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ABSTRACT

This work explores the interplay of C∗-dynamics andK-theory. More precisely, we

study the extent to which various forms of finite-dimensional approximation proper-

ties of a topological nature, witnessed in reduced C∗-crossed products, are reflections

of approximation conditions at the level of the dynamics. Such conditions admit

purely algebraic K-theoretical interpretations that we describe and utilize to prove

deep structural results.

We introduce the notions of Matricial Field (MF) and Residually Finite Dimen-

sional (RFD) actions of a discrete group Γ on an arbitrary C∗-algebra A. These

actions have spatial interpretations in the case where the algebra A = C(X) is com-

mutative; these are described. We show that a reduced crossed product AoλΓ is MF

(RFD) if and only if the reduced group C∗-algebra C∗λ(Γ) is MF (RFD), and the ac-

tion is MF (RFD). Examples include the limit periodic actions defined by Voiculescu

and, in the classical case, the chain recurrent Z-systems of Pimsner. In the presence

of sufficiently many projections MF and RFD actions can be expressed by elegant,

simple, K-theoretic conditions.

We then focus on actions of free groups on AF-algebras, in which case we prove

that a K-theoretic coboundary condition determines whether or not the reduced

crossed product is a Matricial Field (MF) algebra. One upshot is the equivalence of

stable finiteness and being MF for these reduced crossed product algebras. We also

exhibit crossed product algebras for which the Ext semigroup is not a group; indeed

any action of a free group on a UHF algebra gives rise to an MF crossed product

whose Ext semigroup is not a group.

Minimal C∗-systems (A,Γ) are described by certain filling conditions witnessed
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at the level of the induced actions of Γ on K0(A) and on the Cuntz semigroup W (A).

A notion of topological transitivity is defined for noncommutative systems again in

terms of the induced action on K-theory. We prove that prime reduced crossed prod-

ucts come from topological transitive actions and, conversely, topologically transitive

and properly outer systems yield prime reduced crossed products.

In the presence of sufficiently many projections we associate to each noncommu-

tative C∗-system (A,Γ, α) a type semigroup S(A,Γ, α) which reflects much of the

spirit of the underlying action. We characterize purely infinite, as well as stably

finite, crossed products by means of the infinite or rather finite nature of this semi-

group. Using ideas of paradoxical decompositions we obtain, for a certain class of

simple crossed products, a dichotomy between the stably finite and purely infinite.
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1. INTRODUCTION AND PRELIMINARIES

Operator algebras is a rich and diverse field that bridges several disciplines in

mathematics. It distinctively blends ideas from functional and harmonic analysis,

noncommutative geometry, topology, group theory and dynamics. Initiated in the

1930’s and 1940’s in a series of papers by Murray and Von Neumann, the theory of

operator algebras is broad, interacting with almost every area of mathematics and

admitting applications in areas such as mathematical physics, quantum mechanics

and the development of quantum field theory. While the treatise of von Neumann

algebras progressed and presented with substantial achievements, most notably the

great classification theorems of Alain Connes, George Elliott initiated a far reaching

program of classifying separable nuclear C∗-algebras by their K-theoretic data. As

the study of C∗-algebras is appropriately termed noncommutative topology in light

of Gelfand’s theory, this work lies in the framework of noncommutative topologi-

cal dynamics. More precisely, using classification and K-theoretic techniques, we

establish several structure theorems for C∗-algebras arising from crossed products.

Dynamical systems and the theory of operator algebras are inextricably related [7],

[27], [36]. Topological dynamics has long played a significant role in the study and

classification of amenable C∗-algebras by providing a wealth of examples that fall

under the umbrella of Elliott’s classification program as well as examples that lack

certain regularity properties [51], [52], [20], [18]. In his recent survey article on oper-

ator algebra structure theory [7], Blackadar rightly speaks of the “algebraization of

dynamics”. The crossed product construction permits the exploitation of symmetry

through the acting group and is generous enough to produce a variety of C∗-algebraic

phenomena [36],[54]. Indeed, the dynamics provide a tool for the coordinatization of
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algebraic structure. One would like to decipher information about the the crossed

product algebra by studying the dynamics and, conversely, describe the nature of

the dynamics by looking at the operator algebra’s structure and invariants. The

transition from classical dynamics to noncommutative topological dynamics presents

several challenges and subtleties. One way to approach these issues (which has been

very fruitful in my work) is to interpret dynamical conditions K-theoretically and

use classification techniques to uncover pertinent information.

1.1 Finite-Dimensional Approximation Properties

Unless otherwise specified, we make the blanket assumption that all C∗-algebras

A will be considered separable and with unit 1A, and all groups Γ will be discrete.

We will frequently encounter the free group Fr on r generators. If A and B are

C∗-algebras we will write A � B for the ∗-algebraic tensor product, and A ⊗ B for

the minimal (spatial) tensor product. Let’s recall a few definitions.

A C∗-algebra C is said to be exact provided that the functor − ⊗ C is exact.

More precisely, C is exact provided that for every exact sequence of C∗-algebras

0 // J
ϕ // A

ψ // B // 0

the sequence

0 // J ⊗ C ϕ⊗idC// A⊗ C ψ⊗idC// B ⊗ C // 0

is also exact.

In 1997 Blackadar and Kirchberg introduced in [8] the so called matricial field

(MF) algebras. A separable C∗-algebra A is said to be MF if it can be expressed as a

generalized inductive system of finite-dimensional algebras, or equivalently, if there
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is a natural sequence n = (nk)k≥1 and a ∗-monomorphism

ι : A ↪→ Qn :=
∞∏
k=1

Mnk

/ ∞⊕
k=1

Mnk .

Denote by π :
∏∞

k=1Mnk → Qn the canonical quotient mapping. If such an em-

bedding ι exists along with a u.c.p. lift, that is, a unital completely positive map

Φ : A →
∏∞

k=1Mnk such that π ◦ Φ = ι, A is said to be quasidiagonal. A good

treatise on QD algebras can be found in [11]. It is readily seen that an algebra A

is MF (QD) if it satisfies the following local property: for every ε > 0 and finite set

Ω ⊂ A, there is a k and ∗-linear (u.c.p.) map ψ : A→Mk such that

‖ψ(ab)− ψ(a)ψ(b)‖ < ε ∀a, b ∈ Ω,∣∣‖ψ(a)‖ − ‖a‖
∣∣ < ε ∀a ∈ Ω.

Recall that a separable algebra A is said to be residually finite dimensional (RFD)

if there is a sequence of ∗-homomorphisms ψn : A → Mkn with ‖ψn(a)‖ ↗ ‖a‖ for

all a ∈ A. Clearly being MF, QD or RFD passes to C∗-subalgebras, RFD algebras

are QD, and QD algebras are MF. Moreover, MF algebras are stably finite. To see

this, suppose (ak)k≥1 ∈
∏∞

k=1Mnk is a sequence with

1Qn = π((ak)k)
∗π((ak)k) = π((a∗kak)k),

it follows then that ‖a∗kak − 1Mnk‖ → 0. A little spectral theory shows that ‖aka∗k −

1Mnk‖ → 0, so that π((ak))π((ak))
∗ = 1Qn thus Qn is finite and hence A, being

isomorphic to a unital subalgebra of Qn, is also finite. Since Mn(A) is also MF, A is

stably finite. It is still unknown whether or not stably finite algebras are MF, or if
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there is a countable discrete group Γ for which C∗λ(Γ) fails to be MF.

There are several notions of ‘rank’ in the C∗-literature which are meant to reflect

notions of ‘dimension’ in topology. In this piece we shall only need real rank and

stable rank. Write GL(A) for the set of invertibles in A, and Asa for the set of

self-adjoint elements. The C∗-algebra A is of stable rank one, written sr(A) = 1,

if GL(A) ⊂ A is norm-dense, and A is of real rank zero, written RR(A) = 0, if

GL(A) ∩ Asa ⊂ Asa is norm-dense. Algebras of real rank zero have an abundance of

projections, indeed, one proves that A has real rank zero if and only if every element

of the algebra can be approximated by a linear span of finitely many projections. In

this case we say that the projections are total in A.

1.2 Dynamical Systems and Discrete C*-Crossed Products

Group actions pervade mathematics and much of this piece. Recall that a group

action is simply a group homomorphism h : Γ → Perm(E) from a group Γ to the

group of permutations on an arbitrary set E. At times, for economy, we write Γ y E

to denote the action and hs(x) = s.x for s ∈ Γ and x ∈ X. When E has additional

structure, e.g. when E = X is a topological space, E = A a C∗-algebra or E =

(G,G+, u) an ordered abelian group, one imposes extra conditions on the action so

that it respects the prescribed category. More precisely, by a continuous action Γ y

X, or equivalently a transformation group (X,Γ), we mean a group homomorphism

h : Γ → Homeo(X) where Homeo(X) denotes the group of homeomorphisms of a

locally compact Hausdorff space X. In an operator algebraic framework one speaks

of a C*-dynamical system (A,Γ, α), where A is a C∗-algebra, Γ a topological group

and α : Γ→ Aut(A) a continuous group homomorphism into Aut(A); the topological

group of automorphisms ofA with the point-norm topology. Again we emphasize that

since Γ is discrete, we need not worry about the continuity of α. In the case where A
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is a commutative algebra, say A = C0(X) for some locally compact Hausdorff space

X, C∗-systems (C0(X),Γ, α) are in one-to-one correspondence with transformation

groups (X,Γ) via the formula αs(f)(x) = f(s−1.x) where s ∈ Γ, f ∈ C0(X), x ∈ X.

Given a C∗-dynamical system (A,Γ, α), we write AoαΓ to denote the full crossed

product C∗-algebra whereas A oλ,α Γ will stand for the reduced algebra (at times

we will omit the α). We briefly recall their construction and refer the reader to [12],

[54] and [36] for more details. First consider the algebraic crossed product Aoalg,α Γ

which is the complex linear space of all finitely supported functions

Cc(Γ, A) = {
∑
s∈F

asus : F ⊂ Γ, as ∈ A},

equipped with a twisted multiplication and involution: for s, t ∈ Γ, a, b ∈ A

(aus)(but) = aαs(b)ust,

(aus)
∗ = αs−1(a∗)us−1 .

If A ⊂ B(H) is faithfully represented (the choice of representation is immaterial),

the ∗-algebra Aoalg,α Γ can then be faithfully represented as operators on H⊗ `2(Γ)

via

aus(ξ ⊗ δt) = α−1
st (a)ξ ⊗ δst ξ ∈ H, s, t ∈ Γ.

Completing with respect to the operator norm on B(H ⊗ `2(Γ)) gives the reduced

crossed product Aoλ,αΓ. To realize the full crossed product, for each x ∈ Aoalg,αΓ,

consider

‖x‖u = sup ‖π(x)‖B(H)
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where the supremum runs through all ∗-representations π : Aoalg,αΓ→ B(H). Then

Aoα Γ := Aoalg,α Γ−‖·‖u .

If Γ is an amenable group then we have A oα Γ = A oλ,α Γ. Furthermore, if Γ is

amenable and A is nuclear then Aoλ,α Γ is nuclear as well.

We will at times make use of the conditional expectation E : Aoλ,αΓ→ A, which

is a unital, contractive, completely positive map satisfying E(
∑

s∈Γ asus) = ae.

1.3 K-Theretical Dynamics and Finiteness

This work is K-theoretic in flavor; the reader may want to consult [6] for a

suitable treatment thereof, as well as [2] for the necessary results concerning the

Cuntz semigroup. We briefly outline the story-line of K0(A) and W (A) here.

1.3.1 K-theory and the Cuntz Semigroup

If A is a C∗-algebra, Mm,n(A) will denote the linear space of all m× n matrices

with entries from A. The square n × n matrices Mn(A) is a C∗-algebra with pos-

itive cone Mn(A)+. If a ∈ Mn(A)+ and b ∈ Mm(A)+, write a ⊕ b for the matrix

diag(a, b) ∈Mn+m(A)+. Set M∞(A)+ =
⊔
n≥1Mn(A)+; the set-theoretic direct limit

of the Mn(A)+ with connecting maps

Mn(A)→Mn+1(A), given by a 7→ a⊕ 0 =

a 0

0 b

 .

Write P(A) for the set of projections in A and set P∞(A) =
⊔
n≥1 P(Mn(A)).

Elements a and b in M∞(A)+ are said to be Pedersen-equivalent, written a ∼ b,

if there is a matrix v ∈Mm,n(A) with v∗v = a and vv∗ = b. We say that a is Cuntz-

subequivalent to (or Cuntz-smaller than) b, written a - b, if there is a sequence
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(vk)k≥1 ⊂Mm,n(A) with ‖v∗kbvk − a‖ → 0 as k →∞. If a - b and b - a we say that

a and b are Cuntz-equivalent and write a ≈ b. Restricting to projections, one can

work out that for p, q ∈ P∞(A), p - q if and only if p⊕ p′ ∼ q for some p′ ∈ P∞(A)

if and only if there is a subprojection r ≤ q with p ∼ r ≤ q. With a little work one

shows that ∼ and ≈ are equivalence relations on M∞(A)+ and that a ∼ b implies

a ≈ b. It is customary to write V (A) = P∞(A)/ ∼, and [p] for the equivalence

class of p ∈ P∞(A). Also set W (A) := M∞(A)+/ ≈ and write 〈a〉 for the class of

a ∈M∞(A)+. W (A) has the structure of a preordered abelian monoid with addition

given by 〈a〉 + 〈b〉 = 〈a ⊕ b〉 and preorder 〈a〉 ≤ 〈b〉 if a - b. The monoid W (A)

embeds into Cu(A) := (A ⊗ K)+/ ≈, the Cuntz semigroup of A. For this work,

the monoid W (A) will be suitable for our purposes and we will refer to it as the

Cuntz semigroup as in [2]. With addition and ordering identical to that of W (A),

V (A) is also a preordered abelian monoid. There is a cardinal difference between the

orderings on V (A) and W (A); the ordering on W (A) extends the algebraic ordering

(x, y, z ∈ W (A) with x + y = z implies x ≤ z) but only in rare cases agrees with

it. With V (A), the ordering agrees with the algebraic one. Indeed, [p] ≤ [q] iff

p - q iff p ⊕ p′ ∼ q for some p′ which gives [p] + [p′] = [q]. As a brief reminder,

K0(A) = G(V (A)) the Grothendieck enveloping group of V (A) and [p]0 = γ([p])

where γ : V (A)→ K0(A) is the canonical Grothendieck map.

1.3.2 Finiteness, Cancellation, and Refinement

Notions of ‘finite’ and ‘infinite’ are widespread throughout all disciplines of math-

ematics, including the theory of C∗-algebras. We learn that a C∗-algebra A is finite-

dimensional (as a linear space) if and only if A ∼= Mn1⊕· · ·⊕Mnk . But C∗-algebraists

are more interested in the notion of finiteness that mirrors Dedekind finiteness for

sets; recall that a set E is (Dedekind) infinite if and only if it admits a non-surjective
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injection σ : E → E, and finite otherwise. In the same spirit, a concrete algebra

A ⊂ B(H) should be ‘infinite’ if it admits a non-unitary isometry v ∈ A. We make

this more precise.

Projections p, q ∈ P(A) are Murray-vonNeumann equivalent, written p ∼ q, if

there is a v ∈ A with v∗v = p and vv∗ = q. A projection p in A is infinite if p ∼ q for

some subprojection q � p. It was shown in [30] that p infinite if and only if p⊕ b - p

for some non-zero b ∈ M∞(A)+. A unital C∗-algebra A is said to be infinite if 1A is

infinite. Otherwise, A is called finite. If Mn(A) is finite for every n ∈ N then A is

called stably finite.

A unital, stably finite C∗-algebra A yields an ordered abelian group K0(A) with

positive cone K0(A)+ := γ(V (A)) and order unit [1A]0. In this case, a state on the

ordered abelian group (K0(A), K0(A)+, [1]0) is a group homomorphism β : K0(A)→

R with β(K0(A)+) ⊂ R+ and β([1]0) = 1. The collection of all such states is

denoted by S(K0(A), K0(A)+, [1]0). Every tracial state τ on A gives rise to a state

K0(τ) : K0(A)→ R via the formula

K0(τ)([p]0) = τ(p).

It is important to note that when A is exact, every state β on (K0(A), K0(A)+, [1]0)

arises in this way, that is, β = K0(τ) for a tracial state τ on A.

Occasionally we shall require our algebras to have cancellation, which simply

means that the Grothendieck map γ is injective. It is routine to check that algebras

with stable rank one are stably finite and have cancellation. Moreover, when A is

stably finite the map V (A) → W (A), [p] 7→ 〈p〉 is injective. To see this, suppose

〈p〉 = 〈q〉 for p, q ∈ P∞(A), then p - q and q - p. Therefore, we can find p′, q′ ∈ P∞
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with

p⊕ p′ ∼ q, and q ⊕ q′ ∼ p.

This gives

p ∼ q ⊕ q′ ∼ p⊕ p′ ⊕ q′.

Since A is stably finite, this is only possible if p′ = q′ = 0. Thus p ∼ q so [p] = [q].

Recall that a semigroupK has the Riesz refinement property if, whenever
∑n

j=1 xj =∑m
i=1 yi, for members x1, . . . , xn, y1, . . . , ym ∈ K, there exist {zij}i,j ⊂ K satisfying∑
i zij = xj and

∑
j zij = yi for each i and j. If A is a stably finite algebra with

RR(A) = 0 then S. Zhang showed that K0(A)+ has the Riesz refinement property

[56].

