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ABSTRACT 

 

Solid-state technologies for quantum mechanical application require delicate 

materials that can operate stably with a long coherence time. Nitrogen vacancy (NV) 

centers in diamond is one of the most promising candidates for quantum physics, with 

applications such as single photon emitters, quantum computation, and magnetic sensor. 

To fully exploit the capability of defect centers in diamond for opto-electronics and 

quantum engineering, a number of improvements are needed. Among these are 

optimization of the NV centers yield in bulk diamond, nanodiamond (ND) size reduction, 

photocurrent study of the defect band-trap electronic structure in diamonds, and 

optimization of high-speed NV qubit control. For NV centers yield optimization, both the 

experimental magnetic sensitivity optimization as well as theoretical simulation of NV 

concentration are implemented. For NDs size characterization, we analyzed the size and 

photon autocorrelation function of NV in NDs after air oxidation treatment using a 

combined atomic force microscopy/confocal system. To study defect band-trap electronic 

structure in diamond, excitation and quenching as well as the recovery of the quenched 

photocurrent was investigated to better understand photocurrent dynamics in diamond. 

For qubit high-speed control optimization, a microwave pulse based on a nonlinear 

numeric solution of the Schrodinger equation is used to rotate the NV spin faster than the 

ordinary Rabi flip rate. Together these approaches promise to significantly speed up the 

development of diamond for quantum engineering applications. 
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NOMENCLATURE 

 

AFM                            Atomic Force Microscopy 

APD                             Avalanche Photodiode 

CCD                            Charge Coupled Device 

CVD                            Chemical Vapor Deposition 

CW                              Continuous Wave 

DC                               Direct Current 

ESR                             Electron Spin Resonance 

FID                              Free Induction Decay 

HBT                            Hanbury Brown and Twiss 

MW                             Microwave 

ND                               Nanodiamond 

NV                               Nitrogen Vacancy Center (negatively charged) 

ODMR                        Optical Detected Magnetic Resonance 

Qubit   Quantum bit 

TEM                            Transmission Electron Microscopy 

T1                                Spin-Lattice Relaxation Time 

T2                                Spin-spin Relaxation Time 

ZFS                             Zero Field Splitting 
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CHAPTER I 

INTRODUCTION 

 

Improvement in the technology to probe and sense small objects as well as quantities 

in nature usually leads to major science breakthroughs in human history. Robert Hooke’s 

invention of microscopy in 1665 [1] opened up the era of micrometer imaging, which also 

led to the discovery of cells.  Afterward, the invention of atomic force microscopy in 1986 

[2] pushed the boundary of distance measurement to the angstrom scale. The invention of 

superconducting quantum interference device in 1964 [3] led to the magnetic sensing in 

the sub-nanotesla range.  

In general, nanoscale sensors measure only one quantity per sensor, but it is desirable 

to have a multi-functional sensor. In recent years, the development of diamond based 

sensors has shown that the nitrogen vacancy (NV) centers in diamonds are promising all-

purpose detectors. Due to the fact that the NV centers’ spin state can be optically detected 

at room temperature [4], all the physical quantities coupled to the NV centers’ spins are 

thus optically measurable. The NV centers are capable of optically detecting magnetic 

field [5], electric field [6], strain force [7], and temperature [8]. As non-bleaching, non-

toxic, single photon emitters, the NV centers in nanodiamonds (NDs) can also find 

applications in the super-resolution imaging techniques such as stimulated emission 

depletion microscopy (STED) [9], deterministic emitter switch microscopy (DESM) [10], 
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and stochastic optical reconstruction microscopy (STORM) [11]. In addition, the NV 

centers in diamonds have long coherence time, thus are also an excellent candidates for 

quantum computation [12], quantum communication [13], and quantum cryptography [14]. 

Although the NV centers have been produced and studied for 30 years [15], the recipe 

for high concentration production and optimum sensitivity has not yet been systematically 

studied. In addition, a high concentration of the NV centers for the biological applications 

is needed in small NDs [16][17].  

In chapter II, we demonstrate the method of producing high concentration NV centers 

in both the theoretical and experimental studies. First, we examine the optical and 

magnetic properties of the NV centers with various doses and temperatures, and then 

obtain an optimum recipe for NV centers production in bulk diamonds. Moreover, the size 

shrinking and fluorescence enhancement effects are found in the NV centers of NDs for 

eventual biological applications. 

In chapter III, we study the photoconductance dynamics such as the optical 

quenching and recovery of photocurrent measurement in diamonds to explore the 

possibility of the photocurrent detected magnetic resonance in NV centers, and investigate 

the electronic level structure of bulk diamonds. We also propose a defect-trap model for 

the optically quenched photocurrent effect in diamonds.  

In chapter IV, we design a microwave pulse to control the NV centers’ spins and find 

the speed of spin control is faster than ordinary Rabi flopping. For given transition energy, 

the Rabi frequency is proportional to the applied microwave field at low power. However, 
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the Rabi rotation becomes non-linear and uncontrollable with the microwave field when 

the driving microwave frequency is close to the spin transition frequency. To improve the 

driving speed of spin based qubit at high driving power, the new pulse was designed by 

numerically solving the Schrӧdinger equation. The result from our new microwave pulse 

was generated through the arbitrary wave form generator and gave high fidelity and 

provided faster speed than Rabi control.  

1.1 Diamond properties 

A diamond is a transparent crystal and consists of carbon, which exhibits extremely 

high hardness, electric resistivity and thermal conductivity. Table. 1-1 summarizes the 

properties of diamonds: 

The face-centered cubic with sp3 covalent bonds in a diamond’s crystal structure 

make a diamond hard and chemically inert. Using strong acid to clean a diamond allows 

for the removal of most dirt, some amorphous carbon, and graphite on the surface without 

eroding the diamond. The high bond strength of a diamond also allow heating in vacuum 

at high temperature up to 1700°C, and can be baked in air up to 700°C before converting 

to graphite. The surface of bulk diamonds and NDs are usually covered with graphite, 

amorphous carbon, and the functional chemical groups such as C=O, O-H, and C-H. To 

remove the surface layers of graphite and amorphous carbon, diamonds are either oxidized 

with acid such as a boiling piranha solution (H2SO4:H2O2=3:1) at 500°C for 2 hours, 

oxidized in mixed acid solution (sulfuric acid: nitric acid : perchloric acid =1 : 1 : 1) at  

90°C for 3.5 hours, or baked in ambient air at 400°C for a few hours. After oxidation, C-
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H groups are completely removed, but most of the C=O and O-H groups on the surface 

remain [18][19]. 

 

 

 

Table. 1-1 Common properties of diamond 

Mohs hardness 10 

Molar mass 12.01 g/mol 

Chemical formula C 

Crystal structure Octahedral 

Density 3.52 g cm3⁄  

Refractive index 2.418 

Thermal conductivity 900-2320 w m ∙ K⁄  

Optical transmission 225 nm to IR 

Debye Temperature 2200 K 

Displacement energy 43 to 46 eV 

Binding energy 7.3 eV 

Electrical Resistivity 100 GΩ ∙ m 

 

 

 

1.2 Synthesized diamonds and classification 

Ordinary bulk diamonds contain impurities which cause variations in color. In Table. 

1-2, the types of bulk diamond type are classified. To produce diamond, there are some 

common methods: 

 High pressure high temperature synthesis (HPHT) diamonds are produced  
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from a pure carbon source at temperature around 1500°C under 5 GPa pressure. The 

diamonds produced in this method contain nitrogen impurities and are mostly type Ib 

diamonds [21].  

 Chemical vapor deposition (CVD) diamonds are formed with ionized  

methane and hydrogen gas where the growth completes with the plasma etching (shown 

in Fig. 1-1). The diamonds produced in this method can be easily grown with selected 

impurities. The CVD diamonds are the main source of ultrapure diamond (type IIa) [20]. 

 

 

 

Table. 1-2 Different types of diamond 

Classification Color 

Type I 
Nitrogen 

impurity 

Type 

IA 

Clusters of nitrogen 

impurities. 

Pale yellow or 

colorless 

Type 

IB 

Single nitrogen atom 

impurities dispersed in 

diamond 

Dark yellow or brown 

Type II 

No 

nitrogen 

impurity 

Type 

IIA 

Almost or entirely devoid of 

impurity 
colorless 

Type 

IIB 
Boron impurity Light blue or grey 
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Fig. 1-1 Schematics of the formation of chemical vapor deposition diamonds. 

 

 

 

 Detonation NDs originate from the detonation of a mixture  

of trinitrotoluene and hexogen. The typical diamond particle size produced in  

this method is around 5~8 nm [22]. 
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1.3 Semiconductor properties of diamond 

The energy gap between the conduction band and the valence band of an undoped 

diamond is around 5.4 eV, which makes undoped diamond an electronic insulator. 

However, as a semiconductor, a diamond is like silicon which can be doped with electron 

donor impurities or acceptor impurities to form the n-type or p-type semiconductor. For 

example, when a diamond is doped with nitrogen impurities, a diamond with substitutional 

nitrogen defects becomes a n-type semiconductor due to a broad electron donor band 

reducing the effective gap to around 1.7 eV as shown in Fig. 1-2, which is taken from [23, 

24]. 

Charge carriers like mobile electrons in the conduction band of the n-type diamond 

or holes in the valence band of the p-type diamond can be considered as particles moving 

in a crystal. When applied with an electric field, the velocity of charge carriers  𝑣𝑐⃗⃗  ⃗ can be 

decomposed into the thermal velocity 𝑣𝑡ℎ⃗⃗ ⃗⃗  ⃗ and the drift velocity 𝑣𝑑⃗⃗⃗⃗ , given by 

𝑣𝑐⃗⃗  ⃗ = 𝑣𝑡ℎ⃗⃗ ⃗⃗  ⃗ + 𝑣𝑑⃗⃗⃗⃗ . The randomness of thermal motion makes the thermal velocity averaged 

to zero, and only the drift velocity 𝑣𝑑⃗⃗⃗⃗   left in 𝑣𝑐⃗⃗  ⃗ . 
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Fig. 1-2 Diamond electronic structure. The band gap between valence band to conduction band is 5.4 eV, and nitrogen 

donor reduce the effective band gap to 1.7 eV.   

 

 

 

For a small electric field E, the drift velocity is proportional to the applied field: 

  𝑣𝑑⃗⃗⃗⃗ = 𝜇E⃗⃗ ,       (1.1) 

where  𝜇 is the charge carrier mobility. By multiplying equation (1.1) with unit charge e 

and carrier density n, we get the equation for the current density in diamond:  

j = en𝜇𝐸 = en𝜇𝑉/𝑑,                  (1.2) 
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where j is the carrier current density, V the bias voltage, and d the electrodes separation 

distance. The same equation also applies to the photocurrent in diamonds excited by a 

laser. In the case of the photocurrent in a diamond plate with a low absorption coefficient, 

the carrier concentration n is given by [25]: 

n = τηφ(1 − R)α,                                                   (1.3) 

where τ is the excitation life time, η the photon to electron quantum efficiency, φ the 

photon flux, R the reflectivity, and  α  the absorption coefficient. In the end, the 

photocurrent density in a diamond may be expressed as: 

j = e𝜇τηφ(1 − R)α 𝑉/𝑑                                              (1.4) 

1.4 Defect centers in diamond 

The most common defects in crystalline solids are vacancy and interstitial centers. 

When atoms in crystal are dislocated, vacancy-interstitial pairs are generated. The 

dislocated atom is called interstitial, and the empty crystal location is called vacancy as 

shown in Fig. 1-3. In the synthetic IIA diamonds, imperfections in the production 

procedure leaves a vacancy, interstitial, and single substiutional nitrogen (p1 center) as the 

main defect centers. 
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Fig. 1-3 Common crystallographic defect in diamond. Interstitials are atoms trapped outside lattice, vacancies are void 

crystal locations, and substitutional defects are crystal atoms replaced by exotic atoms.     

 

 

 

The main vacancy related centers in diamonds are 𝑉0  and 𝑉−  centers. 𝑉0  is the 

neutral monovacancy with optical zero phonon line centered at 740.9 nm (abbreviated as 

GR1 center in optical absorption spectra), and 𝑉−  is the negative monovacancy 

(abbreviated as ND1 center in optical absorption spectra) with spin 3/2 and optical zero 

phonon line centered at 396 nm. The concentration of 𝑉− in diamonds is highly dependent 

on the substitutional nitrogen centers and 𝑉−  is interchangable with 𝑉0   under light 

illumination or annealing process [26].  Most of the 𝑉0  and 𝑉− centers anneal out above 

600°C to form color centers like NV, non-radiative ESR centers like the  divacancy 𝑉2 

and higher ordered complex vacancies 𝑉𝑥 [27].    
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Most of the interstitial related centers in diamonds are neutral interstitial  𝐼0 centers 

with spin 1 and an optical zero phonon line centered at 736 nm. 𝐼0 centers are mobile at 

room temperature during irradiation or implantation with an activation energy of 0.6 eV.  

