
MOTION PLANNING FOR A TETHERED MOBILE ROBOT

A Thesis

by

REZA HOSSEINITESHNIZI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Dylan A. Shell
Committee Members, Dezhen Song

Suman Chakravorty
Head of Department, Dilma DaSilva

Major Subject: Computer Science

Copyright 2015 Reza HosseiniTeshnizi

August 2015



ABSTRACT

Recently there has been surge of research in motion planning for tethered robots.

In this problem a planar robot is connected via a cable of limited length to a fixed

point in R2. The configuration space in this problem is more complicated than the

one of a classic motion planning problem as existence of the cable causes additional

constraints on the motion of the robot. In this thesis we are interested in finding

a concise representation of the configuration space that results in a straightforward

planning algorithm. To achieve such a representation we observe that configuration

space manifold has a discrete structure that conveniently can be separated from its

continuous aspect when it is represented as an atlas of charts. We provide a method

for generating either the complete atlas or a subset of its charts based on special

cable events. Generating parts of the configuration space on-the-fly enables the fol-

lowing improvements over the state-of-the-art. a) We decompose the environment

into cells as needed rather than an off-line global discretization, obtaining competi-

tive time and space complexity for our planner. b) We are able to exploit topological

structure to represent robot-cable configurations concisely leading us towards solu-

tions to the more complex problems of interest.

To underscore the potential of this representation, we take further steps to gen-

eralize it to two more complicated instances of the tethered robot planning problem

that has been widely disregarded in the literature. We will first consider a simplified

model of cable-to-cable contacts, giving the robot the option to perform knot-like ty-

ing motions. Next, we will address the planning problem for a tethered robot whose

cable has a constraint on its curvature. This adds to the realism of the model since

most practical cables have some degree of stiffness which limits curvature. In this
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case we provide a novel technique to relate Dubins’ theory of curves with work on

planning with topological constraints. Our results show the efficiency of the method

and indicate further promise for procedures that represent manifolds via an amalga-

mation of implicit discrete topological structure and explicit Euclidean cells.
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1. INTRODUCTION

Motion Planning, the problem of moving an object in a space while avoiding

obstacles, has been addressed by more than three decades of research [28].

Many practical scenarios require a robot to use a tether. Consider a robot which

uses a cable as a source of power and/or communication. Robots which perform

high power tasks (e.g., industrial robots) need to use a cable as a source of electrical

power as their required energy cannot be provided by batteries. In several cases,

a cable is necessary for a robot to be able to transfer data (e.g., underground and

underwater robots). Moreover, in some cases, the cable is not required but it can

improve the performance of the given task. For example, a robot can use a cable

to collect [10, 5] or separate objects from each other [19]. These examples highlight

the importance of efficient methods that solve the motion planning problems for

tethered robots. Recent research has focused on different aspects and variations of

this problem [6, 17, 33, 29].

In motion planning for tethered robots, along with the usual constraints that are

considered in any motion planning problem (e.g., collision avoidance, distance, etc.),

two important additional constraints are imposed on the motion of the robot due to

the existence of the cable:

1. The radius of the robot’s movement is limited by the cable’s length (Fig-

ure 1.1a). For example, in a single connected environment a free robot (i.e.,

without a tether) can reach any point in that environment, regardless of the

distance that is traveled. However, in the case of a tethered robot, the reach-

able distance is determined by the length of its tether. In an obstacle-free

environment, for example, the reachable area is a disk centered at the robot’s

1



(a) Length Constraint. The green disk represents the reachable area for the tethered robot.

(b) Topological Constraint. This figure shows one example of the this class of constraints, that is,
the placement of the cable in the environment with respect to obstacles.

Figure 1.1: The two constraints caused by a cable.

tether point with radius equal to the length of the cable.

2. Topological constraints are imposed by the cable and obstacles in the environ-

ment [7]. For instance, in Figure 1.1b, one difference between the two shown

paths is the trajectory that the robot has to take to retract its cable and return

to its initial position. If the robot takes the path on the left of the obstacle, it

must return on the left side to get to its initial position. The same is true for

the path on the right side of the obstacle.
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1.1 The Problem’s Complexity

Motion planning for a tethered robot can be modeled by considering a variety

of elements, each of which contributes to the complexity of this problem. We have

identified the following three main classes of characteristics and the different possible

values for each them.

1.1.1 The Robot’s Characteristics

The behavior of a mobile robot and its capability in performing different tasks

changes the complexity of the planning problem. This behavior can be defined with

three different parameters of interest in the context of this problem.

Extent of the Robot The shape of the robot in practice or simulations can vary.

This characteristic of the robot affects the map of the configuration space. The

common technique for considering the dimensions of the robot is to extrude the

boundaries of the environment (including the obstacles) so that the points that

are to close the boundaries are not considered in the planning process. This

procedure will reduce the motion planning problem for a robot with extent to

a case of a point robot [9].

Curvature Bounded Motion In the simplest instance of this problem, the robot’s

motion is free of its previous movement. That is, there are no bounds the how

curved the trajectory of the robot’s movement can feasibly be. In the literature,

this type of motion is called holonomic. On the other hand, the curves in the

robot’s trajectory can be less than, greater than, or equal to some parameter

due to design aspects of a particular robot. In such cases, the motion is said to

be nonholonomic [13]. One instance of this problem in the literature is known

as Dubins Car Problem [22].
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Reverse Motion The robot’s ability to move in both forward and reverse directions

adds to the problem’s degrees of freedom. One instance of such problems is the

Reeds-Shepp Car [27]. The problem becomes more interesting if each movement

direction has a different cost for the robot or there is cost associated with

changing the movement direction, since the state space becomes nonuniform.

1.1.2 The Cable’s Characteristics

Planning motions of the tethered mobile robot is greatly affected by the charac-

teristics of its cable. Many of the configurations of the non-tethered robot become

infeasible with the existence of a tether. The tether itself can be modeled with many

physical features, some of which are considered in this thesis.

Length A theoretical cable can be of infinite length so that it does not impose

limits on the distance between the robot and the cable’s base point in the

environment. However, the configuration space for such a robot and its cable

still has a different topology compared to a robot without a cable. For example,

the trajectory that the robot needs to take in order to retract/untangle its cable

is dependent on its previous movements. However, all practical cables have a

limited length and hence define a boundary on how far the robot can go from

the base point of the cable.

Retracting vs. loose In a general case, a cable can be loose and have slack. How-

ever, one can consider a scenario in which the robot has a retracted/taut cable.

The retraction itself can be done in different ways. The robot can keep its cable

retracted at all times while moving or, alternatively, it can retract the cable

once it has reached its destination. Depending on how the robot performs the

retraction different methods can be applied to plan the motions of the robot.
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Curvature Bounded Similar to the robot’s motion, the cable can also be free

of limits on how much it can be bent. Although, this might be the case in

many practical scenarios, a more general model is one that considers an upper

curvature bound for the cable. This can be a representation of the stiffness of

the cable. It is possible that the robot does not have a curvature constraint on

its motion while the tether has bounded curvature.

1.1.3 Planning Metric’s Characteristics

Below we will provide two of the main criteria considered in this thesis for as-

sessing aspects of feasible solutions. Based on the importance of each criterion, an

evaluation function can be defined to choose the most suitable answer to the given

instance of the problem. The planning metric can greatly change the complexity of

the search for the solution.

Distance Traveled by the Robot One common metric is the distance that robot

has to travel to get to its goal. In most cases, the minimum distance is the pre-

ferred over other solutions. Nevertheless, some problems require the maximum

distance traveled (e.g., surveillance).

Cable Length While the traveled distance can be an important factor, the length

of the consumed cable can also be used as a criterion to evaluate solutions.

One could choose a solution with the longest/shortest amount of cable con-

sumed over other solutions. This becomes more important specifically when

we consider the cable as a resource to the robot.

1.2 Thesis Outline

Based on the above characteristics of the robot, the cable, and the planning met-

ric, different instances of this problem can be generated. In this study, we will look
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for efficient methods of motion planning for tethered robots with a new perspective.

In Chapter 2, we examine the structure of the configuration space induced by a robot

tethered by a taut (possibly retracting) cable and propose to represent the manifold

of configurations by an atlas [23]. In Chapter 3, we will extend this method and

consider a more general model of cables. In the extended method, we model the

robot’s cable as a stiff tether with curvature constraint. Finally, Chapter 4 provides

an outlook on how to approach the motion planning problem for two robots that are

connected via a cable.
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2. CONSIDERING A TETHER

2.1 Introduction

This chapter provides the theoretical foundation for considering a tethered robot

with a new perspective. We examine the structure of the configuration space for

a robot tethered by a taut (possibly retracting) cable and propose to represent the

manifold of configurations by a special atlas [23]. In so doing, the topological reg-

ularity, captured as a graph, is naturally separated from the continuous aspects,

captured as charts. The graph provides an understanding of the complexity induced

by the cable and nodes within the graph provide sufficient topological context for

points in R2 to represent configurations. The planning method we present is quite

straightforward using this representation.

This method creates a set of locally continuous charts based on a set of cable

events. Initially, we consider events that occur when a cable touches or wraps around

an obstacle, and we show that they are intimately connected with a subgraph of the

visibility graph of the environment. We will show that in this model this subgraph

is in fact a tree, and thus the topological structure of the atlas representing the

configuration space forms a tree structure. This structure provides context that

allows path planning to proceed by moving locally (either up to parent charts, or

downward to children charts) in the configuration space.

Next, we extend the set of cable events to consider cable-to-cable interactions, by

considering two different ways to cross the cable: the robot can move over or under

the cable1. The method— we believe, uniquely— is applicable to this case despite

the fact that the involved topology becomes rather more complex: events no longer

1We do assume in this case, that the cable has infinite friction in contacting itself.
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occur at a countable set of locations, the configuration space’s structure is no longer

separated easily. Nevertheless, because only parts of the configuration manifold

need be generated and the path planning operations proceed exploring locally, the

approach succeeds. We believe that this underscores the strength of dynamically

computing relevant parts of the atlas on-the-fly and treating the configuration space

as if it were a just-in-time computed data structure.

2.2 Related Work

A common underlying idea of previous works on this subject, is to create a graph

based on a discretized approximation of the configuration space and provide an

efficient method to search through the space of possible paths and choose the optimal

one among all of which fall into the same homotopy class [15]. Here we will provide

a list of the closely related works.

• Hert and Lumelsky [16]: As one of the oldest and influential papers on this

subject, it discusses the problem of planning for multiple tethered robots. The

authors designed an algorithm that gives as output a sequence of motions for

robots (i.e., an ordering of robots) so that the paths do not entangle the tethers.