1.3.3 Induced K-Theoretic Dynamics

A C∗-dynamical system induces a natural action at the K-theoretical level, and

the order theoretical dynamics will reflect information about the nature of the ac-

tion and will often describe the structure of the crossed product. If (G,G+, u) and

(H,H+, v) are ordered abelian groups each with their distinguished order units, a

morphism in this category is a group homomorphism β : G → H which is positive

and order unit preserving, i.e. β(G+) ⊂ H+, and β(u) = v respectively. We also

write

OAut(G) := {τ ∈ Aut(G) : τ(G+) = G+, τ(u) = u}

for the set of ordered abelian group automorphisms. When the group is Zd, we

employ the standard ordering defined by the positive cone (Zd)+ := (Z≥0)d, and

whose order unit is (1, 1, . . . , 1). Recall that (K0(Md), K0(Md)
+, [1]) ∼= (Z,Z+, d),

and if X is a zero-dimensional compact metric space, K0(C(X)) ∼= C(X;Z) with

natural point-wise ordering. The K0-functor is covariant, namely, if φ : A → B is
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a ∗-homomorphism (∗-automorphism), one obtains a positive group homomorphism

(ordered group automorphism) K0(φ) : K0(A) → K0(B) defined by K0(φ)([p]) =

[φ(p)] where p is a projection living inMn(A) for some n. For economy we sometimes

write φ̂ = K0(φ). Note that for every action α : Γ→ Aut(A), there is an associated

action α̂ : Γ → OAut(K0(A)) where α̂(s) = α̂s : K0(A) → K0(A) is the induced

automorphism. Again, in the case of stable finiteness, the positive cone K0(A)+ is

a partially ordered monoid, whose ordering is inherited from K0(A)+ and coincides

with the algebraic ordering. Restricting α̂ to K0(A)+ also gives an action of order

isomorphisms. In the same manner a C∗-system (A,Γ, α) induces an action α̂ :

Γ → OAut(W (A)) via α̂s(〈a〉) = 〈αs(a)〉, where s ∈ Γ, and a ∈ M∞(A)+. Here

OAut(W (A)) will denote the set of monoid isomorphisms of W (A) which respect the

ordering.
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2. MF CROSSED PRODUCTS1

In this chapter we are particularly interested in finite-dimensional approxima-

tion properties of C∗-algebras. While nuclearity and exactness are measure-theoretic

concepts, residual finite dimensionality, quasidiagonality and admitting norm mi-

crostates are properties more topological in nature as they concern matricial ap-

proximation of both the linear and multiplicative structure of the algebra. In this

work we flesh out the appropriate dynamical conditions that give rise to such topo-

logical approximations in resulting reduced crossed products, and give K-theoretic

expression to these conditions when the underlying algebras have sufficiently many

projections. One purpose of this section is to provide a K-theoretic interpretation

of dynamical approximation properties such as residual finiteness and quasidiagonal

actions as introduced by Kerr and Nowak in [28], and by doing so, extend results

found in [10] and [38].

In the classical setting, Pimsner described a purely topological dynamical prop-

erty for a Z-system (X,Z) that renders the resulting crossed product C(X) oλ Z

AF-embeddable. He showed in [38] that for a self-homeomorphism T of a compact

metrizable space X the following are equivalent: (1) the crossed product embeds into

an AF algebra, (2) the crossed product is quasidiagonal, (3) the crossed product is

stably finite, (4) “T compresses no open sets”, that is, there does not exist a non-

empty open set U ⊂ X for which T (U) $ U , which is equivalent to the action being

chain recurrent, that is, for every x ∈ X and every ε > 0, there are finitely many

points x = x1, . . . , xn = x such that d(T (xj), xj+1) < ε for 1 ≤ j ≤ n.

It was N. Brown who saw condition (4) as being essentially K-theoretical, at

1Part of this chapter is reprinted with permission from “MF Actions and K-theoretic Dynamics”
by Timothy Rainone, 2014. J. Funct. Anal., 267, 542-578, Copyright 2014 by Elsevier B.V.
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least in the presence of many projections [10]. When X is zero-dimensional we have

K0(C(X)) = C(X;Z), and the chain recurrence condition is expressed as T̂ (f) < f

for no non-zero f ∈ C(X;Z), where T̂ : C(X;Z) → C(X;Z) is the induced order

automorphism given by T̂ (f) = f ◦T−1. Brown was then able to generalize Pimsner’s

result to the non-commutative setting as follows.

Theorem 2.0.1 (Brown). Let A be an AF algebra and α ∈ Aut(A) an automor-

phism. Then the following are equivalent:

1. Aoα Z is AF-embeddable.

2. Aoα Z is quasidiagonal.

3. Aoα Z stably finite.

4. The induced map α̂ : K0(A)→ K0(A) “compresses no element”, that is, there

is no x ∈ K0(A) for which α̂(x) < x; equivalently, Hα ∩K0(A)+ = {0}, where

Hα is the coboundary subgroup {x− α̂(x) : x ∈ K0(A)}.

One of the main results of this chapter, Theorem 2.2.14, extends Brown’s result

to the case of a free group on r generators acting on a unital AF algebra. In this case

the coboundary subgroup is given by Hσ = im(σ) where σ : ⊕rj=1K0(A) → K0(A)

is the coboundary morphism in the Pimsner-Voiculescu six-term exact sequence. In

abbreviated form our theorem says the following.

Theorem 2.0.2. Let A be a unital AF algebra and α : Fr → Aut(A) an action of

the free group on r generators. Then the following are equivalent:

1. Hσ ∩K0(A)+ = {0}.

2. The reduced crossed product Aoλ,α Fr is MF.

12



3. The reduced crossed product Aoλ,α Fr is stably finite.

In order to extend the results of Pimsner and Brown to actions of discrete count-

able groups, one needs the right notion of chain recurrence for arbitrary transforma-

tion groups and a corresponding approximation property for C∗-dynamical systems.

D. Kerr and P. Nowak then introduced residually finite actions and quasidiagonal ac-

tions in [28] where it was shown that these systems give rise to MF crossed products

provided that the reduced group C∗-algebra of the acting group is itself MF. This

is a necessary condition as being MF passes to subalgebras and the reduced group

C∗-algebra sits canonically inside the reduced crossed product. Thus one cannot

hope for quasidiagonality, or much less AF-embeddability, when the acting group

is non-amenable, for Rosenberg’s result ([22]) asserts that a discrete group whose

reduced C∗-algebra is quasidiagonal must be amenable.

Matricial field (MF) algebras were introduced by Blackadar and Kirchberg in [8].

These are stably finite C∗- algebras which arise from generalized inductive limits of

finite-dimensional algebras, or, equivalently, which admit norm microstates [12]. The

MF property is the C∗-analogue of admitting tracial microstates, i.e., embeddabil-

ity into the ultrapower Rω of the hyperfinite II1 factor. Blackadar and Kirchberg

remarked that there is no example of a stably finite separable C∗-algebra which is

known not to be MF, but that a good candidate is C∗λ(Fr). Then came the deep

result of U. Haagerup and S. Thorbjørnsen in [23] that showed that C∗λ(Fr) is in

fact MF. It therefore seems natural to focus our attention on actions of free groups

on AF algebras. By studying the induced K-theoretic dynamics of such systems,

purely algebraic conditions emerge which are necessary and sufficient for A oλ,α Fr

to be MF, one in the form of locally invariant states on K0(A) and the other in the

spirit of a coboundary subgroup as in Brown’s work (Theorem 0.2 of [10]). These
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are summed up in Theorem 2.2.14 below. These K-theoretic conditions enable us to

prove that being MF and being stably finite are equivalent for this class of crossed

products.

MF algebras are interesting in their own right but are also important in Voiculescu’s

seminal study of topological free entropy dimension for a family of self-adjoint el-

ements a1, . . . , an in a unital C∗-algebra A [50]. Indeed the latter is well-defined

only when C∗({a1, . . . , an}) is MF. There is also a connection between MF algebras

and the Brown-Douglas-Fillmore Ext semigroup introduced in [13]. We will exhibit

several examples of MF algebras whose Ext semigroup is not a group.

2.1 Residually Finite, Residually Finite Dimensional, and MF Actions

Definition 2.1.1. Let (X, d) be a compact metric space and Γ a discrete group.

A continuous action h : Γ → Homeo(X) is said to be residually finite (RF) if for

every ε > 0 and finite set F ⊂ Γ, there exists a finite set E which admits an action

k : Γ→ Perm(E) and a map ζ : E → X such that

1. d(ζ(ks(z)), hs(ζ(z))) < ε for each s ∈ F and z ∈ E,

2. X ⊂ε ζ(E), that is, ζ has ε-dense range in X.

This notion of a residually finite action was introduced in [28], from which we

mention a few results. It is easily verified that if a group admits a free residu-

ally finite action on some compact space then the group itself must be residually

finite, hence the name. Moreover, a residually finite action Γ y X will yield a Γ-

invariant probability measure on X which extends in a canonical way (by composition

with the conditional expectation) to a trace on C(X) oλ Γ. Thus residually finite

transformation groups (X,Γ) produce stably finite reduced crossed products. Theo-

rem 2.2.14 below and Lemma 3.9 in [28] together show that the converse holds true
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when dim(X) = 0 and Γ = Fr. It is also shown that when dealing with Z-systems

(X,Z), residual finiteness is equivalent to chain recurrence [15].

We introduce here a stronger notion than residual finiteness; one that demands

exact and global equivariance.

Definition 2.1.2. Let (X, d) be a compact metric space and Γ a discrete group.

A continuous action h : Γ → Homeo(X) is said to be residually finite dimensional

(RFD) if for every ε > 0 there exists a finite set E which admits an action k : Γ →

Perm(E) and a map ζ : E → X such that

1. ζ(ks(z)) = hs(ζ(z)) for every z ∈ E and s ∈ Γ.

2. X ⊂ε ζ(E), that is, ζ has ε-dense range in X.

In other words, a transformation group (X,Γ) is RFD if for every ε > 0 there

is finite Γ-invariant subsystem which is ε-dense. Clearly every RFD action is RF,

but the converse is false in general; minimal Cantor systems Z y X yield infinite-

dimensional, simple, stably-finite crossed products C(X) o Z ([40]). As remarked

above such systems are residually finite but cannot be residually finite dimensional

by Theorem 2.1.5 below. The nomenclature is justified by Theorem 2.1.5 and Propo-

sition 2.1.7.

As observed by the authors of [28], residually finite actions Γ y X have C∗-

dynamical expressions when looking at the induced action on the algebra C(X)

(see Proposition 2.1.6 below). Indeed, what is witnessed at the algebraic level is

a finite dimensional approximating property familiar to C∗-enthusiasts along with

an approximate equivariance. We make similar observations when studying RFD

actions (see Proposition 2.1.7). Here are the appropriate definitions at the C∗-level.

Definition 2.1.3. Let Γ be a discrete group and A a C∗-algebra.
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1. An action α : Γ → Aut(A) is said to be matricial field (MF) provided that:

given ε > 0, and finite subsets Ω ⊂ A and F ⊂ Γ, there exist d ∈ N, a map

v : Γ→ U(Md) (s 7→ vs), and a unital ∗-linear map ϕ : A→Md, such that for

every a, b ∈ Ω and s, t ∈ F

(a) ‖ϕ(ab)− ϕ(a)ϕ(b)‖ < ε,

(b)
∣∣‖ϕ(a)‖ − ‖a‖

∣∣ < ε,

(c) ‖ϕ(αs(a))− Advs(ϕ(a))‖ < ε,

(d) ‖vst − vsvt‖ < ε.

If the unital map ϕ can be further chosen to be completely positive, α is said

to be quasidiagonal (QD).

2. The action α : Γ→ Aut(A) is said to be residually finite dimensional (RFD) if

for every ε > 0 and finite subset Ω ⊂ A, there is a d ∈ N, a ∗-homomorphism

π : A→Md and a unitary representation v : Γ→ U(Md) such that

(a) ‖π(b)‖ > ‖b‖ − ε for every b ∈ Ω,

(b) π(αs(a)) = Adv(s)(π(a)) for every a ∈ A and s ∈ Γ.

A few remarks and key observations concerning Definition 2.1.3 are in order. Ev-

ery RFD system (A,Γ) is clearly QD, and every QD system is MF. We show that

MF actions are in fact QD when the underlying algebra is amenable (see Proposi-

tion 2.1.17). It is obvious that if α : Γ y A is RFD (QD, MF), then A is itself RFD

(QD, MF). Note that any finite dimensional algebra can be embedded into a full

matrix algebra, so we may replace Md by any finite dimensional algebra B without

changing the notion. Also, when verifying that an action is MF or QD, it suffices to

consider finite subsets of a generating set of the acting group Γ.
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The properties of being MF, QD, or RFD pass to subalgebras, so if a C∗-system

(A,Γ, α) yields an MF (QD, RFD) crossed product, one expects the underlying

algebra A as well as the group algebra C∗λ(Γ) to be MF (QD, RFD). In these cases

one can also decipher information about the action α. Indeed, the structure of the

reduced crossed product algebra determines the nature of the action.

Proposition 2.1.4. Let A be a unital C∗-algebra, and α : Γ→ Aut(A) a homomor-

phism. The following hold.

1. If A oλ,α Γ is RFD, then C∗λ(Γ) is RFD and the action α is residually finite

dimensional.

2. If Aoλ,α Γ is QD, then C∗λ(Γ) is QD and the action α is quasidiagonal.

3. If Aoλ,α Γ is MF, then C∗λ(Γ) is MF and the action α is matricial field. More-

over, if A is nuclear, α is quasidiagonal.

Proof. Suppose A oλ,α Γ is residually finite dimensional. Again, being RFD passes

to subalgebras, so C∗λ(Γ) is RFD as it sits canonically inside the reduced crossed

product. If ε > 0 and if Ω ⊂ A is a finite set, then there is a d and a ∗-homomorphism

φ : Aoλ,α Γ→Md such that ‖φ(ι(b))‖ > ‖ι(b)‖− ε = ‖b‖− ε for every b ∈ Ω, where

ι : A ↪→ A oλ,α Γ denotes the natural inclusion. Set π = φ ◦ ι : A → Md. Now

define a unitary representation v : Γ→ U(d) as v(s) = φ(1Aus), where us denote the

canonical unitaries in the crossed product implementing the action. Set γs = Adv(s)

so that γ : Γ yMd is an action. We verify

π(αs(a)) = φ(ι(αs(a))) = φ(αs(a)ue) = φ(usaueu
∗
s) = φ(us)φ(ι(a))φ(us)

∗

= v(s)π(a)v(s)∗ = γs(π(a))
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and this completes the proof of (1).

We prove (3) next. Let ε > 0, and let F ⊂ Γ, F ⊂ A be finite subsets. For s ∈ Γ

denote by us the canonical unitaries in Aoλ,αΓ and for economy write B = Aoλ,αΓ.

Now set

Ω = {us, u∗s, ust, usa, a : s, t ∈ F, a ∈ F} ⊂ B.

Next, set K = maxx∈Ω ‖x‖ + 1. By an elementary perturbation result, there is a

0 < δ < min{1, ε/4} with the following property: if D is any C∗-algebra with d ∈ D

satisfying ‖d∗d−1‖ < δ and ‖dd∗−1‖ < δ, there is a v ∈ U(D) with ‖d−v‖ < ε/4K.

Assuming B is MF, there is a unital ∗-linear map ψ : B →Md such that

‖ψ(xy)− ψ(x)ψ(y)‖ < δ ∀x, y,∈ Ω, (2.1)

|‖ψ(x)‖ − ‖x‖| < δ ∀x ∈ Ω. (2.2)

Since δ < ε, F ⊂ Ω and in light of the inequalities (2.1) and (2.2), all what is

needed to show now is approximate equivariance with an appropriate map v : Γ →

U(Md). Note that for r ∈ F or r = st with s, t ∈ F we have

‖ψ(ur)
∗ψ(ur)− 1‖ = ‖ψ(u∗r)ψ(ur)− ψ(u∗rur)‖ < δ,

‖ψ(ur)ψ(ur)
∗ − 1‖ = ‖ψ(ur)ψ(u∗r)− ψ(uru

∗
r)‖ < δ,

therefore, by our choice of δ, there are unitaries vr, in Md for each r ∈ F or r = st

with s, t ∈ F that satisfy ‖vr − ψ(ur)‖ < ε/4K. Extend v : Γ → U(Md) arbitrarily.
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We need to show that for every a in F and s, t ∈ F

‖ψ(αs(a))− Advs(ψ(a))‖ = ‖ψ(ujau
∗
j)− vjψ(a)v∗j‖ < ε, (2.3)

‖vst − vsvt‖ < ε. (2.4)

To this end, first note that (2.2) implies that for each x ∈ Ω

‖ψ(x)‖ = ‖ψ(x)‖ − ‖x‖+ ‖x‖ ≤
∣∣‖ψ(x)‖ − ‖x‖

∣∣+ ‖x‖ < δ + (K − 1) < K.

Using (2.1) along with the definition of the vs yields

‖ψ(usau
∗
s)− vsψ(a)v∗s‖ ≤ ‖ψ(usau

∗
s)− ψ(usa)ψ(u∗s)‖+ ‖ψ(usa)ψ(u∗s)− ψ(usa)v∗s‖

+ ‖ψ(usa)v∗s − ψ(us)ψ(a)v∗s‖+ ‖ψ(us)ψ(a)v∗s − vsψ(a)v∗s‖

< δ + ‖ψ(usa)‖‖ψ(us)
∗ − v∗s‖

+ ‖ψ(usa)− ψ(us)ψ(a)‖‖v∗s‖+ ‖ψ(us)− vs‖‖ψ(a)v∗s‖

< δ +K · ε

4K
+ δ +

ε

4K
·K < 4 · ε

4
= ε,

which establishes (2.3). To see (2.4),

‖vst − vsvt‖ ≤ ‖vst − ψ(ust)‖+ ‖ψ(usut)− ψ(us)ψ(ut)‖

+ ‖ψ(us)ψ(ut)− vsψ(ut)‖+ ‖vsψ(ut)− vsvt‖

≤ ε

4K
+ δ + ‖ψ(ut)‖

ε

4K
+

ε

4K
< ε.