Above 400°C, 𝐼0 centers begin to form another spin 1 ESR center the  𝐼2 di-interstitial 

[28]. 

For measurement in untreated diamonds, common spin centers include 𝑉−, single 

substitutional N (P1), 𝐼0, 13C (carbon 13 isotope), and NV center. To reduce the spin noise 

in diamonds, annealing at 1200°C could eliminate most of the ESR centers except  13C 

while the NV center concentration remains unchanged [29]. 

1.5 The NV centers in diamond  

The substitutional nitrogen impurity with a carbon vacancy nearby in diamonds is  

called an NV center as shown in Fig. 1-4. The NV centers, belonging to the C3V  pyramidal 

symmetric group, can be found in both natural and synthesized diamonds, and the two 

charge states, N − V0 and N − V−,  have optical zero phonon lines centered at 575 nm and 

637 nm, respectively [30]. 
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Fig. 1-4 Schematic of nitrogen-vacancy center in diamond. The units on the axis are diamond lattice constant (3.567 

Å ). The red sphere is the nitrogen atom and cyan sphere is the vacancy site nearby. 

 

 

 

In the vacancy site of the N − V0 centers, there are 4 electrons with the vacancy and 

one electron from the nitrogen atom.  For N − V−, there is an extra electron. In this work, 

only negatively charged nitrogen vacancy centers will be discussed and simply 

abbreviated as NV. 

The two unpaired electrons in the NV centers form a spin ground state triplet (S=1). 

The electron orbital transition between the triplet excited state 3E and the triplet ground 

state 3A are separated by 1.945eV (637 nm) with an excited state life time of 13 ns [31],  
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while at least two metastable singlet states 1A and 1E exist between  3E and 3A with a life 

time of approximately 150~300 ns. The energy level diagram is shown in Fig. 1-5. 

 

 

 

 

Fig. 1-5 Electron energy diagram of the NV centers with photon and phonon induced transitions. Radioactive 

transitions are marked with solid arrows and non-radioactive transitions are marked with dashed arrows. 
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There are two decay channels from the excited state 3E:  the spin preserved channel 

from 3E to 3A with emission of a photon, and the non-radiative spin-selective channel from 

3E via the singlet metastable state 1A to 3A which causes the ms = ±1 excited sublevels 

to decay to the 𝑚𝑠 = 0 ground sublevel. Thus, the net effect after a few optical pumping 

cycles is spin polarization to the ms = 0 state. In addition, when the spin starts at the  

ms = ±1 sublevel of  3A and gets excited to  3E, and then goes to 1E, the electron spends 

150~300 ns in this metastable 1E state which results in lower fluorescence compared to 

the case when the triplet spin starts at 𝑚𝑠 = 0 . 

The electron spin Hamiltonian of NV− is given by: 

                           Hspin = D(Sz
2 −

1

3
[S(S + 1)]) + E(Sx

2 − Sy
2) + γB ∙ S                      (1.5) 

with D the zero field splitting (ZFS) of 2.87 GHz at the microwave range, E the strain 

term, γ the electron gyromagnetic ratio, and B the external magnetic field. Without the 

presence of a magnetic field, the energy of the ms = ±1 states are intrinsically higher than 

the ms = 0 state since there is nonzero ZFS.  

There is also hyperfine coupling between electron and the nearby nuclei with 

nonzero spins such as N7
14 , N7

15 , and C6
13  leading to sublevels with less than  

4% of the zero field splitting [32]. 
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1.6 Electron spin resonance in diamond 

For small (< 1027 Gauss) axial magnetic fields or non-axial magnetic fields, the ms=0 

to the ms=-1 transitions of a NV center can be treated as an independent two-level spin 

quantum system:  

|ψ(t)⟩ = C0(t)|0〉 +  C1(t) |−1〉,                                        (1.6) 

where |ψ(t)⟩  is the spin wave function, and  C0(t)  and  C1(t)  are the respective 

probability amplitudes of the |0〉  and |−1〉  states. The corresponding Schr ӧ dinger 

equation is 

|ψ(t)̇ ⟩ = −
𝑖

ℏ 
𝐻|ψ(t)⟩                                                   (1.7) 

with 

                                                   H = 𝐻0 + 𝐻1,                                                             (1.8)  

where  𝐻0 and 𝐻1 correspond to the unperturbed and perturbed part of the Hamiltonian. 

In terms of spin states, we can write 𝐻0 as 

𝐻0 = ℏ𝜔0|0〉⟨0| + ℏ𝜔1|−1〉⟨−1|                                               (1.9) 

and write 𝐻1 as 

𝐻1 = −(𝑚01|0〉⟨−1| +𝑚10|−1〉⟨0|)H(t),                                      (1.10) 
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where 𝑚01 = 𝑚10
∗ = ⟨0|𝑚|−1⟩ is the matrix elements of the magnetic dipole moment 

and H(t) is the field at the NV center. Here we assume the magnetic field is linearly 

polarized to the x-axis. The driving field can be expressed as  

H(t) = Bcos (νt),                                                     (1.11) 

where B is the driving field amplitude and ν the driving frequency. By inserting the two 

states wave function into the Hamiltonian, we get 

𝐶0̇ = −𝑖𝜔0C0 + 𝑖Ω𝑅e−𝑖𝜑cos (νt) C1(t)                                        (1.12) 

𝐶1̇ = −𝑖𝜔1C1 + 𝑖Ω𝑅e𝑖𝜑cos (νt) C0(t),                                       (1.13) 

where the Rabi frequency 𝛺𝑅 is defined as 

Ω𝑅 =
|𝑚10|B

ℏ
                                                      (1.14) 

and 𝜑 is the dipole phase 

                                                          |𝑚10| = 𝑚01𝑒
𝑖𝜑                                                 (1.15) 

Employ the assumption of slow varying amplitude 

                                                         c0 = C0𝑒
𝑖𝜔0𝑡                                                         (1.16) 

                                                         c1 = C1𝑒
𝑖𝜔1𝑡                                                         (1.17) 
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with initial condition  C0(0) = 1 and C1(0) = 0, we get the solution for the two level 

spin system:  

c0 = [cos (
𝛺𝑡

2
) −

𝑖∆

𝛺
sin (

𝛺𝑡

2
)]𝑒𝑖∆𝑡/2                                     (1.18) 

c1 = [
𝑖Ω𝑅

𝛺
𝑒𝑖𝜑sin (

𝛺𝑡

2
)]𝑒𝑖∆𝑡/2,                                              (1.19) 

where ∆  is the frequency detuning ∆≡ (𝜔1 − 𝜔0) − ν , and 𝛺  is the generalized Rabi 

frequency 𝛺 = √Ω𝑅
2 + ∆2 . Note that the rotating wave approximation (neglecting 

counter rotating terms proportional to 𝑒±𝑖(𝜔1−𝜔0+ν)𝑡) has been used under the condition of 

low driving field. When the driving field is close to the transition frequency, the rotating 

wave approximation can not hold and the numerical solution has to be used instead. The 

probability of spin being in the |−1〉 state is then given by                      

  P−1(t) =  C1(t)
2 = [

Ω𝑅

𝛺
sin (

1

2
𝛺t)]2,                                    (1.20) 

The Rabi flopping diagram is shown as Fig. 1-6. 
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Fig. 1-6 Example of Rabi flopping of two levels quantum system. The time evolution of the quantum two levels 

system resembles a sinusoidal functions.  

 

 

 

 The spin state may be “rotated” by different phase angles in the Bloch sphere by 

applying the driving microwave field for some specific time. The simplest pulsed ESR 

experiment is free induction decay. After initializing the spins of the system to the |0〉 

state, the microwave pulse is applied to rotate the spin to a state in the x-y plane as 

shown in Fig. 1-7. 
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Fig. 1-7 Spin rotation of in Bloch sphere. The spin initially at the |0〉 state rotates to a mixed state between the |0〉 
and the |1〉 state on the x-y plane.  

 

 

 

The spin ensemble system is left to develop for an adjustable time , after that, the 

signals generated by the spin states are read out with the results of decaying signals due to 

dephasing.  The purpose here is to measure the spin dephasing time during the interval . 

The detected signals decay due to inhomogeneous broadening and spin-spin relaxation. 

An alternative way to monitor the spin interaction for longer time is to apply a Hahn echo 

pulse sequence. Basically, the Hahn echo pulse add an extra microwave pulse in addition 

to a pulse to refocus the inhomogeneously broadened spins in the x-y plane. The pulse 

sequences for FID and Hahn echo for ESR experiments are shown in Fig. 1-8.  
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Fig. 1-8 Schematic diagram of different pulse ESR experiments. Free precession time is varied during the ESR 

experiment. The ESR signals are measured with solenoid coils.  

 

 

 

For optically detected magnetic resonance (ODMR) of NV centers in diamonds, the 

spin initialization process is achieved by pumping NV centers with green lasers for at least 

ten times the duration of NV center excited state life time. In addition, the green laser is 

also used as a probe for the fluorescence readout of the spin state.  The pulse sequence of 

ODMR experiments of Rabi flops and echo of NV centers in diamonds are shown in Fig 

1-9. 
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Fig. 1-9 Pulse sequence of ODMR used for NV centers. (a) Rabi oscillation (b) Hahn echo pulse sequence. The 

readout of ODMR signals are achieved by counting the fluorescence photons emitted by NV centers with the 

readout 532 nm laser pulse. 

 

 

 

The spins in the system after the first /2 pulse precess at slightly different speed and 

begin to spread out, and then the pulse flips the precession plane and those precess 

farther now return faster to their initial projection. As a result, spreading spins refocus at 

time equal to the time delay between and pulses are then refocused as shown in Fig. 

1-10. Finally, magnetic signals that reverse sign (or change in amplitude) between the first 
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and second waiting time can be detected without inhomogeneous broadening. However, 

DC or slowly varying magnetic fields cannot be detected by this method. 

 

 

 

 

Fig. 1-10 Schematic diagram of NV spin during Hahn echo pulse. Both initialization and the readout of NV spin are 

achieved with illumination 532 nm laser.  

 

 

 

1.7 Relaxation in diamond 

When an electric field E is applied to a diamond, the resulting dielectric polarization 

𝑃𝑓 can be decomposed into the sum of the almost instantaneous electron polarization 𝑃𝑖𝑛 

and the slower dipole polarization ∆𝑃(𝑡): 
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𝑃𝑓 = 𝑃𝑖𝑛 + ∆𝑃(𝑡)                                            (1.21) 

The instantaneous polarization 𝑃𝑖𝑛  results from the fast displacement of electrons 

with respect to the nuclei. With a high frequency dielectric constant 𝜀ℎ, the instantaneous 

polarization 𝑃𝑖𝑛 can be calculated as: 

𝑃𝑖𝑛 = 𝐸𝜀0(𝜀ℎ − 1),                                      (1.22) 

where 𝜀0 is the vacuum permittivity.  

After polarization decay, the final polarization 𝑃𝑓 can be expressed as: 

𝑃𝑓 = 𝐸𝜀0(ε − 1),                                      (1.23) 

where ε is the static dielectric constant. For simplest 1st order kinetics,  ∆𝑃(𝑡) is inversely 

proportional to a time constant τ: 

∆𝑃(𝑡) = [(𝑃𝑓 − 𝑃(𝑡))/τ]∆𝑡                                         (1.24) 

By solving the differential equation with given boundary conditions, we can obtain the 

time dependent equation for polarization: 

P(t) = 𝑃𝑓 − [ (𝑃𝑓 − 𝑃𝑖𝑛)𝑒
−

𝑡

𝜏]                                  (1.25) 

For most of the experiments results in semiconductors, physical quantities cannot be 

simply described by equation (1.25). Instead, an empirical general form of dielectric 

relaxation to approximate measured results is contained in Kohlrausch-Williams-Watts 

relaxation function (or called stretched exponential function):  
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P(t) =  𝑃𝑓 − [(𝑃𝑓 − 𝑃𝑖𝑛)𝑒
−(

𝑡

𝜏
)𝛽   ],                                (1.26) 

where 𝛽 is a constant. The Kohlrausch-Williams-Watts relaxation function could also be 

found in the photocurrent quenching and recovery experiments reported in this dissertation 

in Chapter III. Kohlrausch-Williams-Watts type fluorescence decay also occurs in some 

crystalline solids like porous silicon or CdSe-ZnSe [33]. Whether it is due to a time 

dependent decay rate or a superposition of several exponential decays still remains unclear 

[34]. The fact that the Kohlrausch-Williams-Watts relaxation function exists in many 

natural materials suggests a common property, related to the charge-trapping kinetics.  