In doing so, the method receives a Directed Acyclic Graph (DAG) representing

the required motions for reaching the final configuration. In this DAG, each

node represents a robot and there is a directed edge from node v to node u if

movement of robot v before u will not entangle the cables. The DAG is then

used to perform a topological sort [8] on the motions. One possible drawback

of this work is that the authors do not provide an algorithmic way of creating

such a DAG.

• Xavier [32]: The author utilized visibility graph to trace back the cable and

store changes in the visibility of the vertices in the environment. He constructs

8



a path from the collected vertices and modifies it to its shortest equivalent in

the same homotopy class. Although the use of visibility graph in his method

is similar to our technique, there are fundamental differences between the al-

gorithms and data structures used in the two methods, which we will explain

below.

• Grigoriev and Slissenko [14]: This work presents a polynomial-time algorithm

for finding the shortest path among all the paths in a given homotopy class. It

is presumed that the obstacles are semi-algebraic. The authors defined cuts of

the plane and then attributed a letter to each cut. By creating a word for each

path, they showed that two paths belong to a same homotopy class if and only

if reducing their words results in a same irreducible word.

• Bhattaharya, Kumar, and Likhachev [6]: In this work, homotopy classes of

paths are defined based on the Cauchy Integral Theorem. This method provides

a way for defining homology classes of paths.

• Igarashi and Stilman [17]: The authors designed an algorithm for creating a

graph of the configuration space manifolds based on the cable length constraint.

In this graph, one point in the operation space could be represented by many

vertices in the graph due to the fact that two identical robot locations may have

different cable configurations. An extended version of this basic algorithm is

also provided which avoids the robot-cable interactions. Their idea of repre-

senting the configuration space by multiple overlapping manifolds influenced

the present work.

• Yershov, Vernaza, and LaValle [33]: In a less related topic, this work focuses

on motion planing with winding constraints (i.e., homology constraints). The
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authors defined an optimization problem and using the properties of underac-

tuated systems and dynamic programming they achieved a feedback policy to

find the solution.

• Narayanan, Vernaza, Likhachev, and LaValle [26]: In their work, a similar

concept to [14], called virtual sensor beams, is used to represent the topological

information of a path by constructing words of letters belonging to a free group.

These words are then reduced to identify homotopy and homology class of the

given path.

• Shnaps and Rimon [29]: This paper approaches the problem of coverage of

a planar environment by a tethered robot. They propose an algorithm for

performing an online coverage. It is assumed that the robot has no prior

information about the obstacles in the environment and has a detection sensor.

Based on the body of the prior related studies, the method presented in this

chapter has several distinguishing features:

• The approach we propose avoids regularly discretizing the configuration space.

It instead uses a subset of the visibility graph to induce a natural cell decom-

position of the space.

• We connect motions of the robot to discrete events that occur with the cable,

each representing qualitative changes in the robot and cable configuration. The

idea of identifying events of this form allows the method to be generalized so

as to model cable-cable interactions appropriately.

• We avoid off-line creation of the entire configuration space, keeping data struc-

tures that allow for dynamic generation of necessary parts of the space. We
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(a) No Obstacles (b) Obstacle blocking the direct
line

(c) Cable-obstacle contact

Figure 2.1: Different scenarios of a tethered robot with respect to the presence of obstacles.

represent topological context and local metric information, where planning in

the local chart is trivial, and new charts are only created on-the-fly as needed.

• Finally, the visibility graph has been previously used in motion planning for

non-tethered robots [25, 24]. A few methods also take advantage of visibility

graph for the tethered case [32, 1]. We are interested in construction of an atlas

of charts of the configuration space. This atlas leads to new insight with regards

to the cable’s dependency on the environment topology and its connection with

the visibility graph.

2.3 The Preliminaries

This section provides the fundamental definitions used throughout the Chapter.

We consider the problem of planning for a non-oriented robot situated in a planar

environment with a cable tethered to a fixed point. It is assumed that the cable of

maximum length l is always taut (e.g., through the use of a retracting or spooling

mechanism). And also that the obstacles are known and polygonal.

Fig. 2.1a–2.1c illustrate aspects of the problem. In an obstacle free environment,

motion planning for a tethered robot is identical to an untethered robot with circular

boundary of radius l. A path from ps to pd is a straight line segment [20]. Let a� b

denote the line segment connecting point a to b. In moving from ps � pd, an
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Figure 2.2: The defining elements of a visibility cell.

obstacle may affect the robot’s motion directly (Fig. 2.1b) or indirectly via a cable-

obstacle contact which will bend the cable. Fig. 2.1c. In the latter case, the radius

of movement of the robot after that bend is affected.

2.3.1 Events

Consider the fixed base point of the cable. Due to the limited length of the cable,

the distance between the robot and this point is never greater than l. Therefore,

the accessible area for the robot will be a circle with radius l centered at that point

(Fig. 1.1a). Interestingly, this is true for any contact point as well. If the robot

consumes l′ of its cable length to reach the contact point, since the cable is always

taut, its distance from the contact point can never become greater than l−l′ unless it

untangles itself (Fig. 2.2). Since the configuration of a taut does not change beyond

the contact point unless it is detached from the contact point, then we can safely

store the state of the cable up to the contact point and be sure that it will remain

the same regardless of the configuration of the cable after the contact point. This is

the basis for cell decomposition of the configuration space.

12



The contact points also define a homotopy class of trajectories that the robot can

follow in order to untangle the cable and get back to the initial configuration (i.e., the

cable is completely retracted and the robot is at the origin of the cable). Incidents

that change the homotopy class of returning trajectory and/or the boundaries of

accessible area for the tethered robot are referred to as events.

Definition 1 (Cable Events). In the context of the cabled robot, there are two kinds

of events:

1. Cable-to-obstacle contact: wrapping event

2. Cable-to-cable contact: cable crossing event

In the following subsections, we are not concerned about cable-cable interactions.

We return to cable-cable interactions in Section 2.5 where the method is extended.

2.3.2 Visibility Cells

A wrapping event will only occur when the cable touches an apex of one of

the polygonal obstacles. These apexes are the same as the vertices of the visibility

graph [9]. We can construct a connected component of the free space of the environ-

ment by partitioning the planar map into a semi-algebraic set Pobs consisting of all

the obstacles and the free space Pfree that is the complement of the set Pobs[14].

Since planning the motion for each cell of a decomposed configuration space is

straightforward, we are going to define these cells in a way that the union of them

will cover the configuration space. That is, each cell should contain all the points so

that no movement of the tethered robot from any point in the cell to any other point

in the same cell causes an event. Therefore we can reach the following definition for

the cells of the configuration space in our context.
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Definition 2 (Visibility Cell). A visibility cell is a chart, (U,ϕ), where U ⊆ Pfree

and homeomorphism ϕ is ϕ(x, y) = (x, y), and the collision-free path between any

two points in U is a straight line segment inside U connecting the two points.

We identify cells uniquely by the following fields (Fig. 2.2):

Base Point as discussed in Section 2.3.1, each wrapping point is used as a base

point.

Cable Length determines the maximum distance between the robot and the base

point of a chart.

Parent Cell is the cell describing the robot and its cable configuration directly

before occurrence of the event. This information is crucial when the planner is

searching for paths and/or untangling the cable.

Stitch Line this is the line where one chart is connected to another and can be

considered as an interface between them. Formally this line is the domain for

transition map between the two charts. Once the robot have crossed the stitch

line, a contact is made/released and thus the robot will be transfered from a

chart (cell) to the other.

Fig. 2.3 illustrates a 3D model of how the visibility cells are connected together.

2.3.3 The Maximum Ray Length Visibility Atlas

Since each cell is basically a chart, we next define an atlas as a model of the

decomposition.

Definition 3 (MRLVA (informal)). A Maximum Ray Length Visibility Atlas (MR-

LVA) denoted by Al is an atlas which contains visibility cells whose stitch lines are

edges of the visibility graph of the environment. Each MRLVA has a graph associated
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Figure 2.3: A 3D model of the visibility cells and the way they are connected together. Each cell
is in a different color. The robot is white and the cable is colored yellow.

Figure 2.4: An example of a MRLVAG. The environment producing this MRLVAG is given on the
left.

with it characterizing its topological structure, which we call Maximum Ray Length

Visibility Atlas Graph (MRLVAG) denoted by GAl
(see Fig. 2.4).

A detailed procedure for creating a MRLVA and MRLVAG is provided in Ap-

pendix A.

It is important to note that number of child charts is always less than or equal

to the actual visibility graph’s vertices.

Lemma 1 (Canonical Motion). In an environment with polygonal obstacles, a locally
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shortest path has a canonical form: in Pfree, it is a straight line segment connecting

the two end points. If one of the end points meets an obstacle it is locally supporting

to Pobs at the contact point[20].

Theorem 1 (Completeness of MRLVA). The MRLVA Al generated on Pfree de-

scribes exactly the space of all the possible configurations of a robot (non-oriented)

and its taut cable with maximum length l in Pfree.

Proof. The tautness of the cable implies each segment of it is a locally shortest

path. So by Lemma 1, it is always in form of a line segment in Pfree, and these line

segments connect apexes of the obstacles which are a subset of edges of visibility

graph, hence constituting all the configurations of the taut cable, except the final

segment connecting the robot to the last apex. This last piece of information is

provided by the position of the robot represented as a point in a visibility cell (that

is a chart). Therefore, by connecting this point to the last apex, we will have all the

robot and its taut tether’s configurations.

Corollary 1. Given a MRLVA, by having a path from the root to a chart (Ui, ϕi) ∈ Al

and a point p ∈ Ui can identify a unique configuration of a non-oriented robot and

its taut tether in Pfree.

Proof. Follows from Theorem 1 and Lemma 1.

Theorem 2. The MRLVAG, GAl
, generated on Pfree, is a tree.

Proof. Suppose, to the contrary, that GAl
has a loop. This implies two distinct

sequences of cells and their transition maps to reach same cell. Each sequence implies

an ordering of apexes, that is two distinct configurations of the cable for reaching

the same cell. This contradicts Corollary 1.
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2.4 The Basic Planning Algorithm

Algorithm 1 shows the pseudo code for finding a path from source point ps to des-

tination point pd. This algorithm is greedy since it values the direct line connecting

the source point to the destination point more than other paths.

In order to initiate the algorithm the robot calls FindPath for current chart

given the source and destination points. This function first considers ps � pd as it

is always the locally shortest path [14]. If it cannot move directly toward pd, it then

checks whether a path can be obtained either from its children or its parent. If there

is no child or the cable is not long enough, search in this branch of atlas tree will be

terminated. Otherwise, the planner searches through all the children and stores the

shortest path found in them. Next it ensures no shorter path from the parent chart

to the destination point exists, otherwise the final path will go through the parent

chart instead.