The action is thus MF. If A is amenable, Proposition 2.1.17 ensures that α is QD

and the proof of (3) is complete. The proof of (2) is identical except for the fact that

we may choose ψ to be completely positive provided that B is quasidiagonal.
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We now embark on establishing partial converses to Proposition 2.1.4. Reduced

crossed products emerging from a QD C∗-system exhibit a finite-dimensional ap-

proximating property, they admit norm microstates. Indeed, it was shown in [28], in

the separable case, that if α is quasidiagonal and C∗λ(Γ) is MF, the reduced crossed

product algebra Aoλ,α Γ is also MF. However, we must point out that the definition

of a QD action in [28] is somewhat stronger than Definition 2.1.3. In lieu of a local

approximately multiplicative map v : Γ → U(Md), the authors require a legitimate

action γ : Γ yMd with

(c′) ‖ϕ(αs(a))− γs(ϕ(a))‖ < ε, for every a ∈ Ω and s ∈ F .

Assuming that such an action γ exists, apply the GNS construction to (Md, τ), where

τ is the unique faithful tracial state on Md, to obtain the faithful representation

πτ : Md → B(L2(Md, τ)) ∼= Md2 . Then define unitaries in Md2 by vs(x̂) = γ̂s(x)

for s ∈ Γ and x ∈ Md. It is easily verified that v : Γ → U(Md2) is in fact a

unitary representation satisfying vsπτ (x)v∗s = πτ (γs(x)) for x ∈ Md. Replacing ϕ by

πτ ◦ ϕ and Md by Md2 we then have an MF (or QD) action in the sense of 2.1.3.

Therefore Definition 2.1.3 is a weakening of that given in [28]. With some extra

work one can still prove Theorem 3.4 in [28] with our weakened definition of a QD

action. We include this result for completeness along with other partial converses to

Proposition 2.1.4.

Theorem 2.1.5. Let Γ be a discrete group and α : Γ → Aut(A) an action on a

separable unital C∗-algebra A.

1. The reduced crossed product Aoλ,α Γ is RFD if and only if C∗λ(Γ) is RFD and

α is RFD.

2. If C∗λ(Γ) is MF and α is QD, then the reduced crossed product Aoλ,α Γ is MF.
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3. If C∗λ(Γ) is QD and α is MF, then the reduced crossed product Aoλ,α Γ is MF.

Proof. (1): Consider an RFD action α : Γ y A. We then have a sequence ∗-

homomorphisms πn : A → Mkn and unitary representations vn : Γ → U(Mkn) such

that for every s ∈ Γ and a ∈ A:

(i) ‖πn(a)‖ ↗ ‖a‖ as n→∞.

(ii) πn(αs(a)) = Advn(s)(πn(a)).

For economy write M =
∏∞

n=1Mkn , and U(kn) = U(Mkn). Consider the unitary

representation v : Γ → U(M) ∼=
∏

n≥1 U(kn) given by v(s) := (vn(s))n≥1, and the

∗-homomorphism π : A → M defined by π(a) := (πn(a))n≥1. Also set βs = Adv(s),

so that β : Γ → Aut(M) is an action. Condition (i) ensures that π is injective, and

condition (ii) implies equivariance of π, that is π(αs(a)) = βs(π(a)) for every s ∈ Γ

and a ∈ A. We thus have a monomorphism of C∗-dynamical systems π : (A,Γ, α)→

(M,Γ, β). Therefore, A oλ,α Γ ↪→ M oλ,β Γ. Since β is an inner action, we know

that M oλ,β Γ ∼= M ⊗min C
∗
λ(Γ), whence

Aoλ,α Γ ↪→M ⊗min C
∗
λ(Γ).

Now simply note that since both M and C∗λ(Γ) are RFD algebras, so is their

minimal tensor product M ⊗min C
∗
λ(Γ). Being RFD passes to subalgebras, so we

conclude Aoλ,α Γ is RFD.

(2): (The proof of this is essentially the same proof as Theorem 3.4 in [28].)

(3): We have a sequence of ∗-linear maps ϕn : A → Mkn and maps vn : Γ →

U(Mkn) such that for every s, t ∈ Γ and a, b ∈ A:

(i) ‖ϕn(ab)− ϕn(a)ϕn(b)‖ → 0, as n→∞.
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(ii) ‖ϕn(a)‖ → ‖a‖ as n→∞.

(iii) ‖ϕn(αs(a))− Advn(s)(ϕn(a))‖ → 0, as n→∞.

(iv) ‖vn(st)− vn(s)vn(t)‖ → 0, as n→∞.

Write M =
∏∞

n=1Mkn/
⊕∞

n=1Mkn and π :
∏∞

n=1Mkn →M the canonical quotient

map. Now consider the maps Φ : A→M and v : Γ→ U(M) given by

Φ(a) := π[(φn(a))n] v(s) := π[(vn(s))n].

By properties (i) and (ii) Φ is an ∗-monomorphism, and by property (iv) v is a

unitary representation. Therefore, we have an inner action β : Γ y M defined by

βs := Advs for s ∈ Γ. Note that property (iii) implies that βs(Φ(a)) = Φ(αs(a)) for

every a ∈ A and s ∈ Γ. Indeed

βs(Φ(a)) = Advs(Φ(a)) = π[(vn(s))n]π[(φn(a))n]π[(vn(s))n]∗ = π[(vn(s)φn(a)vn(s)∗)n]

= π[(φn(αs(a)))n] = Φ(αs(a)).

We thus have a monomorphism of C∗-dynamical systems Φ : (A,Γ, α)→ (M,Γ, β).

Therefore, Aoλ,α Γ ↪→M oλ,β Γ. Since β is an inner action, by Example 9.11 of [36]

we know that M oλ,β Γ ∼= M ⊗min C
∗
λ(Γ), whence

Aoλ,α Γ ↪→M ⊗min C
∗
λ(Γ).

Since C∗λ(Γ) is QD, Γ is amenable, and so C∗λ(Γ) is nuclear. It follows from

Proposition 3.3.6 of [8] that M ⊗min C
∗
λ(Γ) is MF, which implies that A oλ,α Γ is

MF.

22



The following is Proposition 3.3 in [28] and justifies the comments made prior to

defining MF actions.

Proposition 2.1.6. Let (X, d) be a compact metric space and h : Γ → Homeo(X)

a continuous action with induced action α on C(X). If h is residually finite, then α

is quasidiagonal.

The question emerges of whether the converse to the previous result holds. The

authors of [28] showed that in the case of an action h : Fr y X on a compact zero-

dimensional metric space, h is residually finite if and only if the induced action on

C(X) is quasidiagonal.

In the same vein we relate RFD actions on compact metric spaces with RFD

actions at the algebraic level.

Proposition 2.1.7. Let h : Γ → Homeo(X) be a continuous action on a compact

metric space (X, d), and α : Γ→ Aut(C(X)) the induced action. Then h is RFD if

and only if α is RFD.

Proof. Consider first a RFD transformation group (X,Γ). Let g ∈ C(X) and ε > 0

be given. By compactness there is a δ > 0 such that

x, y ∈ X, d(x, y) < δ =⇒ |g(x)− g(y)| < ε.

We then obtain a finite set E, an action Γ y E and a map ζ : E → X with ζ(E) ⊂δ X

and ζ(s.z) = s.ζ(z) for every z ∈ E and s ∈ Γ. Dualize by defining π : C(X)→ C(E)

as π(f) = f ◦ ζ for f ∈ C(X) and γs(k)(z) := k(s−1.z) for k ∈ C(E), s ∈ Γ and

z ∈ E. The equivariance is straightforward, indeed for f ∈ C(X), s ∈ Γ, z ∈ E we
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have

π(αs(f))(z) = αs(f)(ζ(z)) = f(s−1.ζ(z)) = f(ζ(s−1.z)) = γs(f ◦ ζ)(z) = γs(π(f))(z)

which implies π(αs(f)) = γs(π(f)) for every f ∈ C(X) and s ∈ Γ.

For the approximate isometry condition, fix x in X, and pick up a zx ∈ E with

d(x, ζ(zx)) < δ. Then observe

|g(x)| ≤ |g(x)− g(ζ(zx))|+ |g(ζ(zx))| < ε+ sup
z∈E
|g ◦ ζ(z)| = ε+ ‖π(g)‖.

Taking a supremum over all x ∈ X gives ‖g‖ ≤ ε+ ‖π(g)‖.

Conversely, suppose that α is an RFD action. We then have a sequence of finite

dimensional representations πn : C(X)→Mkn and actions γn : Γ yMkn such that

(i) ‖πn(f)‖ ↗ ‖f‖ for each f ∈ C(X)

(ii) πn(αs(f)) = γn,s(πn(f)) for every s ∈ Γ, f ∈ C(X) and n ≥ 1.

Fix an n ≥ 1 and note that πn(C(X)) is a finite dimensional commutative algebra,

therefore isomorphic to C(En) for some finite set En. Also note that πn(C(X)) is

invariant under the action γn by condition (ii), so by restricting, we may suppose Γ

acts on C(En) via γn. We therefore have maps ζn : En → X with πn(f) = f ◦ ζn for

each f ∈ C(X), and actions Γ y En implemented by the homomorphisms γn. We

verify the promised equivariance. Indeed, for f ∈ C(X), z ∈ En and s ∈ Γ we have

f(s−1.ζn(z)) = αs(f)(ζn(z)) = πn(αs(f))(z) = γn,s(πn(f))(z) = πn(f)(s−1.z)

= f(ζn(s−1.z)).

Recall that C(X) separates points of X so that s−1.ζn(z) = ζn(s−1.z) for all s ∈ Γ
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and z ∈ E, and equivariance follows.

Consider now an arbitrary ε > 0. We claim that for some n large we have

X ⊂ε ζn(En). Suppose not. Then for every n there is an xn ∈ X with d(ζn(z), xn) ≥ ε

for every z ∈ En. Passing to a subsequence we may assume that (xn)n converges to

some x0 ∈ X. Note that for some N large we have that for every n ≥ N and z ∈ En

ε ≤ d(ζn(z), xn) ≤ d(ζn(z), x0) + d(x0, xn) ≤ d(ζn(z), x0) + ε/2,

thus d(ζn(z), x0) ≥ ε/2 holds for every such n and z ∈ En. Now choose a continuous

f : X → [0, 1] with f(x0) = 1 and supp(f) ⊂ B(x0, ε/3). Thus ‖f‖ = 1, but

πn(f) = f ◦ ζn = 0 since ζz(En) ⊂ supp(f)c. This contradicts condition (i), so the

claim holds and the proof is complete.

We now want to look at some examples of MF actions. The first class of C∗-

systems seems tailored to admit finite-dimensional approximating dynamics.

Example 2.1.8. For a fixed discrete group Γ, let (An,Γ, α
(n))n≥1 be a sequence

of C∗-dynamical systems with each An finite dimensional. By standard inductive

limit techniques one constructs the C∗-system (A,Γ, α) where A :=
⊗

n≥1An and

α := ⊗n≥1α
(n) acts via

αs(an1 ⊗ · · · ⊗ ank) = α(n1)
s (an1)⊗ · · · ⊗ α(nk)

s (ank) s ∈ Γ.

Given a finite subset Ω ⊂ A, one can find a large enough m and approximate each

member of Ω by elements from the subalgebra Bm :=
⊗m

n=1An. The identity map

on Bm lifts to a u.c.p map ϕ : A→ Bm, and Γ acts on Bm as β(m) = α(1)⊗· · ·⊗α(m).

The conditions for a QD action are now easily verified.

More instances of QD actions will surface as we uncover their theory, but we can
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immediately provide a wide class of examples. Recall that for a unital C∗-algebra A,

Inn(A) = {Adu : u ∈ U(A)} ≤ Aut(A)

denotes the normal subgroup of inner automorphisms, while Inn(A) ≤ Aut(A) is the

normal subgroup of all approximately inner automorphisms. Given ε > 0, a finite set

F ⊂ A and α ∈ Inn(A), there is an inner automorphism Adu with ‖Adu(x)−α(x)‖ ≤

ε for every x ∈ F.

Proposition 2.1.9. Let A be a unital AF algebra with Inn(A) = Aut(A). Then any

action α : Fr → Aut(A) of a free group on A is quasidiagonal. In particular, if A is

AF with K0(A) totally ordered and Archimedean, or if A is UHF, then any action of

Fr on A is quasidiagonal.

Proof. Let 0 < ε < 1 and let Ω ⊂ A be a finite set. Also, denote the generators of

Fr by s1, . . . , sr. Set K = maxa∈Ω ‖a‖+ 1 and put δ = min{ε/(3 + 2K), ε/4K, ε/2}.

Since A is AF and unital, locate a unital finite-dimensional subalgebra 1A ∈ B ⊂ A

and a finite subset Ω′ ⊂ B with ‖a− b‖ < δ for a in Ω and b in Ω′.

Since every automorphism onA is approximately inner, there are unitaries u1, . . . , ur

in U(A) such that

‖ujbu∗j − αsj(b)‖ < δ ∀b ∈ Ω′, ∀j ∈ {1, . . . , r}. (2.5)

By standard perturbation results, we can find a unital finite-dimensional algebra

1A ∈ D ⊂ A along with unitaries v1, . . . , vr in D such that B ⊂ D and ‖uj − vj‖ < δ

for every j. We then have automorphisms of D for each j = 1, . . . , r, namely Advj :

D → D given by Advj(x) = vjxv
∗
j for x ∈ D. By the universal property of the

free group, the map {s1, . . . , sr} → Aut(D) where sj 7→ Advj extends to a group
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homomorphism

γ : Fr → Aut(D) γsj = Advj ∀j ∈ {1, . . . , r}.

Appealing to Arveson’s extension theorem, let ϕ : A → D be the u.c.p extension

of idD : D → D. We work out the necessary estimates. First, since each a ∈ Ω is

δ-close to a b ∈ Ω′, we have

‖ϕ(αsj(a))− γsj(ϕ(a))‖ ≤ ‖ϕ(αsj(a))− ϕ(αsj(b))‖

+ ‖ϕ(αsj(b))− γsj(ϕ(b))‖+ ‖γsj(ϕ(b))− γsj(ϕ(a))‖

≤ ‖a− b‖+ ‖ϕ(αsj(b))− γsj(ϕ(b))‖+ ‖a− b‖

≤ 2δ + ‖ϕ(αsj(b))− γsj(ϕ(b))‖.

Next, we use the fact that γsj(ϕ(b)) = γsj(b) = vjbv
∗
j = ϕ(vjbv

∗
j ) since ϕ|D = idD

and the elements b and vjbv
∗
j all belong to D. This together with (1) gives

‖ϕ(αsj(b))− γsj(ϕ(b))‖ ≤ ‖ϕ(αsj(b))− ϕ(ujbu
∗
j)‖+ ‖ϕ(ujbu

∗
j)− ϕ(vjbv

∗
j )‖

≤ ‖αsj(b)− ujbu∗j‖+ ‖ujbu∗j − vjbv∗j‖

< δ + ‖ujbu∗j − vjbv∗j‖.

The unitaries uj and vj are δ-close so we get

‖ujbu∗j − vjbv∗j‖ ≤ ‖ujbu∗j − ujbv∗j‖+ ‖ujbv∗j − vjbv∗j‖

= ‖ujb(u∗j − v∗j )‖+ ‖(uj − vj)bv∗j‖

≤ ‖b‖‖u∗j − v∗j‖+ ‖uj − vj‖‖b‖ ≤ 2Kδ
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All of the above estimates yield ‖ϕ(αsj(a)) − γsj(ϕ(a))‖ < (2K + 3)δ ≤ ε for every

generator sj and every a ∈ Ω. This gives the desired approximate equivariance. We

still have yet to show that ϕ is approximately isometric and approximately multi-

plicative on Ω. To that end, let x, y ∈ Ω and let x′, y′ ∈ Ω′ be their δ-approximations.

Note that since δ < 1, ‖x‖ ≤ K−1 and ‖x−x′‖ < δ, it easily follows that ‖x′‖ ≤ K.

A simple triangle inequality gives

‖xy − x′y′‖ ≤ ‖xy − x′y‖+ ‖x′y − x′y′‖ ≤ ‖x− x′‖‖y‖+ ‖x′‖‖y − y′‖ ≤ 2δK.

Similarly ‖ϕ(x)ϕ(y) − ϕ(x′)ϕ(y′)‖ ≤ 2δK, since ϕ is contractive. Recalling that ϕ

restricted to D is the identity, our above estimates yield

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ‖ϕ(xy)− ϕ(x′y′)‖+ ‖ϕ(x′y′)− ϕ(x′)ϕ(y′)‖+ ‖ϕ(x′)ϕ(y′)− ϕ(x)ϕ(y)‖

≤ ‖xy − x′y′‖+ 0 + ‖ϕ(x)ϕ(y)− ϕ(x′)ϕ(y′)‖ ≤ 4δK < ε.

This gives the approximate multiplicativity. Finally, ϕ is easily seen to be approxi-

mately isometric:

∣∣‖ϕ(x)‖ − ‖x‖
∣∣ ≤ ∣∣‖ϕ(x)‖ − ‖ϕ(x′)‖

∣∣+
∣∣‖ϕ(x′)‖ − ‖x‖

∣∣ ≤ ‖ϕ(x)− ϕ(x′)‖+
∣∣‖x′‖ − ‖x‖∣∣

≤ ‖ϕ(x− x′)‖+ ‖x− x′‖ ≤ 2‖x− x′‖ ≤ 2δ ≤ ε,

which confirms that α is indeed quasidiagonal.