Usually FID signals detected from diamonds are reported as an exponential decay in 

time, and there are two different intrinsic relaxation times of a spin ensemble, spin-lattice 

relaxation time (T1) and spin-spin relaxation time (T2). T1 characterizes the time needed 

for the longitudinal component of spin relative to external magnetic field to recover back 

to its thermal equilibrium state, whereas T2 characterizes the time for transverse 

component of the spin, sometimes called coherence, to decay toward zero. In general, the 

simple 1st order longitudinal spins relaxes according to 

 Sl(t) = Sl,eq − [Sl,eq − Sl(0)]e
−

t

T1 ,                                      (1.27) 

and the simple 1st order transverse spins decay according to 

                   St(t) = St(0)e
−

t

T2 .                                                       (1.28) 



 

25 
 

However in reality, the NV centers’ relaxation time is often presented in the form of 

Kohlrausch-Williams-Watts relaxation function. As a result, the longitudinal NV spins 

actually relax according to 

 Sl(t) = Sl,eq − [Sl,eq − Sl(0)]e
−(

t

T1
)𝛽

 ,                                      (1.29) 

and the transverse NV spins decay according to 

                          St(t) = St(0)e
−(

t

T2
)𝛽

 .                                                      (1.30) 

For NV centers in the presence of the ESR defect centers like the substitutional 

nitrogen centers or the charged vacancies, T1 and T2 are mainly affected by these electron 

spin centers and can be shortened by implanting high concentration nitrogen defect centers. 

In addition, the index constant β  is also dependent on the NV centers’ concentration. For 

shallowly implanted NV centers near the surface, additional surface can shorten T1 and 

T2 even more. In ultrapure crystals, T1 is mainly limited by phonons and T2 is mainly 

limited by interactions with 13C isotope in the lattice. 

1.8 The photons autocorrelation function of diamond 

In general, there are three different types of light sources differing by their intensity 

fluctuation: laser or coherent light, thermal light, and single photon emitter light as shown 

in Fig. 1-11. To distinguish among these, the photons autocorrelation function, or the 

second order coherence g(2)(𝜏) is used, given by 
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g(2)(𝜏) =
〈𝐼(𝑡+𝜏)𝐼(𝑡)〉

〈𝐼(𝑡)〉2
,                                                (1.31) 

where I(t) stands for the light intensity at time t. The g(2)(𝜏)  can be measured 

experimentally and used to calculate the light source’s fluctuation to determine its 

coherence type.  

 

 

 

 

Fig. 1-11 Photons detection as a function of time and its classification.  

 

 

 

If g(2)(0) >1, the light source is thermal light and shows “bunching” behavior.  

And if g(2)(0) = 1, the light source is laser-like and photons are randomly distributed as 

in a Poisson distribution. If g(2)(0) <1 which arises from single photon sources used for 

quantum communication and shows “anti-bunching”. g(2)(𝜏)  can be measured by 

Hanbury Brown and Twiss experiment that utilizes an 50% beam splitter and a tunable 

time delay unit as Fig. 1-12 below.  
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Fig. 1-12 Hanbury Brown and Twiss experiment setup. 

 

 

 

NV centers in diamond are single photon emitters, and  g(2)(𝜏) < 1 is observed with 

low NV concentration diamond.  Since the photons statistics of NV centers is discrete and 

non-classical, quantum optics approach is employed here to describe the NV fluorescence 

behavior. If there are n fluorescence photons from NV centers in diamond, the photons are 

in a Fock state |𝑛⟩, where n = 0 or 1. The intensity of fluorescence can then be described 

in terms of 〈𝑛〉, since the photo intensity is proportional to number of photons. When 𝜏 =

0, the second order coherence  g(2)(0) in terms of quantum optics 

notation reads:  

g(2)(0) =
〈𝑎+𝑎+𝑎𝑎〉

〈𝑎+𝑎〉2
,                                                  (1.32) 
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where 𝑎+ is the creation operator and 𝑎 the annihilation operator of the Fock states. With 

algebraic equations of the creation operator and the annihilation operator: 

𝑎+|𝑛⟩ = √𝑛 + 1|𝑛 + 1⟩                                      (1.33) 

𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩                                               (1.34) 

By substituting the equations (1.33) and (1.34) into (1.32), we were able to derive the 

second order coherence  g(2)(0) in terms of n: 

g(2)(0) = 1 −
1

𝑛
                                               (1.35) 

Given experimental second order coherence  g(2)(0) data from NV centers in a 

nanodiamond, we then can easily determine the number of NV centers in the specific 

nanodiamond by calculating n from equation (1.35).  
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CHAPTER II 

THE NV CENTERS OPTIMIZATION1 

 

2.1 NVs production in bulk diamond 

To create a substitutional nitrogen impurity with an adjacent carbon vacancy (NV) in 

diamonds, there are two different ways: 

(1) Ion Implantation 

To produce the NV− centers in type IIA pure diamonds, diamonds are implanted with 

nitrogen ions to create both nitrogen impurities and vacancies. In this work, a 2 MeV ion 

implanter has been used to create a large amount of vacancies per injected nitrogen ion in 

an electronic grade type IIA diamond.  

(2) Electron Irradiation 

For type IB diamond, the intrinsic nitrogen contents is around 75 ~200 ppm, and thus 

vacancies are required in these kind of diamond to form the NV centers. In this work, a 

transmission electron microscopy (TEM) JEOL-2010 has been used to create vacancies 

on type IB diamonds with an energy of 200 keV. 

                                                           
1 Reprinted with permission from “Size-reduction of nanodiamonds via air oxidation” by T. Gaebel, C. Bradac, J. 

Chen, J.M. Say, L. Brown, P. Hemmer, J.R. Rabeau, Diamond & Related Materials 21, 28 (2012). Copyright 2011 

Elsevier B.V. 
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2.1.1 Ion implantation experiment 

Ion implanter consists of an ion source, accelerator, and a target chamber. The ion 

source emits ions proportional to the excitation current applied. After ionization, the ions 

are accelerated and pass through mass/charge selector to filter out the unwanted charged 

ion. Then, the selected ions are accelerated by high DC voltage and pass through series 

of focusing magnets until impinging onto the sample mounted in the target chamber as 

Fig. 2-1. 

 

 

 

 

Fig. 2-1 Schematics of an ion implanter. 
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The ion implanter used in this work is Dynamitron electron beam particle accelerator 

(IBA Industrial, formerly Radiation Dynamics) which is capable of giving an implantation 

energy from 300keV to 50MeV. Before ion implantation, diamonds are ultrasonicated in 

acetone solution for 30 minutes. Then 10 MeV N7
14 − ions are implanted into diamonds 

with a flux of 3.2 × ions s ∙ cm2⁄ . 

2.1.2 Electron irradiation experiment 

A TEM is a microscope using electrons and electromagnetic lenses instead of photons 

and optical lenses. The Rayleigh resolution for a lens is given by 

    ∆lr =
1.22λ

D
,
                                                       

(2.1)  

where  ∆lr  the spatial resolution, λ the wavelength, and D is the diameter of the lens’ 

aperture. In the case of electrons, the de Broglie wavelength of the electrons is 1.23 nm 

for electrons with a kinetic energy of 1 eV, and this wavelength enables nanometer 

resolution of a TEM.  

The basic components of TEM consist of a filament (electron gun), magnetic lens, 

apertures, a vacuum chamber, and a charge coupled device (CCD) camera as Fig. 2-2. In 

this work, high energy electrons from the TEM are used as a vacancy creation source for  

NV center production.  
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Fig. 2-2 TEM components and TEM (JEOL JEM-2010).  

 

 

 

The TEM used in this work is JEOL JEM-2010 with LaB6 filament. A diamond 

sample with thickness less than 0.5 mm are cleaved to fit in the 3mm TEM sample holder, 

and then are clamped between two Molybdenum grids (SPI 4260M-MB) and mounted 

onto a single-tilt heating holder (Gatan model 628). The stage can reach temperatures up 

to 1000°C. The beam current density for irradiation is between 75~120 pA cm2⁄  with 200 

keV voltage, and the beam spot size on the TEM phosphor screen is 1~2 cm in diameter 
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with a magnification set to be 100 kX for highest flux. Since the actual magnification is 

about 75% of that on the screen, the magnification is around 75 kX. Then the total electron 

dose is calculated by 

    dose = J × t ×
Ascreen

Mfilm
2⁄ ,                                       (2.2) 

where J the current density, t the irradiation time, Ascreen the spot area on the screen, and 

Mfilm is the actual (linear) magnification on film.  

2.1.3 Simulation of ion implantation 

Ion implantation is the process where electric field accelerated ions are injected into 

materials to imbed impurities. The vacancies in diamond are the empty sites that carbon 

atoms were “kicked out” of by the recoil of the implanted ions. To produce the NV− 

centers in type IIA diamonds, diamonds are implanted with nitrogen ions to create both 

nitrogen impurities and vacancies.  

For the simulation of ions and vacancies’ spatial distribution after ion implantation, 

a free academic sharing software “Stop and Range in Matter (SRIM)” made by Dr. James 

F. Ziegler was used in Fig. 2-3. To optimize the simulation, there are a few parameters in 

this Monte Carlo simulation could be chosen:  the atomic number of the implanting ions 

and the implanted material, the implantation energy, the implanted material density, and 

the implanted material displacement energy.  
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Those parameters for the nitrogen ion implantation experiments in diamond are:  

nitrogen ion atomic number 7 and implanted carbon atomic number 6, the density of 

diamond 3.52 g/cm3, and the displacement energy of carbon atoms in diamond lattice  

45eV [35].   

 

 

 

 

Fig. 2-3 The depth simulation of 1000 implanted nitrogen atoms in diamond for 2 MeV implantation.  

 

 

 

There are several important simulated results that can be used for further analyzin: 

the vacancies created per ion, the longitudinal range of ion, the straggle distance of the 
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implanted material, the phonons ratio of energy loss per stopped ion. The implanted ions 

and vacancy concentration versus implanted depth is shown in Fig. 2-4 and Fig. 2-5. 

 

 

 

 

Fig. 2-4 Nitrogen and vacancy concentration simulation of 2 MeV implantation by SRIM. (Top) Ion range simulation 

(Bottom) Collision events simulation. 
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Fig. 2-5 The implantation depth and created vacancies versus the implantation energy. (a) Nitrogen number as a 

function of depth for different implantation energies (b) vacancies created per ion with different implantation energies 

based on SRIM simulation. 
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2.1.4 Annealing process 

After ion implantation/ electron irradiation experiments, the diamonds are boiled 

with mixed acid solution (sulfuric acid : nitric acid : perchloric acid =1 : 1 : 1)  at  90°C 

for 3.5 hours in a condenser system to remove the surface graphite, some of the amorphous 

carbon atoms, and other contamination. In order to diffuse the vacancies and form the NV 

centers, the acid cleaned diamonds are then heated up in the vacuum chamber at around 

800C in 10−6 torr for 3 hours (the heating rate is 20°C /min). Finally, the diamonds are 

ultrasonicated in acetone for 10 minutes to remove the remaining surface residues. 

2.1.5 Simulation of annealing process 

Diffusion describes random motions of particles that causes the particles to move 

from regions of high concentration to regions of low concentration with a net effect that 

the particles slowly fill out the entire mobile space as shown in Fig. 2-6.  

 

 

 

 

Fig. 2-6 Diffusion process. From left to right: particles diffuse from a smaller volume with higher concentration to a 

larger volume with lower concentration.    
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The diffusion process can be described by Fick’s Law: 

1st law                     

       J(r, t) = −D∇C(r, t),                                                       (2.3) 

and 2nd law 

                                               
∂C(r,   t)

∂t
= −∇ ∙ J(r, t),                                                 (2.4) 

where J is the particles flux vector, D the diffusion rate coefficient, C is the concentration 

of particles. Combining these two equations, we obtain Fick’s equation:  

                                                 
∂C(r,t)

∂t
= D∇2C(r, t) .                                                     (2.5)                                                  

The vacancies and nitrogen impurities diffuse in diamond beyond a certain temperature 

and the local NV centers concentration will change according to the spatial distribution of 

vacancies and nitrogen. 

 The diffusion coefficient is a function of temperature given by 

                                                        D = D0e
−

Em
kBT ,                                                       (2.6) 

where D0 is a constant depending on material, Em is the migration barrier energy of a 

diffusing particle, kB is Boltzman’s constant, and T is temperature. For simulation of the 

vacancies diffusion process in diamond, the leading diffusion coefficient value is reported 

to be  3.69 × 108  nm2 s⁄  with the migration barrier of the vacancy between 0.42- 2.8 eV 

[36]. Here 1.7 eV is elected to simulate the vacancy diffusion in this work.  Similarly, the 
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diffusivity of nitrogen at different temperatures can be found in [37] stating that there are 

two migration channels of nitrogen, the vacancy assisted migration energy of 4.5 eV and 

the self-diffusion migration energy of 6.3 eV. Compared to the vacancies, the nitrogen 

atoms remain static below 2200K, and the vacancy assisted nitrogen become mobile when 

the temperature higher than 1750K. The simulation of vacancy and nitrogen diffusion 

processes are shown as Fig.  2-7. 