2.4.1 A Note on a Tethered Robot with Extent

Throughout this work, we have considered motion planning problem for a tethered

point robot. This is assumption about the robot being a point is made in order to

ease the understanding of the representation introduced in this work. However, it is

possible to plan motions of a tethered robot with extent using this representation. A

common technique, when planning for a robot with extent is to reduce the problem

to a planning problem for a point robot using Minkowski sums [9]. In the context

of planning for a tethered robot it is important to notice that the map produced by

such procedures cannot be applied to the cable as the cable always makes contact

with the — actual — apices of the obstacles (as opposed to the apices in the reduced

problem). To overcome this we just have to plan the path for the robot using the

map of reduced problem, however the length of the cable and the boundaries of the
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1: FindPath(ps, pd, path)
2: mark this chart as visited
3: if pd is directly reachable then
4: if ps � pd will not cause an event then
5: return path.Push(pd)
6: else
7: mc = Create a chart for the upcoming event
8: Set pm as the point where ps � pd crosses the stitch line of the new chart
9: path.Push(pm)

10: minPath = mc.F indPath(pm, pd, path)
11: end if
12: else if pd might fall into one of this chart’s children then
13: Create child charts for each of the visible vertices of the obstacles if the chart is needed
14: for all c ∈ children do
15: temp = path.Push(c.Base)
16: temp = c.F indPath(c.Base, pd, temp)
17: if temp is the shortest path to this point then
18: store it as minPath
19: end if
20: end for
21: end if
22: if Parent 6= ∅ and is not visited yet then
23: temp = Parent.F indPath(Base, pd, path)
24: if temp is the shortest path to this point then
25: store it as minPath
26: end if
27: else
28: minPath = ∅
29: end if
30: return minPath

Algorithm 1: The shortest path greedy algorithm
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(a) (b)

Figure 2.5: The complexities of the cable-to-cable contacts: (a) Uncountable contact points and
(b) changing movement radius.

cells should be calculated using the actual location of the apices of the obstacles.

2.5 Handling Cable-Cable Interaction

This section discusses how to handle a robot crossing its own cable and the

importance of these events.

2.5.1 Cable-Cable Interaction Events

Previous work generally opts to ignore instances in which a robot’s path crosses

the cable. An exception is [17] wherein the authors deliberately plan movements to

avoid such paths. The main reason of ignoring the cable-to-cable contacts is that it is

either impossible to model the cable contact points, or it is computationally inefficient

to do so (e.g., discretizing the cable.) In contrast, we show that the MRLVAG can

be extended to consider events of this type so that the cable configuration is stored

dynamically.

Mainly, modeling this situation is complicated for two reasons: (a) the cable can

make contact to another segment of the cable in uncountable number of points,

(b) the radius of feasible subsequent movements depends on the location of the con-

tact point (see Fig. 2.5).
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(a) from chart A to C (b) from chart B to C

(c) From left to right: the tree made by movement in Fig. 2.6a, in Fig. 2.6b, and the inherent loop.

Figure 2.6: An example of an MRLVAG growing toward a destination.

When encountering the cable, the robot may either go over the cable or under

it. For these cases, the algorithm is modified by checking whether the last point

added to the path will cause a cable crossing and making the binary choice of over

or under. Each time the robot crosses the cable a new visibility cell is created whose

set of stitch lines contains the cable that the robot has recently crossed in addition

to the set of stitch lines of its parent (see Fig. 2.6).

2.5.2 Violation of the tree structure of MRLVAG

For cable interactions, in addition to wrapping events, over and under events are

needed, yielding the set {o, u, w}.

Theorem 3. With cable crossing events the configuration space no longer has genus

0, i.e., the topological structure is changed so that the MRLVAG is no longer a tree.
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Proof. Figure 2.6 provides an example by construction. It is possible to arrive at

the same chart from two different charts, implying that there are loops in the atlas

structure (in this case we can arrive at chart C either from chart A or B).

The practical ramifications of this issue are resolved easily by finding any spanning

tree of the MRLVAG. Since the MRLVA is itself complete, any of its spanning trees

is complete as well. Nevertheless, the question remains: which spanning tree do we

prefer? To answer this, we consider the effect of the topology on the optimality of the

robot’s movement. The order in which the events occur is related to how suboptimal

the path taken by the robot can be.

Reexamining Fig. 2.6, we see that if the goal is reaching chart C, then Fig. 2.6b

is a shorter distance than Fig. 2.6a. In fact, if the movement to cross the cable is

arbitrarily small, then a robot going from chart B to chart C moves the same distance

as if cable crossing were ignored entirely.

2.5.3 Maintaining the Preferred Tree

With a preferable atlas tree, we must generate that tree. If the robot knew which

events were going to occur along a trajectory to its destination, the shortest route

would start by connecting the current location of the robot to the first event, the

first event to the second event, and so on until it connects the last event location

to the destination. This event ordering is the order in terms of their location on

the cable (see Fig. 2.7). Thus, the algorithm is extended to swap events that are

out of order. In Fig. 2.6a, for example, although the cable event happens before the

wrapping event, since the position of the wrapping event is before the cable event on

the cable, the algorithm will reorder them by replacing the wrapping event behind

the cable events.

21



Figure 2.7: The best ordering of events for reaching from the base point to the destination point.
In other words, for having the shortest path, the points with smaller number should be reached
earlier.

2.5.4 Sequential Cable Events

The precise configurations that result from cable-cable interactions depend on

the physical properties of the cable. For our theoretical treatment, we simplify these

complexities by assuming that whenever the cable wraps around itself there is an

imaginary pin that prevents the displacement of the wrapping point as the robot

moves. This models a cable with infinite friction with itself. This allows one to

define a chart wherever the robot crosses a cable followed by crossing the same

cable except with the other type of action (i.e., o followed by u or vice versa, see

Fig. 2.8). The Base of this chart is the imaginary pin point and the cable is the

stitch line. Such charts need not be stored permanently in the atlas tree, as there

can be infinitely many different charts on a single cable (each depending on the

location of the imaginary pin). A chart that is created because of a sequence of

cable crossing events and all its children will be removed from the atlas whenever

the robot’s configuration leaves that chart. This illustrates the power of dynamically

generating parts of the configuration space on-line.
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Figure 2.8: An example of sequential cable crossing events.

2.6 Experimental Results

To demonstrate the method and evaluate its performance, we developed a simu-

lation environment and implemented the algorithm in C# (see Fig. 2.9).

Fundamental differences between our method and existing work make picking

appropriate criteria for comparison challenging. In particular, running time is prob-

lematic because other state-of-the-art methods employ a discretization of the config-

uration space. The running time is directly affected by the discretization resolution,

and memory utilization suffers from the same illegitimacy. After careful consider-

ation, it was determined that the most equitable means for evaluation was to give

a measure of the proportion of configuration space expanded by the algorithm, and

the number of cells (i.e., an indication of memory footprint) used in doing so.

For each test scenario we calculated the total volume of the configuration space.

We then compared it to the summed volume of the cells that are sufficient for spec-

ifying the robot and cable’s configuration: current visibility cell and its parents up

to the root. The results in Table 2.1 were generated by examining all points of the

configuration space for the two test scenarios, and looking at the proportion of the

configuration space volume stored in memory. The minimum and maximum rows re-
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Figure 2.9: Screen-shot of the simulation environment.

port values for the cheapest and most costly configurations to represent, respectively

(see Figures 2.11 and 2.12).

Environment 1 Environment 2
Memory % of MRLVA Cell % of MRLVA Cell
Usage volume covered Count volume covered Count
Min 62.52 1 of 36 7.12 1 of 115
Max 74.8 9 of 36 21.47 13 of 115

Table 2.1: Results of the Experiments

The cable induces different degrees of topological complexity in environments

with differing numbers and complexity of obstacles. To demonstrate this effect, we

have chosen the two test scenarios in Fig. 2.10.
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(a) Test Environment 1 (simple) (b) Test Environment 2 (complex)

Figure 2.10: The two test environments used for presenting the results. Fig. 2.10a and Fig. 2.10b
are representative of simple and complex environments, respectively. Gray is obstacle and green is
robot. The length of the cable is 300 units in both test cases.

2.6.1 On-line Generation Versus Off-line Generation

Table 2.1 demonstrates the savings enabled by on-line generation of the configu-

ration space. They show that if we were going to use a discretization of the config-

uration space represented as an MRLVA, storing the current chart and its ancestors

would reduce the volume, the number of vertices in the graph, and consequently

the memory use and searching time needed over the off-line methods used in the

state-of-the-art.

2.6.2 Cell Decomposition Technique

Although using the on-line atlas-based method reduces the number graph nodes,

it is not the only advantage of the method. As explained in Section 2.3.2, when the

atlas is comprised of charts encoding the visibility properties of the environment,

a special data structure can be used to represent the chart as a continuous space.

Doing so requires only a constant amount of memory no matter how big or small (in

volume) the chart is.
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(a) The configuration associated with the min-
imum costly representation. In this configura-
tion the robot is residing in the root cell of the
tree (no cable events has happened yet).

(b) The configuration associated with the max-
imum costly representation. This configuration
requires the most number of nodes in the at-
las graph of c-space representation. The robot
has crossed its own cable once and wrapped it
around the square obstacle 1.5 times (touched
the obstacle’s vertices 6 times).

Figure 2.11: The two configurations associated to min and max rows in Table 2.1 in Test Environ-
ment 2.

Therefore, the number of charts used is a more important factor than area. We

computed the number of nodes in the MRLVAG generated by the on-line method.

The total number of charts needed for the configuration space depends on the com-

plexity of the environment as it affects the manifold; consequently these numbers

are reported too. Results for the test scenarios, shown in Table 2.1, illustrate that

savings are substantial in both simple and complex manifolds.

2.6.3 Cable Induced Manifold Structure

The presented data also lead to an additional observation about memory saving

in environments with different degrees of topological complexity. At one end of the

scale, simple environments result in a configuration space that is mostly planar and

has a small MRLVAG. In these cases, large volumes of the configuration space are

captured with single cells. The environment in test scenario 1 is an exemplar: more
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(a) The configuration associated with the min-
imum costly representation. In this configura-
tion the robot is residing in the root cell of the
tree (no cable events has happened yet).

(b) The configuration associated with the max-
imum costly representation. This configuration
requires the most number of nodes in the at-
las graph of c-space representation. The robot
has crossed its own cable twice and wrapped it
around the square obstacle twice.