If A is a unital AF algebra such that K0(A) is totally ordered and Archimedean

then Inn(A) = Aut(A), which is indeed the case for UHF algebras (see Corollary

IV.5.8 in [16]).

The next example of a QD action is a generalization of Voiculescu’s notion of an
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action of Z admitting pseudo-orbits described in [49]. For an algebra A, write F(A)

for the collection all of finite-dimensional subalgebras of A. Also, if B,C are C∗-

subalgebras of A and ε > 0, we shall write B ⊂ε C if supb∈Ball(B) d(b,Ball(C)) < ε,

and d(B,C) is defined by

d(B,C) = inf{ε > 0 : B ⊂ε C and C ⊂ε B}.

Definition 2.1.10. Let (A,Γ, α) be a C∗dynamical system. The action α is said to

have the pseudo-orbit property if for every ε > 0, F ⊂ Γ finite subset and D ∈ F(A),

there is a finite quotient π : Γ→ Λ along with a map ζ : Λ→ F(A) such that

1. D ⊂ Bt := ζ(t), for every t ∈ Λ,

2. d(αs(Bt), Bπ(s)t) < ε for every t ∈ Λ and s ∈ F .

Before stating the proposition, we remind the reader of a perturbation result due

to E. Christensen (see [14]) which reads as follows.

Lemma 2.1.11. For every δ > 0, there is a δ1 > 0 such that whenever B and C

are C∗-subalgebras of a unital C∗-algebra A with B finite dimensional and C ⊂δ1 B,

then there is a unitary u ∈ A with ‖u− 1‖ < δ and Adu(B) ⊂ C.

Proposition 2.1.12. Let A be an AF-algebra, r ∈ N and α : Fr → Aut(A) an action

with the pseudo-orbit property. Then α is quasidiagonal.

Proof. Let ε > 0, Ω ⊂ A a finite subset and F = {e = s0, s1, . . . , sr}, where s1, . . . , sr

are the standard generators for Fr. Let C := maxx∈Ω ‖x‖+1 and let δ be so small that

2δ < ε, 4Cδ < ε and 2δ(2+C) < ε. Since A is an AF algebra, we may choose a finite

dimensional subalgebra D ⊂ A with αs(Ω) ⊂δ D for every s ∈ F . Let δ1 = δ1(δ) > 0

be a perturbation constant as in Christensen’s result above. By our hypothesis,
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there is a finite quotient π : Fr → Λ and a map ζ : Λ → F(A) with D ⊂ Bt and

d(αs(B), Bπ(s)t) < δ1 for each t ∈ Λ and s ∈ F . Thus for each pair (s, t) ∈ F × Λ,

find unitaries us,t ∈ U(A) with ‖us,t − 1‖ < δ and Adus,t(αs(Bt)) ⊂ Bπ(s)t.

Now set B =
⊕

t∈Λ Bt and for each s ∈ F consider the automorphism of B given

by

σs((bt)t∈Λ) = (us,tαs(bt)u
∗
s,t)t∈Λ.

We thus have an action σ : Fr → Aut(B). Let ϕ : A→ B be the u.c.p. extension of

the inclusion D ↪→ B given by a 7→ (a)t∈Λ. Fixing an s ∈ F and x, y ∈ Ω, we know

that there are elements a, b, c ∈ D with ‖a−x‖ < δ, ‖c−y‖ < δ and ‖d−αs(x)‖ < δ.

Note that ‖αs(a) − d‖ ≤ ‖αs(a) − αs(x)‖ + ‖αs(x) − d‖ < 2δ. We may now verify

the approximate equivariance:

‖σs(ϕ(x))− ϕ(αs(x))‖ ≤ ‖σs(ϕ(x))− σs(ϕ(a))‖+ ‖σs(ϕ(a))− ϕ(d)‖+ ‖ϕ(d)− ϕ(αs(x))‖

< 2δ + ‖σs(ϕ(a))− ϕ(d)‖ = 2δ + ‖(us,tαs(a)u∗s,t)t∈Λ − (d)t∈Λ‖

≤ 2δ + max
t∈Λ
‖us,tαs(a)u∗s,t − d‖

≤ 2δ + max
t∈Λ

{
‖us,tαs(a)u∗s,t − αs(a)‖+ ‖αs(a)− d‖

}
≤ 2δ + 2‖a‖δ + 2δ ≤ 2δ(2 + C) < ε.

As for approximate multiplicativity, a simple estimate gives ‖xy − ab‖ < 2Cδ as

well as ‖ϕ(a)ϕ(b)− ϕ(x)ϕ(y)‖ < δ. Also note that ϕ is multiplicative on D, so

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ‖ϕ(xy)− ϕ(ab)‖+ ‖ϕ(a)ϕ(b)− ϕ(x)ϕ(y)‖

≤ ‖xy − ab‖+ ‖ϕ(a)ϕ(b)− ϕ(x)ϕ(y)‖ < 4Cδ < ε.
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Finally, since ‖ϕ(a)‖ = ‖a‖, we have

∣∣‖ϕ(x)‖−‖x‖
∣∣ ≤ ∣∣‖ϕ(x)‖−‖ϕ(a)‖

∣∣+∣∣‖a‖−‖x‖∣∣ ≤ ‖ϕ(x)−ϕ(a)‖+‖a−x‖ ≤ 2δ < ε,

which concludes the proof.

As mentioned above, we pay attention to residually finite actions, and quasidiag-

onal actions in the non-commutative case, for such actions will determine the struc-

ture of the resulting reduced crossed product algebras. To employ Theorem 2.1.5,

we need a quasidiagonal C∗-system (A,Γ) where C∗λ(Γ) is MF. A remarkable re-

sult of Haagerup and Thorbjørnsen in [23] states that the reduced group C∗-algebra

C∗λ(Fr) is MF. However, by Rosenberg’s result, C∗λ(Fr) is not quasidiagonal when

r ≥ 2. Therefore a reduced crossed product where the acting group is a non-abelian

free group can never be quasidiagonal. A wonderful result connecting the Brown-

Douglas-Fillmore theory of extensions [13] to quasidiagonal C∗-algebras and MF

algebras reads as follows. A proof of this result can be found in [11].

Theorem 2.1.13. Let B be a unital separable MF algebra which fails to be quasidi-

agonal. Then Ext(B) is not a group.

We have the following corollaries.

Corollary 2.1.14. Let A be a unital AF algebra satisfying Inn(A) = Aut(A), then

Aoλ,α Fr is an MF algebra. In particular, if A is AF with K0(A) totally ordered and

Archimedean, or if A is UHF, then Aoλ,α Fr is always MF. For such algebras A and

r ≥ 2 we have that Ext(Aoλ,α Fr) is not a group.

Corollary 2.1.15. Let A be an AF-algebra, r ∈ N and α : Fr → Aut(A) an action

with the pseudo-orbit property. Then A oλ,α Fr is an MF algebra. If r ≥ 2 then

Ext(Aoλ,α Fr) is not a group.
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For actions on nuclear algebras, we aim to show that QD and MF actions coincide.

Before embarking on the details, a bit of notation is in order. Given a (separable)

MF algebra B, by an MF approximating sequence for B we mean a sequence of ∗-

linear, unital maps (ψn : B → Mkn)n≥1 which are asymptotically multiplicative and

asymptotically isometric. If the ψn are completely positive, then B is a quasidiagonal

algebra and the sequence (ψn)n≥1 will be referred to as a QD approximating sequence.

Lemma 2.1.16. Let A be a unital, separable, nuclear MF algebra. Suppose (ψn :

A → Mkn)n≥1 is an MF approximating sequence for A. Then there exists a QD

approximating sequence (ϕn : A→Mkn)n≥1 for A satisfying

‖ϕn(a)− ψn(a)‖ −→ 0 ∀a ∈ A.

Proof. If π :
∏∞

n=1Mkn →
∏∞
n=1Mkn⊕∞
n=1Mkn

denotes the canonical quotient mapping, the MF

approximating sequence (ψn)n≥1 provides an embedding

Ψ : A ↪→
∏∞

n=1Mkn⊕∞
n=1Mkn

,

namely Ψ(a) := π((ψn(a))n≥1). Now nuclearity of A ensures a u.c.p. lifting

Φ : A→
∞∏
n=1

Mkn

with π◦Φ = Ψ. Set for each n, ϕn := πn◦Φ : A→Mkn , where πn :
∏∞

m=1Mkm →Mkn

is the natural projection mapping. The maps ϕn are clearly u.c.p, and note that for

each a in A,

π((ψn(a))n) = Ψ(a) = π ◦ Φ(a) = π((ϕn(a))n),
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which means that (ϕn(a)− ψn(a))n≥1 ∈
⊕∞

n=1Mkn for each a, that is

‖ϕn(a)− ψn(a)‖ −→ 0 ∀a ∈ A.

From this, the approximating properties of the sequence (ϕn)n≥1 follow from those

of (ψn)n≥1. Indeed, for each a, b ∈ A

‖ϕn(ab)− ϕn(a)ϕn(b)‖ ≤ ‖ϕn(ab)− ψn(ab)‖+ ‖ψn(ab)− ψn(a)ψn(b)‖

+ ‖ψn(a)ψn(b)− ϕn(a)ϕn(b)‖

with each term tending to zero as n → ∞. Note that one needs a standard ε/3

argument to show that the last term tends to zero. Also

∣∣‖ϕn(a)‖ − ‖a‖
∣∣ ≤ ‖ϕn(a)− ψn(a)‖+

∣∣‖ψn(a)‖ − ‖a‖
∣∣ n→∞−→ 0

for every a ∈ A.

Proposition 2.1.17. Let (A,Γ, α) be a C∗-dynamical system with A nuclear and

separable. Then α is a quasidiagonal action if and only if it is an MF action.

Proof. That QD implies MF is obvious. Assume that α is MF. We then have an

MF approximating sequence (ψn : A → Mkn)n≥1 as well as a sequence of actions

γn yMkn with

‖γn,s(ψn(a))− ψn(αs(a))‖ n→∞−→ 0 ∀a ∈ A,∀s ∈ Γ.

Use the above Lemma 2.1.16 to generate a QD approximating sequence (φn :

A → Mkn)n≥1 with ‖ϕn(a) − ψn(a)‖ → 0 for every a ∈ A. For a fixed a ∈ A and
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s ∈ Γ, a simple estimate now gives

‖γn,s(φn(a))− φn(αs(a))‖ ≤ ‖γn,s(φn(a))− γn,s(ψn(a))‖+ ‖γn,s(ψn(a))− ψn(αs(a))‖

+ ‖ψn(αs(a))− φn(αs(a))‖

which tends to zero as n → ∞ since ‖γn,s(φn(a)) − γn,s(ψn(a))‖ ≤ ‖ϕn(a) − ψn(a)‖

which goes to zero. The action is thus QD.

We mention one more example taken from [21] which stems from [39].

Example 2.1.18. Consider an action of the integers α : Z→ Aut(A) which admits

an almost periodic condition: there is a natural sequence (nk)k≥1 for which (αnk)k →

idA in Aut(A) as k →∞. Call such an action (AP). Pimsner and Voiculescu showed

(see [39]) that if A is separable, unital, and quasidiagonal and Z y A satisfies (AP),

then Aoλ Z is also quasidiagonal. Hadwin and Shen proved an analogous result in

the context of MF algebras. In Theorem 4.2 of [21], they prove that if A is MF,

unital and finitely generated Z y A satisfies condition (AP), then A oλ Z is again

MF. From their work and applying Proposition 2.1.4, we conclude that (AP) actions

of the integers on unital QD algebras are QD, and (AP) actions of the integers on

unital finitely generated MF algebras are MF. We mention that this notion of an

almost periodic action was generalized to actions of amenable countable residually

finite discrete groups by Orfanos [34] where he extended Pimsner and Voiculescu’s

result.

The results obtained thus far have a concise formulation when the underlying

algebra is nuclear.

Theorem 2.1.19. Let A be a unital separable nuclear C∗-algebra, Γ a countable

discrete group and α : Γ→ Aut(A) an action. The following hold.
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1. Aoλ,α Γ is MF if and only if C∗λ(Γ) is MF and α is MF.

2. Aoλ,α Γ is QD if and only if C∗λ(Γ) is QD and α is QD.

3. Aoλ,α Γ is RFD if and only if C∗λ(Γ) is RFD and α is RFD.

When A = C(X) is abelian, α is RFD if and only if the induced action Γ y X is

RFD. Moreover, if Γ = Fr and X is a zero-dimensional metrizable space, then α is

QD if and only if the induced action Γ y X is residually finite.

Proof. (1): This follows from Theorem 2.1.5, Proposition 2.1.17 and Proposition 2.1.4.

Recall that being MF passes to subalgebras.

(2): If α is QD and C∗λ(Γ) is QD then Γ is amenable by Rosenberg’s result and

A oλ,α Γ is MF by Theorem 2.1.5. Since A is nuclear and Γ is amenable, then

A oλ,α Γ is nuclear. Now recall that nuclear and MF implies QD. The converse is

again Proposition 2.1.4.

(3): This is Theorem 2.1.5.

A residually finite action Γ y X by any discrete group on any compact metric

space always induces a quasidiagonal action on C(X) as shown in Proposition 2.1.6.

Moreover, it is shown in [28] that if the reduced crossed product C(X)oλ,αFr is MF,

the induced action Fr y X is residually finite, provided that X is a zero-dimensional

compact space.

2.2 K-Theoretical Dynamics

In this section our aim is to model classical and noncommutative C∗-dynamics

K-theoretically. In the presence of sufficiently many projections, the properties of

residually finite, RFD, and MF actions admit simple K-theoretic characterizations

that will aid us to prove structure theorems for the resulting reduced crossed prod-

ucts. Proposition 2.2.6 below shows how RFD systems (A,Γ) admit Γ-invariant,
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integer-valued states on K0(A). Quasidiagonal actions are likewise described via lo-

cal, Γ-invariant faithful states. For an action of a free group on an AF algebra this

characterization leads to the coboundary condition Hσ ∩K0(A)+ = {0} from which

the main result Theorem 2.2.14 ensues.

2.2.1 Commutative Case

We first restrict our attention to transformation groups h : Γ y X where X

is zero-dimensional. As usual we shall denote by α the corresponding action on

A = C(X) and by α̂ the induced action on K0(A). Introducing some further notation

for this result, if A is any C∗-algebra, write

Σ(A) = {[p]0 : p ∈ P(A)}

for the scale of A, and given subsets F ⊂ Γ, and S ⊂ K0(A) write

SF = {α̂t(x) : x ∈ S, t ∈ F ∪ {e} }

for the subset of K0(A) containing S and all F -iterates of S.

Proposition 2.2.1. Let X be a zero-dimensional compact metrizable space, and Γ

a discrete group. Suppose h : Γ y X is a continuous action with induced action

α : Γ→ Aut(C(X)). Then the following statements are equivalent:

1. Γ y X is residually finite.

2. Given finite subsets S ⊂ K0(C(X))+ and F ⊂ Γ there exist d in N, an action

σ : Γ→ OAut(Zd) of ordered abelian groups, and a morphism of ordered abelian

groups β : K0(A)→ Zd such that

(a) β ◦ α̂t(g) = σt ◦ β(g) for each g ∈ S and t ∈ F ,
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(b) β(g) 6= 0 for every 0 6= g ∈ S.

3. Given finite subsets S ⊂ K0(C(X))+ and F ⊂ Γ there exist d in N, a subgroup

H ≤ K0(C(X)), along with an action σ : Γ → OAut(Zd) by ordered abelian

group automorphisms, and a positive group homomorphism β : H → Zd such

that

(a) [1] ∈ H, SF ⊂ H, and β([1]) = (1, 1, . . . , 1),

(b) β ◦ α̂t(g) = σt ◦ β(g) for each g ∈ S and t ∈ F ,

(c) β(g) 6= 0 for every 0 6= g ∈ S.

Proof. (1) ⇒ (2): First consider S ′ = {[pj] : pj ∈ P(A), j = 1, . . . n} ⊂ Σ(C(X)),

a finite subset of the scale of C(X), and F ⊂ Γ a finite subset. Let 0 < ε < 1.

Since h is residually finite, by the proof of Proposition 2.1.6 in [28] there is a unital

∗-homomorphism ϕ : A → Cd for some d ∈ N, and an action γ : Γ → Aut(Cd) such

that for each j ∈ {1, . . . , n} and t ∈ F

‖ϕ(pj)‖ > ‖pj‖ − ε,

‖ϕ(αt(pj))− γt(ϕ(pj))‖ < ε.

Applying the K0 functor yields a positive group homomorphism β := K0(ϕ) :

K0(A) → K0(Cd) ∼= Zd, with β([1A]) = [ϕ(1A)] = [1Cd ] ∼= (1, . . . , 1). As in the

above discussion we also have an induced action K0(γ) : Γ→ OAut(K0(Cd)). Write

σt = K0(γ)(t) = K0(γt). After composing by a suitable isomorphism of ordered

abelian groups, we may assume β takes values in Zd, and σt ∈ OAut(Zd). We may
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now verify equivariance: for t ∈ F and every j we have

β ◦ α̂t([pj]) = ϕ̂ ◦ α̂t([pj]) = [ϕ ◦ αt(pj)]

= [γt ◦ ϕ(pj)] = γ̂t ◦ ϕ̂([pj]) = σt ◦ β([pj]).