 

 

 

 

Fig. 2-7 The vacancy and nitrogen  diffusion coefficient as a function of temperature. (dashed line for vacancy assisted 

nitrogen) The vacancies are mobile above 873 K and substitutional nitrogen atoms are mobile above 1750 K. 
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To include reasonable source term in Fick’s equation to model the diffusion process 

during ion implantation, an additional Gaussian distributed source term is introduced. 

With an assumption that the implantation is cylindrically symmetric, we get 

                                            
∂C(z,   t)

∂t
= D

d2C(z,t)

dz2 +
Γ

σ√2π
e
−

z2

2σ2 ,                                     (2.7) 

where Γ = flux =
number

nm2∙sec
, and σ is the Gaussian standard deviation parameter which is 

related to the implant straggle depth. 

The modified dynamic diffusion process can be solved by applying the following two 

boundary conditions: 

                                                             C(±∞, t) = 0 ,                                                  (2.8) 

                                                                
∂C(0,   t)

∂z
= 0 ,                                                  (2.9) 

where we define z=0 at the mean implantation depth displaced below the diamond surface 

according to the SRIM simulation. These boundaries equations set the concentration at 

infinity to be zero and the concentration to a local maximum at the mean implantation 

depth. (Note that the straggle is only approximately Gaussian for high energy implants as 

there is as significant tail for smaller depths) By Gaussian-fitting the room temperature 

ion implanted data from SRIM simulation as a source term in the modified Fick’s equation 

(3.4), the dynamic solution can be obtained at different temperatures as shown in Fig. 2-

8.  
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It was reported [38] that there is a graphitization threshold for ion implantation in 

diamond independent of ion species and implantation energy. A diamond crystal 

transforms into graphite when concentration of vacancies exceed 10 V nm3⁄  and will not 

turn back to diamond after annealing. 

 

 

 

 

Fig. 2-8 The vacancies concentration as a function of depth and time at different temperatures. The simulation is for a 

2 MeV nitrogen implantation with total dose = 100  N/nm2 . Note that the concentration of vacancies stays below 

graphitization threshold for temperature higher than 1000°C.  

 

 

 

In order to maximize the yield of NV centers, the implantation of nitrogen should be 

done at the maximum possible dose to produce the most nitrogen and vacancies without 

breaking the graphitization threshold. Therefore, the implantation rate and the temperature 
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which determines the local vacancy concentration has to be chosen to stay below 

graphitization threshold. With the diffusion simulation in this work, the optimum 

parameters were determined to meet this requirement and are shown in Fig. 2-9. 

 

 

 

 

Fig. 2-9 The minimum implantation time to prevent graphitization versus temperature for various doses. (2 MeV 

nitrogen implantation) 
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The vacancies in 1B nitrogen-rich diamond or in nitrogen implanted diamond undergo 

these reactions: 

Electrons are excited from nitrogen to the conduction band by heat or optical excitation 

and can be captured by vacancies  

   V + 𝑒− ↔ 𝑉− (2.10) 

In addition for T> 600°C                                

         V + N → NV                                                                (2.11) 

At high temperature of with optical illumination 

                                            NV + N ↔ N𝑉− + 𝑁+ .                                                   (2.12)                              

The nitrogen atoms in the diamonds act like electron donors enabling free electron 

transport. In nitrogen rich diamonds, the negative charged vacancy centers V− ( ND1) are 

the dominant defects and its concentration can be an order of  magnitude more than the 

concentration of the neutral vacancy centers V0 ( GR1) .  

The nitrogen concentration in high pressure high temperature diamonds is dependent 

on the growth sector [39]. In addition, the yield of the NV− centers is 10~40 times greater 

than the yield of NV0 in 1B diamond after electron irradiation and annealing [40].  It is 

also observed that the NV center yield is reduced by vacancy-interstitial recombination 

which often appears in the type IIA diamonds and doesn’t occur in nitrogen rich diamond 

[41]. 

The first explanation of the creation mechanism of the NV centers in 1B diamond 

was done by G. Davies in 1992 [42]: 

                                            
d[V−]

dt
= −rc

[V−]

r
+ rc[V] ,     (2.13) 
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d[V]

dt
= −(rc + ra)[V] + rc

[V−]

r
 ,                                              (2.14) 

                                           ∆[V] + ∆[V−] = ∆[NV−] ,                                                 (2.15) 

where rc is the reaction rate of charge conversion, ra the decay time due conversion of 

vacancies to NV or other defects during annealing,  

and r the equilibrium ratio of [V−]/[V].  Davies calculated neutral vacancy concentration 

by converting the optical absorption line to the concentration with  

OGR1 = fGR1 [V]                                                      (2.16) 

and fitted his experimental data. The converting coefficient he used 
fND1

fGR1
= 4  is contrary 

to what is experimentally found later: fND1 = 4.8 × 10−16meV ∙ cm2  [43] and  fGR1 =

6 × 10−17meV ∙ cm2 [44]. In addition, the growth of negatively charged divacancy V2
−  

in irradiated 1B diamond above 600C reported by Joseph Kiprono [45] is unaware in 

Davies’ work, where Davies assumes that all the vacancies form the NV centers. In this 

work, the new dynamic model including both NV center and V2
− centers formation will 

be discussed in the following.  

Assume that the negatively charged divacancy V2
− forms via the following reaction 

                                                               V + V− → V2
−                                              (2.17) 

instead of capturing an electron from a neutrally charged divacancy center. (there is no 

neutrally charged divacancy observed in 1B diamond [46] )  Also assume that the 

formation of NV− centers involves the diffusion and reaction of the neutral vacancy only, 

since the charged vacancy doesn’t diffuse [40]. Based on the two assumptions, the re-

fitting of the 750°C annealing data of 1B diamond by G. Davies [15] is done in Fig. 2-10 
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with the up-to-date experimental optical absorption coefficient and mutual charge 

conversion coefficient. The new second order kinematics for the simulation reads:  

d[V]

dt
= −(a ∙ rv + rc)[V] − (1 − a)rv[V][V−] + rc

[V−]

r
 ,             (2.18) 

d[V−]

dt
= −rc

[V−]

r
− (1 − a)rv[V][V−] + rc[V] ,                   (2.19) 

 

 

 

 

Fig. 2-10 Re-fitting of the NV optical absorption data during 750°C annealing. The sample is a 1B diamond irradiated   

with 2 MeV electrons to a dose of 0.5 x 1016e/cm2. (a) ND1 and GR1 with parameters: a=0.9, rv= 0.2, rc=0.7, and r 

=0.6 . The strength of optical absorption A is derived by integrating the absorption coefficient (E)(measured in  

cm-1at photon energy E (measured in meV) over the zero-phonon line: A = ∫μ(E)dE. (b) NV line with parameter b= 

0.84 and  fnv = 1.35 × 10−16 meV ∙ cm2. 

 

 

 

d[NV−]

dt
= b ∙ a ∙ rv[V] ,                                             (2.20) 

where rc  the charge conversion rate, rv  the first order vacancy reaction rate, r the 

equilibrium ratio of [V−]/[V], a is the ratio of vacancies trapped by any sink, and b is the 
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ratio of the vacancies involved in [NV−] formation to the vacancy trapped by any sink. In 

addition, the equation for temperature dependence of reaction rate is used 

                                                     rv = rv0e
−

E

kBT                                                         (2.21) 

with E the activation energy of 2.3eV for the vacancies captured in any sink reaction [42]. 

For the vacancies created by electron irradiation, the conversion between electron 

irradiation dose and vacancy concentration is 2 vacacnies/electron ∙ cm  [40]. Using 

these equations and the fitted parameters for the simulation of 750°C annealing of 1B 

diamond above, the growth dynamics of NV center for 30 minutes isochronal annealing 

at different temperatures can be simulated and the result gives an excellent agreement with 

the work by G. Davies [15] as shown in Fig. 2-11. 

 

 

 

 

Fig. 2-11 The simulation of the NV center growth after 30 minutes isochronal annealing. The sample is a 2 MeV electron 

irradiated 1B diamond with a dose of 5 × 1017e/cm2. The parameter used here is rv0 = 1.25 × 107. (it is assumed that 

70% of the initially created vacancies are V−). 
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Given the initial implantation or irradiation dose, the annealing temperature and time 

to get the maximum NV yield can be calculated by the same simulation as shown in Fig. 

2-12. 

 

 

 

 

 

 

Fig. 2-12 NV concentration with different nitrogen implantation doses as a function temperature and time.  (a) different 

annealing temperature for 3 hours annealing (b) different annealing time at 800°C. 

2/1 nmN

2/1.0 nmN

2/01.0 nmN

2/001.0 nmN

2/1.0 nmN

2/1 nmN

2/01.0 nmN

2/001.0 nmN



 

48 
 

2.1.6 NV center yield optimization in bulk diamond 

To characterize the NV centers in diamond, a home-built ODMR setup as shown in 

Fig. 2-13 has been used to measure the NV centers’ concentration, ESR line shape, and 

Rabi frequency.  

 

 

 

 

Fig. 2-13 The ODMR experimental setup. AOM is the acoustic optical modulator, M are the mirrors, BS1 is a 5% 

reflectance dichroic beam splitter, BF is a 630 nm longpass filter, L are the convex lenses with focal length 15cm , 

BS2 is a 50%-50% beam splitter, and APD is the avalanche photodiode. 

 

 

 

The measured linear relationship between photon counts rate and laser power is 

shown in Fig. 2-14. The fluorescence photon count rate (with the background counts 

subtracted) at each pixel is in proportional to the local NV concentration and the laser 
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power. The actual NV center concentration might be estimated by dividing this 

fluorescence count rate by the single NV center photon count rate. The pixel size for the 

measurement in this experiment is around 0.25 μm2 with 2.36 mW 532nm excitation laser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-14 Fluorescence photons counts versus 532 nm CW laser power. The sample is a diamond with less than 0.1% 

13C  isotope and is implanted with nitrogen to a dose of 0.1 N/nm2. The signals noise is around 1% in the 

measurement. The estimated number of NV centers per pixel is 29.   

 

 

 

The photon count rates measured at different implanted nitrogen dosage spots is  

displayed in Fig. 2-15 where the count rates are normalized to the same laser intensity 

20W. It can be seen that the photon count rate saturates above a doses of  0.1  N nm2⁄  

and has higher counts for nitrogen-rich diamonds. The vacancy concentration reach 
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graphitization threshold when nitrogen implantation dose is larger than 10  N
nm2⁄   

explains the decrease of fluorescence intensity beyond the dose of 10  N
nm2⁄ .  

 

 

 

 

Fig. 2-15 Fluorescence counts versus 2 MeV-implanted nitrogen doses for different diamonds. IIA is a pure diamond 

with natural abundance of  13C  isotope (1.1%). 12C is a diamond with less than 0.1% 13C  isotope. 1B100 and 1B111 

are nitrogen-rich type IB diamonds with growth sectors along 100 and 111 crystal directions. 

 

 

 

To measure Rabi of the NV centers, the pulse sequence in Chapter I has been applied 

here. The laser pulses used for spin initialization and optical readout have been added to 

the ordinary ESR pulse in the free induction decay and Hahn echo pulse experiments. 

Laser illumination are synchronized with the microwave pulse by Data  
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Fig. 2-16 The ODMR of a single NV center. (a) ESR line shape (b) Rabi oscillation with normalized fluorescence (c) 

Hahn echo measurement with normalized fluorescence. (exponential fitted value of T2 is around 17s). 
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timing generator (Tektronix DTG 5274).  The measured ODMR results are shown in Fig. 

2-16. 

In addition, the T2 measurements of a 7.5keV nitrogen implanted diamond sample 

with different dose in HP Labs is shown in Fig 2-17. The minimum detectable magnetic 

field can be estimated in the shot noise limit [40] by 

,                          

δB ∝
1

√𝑇2∙𝐶𝑁𝑉−
                                                      (2.22) 

 

where NV
C  is the concentration of NV centers. By substituting the concentration of NV  

centers with the measured photon counts, the optimum dose for best magnetic sensitivity 

in can be determined to be around 0.4 N/𝑛𝑚2.    

2.2 Reducing nanodiamond size 

The use of colour centres in diamond has attracted considerable interest in a range of 

research fields including quantum technology and biomedical imaging. Colour centres can 

serve as single photon sources [48] or bright labels for bio tracking [49]. The nitrogen-

vacancy centre (NV) in particular, with its unique optical and spin properties, made 

possible recent demonstrations such as high resolution magnetometry [50,51], sub 

diffraction limit optical microscopy [52,53], and quantum information technology [54,55]. 