Figure 2.12: The two configurations associated to min and max rows in Table 2.1 in Test Environ-
ment 2.

than 60% of the configuration space is represented by a single chart. At the other end

of the scale, complicated environments increase the topological complexity (reflected

in large MRLVAGs) and have many visibility cells and charts. The resulting graphs

are large, but have the form of wide and short trees. The environment in test

scenario 2 illustrates this, with a total of 115 cells, but at most 13 ever need to be

kept in memory. Thus, the cell decomposition approach results in significant memory

saving across environment types.

2.7 Conclusion

This chapter approached planning for tethered robots with a new perspective:

previous work employs a discretization of the configuration space along with an effi-

cient search method. In addition to the need to perform substantial off-line precom-

putation, existing approaches are unable to represent cable-cable interactions, and

either ignore this problem or avert configurations which lead to them. The proposed
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method solves the basic tethered robot planning problem in a time and memory ef-

ficient way. Moreover, it is sufficiently general to form a consolidated representation

for several other problems of interest, for example, winding constraints, some knot-

like tying motions, etc. The method is, thus, more convenient and powerful than

available approaches.

In this paper assumptions about the physical properties of the cable (tautness and

friction) allow for well-defined cable-cable interactions. Another powerful property

of the charts is their independence. One may use this in selecting distinct coordinate

system representations for each chart to further improve efficiency.
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3. THE ROLE OF CURVATURE

3.1 Introduction

In the previous Chapter, we introduced a method for planning the motions of a

tethered mobile robot. To establish the theoretical foundation for the method, we

considered a simplified model of a cable. Namely, the cable was taut at all times,

it was frictionless except at the self intersection points, and it could be bent freely.

Though some of these simplifications are employed herein, this Chapter is a step

toward a more realistic model as we consider potential stiffness in the cable. We

treat stiffness with a parameterized curvature constraint on the cable.

As we saw in the previous chapter, even the simplest case involving a frictionless,

taut, and unconstrained flexible cable imposes two constraints on the motion of

the robot: (1.) the radius of the robot’s movement is limited by the cable’s length

(Fig. 1.1a), and (2.) topological constraints are imposed by the cable and the obstacles

in the environment (Fig. 1.1b). For a stiff cable, a third constraint is added, not to

the robot’s motions, but to feasible cable configurations: (3.) the cable cannot be

bent with more than some sharpness (Fig. 3.1). One näıve approach is to consider a

discretization of the cable which is then forced to abide by the curvature constraint.

This technique, however, leads to a high dimensional space and the concomitant

computation is costly.

We tackle the problem by taking advantage of two complementary ideas. We gen-

eralize the decomposition method proposed in chapter 2, which separates topological

regularities from the continuous aspects of the c-space. In doing so, we employ

Dubins’ theory of optimal trajectories under curvature constraints [11] to exclude

infeasible cable configurations from the robot-cable c-space. Building a concise rep-
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Figure 3.1: Curvature Constraint: the yellow dotted circle represents the cable’s curvature con-
straint. Due to the stiffness of the cable, it cannot be bent with sharp angles. The gray arrow
shows a planned motion for the robot. The figure on the left depicts an invalid configuration for
the cable after execution of the motion. The valid configuration is shown on the right.

resentation of this space, enables an efficient, complete search of the manifold. In

Section 3.4, we present an algorithm that explores the c-space while searching it,

lazily computing parts of the manifold as and when they are needed. This form of

on-line search and exploration minimizes the memory use of the method. We demon-

strate that parameterizing curvature makes the method a general enough technique

to solve several related problems.

3.2 Related Work

This work is related to two distinct areas of motion planing research: planning

for tethered mobile robots, and nonholonomic motion planing. It is important to

note that the nonholonomic constraint in this problem is not on the robot’s motion,

but it is on the feasible poses of the cable. The robot is controllable in all of its

three degrees of freedom (x, y, and θ). The cable, however, cannot be bent beyond

a certain angle when anchored to a point.

The reader is encouraged to see Section 2.2 where we discussed closely related

works to the area of motion planning for tethered robots in details. In short, the

common approach for planning motion of tethered robots is to create a graph ap-
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proximation of the configuration space and then search through the graph to find

the solution among paths in the same homotopy class.

There has been considerable work on the general topic of nonholonomic motion

planning. Dubins [11] proved that any optimal path in an obstacle-free unbounded

environment consists of 3 segments which are either straight line segments or circle

sectors. Jacobs and Canny [18] provided an O(n4 log(n) + (n)2/δ2) algorithm that

finds a δ-robust approximate shortest path, where n is the total number of vertices

of the obstacles. They employed a plane sweep technique and quadtrees to achieve

the aforementioned running time. Their method describes a graph that divides the

c-space into simple trajectories. Similar to Dubins’s approach, they showed that

these trajectories are made up of subpaths that pass between the points on the

boundaries of the obstacles. Agarwal et al. [3] extended Dubins’s theory to deal

with environments with so-called moderate obstacles. By improving on Jacobs and

Canny’s work, the paper provided an algorithm that builds a graph of straight lines

and circles. This graph was then searched to find an optimal path. The total time of

this method is O(n2 log(n)), where n is the total number of edges. Their later work

[2] took a similar approach to find the shortest path in an obstacle free environment

but with polygonal boundaries with n edges in time O(n2 log(n)). There are also

several works addressing the problem from a control perspective (see [21, 30] and the

references therein.)

We know of no prior work that considers both the curvature constraint and the

topological constraints, while modeling the space of robot-cable configurations. One

may choose to use available motion planning techniques designed for tethered robots

and then to double check the validity of cable configurations after simulated execu-

tion of the motion. A second alternative is to consider a discretized cable. If the

discretization is to be accurate, this technique results in a high dimensional space
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and costly computations thence. We believe the method introduced in this work

describes the robot-cable configuration space accurately and elegantly, capturing the

necessary constraints before the search phase.

3.3 The Preliminaries

3.3.1 Curvature Constraint and Stiff Cables

Definition 4 (Nonholonomic Constraint). If r is the radius vector of an object in

R2, a constraint f of the form f(r, ṙ, t) = 0 is nonholonomic if it cannot be expressed

as f(r, t) = 0 [13].

Definition 5 (Average Curvature). For a path P : I → R2, the Average Curvature

is

κ(s) =
d2P (s)

d(s2)
; ∀s ∈ I (3.1)

and therefore is a nonholonomic condition.

Definition 6 (Curvature Constraint). If there exists an upper-bound κ0 ∈ [0,∞) on

the average curvature of a path, we say the path has a curvature constraint of κ0.

That is

κ(s) ≤ κ0 =
1

r0
; ∀s ∈ I (3.2)

where r0 is the radius of the smallest circle that the path can turn around.

Since a stiff cable cannot be bent more than a certain amount defined by some

curvature constraint, κ0, any robot-cable configuration in which the cable is bent

with a radius less than r0 is infeasible and is excluded from c-space (see Fig. 3.1).

Notice that equation 3.2 provides a general model since a cable without curvature

constraint can be parametrized as limr0→0 κ0 =∞.
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Figure 3.2: The two types of Dubins Path. The path on the left is of the type CLC, and the path
on the right is of the type CCC. The three segments are colored in blue, magenta, and yellow,
respectively. The arrows at the beginning and at the end of the paths shows the initial and goal
poses, Pi and Pg, respectively.

3.3.2 Problem Statement

Definition 7 (Pose). A pose, Pk, is a pair Pk = (pk, θk) where pk ∈ R2 is a point and

θk ∈ S1 representing the location and orientation of Pk, respectively. Alternatively,

the orientation of a pose can be represented by a velocity vector vk = (vkx, vky) ∈ R2

of unit length where θk = arctan
vky
vkx

.

This work considers the problem of planning from an initial pose, Pi, to a goal

pose, Pg, for an oriented point robot1 situated in R2 in existence of polygonal ob-

stacles whose vertices are known to the robot. The robot is tethered to a fixed base

with pose Pbase, via a cable with curvature constraint κ0 = 1/r0. It is assumed that

the cable has a maximum length l and is always retracted to its tightest form. By

tight we mean there is no perturbation that can be applied to the path such that it

would make the length of the given path shorter without violating either the length

or curvature constraints.
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(a) The path starting by turning right. (b) The path starting by turning left.

Figure 3.3: In the case of a symmetry between CL(i) and CL(g) with CR(i) and CR(g) finding a
shortest curvature constraint path makes it possible to find the second shortest curvature constraint
path by doing a reflection.

3.3.3 Shortest Curvature Constrained Paths

Let M be a 1-connected unbounded manifold in R2 and τ be a path contained

in M . Following the terminology in [3], a C-segment of τ is a non-empty maximal

subpath of τ that has the form of a circular arc with radius r0; an L-segment is a

non-empty maximal subpath of τ that has the form of a straight line segment. We

say, for example, a path is of type CLC if it is made up of only three segments of

types C, L, and C in this order.

Definition 8 (Shortest Curvature Constrained Path). Denoted by Pa  Pb, a

shortest curvature constrained path is a minimal length path in M from initial pose

Pa to goal pose Pb, with curvature constraint κ0.

1We made a note on how to apply the representation technique in this work to a tethered robot
with extent in Section 2.4.1.
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Theorem 4 (Dubins’ Theorem [11]). Every shortest curvature constrained path in

M is necessarily a path of type CLC or CCC or a substring of either of these (see

Fig. 3.2).

Let Px = (px, vx) be a pose in the environment. Let Lx be the line parallel to

vx which passes through px. We use the notation CL(x) and CR(x) for the circles to

the left and right (according to vx) of Lx which are tangent to Lx at px. We will call

CL(x) and CR(x) the tangent circles to Px.

Let Pi and Pg are the initial pose and the goal pose respectively. It is important to

notice that the shortest curvature constrained path in M , as defined in Definition 8,

is not unique in a set of special configurations of Pi and Pg. When pg is on Li, There

is a symmetry between CL(i) and CL(g) with CR(i) and CR(g). Therefore, if there is

one shortest curvature constrained path τ = Pi  Pg, a second path can be created

just by doing a reflection on τ about Li (see Fig. 3.3).

Now let M be an unbounded2 subspace of R2 with polygonal obstacles and τ be

a curvature constrained path in M . C and L-segments are defined as before. An

O-segment of τ is a maximal segment of τ that lies on the boundary of an obstacle.

A C-segment is called terminal if it is the first or last segment of a path.

Lemma 2 (Non-terminal C-segment [3]). A non-terminal C-segment of a locally

shortest path3 is either tangent to at least one obstacle or it is adjacent (on the path)

to a terminal C-segment.