Suppose β([pj]) = 0 for some j. Then by definition of β, [ϕ(pj)] = 0 in K0(Cd),

which gives ϕ(pj) ∼0 0 and so ϕ(pj) = 0. However, we read above that ‖ϕ(pj)‖ >

‖pj‖ − ε, which is absurd when pj 6= 0.

Since C(X) is AF, the positive cone K0(C(X))+ is generated by its scale. There-

fore, if S = {[qi]}mi=1 ⊂ K0(C(X))+, for each i there are elements of the scale {[pij]}nij=1

and positive integers kij with [qi] =
∑ni

j=1 kij[pij]. Set S ′ = {[pij] : i = 1, . . . ,m, j =

1, . . . , ni} and find d, β, and σ as above. Clearly β remains equivariant on S. Since

β is faithful on S ′, it remains faithful on S.

(2)⇒ (3): This is obvious; simply take H = K0(C(X)).

(3) ⇒ (1): Fix a finite set F ⊂ Γ and let ε > 0. By compactness and the zero-

dimensionality of X, we can choose a clopen partition X =
⊔n
j=1 Yj with diam(Yj) <

ε/2. Set pj = 1Yj and note that these are orthogonal projections with
∑n

j pj = 1X .

Consider now

B = C∗({αs(pj) : s ∈ F, j = 1, . . . , n}) and S = {[p1], . . . , [pn]} ⊂ K0(C(X))+.

Apply (3) and obtain suitable d, H, β, and σ. If ι : B ↪→ C(X) denotes inclusion,

ι̂ = K0(ι) : K0(B)→ K0(C(X)) is a positive group homomorphism. By hypothesis,

the subgroup H ≤ K0(C(X)) contains all the classes of iterates {[αs(pj)] : s ∈
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F ∪ {e}, j = 1, . . . , n} and [1A]. This guarantees H will contain the image of ι̂, and

so we can therefore compose and define the positive group homomorphism

τ := β ◦ ι̂ : K0(B)→ Zd.

After composing with a suitable isomorphism of ordered abelian groups, we may

assume

τ : K0(B)→ K0(Cd), σ : Γ→ OAut(K0(Cd)),

and these satisfy τ([1A]) = [1Cd ], and σt([1A]) = [1Cd ] for each t in Γ. By Lemma

1.3.4 of [44] there is a unital ∗-morphism ϕ : B → Cd with K0(ϕ) = τ , and an action

γ : Γ→ Aut(Cd) with K0(γt) = σt. We then extend ϕ to all of C(X). The conditions

then read as follows: for each t ∈ F and j = 1, . . . , n

[ϕ(αt(pj))] = ϕ̂([αt(pj)]) = τ([αt(pj)]) = β ◦ ι̂([αt(pj)])

= β ◦ α̂t([pj]) = σt ◦ β([pj]) = σt ◦ β ◦ ι̂([pj])

= σt ◦ τ([pj]) = γ̂t ◦ ϕ̂([pj]) = [γt(ϕ(pj))].

This equality holds true in K0(Cd) where there is cancellation, whence ϕ(αt(pj)) ∼0

γt(ϕ(pj)), and commutativity then yields the equality ϕ(αt(pj)) = γt(ϕ(pj)). More-

over, if ϕ(pj) = 0, it follows that

β([pj]) = β ◦ ι̂([pj]) = τ([pj]) = ϕ̂([pj]) = [ϕ(pj)] = 0,

which entails, by the condition on β, that [pj] = 0 and thus pj = 0. Thus ‖ϕ(pj)‖ = 1

whenever pj is a non-zero projection.

Let ζ : {1, . . . , d} → X be the map for which ϕ(f) = f ◦ ζ. Moreover, there is
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an action Γ y {1, . . . , d} such that γt(g)(z) = g(t−1.z) for every z ∈ {1, . . . , d} and

t ∈ Γ. The above equivariance of ϕ implies that for each j = 1, . . . , n, t ∈ F and

z ∈ {1, . . . , d}

pj(ζ(t−1.z)) = ϕ(pj)(t
−1.z) = γt(ϕ(pj))(z) = ϕ(αt(pj))(z)

= αt(pj)(ζ(z)) = pj(t
−1.ζ(z)).

This shows that for such t and z, d(t−1.ζ(z), ζ(t−1.z)) < ε, for otherwise t−1.ζ(z) and

ζ(t−1.z) would be separated by some pj and the above equality would fail. Next, the

faithfulness of ϕ means that for each fixed j

max
z∈{1,...,d}

|pj(ζ(z))| = ‖ϕ(pj)‖ = 1.

This proves that X ⊂ε ζ({1, . . . , d}), for if x ∈ X, x belongs to some Yj0 and the

above equality applied to pj0 ensures that there is a z0 with ζ(z0) ∈ Yj0 which gives

d(ζ(z0), x) < ε. The action is thus residually finite, completing the proof.

2.2.2 Perturbation Lemmas

Modeling non-commutative C∗-dynamics at the K-theoretical level will involve

some perturbation results. Recall that two projections determine the same class

in K0 provided that they are sufficiently close. This allows us some much needed

flexibility when applying the K0 functor. The next few results are sufficient for our

purposes. The first perturbation lemma is quite standard, and may be found in

Davidson’s book [16], Lemma III.3.2. We therefore state it without proof.
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Lemma 2.2.2. Given ε > 0 and n ∈ N, there exists a δ = δ(ε, n) with the following

property: Given a unital C∗-algebra A and C∗-subalgebras C,D ⊂ A with dim(C) = n

and system of matrix units E for C satisfying E ⊂δ D, there is a unitary u ∈ A with

‖1− u‖ < ε such that uCu∗ ⊂ D.

The next result is crucial to the main theorem of this paper, and so we offer a

full detailed proof.

Lemma 2.2.3. Let B ∼= Mn1 ⊕ · · · ⊕Mns be a finite dimensional C∗-algebra with

dim(B) = d and system of canonical matrix units E = {eri,j}. Then for every ε > 0,

there is a δ = δ(ε, d) > 0 with the following property:

Given a u.c.p. map ϕ : B →Mk which is approximately multiplicative on E within

δ, there is a unital ∗-homomorphism σ : B →Mk with

‖σ(x)− ϕ(x)‖ < ε‖x‖ for every x ∈ B.

Proof. Let B and ε > 0 be given, we will later choose an appropriate δ depending

only on ε and on d =dim(B). By Stinespring’s dilation theorem, the u.c.p. map

ϕ : B → Mk is the compression of a unital ∗-homomorphism. More precisely, there

is an isometry V : `k2 → `l2 and a unital ∗-homomorphism π : B → Ml such that

ϕ(x) = V ∗π(x)V for every x ∈ B. Let P = V V ∗ denote the Stinespring projection

in Ml.

Claim 1. ‖[P, π(e)]‖ <
√
δ for every e ∈ E, provided ϕ is approximately multiplica-

tive on E within δ.

Using the identity Pa− aP = Pa(1− P )− (1− P )aP for a ∈Ml, we get

‖Pa− aP‖ = max{‖Paa∗P − PaPa∗P‖1/2, ‖Pa∗aP − Pa∗PaP‖1/2}
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If e ∈ E, so is e∗, so setting a = π(e), we get

‖Pπ(e)π(e)∗P − Pπ(e)Pπ(e)∗P‖ = ‖V V ∗π(ee∗)V V ∗ − V V ∗π(e)V V ∗π(e∗)V V ∗‖

= ‖V ϕ(ee∗)V ∗ − V ϕ(e)ϕ(e∗)V ∗‖

= ‖V (ϕ(ee∗)− ϕ(e)ϕ(e∗))V ∗‖

≤ ‖ϕ(ee∗)− ϕ(e)ϕ(e∗)‖ < δ.

Similarly, ‖Pπ(e)∗π(e)P − Pπ(e)∗Pπ(e)P‖ < δ, and together with the above esti-

mate we get ‖Pπ(e)− π(e)P‖ <
√
δ as claimed.

Claim 2. Let C = π(B) ⊂ Ml, then dim(C) ≤ d and ‖[P, u]‖ <
√
δd for every

u ∈ Ball(C), in particular for every unitary u ∈ U(C).

If u ∈ Ball(C), we can lift u to an x ∈ Ball(B) with π(x) = u. Write

x =
∑
i,j,r

α
(r)
i,j e

(r)
i,j , |α(r)

i,j | ≤ 1.

Straightforward estimates yield

‖Pu− uP‖ = ‖Pπ(x)− π(x)P‖ = ‖
∑
i,j,r

α
(r)
i,j (Pπ(e

(r)
i,j )− π(e

(r)
i,j )P )‖

≤
∑
i,j,r

|α(r)
i,j |‖Pπ(e

(r)
i,j )− π(e

(r)
i,j )P‖ ≤ d

√
δ

where we’ve used Claim 1 and the fact that |α(r)
i,j | ≤ 1. This proves Claim 2.

Now C ⊂ Ml is a finite dimensional subalgebra, so we have a conditional expec-
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tation E : Ml → C
′ ∩Ml given by

E(a) =

∫
U(C)

uau∗du.

where du is the normalized Haar measure on U(C). Using the estimate from Claim

2 we have

‖E(P )− P‖ =

∥∥∥∥∫
U(C)

uPu∗du−
∫
U(C)

Pdu

∥∥∥∥ =

∥∥∥∥∫
U(C)

(uPu∗ − P )du

∥∥∥∥
≤
∫
U(C)

‖uPu∗ − P‖du =

∫
U(C)

‖uP − Pu‖du ≤ d
√
δ.

Now let 0 < η = η(ε) < 1, to be determined later. We know from standard

perturbation results that there is a δ
′
> 0 with the following property: if A is any

unital C∗-algebra, B ⊂ A is a unital subalgebra and p ∈ P(A) a projection with

‖p − b‖ < δ
′
, then there is a projection q ∈ P(B) with ‖p − q‖ < η. Making sure

that d
√
δ < δ

′
, there is a projection q ∈ P(C

′ ∩Ml) with ‖P − q‖ < η. We may then

find a unitary u in Ml with u∗Pu = q and ‖1− u‖ ≤
√

2η. Now we define

σ : B →Mk σ(b) = V ∗uπ(b)u∗V.

We claim that σ is a unital ∗-homomorphism. Indeed, σ(1) = V ∗uπ(1)u∗V =

V ∗uu∗V = V ∗V = 1, and for a and b in B,

σ(a)σ(b) = V ∗uπ(a)u∗V V ∗uπ(b)u∗V = V ∗uπ(a)u∗Puπ(b)u∗V

= V ∗uπ(a)qπ(b)u∗V = V ∗uπ(a)π(b)qu∗V = V ∗uπ(ab)qu∗V

= V ∗uπ(ab)u∗PV = V ∗uπ(ab)u∗V V ∗V = V ∗uπ(ab)u∗V = σ(ab).
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We now compute the desired perturbation

‖σ(x)− ϕ(x)‖ = ‖V ∗uπ(x)u∗V − V ∗π(x)V ‖ = ‖V ∗(uπ(x)u∗ − π(x))V ‖

≤ ‖uπ(x)u∗ − π(x)‖ ≤ 2‖u− 1‖‖π(x)‖ ≤ 2
√

2η‖x‖.

Now simply choose η so small that 2
√

2η < ε.

The next lemma is a straightforward application of spectral theory.

Lemma 2.2.4. Let A be an AF algebra, F ⊂ Asa a finite subset, and ε > 0 be given.

Then there is a finite dimensional subalgebra B ⊂ A such that for every a ∈ F there

are orthogonal projections p1, . . . , pn in B and scalars λ1, . . . , λn with

‖a−
n∑
j=1

λjpj‖ < ε.

Proof. Fixing a self-adjoint matrix C in Mk, find a k×k unitary U with C = UDU∗

where D = diag(t1, . . . tk) =
∑k

j=1 tjejj, the tj being real scalars. Then

C = U
k∑
j=1

tjej,jU
∗ =

k∑
j=1

tjUej,jU
∗ =

k∑
j=1

tjPj,

where the projections Pj := Uej,jU
∗ remain orthogonal.

Now given a self-adjoint C = (C1, . . . , Cs) in Mk1 ⊕ · · · ⊕Mks , by above, write

each Ci as

Ci =

ki∑
j=1

tijPij,

where for each fixed i ∈ {1, . . . , s} the family of projections Pij ∈Mki are orthogonal.

We regard the Pij as members of the larger algebra Mk1 ⊕ · · · ⊕Mks , and as such,
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they are all orthogonal therein. Then,

C =
s∑
i=1

ki∑
j=1

tijPij,

and so every self-adjoint element in a finite dimensional algebra can be written as a

linear combination of orthogonal projections.

Given that A is AF, locate a finite dimensional algebra B ⊂ A, and elements

bi ∈ B for i = 1, . . . , n with ‖ai− bi‖ < ε. Set hi = (bi + b∗i )/2. Clearly ‖ai−hi‖ < ε.

From our work above, each hi is the linear combination of orthogonal projections in

B, say hi =
∑Ji

j=1 tijpij, where pij ⊥ pil for j 6= l which is what was needed.

2.2.3 Noncommutative Case

We now wish to explore the K-theoretic expressions that describe RFD, QD and

MF C∗-systems which in turn shed light on the structure of reduced crossed product.

We begin with the more restrictive case; RFD actions.

Definition 2.2.5. Let A be a unital stably finite algebra. An action α : Γ→ Aut(A)

is said to be K0-RFD if the following holds: Given any non-zero g ∈ K0(A)+, there

is a positive group homomorphism µ : K0(A)→ Z with

1. µ([1A]) > 0, and µ(g) > 0.

2. µ(α̂s(x)) = µ(x) for every x ∈ K0(A).

Proposition 2.2.6. Let A be a unital stably finite algebra and α : Γ → Aut(A) an

action. Consider the following properties:

1. Aoλ,α Γ is RFD.

2. The action α is RFD.
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3. The action α is K0-RFD.

Then (1)⇔ (2)⇒ (3). Moreover, if A is AF and Γ = Fr, then (3)⇒ (2), whence

all three properties are equivalent.

Proof. (1)⇔ (2) was shown in Theorem 2.1.5.

(2) ⇒ (3): Let α be an RFD action and let g = [p] be a non-zero element in

K0(A), in which case p 6= 0. By amplifying the action we may assume that p is a

non-zero projection in A. Setting ε = 1/2, there is a ∗-homomorphism π : A → Md

and an inner action γ yMd such that

(i) ‖π(q)‖ ≥ ‖q‖ − 1/2 = 1/2,

(ii) π(αs(a)) = γs(π(a)) for every s ∈ Γ and a ∈ A.

Applying the K0 functor we get a positive group homomorphism π̂ : K0(A) →

K0(Md) with π̂([1A]) = [1Md ]. The action γ induces the trivial action at the K0-level

so that condition (ii) implies π̂(α̂s([q])) = π̂([q]) for every q ∈ P∞(A). Recall that

K0(A) = K0(A)+ −K0(A)+, so that π̂(α̂s(x)) = π̂(x) for every x ∈ K0(A). Now let

µ = β ◦ π̂ : K0(A)→ Z

where β : (K0(A), K0(A)+, [1A]) → (Z,Z+, d) is an isomorphism of ordered abelian

groups. Clearly µ is a positive group homomorphism that satisfies the required

equivariance condition as well as µ([1]) = d > 0 and µ(g) ≥ 0. Also, by stable

finiteness

µ(g) = 0⇒ β([π(q)]) = 0⇒ [π(q)] = 0⇒ π(q) = 0,

a contradiction.
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We establish the implication (3)⇒ (2) in the case where A is an AF algebra and

Γ = Fr is a free group. Suppose now that α satisfies the K0-RFD condition. Let

ε > 0 and b = b∗ ∈ A. Since A has real rank zero, there are orthogonal non-zero

projections p1, . . . , pn in A and scalars t1, . . . , tn such that

‖b−
n∑
j=1

tjpj‖ < ε/2.

We may as well assume that ‖
∑n

j=1 tjpj‖ = max1≤j≤n |tj| = |t1|. Set g = [p1] and

apply the K0-RFD condition. We obtain a positive group homomorphism µ and set

µ([1A]) = d. By composing with an ordered group isomorphism we may suppose

that µ takes values in K0(Md) and µ([1]) = [1Md ]. By Lemma 1.3.4 of [44] there is

a unital ∗-homomorphism π : A → Md such that π̂ = µ. Fix a generator sj ∈ Fr

where 1 ≤ j ≤ r. The two ∗-homomorphisms π and π ◦ αsj from A to Md agree at

the K-theoretic level by condition (ii) of K0-RFD. Utilizing once more Lemma 1.3.4

of [44] there is a sequence of unitaries (un)n≥1 in U(Md) with

Adun ◦ π(a)
n→∞−→ π ◦ αsj(a) ∀a ∈ A.

By the compactness of U(d), we may assume ‖un−uj‖ → 0 for some unitary uj ∈Md.

Thus π ◦ αsj(a) = Aduj ◦ π(a) for every a in A. By the universal property of the

free group we may now define an inner action γ : Fr y Md by γsj = Aduj . Thus

γs(π(a)) = π(αs(a)) holds for every s ∈ Fr and a ∈ A.

By condition (i) of K0-RFD π(p1) is a non-zero projection in Md. Write c =∑n
j=1 tjpj, so ‖c‖ = ‖π(c)‖ = |t1|. Then note that

‖b‖ ≤ ‖b− c‖+ ‖c‖ ≤ ε/2 + ‖π(c)‖ ≤ ε/2 + ‖π(c)− π(b)‖+ ‖π(b)‖ ≤ ε+ ‖π(b)‖,
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so that α is an RFD action.

Recall that for a stably finite unital C∗-algebra A, a state on (K0(A), K0(A)+, [1])

is a group homomorphism β : K0(A) → R with β(K0(A)+) ⊂ R+ and β([1]) = 1.

