6%) 592.3 (65.2%) 1035.1 (60.8%) 
* Baseline scenario of the low-flow resistance ductwork. 
Values in parenthesis are percentage changes relative to the baseline scenario. 
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The energy impact of duct flow resistance on blower electricity consumptions is 

characterized by the percentage changes relative to the baseline results of the low-flow 

resistance ductwork. These percentage changes are tabulated in Table 19 and also 

graphically presented in Figure 22, both of which show that annual electricity 

consumptions of PSC and ECM blowers are distinctly different in response to increasing 

the duct flow resistance. Because of decreasing airflow rates, PSC blowers consume less 

electricity when paired with ductworks of higher flow resistances. For example, the 

blower electricity consumption for the Austin home is decreased by 10.5% in the cooling 

mode and 15.0% in the heating mode as the duct flow resistance is increased from the 

lowest level to the highest level, which in turn leads to an 11.3% decrease in the annual 

blower electricity consumption. This impact is even greater for the Chicago home, 

showing decreases of 11.6% in the cooling mode, 19.2% in the heating mode, and 15.8% 

in the annual blower electricity consumption as the duct flow resistance is increased 

from the lowest level to the highest level.  
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Figure 22 Percentage changes in annual blower electricity consumptions relative to 
the baseline 
 

 

Compared with PSC blowers, the energy impact of the increasing duct flow 

resistance on ECM blowers is in the opposite direction, showing increases in the blower 

electricity consumption and of a greater magnitude. The reason for the increasing 

electricity use is because ECM blowers require additional power in order to maintain 

constant airflow rates at conditions of a higher flow resistance. For instance, the high 

flow resistance ductwork for the Austin home increases the blower electricity 

consumption by 70.9% in the cooling mode, 55.5% in the heating mode, and 62.3% in 

the annual consumption relative to the baseline results of the low flow resistance. A 

comparable incremental change due to increasing duct flow resistances is also observed 

for the Chicago home when paired with ECM blowers. 
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3.4.4.2 Condensing Unit Electricity and Natural Gas Consumptions 

It is important to note that the system airflow rates vary with the duct flow 

resistance, which consequently has impacts on system cooling and heating energy use. In 

addition to blower energy consumptions analyzed in the previous section, the annual 

electricity consumption of condensing units and the natural gas consumption of furnaces 

for the Austin and Chicago homes at different levels of flow resistance are summarized 

in Table 20. Also, the percentage changes in electricity and natural gas consumptions 

relative to the baseline results of the low-flow resistance ductwork are shown in Figure 

23.  

 

 

Table 20 Annual consumptions of condensing unit electricity and natural gas 

Location 
Blower 
Type 

Duct flow resistance 
Annual energy consumption 

Condensing unit electricity 
consumption, kWh 

Natural gas consumption, 
1000 ft3 

Austin, TX 

PSC 

Low* 5869.1 39.0 
Medium low 5893.3 (0.4%) 39.1 (0.2%) 
Medium high 5945.6 (1.3%) 39.2 (0.5%) 

High 6028.4 (2.7%) 39.3 (0.8%) 

ECM 

Low* 5696.5 40.2 
Medium low 5724.8 (0.5%) 40.0 (-0.4%) 
Medium high 5756.5 (1.1%) 39.9 (-0.8%) 

High 5789.0 (1.6%) 39.7 (-1.2%) 

Chicago, IL 

PSC 

Low* 2222.5 134.4 
Medium low 2243.3 (0.9%) 134.7 (0.2%) 
Medium high 2283.4 (2.7%) 134.9 (0.4%) 

High 2344 (5.5%) 135.2 (0.6%) 

ECM 

Low* 2121.3 136.9  
Medium low 2130.8 (0.4%) 136.6 (-0.3%) 
Medium high 2141.5 (0.9%) 136.2 (-0.5%) 

High 2153.4 (1.5%) 135.8 (-0.8%) 
* Baseline scenario of the low-flow resistance ductwork. 
Values in parenthesis are percentage changes relative to the baseline scenario. 
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Figure 23 Percentage changes in annual consumptions of condensing unit electricity 
and natural gas 
 

 

Both Table 20 and Figure 23 show that the percentage changes in non-blower 

energy consumptions caused by increasing the duct flow resistance are relatively small 

compared with the energy impact on blowers previously shown in Table 19 and Figure 

22. As a result of increasing the duct flow resistance from the lowest level to the highest 

level, the condensing unit electricity consumption is increased by up to 5.5% in systems 

with PSC blowers and 1.6% in systems with ECM blowers. The impact of increasing the 

duct flow resistance is even smaller on natural gas consumptions, showing ±1.5% 

changes. The reason that the increasing duct flow resistance does not result in 

comparable system energy changes as large as blower electricity consumptions is 
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because the electricity use of condensing units was about 2-3 times higher than blower 

electricity consumptions.  

In addition, Table 20 and Figure 23 reveal that increasing the duct flow 

resistance leads to increases in condensing unit electricity consumptions in systems with 

both PSC and ECM blowers but with different magnitudes. For example, because of 

decreases in cooling capacities that are caused by reduced airflow rates, the condensing 

unit electricity consumptions in systems with PSC blowers is consistently increased by 

up to 2.7% for the Austin home and 5.5% for the Chicago home in response to 

ductworks with increasing flow resistances. The corresponding increases in systems with 

ECM blowers are less dramatic due to the capability of ECM blowers to maintain a 

constant airflow rate over a pressure range, showing up to 1.6% increase for the Austin 

home and 1.5% increase for the Chicago home. The incremental changes in systems with 

ECM blowers are mainly caused by increased blower electricity consumptions 

responding to higher flow-resistance ductworks, which imposes an additional cooling 

load to systems and consequently leads to increases in condensing unit electricity 

consumptions.  

The impacts of duct flow resistance on natural gas consumptions are different for 

systems with PSC and ECM blowers. For example, Table 20 and Figure 23 show that in 

systems with PSC blowers the natural gas consumption is increased by up to 0.8% for 

the Austin home and 0.6% for the Chicago home as a result of increasing the duct flow 

resistance. These incremental changes are consequences of decreased blower electricity 

consumptions in the heating mode shown in Table 19 and Figure 22, which leads to less 



 

85 

 

heat gains from PSC blowers. Therefore, in order to satisfy a constant heating load, 

additional natural gas is consumed for the compensation of decreased blower heat gains. 

However, in systems with ECM blowers, the natural gas consumption is consistently 

decreased by up to 1.2% for the Austin home and 0.8% for the Chicago home when 

paired with ductworks of a higher flow resistance, as shown in Table 20 and Figure 23. 

Unlike PSC blowers, the electricity consumption of ECM blowers in the heating mode is 

increased by 55% for the Austin home and 65% for the Chicago home as a result of a 

higher flow resistance, which consequently leads to an increased motor heat gain. With a 

constant heating load, this increased motor heat gain tends to offset the natural gas 

consumption. 

 

3.4.4.3 Electricity Savings in Systems with ECM Blowers 

Another observation from the tabulated results in Table 19 and Table 20 is that 

systems with ECM blowers have less electricity consumptions compared to systems with 

PSC blowers at the same level of duct flow resistance. In order to quantify the impact of 

duct flow resistance on this electricity savings, the savings from blowers and condensing 

units, along with the total system electricity savings, when using ECM blowers 

compared to using PSC blowers were determined and summarized in Table 21,. In 

addition to the results presented in Table 21, the electricity savings with respect to the 

duct flow resistance are plotted in Figure 24.  
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Table 21 Annual electricity savings in systems with ECM blowers 

Location Duct flow resistance 

Annual electricity savings relative to systems with PSC blowers 

Blower Condensing Unit Total 
Percentage savings

from blowers 
kWh % kWh % kWh % % 

Austin, TX 

Low 1199.3 58.6 172.6 2.9 1371.9 17.3 87.4 
Medium low 924.9 47.4 168.5 2.9 1093.4 13.9 84.6 
Medium high 672.6 35.8 189.1 3.2 861.7 11.0 78.1 

High 440.2 24.2 239.4 4.0 679.6 8.7 64.8 

Chicago, IL 

Low 902.2 58.4 101.2 4.6 1003.4 26.6 89.9 
Medium low 684.5 46.9 112.5 5.0 797 21.5 85.9 
Medium high 474.4 34.3 141.9 6.2 616.3 16.8 77.0 

High 266.1 20.5 190.6 8.1 456.7 12.5 58.3 

 

 

 

Figure 24 Annual electricity savings in systems with ECM blowers relative to 
systems with PSC blowers 
 

 

Both Table 21 and Figure 24 show that the electricity savings from systems with 

ECM blowers compared to systems with PSC blowers vary with the duct flow 
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resistance. Although the savings from condensing units tends to increase for higher flow-

resistance ductworks, the blower and total electricity savings is decreased with the 

increasing duct flow resistance. For example, at the condition of low flow resistance, 

ECM blowers in both homes use approximately 60% less electricity than PSC blowers, 

with blower electricity savings of 1199.3 kWh for the Austin home and 902.2 kWh for 

the Chicago home. However, increases in the duct flow resistance dramatically decrease 

this 60% savings potential because of the decreased electricity consumption of PSC 

blowers as their airflow rates decrease and the increased electricity consumption of ECM 

blowers as it maintains constant airflow rates. When the duct flow resistance is increased 

from the lowest to the highest level, the savings potential of ECM blowers relative to 

PSC blowers diminishes from 58.6% to 24.2% for the Austin home with blower 

electricity savings of 440.2 kWh and from 58.4% to 20.5% for the Chicago home with 

blower electricity savings of 266.1 kWh. Consequently, total system savings for ECM 

blowers decreases from 17.3% to 8.7% for the Austin home and from 26.6% to 12.5% 

for the Chicago home, which is the result of 60 to 90% of the total electricity savings 

being from ECM blower operations. In addition, at the same level of duct flow 

resistance, the use of ECM blowers is more effective for the Chicago home than for the 

Austin home based on a higher percentage savings in the total electricity consumptions. 

 

3.5 Conclusions 

In this study, the impact of duct flow resistance on residential heating and 

cooling energy use was investigated by using laboratory experiments and building 
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energy simulations. As a first step, the cooling performance of a unitary air conditioner 

was measured and evaluated over an airflow range of 1000 to 2250 ft3/min (0.47 to 1.06 

m3/s), and then the experimental results were integrated with public-domain building 

simulation models, along with airflow and efficiency data for PSC and ECM blowers. A 

total of 16 simulations were conducted for various combinations of blower types, duct 

flow resistances, and locations, followed by a detailed result comparison of the flow 

resistance impact on electricity and natural gas consumptions in systems with PSC and 

ECM blowers in the climates of Austin, TX and Chicago, IL. As a result of increasing 

duct flow resistances from the lowest level to the highest level, simulation results show 

that  

• The electricity consumption of PSC blowers decreased by 11% for the Austin 

home and 16% for the Chicago home due to airflow decreases, while the 

electricity consumption of ECM blowers increased by 62% for the Austin home 

and 61% for the Chicago home as ECM blowers maintain airflow rates.  

• Electricity consumptions of condensing units in systems with PSC blowers 

increased by 2.7% for the Austin home and 5.5% for the Chicago home, while 

the electricity increase in systems with ECM blowers were less dramatic, being 

1.6% for the Austin home and 1.5% for the Chicago home.  

• Natural gas consumptions increased by 0.6-0.8% in systems with PSC blowers 

and decreased by 0.8-1.2% in systems with ECM blowers, mainly because in the 

latter case the increase in blower electricity consumptions contributed to space 

heating, then offsetting the natural gas consumption.  



 

89 

 

• Total electricity savings in systems with ECM blowers relative to systems with 

PSC blowers dramatically decreased from 17.3% to 8.7% for the Austin home 

and 26.6% to 12.5% for the Chicago home. 

• Results also indicate that 60 to 90% of the total electricity savings in systems 

with ECM blowers relative to the systems with PSC blowers were from ECM 

blower operations with the rest from condensing unit operations.  

• Moreover, the use of ECM blowers was more effective in the Chicago home in 

terms of a higher percentage savings in electricity consumptions compared to the 

Austin home at the same duct flow resistance in this simulation study. 

In summary, this study quantified the impact of duct flow resistance on 

residential heating and cooling energy consumptions in two different climate regions. 

The results provide further understanding of how the excess duct flow resistance affects 

the residential space heating and cooling energy consumptions. In addition, the results 

can also be used for the development of cost-effective designs for residential central air 

distribution systems. 
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4. ENERGY IMPACT AND LIFE CYCLE COSTS OF DUCT DESIGNS FOR 

RESIDENTIAL CENTRAL HVAC SYSTEMS WITH PSC AND ECM BLOWERS 

 

4.1 Overview 

The purpose of this study is to comprehensively evaluate energy impacts and life 

cycle costs of duct designs for residential central HVAC systems. Based on two 

contrasting climate conditions, namely climates in Chicago, IL and Austin, TX, building 

energy simulations were performed to predict the heating and cooling energy use in 

systems with PSC and ECM blowers that were paired with ductworks of varying flow 

resistances and duct materials. In addition to the energy use, the life cycle cost of each 

duct design was determined over a 15-year lifetime. Depending on the specific duct 

design, the annual energy costs in the Chicago home increased by 12-20% for systems 

with ECM blowers and 3-9% for systems with PSC blowers as the flow resistance 

increased from 0.3 to 0.8 in. w.g. (75 to 200 Pa). In the Austin home for the same flow 

resistance increases, the annual energy costs increased by 19-22% for systems with ECM 

blowers and 7-9% for systems with PSC blowers. Although the cost-effectiveness of a 

specific duct design is shown to be heavily dependent on initial duct fabrication and 

installation costs, the use of lower flow resistance ductworks generally leads to lifetime 

savings in the presence of supply and return leakages of 10%. Specifically, the lifetime 

savings is achieved in 6 out of 8 simulated cases for the Chicago home and all of the 

simulated cases for the Austin home. 
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4.2 Introduction 

Blowers with electronically commuted motors (ECMs) have recently gained 

increased usage in residential air handling units (AHUs) because of the potential for 

electricity savings over the more traditional permanent split capacitor (PSC) motors. For 

example, Sachs and Smith (2004) demonstrated that ECM blowers were capable of 

reducing the annual electricity consumption by 67 to 82% compared with PSC blowers 

based on the comparison of Average Annual Auxiliary Electrical Energy Consumption 

(EAE) for 107 furnaces with capacities varying from 26 to 130 KBtu/hr (7.6 to 38.1 kW). 

Following the same approach, Kendall (2004) estimated blower electricity savings of 38 

to 42% for single-stage furnaces and 63 to 67% for two-stage furnaces as a result of 

using ECM blowers.  

The blower electricity savings indicated by these reported results are based on 

the blower operation at ideal duct pressures ranging from 0.18 to 0.33 in. w.g. (45 to 82 

Pa) (ASHRAE 2007c); however, much of the benefits of using ECM blowers is lost in 

undersized duct systems with excess flow resistances (Ueno 2010), which are common 

in real-world installations. For instance, Walker (2008) compared the power 

performance of one PSC and one ECM blower over a range of pressures and blower 

speeds in a laboratory environment and showed that at an external static pressure of 0.2 

in. w.g. (50 Pa), which is representative of ideal ducting, the ECM blower consumed 

60% less power in the cooling mode and 45% less power in the heating mode relative to 

the PSC blower. Unfortunately, this savings substantially decreased at a higher external 

static pressure of 0.5 in. w.g. (125 Pa), which represents typical field installations. 
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Specifically, the 60% less power was reduced to only 8% less power in the cooling 

mode, and the 45% less power was reduced to 5% less power in the heating mode 

compared with the PSC blower. These experimental results show that the benefit of 

using ECM blowers is strongly tied to the proper design and installation of duct systems.  

The same conclusion was also drawn by Lutz et al. (2006) and Franco et al. 

(2008) from their simulation studies, which compared the blower energy consumption of 

PSC and ECM blowers at different duct flow resistances of 0.3, 0.5, and 0.8 in. w.g. (75, 

125, and 200 Pa) in 16 house locations across the United States. Their results showed 

that the electricity savings from ECM blowers relative to PSC blowers decreased with 

the increasing duct flow resistance and varied with weather conditions. For example, 

they reported that on a national basis, ECM blowers compared with PSC blowers 

consumed 45% less electricity with ducts at the low flow resistance of 0.3 in. w.g. (75 

Pa), 35% less electricity at the medium flow resistance of 0.5 in. w.g. (125 Pa), and 6% 

less at the high flow resistance of 0.8 in. w.g. (200 Pa). As one can observe from the 

above studies, the advantage of electricity savings from using ECM blowers over PSC 

blowers decreases as the duct flow resistance is increased, meaning that ECM blower 

electricity savings are over-estimated because of the excess flow resistance in the real-

world duct installations.  

Due to combinations of restricted duct designs, inappropriate installations, dirty 

filters, and fouled evaporators, most real-world residential duct systems have a flow 

resistance ranging from 0.3 to 1.1 in. w.g. (75 to 275 Pa) with a weighted average around 

0.5 in. w.g. (125 Pa) (DOE 2014). These flow resistances represented by external static 
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pressures are much higher than the typical laboratory testing conditions of 0.18 to 0.33 

in. w.g. (45 to 82.5 Pa) for residential heating and cooling equipment performance 

ratings according to ASHRAE Standard 103 (ASHRAE 2007c) and AHRI 210/240 

(AHRI 2008).  

As discussed previously, without appropriate duct designs to limit the system 

flow resistance, the use of ECM blowers becomes less cost-effective compared with PSC 

blowers. As an example, a project of replacing PSC blowers with ECM blowers in 

residential air handlers conducted in North Carolina projected an economic simple 

payback period of approximately 31 years when ECM blowers were operating in the 

auto mode and 7 years in the continuous circulation mode based on the ECM blower 

electricity savings relative to PSC blowers (Murray and Fitzpatrick 2012). Another 

project that included eight homes in Syracuse, New York estimated a savings-to-

investment ratio (SIR) of 0.63, which implies a negative net present value (NPV), by 

using the ECM blower electricity savings over an assumed 15-year lifetime as a result of 

replacing PSC blowers with ECM blowers (Aldrich and Williamson 2014). The 

economic analysis presented in both of these studies show that there may not be a 

justification for replacing PSC blowers with ECM blowers in real-world duct systems 

that have excess flow resistances. Furthermore, it can be concluded from the above 

studies that the use of ECM blowers is energy efficient and cost-effective only when 

they are paired with low-resistance ductworks. However, the duct systems with the 

lower flow resistance usually cost more because of the requirement for larger size ducts. 
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As a result, the higher duct cost may offset blower electricity savings so that there is no 

net savings.  

The impact of duct flow resistance on residential heating and cooling energy use 

should be evaluated from a system standpoint. For example, the previous studies that 

dealt with PSC and ECM blower comparisons only focused on blower electricity 

consumptions without considering the energy consumption of non-blower components, 

such as the electricity consumption of condensing units or the natural gas consumption 

of furnaces. The lack of emphasis on the other components and the whole system is 

surprising given the fact that the energy consumption of non-blower components is 80-

95% of the total energy use in a residential central HVAC system (Parker et al. 2005, 

Stephens et al. 2010). Again, realizing that past studies have only focused on blower 

electricity consumptions and neglected non-blower energy consumptions reinforces the 

need for a system approach for analyzing energy consumptions associated with different 

blower types and ducting designs.  

Only recently has a study of the system energy consumption as a function of the 

duct flow resistance and blower types been first performed and reported by Yin et al. 

(Yin et al. 2014b), who investigated the effect of duct flow resistance on the energy use 

in a residential central HVAC system with an ECM blower by integrating experimental 

results with building energy simulations. The study reported by Yin et al. (2014b) 

showed that as a result of increasing the duct flow resistance from 0.3 to 0.9 in. w.g. (75 

to 225 Pa), airflow rates decreased by 11% in the heating mode and 18% in the cooling 

mode. Of special importance, these airflow reductions led to an increase of 7% in the 
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annual condensing unit electricity consumption and 6% in the total system electricity 

consumption due to the combined effects of decreasing airflows and increasing blower 

powers. Also, in an earlier section of this report, the impact of duct flow resistance on 

annual electricity consumptions of blowers and condensing units was quantified and 

compared for systems with PSC and ECM blowers for two contrasting climates in 

Chicago, IL and Austin, TX, respectively. Results from this earlier section indicated that 

when the duct flow resistance was increased from 0.3 to 0.9 in. w.g. (75 to 225 Pa), the 

annual electricity consumption of condensing units in systems with PSC blowers 

increased by 3% for the Austin home and 6% for the Chicago home, while condensing 

unit electricity increases for systems with ECM blowers were less dramatic, being 1.6% 

for the Austin home and 1.5% for the Chicago home. In addition, the total electricity 

savings in systems with ECM blowers relative to systems with PSC blowers decreased 

from 17% to 9% for the Austin home and 27% to 13% for the Chicago home as a result 

of increasing the duct flow resistance from 0.3 to 0.9 in. w.g. (75 to 225 Pa). By showing 

that the excess duct flow resistance can affect both blowers and condensing unit 

electricity consumptions, the above studies confirm the necessity of investigating the 

impact of duct flow resistance on the energy use from a system standpoint. 

The excess pressure in restrictive duct systems not only affects the performance 

of blowers and air conditioners, but it also increases duct leakages that widely exist in 

residential dwellings and have been recognized as an additional source of energy loss 

(Bryan and Perez 2001, Kinney 2005, Modera 2005, Boudreaux et al. 2011, Stephens et 

al. 2011). Because of the assumption of zero duct leakages in building energy 
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simulations, neither the study conducted and reported by Yin et al. (2014b) nor the 

analysis reported earlier considered or assessed the energy consequences of duct 

leakages at excess duct pressures. In fact, because the duct leakage effect was neglected, 

these studies may have possibly underestimated the negative effect of high flow 

resistance ducts as found in actual real-world ducting systems.  

The study reported herein comprehensively evaluates the energy and economic 

impacts of duct designs for residential central HVAC systems with different blower 

types, namely PSC and ECM blowers, by using empirical blower models in conjunction 

with building energy simulations. Duct systems with three levels of flow resistance that 

were made from flexible ducts and sheet metal ducts were individually designed and 

integrated with code-compiled building models. Building energy simulations were 

performed in a heating-dominated (Chicago, IL) region and a cooling-dominated 

(Austin, TX) region in order to fully explore climate impacts. Energy losses caused by 

duct leakages with respect to different duct pressures were also simulated. It is 

understood that complex relationships exist among duct pressures, airflow rates, 

equipment performance, energy consumptions, and annual operating costs. Therefore, 

the cost-effectiveness of each duct design was assessed in terms of life cycle costs over a 

15-year lifetime with considerations of both initial duct fabrication/installation costs and 

consequential lifetime operating costs. 
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4.3 Annual Energy Consumption Analysis 

As the first step to determine the ductwork life cycle costs, annual energy 

consumptions resulted from different duct designs were predicted by using building 

energy simulations, along with empirical performance curves that were developed in 

earlier sections of this report. This section provides detailed information on the building 

model development, duct designs, equipment modeling, and analysis of simulation 

results. 