Corollary 2. If any subpath of a locally shortest path contains O-segments, they are

either at the beginning or at the end of the subpath.

2If M is bounded then we require that the boundary of the environment be define via boundary
obstacles.

3A path is locally shortest if any perturbation in the path is physically impossible or makes the
length of the path longer.

35



Proof. Follows from Lemma 2.

Lemma 3 (Dubins Subpaths [12, 18, 3]). Any subpath of a locally shortest curvature

constrained path is itself a shortest curvature constrained path if the subpath does not

touch any obstacle.

3.3.4 C-Space Skeleton

Throughout this work, we use the term “decomposition” versus “discretization”

to convey a different meaning. A decomposition is the act of finding a skeleton in

c-space as a graph whose vertices represent the largest subspaces of c-space in which

the solution to the motion planning problem is canonical. Whereas, a discretiza-

tion method provides an approximation of c-space. A cable induces a structure into

c-space manifold which can be exploited in an elegant way: an appropriate decompo-

sition of c-space yields a concise discrete topological skeleton and a set of continuous

subspaces. This observation was made in Chapter 2 where the cable in each subspace

is always in the form of a straight line.

Similarly, we construct solutions to this problem from simpler subpaths found in

subspaces. In the context of this problem, we require the cable to be in the form

a shortest path in each subspace as defined by Definition 8. This in turn means,

we are able to use the exact same data structures and path finding algorithms as

before, with modifications made to only adapt the method for finding shortest cur-

vature constrained paths. Once this method is determined, we are able to define the

appropriate cell decomposition. This method is discussed in the following subsection.

3.3.5 Decomposition Method and Dubins Cells

Since the cable is always taut, it lies on a path from Pbase to Pg, where each of

its segment is a locally shortest path.
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Corollary 3 (Taut Cable Decomposition). Every given taut configuration of a curvature-

bounded cable that lies on the path τc can be decomposed into subpaths, each of which

is a Dubins Path.

Proof. If the cable does not touch any obstacle along its path, τc from Pbase to Pg, then

the locally shortest path is also the globally shortest path, and hence following The-

orem 4 it is a Dubins path. In this proof, we will follow regular expression notations

to show the string representing the C, L, and O segments in a path. Let [C,L]∗ be a

path constituted of zero or more C or L-segments. Moreover, let O[C,L]∗ denote a

path beginning with an O-segment and followed by a path of type [C,L]∗. [O[C,L]∗]+

denotes one or more consecutive paths of type O[C,L]∗. Finally, C[O[C,L]∗]+C is

a path beginning with a C-segment, followed by a path of type [O[C,L]∗]+, and

ending in a C-segment. By Corollary 2, if the cable does touch obstacles, then τc

is always of type C[O[C,L]∗]+C since the O-segments only occur at the beginning

or at the end of each subpath. Then each such subpath is in the form of O[C,L]∗.

If [C,L]∗ is an empty string then it is representing a path of zero length which is

trivially a shortest curvature constrained path, otherwise since it is a subpath of a

locally shortest path and it does not touch any obstacle, by Lemma 3, it is a shortest

curvature constrained path. Thus, breaking a locally shortest path into subpaths at

the points that it touches the obstacles will yield a set of subpaths that each of them

is a shortest curvature constrained path.

This cable decomposition corollary is the basis for finding the appropriate skeleton

of the c-space. Since the environment contains semi-algebraic obstacles, it can be

partitioned into a semi-algebraic set Mobs consisting of all the obstacles and the free

space Mfree that is the complement of the set Mobs[14].
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Figure 3.4: The defining attributes of a Dubins Cell. The yellow dotted circles are the boundaries
of maximal curvature. The green arrows are the orientations at the base poses of each cell.

Definition 9 (Dubins Cell). Given a base pose Pb, a Dubins Cell is a chart, (U,ϕ),

where U ⊆Mfree; the homeomorphism ϕ is ϕ(x, y) = (x, y); and every point inside

U can be reached from Pb via a shortest curvature constrained path.

A Dubins Cell can be represented with the following four attributes (see Fig.

3.4):

• Base Pose : Pb = (pb, vb). pb is the location of the base and vb is the orienta-

tion of the cable at pb.

• Parent Cell : a reference or pointer to the cell describing the robot-cable

configuration directly before occurrence of the O-segment.

• Cable Length : L, determines the maximum allowed distance between the

robot and the base pose. The exact value is L = Parent.L−Length(Parent.Pb  

Pb)
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Figure 3.5: A single Dubins Cell in an environment without any obstacle. The boundary of maximal
curvature is shown with red dotted circles. The magenta spirals show the boundary of farthest
reachable points (without considering a goal pose). The green arrow shows the orientation of the
robot at the base pose. Cable’s length is 60 units with curvature constraint κ0 = 1/20

• Stitch Line : this is the line where one chart is connected to another and can

be considered as an interface between them. Formally, it is the domain for the

transition map, ϕ, between the two charts. Once the robot crosses this line, a

contact is made or released and the robot will be transfered from a chart (cell)

to the other.

Fig. 3.5 shows a single Dubins Cell in an environment without any obstacle.

Notice in the figure how the boundary of farthest reachable points is in the shape of

an Archimedean spiral, arising from the curvature constraint. To understand why

the boundary is this shape, imagine the cable is anchored with pose P0 = (p0, v0)

where p0 = [r0, 0] and v0 = [0, 1]. If the robot moves along the boundary of maximal

curvature for θ radians, then (r0θ) of the cable’s length will be consumed. Therefore

the polar equation r = l − r0θ will describe the farthest boundary of the cell. The

general equation can easily be obtained.
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3.3.6 The Boundaries of a Cell

Due to the curvature constraint of the cable, the boundaries of a cell are depen-

dent on the base pose and goal pose. In this subsection, we would like to provide a

better understanding of the boundaries.

Let cl(x) and cr(x) be the centers of CL(x) and CR(x) respectively. Let d(px, py)

denote the Euclidean distance in R2 between the points px and py. There are four

possible conditions regarding the Euclidean distance between the centers of the tan-

gent circles of Pi and Pg.

1. d(cl(i), cl(g)) ≥ 4 and d(cr(i), cr(g)) ≥ 4

2. d(cl(i), cl(g)) < 4 and d(cr(i), cr(g)) ≥ 4

3. d(cl(i), cl(g)) ≥ 4 and d(cr(i), cr(g)) < 4

4. d(cl(i), cl(g)) < 4 and d(cr(i), cr(g)) < 4

Notice that condition 2 and condition 3 give the same planar configuration via

reflection. Also, condition 4 raises three possible scenarios [4]:

4.1 Shortest curvature constrained path from Pi to Pg is a single C-segment with

length less than πr0 or the concatenation of two C-segments with a total length

less than πr0.

4.2 The four tangent circles enclose a region Ω. The boundary of Ω is concatenation

of six circles with radius r0 (see Fig. 3.6).

4.3 Shortest curvature constrained path contains either a C-segment with length

greater than or equal to πr0 or a L-segment with length greater than or equal

to 4r0.
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(a) There is no continuous transformation that
can convert the blue path to the red path that
can maintain the curvature constraint through-
out the transformation. The boundaries of max-
imum curvature (yellow) and the blue path form
a bight.

(b) Any path that leaves the Ω region is not ho-
motopic to the paths that are entirely inside the
Ω region.

Figure 3.6: The Ω region divides the set of all path going from Pi to Pg into two disjoint sets. One
contains all the paths that are completely contained within this region and the other set contains
the rest of the paths.

We adopt the following four proximity conditions from Ayala and Hyam in [4].

• Proximity Condition A. If Pi and Pg satisfy condition 1.

• Proximity Condition B. If Pi and Pg satisfy condition 2 or 3.

• Proximity Condition C. If Pi and Pg satisfy condition 4.1 or 4.2.

• Proximity Condition D. If Pi and Pg satisfy condition 4.3.

A path τ : [0, 1]→ R2 is not in Ω if ∃s ∈ [0, 1] such that τ(s) /∈ Ω. Therefore, Ω

divides all paths from Pi to Pg into two disjoint sets of paths: ∆(Ω) set of all paths

in Ω, and ∆′(Ω) set of all paths not in Ω. The importance of the existence of the Ω

region is that the paths in ∆(Ω) and ∆′(Ω) belong to different homotopy classes [4]

and hence they should be uniquely identified. To better understand this see Fig. 3.6.
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The blue path in 3.6a is of type CCC. This path cannot be transformed into the red

path as we have d(cl(i), cl(g)) < 4 and d(cr(i), cr(g)) < 4. Therefore it is not possible

to push the middle C-segment of the blue path to go through CL(i) and CL(g). In

other words, the blue path and CL(i) and CL(g) form a bight.

In the next subsection we explain how we are able to uniquely identify all the

possible conflagrations of a robot and its taut curvature-bounded cable.

3.3.7 The Atlas

We next define an atlas as a model of the decomposition containing all the Dubins

Cells of the c-space. To build the complete atlas, all the possible locations for O, C,

and L-segments are required. An algorithm is provided by Agarwal et al. [3] that,

given an initial pose and a goal pose, outputs a graph which encodes the locations

and connections between the segments. However, pre-computing the graph is not

required as its parts can be generated on-the-fly. Since the obstacles are polygonal,

all the tangent lines and circles will touch the obstacles at their apexes. Therefore,

at each step finding the next child cell can be done directly by enumerating collision-

free tangents (see Algorithm 4). An atlas, Al, is associated with a skeleton graph,

GAl
= (VAl

, EAl
), and represents the topological structure of the atlas. For each

Dubins Cell, ci, in the atlas there is a vertex, vi, in VAl
. There is an edge, eij ∈ EAl

between vi and vj, if vi is the parent cell of nj. Here, eij represents the shortest

curvature constrained path between the base of ci and the base of cj.

Theorem 5 (Completeness of the atlas). The atlas of Dubins Cells generated on

Mfree describes exactly the space of all the possible configurations of a robot and its

taut cable with maximum length l and curvature constraint κ0 in Mfree.

Proof. The tautness of the cable implies each segment of the cable is a locally shortest

path. So by Lemma 3, each segment is always in the form of a Dubins path in Mfree
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connecting one cell’s base to the next. Starting from Pbase and connecting all the

Dubins paths up to the last base pose, we can construct all the configurations of the

taut cable, except the last segment connecting the robot to the final base pose. This

last piece of information is provided by the robot’s pose, Pr, inside the final Dubins

cell. By Definition 9, the path connecting the last base pose to the robot’s pose is

also a feasible Dubins path. Therefore, by concatenating this tail-end path to the

rest, we have all robot and taut tether configurations.