Given an action Γ y A, a state β is Γ-invariant if β(α̂s(x)) = β(x) for every

x ∈ K0(A) and s ∈ Γ. Therefore, in a sense, an RFD system (A,Γ, α) is one that

admits an integer -valued invariant state on K-theory that is locally faithful. A word

of caution is in order. The fact that the invariant state emerging from an RFD action

is integer valued is much more restrictive. We may consider minimal Cantor systems

(X,Z) for example. These always admit an invariant tracial state on C(X), but the

induced invariant state on K0(C(X)) can never be integer valued by virtue of the

previous proposition and the fact that C(X)o Z is simple.

We proceed to look at QD actions K-theoretically. As in the commutative case

we focus our attention on AF algebras, in which case the notions of QD and MF

actions coincide by Proposition 2.1.17.

Definition 2.2.7. Let (A,Γ, α) be a C∗-dynamical system with A unital. We say

that α is K0-QD if the induced action α̂ : Γ → OAut(K0(A)) satisfies the following

condition:

Given finite subsets S ⊂ K0(A)+ and F ⊂ Γ there is a subgroup H ≤ K0(A),

along with a group homomorphism β : H → Z satisfying

1. [1A] ∈ H and SF ⊂ H,

2. β([1A]) > 0 and β(g) > 0 for each 0 6= g ∈ S,

3. β(α̂s(g)) = β(g) for all g ∈ S and s ∈ F .
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One may thus paraphrase condition K0-QD by saying that the action admits

faithful Γ-invariant states in a local sense.

Proposition 2.2.8. Let A be a unital AF algebra, Γ a discrete group and α : Γ →

Aut(A) an MF-action. Then the induced action α is K0-QD.

Proof. Approximately finite dimensional algebras are nuclear, so by Proposition 2.1.17

we may assume that α : Γ → Aut(A) is a quasidiagonal action. Fix a finite

subset F = {e = s1, . . . , sm} ⊂ Γ. We shall first consider a finite subset S =

{[p1], . . . , [pn]} ⊂ Σ(A) of the scale of A. Since A is AF we can locate a unital fi-

nite dimensional subalgebra B ⊂ A with {αsi(pj)}i,j ⊂1/4 B. By perturbing, there

are projections qi,j ∈ B with ‖αsi(pj) − qi,j‖ < 1/4, whence [αsi(pj)] = [qi,j] in

K0(A). Consider the natural inclusion ι : B ↪→ A which induces a positive group

homomorphism

ι̂ : K0(B)→ K0(A), where ι̂([q]) = [ι(q)] = [q].

Set K = ker(ι̂) ≤ K0(B). Since K0(B) is a finitely generated abelian group, so is K,

say K = 〈t1, . . . , tl〉 = Zt1 + · · · + Ztl. By the continuity of the functor K0, there is

a finite dimensional subalgebra D of A containing B with the following property: if

j : B ↪→ D denotes inclusion, ĵ(ti) = 0 in K0(D) for i = 1, . . . , l.

Let ε > 0 (to be determined later), and choose δ = δ(ε, dim(D)) < ε according

to the above perturbation Lemma 2.2.2. Also, set G = {eri,j} ∪ {qi,j} where {eri,j} is

a system of matrix units for D. Since α is quasidiagonal, there are a positive integer

d, a u.c.p. map ϕ : A → Md, and an action γ : Γ → Aut(Md) such that for every
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a, b ∈ G and s ∈ F

‖ϕ(ab)− ϕ(a)ϕ(b)‖ < δ,

‖ϕ(a)‖ > ‖a‖ − δ,

‖ϕ(αs(a))− γs(ϕ(a))‖ < δ.

Utilizing the perturbation Lemma 2.2.3, there is a unital ∗-homomorphism π :

D →Md such that

‖π(a)− ϕ(a)‖ < ε for every a ∈ Ball(D).

With the positive group homomorphism π̂ : K0(D) → K0(Md) at hand, we define

the subgroup H = ι̂(K0(B)) ≤ K0(A) and the map

β : H → K0(Md) ∼= Z β(ι̂(g)) := π̂(ĵ(g)).

Claim 1. β is a well defined group homomorphism satisfying condition (2) ofK0-QD.

Given g, g′ ∈ K0(B), with ι̂(g) = ι̂(g′), we have 0 = ι̂(g) − ι̂(g′) = ι̂(g − g′), so

that g − g′ ∈ K. By construction, ĵ(g − g′) = 0, so ĵ(g) = ĵ(g′) and thus

β(ι̂(g)) = π̂(ĵ(g)) = π̂(ĵ(g′)) = β(ι̂(g′)),

showing that β is well defined. Clearly β is additive on H, and observe that

β([1A]) = β(ι̂([1A])) = π̂(ĵ([1A])) = [π(1)] = [1Md ]
∼= d.

Now let 0 6= g = [pj] = [q1j] be in S, which implies by cancellation that q1j is a
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non-zero projection. Then β(g) = π̂(ĵ([q1j])) = [π(q1j)] which is clearly positive in

K0(Md). Finally, if [π(q1j)] = 0, then by cancellation, π(q1j) = 0. However,

|‖π(q1j)‖ − ‖q1j‖| ≤ |‖π(q1j)‖ − ‖ϕ(q1j)‖|+ |‖ϕ(q1j)‖ − ‖q1j‖| < ε+ δ < 2ε,

and since ‖q1j‖ = 1, by choosing ε < 1/3, π(q1j) must be a non-zero projection as

well, an absurdity. The claim is thus proved.

We now verify the promised equivariance with the induced action σ := K0(γ) :

Γ→ OAut(K0(Md)). If g = [pj] ∈ S and si ∈ F , note that

α̂si(g) = α̂si([pj]) = [αsi(pj)] = [qi,j] = [ι(qi,j)] = ι̂([qi,j])

belongs to ι̂(K0(B)) = H, so we may apply β to this element and obtain

β(α̂si(g)) = π̂(ĵ([qi,j])) = [π(qi,j)].

On the other hand, first applying β followed by the action σ gives

σsi ◦ β(g) = γ̂si ◦ β([pj]) = γ̂si ◦ β([q1,j]) = γ̂si ◦ β(ι̂[q1,j])

= γ̂si ◦ π̂ ◦ ĵ([q1,j]) = [γsi(π(q1,j))].

Claim 2. For each i, j, [π(qi,j)] = [γsi(π(q1,j))] in K0(Md), which will give us the

desired equivariance.
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Note that

‖γsi(π(q1,j))− π(αsi(q1,j))‖ ≤ ‖γsi(π(q1,j))− γsi(ϕ(q1,j))‖

+ ‖γsi(ϕ(q1,j))− ϕ(αsi(q1,j))‖+ ‖ϕ(αsi(q1,j))− π(αsi(q1,j))‖

< ε+ δ + ε < 3ε.

Choosing ε < 1/6 we guarantee that [γsi(π(q1,j))] = [π(αsi(q1,j))]. Now s1 = e so we

have

‖αsi(q1,j)− qi,j‖ ≤ ‖αsi(q1,j)− αsi ◦ αs1(pj)‖+ ‖αsi ◦ αs1(pj)− qi,j‖

≤ ‖q1,j − αs1(pj)‖+ ‖αsi(pj)− qi,j‖ < 1/4 + 1/4 = 1/2.

Therefore ‖π(αsi(q1,j)) − π(qi,j)‖ < 1/2 and so [π(αsi(q1,j))] = [π(qi,j)] in K0(Md)

and our claim holds.

For a positive integer d, any order automorphism σ of (Z,Z+, d) must be trivial.

Indeed, since σ is a positive isomorphism σ(1) > 0, and since d = σ(d) = d · σ(1),

we must have σ(1) = 1. Therefore, any action σ : Γ → OAut(Z,Z+, d) of ordered

abelian groups must be trivial, and the above equivariance now reads:

β(α̂si(g)) = β(g) ∀g ∈ S, ∀si ∈ F.

Next, we must consider an arbitrary finite subset of the positive cone K0(A)+

and not restrict ourselves to its scale Σ(A). This is not problematic, for as A is

AF, its scale Σ(A) generates the positive cone K0(A)+. So, given a finite set S =

{[p1], . . . , [pm]} ⊂ K0(A)+, where pj ∈ P∞(A), write each [pj] =
∑Ij

i=1 tji[qji] where
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the tji are positive integers and the qji are non-zero projections in A. Set S ′ =

{[qji]; j = 1, . . . ,m, i = 1, . . . , Ij} ⊂ Σ(A), and by our above work, obtain a suitable

H, and β satisfying the required conditions for the given finite set F ⊂ Γ. Using

the fact that α̂t is additive for each t ∈ F , and β is faithful on non-zero elements

of S ′ the properties (1), (2), and (3) of K0-QD will hold. Since the tji are positive

integers, and β([qji]) ≥ 0, observe that for every j

0 = β([pj]) =
∑
i

tjiβ([qji]) =⇒ β([qji]) = 0, ∀i =⇒ [qji] = 0 ∀i =⇒ [pj] = 0,

so that β is indeed faithful on non-zero elements of S, completing the proof.

When a free group is acting on a unital AF-algebra, K0-QD actions coincide with

QD actions.

Theorem 2.2.9. Let A be a unital AF-algebra and α : Fr → Aut(A) an action,

where r ∈ {1, 2, . . . ,∞}. Then α is quasidiagonal if and only if α is K0-QD.

Proof. Having shown the ‘only if’ above, we embark on the proof of sufficiency.

Denote the generators of Fr by s1, . . . , sr and set eFr = s0. We abbreviate αsi = αi

for i = 0, . . . , r, and to ease notation write K0(αi) = α̂i to denote the induced order

automorphism at the K0-level. Let δ > 0, to be determined later, and let us first

consider the case where we are given a finite set of non-zero projections p1, . . . , pn

belonging to a finite dimensional subalgebra B ⊂ A. Find δ′ = δ′(δ, dim(B)) as in

Lemma 2.2.2. The algebras Bi = αi(B) are finite dimensional and admit systems

of matrix units Ei for each i. Since A is AF, there is a finite dimensional D ⊂ A

containing B with Ei ⊂δ′ D for every i. Lemma 2.2.2 then provides us with unitaries

ui in A satisfying ‖ui − 1‖ < δ and uiBiu
∗
i ⊂ D.

Choose F = {s1, . . . , sr} and S ⊂ K0(A)+ as S = {[p1], . . . , [pn], e1, . . . , ek, f1, . . . , fl},
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where the ej generate K0(B) and the fj generate K0(D). More precisely, ej = [e
(j)
11 ]

and fj = [f
(j)
11 ] where {e(j)

s,t} and {f (j)
s,t } are appropriate systems of matrix units for

B and D respectively. Since α is K0-QD, we obtain the subgroup H ≤ K0(A)

and the group morphism β : H → Z satisfying all the desired properties. Suppose

β([1A]) = d > 0. By composing with an isomorphism of ordered abelian groups

(Z,Z+, d) ∼= (K0(Md), K0(Md)
+, [1Md ]),

we may assume β takes values in K0(Md) and β([1A]) = [1Md ]. Denote by ι the

inclusion ι : D ↪→ A, and note that for any generator fj of K0(D) we have ι̂(fj) =

fj ∈ S ⊂ H whence the map

β ◦ ι̂ : K0(D)→ K0(Md)

is a well defined group homomorphism. Since K0(D) = Z+f1 + · · · + Z+fl, and β

takes positive values on S, β ◦ ι̂ is certainly a positive map. Also, β ◦ ι̂([1A]) =

β([1A]) = [1Md ], so there is a unital ∗-homomorphism ϕ : D → Md with ϕ̂ = β ◦ ι̂.

Appealing to the invariance of β, we obtain

ϕ̂(ej) = β ◦ ι̂(ej) = β ◦ ι̂([e(j)
11 ]) = β([e

(j)
11 ])

= β ◦ α̂i([e(j)
11 ]) = β([αi(e

(j)
11 )]) = β([uiαi(e

(j)
11 )u∗i ]) = β ◦ ι̂([uiαi(e(j)

11 )u∗i ])

= ϕ̂([uiαi(e
(j)
11 )u∗i ]) = [ϕ ◦ Adui ◦ αi(e

(j)
11 )] = K0(ϕ ◦ Adui ◦ αi)(ej).

Therefore the homomorphisms ϕ|B and ϕ ◦ Adui ◦αi|B agree at the K0 level, as

morphisms from K0(B) to K0(Md), and by the finite-dimensionality of B we know
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that there are unitaries vi in Md with

Advi ◦ϕ|B = ϕ ◦ Adui ◦αi|B.

By the universal property of the free group, we may define an action γ : Fr →Aut(Md)

by γi := γsi := Advi , which gives us

γi ◦ ϕ|B = ϕ ◦ Adui ◦ αi|B.

By Arveson’s extension theorem, we may extend ϕ to a unital completely positive

map ϕ : A → Md. For each pj and each si a simple estimate using the fact that

‖1− ui‖ < δ gives

‖γi ◦ ϕ(pj)− ϕ ◦ αi(pj)‖ = ‖ϕ ◦ Adui ◦ αi(pj)− ϕ ◦ αi(pj)‖

≤ ‖Adui ◦ αi(pj)− αi(pj)‖ = ‖uiαi(pj)u∗i − αi(pj)‖ ≤ 2δ.

Now ϕ is multiplicative onD and hence on the pj and is clearly injective on {p1, . . . , pn}.

Indeed, by the condition on β and cancellation,

ϕ(pj) = 0⇒ ϕ̂([pj]) = 0⇒ β([pj]) = 0⇒ [pj] = 0⇒ pj = 0,

a contradiction.

We now can proceed to the general case. To verify quasidiagonality of the action,

it suffices to consider a finite set of self-adjoint elements a1, . . . , am ∈ A with ‖aj‖ ≤ 1,

the finite set of standard generators {s1, . . . , sr} of Fr and an arbitrary ε > 0. By
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Lemma 2.2.4, we find a finite-dimensional subalgebra B ⊂ A such that for each aj

∥∥∥∥aj − Lj∑
l=1

tjlpjl

∥∥∥∥ < η 0 6= pjl ∈ P(B), pjlpjk = 0, l 6= k

where η = η(ε) > 0 will be determined later. Set bj =
∑Lj

l=1 tjlpjl. Note that fixing

j, the projections pjl are orthogonal, whence

max
l
|tjl| = ‖bj‖ ≤ ‖bj − aj‖+ ‖aj‖ ≤ η + 1.

Apply all our above work to the set of projections {pjl}j,l ⊂ B in order to obtain

ϕ, d, γ, as above for an arbitrary δ > 0. We estimate

‖γi ◦ ϕ(aj)− ϕ ◦ αi(aj)‖

≤ ‖γi ◦ ϕ(aj)− γi ◦ ϕ(bj)‖+ ‖γi ◦ ϕ(bj)− ϕ ◦ αi(bj)‖+ ‖ϕ ◦ αi(bj)− ϕ ◦ αi(aj)‖

≤ 2‖aj − bj‖+

∥∥∥∥ Lj∑
l=1

tjl(γi ◦ ϕ(pjl)− ϕ ◦ αi(pjl))
∥∥∥∥

≤ 2η +

Lj∑
l=1

|tjl|‖(γi ◦ ϕ(pjl)− ϕ ◦ αi(pjl))‖

≤ 2η +

Lj∑
l=1

(1 + η)2δ = 2η + Lj(1 + η)2δ ≤ 2η + L(1 + η)2δ

where L = maxj Lj. To verify approximate multiplicativity, observe

‖aiaj−bibj‖ ≤ ‖aiaj−aibj‖+‖aibj−bibj‖ ≤ ‖ai‖‖aj−bj‖+‖aj−bj‖‖bj‖ ≤ η+η(1+η).

A similar estimate yields ‖ϕ(ai)ϕ(aj) − ϕ(bi)ϕ(bj)‖ ≤ η + η(1 + η). Note that ϕ,

being multiplicative on all the projections pjl, will also be multiplicative on the bj,
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therefore

‖ϕ(aiaj)−ϕ(ai)ϕ(aj)‖ ≤ ‖ϕ(aiaj)−ϕ(bibj)‖+‖ϕ(ai)ϕ(aj)−ϕ(bi)ϕ(bj)‖ ≤ 2(η+η(1+η)).

Now since ϕ is faithful on the pjl, ϕ will be isometric on the bj. Indeed, using

the fact that ϕ(pjl)ϕ(pjk) = ϕ(pjlpjk) = 0 for k 6= l, we have

‖ϕ(bj)‖ =

∥∥∥∥ Lj∑
l=1

tjlϕ(pjl)

∥∥∥∥ = max
l
|tjl| = ‖bj‖.

Finally we estimate

|‖ϕ(aj)‖ − ‖aj‖| ≤ |‖ϕ(aj)‖ − ‖ϕ(bj)‖|+|‖bj‖ − ‖aj‖| ≤ ‖ϕ(aj)−ϕ(bj)‖+‖aj−bj‖ ≤ 2η.

We need only choose the right η and δ. Given ε > 0, choose η so that η < ε/4, and

2(η + η(1 + η)) < ε. Then simply choose δ < ε/(4L(1 + η)). By our above estimates

this choice will ensure the approximate equivariance ‖γi ◦ ϕ(aj) − ϕ ◦ αi(aj)‖ < ε,

the approximate multiplicativity ‖ϕ(aiaj) − ϕ(ai)ϕ(aj)‖ < ε, and the approximate

isometricity |‖ϕ(aj)‖ − ‖aj‖| < ε, so that Fr y A is quasidiagonal.

Combining the last few results with Theorem 2.1.5 we obtain:

Corollary 2.2.10. Let α : Fr → Aut(A) be an action on a unital AF algebra. The

following are equivalent:

1. α is MF.