 

4.3.1 Building Model Development 

Two building models were developed to represent typical residential dwellings in 

the Upper Midwestern region (cold climate) and the Southern region (hot climate) of the 

United States. Specifically, Chicago, IL, and Austin, TX were selected as the 

representative locations in each region. The selection of these two regions allows us to 

explore the regional impacts, such as climates and local costs of labor, duct material, and 

energy, on designs of residential air distribution systems. Both the Chicago and the 

Austin homes were rectangular-shaped, single-story 1800 ft2 (167.2 m2) buildings with 

one conditioned zone and topped with an unconditioned attic. Both homes were designed 

with the same dimensions of 60 ft × 30 ft × 8 ft (18.3 m × 9.2 m × 2.4 m). The 

foundation type was an unconditioned basement for the Chicago home and slab-on-grade 

for the Austin home, both of which are typical building constructions in each region. 

Each home was also assumed to have three bedrooms with a gas furnace for heating and 

an air conditioner for cooling. The thermal and physical properties of building envelops, 
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such as exterior walls, floors, roofs, windows, doors, ceilings, attics, and underground 

walls, were directly adopted from the residential prototype building models developed 

by the Pacific Northwest National Laboratory (2015) according to 2012 International 

Energy Conservation Code (ICC 2011). It should be noted that the two homes are not 

being compared to each other in this study so there is no need for similar locations; 

rather it is more important to represent regional building and construction practices. 

Table 22 summarizes the characteristics of the Chicago and Austin homes. 

 

 

Table 22 Summary of building characteristics 
 Chicago home Austin home 

Climate zone 5A 2A 
Floor area, ft2 (m2) 1800 (167.2) 1800 (167.2) 

Foundation type unconditioned basement slab on grade 
Number of bedrooms 3 3 

Wall insulation, ft2·°F·h/Btu (m2·K/W) 20 (3.5) 13 (2.3) 
Ceiling insulation, ft2·°F·h/Btu (m2·K/W) 49 (8.6) 38 (6.7) 
Floor insulation, ft2·°F·h/Btu (m2·K/W) 30 (5.3) 13 (2.3) 

Window U-value, Btu/h· ft2·°F (W/m2·K) 0.32 (1.8) 0.40 (2.3) 
Window SHGC 0.4 0.25 

Door U-value, Btu/h· ft2·°F (W/m2·K) 0.32 (1.8) 0.4 (2.3) 
Underground wall insulation, 

ft2·°F·h/Btu (m2·K/W) 
15 (2.6) 0 

Heating and cooling temperature set point, 
°F (°C) 

72 (22.2) for heating 
75 (23.9) for cooling 

72 (22.2) for heating 
75 (23.9) for cooling 

Single-stage gas furnace, kBtu/hr (kW) 
48 (14.07) output  

80% AFUE 
42 (12.3) output  

80% AFUE 

Single-stage air conditioner, kBtu/hr (kW) 
30 (8.79) , 4.01 COP 

SHR=0.77 
36 (10.55), 4.01 COP 

SHR=0.77 
Duct insulation, h-ft2-F/Btu (m2·K/W) R8, 8.62 (1.518) R8, 8.62 (1.518) 

 

 

Infiltration, ventilation, and internal heat gains were also determined and added 

to the simulated buildings by using the same approach shown in Section 3.4. Parameters 
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and calculations used for modeling the effect of infiltration, ventilation, and internal heat 

gains are summarized in Table 23.  

In addition, 20% of the internal heat gain was assumed to be latent load while the 

rest was sensible load (ASHRAE 2007a). A daily internal heat-gain profile was adopted 

from ASHRAE Standard 90.2 (2007a) so that the hourly heat again could be calculated 

by multiplying the daily overall heat gain by the corresponding fraction factor from the 

profile. 

 

 

Table 23 Summary of parameters for infiltration, ventilation, and internal heat 
gains 

Parameters 
Parameter value 

Reference 
Chicago home Austin home 

Effective leakage area (ELA), ft2 (m2) 0.62 (0.058) 1.03 (0.096) Equation (20) 
Occupancy-caused infiltration, 

air change per hour 
0.15 0.15 (ASHRAE 2007a) 

Ventilation, ft3/min (m3/s) 48 (0.023) 48 (0.023) Equation (21) 
Internal heat gains, kBtu/day (kW) 73 (0.89) 73 (0.89) Equation (22) 

 

 

4.3.2 Duct Design and Modeling 

Duct designs were performed by following the procedures described in ACCA 

Manual D (Rutkowski 2011). Based on extensive field duct pressure measurements 

reported in previous studies (Walker 2008, DOE 2014), pressures of 0.3, 0.5, and 0.8 in. 

w.g. (75, 125, and 200 Pa) were used as design pressures to represent ductworks with 

low, medium, and high flow resistances, respectively. It should be noted that these 

pressures are total external static pressures (ESPs) at the blower outlet, including 
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pressure drops caused by both duct and non-duct components, such as air filters, cooling 

coils, return grilles, and supply registers. Available ESPs for duct designs were 

calculated from the total ESP by subtracting the fixed pressure drop of 0.26 in. w.g. (65 

Pa) due to non-duct components (Wilcox et al. 2006, Rutkowski 2011). At each design 

pressure, air distribution systems made from flexible ducts and rigid sheet metal ducts 

were individually developed and evaluated. In systems of the same duct material, the 

design parameters, such as duct layouts, length of duct runs, numbers of supply registers 

and return grilles, remained the same, and only the duct sizes were varied. For example, 

systems with lower pressure drops used larger size ducts, which also resulted in larger 

duct surface areas and the use of more duct materials, along with higher construction and 

installation costs. The corresponding duct design pressures and duct surface areas are 

summarized in Table 24. 

 

 

Table 24 Surface areas of designed ductwork 

Material Blower Type 
Flow resistance 

in. w.g. (Pa) 

Total duct surface area 
ft2 (m2) 

Chicago home Austin home 

Flexible 

PSC blower 
0.3 (75) 1126 (105) 1199 (111) 
0.5 (125) 814 (76) 819 (76) 
0.8 (200) 581 (54) 686 (64) 

ECM blower 
0.3 (75) 1034 (96) 1136 (106) 
0.5 (125) 817 (76) 882 (82) 
0.8 (200) 683 (63) 723 (67) 

Sheet metal 

PSC blower 
0.3 (75) 868 (81) 1030 (96) 
0.5 (125) 602 (56) 665 (62) 
0.8 (200) 521 (48) 525 (49) 

ECM blower 
0.3 (75) 864 (80) 867 (81) 
0.5 (125) 602 (56) 670 (62) 
0.8 (200) 521 (48) 580 (54) 
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Duct leakages were simulated by using the airflow network model (Gu 2007) in 

EnergyPlus (LBNL 2013a) so that the energy impact of duct leakages could be 

predicted. Duct leakages were simulated as a function of the effective leakage ratio and 

the differential pressure from the duct interior to the exterior (LBNL 2014), as shown in 

Equation (24). 

 ሶܳ ௅ = ௅ݎ ∙ ሶܳ௠௔௫ ∙ ߩ ∙ ቀ ∆௉ೞ∆௉ೞೝቁ଴.଺ହ
 (24) 

The effective leakage ratio (ݎ௅) is defined as the ratio of the leakage airflow rate to the 

total system airflow rate at a reference differential pressure of 0.1 in. w.g. (25 Pa). In this 

study, an effective leakage ratio of rL=0.1 was used for duct leakage modeling on both 

supply and return sides. It should be noted that the actual duct leakage is dependent on 

duct differential pressures, meaning that as the actual duct differential pressure deviates 

from the reference condition of 0.1 in. w.g. (25 Pa), the actual duct leakage also varies 

accordingly. 

 

4.3.3 Equipment Modeling 

Blowers with nominal airflow rates of 1000 and 1200 ft3/min (0.49 and 0.57 

m3/s) were selected for the Chicago home and the Austin home, respectively, so that the 

blowers would be compatible with the pre-sized heating and cooling equipment. At each 

location, both PSC and ECM blowers with the same nominal airflow rate were chosen. 

Therefore, a total of four blowers with combinations of two nominal airflow rates and 

two motor types were utilized in this study.  
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The accurate performance representations of PSC and ECM blowers with respect 

to pressure changes are critical to investigate the energy impact of duct flow resistance. 

In this study, the airflow rates and overall efficiencies of PSC and ECM blowers over a 

pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa) were characterized by using the 

empirical models and performance curves developed in Section 2 of this report, which 

are shown in Figure 25 and Figure 26. The operating points, representing actual airflow 

rates and overall efficiencies when blowers are connected to a specific duct design, were 

determined from these performance curves at the design duct flow resistance of 0.3, 0.5, 

and 0.8 in. w.g. (75, 125, and 200 Pa). Table 25 summarizes the airflow and overall 

efficiency at each operating point. 

 

 

 

Figure 25 Blower airflow curves as a function of pressures 
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Figure 26 Blower efficiency curves as a function of pressures 
 

 

Table 25 Airflow rate and overall efficiency at each operating point 

Home Location Blower Type 
Duct flow 
resistance  

in. w.g. (Pa) 

Airflow rate  
ft3/min (m3/s) 

Overall efficiency 
% 

Chicago home 

PSC blower 
0.3 (75) 1074 (0.51) 7.9 
0.5 (125) 997 (0.47) 15.1 
0.8 (200) 757 (0.36) 23.7 

ECM blower 
0.3 (75) 1011 (0.48) 19.4 
0.5 (125) 1012 (0.48) 25.4 
0.8 (200) 987 (0.47) 28.9 

Austin home 

PSC blower 
0.3 (75) 1298 (0.61) 7.9 
0.5 (125) 1206 (0.57) 15.1 
0.8 (200) 915 (0.43) 23.7 

ECM blower 
0.3 (75) 1213 (0.57) 19.4 
0.5 (125) 1214 (0.57) 25.4 
0.8 (200) 1184 (0.56) 28.9 
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As discussed earlier, in addition to impacting the blower performance, the duct 

flow resistance also affects both air conditioner cooling capacities and operating 

efficiencies because of their dependency on evaporator airflow rates. In order to capture 

the airflow impact on the cooling performance, the same group of empirical curves as 

developed and used in Section 3 of this dissertation were used herein, as was shown in 

Equations (18) and (19) along with the tabulated coefficients in Table 12 and Table 13. 

This group of empirical performance curves, namely cooling capacity, energy input 

ratio, and sensible heat ratio (SHR) as functions of flow fractions (FFs) and 

temperatures, accounts for variations in evaporator and condenser heat exchanger 

performance under varying environmental and building conditions.  

Both the Chicago home and Austin home used single-stage gas furnaces for 

space heating with a constant annual fuel utilization efficiency (AFUE) of 80%, which 

was assumed to be independent of variations in airflow rates. 

 

4.3.4 Simulation Results 

A group of parameters obtained from duct designs and equipment modeling (e.g., 

surface areas, effective leakage ratios, overall duct thermal resistances, flow resistance 

of duct designs, airflow rates and overall efficiencies of blowers) as well as air 

conditioner empirical performance curves was integrated with established building 

models to predict annual energy consumptions at different combined conditions of duct 

flow resistance and blower types. A total of 24 simulations were conducted by using 

EnergyPlus (LBNL 2013a) with the TMY3 weather file of Austin, TX and Chicago, IL. 
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(Wilcox and Marion 2008). Table 26 shows the number of variations in each key 

parameter and the total number of simulation runs. 

 

 

Table 26 Variations in key parameters and number of simulation runs 
Parameter Description Number of variations 

Blower type PSC and ECM blowers 2 

System flow resistance 
0.3, 0.5, and 0.8 in. w.g.  

(75, 125, and 200 Pa) 
3 

Duct material Flexible and sheet metal 2 
Location Austin, TX and Chicago, IL 2 

Total number of simulation runs  24 

 

 

The energy impact of duct flow resistance was characterized in terms of the 

electricity consumptions of blowers and condensing units along with the natural gas 

consumptions of furnaces. In addition, the annual energy costs at both locations were 

calculated by using the average local rates reported by U.S. Energy Information 

Administration (EIA), which are 10.3 cents /kWh of electricity and $8.20 per 1000 ft3 of 

natural gas for Illinois, and 11.36 cents/kWh of electricity and $10.53 per 1000 ft3 of 

natural gas for Texas (EIA 2014a, EIA 2014b). For the purpose of comparison, results at 

the low flow resistance of 0.3 in. w.g. (75 Pa) were used as the baseline scenario. The 

annual energy consumptions and utility costs at other conditions were determined and 

expressed in terms of percentage changes relative to the results at the low flow resistance 

of 0.3 in. w.g. (75 Pa). 
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Figure 27 and Figure 28 show the impacts of increasing system flow resistance 

on energy consumptions and annual costs in the presence of 10% duct leakages for the 

Chicago and Austin homes, respectively. In addition to Figure 27 and Figure 28, 

simulation results of energy consumptions categorized by blowers, condensing units, and 

furnaces are tabulated in Table 27, along with annual energy costs and percentage 

changes relative to the baseline results at the low flow resistance of 0.3 in. w.g. (75 Pa).  

 

 

 

Figure 27 Parameter changes for the Chicago home with duct leakages 
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Figure 28 Parameter changes for the Austin home with duct leakages 
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Table 27 Annual energy consumption and cost resulting from varying ductworks 

Location 
Blower 

type 
Duct 

material 

Duct flow 
resistance, in. 

w.g. (Pa) 

Annual energy consumption and cost 
Blower 

electricity, 
kW 

Condensing 
electricity, kW 

Natural 
gas,  

1000 ft3 

Annual 
cost, USD 

Chicago 
home 

ECM 

Sheet 
metal 

0.3 (75)* 573 1464 58 681 
0.5 (125) 691 (21%) 1545 (6%) 62 (8%) 738 (8%) 
0.8 (200) 911 (59%) 1699 (16%) 67 (17%) 820 (20%) 

Flex 
0.3 (75)* 580 1509 58 693 
0.5 (125) 679 (17%) 1563 (4%) 58 (1%) 710 (2%) 
0.8 (200) 885 (53%) 1714 (14%) 62 (7%) 777 (12%) 

PSC 

Sheet 
metal 

0.3 (75)* 1089 1502 56 725 
0.5 (125) 694 (-36%) 1558 (4%) 62 (11%) 742 (2%) 
0.8 (200) 491 (-55%) 1756 (17%) 68 (22%) 792 (9%) 

Flex 
0.3 (75)* 1096 1542 55 727 
0.5 (125) 682 (-38%) 1580 (2%) 59 (6%) 716 (-2%) 
0.8 (200) 480 (-56%) 1738 (13%) 63 (14%) 746 (3%) 

Austin 
home 

ECM 

Sheet 
metal 

0.3 (75)* 672 3929 13 654 
0.5 (125) 826 (23%) 4189 (7%) 14 (9%) 714 (9%) 
0.8 (200) 1112 (66%) 4549 (16%) 15 (20%) 801 (22%) 

Flex 
0.3 (75)* 678 4012 12 662 
0.5 (125) 826 (22%) 4233 (6%) 13 (4%) 709 (7%) 
0.8 (200) 1102 (62%) 4559 (14%) 13 (10%) 785 (19%) 

PSC 

Sheet 
metal 

0.3 (75)* 1399 4123 12 755 
0.5 (125) 1235 (-12%) 4290 (4%) 13 (10%) 769 (2%) 
0.8 (200) 1129 (-19%) 4725 (15%) 15 (23%) 822 (9%) 

Flex 
0.3 (75)* 1404 4160 12 757 
0.5 (125) 1232 (-12%) 4319 (4%) 12 (6%) 762 (1%) 
0.8 (200) 1122 (-20%) 4741 (14%) 14 (16%) 810 (7%) 

* Baseline scenario at the flow resistance of 0.3 in. w.g. (75 Pa). 
Values in parenthesis are percentage changes relative to the baseline for the same blower type and duct material. 

 

 

Table 27 indicates that the energy cost of blowers, condensing units, and 

furnaces contribute differently to the annual energy cost. For example, 63 to 71% of the 

annual energy cost for the Chicago home is from the furnace natural gas consumption 

because of the heating-dominated climate. The electricity consumption of condensing 

units in the Chicago home accounts for 24 to 26% of the annual energy cost, while the 

blower electricity consumption is only 7 to 17% of the annual energy cost depending on 

specific ductworks and blower types. However, for the Austin home, the largest portion 
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of the annual energy cost, namely 62 to 69%, is from the electricity consumption of 

condensing units because of the cooling-dominated climate, followed by the furnace 

natural gas consumption and the blower electricity consumption, which are 16 to 20% 

and 12 to 20%, respectively. The above analysis shows that local climates have a 

significant impact on the space heating and cooling energy use, which in turn influences 

the cost-effectiveness of duct designs.  

It can also be observed from Figure 27 and Figure 28 along with Table 27 that 

the annual energy consumptions (i.e., electricity and natural gas) and costs at both 

locations increase in systems with ECM blowers as the system flow resistance is 

increased from 0.3 to 0.8 in. w.g. (75 to 200 Pa). For example, compared with the 

baseline results at the low flow resistance of 0.3 in. w.g. (75 Pa), the use of sheet metal 

ductwork at the high flow resistance of 0.8 in. w.g. (200 Pa) in the Chicago home 

increases the blower electricity consumption by 59%, the condensing unit electricity 

consumption by 16%, and the natural gas consumption by 17%. The corresponding 

energy consequences for the Austin home are increases of 66% in the blower electricity 

consumption, 16% in the condensing unit electricity consumption, and 20% in the 

natural gas consumption. Even more importantly, the annual energy cost increases by 

20% for the Chicago home and 22% for the Austin home as the duct flow resistance is 

increased from 0.3 in. w.g. (75 Pa) to 0.8 in. w.g. (200 Pa). As can be seen in Table 27, 

increases in annual energy consumptions and costs of a similar magnitude also occur in 

systems using flexible ductworks as the flow resistance is increased from 0.3 to 0.8 in. 

w.g. (75 to 200 Pa).  
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For systems with PSC blowers, the increasing duct flow resistance decreases the 

blower electricity consumption, which is the result of decreasing airflows, while it 

increases both the condensing unit electricity consumption and the natural gas 

consumption. For instance, relative to the baseline results at the low flow resistance of 

0.3 in. w.g. (75 Pa), the blower electricity consumption decreases by 55% for the 

Chicago home and 19% for the Austin home as a result of using sheet metal ductworks 

with the high flow resistance of 0.8 in. w.g. (200 Pa). In contrast, the sheet metal 

ductworks at the high flow resistance of 0.8 in. w.g. (200 Pa) leads to increases of 17% 

in the condensing unit electricity consumption for the Chicago home and 15% for the 

Austin home, along with increases of 22% in the natural gas consumption for the 

Chicago home and 23% for the Austin home. Compared with the results at the low flow 

resistance of 0.3 in. w.g. (75 Pa), the annual energy cost increases by 9% for both the 

Chicago home and the Austin home when using sheet metal ductworks with the high 

flow resistance of 0.8 in. w.g. (200 Pa). Similar results of energy consumptions and 

annual costs are also found in systems using flexible ductworks as the flow resistance is 

increased. 

 

4.4 Life Cycle Cost Analysis 

The life cycle cost analysis requires assessing initial duct fabrication/installation 

costs and lifetime operating costs resulting from a specific duct design. The duct costs 

were estimated based on the results from a literature review. While the lifetime operating 

costs were predicted from the simulation results of annual energy costs and the 
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procedures in 2013 Energy Price Indices and Discount Factors for Life-Cycle Cost 

Analysis (Rushing et al. 2013). The cost-effectiveness of each ductwork was evaluated 

in terms of the life cycle cost over an assumed 15-year lifetime. 

 

4.4.1 Determination and Analysis of Duct Fabrication and Installation Costs 

The accurate estimation of duct fabrication and installation costs is critical for the 

life cycle cost analysis. But securing a reasonable duct cost is difficult given the fact that 

duct costs depend on a number of factors, such as home sizes, home layout, number of 

registers, location of installations, and accessibility. More importantly, labor and 

material costs vary greatly by geographical regions, which add more complexity in the 

cost estimation. In order to simplify the duct cost estimation, this study eliminates 

excessive duct design variables by maintaining the same duct layout and only varying 

duct sizes for systems with different flow resistances. Therefore, the duct surface area, 

which is the only difference among duct designs of the same material, is considered as 

the primary factor in the cost determination. After a broad literature review, the data 

reported by Stephens (2014) were selected, which provides fabrication/installation costs 

of ductworks made from flexible and sheet metal ducts by contractors in Chicago, IL and 

Austin, TX. After grouping these duct cost data by material and plotting them against 

duct surface areas, correlations between duct costs and surface areas were developed, as 

shown in Figure 29. By using the corresponding correlations, duct costs for various 

combinations of material and flow resistances were estimated for the Chicago and 

Austin homes as a function of duct surface areas. It should be noted that the costs of 
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ductworks for the Chicago home were determined by using the correlations according to 

the Chicago contractor, while the costs of ductworks for the Austin home were 

determined by using the correlations according to the Austin contractor. 

 

 

 

Figure 29 Estimated ductwork costs as a function of surface area 
 

 

Table 28 summarizes the estimated ductwork costs for both the Chicago and 

Austin homes. Also, in each category of the same duct material and blower type, the 

premium costs, defined as differences relative to the cost of ductworks with the high 

flow resistance of 0.8 in. w.g. (200 Pa), are calculated and tabulated in Table 28. Results 

in Table 28 indicate that at the same level of flow resistance, ductworks made from rigid 
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sheet metal are 75-105% more expensive than flexible ductworks. For example, for the 

Chicago home, the cost of the sheet metal ductwork at the low flow resistance of 0.3 in. 

w.g. (75 Pa) is 96% higher than the flexible ductwork at the same flow resistance, with 

ductwork costs for the two cases being $8,488 versus $4,334.  

 

 

Table 28 Ductwork costs and premium costs for the Chicago and Austin homes 

Material 
Blower 
Type 

Duct flow 
resistance, in. w.g. 

(Pa) 

Chicago home Austin home 
Ductwork 

costs (USD) 
Premium 

costs (USD) 
Ductwork 

costs (USD) 
Premium 

costs (USD) 

Flexible 

PSC 
0.3 (75) 4,334 500 (13%) 4,010 371 (9%) 
0.5 (125) 4,048 214 (6%) 3,735 96 (2%) 
0.8 (200)* 3,834 0 3,639 0 

ECM 
0.3 (75) 4,250 322 (8%) 3,964 299 (8%) 
0.5 (125) 4,050 123 (3%) 3,781 115 (3%) 
0.8 (200)* 3,927 0 3,665 0 

Sheet 
metal 

PSC 
0.3 (75) 8,488 1,698 (25%) 7,262 -166 (-2%) 
0.5 (125) 7,185 395 (6%) 7,382 -46 (-1%) 
0.8 (200)* 6,790 0 7,428 0 

ECM 
0.3 (75) 8,470 1,680 (25%) 7,316 -94 (-1%) 
0.5 (125) 7,185 395 (6%) 7,380 -29 (-0.5%) 
0.8 (200)* 6,790 0 7,410 0 

* Baseline scenario at the flow resistance of 0.8 in. w.g. (200 Pa). 
Values in parenthesis are percentage changes relative to the baseline for the same blower type and duct material. 