Some of these applications only require the unique optical and magnetic properties of NV 

centres, while other applications also require controlled modification of nanodiamond 

material properties. For instance, reducing the size of the nanodiamond, or increasing the 

colour centre concentration for brighter emission can be crucial for bio-related 
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Fig. 2-17 The T2 and minimum detectable magnetic field at different doses. The sample is a type IIA diamond implanted 

with 7.5 keV nitrogen from HP Labs (a) The T2 measurement (b) The calculated magnetic sensitivity. (Inset) The 

fluorescence intensity. 
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applications. De-agglomeration of nanodiamonds can be achieved using a milling process 

with zirconia beads [56]; size reduction has been demonstrated using plasma etching [57], 

or thermal treatment [58].  

In this work, we characterize the size of nanodiamonds and effects on nitrogen-

vacancy centers caused by air oxidation of NDs by using a combined atomic 

force/confocal microscopy system. The average height reduction of individual crystals as 

measured by atomic force microscopy was 10.6 nm/h at 600°C due to air oxidation in 

ambient air. The oxidation process also modifies the surface including removal of 

amorphous carbon, graphite, and organic material which leads to a decrease in background 

fluorescence. 

The diamond nanocrystals (Microdiamant, MSY 0-0.1 μm) with a mean size of 50 

nm ranging from 0 to 100 nm as measured by an atomic force microscope (AFM), were 

dispersed on a glass cover slip (Menzer-Glaser).  The cover slip was laser scribed with a  

5 x 5 grid consisting of 50 × 50 μm2 squares (Fig. 2-18). This enabled the identification 

of the same nanodiamond sites over consecutive oxidation steps.  

The sample fluorescence was simultaneously measured with a confocal sample-

scanning fluorescence microscope (100× oil immersion objective lens, NA 1.4), 

excitedwith a 532 nm CW diode pumped solid-state laser (Coherent, model: Compass 

315-M100), and a commercial atomic force microscope (NT-MDT Ntegra) (sketch of the 

setup in Fig. 2-20a). Intensity autocorrelation curves were measured with a Hanbury 

Brown and Twiss interferometer setup consisting of 2 avalanche photodiodes (Perkin 
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Fig. 2-18 Experimental setup of NDs characterization. (a) shows an artistic view of the confocal beam incident from 

the bottom and through the glass coverslip combined with the AFM tip probing the sample from above. The inset is a 

photograph of the sample from directly above, one can see the laser scribed grid and the AFM cantilever. (b) is a 

confocal intensity map of the sample and (c) shows the corresponding AFM Height map. The scan area is 50 x 50 μm. 

 

 

 

Elmer) and a correlator (Picoquant).  

The oxidation process was carried out in a tube furnace  (Lenton thermal designs) in 

air at atmospheric pressure. The sample consisted of diamond nanocrystals dispersed on a 

glass coverslip and placed on a metal holder inside the furnace. The furnace temperature 

was stabilized before the sample being inserted into the heated region. The annealing time 

was measured from the instant the thermocouple mounted in contact with the metal holder 

with  the same temperature reading as the internal furnace sensor. All annealing cycles 

were performed at 600°C. 

2.2.1. NDs preparation 

To preparation the nanodiamonds (NDs) for optimum deaggregation before size 

characterization, NDs were mixed with sulphuric acid (98%, 9 ml) and nitric acid (70%,  
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1 ml) and then refluxed for 3 days at 70°C. The mixture was centrifuged and  

ultrasonicated, then refluxed again with a fresh acid mixture. The nanodiamonds were 

washed with distilled water then refluxed with NaOH(0.1 M, 8 ml; 1 h, 90°C), washed, 

then refluxed with HCl (0.1 M, 8 ml). The nanodiamond–acid mixture was washed with 

distilled water and ultrasonicated (1 h). The sample was diluted by addition of distilled  

(20 ml) and ultracentrifuged (for 1 hour with acceleration of 100,000 g). This procedure 

was repeated three times, and the resulting pellet containing individual diamond grains 

was used for all the experiments. After preparation, the NDs were dropped on the glass 

cover slip mentioned above and left to dry.  

2.2.2. Photons antibunching in NDs 

The NDs were all treated with a preliminary 2 h heating step at 600°C to remove the 

relatively large amount of non-diamond carbon, as well as other impurities on the sample. 

The fact that the surface tended to have a high proportion of sp2 was confirmed in the etch 

rate measurements: where an increased etch rate was measured in the early stage of 

annealing (see Fig. 2-20 b).  This can be explained by the higher etch rate of sp2 compared 

to sp3 carbon [59]. Fig. 2-19 shows the spectra for a NV centre taken before and after 

annealing. Before the treatment a broad unstructured fluorescence ranging from 550 nm 

to 800 nm was observed, which we attribute to a high graphite content at the surface of 

the nanodiamond  (spectra is similar to  [60], which is attributed to surface defects and 

graphite). After 1h of heating, the spectral features originating from NV are much more 

pronounced.  Subsequent annealing cycles do not change the spectra in a noticeable way. 
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Fig. 2-19 Normalised spectra and autocorrelation g2() of one NV site. (a) Normalised spectra of one NV site 

following the oxidation steps. The black line is the spectra without air oxidation, and the green one shows the spectra 

after 1h air oxidation. (b) shows the corresponding autocorrelation g2() curves. Note that the contrast of the 

antibunching feature increases. 

 

 

 

The autocorrelation curve shows in a similar way an increase in the visibility of the 

antibunching dip, which means that the background fluorescence level decreased after the 

first air oxidation step.  This also supports our assertion of the preferential removal of 

graphitic and other non-diamond carbon material in the early oxidation stage [60], after 

which the etching is almost exclusively of diamond. 

2.2.3. NDs size measurement 

A histogram of the height of individual crystals was acquired from the AFM 

measurements after consecutive annealing steps which gave an indication of the average 

change in size as a function of anneal time. The height values were obtained by fitting 2-

dimensional Gaussians to individual crystals on the AFM image after subtracting the 

background height offset. 
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Fig. 2-20 Size reduction as a function of time of nanodiamonds treated in air at 600°C. (a) Histograms of the 

nanodiamond sizes after a specific oxidation time.  These distributions are measured consecutively on the same sample.  

The solid lines are Gaussian fits to the size distribution. (b) The mean of the size distributions plotted over time. A linear 

fit (solid line) indicates an etch rate of 10.6 nm/h. 

 

 

 

By fitting Gaussians to the height distributions we are able to infer a “mean” crystal 

size after each step. In Fig. 2-20 (b) the mean sizes are plotted as a function of time and 

fitted with a line to give the average etch rate. Note that the first step from 0 to 2 h shows 

a dramatic reduction in crystal size.  As discussed, this is due to the rapid etching of non-

diamond carbon on the surface and this point is excluded from the linear fit made from 2 

hour onward at which point the etch rate is constant. The fit indicates an etch rate of 10.6 

nm/h and was determined from 7 consecutive oxidation steps, each one lasting 30 min at 

600°C. Figure 2.20 (a) shows the resulting histograms of nanodiamond sizes for 3 different 

steps within the heating cycles.  

When examining the size reduction behaviour of individual crystals, one can see that 

the etch rate varies somewhat. This effect is visible in Fig. 2-21 where 3 nanodiamonds 

were tracked over three air oxidation steps. Two of the crystals shrink consistently in 
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height, but one stays quite constant around 50 nm. However, the relatively crude measure 

of the X and Y cross sections (i.e. the width of the crystal) of this particular nanodiamond 

as a function of time does show a reduction. The main reason for this is an anisotropy in 

the etch rate for different crystallographic planes/surfaces as already observed  in CVD 

diamond samples [61] and natural diamond [62]. 

 

 

 

 

Fig. 2-21 3-dimensional AFM images of the same nanodiamonds following the oxidation steps. The crystal at the 

centre is not experiencing a reduction in height as much as the other 2 crystals. 

 

 

 

More interestingly, with our experimental apparatus, we can now study the size of 

individual nanodiamond particles hosting NV defects. To do this, we need a confocal 

image of the nanodiamonds and a corresponding AFM image of the same region. In  

Fig. 2-22 these images were put together for the untreated sample and two oxidation steps. 

Not surprisingly one can observe the annihilation of NV defects via air oxidation as layers 

of carbon are taken away eventually exposing and removing the NV defects themselves.  



 

60 
 

 

 

Fig. 2-22 Confocal and AFM images taken after consecutive oxidation steps. (a) confocal image taken before oxidation; 

the numbered circles indicate some of the NV centres we selected for the analysis. (b) confocal image after annealing 

the sample in the furnace in air for 2.5 hours at 600°C; the black-numbered circles indicate NV centres which annihilated. 

(c) confocal image after annealing the sample in the furnace for another 2.5 hours at 600°C. The *-numbered diamonds 

indicate NV centres which were created by the heating process due to vacancy diffusion to existing Ns sites. (d) AFM 

image taken before oxidation; the circles indicate some of the crystal we selected for the analysis. (e) AFM image after 

annealing the sample in the furnace for 2.5 hours at 600°C. (f) AFM image after annealing the sample in the furnace for 

another 2.5 hours at 600°C. The insets show the reduction in size for the highlighted crystal. The square box shows an 

example of diamond crystals from being clustered together to being isolated. 
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With these results we can determine the size distribution of the nanodiamonds hosting NV 

centers (see Fig. 2-23 ). Even though the size distribution of the powder used is specified 

to be ranging from 0 to 100 nm we can find particles up to 170 nm in height. This may be 

due to aggregation of the nanodiamonds. The air oxidation and the resulting shrinking of 

the nanodiamonds help to get rid of the aggregates, as shown in Fig. 2-23 the smallest 

nanodiamond that we observed in this study which still hosted an NV was 8 nm in height. 

To increase the probability of ending up with even smaller nanodiamonds containing NVs, 

one needs to increase the starting concentration of available NVs, which can be done by 

implanting the diamond powder with electrons or ions [32]. 

 

 

 

 
Fig. 2-23 The size distribution of the NDs hosting NV centers. 
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CHAPTER III 

OPTICAL QUENCHING AND RECOVERY OF 

PHOTOCURRENT IN SINGLE-CRYSTAL DIAMOND 

 

3.1 Overview 

We report the observation of optical quenching of photocurrent in diamond using 

simultaneous excitation by pulsed and continuous wave lasers, at several wavelengths. 

The quenched photocurrent showed a recovery related to the external bias voltage, 

pulsed optical power and wavelength. The recovery of the quenched photocurrent 

provides information on the nature of the electron trap states in diamond. 

With a wide bandgap, high thermal conductance and broadband optical transmittance, 

diamond has found numerous applications in opto-electronics such as electron emitters 

[63], windows for high power devices [64], and x-ray photon detectors [65]. Like silicon, 

diamond can also be doped with various impurities such as boron or phosphorus to create 

p- or n-type semiconductors [66]. In addition, diamond point defects, such as the nitrogen 

vacancy (NV) color centers, have applications in the research towards quantum computing 

[67][68][69], quantum optics [70], and quantum electronics [71][72]. It is thus of 

paramount importance to investigate photoelectric properties of diamond in greater detail. 

Diamond contains a variety of impurities and defects, which can be selectively photo-

excited by light of different wavelengths. Also, the photocurrent transient decay rate 
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depends strongly on the excitation wavelength [73][74] and is often sample-specific. 

Recent studies of photocurrent focused on the quantum efficiency in nanocrystalline 

diamond for deep ultraviolet wavelength illumination [75] [76]. Optical excitation and 

quenching of photocurrent were reported in boron doped epitaxial type IB diamond films 

with two continuous wave (CW) light sources at different wavelengths [77]. Thus, 

previous studies are limited in scope. 

Herein, we studied optical quenching of photocurrent and photocurrent recovery in 

bulk undoped IIA diamond. A CW 532 nm laser was found to quench the photocurrent 

excited by pulsed lasers of various wavelengths, including 532 nm. In addition, the 

quenched photocurrent was found to be proportional to the CW laser intensity. We also 

found that the quenched photocurrent recovered when the CW laser was removed and the 

recovery time was found to be dependent on bias voltage, pulsed laser wavelength, and 

pulsed laser intensity.   