2. α is QD.

3. α satisfies K0-QD.

4. The reduced crossed product Aoλ,α Fr is an MF algebra.
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Proof. (1)⇔ (2)⇔ (4) is Theorem 2.1.19.

(2)⇔ (3): This is Theorem 2.2.9.

We seek yet another equivalent K-theoretic condition, this time in the spirit of a

coboundary subgroup analogous to N. Brown’s main result in [10]. Now we insist that

our discrete group be a free group Γ = Fr = 〈s1, . . . , sr〉 of finitely many generators,

which acts on a unital AF algebra A. Denote this action by α and αi = αsi . By

the Pimsner-Voiculescu six term exact sequence (consult [6] p.78) and the fact that

K1(A) = {0} for an AF algebra, the sequence

r⊕
j=1

K0(A)
σ−→ K0(A)

ι̂−→ K0(Aoλ,α Fr) −→ 0

is exact, where ι : A ↪→ Aoλ,α Fr is the canonical inclusion, and

σ(g1, . . . , gr) =
r∑
j=1

(gj − α̂j(gj)).

Write Hσ = im(σ) ≤ K0(A), so that K0(A)/Hσ
∼= K0(Aoλ,αFr). First, a preliminary

result about the subgroup Hσ.

Lemma 2.2.11. In the above context, the subgroup Hσ ≤ K0(A) is generated by the

set

{g − α̂w(g) : g ∈ K0(A), w ∈ Fr}.

Proof. One direction being clear from the definition, we claim that every element of

the form g − α̂w(g) will belong to Hσ. To that end, write the alphabet for Fr as

A = {e, s1, . . . , sr, s
−1
1 , . . . , s−1

r }.
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First note that for every letter a ∈ A, and for all g ∈ K0(A), g − α̂a(g) ∈ Hσ.

For a = e it’s clear. Suppose a = si, for some 1 ≤ i ≤ r, then g − α̂si(g) =

σ(0, . . . , 0, g, 0, . . . , 0) ∈ Hσ, where g is in the ith spot. Next, say a = s−1
i for some

1 ≤ i ≤ r, then

g − α̂s−1
i

(g) = ̂αsi ◦ αs−1
i

(g)− α̂s−1
i

(g) = α̂si ◦ α̂s−1
i

(g)− α̂s−1
i

(g)

= α̂si(α̂s−1
i

(g))− α̂s−1
i

(g) = −(α̂s−1
i

(g)− α̂si(α̂s−1
i

(g))) = −(f − α̂si(f)) ∈ Hσ,

where f = α̂s−1
i

(g). Now let w ∈ Fr be a (reduced) word in symbols from A. We

have shown that if |w| = 1 the claim holds, so proceed by strong induction on |w|.

If |w| = l, write w = aw′ where a ∈ A \ {e} so |w′| < l. For g ∈ K0(A):

g − α̂w(g) = g − α̂aw′(g) = g − α̂w′(g) + α̂w′(g)− α̂a ◦ α̂w′(g)

= g − α̂w′(g) + α̂w′(g)− α̂a(α̂w′(g)) = g − α̂w′(g) + f − α̂a(f) ∈ Hσ

by the inductive hypothesis, where f = α̂w′(g). This completes the proof.

We shall make use of the following key lemma which is due to Spielberg. Con-

sult [48] for a clear argument. Note that this result relies on the theorem of Effros,

Handelman and Shen [17] on dimension groups.

Lemma 2.2.12 (Spielberg). If K is a dimension group and H is a subgroup of

K with H ∩ K+ = {0}, then there is a dimension group G and a positive group

homomorphism θ : K → G such that

1. H ⊂ ker(θ),

2. ker(θ) ∩K+ = {0}.
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Proposition 2.2.13. Let α : Fr → Aut(A) be an action of a free group on a unital

AF algebra. Then the following are equivalent:

1. α is K0-QD.

2. Hσ ∩K0(A)+ = {0}.

Proof. (1) ⇒ (2): Suppose x =
∑r

j=1(gj − α̂j(gj)) > 0 in K0(A)+. For each j write

gj = xj − yj with xj, yj ∈ K0(A)+. By setting S = {x1, . . . , xr, y1, . . . , yr, x} and

F = {s1, . . . , sr} as our finite sets, we obtain a suitable H and β : H → Z with the

desired conditions in the definition of K0-QD. Observe then that

0 < β(x) = β

( r∑
j=1

(gj− α̂j(gj))
)

=
r∑
j=1

(β(gj)−β(α̂j(gj))) =
r∑
j=1

(β(gj)−β(gj)) = 0,

a contradiction. Therefore, x = 0, and (2) holds.

(2) ⇒ (1): Since Hσ ∩ K0(A)+ = {0} using Lemma 2.2.12 we get a dimension

group (G,G+) and positive group homomorphism θ : K0(A) → G satisfying Hσ ⊂

ker(θ) and ker(θ) ∩ K0(A)+ = {0}. Given finite subsets F ⊂ Fr and S ⊂ K0(A)+,

consider the finitely generated subgroup H of K0(A) given by

H = 〈α̂s(x) : x ∈ S ∪ {[1]}, s ∈ F ∪ {e}〉.

This H will be the desired subgroup for verifying that α is K0-QD, and so what is

needed is the correct β : H → Z. Restricting θ to H we note that the subgroup

θ(H) ≤ G is also generated by the finitely many positive elements θ(α̂t(x)) for

x ∈ S ∪ {[1]} and t ∈ F ∪ {e}. To ease notation, label these as k1, . . . , kn ∈ G+.

Since G is a dimension group, write (G, (βi)) for the limit of an inductive sequence
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of ordered abelian groups (Gi, G
+
i )

G1
h1−→ G2

h2−→ G3
h3−→ . . .

where the hi are positive group homomorphisms, the βi : Gi → G are the connecting

positive group homomorphisms and each (Gi, G
+
i ) is order isomorphic to (Zpi ,Zpi≥0)

for some positive integers pi. There is anm large enough so that k1, . . . , kn ∈ βm(G+
m).

Set ki = βm(yi) for some yi ∈ G+
m. The group Gm is abelian and finitely generated,

and so is its subgroup K = ker(βm), say K = 〈g1, . . . , gl〉. Now choose k large

enough so that k ≥ m and such that hk,m(gj) = 0 for all j = 1, . . . , l. Identify

(Gk, G
+
k ) = (Zp,Zp≥0) for some p ∈ N and define ψ : Gk → Z by

ψ((z1, . . . , zp)) =

p∑
i=1

zi.

Clearly, ψ is a positive group homomorphism which is faithful on the positive cone

G+
k . We now may define φ : βm(Gm)→ Z by φ(βm(g)) := ψ(hk,m(g)). Observe that,

by our choice of k,

βm(g) = βm(g′)⇔ g − g′ ∈ K ⇒ hk,m(g − g′) = 0⇔ hk,m(g) = hk,m(g′)

⇔ ψ(hk,m(g)) = ψ(hk,m(g′))⇔ φ(βm(g)) = φ(βm(g′)),

verifying that φ is well defined. It is routine to check that φ is additive on βm(Gm).

Naturally, we now compose and define

β := φ ◦ θ|H : H −→ Z.

Since the ti lie in βm(Gm), we have θ(H) = 〈t1, . . . , tn〉 ≤ βm(Gm) and thus β is a
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well defined group homomorphism. Let x ∈ S. Then from our notation θ(x) = ti for

some i. So

β(x) = φ(θ(x)) = φ(ti) = φ(βm(yi)) = ψ(hk,m(yi)) ≥ 0,

since ψ and hk,m are positive maps and yi ∈ G+
m. To see that β is faithful on S, we

use the fact that ψ is faithful on G+
k : if x ∈ S then

β(x) = 0⇒ ψ(hk,m(yi)) = 0⇒ hk,m(yi) = 0⇒ βk(hk,m(yi)) = 0⇒ βm(yi) = 0

⇒ ti = 0⇒ θ(x) = 0⇒ x ∈ ker(θ) ∩K0(A)+ ⇒ x = 0.

Finally, we verify the invariance of β. For x ∈ S and s ∈ F , Lemma 2.2.11

ensures that x − α̂s(x) belongs to Hσ, which in turn lives inside ker(θ), so that

θ(x− α̂s(x)) = 0. Therefore,

β(x− α̂s(x)) = φ ◦ θ(x− α̂s(x)) = 0 =⇒ β(x) = β(α̂s(x)),

completing the proof.

While MF algebras are always stably finite, the authors of [8] remarked that there

are no known examples of stably finite C∗-algebras which are not MF. With the right

K0 condition at our disposal we can give an answer to this inquiry for a special class

of crossed product algebras. Here is the crucial result, reminiscent of N. Brown’s

main result in [10].

Theorem 2.2.14. Let A be a unital AF algebra and α : Fr → Aut(A) an action of

the free group on r generators. Then the following are equivalent:
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1. α is MF.

2. α is quasidiagonal.

3. α is K0-QD.

4. Hσ ∩K0(A)+ = {0}.

5. The reduced crossed product Aoλ,α Fr is MF.

6. The reduced crossed product Aoλ,α Fr is stably finite.

Proof. For such an action, the equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) are

contained in Theorem 2.1.19, Propositions 2.2.8 and 2.2.13. Now every MF algebra is

stably finite, so it suffices to show (6)⇒ (4). To that end, suppose x ∈ Hσ∩K0(A)+.

Then x = [p] where p ∈ P∞(A). From the Pimsner-Voiculescu exact sequence,

ker(ι̂) = Hσ, so 0 = ι̂(x) = ι̂([p]) = [ι(p)] in K0(A oλ,α Fr). However, the stable

finiteness of Aoλ,α Fr ensures ι(p) = 0, which implies that p = 0 since ι is inclusion.

Thus x = 0 and (3) holds.

Example 2.2.15. If A is an AF-algebra and (A,Fr, α), (A,Fr, β) are C∗-dynamical

systems which agree on K-theory, that is α̂ = β̂, then Theorem 2.2.14 ensures that

α is MF if and only if β is MF. In particular, recall that actions α and β are said

to be exterior equivalent provided there is a map u : Γ → U(A) which satisfies the

cocycle condition ust = usαs(ut) and βs = Ads ◦αs for each s, t ∈ Γ. In this case α

and β clearly agree on K-theory and the above discussion applies.
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3. C*-FINITENESS AND PARADOXICAL DECOMPOSITIONS

This chapter explores the deep theme common to groups, dynamical systems and

operator algebras; that of finiteness, infiniteness, and proper infiniteness, the lat-

ter expressed in terms of paradoxical decompositions. The remarkable alternative

theorem of Tarski establishes, for discrete groups, the dichotomy between amenabil-

ity and paradoxical decomposability. This carries over into the realm of operator

algebras. Indeed, if a discrete group Γ acts on itself by left-translation, the Roe

algebra C(βΓ) oλ Γ is properly infinite if and only if Γ is Γ-paradoxical and this

happens if and only if Γ is non-amenable [45]. This is mirrored in the von Neumann

algebra setting as well; all projections in a II1 factor are finite and the ordering of

Murray-von-Neumann subequivalence is determined by a unique faithful normal tra-

cial state. Alternatively type III factors admit no traces since all non-zero projections

therein are properly infinite. As for unital, simple, separable and nuclear algebras,

the C∗-enthusiast of old hoped that the trace/traceless divide determined a similar

dichotomy between stable finiteness and pure infiniteness (the C∗-algebraic analog

of type III). This hope was laid to rest with Rørdam’s example of a unital, simple,

separable, nuclear C∗-algebra containing both an infinite and a non-zero finite pro-

jection [43]. The conjecture for such a dichotomy remains open for those algebras

whose projections are total. Theorem 3.0.18 below is a result in this direction.

Despite the failure of the above dichotomy, the classification program of Elliott

in its original K-theoretic formulation has witnessed much success for stably finite

algebras [44], [19], as well as in the purely infinite case with the spectacular complete

classification results of Kirchberg and Phillips [37], [29] modulo the UCT. One

motivation for studying purely infinite algebras stems from the fact that Kirchberg
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algebras (unital, simple, separable, nuclear, and purely infinite) are classified by

their K- or KK-theory. The C∗-literature has produced examples of purely infinite

C∗-algebras arising from dynamical systems [4], [31], [32], [45]. In many cases the

underlying algebra is abelian with spectrum the Cantor set. For example, Archbold,

Spielberg, and Kumjian (independently) proved that there is an action of Z2 ∗Z3 on

the Cantor set so that the corresponding crossed product C∗-algebra is isomorphic to

O2 [47]. Laca and Spielberg [32] construct purely infinite and simple crossed products

that emerge from strong boundary actions. Jolissaint and Robertson [26] generalized

the idea of strong boundary action to noncommutative systems with the concept of

an n-filling action. They showed that Aoλ Γ is simple and purely infinite provided

that the action is properly outer and n-filling and every corner pAp of A is infinite

dimensional. When the algebra A has a well behaved K0(A) group we will in fact

give a K-theoretic proof of their result (see Proposition 3.2.20).

The transition from classical topological dynamics to noncommutative C∗-dynamics

presents several challenges and subtleties. One way to approach these issues is to

interpret dynamical conditions K-theoretically via the induced actions on K0(A) and

on the Cuntz semigroup W (A) and use tools from the classification literature as well

as developed techniques of Cuntz comparison to uncover pertinent algebraic infor-

mation. Such an approach is seen in Brown’s work [10] as well as that of the author

in the previous chapter (see [41]. We continue this philosophy here. For instance,

the classical version of topological transitivity has a natural extension to noncom-

mutative systems (Definition 3.1.9), and, as in the commutative case, is tied to the

primitivity of the algebra (see Theorem 3.1.12). The idea of a group acting paradox-

ically on a set and the construction of the type semigroup goes back to the work of

Tarski (the reader is encouraged to read Wagon’s book [53] for a good treatment).

Rørdam and Sierakowski [45] looked at the type semigroup S(X,Γ) built from an
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action of a discrete group on the Cantor set and tied pure infiniteness of the resulting

reduced crossed product to the absence of traces on this semigroup. In effect, they

prove that if a countable, discrete, and exact group Γ acts continuously and freely

on the Cantor set X, and the preordered semigroup S(X,Γ) is almost unperforated,

then the following are equivalent: (i) The reduced crossed product C(X) oλ Γ is

purely infinite, (ii) C(X) oλ Γ is traceless, (iii) S(X,Γ) is purely infinite (that is

2x ≤ x for every x ∈ S(X,Γ)), and (iv) S(X,Γ) is traceless. Inspired by their work,

we construct a type semigroup S(A,Γ, α) for noncommutative systems (A,Γ, α) and

establish a generalized result. This is Theorem 3.2.21 below which, in particular,

implies the following.

Theorem 3.0.16. Let A be a unital, separable, and exact C*-algebra with stable

rank one and real rank zero. Let α : Γ → Aut(A) be a minimal and properly outer

action with S(A,Γ, α) almost unperforated. Then the following are equivalent:

1. The semigroup S(A,Γ, α) is purely infinite.

2. The C*-algebra Aoλ Γ is purely infinite.

3. The C*-algebra Aoλ Γ is traceless.

4. The semigroup S(A,Γ, α) admits no non-trivial state.

As a suitable quotient of K0(A)+, this type semigroup S(A,Γ, α) is purely infinite

if and only if every positive element ofK0(A)+ is paradoxical under the induced action

with covering multiplicity at least two. Taking covering multiplicities into account,

Kerr and Nowak [28] consider completely non-paradoxical actions of a discrete group

on the Cantor set. We do the same for noncommutative systems using ordered

K-theory, and inevitably resort to Tarski’s deep result (Theorem 3.2.11) to prove

Theorem 3.2.13; of which the following is a special case.
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Theorem 3.0.17. Let A be a unital, separable and exact C*-algebra with stable rank

one and real rank zero . Let α : Γ→ Aut(A) be a minimal action. Then the following

are equivalent:

1. Aoλ Γ admits a faithful tracial state.

2. Aoλ Γ is stably finite.

3. α is completely non-paradoxical.

Moreover, if A is AF and Γ is a free group, then (1) through (3) are all equivalent to

Aoλ Γ being MF in the sense of Blackadar and Kirchberg [8].

Combining these two results we obtain the desired dichotomy, albeit for a certain

class of crossed products.

Theorem 3.0.18. Let A be a unital, separable, and exact C*-algebra with stable

rank one and real rank zero. Let α : Γ → Aut(A) be a minimal and properly outer

action with S(A,Γ, α) almost unperforated. Then the reduced crossed product AoλΓ

is simple and is either stably finite or purely infinite.

3.1 Minimality and Topological Transitivity

In this section we develop K-theoretic descriptions of minimality and topological

transitivity for C∗-systems, primarily in the noncommutative setting. These formu-

lations will be useful when describing the structure of the resulting reduced crossed

product algebra.

For a general C∗-dynamical system α : Γ → Aut(A), we say that α is minimal

(or equivalently we call A Γ-simple) if A admits no non-trivial invariant ideals, that

is, there does not exist an ideal (0) 6= I $ A with αs(I) = I for every s ∈ Γ. Note

that ideals in the category of C∗-algebras will always be assumed to be closed, and
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the term algebraic ideal will be reserved for ideals in the algebraic sense, that is, not

necessarily closed. If A has a unit, it is routine to check that A admits a non-trivial

invariant (closed) ideal if and only if A contains a non-trivial invariant algebraic ideal.

Since every ideal in Mn(A) is of the form Mn(I) for an ideal I ⊂ A, it follows easily

that if A is Γ-simple, then Mn(A) is Γ-simple as well, where the action Γ y Mn(A)

is given by amplification s 7→ α
(n)
s ∈ Aut(Mn(A)).