 

 

Based on the Chicago contractor’s data, ductworks with lower flow resistances 

tend to have higher costs regardless of duct materials. For instance, for flexible 

ductworks with PSC blowers, the costs of ductworks with the flow resistance of 0.3 and 

0.5 in. w.g. (75 and 125 Pa) are 13% and 5% higher respectively compared to the cost of 

the ductwork with the high flow resistance of 0.8 in. w.g. (200 Pa) made from the same 

material, which result in premium costs of $500 and $214 for ductworks with lower flow 
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resistances. Comparisons of sheet metal ductworks with PSC blowers yield 

corresponding cost increases of 25% and 6%, respectively, relative to the ductwork with 

the high flow resistance of 0.8 in. w.g. (200 Pa), resulting in premium costs of $1,698 

and $395. Similar patterns in duct costs are also observed among ductworks for ECM 

blowers.  

However, the trend of duct costs produced by using the Austin contractor’s data 

is different from the trend revealed by the Chicago contractor’s data. For example, the 

costs of flexible ductworks for PSC blowers with the flow resistances of 0.3 and 0.5 in. 

w.g. (75 and 125 Pa) are 10% and 3% higher respectively, compared to the cost of the 

flexible ductwork with the high flow resistance of 0.8 in. w.g. (200 Pa). In contrast, the 

costs of sheet metal ductworks for PSC blowers with the flow resistances of 0.3 and 0.5 

in. w.g. (75 and 125 Pa) are 2% and 1% lower than the cost of the sheet metal ductwork 

with the high flow resistance of 0.8 in. w.g. (200 Pa). Similar cost variations are also 

observed in ductworks for ECM blowers. These variations in duct costs may be caused 

by varying regional labor and material expenses, which is important for evaluating the 

cost-effectiveness of duct designs at different locations. 

 

4.4.2 Determination and Analysis of Lifetime Operating Costs 

Lifetime operating costs due to different duct designs were determined by 

following the procedure outlined in 2013 Energy Price Indices and Discount Factors for 

Life-Cycle Cost Analysis (Rushing et al. 2013). In this procedure, the projected nominal 

price indices for electricity and natural gas in the residential sector from 2014 to 2043 
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are predicted based on the DOE energy price projections and presented in tables. The 

procedure also includes the effects of four alternative hypothetical rates of general price 

inflations: 2%, 3%, 4% and 5%. The future annual energy costs of electricity and natural 

gas were estimated by using the annual costs from simulations and the corresponding 

nominal price indices under an assumed inflation rate of 3%. Because the price indices 

are reported for the four Census regions (West, Midwest, Northeast and South), different 

price indices were applied to the Chicago and Austin homes, which took local and 

regional impacts on energy prices into consideration. The total operating costs over the 

lifespan of 15 years were converted into present values (PVs) according to Equation (25) 

with an assumed inflation rate of 3%. 

 ܲ ௧ܸ௢௧௔௟ = ∑ ஼௢௦௧೙(ଵା௚)೙ଵହ௡ୀଵ  (25) 

The present values (PVs) of operating costs over an assumed 15-year lifetime for 

the Chicago and Austin homes are summarized in Table 29, which shows the results at 

three different levels of the duct flow resistance while considering the energy impact of 

duct leakages. In addition, the operating savings that results from using ductworks with 

lower flow resistances of 0.3 and 0.5 in. w.g. (75 and 125 Pa) relative to using ductworks 

with the high flow resistance of 0.8 in. w.g. (200 Pa) are calculated and tabulated in 

Table 29.  
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Table 29 Operating costs and savings resulting from different ductworks for the 
Chicago and Austin homes 

Material 
Blower 
Type 

Duct flow 
resistance  

in. w.g. (Pa) 

Chicago, IL Austin, TX 
Operating costs 

(USD) 
Operating 

savings (USD) 
Operating costs 

(USD) 
Operating 

savings (USD) 

Flexible 

PSC 
blower 

0.3 (75) 11,902 362 (3%) 12,016 853 (7%) 
0.5 (125) 11,746 517 (4%) 12,107 762 (6%) 
0.8 (200)* 12,263 0 12,869 0 

ECM 
blower 

0.3 (75) 11,384 1,358 (11%) 10,523 1,944 (16%) 
0.5 (125) 11,654 1,088 (9%) 11,269 1,197 (10%) 
0.8 (200)* 12,742 0 12,467 0 

Sheet 
metal 

PSC 
blower 

0.3 (75) 11,881 1,141 (9%) 11,997 1,069 (8%) 
0.5 (125) 12,196 826 (6%) 12,211 856 (7%) 
0.8 (200)* 13,022 0 13,067 0 

ECM 
blower 

0.3 (75) 11,194 2,262 (17%) 10,403 2,327 (18%) 
0.5 (125) 12,128 1,328 (10%) 11,344 1,386 (11%) 
0.8 (200)* 13,456 0 12,730 0 

* Baseline scenario at the flow resistance of 0.8 in. w.g. (200 Pa). 
Values in parenthesis are percentage changes relative to the baseline for the same blower type and duct material. 

 

 

Table 29 indicates that the use of ductworks at lower flow resistances is 

beneficial to 15-year operating costs as evidenced by the operating savings in all 

simulated cases. For example, in systems with PSC blowers for the Chicago home, the 

use of flexible ductworks with the lower flow resistances of 0.3 and 0.5 in. w.g. (75 and 

125 Pa) leads to operating savings of $362 and $517, respectively, accounting for 3% 

and 4% of the 15-year operating cost resulting from using the flexible ductwork with the 

high flow resistance of 0.8 in. w.g. (200 Pa). The operating savings from using flexible 

ductworks at lower flow resistances in systems with ECM blowers for the Chicago home 

is even greater, with operating savings being $1,358 for the low flow resistance 

ductwork and $1,088 for the medium flow resistance ductwork. Generally, relative to the 

15-year operating cost at the high flow resistance of 0.8 in. w.g. (200 Pa), the use of 

lower flow resistance ductworks results in the operating savings of 3-17% for the 



 

117 

 

Chicago home and 6-18% for the Austin home, depending on the specific duct designs 

and blower types. 

It also can be observed from Table 29 that systems with ECM blowers for the 

Austin home always have lower 15-year operating costs compared to systems with PSC 

blowers for the same ductwork, flow resistance, and duct material. The same statement 

is true for the Chicago home for the two lower flow resistances of 0.3 and 0.5 in. w.g. 

(75 and 125 Pa), but for the high flow resistance of 0.8 in. w.g. (200 Pa), systems with 

PSC blowers result in lower 15-year operating costs than systems with ECM blowers. 

For example, the combination of a PSC blower with the flexible ductwork at the medium 

flow resistance of 0.5 in. w.g. results in an operating cost of $11,746, which is $92 

higher than the operating cost from the same ductwork paired with an ECM blower. 

However, at the high flow resistance of 0.8 in. w.g. (200 Pa), the operating cost of the 

system with a PSC blower is $479 lower than the operating cost of the system with an 

ECM blower, with the operating cost being $12,263 versus $12,742. The same trends are 

also found in cases where sheet metal ductworks are used for the Chicago home. 

 

4.4.3 Determination and Analysis of Life Cycle Costs 

The impact of duct designs with different materials and flow resistances were 

evaluated for both the Chicago and Austin homes in terms of life cycle costs, which are 

the sum of initial duct fabrication/installation costs and present values (PVs) of operating 

costs over a 15-year lifetime. For the comparison purpose, the baseline scenario was the 

life cycle cost of ductworks at the high flow resistance of 0.8 in. w.g. (200 Pa), which 
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represents typical duct installations in real world (Franco et al. 2008, Walker 2008). The 

cost-effectiveness of ductworks at the other two lower flow resistances was determined 

and then expressed in terms of lifetime savings (or losses) relative to the baseline results. 

Table 30 summarizes life cycle costs and lifetime savings of ductworks with different 

flow resistances and materials. In addition, Figure 30 and Figure 31 show the lifetime 

savings relative to the baseline results at the high flow resistance of 0.8 in. w.g. (200 Pa) 

for the Chicago and Austin homes, respectively. 

 

 

Table 30 Life cycle costs of ductworks for the Chicago and Austin homes 

Material 
Blower 
Type 

Duct flow 
resistance  

in. w.g. (Pa) 

Chicago, IL Austin, TX 
Life cycle  

costs (USD) 
Lifetime savings 

(USD) 
Life cycle  

costs (USD) 
Lifetime savings 

(USD) 

Flexible 

PSC 
blower 

0.3 (75) 16,236 -139 (-1%) 16,026 482 (3%) 
0.5 (125) 15,794 303 (2%) 15,843 666 (4%) 
0.8 (200)* 16,097 0 16,508 0 

ECM 
blower 

0.3 (75) 15,634 1,035 (6%) 14,487 1,645 (10%) 
0.5 (125) 15,704 965 (5%) 15,050 1,082 (7%) 
0.8 (200)* 16,669 0 16,132 0 

Sheet 
metal 

PSC 
blower 

0.3 (75) 20,369 -557 (-3%) 19,259 1,235 (6%) 
0.5 (125) 19,381 431 (2%) 19,593 902 (4%) 
0.8 (200)* 19,812 0 20,494 0 

ECM 
blower 

0.3 (75) 19,664 581 (3%) 17,719 2,421 (12%) 
0.5 (125) 19,313 933 (5%) 18,725 1,415 (7%) 
0.8 (200)* 20,246 0 20,140 0 

* Baseline scenario at the flow resistance of 0.8 in. w.g. (200 Pa). 
Values in parenthesis are percentage changes relative to the baseline for the same blower type and duct material. 
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Figure 30 Lifetime savings for different ductworks in the Chicago home  
 

 

 

Figure 31 Lifetime savings for different ductworks in the Austin home  
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As shown in Figure 30 and Table 30, six out of eight simulated cases for the 

Chicago home result in lifetime savings, while two simulated cases result in lifetime 

losses. The lifetime savings range from $580 to $1030 for ductworks with the low flow 

resistance of 0.3 in. w.g. (75 Pa) and from $300 to $960 for ductworks with the medium 

flow resistance of 0.5 in. w.g. (125 Pa), depending on blower types and duct materials. 

The two combinations that lead to lifetime losses are the systems with PSC blowers 

paired with the low flow resistance ductworks of 0.3 in. w.g. (75 Pa), with a loss of $140 

for the flexible ductwork and $560 for the sheet metal ductwork over a 15-year lifetime. 

Lifetime losses for these combinations of PSC blowers and low flow resistance 

ductworks are the consequences of higher premium duct costs, which are the result of 

larger size ducting, and relatively lower operating savings from using the low flow 

resistance ductworks. For instance, the cost of the flexible ductwork with the low flow 

resistance of 0.3 in. w.g. (75 Pa) is $500 higher than the cost of the ductwork with the 

high flow resistance of 0.8 in. w.g. (200 Pa) made from the same material, but the 

lifetime operating savings from using the low flow resistance ductwork is only $360 

relative to the use of the high flow resistance ductwork. Consequently, the combination 

of the high premium duct cost of $500 and the relatively low savings of $360 in the 

operating cost results in a lifetime loss of $140 when compared with the use of high flow 

resistance ductwork. Similarly, for the combination of PSC blowers and the rigid 

ductwork, the high premium duct cost of $1,700 offsets the savings of $1,140 in the 

operating cost resulting from using the low flow resistance ductwork, and therefore leads 

to a lifetime loss of $560 relative to the use of high flow resistance ductwork. 
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It can also be observed from Figure 30 and Table 30 that using lower flow 

resistance ductworks is more cost-effective in systems with ECM blowers than that in 

systems with PSC blowers as evidenced by higher lifetime savings for systems with 

ECM blowers. For example, when paired with flexible ductworks with the medium flow 

resistance of 0.5 in. w.g. (125 Pa), the lifetime savings in systems with ECM blowers is 

$960, while the use of the same ductwork in systems with PSC blowers results in a lower 

lifetime savings of $300. The same comparison of sheet metal ductworks with the 

medium flow resistance of 0.5 in. w.g. (125 Pa) yields lifetime savings of $930 in 

systems with ECM blowers versus $430 in systems with PSC blowers. The higher 

lifetime savings from using lower flow resistance ductworks in systems with ECM 

blowers is primarily due to the higher operating savings in systems with ECM blowers 

than that in systems with PSC blowers when paired with ductworks of the same flow 

resistance and duct material, which can be observed in Table 29.  

For the Austin home, the use of lower flow resistance ductworks leads to lifetime 

savings in all simulated cases, as shown in Figure 31 and Table 30. Depending on 

blower types and duct materials, lifetime savings vary from $480 to $2400 for the low 

flow resistance ductworks and from $660 to $1400 for the medium flow resistance 

ductworks. Again, systems with ECM blowers demonstrate higher lifetime savings than 

systems with PSC blowers when paired with ductworks of the same material and flow 

resistance. For example, when flexible ductworks are used, systems with ECM blowers 

have the lifetime savings of $1,645 at the low flow resistance of 0.3 in. w.g. (75 Pa) 

compared to the lifetime savings of $482 for PSC blowers at the same flow resistance. 
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Similarly, at the medium flow resistance of 0.5 in. w.g. (125 Pa), the savings for ECM 

blowers are $1,082 versus the lifetime savings of $482 at the same flow resistance for 

PSC blowers. The same conclusion is also true in cases where sheet metal ductworks are 

used at flow resistances of 0.3 and 0.5 in. w.g. (75 and 125 Pa), with the resulting 

lifetime savings being $2,421 and $1,415 for systems with ECM blowers versus $1,235 

and $902 for systems with PSC blowers. 

It was shown that the use of lower flow resistance ductworks brings lifetime 

savings in a majority of simulated cases over a 15-year lifetime, specifically six out of 

eight cases for the Chicago home and all cases for the Austin home. The above analysis 

indicates that lifetime savings are mainly dependent on premium duct costs and 

operating savings relative to the baseline results at the high flow resistance of 0.8 in. 

w.g. (200 Pa), with the operating savings for the larger ducts being greater in magnitude 

than the added cost of duct materials. Although the use of lower flow resistance 

ductworks can lead to lifetime savings in systems with both types of blowers, it is more 

cost-effective in systems with ECM blowers than PSC blowers as evidenced by higher 

lifetime savings as shown in Figure 30 and Figure 31 along with Table 30. 

 

4.5 Sensitivity Analysis 

The life cycle cost analysis in this study was based on a series of assumptions, 

with typical assumptions being values of cooling equipment COPs, heating equipment 

AFUEs, building envelop characteristics, equipment lifetime, blower performance, duct 

leakages and insulation levels, future energy prices, and inflation rates. Changes in any 
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of these assumptions may influence the final lifetime costs of duct designs. Among these 

assumptions, the impact of duct fabrication/installation costs is worth examining because 

duct costs vary significantly depending on geographic regions, designs, and materials. In 

addition, the analysis presented in the previous section indicates that duct costs can have 

a significant impact on the lifetime savings of duct designs. Therefore, a sensitivity 

analysis was performed in this section to analyze the impact of duct costs on duct life 

cycle costs.  

In the previous analysis, life cycle costs and lifetime savings relative to the 

baseline results at the high flow resistance of 0.8 in. w.g. (200 Pa) were determined 

based on the local duct costs. Specifically, duct costs in the Chicago home was estimated 

according to the Chicago contractor, while duct costs in the Austin home was estimated 

according to the Austin contractor. In this section, lifetime savings over the 15-year 

lifetime of each duct design for the Chicago and Austin homes were estimated again by 

using the duct costs from both the Chicago and Austin contractors. Table 31 summarizes 

ductwork lifetime savings based on both Chicago and Austin contractors. In addition, the 

same information shown in Table 31 was plotted in in Figure 32 and Figure 33 for the 

Chicago home and the Austin home, respectively. 
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Table 31 Results of ductwork life cycle cost based on both Chicago and Austin 
contractors 

Location Material Blower Type 
Duct flow resistance 

in. w.g. (Pa) 

Lifetime savings (USD) 
Based on the Chicago 

contractor 
Based on the Austin 

contractor 

Chicago 
Home 

Flexible 

PSC blower 
0.3 -139 -31 
0.5 303 349 
0.8 0 0 

ECM blower 
0.3 1035 1105 
0.5 965 991 
0.8 0 0 

Sheet 
metal 

PSC blower 
0.3 -557 1254 
0.5 431 853 
0.8 0 0 

ECM blower 
0.3 581 2374 
0.5 933 1354 
0.8 0 0 

Austin 
Home 

Flexible 

PSC blower 
0.3 381 482 
0.5 639 666 
0.8 0 0 

ECM blower 
0.3 1563 1645 
0.5 1050 1082 
0.8 0 0 

Sheet 
metal 

PSC blower 
0.3 -1409 1235 
0.5 167 902 
0.8 0 0 

ECM blower 
0.3 925 2421 
0.5 946 1415 
0.8 0 0 
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Figure 32 Lifetime savings of ductworks for the Chicago home according to both 
contractors 

 

 

 

Figure 33 Lifetime savings of ductworks for the Austin home according to both 
contractors 
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Because of similar costs of flexible ductworks from both the Chicago contractor 

and the Austin contractor, Table 31 shows consistent results of lifetime savings in 

systems with flexible ductworks. For example, the combination of a PSC blower with 

the low flow resistance flexible ductwork for the Chicago home results in a lifetime loss 

of $139 based on the duct cost from the Chicago contractor. The result of negative 

lifetime savings remains based on the Austin contractor’s duct cost, except for a lower 

loss of $31. However, dramatic changes in systems with sheet metal ductworks occur 

when different duct costs are used to calculate lifetime savings. For instance, the 

PSC+Rigid combination at the low flow resistance ductwork for the Chicago home 

results in a lifetime loss of $557 based on the duct cost from the Chicago contractor, but 

the same system configuration leads to lifetime savings of $1,254 based on the duct cost 

from the Austin contractor. The similar result is also observed for the Austin home, 

showing a transition from a lifetime loss of $1,409 to lifetime savings of $1,235 for the 

combination of PSC+Rigid when paired with the low resistance ductwork.  

In addition, the amount of lifetime savings varies significantly according to the 

Chicago contractor and the Austin contractor. For example, by using the duct cost from 

the Chicago contractor, the combination of ECM+Rigid at the medium flow resistance of 

0.5 in. w.g. (125 Pa) in the Chicago home leads to lifetime savings of $993. However, 

the lifetime savings for the same system configuration increased by 45% and becomes 

$1,354 based on the duct cost from the Austin contractor. Similar results are also found 

in other system configurations at both locations. Generally, lifetime savings based on the 

Austin contractor’s duct costs are 3-27% higher for systems with flexible ductworks and 
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40-450% higher for systems with sheet metal ductworks compared with the lifetime 

savings according to the Chicago contractor’s duct costs. These results suggest that the 

lifetime savings of duct designs is sensitive to the initial duct costs and can vary 

significantly with different contractors even for the same system configuration. 

 

4.6 Conclusions 

Excess operating pressures caused by restrictive ductworks have a great impact 

on energy use in residential central heating and cooling systems. These excess pressures 

not only affect blower airflow performance and energy consumptions, but also the 

cooling performance of air conditioning equipment. Excess operating pressures can also 

increase the duct leakage, which is a major source of energy loss that has not been 

thoroughly investigated in the past when evaluating the energy impact of duct designs. 

Therefore, in order to comprehensively assess the consequences of duct designs on both 

blower and non-blower energy use, a total of 24 building energy simulations was 

performed in this study for various combinations of duct flow resistance, blower types, 

duct materials, and home locations, namely a Chicago home and an Austin home. In 

addition, the cost-effectiveness of each duct design in the simulated cases was 

characterized in terms of life cycle costs over an assumed 15-year lifetime.  The major 

findings are: 

1. Compared to the use of ductworks with a low flow resistance of 0.3 in. w.g. 

(75 Pa), the use of ductworks with a high flow resistance of 0.8 in. w.g. (200 

Pa) leads to increases in electricity consumptions of both blowers and 
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condensing units and natural gas consumptions of furnaces. Consequently, 

the annual energy costs are increased with increasing duct flow resistances. 

Specifically, simulation results show that annual energy costs in the Chicago 

home increased by 12-20% for systems with ECM blowers and 3-9% for 

systems with PSC blowers, depending on specific duct designs, as the flow 

resistance was increased from 0.3 to 0.8 in. w.g. (75 to 200 Pa). In the Austin 

home, the annual energy costs increased by 19-22% for systems with ECM 

blowers and 7-9% for systems with PSC blowers for the same flow resistance 

increase used in the Chicago home.   

2. The use of lower flow resistance ductworks is beneficial to 15-year operating 

costs for both the Chicago and Austin homes. Compared to the results from 

the use of ductworks with the high flow resistance of 0.8 in. w.g. (200 Pa), 

the use of ductworks with the low flow resistance of 0.3 in. w.g. (75 Pa) for 

the Chicago home results in 15-year operating savings of 11-17% for systems 

with ECM blowers and 3-9% for systems with PSC blowers, depending on 

specific duct designs. The same comparison for the Austin home yields 15-

year operating savings of 16-18% for systems with ECM blowers and 7-8% 

for systems with PSC blowers. 

3. Lifetime savings over a 15-year period for all of the combinations of flow 

resistances, duct materials, and blower types analyzed in this study is 

especially important from an overall economic standpoint because it 

considers both operating costs and duct construction/installation costs. The 
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results show that lower flow resistance ductworks yield 15-year lifetime 

savings in 6 out of 8 simulated cases for the Chicago home and all of the 

simulated cases for the Austin home. For two cases in the Chicago home, the 

combination of high premium duct costs and relatively low consequential 

operating savings leads to lifetime losses relative to the use of high flow 

resistance ductworks. 

4. Although using lower flow resistance ductworks can reduce life cycle costs 

for systems with both types of blowers, it is more cost-effective for systems 

with ECM blowers than systems with PSC blowers as evidenced by the 

higher lifetime savings that results from the use of lower flow resistance 

ductworks with ECM blowers. 

5. The cost-effectiveness of a specific duct design largely depends on duct costs 

and can vary significantly with different contractors even for the same system 

configuration. Of special importance, it was found that duct 

construction/installation costs have a large effect on the lifetime savings over 

a 15-year period.  