3.2 Experimental methods 

The sample studied is a chemical vapor deposition (CVD) IIA single crystal diamond 

with intrinsic nitrogen concentration of ~ 1 ppm. The sample was irradiated with 

relativistic electrons and annealed with the initial goal of creating the nitrogen-vacancy 

(NV) centers; we note that such treatment reduces the concentration of interstitial defects 

[78] and suppresses surface conduction [79]. For photocurrent measurements, titanium 

gold electrodes with a gap of 20 m were deposited onto the surface and a bias voltage of 

up to 60 V was applied across the electrodes. The photocurrent was either excited with a 

532 nm pump pulsed laser (Spectra Physics Q-switched Nd-YAG laser DCR-11 with ~10 



 

64 
 

ns pulses at 10 Hz repetition rate and 135 mJ pulse energy) or with a tunable dye laser 

(Quanta Ray PDL-2; pumped by the Nd-YAG laser). The pulsed laser beams were focused 

to a 20 m diameter spot in the gap between electrodes, carefully avoiding illumination 

of the electrodes.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3-1 The experimental setup and the time trace of photocurrent produced by 532 nm pulsed laser illumination. (a) 

The experimental setup. The dye-laser light or the light from the doubled YAG was focused through lens to the side of 

the diamond where the electrodes were deposited so as not to illuminate the electrodes, while a collimated CW 532 nm 

laser directly illuminates the whole electrode region. (b) The time trace of photocurrent produced by 532 nm pulsed 

laser illumination. Blue line: photocurrent with 532 nm pulsed light before turning on CW 532 nm laser. Black line: 

photocurrent with both 532nm pulsed laser and CW 532 nm laser co-illumination. Red dots: photocurrent with pulsed 

dye laser alone after shutting off the CW 532 nm laser for 30 seconds.   

 

 

 

3.3 Results 

The photocurrent resulting from pulsed laser illumination of the sample was 

(a) (b) 
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measured using an oscilloscope with a 50 ohm termination. Illumination with 532 nm 

pulsed light alone induces a pulsed photocurrent of duration ~30 ns. When the sample was 

co-illuminated with both a collimated 532 nm CW laser at 0.75 W and with the pulsed 

laser, as shown in Fig. 3-1(a), the photocurrent was quenched by up to 90%. After the CW 

laser was switched off, the pulsed laser excited photocurrent recovered gradually within 

about a minute as shown in Fig 3-1(b).         

To investigate the dynamics of optical quenching of the photocurrent, we used a 

quenching/recovery sequence, the timing diagram of which is shown in Fig. 3-2 (top). 

Initially, the photocurrent induced by the pulsed laser alone is monitored. Then after 10 s 

the CW laser is switched on, and after another 20 s it is switched off. During the entire 

sequence a bias voltage of 60 V is applied. The photocurrent induced by the pulsed laser 

is plotted versus elapsed time in Fig. 3-2 (bottom) for different CW laser powers. To 

enhance the signal-to-noise ratio, the plotted photocurrent is integrated over the laser pulse 

duration. The spurious electrical background signal due to the Q-switch trigger pulse was 

subtracted from the signals. As seen in the graph, the photocurrent amplitude dropped 

during CW laser illumination and then gradually recovered after removing the CW laser. 

The photocurrent quenching effect is approximately linear in CW laser power over 

the range of powers studied, although there is a slight nonlinearity near the highest and 

lowest laser powers, as shown in Fig. 3-2 (Inset). The recovery time constant is 

independent of either the CW laser power or exposure time, but does depend on the voltage 

and pulsed laser power as discussed below.  
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Fig. 3-2 Optical quenching of pulsed photocurrent with CW laser. (Top): Timing for the photocurrent suppression and 

recovery measurement. The 532 nm pulsed dye laser remained on throughout this experiment, whereas the 532 nm 

CW laser was only on for 20 seconds. (Bottom): Photocurrent versus elapsed time for different CW 532 nm light 

powers. Photocurrent suppression by an order of magnitude is observed at the highest laser power. (Inset): 

Dependence of quenched photocurrent on CW 532 nm laser optical power. The near linear dependence suggests a one-

photon process. 

 

 

 

3.4 Discussion 

The nearly linear dependence of photocurrent quenching on CW laser power suggests 

a simple physical explanation: transitions from defect ground state to the conduction band 
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excited by a single photon provided by the CW laser, followed by electron falling into a 

trap state. In this scenario, the number of trapped electrons is linearly proportional to total 

number of incident CW laser photons until equilibrium is reached where the rate of 

optically induced trapping matches that of the intrinsic trap decay. In other words, the CW 

laser continuously depletes the defect’s ground state population, which is stored in the trap 

states. Thus, the optical quenching of the photocurrent is linear in the CW laser power 

until saturation is reached (more than 90% quenching based on our data).  

We suggest that photocurrent recovery from quenching may be due to multi-photon 

excitation of the electrons from the trap state with the pulsed laser light. The CW laser is 

not intense enough to excite significant numbers of electrons from the trap state at the 

same rate as the pulse laser.  

The photocurrent recovery process as a function of time after removing the CW 532 

nm light was fitted with a stretched exponential of the form (Kohlrausch function), 

𝐼(𝑡) = 𝐼0 (1 − 𝑒−(
𝑡

𝜏
)
𝛽

)                                        (3.1) 

, where I(t) is the time dependent photocurrent, t is the elapsed time since the moment 

when CW light was turned off , is the recovery time constant, and β  is a constant. The 

stretched exponential form as shown in Fig. 3-3 is consistent with the previous studies of 

transient photocurrent discharging and charging in diamond [80]. Stretched-exponential  
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Fig. 3-3 Photocurrent recovery fitted with stretch exponential. The photocurrent was measured with 585 nm pulsed 

laser excitation and a DC bias at 60 V. The integrated photocurrent is plotted as a function of elapsed time.  

 

 

 

fluorescence decay also occurs in some crystalline solids like porous silicon or CdSe-ZnSe 

[81]. Whether it is due to a time dependent decay rate or a superposition of several 

exponential decays is still unclear [82]. The fact that the stretched exponential form exists 

in many materials suggests a common property, related to the charge-trapping kinetics.  

The recovery time constant  is plotted as a function of the DC bias voltage in Fig. 

3-4(a) for two pulsed-laser excitation wavelengths: 532 nm and 585 nm. The recovery 

times at 60 V were 0.8 s and 5.84 s, respectively. At 630 nm, the recovery time takes 
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several hours. The recovery dynamics were found to obey the stretched exponential 

function with =0.3~0.9. In general, longer wavelength and smaller voltage results in 

higher . The photocurrent recovery time also depends on pulsed laser power, as shown 

in Fig. 3-4(b) for 532 nm light. The recovery time shortens with increasing pulsed-laser 

intensity implying that the pulsed laser depopulates the trap. However, even at high pulsed 

light power, the time dependence of photocurrent recovery still fits better to a stretched 

exponential function rather than a simple exponential function. 

 

 

 

 

 

 

 

 

 

 

Fig. 3-4 The characteristic recovery time vs DC bias voltage and pulsed laser power. (a): Fitted characteristic recovery 

time as a function of bias voltage for red and green pulsed lasers. Red: 585 nm laser, and green: 532 nm laser. (b): The 

characteristic recovery time vs pulsed laser power. 

 

 

 

In general, photocurrent density can be expressed as  

                                                         𝑗 = 𝑒𝑛𝜇𝑉/𝑑                                                   (3.2) 

(a) (b) 
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, where j is the current density, e is the unit charge, n is the carrier density, 𝜇 is the carrier 

mobility, and d is the sample thickness. In terms of the photon flux, the equation of 

photocurrent reads 

j = e𝜇τηφ(1 − R)α 𝑉/𝑑                                            (3.3) 

, where τ is the excitation life time, η the photon to electron quantum efficiency, φ the 

photon flux, R the reflectivity, and α the absorption coefficient. In this work, the 

photocurrent magnitude in diamond is found to be proportional to the bias voltage, as 

shown in Fig. 3-5. In addition, due to wavelength dependent optical absorption 

coefficient and surface reflectivity, the photocurrent magnitude depends strongly on 

excitation wavelength. On the other hand, we found that the photocurrent recovery time 

shortens non-linearly but monotonically with increasing bias voltage, suggesting that the 

higher photocurrent at higher bias voltage depopulates the electron traps faster. This is in 

contrast to previously reported diamond transient photocurrent decay [73][80] that is 

voltage independent. 

To exclude the possibility of thermal quenching of photocurrent due to heating 

induced by the CW laser, we varied the delay time between the CW laser turn-on and the 

pulsed laser turn-on. No correlation was found between delay time and recovery time, 

which rules out laser-heating effects. Another possible explanation of photocurrent 

quenching would be that the CW laser shortens the excited state lifetime analogous to 

what stronger irradiance does to metal enhanced fluorescence [83]. However this can be 

ruled out by the fact that the pulsed photocurrent time dependence (on the nanosecond 

time scale) does not change when the CW laser is applied.  
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Fig. 3-5 Photocurrent versus DC bias at different wavelengths. Color lines: cyan 630 nm, green 640 nm, red 650 nm, 

blue 660 nm, and black 670 nm. Linearity can be clearly seen on curve. In addition, the photocurrent-voltage slopes 

are wavelength dependent.  

 

 

 

In our conduction-band-trap model, we assume that substitutional nitrogen atoms are 

the electron donors. These are the the dominant defects in the type IIA diamond 

investigated here. For the trap, a system with an intermediate state must exist. This comes 

from an observation with laser pulses of two colors (red 630 nm and green 532 nm). When 

a red laser pulse is applied a few nanoseconds after the end of a green laser pulse at a bias 
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of 60 V, the recovery rate is 3.7 times faster than with green pulse excitation alone. 

However applying a red pulse alone gives a very slow recovery time of 92 minutes. This 

can be explained if the trap can only be populated to an intermediate state by green light, 

but from there it can be excited to the conduction band by red light. A schematic diagram 

of the proposed model is shown as Fig. 3-6. 

In summary, we studied the optical quenching and recovery of photocurrent in a bulk 

type IIA single-crystal diamond. A nearly linear dependence with a negative slope was 

observed between the quenched photocurrent and the CW laser power before saturation. 

Notably, the maximum quenching was as large as 90 %. The recovery time dependence 

on external bias voltage, light intensity, and wavelength were also investigated in this work. 

From these data we suggest a model wherein the nitrogen P1 center is being ionized by a 

single green photon, and the electron trap state can in turn be ionized by two or more 

photons. Furthermore, the observations are consistent with the trap having a metastable 

excited state that can only be populated by green excitation but which can then be ionized 

by absorption of red light.  
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Fig. 3-6 Schematics of proposed electronic trap model. 

 

 

 

Of future interest would be a detailed study of the quenching and recovery 

mechanism, and the exact level structure of the trap. Recently, photocurrent detection of 

magnetic resonance (PDMR) in the ground-state of the NV- centers was reported [84], 

however, with a large background of background unrelated to the NV- centers. We are 

currently investigating whether the quenching effect reported here may be used to increase 
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the contrast of PDMR, opening the way to practical applications of this detection 

technique. 
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CHAPTER IV 

PRECISE QUBIT CONTROL BEYOND  

THE ROTATING WAVE APPROXIMATION1 

 

4.1 Overview 

Ultrafast and accurate quantum operations are required in many modern scientific 

areas - like quantum information processing, quantum metrology and magnetometry. 

Optimal control theory provides tools to design such operations by finding the best way 

to transform the system from the initial to the desired state. These quantum gates are often 

realized as rectangular or Gaussian radio frequency pulses, but their accuracy is limited if 

the RF amplitude is comparable with the transition energy when the rotating wave 

approximation (RWA) breaks down. Here we report the theoretical design and 

experimental implementation of pulses, which do not suffer these limitations. We realized 

the most common used quantum gates - the Haddamard (π/2 pulse) and NOT (π pulse) 

gates with fidelities 𝐹
π/2

𝑒𝑥𝑝
= 0.95  and  𝐹

π

𝑒𝑥𝑝
= 0.99  , respectively, in an excellent 

agreement with the values expected from the theory. Moreover, we demonstrate that with 

                                                           
1Reprinted with permission from “Precise qubit control beyond the rotating wave approximation” by Jochen Scheuer, 

Xi Kong, Ressa S Said, Jeson Chen, Andrea Kurz, Luca Marseglia, Jiangfeng Du, Philip R Hemmer, Simone 

Montangero, Tommaso Calarco, Boris Naydenov and Fedor Jelezko, New Journal of Physics 16, 093022 (2014). 

Copyright 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft 
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these pulses magnetic resonance experiments are possible also beyond the RWA. Since 

our method is general, we believe that it could find a wide application in quantum 

computing, quantum optics and broadband magnetometry. 

Strong driving of spins allows to increase the number of qubit operations before 

detrimental effects of decoherence take place, and it may further increase the badnwidth 

of spin based magnetometers. For the implementation of the new pulses we used the 

electron spin associated with a single Nitrogen-Vacancy (NV) center in diamond, due to 

its remarkable properties: the optical spin initialization and readout at room temperature, 

coherent spin control via microwaves (MW), and the milliseconds coherence time [85][86]. 

This system is very promising as a nano-scale high ultrasensitive magnetometer 

[51][87][88] and solid state qubit [89][90]. Strongly driven dynamics of the NV has been 

already observed using conventional pulses on resonance [91] achieving nanosecond spin 

flips and a possibility for improvement has been proposed [92]. 