In order to identify the cable configurations uniquely, we need to store infor-

mation for the special cases that we have discussed earlier. Firstly, in the case of

symmetry between left and right tangent circles, we need to make a distinction be-

tween the chosen shortest curvature constrained path as it is not unique. Secondly,

some information should be stored to distinguish paths in ∆(Ω) from paths in ∆′(Ω).

Therefore, for each subpath of a locally shortest path we need to store the following

tuple:

τ =< Pi, Pg, oτ , rτ > (3.3)

where Pi is the initial pose and Pg is the goal pose; oτ ∈ {CL(i), CR(i)} indicates

whether the path τ starts by turning left or right; rτ ∈ {∅,∆,∆′} indicates whether

Ω region exists and if so whether the path is in ∆(Ω). Hence, the completeness of

the Atlas means that we can obtain every possible configuration of the robot and its

cable uniquely.

Corollary 4. Given an atlas, Al, its associated skeleton graph, GAl
= (VAl

, EAl
), a

path in GAl
, s = [vroot, v1, v2, ..., vn] where vn is associated with Dubins Cell (Un, ϕn),

and a point p ∈ Un, the pair (s, p) can identify a unique configuration of the robot

and its taut tether in Mfree.
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(a) Tangents when they leave a circle. (b) Tangents when they arrive at a circle.

Figure 3.7: Examples of compatible and incompatible tangents. The red and the green tangents in
each of the above figures are incompatible and compatible tangents, respectively. The yellow arrow
shows the direction of the motion on the circle. The vector of direction at the tangent point should
have the same orientation as the same the yellow arrow.

Proof. Follows from Theorem 5 and Lemma 3.

Theorem 6. The graph GAl
associated with the atlas Al generated on Mfree, is a

tree.

Proof. Suppose, to the contrary, that GAl
has a loop. This implies two distinct

sequences of cells and their transition maps reach the same Dubins Cell. Each

sequence implies an ordering of poses, that is two distinct configurations of the cable

for reaching the same cell. This contradicts Corollary 4.

3.4 Planning With the Representation

Let Li be the line tangent to pose Pi = (pi, vi), i.e., it passes through pi and is

parallel to vi; and let CL(i) and CR(i) be the circles tangent to Li at point pi on the

left and on the right side of Li, respectively, when looking in the direction vi from

pi.

Algorithm 2 shows pseudo code for finding a Dubins path from Pi to Pg. Line

4, produces four tangents for each pair of circles, of which only one is compatible

with direction of both vi and vg (see Fig 3.7). Line 5 will remove the tangents that
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are incompatible, yielding in only one Dubins path. In line 9, length of each path is

calculated and then is compared to the current minimum in line 10. Finding length

of a Dubins path is done by accumulating the length of the L-segment and r0× θ for

C-segment(s) (arcs), where θ is the angle traversed on C-segment in radians.

1: FindShortestCurvatureConstrainedPath(Pa, Pb)
2: Find CL(a), CR(a), CL(b), and CR(b)
3: minPath = ∅
4: t =

{
all common tangents between

(
Ci(a), Cj(b)

)
; i, j ∈ {L,R}

}
5: Remove incompatible tangents from t
6: for all tk ∈ t do
7: pa,k = point at which tk touches Ci(a) for i = R or L
8: pk,b = point at which tk touches Ci(b) for i = R or L
9: d = Length

(
arc(pa, pa,k) + (pa,k − pk,b) + arc(pk,b, pb)

)
10: if d < Length(minPath) then
11: minPath = arc(pa, pa,k) + (pa,k − pk,b) + arc(pk,b, pb)
12: end if
13: end for
14: return minPath

Algorithm 2: Find Shortest Curvature Constrained Path

Algorithm 3 presents pseudo code for finding the solution to the problem of

planning from a initial pose, Pi, to a goal pose, Pg, for a planar robot situated in

R2 in the presence of polygonal obstacles. Note that the information regarding the

cable’s maximum length and its base pose is encoded within cell passed as an input

argument. The algorithm is initiated by passing the following arguments: current

cell in which the robot is situated, Pi, Pg, and an empty path. The if statement in

Line 4, checks whether there exists a shortest curvature constrained path which is

completely contained inside cell. Finding the shortest curvature constrained path is

done by Algorithm 2. The condition in line 4 ensures that the robot will not leave

cell. If so, a robot path is created and is appended to the end of the path taken

up to this point (see section 3.5.2). Otherwise the algorithm will proceed searching
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down the tree in a depth-first fashion and storing the minimum length path that is

found (or ∅ if no such path exists). It is worth mentioning that any arbitrary graph

search method can be used in place of the Depth-First Search. The next step is to

look up in tree (ancestors) for a solution and compare the result of this search to

the minimum length path found in child nodes. It is worth mentioning that the root

cell of the atlas does not have parent (the value is set to ∅). Line 7 is a critical part

of Algorithm 3; it allows the method to search for child cells and expand the tree

on-the-fly. Algorithm 4 shows the details on how the child cells are found.

1: FindPath(cell, Pi, Pg, path)
2: mark cell as visited
3: minPath = ∅
4: if cell.Pb  Pg is inside Dubins Cell then
5: minPath = path.Append(Find robot’s path inside cell to Pg)
6: else
7: children = GetChildCells(cell)
8: for all c ∈ children do
9: τ = path.Append(Find robot’s path inside cell to c.StitchLine)

10: τ = FindPath(c, robot.Pr, Pg, temp)
11: if τ is shorter than minPath then
12: minPath = τ
13: end if
14: end for
15: if Parent 6= ∅ and is not visited yet then
16: τ = path.Append(Find robot’s path inside cell to cell.Pb)
17: τ = FindPath(Parent, cell.Pb, Pg, temp)
18: if τ is shorter than minPath then
19: minPath = τ
20: end if
21: end if
22: end if
23: return minPath

Algorithm 3: The Shortest Path Algorithm
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1: GetChildCells(cell)
2: children = ∅
3: C = {CL(cell.Pb), CR(cell.Pb)}
4: keep valid circles of C
5: for all c ∈ C do
6: for all po ∈ APEXES such that po is inside cell do
7: L = { tangents to c passing from po}
8: remove incompatible tangents from L
9: for all l ∈ L do

10: vo = direction of l
11: Po = Pose(po, vo)
12: child = cell with Parent = cell and Pb = Po
13: children = children ∪ {child}
14: end for
15: end for
16: end for
17: return children

Algorithm 4: Algorithm for Getting Child Cells

3.5 Discussion of the Method

To demonstrate the method and evaluate its performance, we developed a sim-

ulation environment and implemented the algorithm in MATLAB (see Fig. 3.8). In

the following sections we will provide our observations.

3.5.1 Memory Consumption

Benefiting from the on-line exploration, this method reduces the number of graph

vertices stored in memory during the search. The atlas also uses a special data struc-

ture for all of the Dubins Cells stored in the graph. Using the data structure requires

only a constant amount of memory regardless of the cell’s volume. These memory

saving aspects of the method has been discussed in greater details in chapter 2.
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Figure 3.8: The simulation environment. The robot is blue, the dotted red circles show the boundary
of maximal curvature, the green arrows show orientation vector in each base pose. The cable is
colored in magenta.

3.5.2 Discussion of the Algorithm

The main algorithm is a graph search problem which lazily expands the unex-

plored parts of the c-space. In this problem, the combinatorial nature of the homo-

topy classes of cable configurations will result in a space which is exponential in the

number of vertices.

However, the fundamental function calls in Algorithm 3 are all polynomial in the

number of vertices in the environment, n. Algorithm 2 for finding a Dubins Path

is a constant time operation, resulting in O(n) time in line 4. Finding a path for

the robot in line 5 is also done in O(n) since all the boundaries of a Dubins Cell are

known. The robot is controllable in all three dimensions. Therefore its path inside a

cell is a straight line if it is not obstructed by the boundary of maximal curvature or

any obstacle. Otherwise, it is a line segment tangent to the boundary followed by a

segment supporting to the boundary, followed by another tangent from the boundary
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(a) vg = (0, 1) (b) vg = (−1, 1)

Figure 3.9: The reachability all the points in the environment when they are assigned a goal
orientation, vg. The reachability has been tested from the initial pose Pi = ((0, 0), (0, 1)) single
Dubins Path. Reachable points and unreachable point are marked by a green crosses and red
dots, respectively. The black point and the blue arrow show the initial location and orientation,
respectively. The cable’s length is 200 units with curvature constraint κ0 = 1/20.

to the goal point. Finally, Algorithm 4 returns a set with O(n) elements.

3.5.3 Covering Complex Spaces

One key feature of this method is its capability in modeling the complex config-

uration space of the robot and its cable efficiently. A näıve representation results

in a high dimensional c-space. The use of poses as defined in Definition 7 provides

a concise way of encoding the complex Dubins Cells in an atlas. The orientation

of the robot at the goal pose, vg, affects the length of the Dubins paths Pi  Pg

and consequently the volume and shape of a cell. Using the four attributes of each

Dubins Cell (see sections 3.3.5) and the constant time algorithm for finding a Dubins

path (see Algorithm 2), this method can evaluate reachability of each pose efficiently.

Fig. 3.9 and Fig. 3.10 demonstrates this feature, by comparing the reachable area of

three cells from the same initial point, Pi = ((0, 0), (0, 1)).
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Figure 3.10: vg = (1,−1). Notice the unreachable region near the initial pose that is caused by the
incompatibility of vi and vg. Although it seems unintuitive, some points behind the obstacles are
still reachable via a Dubins path despite not being physically visible from pbase. The properties of
the cable and the color code in the figure is the same as Fig. 3.9.

3.5.4 Parameterized Curvature Constraint

Another main advantage of this method is its flexibility in modeling different

cable specifications. To demonstrate this capability, we tested the algorithm with

different curvature upper-bounds. Fig. 3.11a illustrates a cable without curvature

constraint (i.e., r0 is a positive infinitesimal). As a result, the cable has bent around

the corner of the obstacle on the path Pb  Pg with sharp angles. In contrast,

Fig. 3.11b r0 shows a non zero positive value (r0 = 20 units) which does not allow

the cable to bend freely. The algorithm was not able to find a feasible configuration

to solve the problem. It is worth mentioning that going from the right side of the

obstacles, in this figure, is not an option due to the short length of the cable (200

units).
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(a) A cable whose curvature is unbounded (i.e.,
κ0 = 1/ε, where ε is a positive infinitesimal).
Notice the sharp angles in the cable’s configura-
tion.

(b) A cable whose curvature is bounded by κ0 =
1/20. In this case a feasible cable configuration
has not been found.