By determining the effects of blower types, duct flow resistances, and duct 

materials on energy consumptions and life cycle costs of duct designs, the study reported 

herein can facilitate the construction of residential air distribution systems with the 

lowest cost of ownership. In addition, the results generated herein can provide HVAC 

professionals with efficient, long-term, and cost-effective solutions as they face 

numerous tradeoffs and challenges associated with designing residential duct systems.
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5. CONCLUSIONS 

 

The ultimate goal of the study reported herein is to evaluate and compare the 

impact of different blowers, namely the more traditional technology of PSC blowers and 

the relatively new technology of ECM blowers, on energy consumptions and duct design 

practices for residential central heating and cooling systems by using both laboratory 

measurements and building energy simulations. In this study, the airflows, powers, and 

overall efficiencies of six PSC blowers and six ECM blowers were measured in a well-

instrumented laboratory environment with a nozzle airflow chamber. In addition to 

experimental performance evaluations and comparative analysis, the airflow and 

efficiency models for both PSC blowers and ECM blowers were developed over an 

external static pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa) from the statistical 

analysis of measured data. Besides developing the blower airflow and efficiency models, 

a correlation linking the air conditioner cooling performance with evaporator airflow 

rates was derived from laboratory experiments. Then, the performance models of 

blowers and air conditioners were integrated with building energy simulations to predict 

the system energy use, including the electricity consumptions of blowers and condensing 

units along with the natural gas consumptions of gas furnaces, as a result of using PSC 

blowers or ECM blowers at different duct flow resistances. Finally, a life cycle cost 

analysis of duct designs over a 15-year lifetime was performed over a range of design 

parameters, such as duct flow resistances, blower types, duct materials, and home 

locations, to comprehensively assess the energy consequences of duct designs for 
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residential central HVAC systems with PSC blowers and ECM blowers. The major 

findings are: 

• The airflow performance responding to changes in the external static pressure 

(ESP) for PSC and ECM blowers are significantly different. Specifically, airflow 

rates for PSC blowers decrease as the external static pressure (ESP) is increased, 

while ECM blowers are able to maintain relatively constant airflow rates 

regardless of pressure changes.  

• Power consumptions of PSC blowers decrease as the external static pressure 

(ESP) is increased because of the substantial airflow reductions that occur. In 

contrast, ECM blowers require more power to maintain airflow rates at higher 

flow resistances.  

• The overall efficiencies of both PSC and ECM blowers increase with increasing 

external static pressures (ESPs). For PSC blowers, all speeds essentially have the 

same level of efficiencies, while ECM blowers tend to have higher efficiencies at 

lower speeds. In addition, for the same pressure, ECM blowers tend to have 

higher efficacies than PSC blowers, especially in the low pressure range.  

• Among blowers with the same motor type, there are great variations in the 

performance of airflow, power, and efficiency with respect to changes in the 

external static pressure (ESP). These performance variations are because of 

varying designs of housings, blower wheel dimensions, airflow ranges, motor 

sizes, and speed control mechanisms. 
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• As a result of increasing the duct flow resistance from 0.3 to 0.9 in. w.g. (75 to 

225 Pa), the electricity consumption of PSC blowers decreased by 11% for the 

Austin home and 16% for the Chicago home due to airflow decreases, while the 

electricity consumption of ECM blowers increased by 62% for the Austin home 

and 61% for the Chicago home as ECM blowers maintain airflow rates.  

• For the same increase in the duct flow resistance, the electricity consumptions of 

condensing units in systems with PSC blowers increased by 2.7% for the Austin 

home and 5.5% for the Chicago home, while the electricity increase in systems 

with ECM blowers were less dramatic, being 1.6% for the Austin home and 1.5% 

for the Chicago home.  

• Increasing the duct flow resistance from 0.3 to 0.9 in. w.g. (75 to 225 Pa) 

increased the natural gas consumptions by 0.6-0.8% in systems with PSC 

blowers and decreased by 0.8-1.2% in systems with ECM blowers, mainly 

because in the latter case the increase in blower electricity consumptions 

contributed to space heating, then offsetting the natural gas consumption.  

• Total electricity savings in systems with ECM blowers relative to systems with 

PSC blowers dramatically decreased from 17.3% to 8.7% for the Austin home 

and 26.6% to 12.5% for the Chicago home as a result of increasing the duct flow 

resistance from 0.3 to 0.9 in. w.g. (75 to 225 Pa).  

• Results also indicate that 60 to 90% of the total electricity savings in systems 

with ECM blowers relative to the systems with PSC blowers were from ECM 

blower operations with the rest from condensing unit operations.  
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• Moreover, the use of ECM blowers was more effective in the Chicago home in 

terms of a higher percentage savings in electricity consumptions compared to the 

Austin home at the same duct flow resistance in this simulation study. 

• Compared to the use of ductworks with a low flow resistance of 0.3 in. w.g. (75 

Pa), the use of ductworks with a high flow resistance of 0.8 in. w.g. (200 Pa) 

leads to increases in electricity consumptions of both blowers and condensing 

units and natural gas consumptions of furnaces. Consequently, the annual energy 

costs are increased with increasing duct flow resistances. Specifically, simulation 

results show that annual energy costs in the Chicago home increased by 12-20% 

for systems with ECM blowers and 3-9% for systems with PSC blowers, 

depending on specific duct designs, as the flow resistance was increased from 0.3 

to 0.8 in. w.g. (75 to 200 Pa). In the Austin home, the annual energy costs 

increased by 19-22% for systems with ECM blowers and 7-9% for systems with 

PSC blowers for the same flow resistance increase used in the Chicago home.   

• The use of lower flow resistance ductworks is beneficial to 15-year operating 

costs in both the Chicago and Austin homes. Compared to the results from the 

use of ductworks with the high flow resistance of 0.8 in. w.g. (200 Pa), the use of 

ductworks with the low flow resistance of 0.3 in. w.g. (75 Pa) in the Chicago 

home results in 15-year operating savings of 11-17% for systems with ECM 

blowers and 3-9% for systems with PSC blowers, depending specific duct 

designs. The same comparison in the Austin home yields 15-year operating 
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savings of 16-18% for systems with ECM blowers and 7-8% for systems with 

PSC blowers. 

• Lifetime savings over a 15-year period for all of the combinations of flow 

resistances, duct materials, and blower types analyzed in this study is especially 

important from an overall economic standpoint because it considers both 

operating costs and duct construction/installation costs. The results show that 

lower flow resistance ductworks yield 15-year lifetime savings in 6 out of 8 

simulated cases in the Chicago home and all of the simulated cases in the Austin 

home. For two cases in the Chicago home, the combination of high premium duct 

costs and relatively low consequential operating savings leads to lifetime losses 

relative to the use of high flow resistance ductworks. 

• Although using lower flow resistance ductworks can reduce life cycle costs for 

systems with both types of blowers, it is more cost-effective for systems with 

ECM blowers than systems with PSC blowers as evidenced by the higher 

lifetime savings that results from the use of lower flow resistance ductworks with 

ECM blowers. 

• The cost-effectiveness of a specific duct design largely depends on duct costs and 

can vary significantly with different contractors even for the same system 

configuration. Of special importance, it was found that duct 

construction/installation costs have a large effect on the lifetime savings over a 

15-year period.  
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In summary, the study reported herein characterized the typical performance of 

PSC and ECM blowers and evaluated their impacts on energy use and duct design 

practices in residential central HVAC systems. The collected experimental data provide 

useful information for the development of rating standards to regulate electricity 

consumptions of PSC and ECM blowers. Of greater importance, the airflow and 

efficiency models reported herein provide an effective approach to predict typical PSC 

and ECM blower performance based on external static pressures. These models can be 

used by HVAC engineers for residential system designs, equipment selections, and 

blower performance modeling.  

In addition, the results from building energy simulations determined the effects 

of blower types, duct flow resistances, and duct materials on energy consumptions and 

life cycle costs of duct designs. These results can facilitate the constructions of 

residential air distribution systems with the lowest cost of ownership and can provide 

HVAC professionals with efficient, long-term, and cost-effective solutions as they face 

numerous tradeoffs and challenges associated with designing residential duct designs.
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APPENDIX A AIR CONDITIONER PERFORMANCE TEST DATA 

 

The performance test results for the 60 kBtu/h (17.6 kW) air conditioner, 

including airflow rates, cooling capacities, energy balances, and powers of the 

compressor, condenser fan, and indoor blower, are tabulated in Table 32.  

 

 

Table 32 Performance test data for the air conditioner 

Test 
No. 

Test 
Condition 

Airflow 
Rate, 

ft3/min 
(m3/s) 

Net 
Total 

Cooling, 
Btu/h 
(kW) 

Net 
Sensible 
Cooling, 

Btu/h 
(kW) 

Indoor 
Blower 
Power, 

kW 

Condenser 
Fan 

Power, 
kW 

Compressor 
Power, kW 

Total 
Cooling 

Refrigerant 
Side Btu/h 

(kW) 

Energy 
Balance 

(%) 

1 A Test 
2196 
(1.04) 

57426 
(16.83) 

46200 
(13.54) 

0.89 0.22 4.17 58783 -2.4 

2 A Test 
1974 
(0.93) 

57052 
(16.72) 

43510 
(12.75) 

0.85 0.22 4.15 58352 -2.3 

3 A Test 
1758 
(0.83) 

56589 
(16.59) 

41126 
(12.05) 

0.70 0.22 4.14 55851 1.3 

4 A Test 
1500 
(0.71) 

54977 
(16.11) 

38290 
(11.22) 

0.48 0.22 4.15 55202 -0.4 

5 A Test 
1246 
(0.59) 

53657 
(15.73) 

34746 
(10.18) 

0.26 0.22 4.09 55257 -3.0 

6 A Test 
995 

(0.47) 
49341 
(14.46) 

30408 
(8.91) 

0.32 0.22 4.06 51322 -4.0 
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APPENDIX B AIR CONDITIONER GROSS COOLING PERFORMANCE DATA 

 

The air conditioner gross cooling performance data are derived from the 

measured net cooling performance data by adding the blower power consumption to the 

total and sensible cooling capacities so that the heating effect caused by the indoor 

blower could be compensated. The gross cooling performance data are tabulated in 

Table 33.  

 

 

Table 33 Gross cooling performance data for the air conditioner 

Test 
No. 

Airflow Rate, 
ft3/min (m3/s) 

Gross Total 
Cooling, Btu/h 

(kW) 

Gross Sensible 
Cooling, Btu/h 

(kW) 

Gross 
SHR 

Condensing Unit 
Power, kW 

Gross Coefficient 
of Performance 

1 2196 (1.04) 60472 (17.72) 49243 (14.43) 0.81 4.40 4.03 
2 1974 (0.93) 59921 (17.56) 46376 (13.59) 0.77 4.37 4.01 
3 1758 (0.83) 58993 (17.29) 43527 (12.76) 0.74 4.36 3.96 
4 1500 (0.71) 56618 (16.59) 39928 (11.70) 0.71 4.37 3.81 
5 1246 (0.59) 54552 (15.99) 35638 (10.44) 0.65 4.31 3.71 
6 995 (0.47) 50441 (14.78) 31505 (9.23) 0.62 4.27 3.46 
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APPENDIX C AIR CONDITIONER COOLING PERFORMANCE DATA FROM THE 

MANUFACTURER’S CATALOG 

 

Table 34 shows the manufacturer’s catalog data along with the modified results 

that were used to generate the empirical cooling performance curves as a function of 

indoor WB and outdoor DB temperatures. For the calculation of gross total cooling 

capacities, gross sensible cooling capacities, and gross SHRs, a blower power 

consumption of 0.85 kW was added to the net total and sensible cooling capacities from 

the manufacturer’s catalog data to account for the heating effect caused by the blower. 

Also, the same blower power consumption of 0.85 kW was removed from the 

manufacturer’s total system power data to calculate the power consumption of the 

condensing unit.  

 

 

Table 34 Manufacturer's catalog data 

Indoor 
WB 

Outdoor 
DB 

Net total 
cooling 

capacity* 

Net sensible 
cooling 

capacity* 

Total 
system 
power* 

Gross total 
cooling 
capacity 

Gross 
sensible 
cooling 
capacity 

Condensing 
unit power 

°F (°C) °F (°C) Btu/h (kW) Btu/h (kW) kW Btu/h (kW) Btu/h (kW) kW 
57 

(13.8) 
75 (23.9) 60.39 (17.70) 60.39 (17.70) 4.33 

63.31 
(18.55) 

63.29 (18.55) 3.47 

62 
(16.6) 

75 (23.9) 61.11 (17.91) 55.94 (16.39) 4.33 
64.03 

(18.77) 
58.84 (17.24) 3.47 

63 
(17.2) 

75 (23.9) 62.07 (18.19) 45.41 (13.31) 4.34 
64.99 

(19.05) 
48.31 (14.16) 3.48 

67 
(19.4) 

75 (23.9) 66.6 (19.52) 46.95 (13.76) 4.38 
69.52 

(20.37) 
49.85 (14.61) 3.52 

72 
(22.2) 

75 (23.9) 72.91 (21.37) 37.66 (11.04) 4.43 
75.83 

(22.22) 
40.56 (11.89) 3.57 
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Table 34 Continued 

Indoor 
WB 

Outdoor 
DB 

Net total 
cooling 

capacity* 

Net sensible 
cooling 

capacity* 

Total 
system 
power* 

Gross total 
cooling 
capacity 

Gross 
sensible 
cooling 
capacity 

Condensing 
unit power 

°F (°C) °F (°C) Btu/h (kW) Btu/h (kW) kW Btu/h (kW) Btu/h (kW) kW 
57 

(13.8) 
85 (29.4) 56.8 (16.65) 56.8 (16.65) 4.74 

59.72 
(17.50) 

59.70 (17.50) 3.88 

62 
(16.6) 

85 (29.4) 57.07 (16.73) 53.59 (15.71) 4.74 
59.99 

(17.58) 
56.49 (16.56) 3.88 

63 
(17.2) 

85 (29.4) 57.83 (16.95) 43.39 (12.72) 4. 75 
60.75 

(17.80) 
46.29 (13.57) 3.89 

67 
(19.4) 

85 (29.4) 62.04 (18.18) 44.89 (13.16) 4.79 
64.96 

(19.04) 
47.79 (14.01) 3.93 

72 
(22.2) 

85 (29.4) 67.9 (19.90) 35.78 (10.49) 4.85 
70.82 

(20.76) 
38.68 (11.34) 3.99 

57 
(13.8) 

95 (35) 53.18 (15.59) 53.18 (15.59) 5.18 
56.10 

(16.44) 
56.08 (16.44) 4.32 

62 
(16.6) 

95 (35) 53.18 (15.59) 53.18 (15.59) 5.18 
56.10 

(16.44) 
56.08 (16.44) 4.32 

63 
(17.2) 

95 (35) 53.59 (15.71) 41.36 (12.12) 5.19 
56.51 

(16.56) 
44.26 (12.97) 4.33 

67 
(19.4) 

95 (35) 57.05 (16.72) 43.51 (9.94) 5.22 
59.92 

(17.56) 
46.38 (13.59) 4.37 

72 
(22.2) 

95 (35) 62.9 (18.43) 33.9 (14.51) 5.28 
65.82 

(19.29) 
36.80 (10.79) 4.42 

57 
(13.8) 

105 
(40.6) 

49.5 (14.51) 49.5 (14.51) 5.66 
52.42 

(15.36) 
52.40 (15.36) 4.80 

62 
(16.6) 

105 
(40.6) 

49.5 (14.51) 49.5 (14.51) 5.66 
52.42 

(15.36) 
52.40 (15.36) 4.80 

63 
(17.2) 

105 
(40.6) 

49.33 (14.46) 39.33 (11.53) 5.66 
52.25 

(15.31) 
42.23 (12.38) 4.80 

67 
(19.4) 

105 
(40.6) 

52.89 (15.50) 40.78 (11.95) 5.69 
55.81 

(16.36) 
43.68 (12.80) 4.83 

72 
(22.2) 

105 
(40.6) 

57.85 (16.95) 32.01 (9.38) 5.75 
60.77 

(17.81) 
34.91 (10.23) 4.89 

57 
(13.8) 

115 
(46.1) 

45.74 (13.41) 45.74 (13.41) 6.16 
48.66 

(14.26) 
48.64 (14.26) 5.30 

62 
(16.6) 

115 
(46.1) 

45.74 (13.41) 45.74 (13.41) 6.16 
48.66 

(14.26) 
48.64 (14.26) 5.30 

63 
(17.2) 

115 
(46.1) 

45.03 (13.20) 37.28 (10.93) 6.15 
47.95 

(14.05) 
40.18 (11.78) 5.29 

67 
(19.4) 

115 
(46.1) 

48.25 (14.14) 38.7 (11.34) 6.19 
51.17 

(15.00) 
41.60 (12.19) 5.33 

72 
(22.2) 

115 
(46.1) 

52.74 (15.46) 30.11 (8.82) 6.24 
55.66 

(16.31) 
33.01 (9.67) 5.38 

57 
(13.8) 

125 
(51.7) 

41.85 (12.27) 41.85 (12.27) 6.68 
44.77 

(13.12) 
44.75 (13.11) 5.82 
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Table 34 Continued 

Indoor 
WB 

Outdoor 
DB 

Net total 
cooling 

capacity* 

Net sensible 
cooling 

capacity* 

Total 
system 
power* 

Gross total 
cooling 
capacity 

Gross 
sensible 
cooling 
capacity 

Condensing 
unit power 

°F (°C) °F (°C) Btu/h (kW) Btu/h (kW) kW Btu/h (kW) Btu/h (kW) kW 
62 

(16.6) 
125 

(51.7) 
41.85 (12.27) 41.85 (12.27) 6.68 

44.77 
(13.12) 

44.75 (13.11) 5.82 

63 
(17.2) 

125 
(51.7) 

40.64 (11.91) 35.18 (10.31) 6.67 
43.56 

(12.77) 
38.08 (11.16) 5.81 

67 
(19.4) 

125  
(51.7) 

43.52 (12.75) 36.58 (10.72) 6.7 
46.44 

(13.61) 
39.48 (11.57) 5.84 

72 
(22.2) 

125 
(51.7) 

47.52 (13.93) 28.18 (8.26) 6.74 
50.44 

(14.78) 
31.08 (9.11) 5.88 

*Directly adopted from the manufacturer’s catalog data. 
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APPENDIX D BLOWER PERFORMANCE TEST DATA 

 

The test results of airflow, power, and efficiency over a pressure range of 0.1 to 

1.2 in. w.g. (25 to 300 Pa) are presented in Figure 34 to Figure 69 for the twelve (12) 

blowers tested in this study.  

 

 

 

Figure 34 Measured airflow results for Blower #1  
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Figure 35 Measured power results for Blower #1  
 

 

 

Figure 36 Efficiency results for Blower #1  
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Figure 37 Measured airflow results for Blower #2  
 

 

 

Figure 38 Measured power results for Blower #2  
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Figure 39 Efficiency results for Blower #2  
 

 

 

Figure 40 Measured airflow results for Blower #3  
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Figure 41 Measured power results for Blower #3  
 

 

 

Figure 42 Efficiency results for Blower #3  
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Figure 43 Measured airflow results for Blower #4  
 

 

 

Figure 44 Measured power results for Blower #4  
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Figure 45 Efficiency results for Blower #4  
 

 

 

Figure 46 Measured airflow results for Blower #5  
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Figure 47 Measured power results for Blower #5  
 

 

 

Figure 48 Efficiency results for Blower #5  
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Figure 49 Measured airflow results for Blower #6  
 

 

 

Figure 50 Measured power results for Blower #6  
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Figure 51 Efficiency results for Blower #6  
 

 

 

Figure 52 Measured airflow results for Blower #7  
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Figure 53 Measured power results for Blower #7  
 

 

 

Figure 54 Efficiency results for Blower #7  
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Figure 55 Measured airflow results for Blower #8  
 

 

 

Figure 56 Measured power results for Blower #8  
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Figure 57 Efficiency results for Blower #8  
 

 

 

Figure 58 Measured airflow results for Blower #9  
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Figure 59 Measured power results for Blower #9  
 

 

 

Figure 60 Efficiency results for Blower #9  
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Figure 61 Measured airflow results for Blower #10  
 

 

 

Figure 62 Measured power results for Blower #10  
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Figure 63 Efficiency results for Blower #10  
 

 

 

Figure 64 Measured airflow results for Blower #11  
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Figure 65 Measured power results for Blower #11  
 

 

 

Figure 66 Efficiency results for Blower #11  
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Figure 67 Measured airflow results for Blower #12  
 

 

 

Figure 68 Measured power results for Blower #12  
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Figure 69 Efficiency results for Blower #12  
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APPENDIX E CORRELATION DEVELOPMENT BETWEEN ROTATIONAL 

SPEED AND EFFICACY FOR ECM BLOWERS 

 

In addition to the overall efficiency that was discussed in Section 2, another 

index frequently used for evaluating blower energy performance is the efficacy (W per 

ft3/min), which is the ratio of blower power to the airflow at a specific external static 

pressure. For example, the 2013 Building Energy Efficiency Standards for Residential 

and Nonresidential Buildings specifies a maximum efficacy of 0.58 W per ft3/min for air 

handlers in residential central HVAC systems (CEC 2012). Also, the efficacy is used as 

the performance rating parameter in the new testing standard for residential furnace 

blowers issued by the Department of Energy in June 2014 (DOE 2014). 

Efficacies were determined from the measured airflow and blower power data 

over a pressure range of 0.1 to 1.2 in. w.g. (25 to 300 Pa) for the six PSC blowers and 

the six ECM blowers tested in this study. As an example, Figure 70 compares efficacies 

for one PSC and one ECM blower over a range of blower speeds and external static 

pressures. It should be noted that the efficacy results in Figure 70 are the same PSC 

blower and the ECM blower that were shown as an example in Section 2 for airflow, 

power, and efficiency comparisons. 
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Figure 70 Efficacy comparison for one PSC blower and one ECM blower 
 

 

As can be seen in Figure 70, the PSC blower and the ECM blower have different 

efficacy behaviors when the external static pressure is increased. For the PSC blower, all 

speeds have similar efficacy values that vary only slightly between 0.37 and 0.4 W per 

ft3/min over a pressure range of 0.1 to 0.7 in. w.g. (25 to 175 Pa). At pressures above 0.7 

in. w.g. (175 Pa), the efficacy gradually increases, indicating increasing blower power 

consumptions for the same airflow rate. However, a sharp efficacy increase occurs at 

even higher pressures above 1.1 in .w.g. (275 Pa), which is mainly caused by the sharp 

airflow decreases that were discussed in Section 2. 

In contrast to the PSC blower, which has similar efficacy values for all speeds, 

the ECM blower always has higher efficacy values at lower blower speeds. For example, 
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at an external static pressure of 0.5 in. w.g. (125 Pa), the efficacy at the low speed is 0.24 

W per ft3/min that is 32% lower than the value of 0.36 W per ft3/min at the high speed. 