Here we demonstrate a precisely controlled strong single electron spin rotations using 

numerically optimized microwave fields. We realize the two most important single spin 

gates, without necessarily resorting to the standard RWA condition. Moreover, the 

rotations performed are faster than that of the Rabi oscillation while using the same MW 

amplitude. To achieve this we employ a practical optimal control method, namely chopped 

random-basis (CRAB) quantum optimization algorithm [93][94]. The CRAB~algorithm 

numerically designs and optimizes the microwave controls. In contrast to the previous 

proposed iterative method for robust fast entanglement generation using weak control 
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fields in diamond [95], our current algorithm uses a simple derivative-free direct search 

method to perform a multivariable function optimization [94], and hence offers more 

computational flexibility such as parallel numerical optimizations. 

4.2 Experiment methods 

The NV consists of a substitutional nitrogen atom and an adjacent vacancy with a 

triplet ground state (S=1) and a strong optical transition, where single centers can be 

addressed. Moreover, its fluorescence depends on the electron spin state, allowing to 

perform coherent single spin control [96][97]. The ground state Hamiltonian in the 

presence of MW control Г
𝑥
(𝑡), can be written as: 

𝐻̂

h
= D𝑆̂𝑧

2 + 𝜔𝑧𝑆̂𝑧 + √2Г
𝑥
(𝑡)𝑆̂𝑥                 (4.1) 

, where D ≈ 2.87 GHz is the NV's electron zero-field splitting (ZFS), and 𝜔𝑧 is Zeeman 

splitting due to a constant magnetic field 𝐵𝑧 [92]. It is important to mention here that the 

Hamiltonian is necessarily written in the lab frame since the control amplitude is 

comparable to the Larmor frequency of the spin, i.e. {|Г
𝑥
(𝑡)|}~𝜔𝐿 ( where 𝜔𝐿 = 𝐷 −

𝜔𝑧), and hence the counter-propagating term of the control can not be neglected [91]. To 

fulfill this condition and to work with the approximated two-level spin system of |𝑚𝑠 = 0⟩ 

and |𝑚𝑠 = −1⟩ , we apply a magnetic field 𝐵𝑧 = 1017.3 𝐺  (101.73 mT) and set the 

working transition frequency to 𝜔𝐿 = 30 MHz, see also Fig. 4-1 (a). 

We first perform Rabi oscillations at different MW amplitudes and observed the spin 
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dynamics, Fig. 4-1(c). When the driving field Ω < 𝜔𝐿/2, the system is in the RWA regime 

and nice harmonic signal is obtained  (Fig. 4-1(c), lower right inset). However, if Ω >

𝜔𝐿/2 then the signal is anharmonic as shown in (Fig. 4-1(c), upper left inset) and precise 

control over the spin rotations is difficult [91]. 

To perform a desired spin rotation which follows the Schrӧdinger equation, 

𝑑

𝑑𝑡
|𝜓(𝑡) > =  −i𝐻̂|𝜓(𝑡) > (assuming =1), we optimally engineer the control Г

𝑥
(𝑡) , such 

that at the final time T, the state fidelity between the final spin state |𝜓(𝑡) > and the target  

|𝜓𝑇 > is maximized. The fidelity F is defined as [98]: 

F = √⟨𝜓𝑡𝑎𝑟𝑔𝑒𝑡|𝜌𝐶𝑅𝐴𝐵|𝜓𝑡𝑎𝑟𝑔𝑒𝑡⟩                                                (4-2) 

with 𝜓𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜌𝐶𝑅𝐴𝐵 being respectively the target and the expected after the CRAB 

pulse state. 

Our method designs the control Г
𝑥
(𝑡)by correcting an initial guess Г

0
(𝑡) with an 

optimized continuous function g(t), following Г
𝑥
(𝑡) = Г

0
(𝑡)𝑔(𝑡) [93, 94]. In this work 

we use a constant initial guessГ
0
= 1. The correcting function g(t) can be expanded into 

a Fourier-like basis,  

g(t) =
1

2𝑁𝜆
∑ {𝑁

𝑛=1 𝑎𝑛 sin(𝜔𝑛𝑡) + 𝑏𝑛 cos(𝜔𝑛𝑡)}                           (4-3) 

, where N denotes a number of frequencies. We note here that the range of frequencies  



 

79 
 

 (𝜔1, 𝜔𝑛) directly corresponds to the real bandwidth of the apparatuses limited by the 

MW amplifier. The additional function 𝜆(𝑡) is used to force the control boundary such 

that Г
𝑥
(𝑡) = 0 for t = 0. We choose the bounding function 𝜆(𝑡) = ℎ𝑝/(ℎ𝑝 − (𝑡 − ℎ)𝑝) 

, where h=T/2. Using this function we can vary the rising and falling times of the MW 

control by adjusting the even-numbered parameter p qualitatively. A direct search simplex 

algorithm (Nelder-Mead) is then applied to find the set of CRAB parameters  

{𝑎𝑛, 𝑏𝑛,  𝜔𝑛} which minimizes a figure of merit, F = 1 − f + 𝑐𝑓𝑚𝑎𝑥{|Г𝑥(𝑡)|} 

, where f = |⟨𝜓(𝑡)|𝜓𝑇⟩|
2 . We incorporate a quantity  𝑐𝑓 to limit the control amplitude 

during optimization.  

The numerical optimization is initiated by setting some parameters obtained from the 

experimental preparations and apparatus calibrations: the measured Larmor transition 𝜔𝐿, 

the maximum control amplitude {|Г
𝑥
(𝑡)|} = Ω , and the CRAB frequency range. We fix 

the control time (the same as the desired rotation time) to be faster than the extrapolated 

rotation time if the RWA would be valid, e.g. for the spin π-rotation we haveT < 1/2Ω−1, 

where Ω is the extrapolated Rabi frequency (see Fig. 4-1(c)). However, the π-rotation time 

can not be faster than the optimal time of the theoretical bang-bang control, 𝑇𝜋
𝐵𝑎𝑛𝑔

=

𝜋/√(𝜋𝜔𝐿)2 + (2𝜋Ω)2 [99].  
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Fig. 4-1 NV energy levels diagrams, pulse sequence for state tomography, and Rabi frequency versus MW amplitude.  

(a) Energy of the |𝑚𝑠⟩ state of the NV center as function of the applied static magnetic field 𝐵0. 𝜔𝐿~ MHz is the 

frequency of the transition we used in our experiments. (b) Schematic representation of the pulse sequences for the 

density matrix tomography. At beginning and at the end we always apply a laser pulse to polarize the NV in |𝑚𝑠 = 0⟩ 
and then to read out the state of the electron spin. Experimental implementation of CRAB π (a) and π/2 (b) pulses. The 

tomography is performed by applying π/2 pulses along the x and y axis of the rotating frame. (c) Rabi frequency as a 

function of the MW amplitude. The markers denote the region where harmonic behavior is observed as shown in the 

lower left inset. The line is a linear fit, its dashed part shows the region where the spin dynamics is anharmonic (upper 

right inset).              

 

  



 

81 
 

To obtain the optimized pulse for one target rotation, we do the following steps: 

(1) Perform the parallel simplex search algorithm with an S number of random initial 

values of the CRAB parameters for j small positive real numbers of {𝑐𝑓
𝑗
} , and k positive 

small integers {Nk}, typically {𝑐𝑓
𝑗
} ∈ (0.01, 0.5), and {Nk} ∈ (3, 7). 

(2) Obtain from step 1, (S × j × k) sets of CRAB parameters, than construct (S × j × k) 

numbers of control pulses {Γx (t)}. 

(3) Investigate the numerical values of F and max {|Γx (t)|} for each pulse, and pick the 

best one out of (S × j × k) pulses which satisfies F ⩽ 𝑘𝑓  and max {|Γx (t)|} ⩽𝑘𝛤. The 

preset quantities 𝑘𝑓   and 𝑘𝛤  are the numerical infidelity and the maximum control 

amplitude, respectively. If the best pulse can not be obtained, return to step 1 with different 

values of {𝑐𝑓
𝑗
} and increase {Nk}. 

For one target state rotation, we run the Nelder-Mead simplex search algorithm in 

parallel for few randomized initial values of the CRAB parameters {𝑎𝑛, 𝑏𝑛,  𝜔𝑛}, and 

adaptively change the limiting quantity 𝑐𝑓 at a fixed value of N until we find the best 

parameters, hence obtaining the numerically optimized control. The typical computational 

time required to meet the experimentally acceptable fidelity is approximately less than 30 

min. This allows one to perform a single optimization run in just a decent commercial 

personal computer. Hence, it is feasible in the future to apply our numerical CRAB 

optimization in standard close-loop control system involving directly the control 

apparatuses. For both cases of π-rotation and π 2-rotation we set the parameters as the 

following: N = 5, S = 30, ωL = g0 = max {|Γx (t)|} = 30 MHz, and ωn ∈ (10, 100) MHz. We 
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present the best obtained CRAB parameters for each rotation in Table. 4-1. 

 

 

 

Table. 4-1 The optimal CRAB parameters obtained via the Nelder–Mead simplex algorithm for π- and π 2-rotations.  

π-rotation π/2-rotation 

T = 15.4071 ns, p = 60, cf = 0.35 T = 7.7036 ns, p = 38, cf = 0.23 

an bn ωn (GHz) an bn ωn (GHz) 

a1 = −

5.4865 

a2 = 2.4803 

a3 = −

0.5404 

a4 = 1.5659 

a5 = 1.4673 

b1 = 0.2812 

b2 = 1.8823 

b3 = 5.8533 

b4 = -2.212 

b5 = 3.6469 

ω1 = 0.0201 

ω2 = 0.0415 

ω3 = 0.0513 

ω4 = 0.0687 

ω5 = 0.0892 

a1 = 2.1123 

a2=−5.5973 

a3=−9.7577 

a4= 26.346 

a5=−10.421 

b1 = 9.6205 

b2=−28.736 

b3=−3.9425 

b4 = 5.4267 

b5 = 7.2445 

ω1 = 0.0149 

ω2 = 0.0401 

ω3 = 0.0464 

ω4 = 0.0664 

ω5 = 0.0909 

 

 

 

Here we used CRAB controls to implement the two most important single-qubit 

rotations - flipping the qubit (NOT-gate, 𝜋 pulse) and creating superposition between the 

qubit states (Hadamard gate, 𝜋/2). The experimental realization of these rotations is 

shown schematically in Fig. 4-1(b). Since the spin system has to be treated in the lab frame, 

its dynamics is more complicated. Fig. 4-2 shows the calculated trajectory of the spin 

movement during the CRAB-𝜋 pulse. 

In order to determine the fidelity of the final state in respect to the target state we 
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performed a state tomography. For this purpose we evaluated all three components of the 

Bloch vector. The z-component is measured directly from the fluorescence level. The x- 

and y-components have to be projected into the measurable z-component.  

 

 

 

 

Fig. 4-2 The spin magnetization trajectory after application of the CRAB pulse. (left) The trajectory of the spin 

magnetization (blue curve) during the application of the CRAB π pulse. The initials state is |𝑚𝑠 = 0⟩ (red dashed 

arrow) and the target state is |𝑚𝑠 = −1⟩ (red solid arrow). The points have been calculated using the Schrӧdinger 

equation. (right) After the CRAB π/2 the spin magnetization lays in the xy plane of the lab frame, parallel to the x 

axis. Then it rotates around the z with an angular velocity 𝜔𝐿 (Larmor frequency), acquiring a phase φ = 𝑒−𝑖𝜔𝐿𝑡. 
 

 

 

This is done by applying a MW with different phases and measure Rabi oscillations 

or in other words: rotate the Bloch vector around the x axis to determine the y-component 

and vice versa, as shown in Fig. 4-3. The density matrix of a single qubit can be written  
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Fig. 4-3 State tomography. (a) The state is characterized by performing Rabi oscillations by rotating the spin around 

the x- and y-axis. The z-component can be observed by measurement without application of a microwave. With the 

amplitude and the z-component the x- and y-component can be calculated simply using the Pythagorean theorem. (b) 

Measurement data of the state tomography after the CRAB-π 2-pulse. 

 

 

 

as 

ρ =
1

2
(
1 + 𝑧 𝑥 + 𝑖𝑦
𝑥 − 𝑖𝑦 1 − 𝑧

)                                                 (4.4) 

In this definition, x, y and z have values between −1 and 1. The first point of the 
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measurements Rabix (1) and Rabiy (1), where no MW was applied, can be understood 

 

as the z-component. The three components of the Bloch vector are calculated following 

z = Rabi𝑥(1) + Rabi𝑦(1) − 1                                       (4.5) 

y = √(2𝐴𝑚𝑝𝑦)2 − 𝑧2                                               (4.6) 

x = √(2𝐴𝑚𝑝𝑥)2 − 𝑧2                                                (4.7) 

where x, y and z are the three components of the Bloch vector and Ampx,y are the 

amplitudes of the Rabi oscillations rotating around the y, x-axis respectively. In formula 

(4.6) and (4.7), values for x and y were set to 0 if the uncertainty was greater than the 

actual value. Another possibility to obtain the x- and y-component is to calculate Rabix 

(π/2) and Rabiy (π/2) respectively. 