Figure 3.11: The effect of parameterized curvature. In both figures, the cable’s length is 200 units.

3.6 Conclusion

This chapter addresses the problem of planning motions for tethered robots when

the tether has a constraint on its curvature, motivated by the fact that in practice

cables have some degree of stiffness which limits curvature. None of the available

methods consider this constraint for a tethered robot while constructing the config-

uration space and, thus, may plan motions that pass through unreachable config-

urations. Moreover, even in the environments with few obstacles, the topology of

the configuration space for a robot with a curvature constrained tether is complex.

Therefore, näıve approaches to this problem for getting sound and complete models

lead to costly computations.

By relating two distinct areas of motion planing research, planning for tethered

mobile robots and nonholonomic motion planing, we tackle this problem in the mod-

eling phase. We use a more general version of the decomposition method introduced

in Chapter 2, to separate topological regularities from the continuous aspects of the
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c-space by representing it with an atlas and its accompniying graph. We also employ

Dubins’s theory [11] to exclude infeasible cable configurations from the robot-cable

c-space. We present an algorithm to explore the c-space lazily while searching it. Our

method benefits from the on-line exploration to minimize the memory consumption.

The use of the parameterized curvature constraint, we believe, makes this method

suitable for solving several related problems.

There are other properties of a cable which can be considered during modeling

phase to add to the realism the c-space, namely, thickness of a tether. The decom-

position technique, itself, is applicable to many other similar scenarios.
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4. OUTLOOK: CONNECTED ROBOTS

As a future topic, we are interested in developing a general method for planning

motions of two robots, r+ and r−, that are connected to each other via a cable.

We believe this problem can be addressed using the methods provided in this thesis

for finding partial solutions. These solutions are primarily intended to be used as

guidance for finding the globally optimal solution for future research.

4.1 Problem Description

We will refer to this problem as the two tethered robot motion planning (2TRMP).

In order to develop the foundation of the method, we assume the obstacles and robots

are points in R2 for simplicity. Once we have the method for the point obstacles and

robots, it is relatively straightforward to generalize it to other polygonal shapes.

We also assume, similar to our preliminary work, that the cable is always taut (e.g.,

retracting cable); therefore it is always compromised of a set of straight line segments.

The inputs and outputs of the method are described below.

4.1.1 Inputs

The following is the list of information that we believe the algorithm requires to

solve the problem.

• two points, P s
r+ ∈ R2 and P s

r− ∈ R2, indicating the current (source) locations

of the (non-oriented) robots r+ and r− respectively,

• two points, P d
r+ ∈ R2 and P d

r− ∈ R2, indicating the destination of the (non-

oriented) robots r+ and r− respectively,

• a path π in R2 indicating the current configuration of the cable where in π(0) =
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Pr+ and π(1) = Pr− , and

• a set of point obstacles, O, in the environment where ∀oi ∈ O : oi ∈ R2.

4.1.2 Outputs

Given this input, the method is expected to provide as output two separate paths,

τr+ and τr− , for robots r+ and r− to reach their respective destinations, such that, if

the two paths are executed simultaneously, the length constraint of the cable is never

violated. In general the execution phase of the robot may involve one robot waiting

for the other if the cable is taut. We believe this does not need to be provided as

output, since the robots can compute it locally. Otherwise, if no such pair of paths

exist, the method will correctly indicate so. The optimality of the solution, however,

is dependent on the specific cost function and the associated notion of optimality in

the problem at hand.

4.2 Our Approach to the Problem

Figure 4.1 shows an example of initial configuration described in the previous

subsection. We begin solving this problem by checking the distance between P d
r+

and P d
r− . If this distance is more than the cable length connecting the two robots,

obviously there does not exist a solution to the problem. Otherwise we continue by

partitioning the set of obstacles into three subsets (s1, s2, and s3) by Algorithm 5.

Figure 4.2 shows how the obstacles are partitioned after using Algorithm 5. From

now on, we will refer to the obstacles in s1, s2, and s3 as black, red, and green

obstacles respectively. Algorithm 5 will mark all the obstacles currently lying on the

cable as black. The green obstacles are the ones that fall inside an ellipse whose

foci are P d
r+ and P d

r− and its semimajor axis is L/2 (see Figure 4.2). That is, if

during the execution of a given solution the cable contacts one (or possibly more)
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Figure 4.1: An example of how the initial configuration may appear. The dotted line is the cable
and black dots are the obstacles.

of the green obstacles, the robots are still able to reach their destinations. The rest

of the obstacles are marked red. After execution of any feasible solution the final

configuration of the cable never has a contact with any red obstacle. We will then

use these subsets in order to break the problem into subproblems that will lead us

to the optimal solution.

Definition 10 (Category 1 (C1) solution). a solution to the 2TRMP problem that

keeps at least one black obstacle in contact with the cable after its execution.

Definition 11 (Category 2 (C2) solution). any non-C1 solution to the 2TRMP

problem.

Proposition 1. The optimal solution always starts with detaching the cable from zero

or more obstacles and continues with attaching the cable to zero or more obstacles.

Proposition 2. The shortest C1 solution is always shorter than all the C2 solutions.
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1: Partition(O)
2: for all oi ∈ O do
3: define s1, s2, s3 = ∅
4: if oi is currently on the cable then
5: s1 = s1 ∪ {oi}
6: else if distance(oi, P

d
r+) + distance(oi, P

d
r−) ≤ Cable’s length then

7: s2 = s2 ∪ {oi}
8: else
9: s3 = s3 ∪ {oi}

10: end if
11: end for
12: return s1, s2, s3

Algorithm 5: Algorithm for partitioning the obstacles.

The above propositions provide a starting point for developing a method to solve

the described problem. We will begin our search by looking for C1 solutions. If

no C1 solutions are found, we will look into C2 solutions and pick the optimal, if

such a solution exists. Due to the combinatorial nature of C2 solutions, the process

of finding the optimal C2 solution is much more computationally expensive than

finding a C1 solution. We will incorporate our earlier work in the process of finding

the optimal C1 solution. We are looking to find ways to eliminate the classes of C2

solution to reduce the complexity of the problem. In the next Section we will provide

the current state of our research on this problem.

4.3 Approaching Category 1 Solution

In this section we will discuss how we find a C1 solution in more detail. Let

us first look at the initial configuration of the two robots and their cable. We will

then describe how we can determine existence of a C1 solution by solving the given

configuration as a Dynamic Programming using any planner for tethered robots.

This, of course, is an in-progress research and the details of this method can be

further refined.
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Figure 4.2: The obstacles after partitioning. Black, red, and green obstacles belong to s1, s2, and
s3 respectively.

4.3.1 Initial Configuration

Figure 4.3 shows an example of the initial configuration of the 2TRMP problem.

Finding a C1 solution requires the cable connecting the two robots to be in touch

with at least one point obstacle in the environment. This means that the two robots

are residing in two different visibility cells. It also means the atlas graph (MRLVAG)

representing the structure of their c-space is different1. The key to finding a proper

method to address this problem is that the two robots have a shared amount of cable

to consume for reaching their respective destinations. For example, let us imagine

that the shortest motion that takes robot r+ to its destination consumes L units of

1The readers are encouraged to familiarize themselves with the notion of atlas representation of
the c-space and its associated graph by referring to Chapter 2.
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Figure 4.3: An example of cable configuration prior to finding a C1 solution. P s
r+ and P d

r+ indicate
the source and destination of robot r+’s motion, respectively. The same is true for P s

r− and P d
r−

and robot r−. The dotted orange curve illustrates the cable’s configuration.

cable. This means there is no cable left for r− to reach its destination. Therefore,

r+ should — probably — compromise on a longer motion to free some cable for r−.

We will elaborate on this in the next subsection.

4.3.2 Compromising for the Shared Cable Length

As outlined above, the motion taken by one robot changes the accessible area

for the other robot. Let us take Figure 4.3 as an example. To understand how

the selected motion by r+ affects the accessible radius to r−, we will keep r− static

and see how the motion chosen by r+ affects that radius. Figures 4.4 – 4.7 and

Table 4.2 demonstrate this intuition supporting the fact that the planning process

for robot r− can be eased significantly by robot r+ taking a longer trajectory for

reaching its destination. Figure 4.4 shows the shortest path available to r+ to reach

its destination. However, if r+ chooses to take this trajectory, the remaining cable

is not long enough for r− to take the direct line segment to P d
r− . To overcome this,

robot r+ can choose to free some cable for r− by untangling the cable from obstacle

number 1, as shown in Figure 4.5. Nevertheless, this longer trajectory still does not
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provide enough cable to put P d
r− inside the reachable radius of r−. If the goal for

r+ is to free enough cable for r− so that it can the direct line segment from P s
r− to

P d
r− , then r+ can take an even longer path by untangling obstacles 1 and 2 and then

going to P d
r+ . At this point, as shown in Figure 4.6, r− has enough cable to move

directly towards P d
r− . Finally, Figure 4.7 shows the configuration in which maximum

possible cable is free by r+ while still keeping one obstacle in touch with the cable.

Table 4.2 shows the traveled distances by r+ associated to each of these figure.

Unlike the example above, it is not entirely the responsibility of one the robots

to free the cable. We could have assumed that r+ will stand still while r− frees the

necessary cable. Cooperation between the robots can lead to an optimal distance

traveled in total by both robots for which enough cable is available for the two of

them. The question then becomes, which pair of trajectories would provide the

minimum traveled distance.

Obstacles No. Distance
1, 2 17.4
2, 3 15.9
3, 4 16.9

Table 4.1: the distances between the obstacle in touch with the cable in the initial configuration
(Figure 4.3). The distances are in the same arbitrary unit.

4.3.3 A Dynamic Programming Approach for finding the Optimal Pair of Paths

To find the optimal solution we have introduced a Dynamic Programming ap-

proach. We will consider all the solutions that fit into the definition of a C1 solution.

For example, in Figure 4.3 it is infeasible to consider a solution in which r+ untangles

up to obstacle number 3 and r− untangles up to obstacle number 2. That is because
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Figure Motion Steps Traveled Cable Config. Cable Consumed Cable Left
No. by r+ Distance after r+’s Motion by r+ for r−

4.4 P s
r+ , P

d
r+ 28.3 P d

r+ , 1, 2, 3, 4, P
s
r− 75.9 24.1

4.5 P s
r+ , 1, P

d
r+ 31.9 P d

r+ , 2, 3, 4, P
s
r− 55.4 44.6

4.6 P s
r+ , 1, 2, P

d
r+ 46.1 P d

r+ , 3, 4, P
s
r− 45.3 54.7

4.7 P s
r+ , 1, 2, 3, P

d
r+ 67.8 P d

r+ , 4, P
s
r− 43.6 56.4

Table 4.2: The effect of the chosen motion by r+ on r− in Figures 4.4 – 4.7. The distances and
cable lengths in the table are expressed in the same arbitrary unit (the same as Table 4.1). The
maximum cable length is 100 units. This table only considers the shortest paths in each homotopy
class from P s

r+ to P d
r+ that the path does not make a new cable-obstacle contact.