Also, one can observe that the ECM blower has lower efficacies compared to the PSC 

blower at pressures below 0.5 in. w.g. (125 Pa), which shows the ECM blower’s savings 

potential of using less power to deliver the same amount of air. For instance, under the 

most efficient operating condition of 0.1 in. w.g. (25 Pa) in the low speed, the efficacy 

for the ECM blower is about 32% lower than the value for the PSC blower at the same 

operating condition, showing 0.24 W per ft3/min for the ECM blower and 0.37 W per 

ft3/min for the PSC blower. However, the advantage of the ECM blower declines as the 

external static pressure is increased. At pressures above 0.8 in. w.g. (200 Pa), except for 

the low speed, efficacies of the PSC blower and the ECM blower falls into the same 

range of 0.4 to 0.5 W per ft3/min. 

As discussed earlier, Figure 70 shows that efficacies of both PSC and ECM 

blowers vary with external static pressures. For PSC blowers, the external static pressure 

can be used to predict the efficacy because efficacies are independent of blower speeds. 

However, the external static pressure alone is not enough as a predictor of efficacies for 

ECM blowers given the fact that a lower blower speed always has a higher efficacy 

value. Capturing the different efficacy behaviors of PSC and ECM blowers is of special 

importance to home energy auditors and field engineers, who have to frequently perform 

field measurements in residential buildings and need a reliable indicator of ECM blower 

performance. 
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An approach for using the blower rotational speed to predict the efficacy was 

developed for ECM blowers based on the experimental results for the six ECM blowers 

tested in this study. As the first step, the non-dimensional blower speed was calculated 

by using the blower speed and the maximum blower speed found over a range of 

pressures and speed settings. Then, the negative logarithm of the efficacy was plotted 

against the non-dimensional blower speed. A linear correlation was developed by taking 

the non-dimensional blower speed as the independent variable and the negative 

logarithm of the efficacy as the dependent variable. Figure 71 to Figure 76 compare the 

experimental data with developed correlations for the six ECM blowers tested in this 

study. 

 

 

 

Figure 71 Correlation between blower speeds and efficacies for Blower #2  
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Figure 72 Correlation between blower speeds and efficacies for Blower #5  
 

 

 

Figure 73 Correlation between blower speeds and efficacies for Blower #7  
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Figure 74 Correlation between blower speeds and efficacies for Blower #9  
 

 

 

Figure 75 Correlation between blower speeds and efficacies for Blower #11  
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Figure 76 Correlation between blower speeds and efficacies for Blower #12  
 

 

In addition to Figure 71 to Figure 76, Table 35 summarizes the coefficients and 

R2 values for the developed correlations. As can be observed in Table 35, coefficients 

for the developed correlations vary from unit to unit, showing a range of -2.6571 to -

2.9245 for the linear factor and a range of 3.2872 to 3.5771 for the offset factor. 

Variations in the coefficients may be attributable to various blower designs from 

different manufacturers, such as dimensions of housings and blower wheels, motor sizes, 

and speed control mechanisms. 
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Table 35 Coefficients and R2 values for the developed correlations 
Blower  Linear factor Offset factor R2 

#2 -2.6571 3.2872 0.978 
#5 -2.7788 3.4672 0.9805 
#7 -2.6629 3.3616 0.9802 
#9 -2.7098 3.3272 0.9749 
#11 -2.7221 3.3714 0.9772 
#12 -2.9245 3.5771 0.9577 

 

 

The good agreement between the experimental data and the correlations shown in 

Figure 71 to Figure 76 along with the R2 values above 0.95 in Table 35 provide strong 

evidence for using rotational speeds as an indicator of ECM blower’s efficacies. 

Specially, the developed approach can be used by field engineers to predict efficacies of 

ECM blowers based on the measurement of rotational speeds. The generated correlations 

can also be used to model the efficacy behaviors of ECM blowers at different operating 

conditions. 
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APPENDIX F BUILDING ENVELOP CONSTRUCTION AND MATERIAL 

PROPERTIES: THE CHICAGO HOME 

 

Constructions and building material properties for the Chicago home are directly 

adopted from the residential prototype building models developed by the Pacific 

Northwest National Laboratory (2015) according to 2012 International Energy 

Conservation Code (ICC 2011). Table 36 and Table 37 summarize the thermal and 

physical properties of building materials used for modeling the Chicago home.  

 

 
Table 36 Constructions and material properties for the Chicago home 

Construction Material 
Roughness Thickness Conductivity Density 

Specific 
Heat 

 m W/m-K kg/m3 J/kg-K 

Exterior 
Floor 

floor_consol_layer Rough 0.24 0.05 55 917 
Plywood_3/4in Rough 0.02 0.12 545 675 
Carpet_n_pad Medium Rough 0.03 0.06 32 837 

Basement 
Wall 

Plywood_3/4in Rough 0.02 0.12 545 675 
bsmtwall_consol_layer Rough 0.14 0.06 121 1036 

Plywood_3/4in Rough 0.02 0.12 545 675 

Exterior Wall 

Stucco_1in Medium Rough 0.03 1.4 1922 879 
Bldg_paper_felt* Smooth - - - - 

sheathing_consol_layer Rough 0.01 0.1 685 1172 
OSB_5/8in Medium Rough 0.02 0.12 545 1213 

wall_consol_layer Rough 0.14 0.06 121 1036 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 

Exterior Door door_const Smooth 0.03 0.07 513 768 
Exterior 
Window 

Glass** - - - - - 

Gable_end 

Stucco_1in Medium Rough 0.03 1.4 1922 879 
Bldg_paper_felt* Smooth - - - - 

OSB_5/8in Medium Rough 0.02 0.12 545 1213 
Air_4_in_vert*** - - - - - 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 
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Table 36 Continued 

Construction Material 
Roughness Thickness Conductivity Density 

Specific 
Heat 

 m W/m-K kg/m3 J/kg-K 

Exterior Roof 
Asphalt_shingle Medium Rough 0.006 0.08 1121 1255 

OSB_1/2in Rough 0.01 0.12 545 1213 
Interior 
Ceiling 

ceil_consol_layer Rough 0.37 0.06 42 776 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 

Attic Floor 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 

ceil_consol_layer Rough 0.37 0.06 42 776 
*Object of Material:NoMass 
**Object of WindowMaterial: SimpleGlazingSystem 
***Object of Material: AirGap 

 

 

Table 37 Properties of no-mass materials for the Chicago home 

Material 
Roughness 

Thermal 
Resistance 

U-
Factor 

Solar Heat Gain 
Coefficient 

Visible 
Transmittance 

 m2-K/W W/m2-K - - 
Bldg_paper_felt* Smooth 0.01    

Glass** - - 1.8 0.4 0.88 
Air_4_in_vert*** - 0.16  - - 
*Object of Material:NoMass 
**Object of WindowMaterial: SimpleGlazingSystem 
***Object of Material: AirGap 
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APPENDIX G BUILDING ENVELOP CONSTRUCTION AND MATERIAL 

PROPERTIES: THE AUSTIN HOME 

 

Constructions and building material properties for the Austin home are directly 

adopted from the residential prototype building models developed by the Pacific 

Northwest National Laboratory (2015) according to 2012 International Energy 

Conservation Code (ICC 2011). Table 38 and Table 39 summarize the thermal and 

physical properties of building materials used for modeling the Austin home.  

 

 
Table 38 Constructions and material properties for the Austin home 

Construction Material 
Roughness Thickness Conductivity Density 

Specific 
Heat 

 m W/m-K kg/m3 J/kg-K 

Exterior 
Floor 

floor_consol_layer Rough 0.09 0.05 55 917 
Plywood_3/4in Rough 0.02 0.12 545 675 
Carpet_n_pad Medium Rough 0.03 0.06 32 837 

Exterior Wall 

Stucco_1in Medium Rough 0.03 1.4 1922 879 
Bldg_paper_felt* Smooth - - - - 

sheathing_consol_layer Rough 0.01 0.1 685 1172 
OSB_5/8in Medium Rough 0.02 0.12 545 1213 

wall_consol_layer Rough 0.09 0.06 121 1036 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 

Exterior Door door_const Smooth 0.03 0.07 513 768 
Exterior 
Window 

Glass** - - - - - 

Gable_end 

Stucco_1in Medium Rough 0.03 1.4 1922 879 
Bldg_paper_felt* Smooth - - - - 

OSB_5/8in Medium Rough 0.02 0.12 545 1213 
Air_4_in_vert*** - - - - - 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 

Exterior Roof 
Asphalt_shingle Medium Rough 0.006 0.08 1121 1255 

OSB_1/2in Rough 0.01 0.12 545 1213 
Interior 
Ceiling 

ceil_consol_layer Rough 0.32 0.06 42 776 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 
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Table 38 Continued 

Construction Material 
Roughness Thickness Conductivity Density 

Specific 
Heat 

 m W/m-K kg/m3 J/kg-K 

Attic Floor 
Drywall_1/2in Medium Rough 0.01 0.16 801 1088 

ceil_consol_layer Rough 0.32 0.06 42 776 
*Object of Material:NoMass 
**Object of WindowMaterial: SimpleGlazingSystem 
***Object of Material: AirGap 

 

 

Table 39 Properties of no-mass materials for the Austin home 

Material 
Roughness 

Thermal 
Resistance 

U-
Factor 

Solar Heat Gain 
Coefficient 

Visible 
Transmittance 

 m2-K/W W/m2-K - - 
Bldg_paper_felt* Smooth 0.01    

Glass** - - 2.3 0.25 0.88 
Air_4_in_vert*** - 0.16  - - 
*Object of Material:NoMass 
**Object of WindowMaterial: SimpleGlazingSystem 
***Object of Material: AirGap 
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APPENDIX H FLEXIBLE DUCTWORK DESIGNS FOR THE CHICAGO AND 

AUSTIN HOMES 

 

Both the Chicago and Austin homes share the same ductwork layout, as shown in 

Figure 77. Duct sizing calculations strictly follow the design procedure in ACCA 

Manual D (Rutkowski 2011). As the first step, available static pressures (ASPs) are 

determined by subtracting component pressure drops from the design external static 

pressures of 0.3, 0.5, and 0.8 in. w.g. (75, 125, 200 Pa). The component pressure drops, 

such as pressure drops caused by filters, cooling coils, supply registers, and return grille, 

are assumed to be 0.26 in. w.g. (65 Pa) based on the values reported by Rutkowski 

(2011) and Wilcox (2006). Then, the total effective length (TEL) is calculated by 

summing the straight lengths of all duct sections and the fitting equivalent lengths for the 

run. It should be noted that calculations of the total effective length is only performed on 

the critical circulation path, which equals the sum of the longest supply run and the 

longest return run. With the knowledge of the available static pressure and the total 

effective length, the design friction rate (FR) can be calculated by using the following 

equation.  

ܴܨ  = ஺ௌ௉×ଵ଴଴்ா௅       (in. w. g. per 100 ft) (26) 

The duct size is determined from the flexible duct friction chart (Chart 7) in Appendix 2 

of ACCA Manual D (Rutkowski 2011) based on the design friction rate (FR) and the 

design airflow rate.  
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Figure 77 Flexible dutwork layout 
 

 

The duct design procedures discussed above are incorporated into customized 

worksheets and used to design flexible ductworks with flow resistances of 0.3, 0.5, and 

0.8 in. w.g. (75, 125, and 200 Pa) for both the Chicago home and the Austin home. Table 

40 to Table 51 show the duct size and surface area calculations at various combinations 

of flow resistance and blower type for the Chicago home and the Austin home.  
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Table 40 Flexible duct sizing worksheet for the Chicago home (PSC+0.3 IWC) 

 

 

 

 

 

 

 

HF = 1074 / 48000 = 0.022375
CF = 1074 / 30000 = 0.0358

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 4320 2460 97 88 97 10 177 10 2.62 10.00 26.18
S2 4032 2280 90 82 90 10 165 10 2.62 10.00 26.18
S3 3792 3000 85 107 107 10 197 10 2.62 10.00 26.18
S4 5376 3780 120 135 135 12 172 12 3.14 10.00 31.42
S5 6480 3600 145 129 145 12 185 12 3.14 10.00 31.42
S6 4272 2400 96 86 96 10 175 10 2.62 10.00 26.18
S7 4416 2580 99 92 99 10 181 10 2.62 10.00 26.18
S8 5760 3600 129 129 129 10 236 10 2.62 10.00 26.18
S9 3840 2400 86 86 86 10 158 10 2.62 10.00 26.18
S10 5712 3900 128 140 140 12 178 12 3.14 10.00 31.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 205 243 243 14 227 14 3.67 10.00 36.65
ST 2 235 211 235 14 220 14 3.67 10.00 36.65
ST 3 537 541 541 20 248 20 5.24 20.00 104.72
ST 4 537 533 537 20 246 20 5.24 20.00 104.72
ST 5 227 232 232 14 217 14 3.67 10.00 36.65
ST 6 224 215 224 14 210 14 3.67 10.00 36.65

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 97 88 97 10 177 10 2.62 10.00 26.18
R2 90 82 90 10 165 10 2.62 10.00 26.18
R3 205 243 243 14 227 14 3.67 10.00 36.65
R4 145 129 145 10 266 10 2.62 10.00 26.18
R5 96 86 96 10 175 10 2.62 10.00 26.18
R6 99 92 99 10 181 10 2.62 10.00 26.18
R7 215 215 215 14 201 14 3.67 10.00 36.65
R8 128 140 140 10 256 10 2.62 10.00 26.18

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 302 331 331 16 237 16 4.19 10.00 41.89
RT 2 235 211 235 12 299 12 3.14 10.00 31.42
RT 3 537 541 541 18 306 18 4.71 15.00 70.69
RT 4 537 533 537 18 304 18 4.71 15.00 70.69
RT 5 227 232 232 14 217 14 3.67 10.00 36.65
RT 6 310 301 310 16 222 16 4.19 10.00 41.89

S6
S7

S8, S9
S10

N/A

Return Trunk

Associated Supply run

S1
S2

S3, S4
S5

Duct Sizing Worksheet (Chicago home Flex 0.3 IWC PSC)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.01
Blower CFM / Cooling Load =

N/A

Supply Trunk

Supply Runout
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Table 41 Flexible duct sizing worksheet for the Chicago home (PSC+0.5 IWC) 

 

 

 

 

 

 

 

HF = 997 / 48000 = 0.02077083
CF = 997 / 30000 = 0.03323333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 4320 2460 90 82 90 7 336 7 1.83 10.00 18.33
S2 4032 2280 84 76 84 7 313 7 1.83 10.00 18.33
S3 3792 3000 79 100 100 7 373 7 1.83 10.00 18.33
S4 5376 3780 112 126 126 8 360 8 2.09 10.00 20.94
S5 6480 3600 135 120 135 8 386 8 2.09 10.00 20.94
S6 4272 2400 89 80 89 7 332 7 1.83 10.00 18.33
S7 4416 2580 92 86 92 7 343 7 1.83 10.00 18.33
S8 5760 3600 120 120 120 8 343 8 2.09 10.00 20.94
S9 3840 2400 80 80 80 7 298 7 1.83 10.00 18.33
S10 5712 3900 119 130 130 8 371 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 190 225 225 10 413 10 2.62 10.00 26.18
ST 2 218 195 218 10 400 10 2.62 10.00 26.18
ST 3 499 502 502 14 470 14 3.67 20.00 73.30
ST 4 499 495 499 14 466 14 3.67 20.00 73.30
ST 5 210 215 215 10 395 10 2.62 10.00 26.18
ST 6 208 199 208 10 382 10 2.62 10.00 26.18

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 90 82 90 7 336 7 1.83 10.00 18.33
R2 84 76 84 7 313 7 1.83 10.00 18.33
R3 190 225 225 10 413 10 2.62 10.00 26.18
R4 135 120 135 8 386 8 2.09 10.00 20.94
R5 89 80 89 7 332 7 1.83 10.00 18.33
R6 92 86 92 7 343 7 1.83 10.00 18.33
R7 199 199 199 10 366 10 2.62 10.00 26.18
R8 119 130 130 8 371 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

RT 1 280 307 307 12 391 12 3.14 10.00 31.42
RT 2 218 195 218 10 400 10 2.62 10.00 26.18
RT 3 499 502 502 14 470 14 3.67 15.00 54.98
RT 4 499 495 499 14 466 14 3.67 15.00 54.98
RT 5 210 215 215 9 487 9 2.36 10.00 23.56
RT 6 288 279 288 12 367 12 3.14 10.00 31.42

Duct Sizing Worksheet (Chicago home Flex 0.5 IWC PSC)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.05
Blower CFM / Cooling Load =

N/A

Supply Runout

Supply Trunk

Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

N/A

Return Trunk
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Table 42 Flexible duct sizing worksheet for the Chicago home (PSC+0.8 IWC) 

 

 

 

 

 

 

 

HF = 757 / 48000 = 0.01577083
CF = 757 / 30000 = 0.02523333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 4320 2460 68 62 68 5 500 5 1.31 10.00 13.09
S2 4032 2280 64 58 64 5 466 5 1.31 10.00 13.09
S3 3792 3000 60 76 76 5 555 5 1.31 10.00 13.09
S4 5376 3780 85 95 95 6 486 6 1.57 10.00 15.71
S5 6480 3600 102 91 102 6 520 6 1.57 10.00 15.71
S6 4272 2400 67 61 67 5 494 5 1.31 10.00 13.09
S7 4416 2580 70 65 70 5 511 5 1.31 10.00 13.09
S8 5760 3600 91 91 91 6 463 6 1.57 10.00 15.71
S9 3840 2400 61 61 61 5 444 5 1.31 10.00 13.09
S10 5712 3900 90 98 98 6 501 6 1.57 10.00 15.71

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

ST 1 145 171 171 7 640 7 1.83 10.00 18.33
ST 2 166 148 166 7 620 7 1.83 10.00 18.33
ST 3 379 382 382 10 700 10 2.62 20.00 52.36
ST 4 379 375 379 10 694 10 2.62 20.00 52.36
ST 5 160 164 164 7 612 7 1.83 10.00 18.33
ST 6 158 151 158 7 592 7 1.83 10.00 18.33

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

R1 68 62 68 5 500 5 1.31 10.00 13.09
R2 64 58 64 5 466 5 1.31 10.00 13.09
R3 145 171 171 7 640 7 1.83 10.00 18.33
R4 102 91 102 6 520 6 1.57 10.00 15.71
R5 67 61 67 5 494 5 1.31 10.00 13.09
R6 70 65 70 5 511 5 1.31 10.00 13.09
R7 151 151 151 7 567 7 1.83 10.00 18.33
R8 90 98 98 6 501 6 1.57 10.00 15.71

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

RT 1 213 233 233 8 668 8 2.09 10.00 20.94
RT 2 166 148 166 7 620 7 1.83 10.00 18.33
RT 3 379 382 382 10 700 10 2.62 15.00 39.27
RT 4 379 375 379 10 694 10 2.62 15.00 39.27
RT 5 160 164 164 7 612 7 1.83 10.00 18.33
RT 6 219 212 219 8 627 8 2.09 10.00 20.94

Duct Sizing Worksheet (Chicago home Flex 0.8 IWC PSC)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.12
Blower CFM / Cooling Load =

N/A

Supply Runout

Supply Trunk

Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

N/A

Return Trunk
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Table 43 Flexible duct sizing worksheet for the Chicago home (ECM+0.3 IWC) 

 

 

 

 

 

 

 

HF = 1000 / 48000 = 0.02083333
CF = 1000 / 30000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 4320 2460 90 82 90 9 204 9 2.36 10.00 23.56
S2 4032 2280 84 76 84 9 190 9 2.36 10.00 23.56
S3 3792 3000 79 100 100 10 183 10 2.62 10.00 26.18
S4 5376 3780 112 126 126 10 231 10 2.62 10.00 26.18
S5 6480 3600 135 120 135 10 248 10 2.62 10.00 26.18
S6 4272 2400 89 80 89 9 201 9 2.36 10.00 23.56
S7 4416 2580 92 86 92 9 208 9 2.36 10.00 23.56
S8 5760 3600 120 120 120 10 220 10 2.62 10.00 26.18
S9 3840 2400 80 80 80 9 181 9 2.36 10.00 23.56
S10 5712 3900 119 130 130 10 238 10 2.62 10.00 26.18

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 191 226 226 12 288 12 3.14 10.00 31.42
ST 2 219 196 219 12 279 12 3.14 10.00 31.42
ST 3 500 504 504 18 285 18 4.71 20.00 94.25
ST 4 500 496 500 18 283 18 4.71 20.00 94.25
ST 5 211 216 216 12 275 12 3.14 10.00 31.42
ST 6 209 200 209 12 266 12 3.14 10.00 31.42

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 90 82 90 9 204 9 2.36 10.00 23.56
R2 84 76 84 9 190 9 2.36 10.00 23.56
R3 191 226 226 12 288 12 3.14 10.00 31.42
R4 135 120 135 10 248 10 2.62 10.00 26.18
R5 89 80 89 9 201 9 2.36 10.00 23.56
R6 92 86 92 9 208 9 2.36 10.00 23.56
R7 200 200 200 12 255 12 3.14 10.00 31.42
R8 119 130 130 10 238 10 2.62 10.00 26.18

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 281 308 308 16 221 16 4.19 10.00 41.89
RT 2 219 196 219 12 279 12 3.14 10.00 31.42
RT 3 500 504 504 18 285 18 4.71 15.00 70.69
RT 4 500 496 500 18 283 18 4.71 15.00 70.69
RT 5 211 216 216 12 275 12 3.14 10.00 31.42
RT 6 289 280 289 16 207 16 4.19 10.00 41.89

N/A

FR Value =

Duct Sizing Worksheet (Chicago home Flex 0.3 ECM) 
Blower CFM / Heating Load =

Supply Runout

Supply Trunk

0.01
Blower CFM / Cooling Load =

N/A

Associated Supply run

S1
S2

S3, S4
S5

Return Runout

Return Trunk

S6
S7

S8, S9
S10
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Table 44 Flexible duct sizing worksheet for the Chicago home (ECM+0.5 IWC) 

 

 

 

 

 

 

 

HF = 1000 / 48000 = 0.02083333
CF = 1000 / 30000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 4320 2460 90 82 90 7 337 7 1.83 10.00 18.33
S2 4032 2280 84 76 84 7 314 7 1.83 10.00 18.33
S3 3792 3000 79 100 100 7 374 7 1.83 10.00 18.33
S4 5376 3780 112 126 126 8 361 8 2.09 10.00 20.94
S5 6480 3600 135 120 135 8 387 8 2.09 10.00 20.94
S6 4272 2400 89 80 89 7 333 7 1.83 10.00 18.33
S7 4416 2580 92 86 92 7 344 7 1.83 10.00 18.33
S8 5760 3600 120 120 120 8 344 8 2.09 10.00 20.94
S9 3840 2400 80 80 80 7 299 7 1.83 10.00 18.33
S10 5712 3900 119 130 130 8 372 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

ST 1 191 226 226 10 414 10 2.62 10.00 26.18
ST 2 219 196 219 10 402 10 2.62 10.00 26.18
ST 3 500 504 504 14 471 14 3.67 20.00 73.30
ST 4 500 496 500 14 468 14 3.67 20.00 73.30
ST 5 211 216 216 10 396 10 2.62 10.00 26.18
ST 6 209 200 209 10 383 10 2.62 10.00 26.18