To normalize the data we performed an additional, bare Rabi measurement. The 

normalization is done by Rabix (1) = (rawdata(1) − (y0 − A)) 2A, where A is the amplitude 

and y0 is the offset of the normalization measurement. In order to calculate the fidelity 

between the experimental state ρ and the target state |Ψ〉 the definition for pure states is 

used: F = √⟨𝛹|ρ|𝛹⟩  which in this case is equivalent to the general definition F =

tr √√𝜎𝜌√𝜎 [98]. 

Due to experimental limitations we had to wait for 100 ns between the CRAB-pulse 

and the Rabi measurement, hence the target state after the time evolution on the x, y plane 

becomes 

 |𝛹(𝑡) = 𝑒−
𝑖

2
𝜎𝑧𝜔𝐿𝑡|𝛹(0)                                                    (4.8) 
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with the Pauli matrix σz and the Larmor frequency ωL.  

For the error calculation of the fidelity, the noise of the Poisson distributed photon 

collection and fitting errors were taken into account. The error was determined by using 

the general law of error propagation [100]: 

∆F = ∑ (
𝜕𝐹

𝜕𝑓𝑘
)
2

𝑣𝑎𝑟(𝑓𝑘) + 2∑ ∑ (
𝜕𝐹

𝜕𝑓𝑙
)𝑁

𝑚=𝑙+1
𝑁−1
𝑙=1

𝑁
𝑘=1 (

𝜕𝐹

𝜕𝑓𝑚
) 𝑐𝑜𝑣𝑎𝑟(𝑓𝑙, 𝑓𝑚 )           (4.9) 

The pulses optimized by the CRAB algorithm is a superposition of ten periodic 

functions. In the experiment, these pulses are synthesized directly by an arbitrary 

waveform generator (AWG, Tektronix AWG7122C) with a sampling rate of 24 GS s−1 

and then sent to an amplifier (Mini-Circuits, ZHL-42W-SMA).  

The pulse shapes measured via an oscilloscope (Tektronix, TDS6804B) are displayed 

in Fig. 4-4. Optical measurements were obtained via a self-made confocal microscope, the 

AWG triggered both the acousto-optic modulator for laser pulse control and the photon-

count card (FastComtec P7887). 

4.3 Results and discussion 

We performed a density matrix tomography in order to determine the quality of the 

optimized pulses. The two off-diagonal elements have been measured by applying a 𝜋/2 

along the x and y axis of the rotating frame, followed by a laser pulse for read out (see 

also Fig. 4-2, right). For the diagonal elements the MW pulses have been omitted. After 

the CRAB- 𝜋  pulse theoretically expected and the experimentally measured density 

matrices are: 
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ρ𝑡ℎ𝑒𝑜𝑟𝑦
𝜋 = (

0 0
0 1

) , ρ𝑒𝑥𝑝
𝜋 = (

0.01 0.04 − 0.04𝑖
0.04 − 0.04𝑖 0.99

)               (4.10) 

After the 𝜋/2 pulse we expect: 

 

 

 

 

Fig. 4-4 Pulse shapes. (a) Oscilloscope measurement of the signal after the diamond sample with the standard sinusoidal 

microwave after 100 ns delay to measure Rabi oscillations for the state tomography. (b) CRAB-π pulse (blue) in 

comparison to numerical pulse (red). (c) CRAB-π/2 pulse (blue) in comparison to numerical pulse (red). 
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ρ𝑡ℎ𝑒𝑜𝑟𝑦
𝜋/2

= (
0.5 0.5
0.5 0.5

)                                                      (4.11) 

This is the state of the system directly after the MW pulses. However, due to technical 

limitations the measurement can be performed only after some time t𝑒𝑣𝑜𝑙 = 100  ns. 

During this time the spin rotates in the xy plane in the lab frame and acquires a phase  

φ = 𝑒−𝑖𝜔𝐿𝑡 (see Fig. 4-2, right). The density matrix after t𝑒𝑣𝑜𝑙 is then: 

ρ𝑡ℎ𝑒𝑜𝑟𝑦
𝜋/2

= (
0.5 0.06 − 0.5𝑖

0.06 + 0.5𝑖 0.5
)                              (4.12) 

From the tomography we obtain: 

 ρ𝑒𝑥𝑝
𝜋/2

= (
0.43 0.08 − 0.43𝑖

0.08 + 0.43𝑖 0.58
)                          (4.13) 

The expected fidelities of the CRAB pulses are F𝑡ℎ𝑒𝑜𝑟𝑦
𝜋 = 0.9986 and F𝑡ℎ𝑒𝑜𝑟𝑦

𝜋/2
= 0.9545, 

whilst from the experiment we obtain F𝑒𝑥𝑝
𝜋 = 0.993 andF𝑒𝑥𝑝

𝜋/2
= 0.959. All these values 

are calculated using eq. 2 with respect to the corresponding target state. We find an 

excellent agreement betweeen the theoretical prediction and the experimental result. The 

discrepancy between the two can be explained by deviation from the ideal pulse shape due 

to the limited bandwidth of the MW amplifier. 

The pulses we have developed in this study are important not only for quantum 

information processing, but also for most of the pulsed Nuclear Magnetic Resonance 

(NMR) and Electron Spin Resonance (ESR). Although they were not specifically 

developed as gates, but just to transfer the spin from |𝑚𝑠 = 0 > to some desired state. 
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Nevertheless they are very robust and can be used for magnetic resonance as we show 

below. One of the most important NMR (and ESR) pulse sequence consists of a single 

𝜋/2 pulse, where the spin magnetization is rotated from the z-axis to the xy plane in the 

rotating frame. The spins then precess and can be detected by the NMR detector resulting 

in the Free Induction Decay (FID).  

The Fourier transform of the latter provides the spectrum of the sample [101][102]. 

Since we drive the electron spin very fast (Ω = 𝜔𝐿), we can performed this experiment 

both in the lab and in the rotating frame. All sequences begin with a laser pulse. In the first 

experiment (Fig. 4-5 top) we start with a CRAB 𝜋/2, which rotates the spin magnetization 

around the x axis of the lab frame. After a free evolution time τ we apply another CRAB 

𝜋/2 pulse to rotate the spin back to the z axis and we then read out optically the spin state. 

The signal oscillates with the Larmor Frequency 𝜔𝐿 (see also Fig. 4-2, right). The next 

experiments are the same, but the second pulse has much lower amplitude and the system 

is effectively in the rotating frame. If the phase of the MW is φ = 0, the phase acquired 

during the free evolution period τ increases and the signal again oscillates with 𝜔𝐿 (Fig. 

4-5 bottom, blue curve). However, if the phase of the second pulse is φ = 𝑒𝑖𝜔𝐿𝑡, than the 

phase increment is compensated and it "follows" the spin in the xy plane. In this case the 

observed FID (Fig. 4-5 bottom, black markers) is identical with the one measured in the 

rotating frame. Thus we can on demand "switch" between the lab and rotating frames.      
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Fig. 4-5 Free induction decays - experimental data. (top) FID measured by using two CRAB π/2  pulses. The inset shows 

the first 160 ns of the signal (markers) and a the calculated fidelity with respect the  |𝑚𝑠 = 0⟩ state. (bottom) FID 

measured by using a CRAB π/2 pulse and a low power pulse with fixed phase (blue curve) and increased phase (markers) 

for each point (see text for more details). The lower frequency component ~2 MHz is probably due to coupling to a 

distant 13C nuclear spin. 
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Another important method in the magnetic resonance is the Hahn echo [103], which 

has found a wide application in ERS and NMR. It is the basis of all dynamical decoupling 

techniques and has been recently implemented for AC magnetometry [51,86]. The Hahn 

echo pulse sequence is depicted in figure 4a. The CRAB-𝜋/2 pulse rotates the initial 

magnetization in the xy plane, where it evolve for a time τ0 when a CRAB-𝜋 pulse is 

applied. After a time τ the spin state is transformed to the z axis by a CRAB-𝜋/2, where 

it is read out by a laser pulse. In this experiment all static inhomogeneous shifts (and 

fluctuation on the time scale of the coherence time T2 ) are effectively canceled out. 

Usually it is performed in the rotating frame using rectangular (sometimes Gaussian) 

pulses, but here, due to the large MW amplitude, we work in the lab frame. The spin signal 

oscillates with the Larmor frequency of the NV transition (in this case 𝜔𝐿 = 120 MHz) is 

shown in Fig. 4-6(b). The envelope of the echo corresponds to the echo measured in the 

rotating frame at same magnetic field. 

In summary, we have developed a novel method for precise spin qubit rotations in 

the ultrafast driving regime where the standard pulses are not applicable. We designed our 

qubit gates by using the quantum optimization algorithm CRAB and find an excellent 

agreement with the experimental implementation. Moreover, we demonstrate that it is 

possible to perform the basic magnetic resonance experiments in this conditions, where 

the rotating frame approximation breaks down. To our knowledge, this is the first 

demonstration of magnetic resonance in the laboratory frame. Our results reported here 

could find a wide application for quantum computation and broadband magnetometry. 
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Fig. 4-6 The Hahn echo experiments. (a) The pulse sequence for the Hahn echo. (b) Parts of the Hahn echo of a single 

NV in the lab frame (blue curves). This signal oscillates with the Larmor frequency (𝜔𝐿 = 120 MHz here), as shown in 

the three insets. 
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CHAPTER V 

CONCLUSION  

 

With the ability to optically detect the electric field, magnetic field, strain force, and 

temperature, the NV centers in diamonds are the choice for all-purpose detectors. In 

addition, various kinds of super resolution imaging has been implemented with 

nanodiamonds. Furthermore, a diamond as a candidate for next generation quantum 

computer has showed great potential. Therefore, the characterization and detailed study of 

diamonds becomes a priority in science.  In this dissertation, quantum engineering in 

diamond, yield optimization of bulk and nano-sized diamonds, study of the trapped 

electronic structure, and fast qubit control are discussed in detail.  

For optimization of the NV centers yield, maximum production recipe of the NV 

centers in bulk diamonds are found by both experiments and simulation:  implantation at 

a dose of 10 N/nm2 and annealing temperature beyond 850°C would give the maximum 

yield. For best magnetic sensitivity, the optimum dose of nitrogen implantation is found 

to be 0.4 N/nm2 with anneal temperature beyond 1000°C. It can also be concluded that 

hot irradiation/implantation at temperature above 1000°C should lead to better magnetic 

sensitivity than room temperature irradiation/implantation followed by 1000°C annealing. 

In addition, the enhancement of optical performance and size reduction of the NV centers 

in nanocrystals via air oxidation at 600°C is demonstrated.  
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For diamond electron-trap characterization, we studied the optical quenching and 

recovery of photocurrent in a bulk type IIA single-crystal diamond. We found that the 

pulsed laser excited photocurrent shows optical quenching of photocurrent up to 90% 

when a CW laser is applied. In addition, the quenched photocurrent recovers after 

removing the CW laser and the photocurrent-time recovery curve fits to a stretched 

exponential curve. The recovery characteristic time depends on external bias voltage, the 

CW light intensity, and the wavelength. From these data we propose a model to explain 

the photocurrent quenching phenomena that a pulsed laser excites both the P1 centers and 

the trap, whereas the CW laser only pumps the P1 centers to the trap. The study of the 

optical quenching of photocurrent provides valuable information about the charge-trap 

mechanism in diamonds. 

For precise and fast spin control, we have designed a novel method for precise spin 

qubit rotations in the strong driving regime where the standard pulses are not applicable. 

We report an experimental implementation of a control method based on quantum optimal 

control theory which does not suffer from such restriction. We demonstrate the most 

commonly used single qubit rotations, i.e.π 2- and π-pulses, beyond the RWA regime with 

high fidelity 𝐹
π/2

𝑒𝑥𝑝
= 0.95  and  𝐹

π

𝑒𝑥𝑝
= 0.99 , respectively. They are in excellent 

agreement with the theoretical prediction. Furthermore, we perform two basic magnetic 

resonance experiments both in the rotating and the laboratory frames, where we are able 

to deliberately ‘switch’ between the frames, to confirm the robustness of our control 
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method. Our method is general, hence it may immediately find its wide applications in 

magnetic resonance, quantum computing, quantum optics, and broadband magnetometry. 

In summary, these approaches promise to significantly speed up the development of 

diamond application such as quantum imaging, bio-sensing, photoelectric, and quantum 

computation which makes diamonds the most interesting candidate for quantum 

engineering. 
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