+1
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4

-

+

-

P
r-

s

P
r-

d

P
r+

d

Figure 4.4: Robot r+ goes directly from P s
r+ to P d

r+ . The green circle sector shows the radius that
is reachable to r− with the remaining cable length.

in the process of executing such pair of paths the cable will be released from all the

obstacles at some point.

To find the optimal solution to the problem we construct several n-element arrays.

The first array, denoted by dr+ , where the ith element holds the shortest path for r+

from P s
r+ to P d

r+ such that after the execution of the motion the cable is still in touch

with obstacle i. A similar array, denoted by dr− , is constructed for r−. We also store
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Figure 4.5: Shortest path for r+ that untangles obstacle number 1 while going from P s
r+ to P d

r+ .
The green circle sector shows the radius that is reachable to r− with the remaining cable length.

the consumed cable associated to the paths in dr+ and dr− in two n-element arrays,

cr+ and cr− . The ith element in cr+ holds the length of the cable consumed from

obstacle i to the destination.

For instance, in the configuration shown in Figure 4.3, dr+ = [28.3, 31.9, 46.1, 67.8].

These values are the same as the distances in third column of Table 4.2 and their

associated path can be seen in the second column of that table. We also have

cr+ = [12.5, 9.3, 15.2, 30.4]. The distances in cr+ are assumed to be an output of the

planner.

Once the values for dr+ , dr− , cr+ , and cr− have been determined finding the

optimal solution is straightforward. Algorithm 6 shows the procedure for filling the

arrays (lines 3 through 10) and finding the shortest path that does not violate the
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Figure 4.6: Shortest path for r+ that untangles obstacle number 1 and 2 while going from P s
r+

to P d
r+ . The green circle sector shows the radius that is reachable to r− with the remaining cable

length.

cable length. The shortest path here is the path that requires minimum sum of

traveled distance by the two robots. Something to note here is that this procedure

does not rely on any specific planner (lines 4 and 7), as long as it is returns the path

length and the length of the cable that is required for that path.

4.4 Conclusion

This Chapter provided a brief description of current state of our research on the

motion planning problem for two robots that are connected to each other with a cable.

The examples in this Chapter were simplistic to provide an easier understanding to
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1: index+ = −1; index− = −1;minPath =∞
2: dr+ = ∅; dr− = ∅; cr+ = ∅; cr− = ∅;
3: for all oi ∈ s1 do
4: [dtmp, ctmp] = Plan From oi to P d

r+

5: Add dtmp to dr+
6: Add ctmp to cr+
7: [dtmp, ctmp] = Plan From oi to P d

r−

8: Add dtmp to dr−
9: Add ctmp to cr−

10: end for
11: for i = 1 to s1.Length do
12: for j = i to s1.Length do
13: c = cr+ [i] + cr− [j]
14: d = dr+ [i] + dr− [j]
15: end = min(j, s1.Length− 1)
16: for k = i to end do
17: c = c+ distance between ok and ok+1

18: end for
19: if c <= Cable Length then
20: if d <= minPath then
21: minPath = d
22: index+ = i
23: index− = j
24: end if
25: end if
26: end for
27: end for

Algorithm 6: Algorithm for finding C1 solution.
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Figure 4.7: Shortest path for r+ that untangles obstacle number 1, 2, and 3 while going from P s
r+

to P d
r+ . The green circle sector shows the radius that is reachable to r− with the remaining cable

length.

the readers. However we are working to gather more insight into its behavior in more

complicated cases and the general performance of the method.
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5. CONCLUSION

In this work we approached the motion planning problem for a point tethered

robot with a new perspective. Throughout this thesis we made three assumptions:

a) the robot is a point robot, b) the cable connected to the robot is always taut

(possibly retracting), and c) the obstacles are polygonal. Although the work is

motivated by motion planning, the most important take away is the decomposition

technique which makes representation of the configuration space (c-space) intuitive

and concise.

We began with a simplified model of a point tethered robot in which the cable

was flexible. We considered the two constraints imposed by the cable on the motions

of a tethered robot: 1) limited radius of movement and 2) the topological constraints.

Using the notion of cable events, we were able to store the configurations of the cable

via a simple structure, which we called visibility cell, that represents a continuous

subspace of R2. We observed that in an environment with polygonal obstacles, the

set of all the visibility cells constructs an atlas, MRLVA, that covers the c-space.

This naturally separates the discrete structure of the c-space as a skeleton graph,

MRLVAG, from its continuous aspect. Each node in the MRLVAG represents a

visibility cell in which finding the shortest path from one point in the cell to another

point in that same cell is trivial (a constant time procedure). We pointed out that

using this representation of the c-space enables us to build the necessary parts of

the c-space as needed rather than generating the complete c-space by performing an

offline — and potentially costly — pre-computation.

We next showed how using the notion of discrete events can help us capture

cable-cable contacts. In this case we assumed the cable has infinite friction when it
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is wrapped around itself. In doing so, we added two new types of events. over event

represents a change in the configuration of the cable when the robot crosses its own

cable by going over the cable. Similarly, under events were used to store the event

of crossing the cable by going under the cable. The addition of these two types of

events underscores the flexibility of this technique in addressing problems of interest.

Finally, We added to the realism of our approach by considering a parameterized

curvature constraint. A curvature constraint is one that limits how much a cable can

be bent at every point from the beginning to the end of the cable. The parameterized

model allows this method to be applicable to both stiff and flexible cables. In this

case we also considered an oriented point robot as the orientation of the goal changes

the amount of cable consumed by the motion that reaches the goal. This modification

significantly adds to the complexity and dimensionality of the c-space. To overcome

this complexity the notion of reachability was used instead of visibility. Thus we

were still able to use the exact same cell structure as before for constructing the

atlas of c-space. To asses reachability, we utilized Dubins’ theory to be able to find

the shortest path inside a cell in a constant time.

This work emphasizes on the fact that one key technique for overcoming complex

and high dimensional spaces is finding the appropriate cell decomposition. As we

saw in the previous sections, the main difference between a flexible cable and a stiff

one is in the constant time procedure of finding a shortest path in a continuous space

that contains no holes. Once the basis for decomposition has been determined, the

configurations of the cable becomes implicit in the c-space structure. In other words,

the cable that can take many different configurations is flattened into the skeleton

(graph structure) of the c-space. This view point is not limited to the problem of a

tethered robot as the cable can be a virtual one modeling communication network.
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APPENDIX A

MAXIMUM RAY LENGTH VISIBILITY ATLAS

Given Pfree, a fixed point p0 ∈ Pfree as the origin, and a maximum length l, the

following algorithm will produce an atlas of charts, which we will call Maximum Ray

Length Visibility Atlas (MRLVA) denoted by Al, and an associated graph represent-

ing its topological structure, which we call Maximum Ray Length Visibility Atlas

Graph (MRLVAG).

We define a chart (U0, ϕ0), where U0 = Pfree and homeomorphism ϕ0 is defined

as ϕ0(x, y) = (x, y). Then atlas Al is initially {(U0, ϕ0)}. Also we create the graph

G = (V,E) with a single vertex u0 in V representing U0 and E = ∅. We also need

queues Q1 and Q2 for storing the contact points.

We then create a straight line segment with one of its endpoints at p0 and length

l. All the points that are within line of sight from p0 can be reached without the

cable being bent around an obstacle. Therefore, according to Definition 2 all these

points belong to the same visibility cell. To find these points, we sweep the line for

2π radians around p0 and remove all the points from U0 which fall into the shadow of

an obstacle. That is, we rotate this line segment around p0 counterclockwise starting

from angle 0 until it touches an obstacle. Let p1 be the point around which the line

segment should bend. If α1 is the associated angle, we enqueue a pair (p1, α1) to Q1

and continue rotating the line in the same direction until it is again tangent to this

obstacle with angle α2. Let p2 be the tangent point. We will enqueue the pair (p2, α2)

to Q2. All the points between α1 and α2 that are farther from p0 than the obstacle’s

boundary are removed from U0 and are added to two new sets U1 and U2. We create

two new charts (U1, ϕ1) and (U2, ϕ2) where again we have ϕ2(x, y) = ϕ1(x, y) = (x, y)
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Figure A.1: B, C and D are visible vertices from P0. Only B and D are enqueued in the algorithm.

and add them to the atlas Al. Now we add two new vertices u1 and u2 to V that

represent the two charts, adding edges (u0, u1) and (u0, u2) to E, which show that

U0 is the parent of U1 and U2.

We continue rotating the line segment and collecting the bending points as de-

scribed in the above paragraph until it has rotated the whole unit circle (2π).

Next we will dequeue a pair (pi, αi) from Q1 and execute the following procedure.

It is similar to above, but with a few differences to remove unreachable points from

chart (Ui, ϕi). Let uj be the parent node of ui in G. We create the straight line that

one of its endpoints is pi. The length of the line is l′ = l−distance(pj, pi) that is less

than l because pi is distinct from pj. Thus, the volume covered by Ui is smaller than

Uj. Again we want to remove the points from Ui that are not in line of sight from

pi. To do so, we rotate this line segment counterclockwise starting from αi. While

rotating we collect the bending points and angles in queue Q1. But, this time we do

not rotate 2π radians. Instead we rotate until the line is tangent to the obstacle that

pi belongs to, because sweeping the line more than that will cover the points that

are previously seen from pj. We do this until Q1 is empty. The same procedure is

performed for all the pairs in Q2, except with clockwise rotation.
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Since we have removed points from Uj (parent chart) and have added them to

Ui (the child chart), it is clear that Um
⋂
Un = ∅ iff (um, un) /∈ E and (un, um) /∈

E. If there is an edge between um and un the intersection will be exactly the line

that stitches these two charts together. Therefore, a transition map between chart

(Um, ϕm) and chart (Un, ϕn) is defined only if there is an edge between um and un in

G.

It is important to notice that all the points that are enqueued in Q1 and Q2 are

apexes of the obstacles, which are the vertices of the visibility graph [9]. However,

not all of the apexes are enqueued because the line segment will not bend around

them (see Fig. A.1). As a result the number of child charts created is never more

than the number of vertices in visibility graph.
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