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

R1 90 82 90 7 337 7 1.83 10.00 18.33
R2 84 76 84 7 314 7 1.83 10.00 18.33
R3 191 226 226 10 414 10 2.62 10.00 26.18
R4 135 120 135 8 387 8 2.09 10.00 20.94
R5 89 80 89 7 333 7 1.83 10.00 18.33
R6 92 86 92 7 344 7 1.83 10.00 18.33
R7 200 200 200 10 367 10 2.62 10.00 26.18
R8 119 130 130 8 372 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

RT 1 281 308 308 12 392 12 3.14 10.00 31.42
RT 2 219 196 219 10 402 10 2.62 10.00 26.18
RT 3 500 504 504 14 471 14 3.67 15.00 54.98
RT 4 500 496 500 14 468 14 3.67 15.00 54.98
RT 5 211 216 216 10 396 10 2.62 10.00 26.18
RT 6 289 280 289 12 368 12 3.14 10.00 31.42

S6
S7

S8, S9
S10

N/A

Return Trunk

Associated Supply run

S1
S2

S3, S4
S5

Duct Sizing Worksheet (Chicago home Flex 0.5 ECM)
Blower CFM / Heating Load =

Return Runout

0.05
Blower CFM / Cooling Load =

N/A

FR Value =

Supply Runout

Supply Trunk
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Table 45 Flexible duct sizing worksheet for the Chicago home (ECM+0.8 IWC) 

 

 

 

 

 

 

 

HF = 1000 / 48000 = 0.02083333
CF = 1000 / 30000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 4320 2460 90 82 90 6 458 6 1.57 10.00 15.71
S2 4032 2280 84 76 84 6 428 6 1.57 10.00 15.71
S3 3792 3000 79 100 100 6 509 6 1.57 10.00 15.71
S4 5376 3780 112 126 126 7 471 7 1.83 10.00 18.33
S5 6480 3600 135 120 135 7 505 7 1.83 10.00 18.33
S6 4272 2400 89 80 89 6 453 6 1.57 10.00 15.71
S7 4416 2580 92 86 92 6 469 6 1.57 10.00 15.71
S8 5760 3600 120 120 120 7 449 7 1.83 10.00 18.33
S9 3840 2400 80 80 80 6 407 6 1.57 10.00 15.71
S10 5712 3900 119 130 130 7 486 7 1.83 10.00 18.33

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

ST 1 191 226 226 8 647 8 2.09 10.00 20.94
ST 2 219 196 219 8 627 8 2.09 10.00 20.94
ST 3 500 504 504 12 642 12 3.14 20.00 62.83
ST 4 500 496 500 12 637 12 3.14 20.00 62.83
ST 5 211 216 216 8 619 8 2.09 10.00 20.94
ST 6 209 200 209 8 599 8 2.09 10.00 20.94

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

R1 90 82 90 6 458 6 1.57 10.00 15.71
R2 84 76 84 6 428 6 1.57 10.00 15.71
R3 191 226 226 8 647 8 2.09 10.00 20.94
R4 135 120 135 7 505 7 1.83 10.00 18.33
R5 89 80 89 6 453 6 1.57 10.00 15.71
R6 92 86 92 6 469 6 1.57 10.00 15.71
R7 200 200 200 8 573 8 2.09 10.00 20.94
R8 119 130 130 7 486 7 1.83 10.00 18.33

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft2

RT 1 281 308 308 9 697 9 2.36 10.00 23.56
RT 2 219 196 219 8 627 8 2.09 10.00 20.94
RT 3 500 504 504 12 642 12 3.14 15.00 47.12
RT 4 500 496 500 12 637 12 3.14 15.00 47.12
RT 5 211 216 216 8 619 8 2.09 10.00 20.94
RT 6 289 280 289 9 654 9 2.36 10.00 23.56

Duct Sizing Worksheet (Chicago home Flex 0.8 IWC ECM)
Blower CFM / Heating Load =

Return Runout

0.12
Blower CFM / Cooling Load =

N/A

FR Value =

Supply Runout

Supply Trunk

Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

N/A

Return Trunk
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Table 46 Flexible duct sizing worksheet for the Austin home (PSC+0.3 IWC) 

 

 

 

 

 

 

 

 

HF = 1298 / 42000 = 0.030904762
CF = 1298 / 36000 = 0.036055556

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 117 106 117 10 214 10 2.62 10.00 26.18
S2 3528 2736 109 99 109 10 200 10 2.62 10.00 26.18
S3 3318 3600 103 130 130 10 238 10 2.62 10.00 26.18
S4 4704 4536 145 164 164 12 208 12 3.14 10.00 31.42
S5 5670 4320 175 156 175 12 223 12 3.14 10.00 31.42
S6 3738 2880 116 104 116 10 212 10 2.62 10.00 26.18
S7 3864 3096 119 112 119 10 219 10 2.62 10.00 26.18
S8 5040 4320 156 156 156 10 286 10 2.62 10.00 26.18
S9 3360 2880 104 104 104 10 190 10 2.62 10.00 26.18
S10 4998 4680 154 169 169 12 215 12 3.14 10.00 31.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 248 293 293 16 210 16 4.19 10.00 41.89
ST 2 284 254 284 16 204 16 4.19 10.00 41.89
ST 3 649 654 654 20 300 20 5.24 20.00 104.72
ST 4 649 644 649 20 297 20 5.24 20.00 104.72
ST 5 274 280 280 16 201 16 4.19 10.00 41.89
ST 6 271 260 271 16 194 16 4.19 10.00 41.89

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 117 106 117 10 214 10 2.62 10.00 26.18
R2 109 99 109 10 200 10 2.62 10.00 26.18
R3 248 293 293 16 210 16 4.19 10.00 41.89
R4 175 156 175 12 223 12 3.14 10.00 31.42
R5 116 104 116 10 212 10 2.62 10.00 26.18
R6 119 112 119 10 219 10 2.62 10.00 26.18
R7 260 260 260 14 243 14 3.67 10.00 36.65
R8 154 169 169 12 215 12 3.14 10.00 31.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 365 400 400 18 226 18 4.71 10.00 47.12
RT 2 284 254 284 16 204 16 4.19 10.00 41.89
RT 3 649 654 654 20 300 20 5.24 15.00 78.54
RT 4 649 644 649 20 297 20 5.24 15.00 78.54
RT 5 274 280 280 16 201 16 4.19 10.00 41.89
RT 6 375 363 375 16 269 16 4.19 10.00 41.89

S6
S7

S8, S9
S10

N/A

Return Trunk

Associated Supply run

S1
S2

S3, S4
S5

Duct Sizing Worksheet (Austin home Flex 0.3 IWC PSC)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.01
Blower CFM / Cooling Load =

N/A

Supply Runout

Supply Trunk
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Table 47 Flexible duct sizing worksheet for the Austin home (PSC+0.5 IWC) 

 

 

 

 

 

 

 

HF = 1206 / 42000 = 0.028714286
CF = 1206 / 36000 = 0.0335

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 109 99 109 7 406 7 1.83 10.00 18.33
S2 3528 2736 101 92 101 7 379 7 1.83 10.00 18.33
S3 3318 3600 95 121 121 8 345 8 2.09 10.00 20.94
S4 4704 4536 135 152 152 8 435 8 2.09 10.00 20.94
S5 5670 4320 163 145 163 8 466 8 2.09 10.00 20.94
S6 3738 2880 107 96 107 7 402 7 1.83 10.00 18.33
S7 3864 3096 111 104 111 7 415 7 1.83 10.00 18.33
S8 5040 4320 145 145 145 8 415 8 2.09 10.00 20.94
S9 3360 2880 96 96 96 7 361 7 1.83 10.00 18.33
S10 4998 4680 144 157 157 8 449 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 230 273 273 10 500 10 2.62 10.00 26.18
ST 2 264 236 264 10 484 10 2.62 10.00 26.18
ST 3 603 608 608 14 569 14 3.67 20.00 73.30
ST 4 603 598 603 14 564 14 3.67 20.00 73.30
ST 5 254 260 260 10 478 10 2.62 10.00 26.18
ST 6 252 241 252 10 462 10 2.62 10.00 26.18

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 109 99 109 7 406 7 1.83 10.00 18.33
R2 101 92 101 7 379 7 1.83 10.00 18.33
R3 230 273 273 10 500 10 2.62 10.00 26.18
R4 163 145 163 8 466 8 2.09 10.00 20.94
R5 107 96 107 7 402 7 1.83 10.00 18.33
R6 111 104 111 7 415 7 1.83 10.00 18.33
R7 241 241 241 10 442 10 2.62 10.00 26.18
R8 144 157 157 8 449 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 339 371 371 12 473 12 3.14 10.00 31.42
RT 2 264 236 264 10 484 10 2.62 10.00 26.18
RT 3 603 608 608 14 569 14 3.67 15.00 54.98
RT 4 603 598 603 14 564 14 3.67 15.00 54.98
RT 5 254 260 260 10 478 10 2.62 10.00 26.18
RT 6 349 338 349 12 444 12 3.14 10.00 31.42

N/A

Return Runout
Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

Return Trunk

N/A

Duct Sizing Worksheet (Austin home Flex 0.5 IWC PSC)
Blower CFM / Heating Load =

FR Value = 0.05
Blower CFM / Cooling Load =

Supply Runout

Supply Trunk
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Table 48 Flexible duct sizing worksheet for the Austin home (PSC+0.8 IWC) 

 

 

 

 

 

 

 

HF = 915 / 42000 = 0.021785714
CF = 915 / 36000 = 0.025416667

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 82 75 82 6 419 6 1.57 10.00 15.71
S2 3528 2736 77 70 77 6 391 6 1.57 10.00 15.71
S3 3318 3600 72 92 92 6 466 6 1.57 10.00 15.71
S4 4704 4536 102 115 115 7 431 7 1.83 10.00 18.33
S5 5670 4320 124 110 124 7 462 7 1.83 10.00 18.33
S6 3738 2880 81 73 81 6 415 6 1.57 10.00 15.71
S7 3864 3096 84 79 84 6 429 6 1.57 10.00 15.71
S8 5040 4320 110 110 110 7 411 7 1.83 10.00 18.33
S9 3360 2880 73 73 73 6 373 6 1.57 10.00 15.71
S10 4998 4680 109 119 119 7 445 7 1.83 10.00 18.33

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 175 207 207 8 592 8 2.09 10.00 20.94
ST 2 200 179 200 8 574 8 2.09 10.00 20.94
ST 3 458 461 461 12 587 12 3.14 20.00 62.83
ST 4 458 454 458 12 583 12 3.14 20.00 62.83
ST 5 193 198 198 8 566 8 2.09 10.00 20.94
ST 6 191 183 191 8 548 8 2.09 10.00 20.94

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 82 75 82 6 419 6 1.57 10.00 15.71
R2 77 70 77 6 391 6 1.57 10.00 15.71
R3 175 207 207 9 468 9 2.36 10.00 23.56
R4 124 110 124 7 462 7 1.83 10.00 18.33
R5 81 73 81 6 415 6 1.57 10.00 15.71
R6 84 79 84 6 429 6 1.57 10.00 15.71
R7 183 183 183 8 524 8 2.09 10.00 20.94
R8 109 119 119 7 445 7 1.83 10.00 18.33

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 257 282 282 9 638 9 2.36 10.00 23.56
RT 2 200 179 200 8 574 8 2.09 10.00 20.94
RT 3 458 461 461 12 587 12 3.14 15.00 47.12
RT 4 458 454 458 12 583 12 3.14 15.00 47.12
RT 5 193 198 198 8 566 8 2.09 10.00 20.94
RT 6 264 256 264 9 599 9 2.36 10.00 23.56

S6
S7

S8, S9
S10

N/A

Return Trunk

Associated Supply run

S1
S2

S3, S4
S5

Duct Sizing Worksheet (Austin home Flex 0.8 IWC PSC)
Blower CFM / Heating Load

FR Value =

Return Runout

0.12
Blower CFM / Cooling Load

N/A

Supply Runout

Supply Trunk
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Table 49 Flexible duct sizing worksheet for the Austin home (ECM+0.3 IWC) 

 

 

 

 

 

 

 

HF = 1200 / 42000 = 0.02857143
CF = 1200 / 36000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 108 98 108 10 198 10 2.62 10.00 26.18
S2 3528 2736 101 91 101 10 185 10 2.62 10.00 26.18
S3 3318 3600 95 120 120 10 220 10 2.62 10.00 26.18
S4 4704 4536 134 151 151 10 277 10 2.62 10.00 26.18
S5 5670 4320 162 144 162 10 297 10 2.62 10.00 26.18
S6 3738 2880 107 96 107 10 196 10 2.62 10.00 26.18
S7 3864 3096 110 103 110 10 202 10 2.62 10.00 26.18
S8 5040 4320 144 144 144 10 264 10 2.62 10.00 26.18
S9 3360 2880 96 96 96 10 176 10 2.62 10.00 26.18
S10 4998 4680 143 156 156 10 286 10 2.62 10.00 26.18

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 229 271 271 14 254 14 3.67 10.00 36.65
ST 2 263 235 263 14 246 14 3.67 10.00 36.65
ST 3 600 605 605 20 277 20 5.24 20.00 104.72
ST 4 600 595 600 20 275 20 5.24 20.00 104.72
ST 5 253 259 259 14 242 14 3.67 10.00 36.65
ST 6 251 240 251 14 235 14 3.67 10.00 36.65

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 108 98 108 10 198 10 2.62 10.00 26.18
R2 101 91 101 10 185 10 2.62 10.00 26.18
R3 229 271 271 14 254 14 3.67 10.00 36.65
R4 162 144 162 10 297 10 2.62 10.00 26.18
R5 107 96 107 10 196 10 2.62 10.00 26.18
R6 110 103 110 10 202 10 2.62 10.00 26.18
R7 240 240 240 14 225 14 3.67 10.00 36.65
R8 143 156 156 10 286 10 2.62 10.00 26.18

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 337 370 370 16 265 16 4.19 10.00 41.89
RT 2 263 235 263 14 246 14 3.67 10.00 36.65
RT 3 600 605 605 20 277 20 5.24 15.00 78.54
RT 4 600 595 600 20 275 20 5.24 15.00 78.54
RT 5 253 259 259 14 242 14 3.67 10.00 36.65
RT 6 347 336 347 16 248 16 4.19 10.00 41.89

Duct Sizing Worksheet (Austin home Flex 0.3 IWC ECM)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.01
Blower CFM / Cooling Load =

N/A

Supply Runout

Supply Trunk

Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

N/A

Return Trunk
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Table 50 Flexible duct sizing worksheet for the Austin home (ECM+0.5 IWC) 

 

 

 

 

 

 

 

HF = 1200 / 42000 = 0.028571429
CF = 1200 / 36000 = 0.033333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 108 98 108 7 404 7 1.83 10.00 18.33
S2 3528 2736 101 91 101 7 377 7 1.83 10.00 18.33
S3 3318 3600 95 120 120 8 344 8 2.09 10.00 20.94
S4 4704 4536 134 151 151 9 342 9 2.36 10.00 23.56
S5 5670 4320 162 144 162 9 367 9 2.36 10.00 23.56
S6 3738 2880 107 96 107 7 400 7 1.83 10.00 18.33
S7 3864 3096 110 103 110 7 413 7 1.83 10.00 18.33
S8 5040 4320 144 144 144 8 413 8 2.09 10.00 20.94
S9 3360 2880 96 96 96 7 359 7 1.83 10.00 18.33
S10 4998 4680 143 156 156 9 353 9 2.36 10.00 23.56

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 229 271 271 12 345 12 3.14 10.00 31.42
ST 2 263 235 263 12 335 12 3.14 10.00 31.42
ST 3 600 605 605 16 433 16 4.19 20.00 83.78
ST 4 600 595 600 16 430 16 4.19 20.00 83.78
ST 5 253 259 259 10 475 10 2.62 10.00 26.18
ST 6 251 240 251 10 460 10 2.62 10.00 26.18

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 108 98 108 7 404 7 1.83 10.00 18.33
R2 101 91 101 7 377 7 1.83 10.00 18.33
R3 229 271 271 12 345 12 3.14 10.00 31.42
R4 162 144 162 9 367 9 2.36 10.00 23.56
R5 107 96 107 7 400 7 1.83 10.00 18.33
R6 110 103 110 7 413 7 1.83 10.00 18.33
R7 240 240 240 10 440 10 2.62 10.00 26.18
R8 143 156 156 9 353 9 2.36 10.00 23.56

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 337 370 370 12 471 12 3.14 10.00 31.42
RT 2 263 235 263 10 482 10 2.62 10.00 26.18
RT 3 600 605 605 16 433 16 4.19 15.00 62.83
RT 4 600 595 600 16 430 16 4.19 15.00 62.83
RT 5 253 259 259 10 475 10 2.62 10.00 26.18
RT 6 347 336 347 12 442 12 3.14 10.00 31.42

Duct Sizing Worksheet (Austin home Flex 0.5 IWC ECM)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.05
Blower CFM / Cooling Load =

N/A

Supply Runout

Supply Trunk

Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

N/A

Return Trunk
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Table 51 Flexible duct sizing worksheet for the Austin home (ECM+0.8 IWC) 

 

 

 

  

HF = 1200 / 42000 = 0.028571429
CF = 1200 / 36000 = 0.033333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 108 98 108 6 550 6 1.57 10.00 15.71
S2 3528 2736 101 91 101 6 513 6 1.57 10.00 15.71
S3 3318 3600 95 120 120 7 449 7 1.83 10.00 18.33
S4 4704 4536 134 151 151 8 433 8 2.09 10.00 20.94
S5 5670 4320 162 144 162 8 464 8 2.09 10.00 20.94
S6 3738 2880 107 96 107 6 544 6 1.57 10.00 15.71
S7 3864 3096 110 103 110 6 562 6 1.57 10.00 15.71
S8 5040 4320 144 144 144 8 413 8 2.09 10.00 20.94
S9 3360 2880 96 96 96 6 489 6 1.57 10.00 15.71
S10 4998 4680 143 156 156 8 447 8 2.09 10.00 20.94

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

ST 1 229 271 271 9 614 9 2.36 10.00 23.56
ST 2 263 235 263 9 595 9 2.36 10.00 23.56
ST 3 600 605 605 12 770 12 3.14 20.00 62.83
ST 4 600 595 600 12 764 12 3.14 20.00 62.83
ST 5 253 259 259 9 587 9 2.36 10.00 23.56
ST 6 251 240 251 9 568 9 2.36 10.00 23.56

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 108 98 108 6 550 6 1.57 10.00 15.71
R2 101 91 101 6 513 6 1.57 10.00 15.71
R3 229 271 271 9 614 9 2.36 10.00 23.56
R4 162 144 162 8 464 8 2.09 10.00 20.94
R5 107 96 107 6 544 6 1.57 10.00 15.71
R6 110 103 110 6 562 6 1.57 10.00 15.71
R7 240 240 240 9 543 9 2.36 10.00 23.56
R8 143 156 156 7 584 7 1.83 10.00 18.33

H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

RT 1 337 370 370 10 678 10 2.62 10.00 26.18
RT 2 263 235 263 9 595 9 2.36 10.00 23.56
RT 3 600 605 605 12 770 12 3.14 15.00 47.12
RT 4 600 595 600 12 764 12 3.14 15.00 47.12
RT 5 253 259 259 9 587 9 2.36 10.00 23.56
RT 6 347 336 347 10 636 10 2.62 10.00 26.18

Duct Sizing Worksheet (Austin home Flex 0.8 IWC ECM)
Blower CFM / Heating Load =

FR Value =

Return Runout

0.12
Blower CFM / Cooling Load =

N/A

Supply Runout

Supply Trunk

Associated Supply run

S1
S2

S3, S4
S5
S6
S7

S8, S9
S10

N/A

Return Trunk
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APPENDIX I SHEET METAL DUCTWORK DESIGNS FOR THE CHICAGO AND 

AUSTIN HOMES 

 

Similar to flexible ductwork designs, both the Chicago and Austin homes have 

the same layout for the rigid sheet metal ductwork, as shown in Figure 78. Again, ACCA 

Manual D (Rutkowski 2011) is used as the guideline for the duct sizing calculation. As 

the first step, available static pressures (ASPs) are determined by subtracting component 

pressure drops from the design external static pressures of 0.3, 0.5, and 0.8 in. w.g. (75, 

125, 200 Pa). The component pressure drops, such as pressure drops caused by filters, 

cooling coils, supply registers, and return grille, are assumed to be 0.26 in. w.g. (65 Pa) 

based on the values reported by Rutkowski (2011) and Wilcox (2006). Then, the total 

effective length (TEL) is calculated by summing the straight lengths of all duct sections 

and the fitting equivalent lengths for the run. It should be noted that calculations of the 

total effective length is only performed on the critical circulation path, which equals the 

sum of the longest supply run and the longest return run. With the knowledge of the 

available static pressure and the total effective length, the design friction rate (FR) can 

be calculated by using Equation (26). The circular duct size is determined from the metal 

duct friction chart (Chart 1) in Appendix 2 of ACCA Manual D (Rutkowski 2011) based 

on the design friction rate (FR) and the design airflow rate. In addition, circular duct 

sizes of supply and return trunks are converted to rectangular duct sizes based on the 

equal friction rate by using the Chart 9 in Appendix 2 of ACCA Manual D (Rutkowski 

2011).  
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Figure 78 Sheet metal ductwork layout 
 

 

Similar to the flexible ductwork design, customized worksheets are used to size 

sheet metal ducts at flow resistances of 0.3, 0.5, and 0.8 in. w.g. (75, 125, and 200 Pa) 

for both the Chicago and Austin homes. Table 52 to Table 63 show the results of sheet 

metal duct sizes and surface areas at various combinations of flow resistance and blower 

type.  
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Table 52 Sheet metal duct sizing worksheet for the Chicago home (PSC+0.3 IWC) 

 

 

 

 

 

 

 

 

HF = 1073 / 48000 = 0.02235417
CF = 1073 / 30000 = 0.03576667

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 4320 2460 97 88 97 9 219 9 2.36 10.00 23.56
S2 4032 2280 90 82 90 9 204 9 2.36 10.00 23.56
S3 3792 3000 85 107 107 9 243 9 2.36 13.00 30.63
S4 5376 3780 120 135 135 10 248 10 2.62 13.00 34.03
S5 6480 3600 145 129 145 10 266 10 2.62 13.00 34.03
S6 4272 2400 95 86 95 9 216 9 2.36 13.00 30.63
S7 4416 2580 99 92 99 9 223 9 2.36 15.00 35.34
S8 5760 3600 129 129 129 10 236 10 2.62 15.00 39.27
S9 3840 2400 86 86 86 9 194 9 2.36 15.00 35.34
S10 5712 3900 128 139 139 10 256 10 2.62 13.00 34.03

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 97 88 97 9 219 14 × 5 3.17 5.00 15.83
ST 2 187 170 187 12 238 14 × 9 3.83 5.00 19.17
ST 3 271 277 277 14 259 14 × 12 4.33 10.00 43.33
ST 4 392 412 412 16 295 14 × 15 4.83 5.00 24.17
ST 5 537 541 541 18 306 14 × 20 5.67 5.00 28.33
ST 6 537 532 537 18 304 14 × 20 5.67 5.00 28.33
ST 7 441 446 446 16 320 14 × 15 4.83 10.00 48.33
ST 8 342 354 354 14 331 14 × 12 4.33 5.00 21.67
ST 9 214 225 225 12 287 14 × 9 3.83 5.00 19.17

ST 10 128 139 139 10 256 14 × 6 3.33 5.00 16.67

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 97 88 97 9 219 9 2.36 5.00 11.78
R2 90 82 90 9 204 9 2.36 5.00 11.78
R3 205 242 242 14 227 14 3.67 7.00 25.66
R4 145 129 145 10 266 10 2.62 6.00 15.71
R5 95 86 95 9 216 9 2.36 7.00 16.49
R6 99 92 99 9 223 9 2.36 8.00 18.85
R7 215 215 215 12 273 12 3.14 7.00 21.99
R8 128 139 139 10 256 10 2.62 6.00 15.71

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 97 88 97 9 219 14 × 5 3.17 5.00 15.83
RT 2 187 170 187 12 238 14 × 9 3.83 5.00 19.17
RT 3 392 412 412 16 295 14 × 15 4.83 5.00 24.17
RT 4 537 541 541 18 306 14 × 20 5.67 5.00 28.33
RT 5 537 532 537 18 304 14 × 20 5.67 5.00 28.33
RT 6 441 446 446 16 320 14 × 15 4.83 5.00 24.17
RT 7 342 354 354 14 331 14 × 12 4.33 5.00 21.67
RT 8 128 139 139 10 256 14 × 6 3.33 5.00 16.67

Duct Sizing Worksheet (Chicago home Rigid 0.3 IWC PSC)

0.01
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2

S3, S4
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Table 53 Sheet metal duct sizing worksheet for the Chicago home (PSC+0.5 IWC) 

 

 

 

 

 

 

 

HF = 997 / 48000 = 0.02077083
CF = 997 / 30000 = 0.03323333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 4320 2460 90 82 90 6 457 6 1.57 10.00 15.71
S2 4032 2280 84 76 84 6 427 6 1.57 10.00 15.71
S3 3792 3000 79 100 100 6 508 6 1.57 13.00 20.42
S4 5376 3780 112 126 126 7 470 7 1.83 13.00 23.82
S5 6480 3600 135 120 135 7 504 7 1.83 13.00 23.82
S6 4272 2400 89 80 89 6 452 6 1.57 13.00 20.42
S7 4416 2580 92 86 92 6 467 6 1.57 15.00 23.56
S8 5760 3600 120 120 120 7 448 7 1.83 15.00 27.49
S9 3840 2400 80 80 80 6 406 6 1.57 15.00 23.56
S10 5712 3900 119 130 130 7 485 7 1.83 13.00 23.82

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 90 82 90 6 457 11 × 3 2.33 5.00 11.67
ST 2 173 158 173 8 497 11 × 5 2.67 5.00 13.33
ST 3 252 257 257 9 582 11 × 6 2.83 10.00 28.33
ST 4 364 383 383 12 487 11 × 11 3.67 5.00 18.33
ST 5 499 502 502 12 640 11 × 11 3.67 5.00 18.33
ST 6 499 495 499 12 635 11 × 11 3.67 5.00 18.33
ST 7 410 415 415 12 528 11 × 11 3.67 10.00 36.67
ST 8 318 329 329 14 308 11 × 15 4.33 5.00 21.67
ST 9 198 209 209 8 600 11 × 5 2.67 5.00 13.33

ST 10 119 130 130 7 485 11 × 4 2.50 5.00 12.50

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 90 82 90 6 457 6 1.57 5.00 7.85
R2 84 76 84 6 427 6 1.57 5.00 7.85
R3 190 225 225 8 645 8 2.09 7.00 14.66
R4 135 120 135 7 504 7 1.83 6.00 11.00
R5 89 80 89 6 452 6 1.57 7.00 11.00
R6 92 86 92 6 467 6 1.57 8.00 12.57
R7 199 199 199 8 571 8 2.09 7.00 14.66
R8 119 130 130 7 485 7 1.83 6.00 11.00

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 90 82 90 6 457 11 × 3 2.33 5.00 11.67
RT 2 173 158 173 8 497 11 × 5 2.67 5.00 13.33
RT 3 364 383 383 12 487 11 × 11 3.67 5.00 18.33
RT 4 499 502 502 12 640 11 × 11 3.67 5.00 18.33
RT 5 499 495 499 12 635 11 × 11 3.67 5.00 18.33
RT 6 410 415 415 10 760 11 × 8 3.17 5.00 15.83
RT 7 318 329 329 10 603 11 × 8 3.17 5.00 15.83
RT 8 119 130 130 7 485 11 × 4 2.50 5.00 12.50

S3, S4

0.06
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Chicago home Rigid 0.5 IWC PSC)

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2
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Table 54 Sheet metal duct sizing worksheet for the Chicago home (PSC+0.8 IWC) 

 

 

 

 

 

 

 

 

HF = 757 / 48000 = 0.01577083
CF = 757 / 30000 = 0.02523333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 4320 2460 68 62 68 5 500 5 1.31 10.00 13.09
S2 4032 2280 64 58 64 5 466 5 1.31 10.00 13.09
S3 3792 3000 60 76 76 5 555 5 1.31 13.00 17.02
S4 5376 3780 85 95 95 6 486 6 1.57 13.00 20.42
S5 6480 3600 102 91 102 6 520 6 1.57 13.00 20.42
S6 4272 2400 67 61 67 5 494 5 1.31 13.00 17.02
S7 4416 2580 70 65 70 5 511 5 1.31 15.00 19.63
S8 5760 3600 91 91 91 6 463 6 1.57 15.00 23.56
S9 3840 2400 61 61 61 5 444 5 1.31 15.00 19.63
S10 5712 3900 90 98 98 6 501 6 1.57 13.00 20.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

ST 1 68 62 68 5 500 7 × 3 1.67 5.00 8.33
ST 2 132 120 132 7 493 7 × 6 2.17 5.00 10.83
ST 3 192 195 195 8 560 7 × 8 2.50 10.00 25.00
ST 4 276 291 291 9 658 7 × 10 2.83 5.00 14.17
ST 5 379 382 382 12 486 7 × 18 4.17 5.00 20.83
ST 6 379 375 379 12 482 7 × 18 4.17 5.00 20.83
ST 7 311 315 315 9 713 7 × 10 2.83 10.00 28.33
ST 8 241 250 250 9 565 7 × 10 2.83 5.00 14.17
ST 9 151 159 159 7 595 7 × 6 2.17 5.00 10.83

ST 10 90 98 98 6 501 7 × 5 2.00 5.00 10.00

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 68 62 68 5 500 5 1.31 5.00 6.54
R2 64 58 64 5 466 5 1.31 5.00 6.54
R3 145 171 171 7 640 7 1.83 7.00 12.83
R4 102 91 102 6 520 6 1.57 6.00 9.42
R5 67 61 67 5 494 5 1.31 7.00 9.16
R6 70 65 70 5 511 5 1.31 8.00 10.47
R7 151 151 151 7 567 7 1.83 7.00 12.83
R8 90 98 98 6 501 6 1.57 6.00 9.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

RT 1 68 62 68 5 500 7 × 3 1.67 5.00 8.33
RT 2 132 120 132 7 493 7 × 6 2.17 5.00 10.83
RT 3 276 291 291 10 533 7 × 12 3.17 5.00 15.83
RT 4 379 382 382 12 486 7 × 18 4.17 5.00 20.83
RT 5 379 375 379 12 482 7 × 18 4.17 5.00 20.83
RT 6 311 315 315 10 577 7 × 12 3.17 5.00 15.83
RT 7 241 250 250 9 565 7 × 10 2.83 5.00 14.17
RT 8 90 98 98 6 501 7 × 5 2.00 5.00 10.00

S3, S4

0.13
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Chicago home Rigid 0.8 IWC PSC)

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2
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Table 55 Sheet metal duct sizing worksheet for the Chicago home (ECM+0.3 IWC) 

 

 

 

 

 

 

 

 

HF = 1000 / 48000 = 0.02083333
CF = 1000 / 30000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 4320 2460 90 82 90 9 204 9 2.36 10.00 23.56
S2 4032 2280 84 76 84 9 190 9 2.36 10.00 23.56
S3 3792 3000 79 100 100 9 226 9 2.36 13.00 30.63
S4 5376 3780 112 126 126 10 231 10 2.62 13.00 34.03
S5 6480 3600 135 120 135 10 248 10 2.62 13.00 34.03
S6 4272 2400 89 80 89 9 201 9 2.36 13.00 30.63
S7 4416 2580 92 86 92 9 208 9 2.36 15.00 35.34
S8 5760 3600 120 120 120 10 220 10 2.62 15.00 39.27
S9 3840 2400 80 80 80 9 181 9 2.36 15.00 35.34
S10 5712 3900 119 130 130 10 238 10 2.62 13.00 34.03

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

ST 1 90 82 90 9 204 14 × 5 3.17 5.00 15.83
ST 2 174 158 174 12 222 14 × 9 3.83 5.00 19.17
ST 3 253 258 258 14 241 14 × 12 4.33 10.00 43.33
ST 4 365 384 384 16 275 14 × 15 4.83 5.00 24.17
ST 5 500 504 504 18 285 14 × 20 5.67 5.00 28.33
ST 6 500 496 500 18 283 14 × 20 5.67 5.00 28.33
ST 7 411 416 416 16 298 14 × 15 4.83 10.00 48.33
ST 8 319 330 330 14 309 14 × 12 4.33 5.00 21.67
ST 9 199 210 210 12 267 14 × 9 3.83 5.00 19.17

ST 10 119 130 130 10 238 14 × 6 3.33 5.00 16.67

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 90 82 90 9 204 9 2.36 5.00 11.78
R2 84 76 84 9 190 9 2.36 5.00 11.78
R3 191 226 226 12 288 12 3.14 7.00 21.99
R4 135 120 135 10 248 10 2.62 6.00 15.71
R5 89 80 89 9 201 9 2.36 7.00 16.49
R6 92 86 92 9 208 9 2.36 8.00 18.85
R7 200 200 200 12 255 12 3.14 7.00 21.99
R8 119 130 130 10 238 10 2.62 6.00 15.71

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 90 82 90 9 204 14 × 5 3.17 5.00 15.83
RT 2 174 158 174 12 222 14 × 9 3.83 5.00 19.17
RT 3 365 384 384 16 275 14 × 15 4.83 5.00 24.17
RT 4 500 504 504 18 285 14 × 20 5.67 5.00 28.33
RT 5 500 496 500 18 283 14 × 20 5.67 5.00 28.33
RT 6 411 416 416 16 298 14 × 15 4.83 5.00 24.17
RT 7 319 330 330 14 309 14 × 12 4.33 5.00 21.67
RT 8 119 130 130 10 238 14 × 6 3.33 5.00 16.67

Duct Sizing Worksheet (Chicago home Rigid 0.3 IWC ECM)

0.01
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2

S3, S4
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Table 56 Sheet metal duct sizing worksheet for the Chicago home (ECM+0.5 IWC) 

 

 

 

 

 

 

 

 

HF = 1000 / 48000 = 0.02083333
CF = 1000 / 30000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area
Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 4320 2460 90 82 90 6 458 6 1.57 10.00 15.71
S2 4032 2280 84 76 84 6 428 6 1.57 10.00 15.71
S3 3792 3000 79 100 100 6 509 6 1.57 13.00 20.42
S4 5376 3780 112 126 126 7 471 7 1.83 13.00 23.82
S5 6480 3600 135 120 135 7 505 7 1.83 13.00 23.82
S6 4272 2400 89 80 89 6 453 6 1.57 13.00 20.42
S7 4416 2580 92 86 92 6 469 6 1.57 15.00 23.56
S8 5760 3600 120 120 120 7 449 7 1.83 15.00 27.49
S9 3840 2400 80 80 80 6 407 6 1.57 15.00 23.56
S10 5712 3900 119 130 130 7 486 7 1.83 13.00 23.82

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area
cfm cfm cfm inch FPM H × W ft ft ft2

ST 1 90 82 90 6 458 11 × 3 2.33 5.00 11.67
ST 2 174 158 174 8 498 11 × 5 2.67 5.00 13.33
ST 3 253 258 258 9 584 11 × 6 2.83 10.00 28.33
ST 4 365 384 384 12 489 11 × 11 3.67 5.00 18.33
ST 5 500 504 504 12 642 11 × 11 3.67 5.00 18.33
ST 6 500 496 500 12 637 11 × 11 3.67 5.00 18.33
ST 7 411 416 416 12 530 11 × 11 3.67 10.00 36.67
ST 8 319 330 330 14 309 11 × 15 4.33 5.00 21.67
ST 9 199 210 210 8 602 11 × 5 2.67 5.00 13.33

ST 10 119 130 130 7 486 11 × 4 2.50 5.00 12.50

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area
cfm cfm cfm inch FPM inch ft ft ft2

R1 90 82 90 6 458 6 1.57 5.00 7.85
R2 84 76 84 6 428 6 1.57 5.00 7.85
R3 191 226 226 8 647 8 2.09 7.00 14.66
R4 135 120 135 7 505 7 1.83 6.00 11.00
R5 89 80 89 6 453 6 1.57 7.00 11.00
R6 92 86 92 6 469 6 1.57 8.00 12.57
R7 200 200 200 8 573 8 2.09 7.00 14.66
R8 119 130 130 7 486 7 1.83 6.00 11.00

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area
cfm cfm cfm inch FPM H × W ft ft ft2

RT 1 90 82 90 6 458 11 × 3 2.33 5.00 11.67
RT 2 174 158 174 8 498 11 × 5 2.67 5.00 13.33
RT 3 365 384 384 12 489 11 × 11 3.67 5.00 18.33
RT 4 500 504 504 12 642 11 × 11 3.67 5.00 18.33
RT 5 500 496 500 12 637 11 × 11 3.67 5.00 18.33
RT 6 411 416 416 10 763 11 × 8 3.17 5.00 15.83
RT 7 319 330 330 10 605 11 × 8 3.17 5.00 15.83
RT 8 119 130 130 7 486 11 × 4 2.50 5.00 12.50

S3, S4

0.06
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Chicago home Rigid 0.5 IWC ECM)

Supply Trunk

Return Runout

Supply Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2



 

199 

 

Table 57 Sheet metal duct sizing worksheet for the Chicago home (ECM+0.8 IWC) 

 

 

 

 

 

 

 

 

HF = 1000 / 48000 = 0.02083333
CF = 1000 / 30000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 4320 2460 90 82 90 5 660 5 1.31 10.00 13.09
S2 4032 2280 84 76 84 5 616 5 1.31 10.00 13.09
S3 3792 3000 79 100 100 5 733 5 1.31 13.00 17.02
S4 5376 3780 112 126 126 6 642 6 1.57 13.00 20.42
S5 6480 3600 135 120 135 6 688 6 1.57 13.00 20.42
S6 4272 2400 89 80 89 5 653 5 1.31 13.00 17.02
S7 4416 2580 92 86 92 5 675 5 1.31 15.00 19.63
S8 5760 3600 120 120 120 6 611 6 1.57 15.00 23.56
S9 3840 2400 80 80 80 5 587 5 1.31 15.00 19.63
S10 5712 3900 119 130 130 6 662 6 1.57 13.00 20.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

ST 1 90 82 90 5 660 7 × 3 1.67 5.00 8.33
ST 2 174 158 174 7 651 7 × 6 2.17 5.00 10.83
ST 3 253 258 258 8 739 7 × 8 2.50 10.00 25.00
ST 4 365 384 384 9 869 7 × 10 2.83 5.00 14.17
ST 5 500 504 504 12 642 7 × 18 4.17 5.00 20.83
ST 6 500 496 500 12 637 7 × 18 4.17 5.00 20.83
ST 7 411 416 416 9 942 7 × 10 2.83 10.00 28.33
ST 8 319 330 330 9 747 7 × 10 2.83 5.00 14.17
ST 9 199 210 210 7 786 7 × 6 2.17 5.00 10.83

ST 10 119 130 130 6 662 7 × 5 2.00 5.00 10.00

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 90 82 90 5 660 5 1.31 5.00 6.54
R2 84 76 84 5 616 5 1.31 5.00 6.54
R3 191 226 226 7 846 7 1.83 7.00 12.83
R4 135 120 135 6 688 6 1.57 6.00 9.42
R5 89 80 89 5 653 5 1.31 7.00 9.16
R6 92 86 92 5 675 5 1.31 8.00 10.47
R7 200 200 200 7 748 7 1.83 7.00 12.83
R8 119 130 130 6 662 6 1.57 6.00 9.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

RT 1 90 82 90 5 660 7 × 3 1.67 5.00 8.33
RT 2 174 158 174 7 651 7 × 6 2.17 5.00 10.83
RT 3 365 384 384 10 704 7 × 12 3.17 5.00 15.83
RT 4 500 504 504 12 642 7 × 18 4.17 5.00 20.83
RT 5 500 496 500 12 637 7 × 18 4.17 5.00 20.83
RT 6 411 416 416 10 763 7 × 12 3.17 5.00 15.83
RT 7 319 330 330 9 747 7 × 10 2.83 5.00 14.17
RT 8 119 130 130 6 662 7 × 5 2.00 5.00 10.00

S3, S4

0.13
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Chicago home Rigid 0.8 IWC ECM)

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2



 

200 

 

Table 58 Sheet metal duct sizing worksheet for the Austin home (PSC+0.3 IWC) 

 

 

 

 

 

 

 

HF = 1298 / 42000 = 0.030904762
CF = 1298 / 36000 = 0.036055556

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 117 106 117 10 214 10 2.62 10.00 26.18
S2 3528 2736 109 99 109 9 247 9 2.36 10.00 23.56
S3 3318 3600 103 130 130 10 238 10 2.62 13.00 34.03
S4 4704 4536 145 164 164 12 208 12 3.14 13.00 40.84
S5 5670 4320 175 156 175 12 223 12 3.14 13.00 40.84
S6 3738 2880 116 104 116 10 212 10 2.62 13.00 34.03
S7 3864 3096 119 112 119 10 219 10 2.62 15.00 39.27
S8 5040 4320 156 156 156 12 198 12 3.14 15.00 47.12
S9 3360 2880 104 104 104 10 190 10 2.62 15.00 39.27
S10 4998 4680 154 169 169 12 215 12 3.14 13.00 40.84

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 117 106 117 10 214 24 × 4 4.67 5.00 23.33
ST 2 226 205 226 12 288 24 × 6 5.00 5.00 25.00
ST 3 328 335 335 14 313 24 × 7 5.17 10.00 51.67
ST 4 474 498 498 16 357 24 × 9 5.50 5.00 27.50
ST 5 649 654 654 20 300 24 × 14 6.33 5.00 31.67
ST 6 649 644 649 20 297 24 × 14 6.33 5.00 31.67
ST 7 533 540 540 18 306 24 × 12 6.00 10.00 60.00
ST 8 414 428 428 16 307 24 × 9 5.50 5.00 27.50
ST 9 258 273 273 14 255 24 × 7 5.17 5.00 25.83

ST 10 154 169 169 12 215 24 × 6 5.00 5.00 25.00

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 117 106 117 10 214 10 2.62 5.00 13.09
R2 109 99 109 10 200 10 2.62 5.00 13.09
R3 248 293 293 14 274 14 3.67 7.00 25.66
R4 175 156 175 12 223 12 3.14 6.00 18.85
R5 116 104 116 10 212 10 2.62 7.00 18.33
R6 119 112 119 10 219 10 2.62 8.00 20.94
R7 260 260 260 14 243 14 3.67 7.00 25.66
R8 154 169 169 12 215 12 3.14 6.00 18.85

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 117 106 117 10 214 24 × 4 4.67 5.00 23.33
RT 2 226 205 226 12 288 24 × 6 5.00 5.00 25.00
RT 3 474 498 498 16 357 24 × 9 5.50 5.00 27.50
RT 4 649 654 654 20 300 24 × 14 6.33 5.00 31.67
RT 5 649 644 649 20 297 24 × 14 6.33 5.00 31.67
RT 6 533 540 540 18 306 24 × 12 6.00 5.00 30.00
RT 7 414 428 428 16 307 24 × 9 5.50 5.00 27.50
RT 8 154 169 169 12 215 24 × 6 5.00 5.00 25.00

S3, S4

0.01
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Austin home Rigid 0.3 IWC PSC)

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2
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Table 59 Sheet metal duct sizing worksheet for the Austin home (PSC+0.5 IWC) 

 

 

 

 

 

 

 

 

HF = 1206 / 42000 = 0.02871429
CF = 1206 / 36000 = 0.0335

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 3780 2952 109 99 109 7 406 7 1.83 10.00 18.33
S2 3528 2736 101 92 101 7 379 7 1.83 10.00 18.33
S3 3318 3600 95 121 121 7 451 7 1.83 13.00 23.82
S4 4704 4536 135 152 152 8 435 8 2.09 13.00 27.23
S5 5670 4320 163 145 163 8 466 8 2.09 13.00 27.23
S6 3738 2880 107 96 107 7 402 7 1.83 13.00 23.82
S7 3864 3096 111 104 111 7 415 7 1.83 15.00 27.49
S8 5040 4320 145 145 145 8 415 8 2.09 15.00 31.42
S9 3360 2880 96 96 96 7 361 7 1.83 15.00 27.49
S10 4998 4680 144 157 157 8 449 8 2.09 13.00 27.23

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 109 99 109 7 406 11 × 4 2.50 5.00 12.50
ST 2 210 191 210 9 475 11 × 6 2.83 5.00 14.17
ST 3 305 311 311 10 570 11 × 8 3.17 10.00 31.67
ST 4 440 463 463 12 590 11 × 11 3.67 5.00 18.33
ST 5 603 608 608 12 774 11 × 11 3.67 5.00 18.33
ST 6 603 598 603 12 768 11 × 11 3.67 5.00 18.33
ST 7 496 502 502 12 639 11 × 11 3.67 10.00 36.67
ST 8 385 398 398 12 507 11 × 11 3.67 5.00 18.33
ST 9 240 253 253 9 573 11 × 6 2.83 5.00 14.17

ST 10 144 157 157 8 449 11 × 5 2.67 5.00 13.33

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 109 99 109 7 406 7 1.83 5.00 9.16
R2 101 92 101 7 379 7 1.83 5.00 9.16
R3 230 273 273 10 500 10 2.62 7.00 18.33
R4 163 145 163 8 466 8 2.09 6.00 12.57
R5 107 96 107 7 402 7 1.83 7.00 12.83
R6 111 104 111 7 415 7 1.83 8.00 14.66
R7 241 241 241 9 546 9 2.36 7.00 16.49
R8 144 157 157 8 449 8 2.09 6.00 12.57

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 109 99 109 7 406 11 × 4 2.50 5.00 12.50
RT 2 210 191 210 9 475 11 × 6 2.83 5.00 14.17
RT 3 440 463 463 12 590 11 × 11 3.67 5.00 18.33
RT 4 603 608 608 14 569 11 × 15 4.33 5.00 21.67
RT 5 603 598 603 14 564 11 × 15 4.33 5.00 21.67
RT 6 496 502 502 12 639 11 × 11 3.67 5.00 18.33
RT 7 385 398 398 12 507 11 × 11 3.67 5.00 18.33
RT 8 144 157 157 8 449 11 × 5 2.67 5.00 13.33

Blower CFM - Heating Load =
FR Value =

Duct Sizing Worksheet (Austin home Rigid 0.5 IWC PSC)

S3, S4

0.06
Blower CFM - Cooling Load =

Final Size

Supply Runout

Supply Trunk

Return Runout

N/A

Associated Supply run

S1
S2

Final Size

N/A

S5
S6
S7

S8, S9
S10

Return Trunk



 

202 

 

Table 60 Sheet metal duct sizing worksheet for the Austin home (PSC+0.8 IWC) 

 

 

 

 

 

 

 

 

HF = 915 / 42000 = 0.02178571
CF = 915 / 36000 = 0.02541667

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 82 75 82 5 604 5 1.31 10.00 13.09
S2 3528 2736 77 70 77 5 564 5 1.31 10.00 13.09
S3 3318 3600 72 92 92 6 466 6 1.57 13.00 20.42
S4 4704 4536 102 115 115 6 587 6 1.57 13.00 20.42
S5 5670 4320 124 110 124 6 629 6 1.57 13.00 20.42
S6 3738 2880 81 73 81 5 597 5 1.31 13.00 17.02
S7 3864 3096 84 79 84 5 617 5 1.31 15.00 19.63
S8 5040 4320 110 110 110 6 559 6 1.57 15.00 23.56
S9 3360 2880 73 73 73 5 537 5 1.31 15.00 19.63
S10 4998 4680 109 119 119 6 606 6 1.57 13.00 20.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 82 75 82 5 604 5 × 4 1.50 5.00 7.50
ST 2 159 145 159 7 596 5 × 8 2.17 5.00 10.83
ST 3 231 236 236 8 676 5 × 11 2.67 10.00 26.67
ST 4 334 351 351 9 795 5 × 14 3.17 5.00 15.83
ST 5 458 461 461 10 846 5 × 18 3.83 5.00 19.17
ST 6 458 454 458 10 839 5 × 18 3.83 5.00 19.17
ST 7 376 381 381 9 862 5 × 15 3.33 10.00 33.33
ST 8 292 302 302 8 865 5 × 11 2.67 5.00 13.33
ST 9 182 192 192 7 719 5 × 8 2.17 5.00 10.83

ST 10 109 119 119 6 606 5 × 6 1.83 5.00 9.17

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 82 75 82 5 604 5 1.31 5.00 6.54
R2 77 70 77 5 564 5 1.31 5.00 6.54
R3 175 207 207 7 774 7 1.83 7.00 12.83
R4 124 110 124 6 629 6 1.57 6.00 9.42
R5 81 73 81 5 597 5 1.31 7.00 9.16
R6 84 79 84 5 617 5 1.31 8.00 10.47
R7 183 183 183 7 685 7 1.83 7.00 12.83
R8 109 119 119 6 606 6 1.57 6.00 9.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 82 75 82 5 604 5 × 4 1.50 5.00 7.50
RT 2 159 145 159 7 596 5 × 8 2.17 5.00 10.83
RT 3 334 351 351 9 795 5 × 14 3.17 5.00 15.83
RT 4 458 461 461 10 846 5 × 18 3.83 5.00 19.17
RT 5 458 454 458 10 839 5 × 18 3.83 5.00 19.17
RT 6 376 381 381 10 698 5 × 18 3.83 5.00 19.17
RT 7 292 302 302 8 865 5 × 11 2.67 5.00 13.33
RT 8 109 119 119 6 606 5 × 6 1.83 5.00 9.17

Final Size

N/A

S5
S6
S7

S8, S9
S10

Return Trunk

Blower CFM - Heating Load =
FR Value =

Duct Sizing Worksheet (Austin home Rigid 0.8 IWC PSC)

S3, S4

0.13
Blower CFM - Cooling Load =

Final Size

Supply Runout

Supply Trunk

Return Runout

N/A

Associated Supply run

S1
S2
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Table 61 Sheet metal duct sizing worksheet for the Austin home (ECM+0.3 IWC) 

 

 
 
 
 
 
 
 

 

 

 

HF = 1200 / 42000 = 0.02857143
CF = 1200 / 36000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft2

S1 3780 2952 108 98 108 9 244 9 2.36 10.00 23.56
S2 3528 2736 101 91 101 9 228 9 2.36 10.00 23.56
S3 3318 3600 95 120 120 10 220 10 2.62 13.00 34.03
S4 4704 4536 134 151 151 10 277 10 2.62 13.00 34.03
S5 5670 4320 162 144 162 10 297 10 2.62 13.00 34.03
S6 3738 2880 107 96 107 9 242 9 2.36 13.00 30.63
S7 3864 3096 110 103 110 9 250 9 2.36 15.00 35.34
S8 5040 4320 144 144 144 10 264 10 2.62 15.00 39.27
S9 3360 2880 96 96 96 9 217 9 2.36 15.00 35.34
S10 4998 4680 143 156 156 10 286 10 2.62 13.00 34.03

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

ST 1 108 98 108 9 244 14 × 5 3.17 5.00 15.83
ST 2 209 190 209 12 266 14 × 9 3.83 5.00 19.17
ST 3 304 310 310 14 290 14 × 12 4.33 10.00 43.33
ST 4 438 461 461 16 330 14 × 15 4.83 5.00 24.17
ST 5 600 605 605 18 342 14 × 19 5.50 5.00 27.50
ST 6 600 595 600 18 340 14 × 19 5.50 5.00 27.50
ST 7 493 499 499 16 358 14 × 15 4.83 10.00 48.33
ST 8 383 396 396 16 284 14 × 15 4.83 5.00 24.17
ST 9 239 252 252 12 321 14 × 9 3.83 5.00 19.17

ST 10 143 156 156 10 286 14 × 6 3.33 5.00 16.67

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 108 98 108 9 244 9 2.36 5.00 11.78
R2 101 91 101 9 228 9 2.36 5.00 11.78
R3 229 271 271 12 345 12 3.14 7.00 21.99
R4 162 144 162 10 297 10 2.62 6.00 15.71
R5 107 96 107 9 242 9 2.36 7.00 16.49
R6 110 103 110 9 250 9 2.36 8.00 18.85
R7 240 240 240 12 306 12 3.14 7.00 21.99
R8 143 156 156 10 286 10 2.62 6.00 15.71

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft2

RT 1 108 98 108 9 244 14 × 5 3.17 5.00 15.83
RT 2 209 190 209 12 266 14 × 9 3.83 5.00 19.17
RT 3 438 461 461 16 330 14 × 15 4.83 5.00 24.17
RT 4 600 605 605 18 342 14 × 19 5.50 5.00 27.50
RT 5 600 595 600 18 340 14 × 19 5.50 5.00 27.50
RT 6 493 499 499 16 358 14 × 15 4.83 5.00 24.17
RT 7 383 396 396 14 370 14 × 12 4.33 5.00 21.67
RT 8 143 156 156 10 286 14 × 6 3.33 5.00 16.67

S3, S4

0.01
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Austin home Rigid 0.3 IWC ECM)

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2
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Table 62 Sheet metal duct sizing worksheet for the Austin home (ECM+0.5 IWC) 

 

 

 

 

 

 

 

 

HF = 1200 / 42000 = 0.02857143
CF = 1200 / 36000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 108 98 108 7 404 7 1.83 10.00 18.33
S2 3528 2736 101 91 101 7 377 7 1.83 10.00 18.33
S3 3318 3600 95 120 120 7 449 7 1.83 13.00 23.82
S4 4704 4536 134 151 151 8 433 8 2.09 13.00 27.23
S5 5670 4320 162 144 162 8 464 8 2.09 13.00 27.23
S6 3738 2880 107 96 107 7 400 7 1.83 13.00 23.82
S7 3864 3096 110 103 110 7 413 7 1.83 15.00 27.49
S8 5040 4320 144 144 144 8 413 8 2.09 15.00 31.42
S9 3360 2880 96 96 96 7 359 7 1.83 15.00 27.49
S10 4998 4680 143 156 156 8 447 8 2.09 13.00 27.23

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 108 98 108 7 404 11 × 4 2.50 5.00 12.50
ST 2 209 190 209 8 598 11 × 5 2.67 5.00 13.33
ST 3 304 310 310 10 568 11 × 8 3.17 10.00 31.67
ST 4 438 461 461 12 587 11 × 11 3.67 5.00 18.33
ST 5 600 605 605 14 566 11 × 15 4.33 5.00 21.67
ST 6 600 595 600 14 561 11 × 15 4.33 5.00 21.67
ST 7 493 499 499 12 636 11 × 11 3.67 10.00 36.67
ST 8 383 396 396 12 504 11 × 11 3.67 5.00 18.33
ST 9 239 252 252 9 570 11 × 6 2.83 5.00 14.17

ST 10 143 156 156 8 447 11 × 5 2.67 5.00 13.33

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 108 98 108 7 404 7 1.83 5.00 9.16
R2 101 91 101 7 377 7 1.83 5.00 9.16
R3 229 271 271 10 497 10 2.62 7.00 18.33
R4 162 144 162 8 464 8 2.09 6.00 12.57
R5 107 96 107 7 400 7 1.83 7.00 12.83
R6 110 103 110 7 413 7 1.83 8.00 14.66
R7 240 240 240 9 543 9 2.36 7.00 16.49
R8 143 156 156 8 447 8 2.09 6.00 12.57

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 108 98 108 7 404 11 × 4 2.50 5.00 12.50
RT 2 209 190 209 8 598 11 × 5 2.67 5.00 13.33
RT 3 438 461 461 12 587 11 × 11 3.67 5.00 18.33
RT 4 600 605 605 14 566 11 × 15 4.33 5.00 21.67
RT 5 600 595 600 14 561 11 × 15 4.33 5.00 21.67
RT 6 493 499 499 12 636 11 × 11 3.67 5.00 18.33
RT 7 383 396 396 12 504 11 × 11 3.67 5.00 18.33
RT 8 143 156 156 8 447 11 × 5 2.67 5.00 13.33

S3, S4

0.06
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Duct Sizing Worksheet (Austin home Rigid 0.5 IWC ECM)

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2
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Table 63 Sheet metal duct sizing worksheet for the Austin home (ECM+0.8 IWC) 

 

  

HF = 1200 / 42000 = 0.02857143
CF = 1200 / 36000 = 0.03333333

Name H-Btu C-Btu H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

Btu/hr Btu/hr cfm cfm cfm inch FPM inch ft ft ft
2

S1 3780 2952 108 98 108 6 550 6 1.57 10.00 15.71
S2 3528 2736 101 91 101 6 513 6 1.57 10.00 15.71
S3 3318 3600 95 120 120 6 611 6 1.57 13.00 20.42
S4 4704 4536 134 151 151 7 566 7 1.83 13.00 23.82
S5 5670 4320 162 144 162 7 606 7 1.83 13.00 23.82
S6 3738 2880 107 96 107 6 544 6 1.57 13.00 20.42
S7 3864 3096 110 103 110 6 562 6 1.57 15.00 23.56
S8 5040 4320 144 144 144 7 539 7 1.83 15.00 27.49
S9 3360 2880 96 96 96 6 489 6 1.57 15.00 23.56
S10 4998 4680 143 156 156 7 584 7 1.83 13.00 23.82

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

ST 1 108 98 108 6 550 8 × 4 2.00 5.00 10.00
ST 2 209 190 209 7 781 8 × 5 2.17 5.00 10.83
ST 3 304 310 310 9 701 8 × 9 2.83 10.00 28.33
ST 4 438 461 461 10 845 8 × 11 3.17 5.00 15.83
ST 5 600 605 605 12 770 8 × 16 4.00 5.00 20.00
ST 6 600 595 600 12 764 8 × 16 4.00 5.00 20.00
ST 7 493 499 499 10 915 8 × 11 3.17 10.00 31.67
ST 8 383 396 396 10 726 8 × 11 3.17 5.00 15.83
ST 9 239 252 252 8 722 8 × 7 2.50 5.00 12.50

ST 10 143 156 156 7 584 8 × 5 2.17 5.00 10.83

Name H-Cfm C-Cfm Design Cfm Round Size Velocity Final Size Perimeter Length Surface Area

cfm cfm cfm inch FPM inch ft ft ft
2

R1 108 98 108 6 550 6 1.57 5.00 7.85
R2 101 91 101 6 513 6 1.57 5.00 7.85
R3 229 271 271 9 614 9 2.36 7.00 16.49
R4 162 144 162 7 606 7 1.83 6.00 11.00
R5 107 96 107 6 544 6 1.57 7.00 11.00
R6 110 103 110 6 562 6 1.57 8.00 12.57
R7 240 240 240 8 688 8 2.09 7.00 14.66
R8 143 156 156 6 795 6 1.57 6.00 9.42

H-Cfm C-Cfm Design Cfm Round Size Velocity Perimeter Length Surface Area

cfm cfm cfm inch FPM H × W ft ft ft
2

RT 1 108 98 108 6 550 8 × 4 2.00 5.00 10.00
RT 2 209 190 209 7 781 8 × 5 2.17 5.00 10.83
RT 3 438 461 461 10 845 8 × 11 3.17 5.00 15.83
RT 4 600 605 605 12 770 8 × 16 4.00 5.00 20.00
RT 5 600 595 600 12 764 8 × 16 4.00 5.00 20.00
RT 6 493 499 499 10 915 8 × 11 3.17 5.00 15.83
RT 7 383 396 396 10 726 8 × 11 3.17 5.00 15.83
RT 8 143 156 156 7 584 8 × 5 2.17 5.00 10.83

Duct Sizing Worksheet (Austin home Rigid 0.8 IWC ECM)

0.13
Blower CFM - Cooling Load =

Final Size

Blower CFM - Heating Load =
FR Value =

Final Size

N/A

Supply Runout

Supply Trunk

Return Runout

Return Trunk

S5
S6
S7

S8, S9
S10

N/A

Associated Supply run

S1
S2

S3, S4
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APPENDIX J ENERGYPLUS SIMULATION LAYOUT 

 

A complete air loop in EnergyPlus (LBNL 2013a) includes a supply side branch 

and a demand side branch (LBNL 2014). The supply side branch (the branch between 

the “air loop inlet node” and the “air loop outlet node”) is modeled as compound 

components, consisting of a blower, a direct expansion (DX) cooling coil, and a gas 

heating coil, as shown in Figure 79.  

 

 

 

Figure 79 Node connections in EnergyPlus 
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The three EnergyPlus objects of Fan:OnOff, Coil:Cooling:DX:SingleSpeed, and 

Coil:Heating:Gas are first defined in the model group of fans and coils, and then 

assembled together  in the object of AirLoopHVAC:Unitary:Furnace:HeatCool.  

• Fan:OnOff 

This object models a constant air volume fan that is intended to cycle on and off in 

tandem with a cooling or heating system. The inputs of this object include fan/motor 

efficiency, maximum airflow rate, and fan pressure rise, all of which were provided 

by the developed empirical models of furnace blowers in Section 2.  

• Coil:Cooling:DX:SingleSpeed 

This object represents the performance of a direct expansion (DX) cooling coil with 

a single capacity output. It uses performance information at the rating condition 

along with performance curves to determine capacities and power at part-load 

conditions. Sensible/latent capacity splits are determined by using the rated SHR 

and the SHR modifier curves. This DX cooling coil input requires the rated total 

cooling capacity, the rated SHR, the rated COP, and the rated air volume flow rate, 

all of which were experimentally determined at the rating condition (air entering the 

cooling coil at 80ºF dry-bulb/67°F wet-bulb (26.7°C dry-bulb/19.4°C wet-bulb) and 

air entering the outdoor condenser coil at 95°F dry-bulb (35°C dry-bulb)). In 

addition, this object requires a group of performance curves to estimate the actual 

capacities and power consumption at various airflow and temperature conditions. 

The capacity, power, and SHR modifier curves as a function of flow fractions were 
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determined from the air conditioner testing results over an airflow range of 1000 to 

2250 ft3/min (0.47 to 1.06 m3/s), while the capacity, power, and SHR modifier 

curves as a function of temperatures were derived from the manufacturer’s catalog 

data.  

• Coil:Heating:Gas 

This object is a simple capacity model with the user-defined efficiency. The inputs 

include nominal capacity, user-defined efficiency, part load curve and parasitic 

electric or gas load. In this study, the efficiency of gas furnaces was assumed to be a 

constant of 80% and independent of airflows.  

• AirLoopHVAC:Unitary:Furnace:HeatCool 

This object assembles all the previously defined EnergyPlus objects, namely 

Fan:OnOff, Coil:Cooling:DX:SingleSpeed and Coil:Heating:Gas, by connecting 

nodes that were defined with these components.  

The branch between the “zone equipment inlet node” and the “zone equipment 

outlet node” is the supply side branch and represents the air distribution system. Supply 

and return ductworks in each duct design shown in Appendixes H and I were converted 

into single straight ducts by maintaining the same surface areas and pressure drops at 

design airflow rates. The equivalent duct cross-sectional areas and duct lengths of supply 

and return ductworks were assigned to the sectional branch between the “zone supply 

node 2” and the “zone supply node 3”, which represents the supply ductwork, and the 

sectional branch between the “zone return node 2” and the “zone return node”, which 

represents the return ductwork. The sectional branches between any other nodes in the 
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supply side branch were designed as idea ducts with no heat gains/losses through duct 

walls or pressure drops. A leakage level of 10% at a reference pressure of 0.1 in. w.g. 

(25 Pa) was assigned at the “zone supply node 2” and the “zone return node” to 

represent the supply and return leakages, respectively.  
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APPENDIX K COMPARISON OF ANNUAL ENERGY COSTS WITH AND 

WITHOUT LEAKAGES 

 

The purpose of this section is to compare the impact of duct leakages on annual 

energy costs for both the Chicago home and the Austin home. In addition to the 24 

building energy simulations that were performed and discussed in Section 4, another 24 

simulations were conducted by maintaining the same input parameters but without 

modeling duct leakages. The annual energy costs without duct leakages were determined 

from the simulation results of electricity consumptions of blowers and condensing units 

as well as natural gas consumptions of furnaces at zero duct leakage, along with the 

same utility rates as used in Section 4 for the annual energy cost calculations for the 

Chicago home and the Austin home. Results of the annual energy cost with and without 

duct leakages are first grouped by the flow resistance magnitude and system 

configurations, and then shown in bar plots in Figure 80 and Figure 81 for the Chicago 

home and the Austin home, respectively. Also, the same results shown in Figure 80 and 

Figure 81 are summarized in Table 64, along with the percentage increase in the annual 

energy cost relative to the no-leakage scenario. 
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Figure 80 Comparison of annual energy cost for the Chicago home with and 
without duct leakages 
 

 

 

Figure 81 Comparison of annual energy cost for the Austin home with and without 
duct leakages 
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Table 64 Results of annual energy costs with and without duct leakages 

Location Blower Ductwork 
Flow resistance, in. 

w.g. (Pa) 

Annual energy cost 
No leakage, 

USD 
With leakage, 

USD 
Percentage 
increase, % 

Chicago 
home 

ECM 

Sheet 
metal 

0.3 (75) 593 681 13 
0.5 (125) 589 738 20 
0.8 (200) 599 820 27 

Flexible 
0.3 (75) 593 693 14 

0.5 (125) 592 710 17 
0.8 (200) 602 777 22 

PSC 

Sheet 
metal 

0.3 (75) 629 725 13 
0.5 (125) 590 742 21 
0.8 (200) 588 792 26 

Flexible 
0.3 (75) 634 727 13 

0.5 (125) 593 716 17 
0.8 (200) 586 746 21 

Austin 
home 

ECM 

Sheet 
metal 

0.3 (75) 596 654 9 
0.5 (125) 601 714 16 
0.8 (200) 625 801 22 

Flexible 
0.3 (75) 605 662 9 

0.5 (125) 607 709 14 
0.8 (200) 630 785 20 

PSC 

Sheet 
metal 

0.3 (75) 683 755 10 
0.5 (125) 648 769 16 
0.8 (200) 658 822 20 

Flexible 
0.3 (75) 687 757 9 

0.5 (125) 653 762 14 
0.8 (200) 664 810 18 

 

 

Comparing the results with and without duct leakages in Figure 80 and Figure 81 

along with Table 64 shows that the annual energy cost is increased with duct leakages in 

all simulated scenarios for both the Chicago home and the Austin home. For example, in 

the combination of ECM+Flex for the Chicago home, the annual energy cost at the low 

flow resistance of 0.3 in. w.g. (75 Pa) is increased by 14% from $593 to $693 as the 

effect of duct leakages is modeled. Increases in the annual energy cost are also observed 

in the other system configurations at all levels of flow resistances but with different 

magnitudes.  
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In addition, Table 64 shows that systems with higher flow resistances have 

greater percentage increases in the annual energy cost due to duct leakages compared to 

systems with lower flow resistances. For instance, in the combination of PSC+Rigid for 

the Austin home, the percentage increase in the annual energy cost is increased from 

10% to 20% as a result of increasing the flow resistance from 0.3 to 0.8 in. w.g. (75 to 

200 Pa). The same trend is also observed in all simulated scenarios for both the Chicago 

home and the Austin home. Table 64 shows that compared to the results without duct 

leakages, the annual energy cost with leakages for the Chicago home is increased by 13-

14% at the low flow resistance of 0.3 in. w.g. (75 Pa), 17-21% at the medium flow 

resistance of 0.5 in. w.g. (125 Pa), and 21-27% at the high flow resistance of 0.8 in. w.g. 

(200 Pa). For the Austin home, the annual energy cost is increased by 9-10% at the low 

flow resistance of 0.3 in. w.g. (75 Pa), 14-16% at the medium flow resistance of 0.5 in. 

w.g. (125 Pa), and 18-22% at the high flow resistance of 0.8 in. w.g. (200 Pa), depending 

on duct designs and blower types. 

Higher annual energy costs at higher duct flow resistances are mainly caused by 

increased duct leakages considering the fact that the leakage airflow is modeled 

proportionally to the differential pressure between the interior and exterior of the duct 

wall. The leakage airflow results in a loss of the conditioned air to the outside on the 

supply side and the infiltration of unconditioned air into the system on the return side. 

Therefore, greater energy use and higher annual costs occur in systems with both PSC 

and ECM blowers as the consequences of using ductworks of higher flow resistance.  