The notion of a minimal action α : Γ y A is tied to the simplicity of the

corresponding reduced crossed product Aoλ,α Γ. Recall that a C∗-algebra is simple

if it contains no non-trivial (closed) ideals. Indeed, given a action α : Γ y A, with

a non-trivial Γ-invariant ideal I ⊂ A, one readily sees that I oλ,α Γ is a non-trivial

ideal in A oλ,α Γ, since (I oλ,α Γ) ∩ A = I 6= A = (A oλ,α Γ) ∩ A. Therefore, a

necessary condition for the reduced crossed product to be simple is minimality of the

action. However, the absence of invariant ideals does not always ensure simplicity of

the crossed product algebra. In some cases, however, minimality is enough to ensure

a simple reduced crossed product. We record here some of the these examples.

A discrete group Γ is said to be exact provided that its reduced group C∗-algebra

C∗λ(Γ) is exact, or equivalently, if it admits an amenable action on some compact

space. Exact groups include all amenable groups and all free groups Fr for r ∈

{1, 2, . . . ,∞}. An action Γ y X is said to be free if for each x ∈ X, the isotropy

group {s ∈ Γ : s.x = x} is trivial. It is shown in [46] that if Γ y X is a free action of

an exact group on a locally compact Hausdorff space, the reduced crossed product

C0(X)oλ Γ is simple if and only if the action is minimal.

A group Γ is called a Powers group if the following holds: For every finite set

F ⊂ Γ and integer n ∈ N there is a partition Γ = E tD and elements t1, . . . , tn ∈ Γ

such that
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1. sD ∩ rD = ∅ for every s, r ∈ F with s 6= r,

2. tjE ∩ tkE = ∅ for every j, k ∈ {1, . . . , n} with j 6= k.

It was shown in [25] that Powers’ groups are non-amenable and have infinite conju-

gacy classes. Also, Powers showed that non-abelian free groups are Powers groups.

In [24] P. de la Harpe and G. Skandalis showed that an action α : Γ→ Aut(A) of a

Powers’ group on a unital algebra A is minimal if and only if Aoλ,α Γ is simple.

Recently, the authors of [9] have shown that a minimal C∗-system (A,Γ, α) yields

a simple crossed product A oλ Γ provided that the group Γ is C∗-simple, that is,

C∗λ(Γ) is simple. Examples of such groups can be found in [5].

For general C∗-systems (A,Γ, α), an extra condition is needed over and above

minimality to ensure a simple reduced crossed product. Recall that an automorphism

α in Aut(A) is said to be properly outer if and only if for every invariant ideal

I ⊂ A and inner automorphism β in Inn(I) we have ‖α|I − β‖ = 2. An action

α : Γ → Aut(A) is said to be properly outer if for every e 6= t ∈ Γ, αt is properly

outer. The following result is Theorem 7.2 in [35].

Theorem 3.1.1. Let (A,Γ, α) be a C∗-dynamical system with Γ discrete and A

separable. If α is minimal and properly outer, then Aoλ,α Γ is simple.

3.1.1 K-theoretic Minimality

In the classical setting, a continuous action Γ y X of a discrete group on a

compact Hausdorff space is said to be minimal if the action admits no non-trivial

closed invariant sets, that is, there is no closed subset ∅ 6= Y $ X with s.Y = Y

for every s ∈ Γ. A well known example of a minimal action is that of an irrational

rotation Z y T, given by n.z = ωnz, where ω = exp(2πiθ) for an irrational θ. This,

of course, agrees with the notion of a minimal action above. The equivalence of (1),
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(2), and (4) in the following proposition is well known and standard in dynamics,

whereas statement (3) is tailored here to serve as motivation for our work below.

Proposition 3.1.2. Let Γ y X be a continuous action on a compact Hausdorff

space, and let α : Γ y C(X) denote the induced action. The following are equivalent:

1. The action is minimal.

2. For every x in X, the orbit Orb(x) = {s.x | s ∈ Γ} is dense in X.

3. For any non-empty open set E ⊂ X, there are elements t1, . . . , tn in Γ such

that
n⋃
j=1

tj.E = X.

4. The Γ-algebra C(X) is Γ-simple under the associated action.

Proof. (1)⇒ (2): Fix x ∈ X, and set Y = Orb(x). For s ∈ Γ, note that s.Orb(x) =

Orb(x), so taking closures we get

s.Y = s.Orb(x) = s.Orb(x) = Orb(x) = Y.

Since the action is minimal and ∅ 6= Y , we have that Orb(x) = Y = X.

(2)⇒ (3): Let ∅ 6= E ⊂ X be open. For each finite subset F = {t1, . . . , tk} ⊂ Γ,

put EF = ∪kj=1tj.E. Denoting by F the collection of all finite sets of Γ, we claim that

∪F∈FEF = X. Given the claim, compactness allows for a finite subcover ∪Jj=1EFj =

X, and thus EF = X where F = ∪Jj=1Fj which proves (2)⇒ (3).

To prove the claim, assume there is an x ∈ X\ ∪F∈F EF . By hypothesis, Orb(x)

is dense in X, and since ∪F∈FEF is open, there is a z ∈ ∪F∈FEF ∩ Orb(x). We can

then write z = s.x ∈ EF for some finite set F and some s ∈ Γ, so that z = s.x ∈ t.E

for a certain t, yielding x ∈ (s−1t).E, a contradiction.
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(3) ⇒ (4): This direction is even easier. Suppose there is a non-trivial closed

invariant set Y . Then ∅ 6= X\Y =: E By assumption there are group elements

t1, . . . , tn with
⋃n
j=1 tj.E = X. Thus for a point y ∈ Y , we have that y ∈ tj.E for

some j whence t−1
j .y belongs to E ∩ Y = ∅ by invariance, which is absurd.

(4) ⇔ (1): Every ideal in C(X) is of the form JY = {f ∈ C(X)| f |Y = 0} for

some closed set Y ⊂ X. Note that JY is a non-trivial and invariant if and only if Y

is non-trivial and invariant.

An important remark on statement (3) is in order. Jolissaint and Robertson

([26]) introduced the notion of an n-filling action for general C∗-systems (A,Γ, α),

which in the commutative case is equivalent to a generalized global version of hy-

perbolicity [32]. More precisely, for a given integer n ≥ 2, an action Γ y X of

a discrete group on a compact Hausdorff space is n-filling if and only if for any

non-empty open subsets of X, E1, . . . , En, there are group elements t1, . . . , tn with

t1.E1∪· · ·∪tn.En = X. Thus, by Proposition 3.1.2, an n-filling action is minimal. We

shall see in Proposition 3.1.13 below that the n-filling property is equivalent to the

apparently weaker condition: given any non-empty open subset E, there are group

elements t1, . . . , tn with t1.E∪· · ·∪ tn.E = X. The subtle difference is that the given

integer n is fixed in the n-filling property whereas it is not necessarily bounded in

Proposition 3.1.2.

When the space X is zero-dimensional, other characterizations of minimality will

be useful, indeed, they will motivate a suitable notion of K-theoretic minimality in

the noncommutative case. Here we write C(X;Z) for the dimension group of all

continuous integer-valued functions on X, and CX for the collection of all clopen

subsets of a topological space X. The action on the underlying space induces a

natural action of order automorphisms β : Γ→ OAut(C(X;Z)), given by βs(f)(x) =

71



f(s−1.x) for s ∈ Γ and f ∈ C(X;Z).

Proposition 3.1.3. Let Γ y X be a continuous action on a compact, zero-dimensional

metrizable space. Then the following are equivalent:

1. The action is minimal.

2. For any non-empty clopen set E ⊂ X, there are elements t1, . . . , tn in Γ such

that
n⋃
j=1

tj.E = X.

3. For every non-zero positive function f ∈ C(X;Z)+, there are elements t1, . . . , tn

in Γ such that
n∑
j=1

βtj(f) ≥ 1X .

Proof. (1)⇔ (2): Identical to the proof in Proposition 3.1.2, use the fact that since

our space is now zero-dimensional and therefore every open set (more precisely Y c

in the proof above) contains a clopen set E.

(2) ⇒ (3): Let 0 6= f ∈ C(X;Z)+. Such an f has the form f =
∑m

j=1 nj1Ej

where the nj are non-negative integers, not all zero, and the Ej are clopen sets. Pick

a non-empty Ej := E with nj 6= 0, there is one by our assumption on f . Assuming

(2), find elements t1, . . . , tn such that
⋃n
j=1 tj.E = X. Now since the βtj are order

preserving and 1E ≤ f ,

1X ≤
n∑
j=1

1tj .E =
n∑
j=1

βtj(1E) ≤
n∑
j=1

βtj(f).

(3)⇒ (2): Given a non-empty clopen set E, f := 1E is a non-negative, non-zero,

integer-valued continuous function. We then are granted group elements t1, . . . , tn in
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Γ such that
∑n

j=1 βtj(f) ≥ 1X . Then

1X ≤
n∑
j=1

βtj(f) =
n∑
j=1

βtj(1E) =
n∑
j=1

1tj .E,

which shows
⋃n
j=1 tj.E = X.

Recall that when X is the Cantor set, K0(C(X)) is order isomorphic to C(X;Z)

via the dimension map dim : K0(C(X))→ C(X;Z) given by dim([p]0)(x) = Tr(p(x)).

Here p represents a projection over the matrices of C(X); Mn(C(X)) ∼= C(X;Mn),

and Tr denotes the standard (non-normalized) trace on Mn. Now given a con-

tinuous action Γ y X, let α : Γ → Aut(C(X)) denote the associated action on

the algebra C(X), and write α̂ : Γ → OAut(K0(C(X))) for the induced action

on the ordered group K0(C(X)). Moreover, as above, we have a natural action

β : Γ → OAut(C(X;Z)), given by βs(f)(x) = f(s−1.x) for s ∈ Γ and f ∈ C(X;Z).

One may inquire about the possible equivariance of α̂ and β through the isomor-

phism dim. Indeed, these actions are the same; we show that for each s ∈ Γ, the

following diagram is commutative.

K0(C(X))
α̂s−−−→ K0(C(X))ydim

ydim

C(X;Z)
βs−−−→ C(X;Z)

To see this, consider any n ∈ N, a projection p ∈ Pn(C(X)), an s ∈ Γ and any

x ∈ X. We compute:
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βs ◦ dim([p]0)(x) = dim([p]0)(s.−1x) = Tr(p(s.−1x)) = Tr(α(n)
s (p)(x)) = dim([α(n)

s (p)]0)(x)

= dim ◦α̂s([p]0)(x)

which shows that βs ◦ dim([p]0) = dim ◦α̂s([p]0) as functions on X, and consequently

that βs ◦ dim = dim ◦α̂s by uniqueness of the Grothendieck extension.

Condition (3) in the above Propostion and this discussion motivate a suitable

definition for minimal actions at the K-theoretic level in the noncommutative case,

at least for stably finite algebras where the K0 group is ordered.

Definition 3.1.4. Let Γ be a discrete group, A a unital, stably finite C∗-algebra,

and α : Γ y A an action with induced action α̂ on K0(A).

1. We say that α is K0-minimal provided that for every 0 6= g ∈ K0(A)+, there

are t1, . . . , tn in Γ such that
∑n

j=1 α̂tj(g) ≥ [1]0.

2. Fix an integer n ∈ N. We say that α is K0-n-minimal provided that for every

0 6= g ∈ K0(A)+, there are t1, . . . , tn in Γ such that
∑n

j=1 α̂tj(g) ≥ [1]0.

3. Fix an integer n ∈ N. We say that α is K0-n-filling provided that for all non-

zero g1, . . . , gn ∈ K0(A)+, there are t1, . . . , tn in Γ such that
∑n

j=1 α̂tj(gj) ≥ [1]0.

There is a significant difference between K0-minimal actions and K0-n-minimal

actions. Of course every K0-n-minimal action is K0-minimal, but the converse is

far from true. We shall see that when K0(A) has suitable properties K0-n-minimal

actions along with proper outerness guarantee that the reduced crossed product is

simple and purely infinite, whereas K0-minimal actions along with proper outerness

may generate simple stably finite crossed product algebras.
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Proposition 3.1.3 and the remarks proceeding it imply that a Cantor system

(X,Γ) is minimal if and only if the algebra C(X) is Γ-simple if and only if α is K0-

minimal, where α : Γ y C(X) is, of course, the induced action. With some work, we

will show that for a stably finite algebra that admits sufficiently many projections,

K0-minimality and Γ-simplicity are equivalent notions. Due to the rigid structure

of K0, it turns out to be easier to work with the Cuntz semigroup W (A). Also,

when dealing with Cuntz comparability we need not make any restrictions on the

underlying algebra. Here are the parallel definitions.

Definition 3.1.5. Let Γ be a discrete group, A a unital C∗-algebra, and α : Γ y A

an action with induced action α̂ on the Cuntz semigroup W (A).

1. We say that α is W -minimal provided that for every 0 6= g ∈ W (A), there are

t1, . . . , tn in Γ such that
∑n

j=1 α̂tj(g) ≥ 〈1〉.

2. Fix an integer n ∈ N. We say that α is W -n-minimal provided that for every

0 6= g ∈ W (A), there are t1, . . . , tn in Γ such that
∑n

j=1 α̂tj(g) ≥ 〈1〉.

3. Fix an integer n ∈ N. We say that α is W -n-filling provided that for all non-

zero g1, . . . , gn ∈ W (A), there are t1, . . . , tn in Γ such that
∑n

j=1 α̂tj(gj) ≥ 〈1〉.

Using topological transitivity we show below (Proposition 3.1.13) that W -n-

minimal and W -n-filling actions coincide. But first, we justify our choice of nomen-

clature.

Proposition 3.1.6. Let (A,Γ, α) be a C*-dynamical system with induced action

α̂ : Γ y W (A) on the Cuntz semigroup of A. Then A is Γ-simple if and only if α is

W -minimal.

Proof. Suppose the action is W -minimal and let (0) 6= I ⊂ A be a Γ-invariant ideal.

Take a nonzero x in I+ and find group elements t1, . . . , tn with
∑n

j=1 α̂tj(〈x〉) ≥ 〈1〉.
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This means

〈αt1(x)⊕ · · · ⊕ αtn(x)〉 =
n∑
j=1

〈αtj(x)〉 =
n∑
j=1

α̂tj(〈x〉) ≥ 〈1〉 = 〈1⊕ 0n−1〉.

This implies that 1⊕ 0n−1 is Cuntz smaller than αt1(x)⊕ · · · ⊕ αtn(x) and there is a

sequence (yk)k≥1 in Mn(A) with y∗k(αt1(x) ⊕ · · · ⊕ αtn(x))yk → 1 ⊕ 0n−1. Now each

αtj(x) belongs to I so that αt1(x) ⊕ · · · ⊕ αtn(x) belongs to Mn(I), a (closed) ideal

in Mn(A). Furthermore, each y∗k(αt1(x) ⊕ · · · ⊕ αtn(x))yk ∈ Mn(I) so that 1 ⊕ 0n−1

lives in Mn(I) (Mn(I) is closed) which implies that 1 ∈ I and I = A. The action is

thus Γ-simple.

Conversely, assume α admits no non-trivial invariant ideals, and let g = 〈a〉 ∈

W (A), for some a ∈Mn(A)+. Since the algebraic ideal generated by {α(n)
s (a) : s ∈ Γ}

is all of Mn(A), there are lists of elements t1, . . . , tm ∈ Γ, and x1, . . . , xm; y1, . . . , ym

in Mn(A) such that
m∑
j=1

xjα
(n)
tj (a)y∗j =

1

2
1Mn(A).

Now set zj := xj + yj and observe that

m∑
j=1

zjα
(n)
tj (a)z∗j =

m∑
j=1

xjα
(n)
tj (a)y∗j +

m∑
j=1

yjα
(n)
tj (a)x∗j +

m∑
j=1

xjα
(n)
tj (a)x∗j +

m∑
j=1

yjα
(n)
tj (a)y∗j

≥
m∑
j=1

xjα
(n)
tj (a)y∗j +

( m∑
j=1

xjα
(n)
tj (a)y∗j

)∗
= 1Mn(A) ≥ 1A ⊕ 0m−1,

the first inequality following from the fact that the last two sums on the first line are
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positive. A simple Cuntz comparison now gives

1A ≈ 1A ⊕ 0m−1 -
m∑
j=1

zjα
(n)
tj (a)z∗j = (z1, . . . , zm)(α

(n)
t1 (a)⊕ · · · ⊕ α(n)

tm (a))(z1, . . . , zm)∗

- α
(n)
t1 (a)⊕ · · · ⊕ α(n)

tm (a).

Therefore, in the ordering on W (A),

〈1〉 ≤ 〈α(n)
t1 (a)⊕ · · · ⊕ α(n)

tm (a)〉 =
m∑
j=1

〈α(n)
tj (a)〉 =

m∑
j=1

α̂tj(〈a〉)

which gives the W -minimality of the action.

It is well known that if a C∗algebraA is unital and stably finite, (K0(A), K0(A)+, [1]0)

is a ordered abelian group with order unit u = [1]0, and so the above definition of

K0-minimality applies. With the added assumption of sufficiently many projections,

all the notions of minimality mentioned above will coincide as the next result shows.

Recall that a subgroup H of an abelian ordered group (G,G+) is said to be an order

ideal provided that its positive cone is spanning and hereditary, that is, H = H+−H+

and 0 ≤ g ≤ h ∈ H+ implies g ∈ H, where by definition H+ = H ∩ G+. In the

context of an action β : Γ → OAut(G), a subset H ⊂ G is called Γ-invariant if for

every t ∈ Γ, βt(H) ⊂ H.

Theorem 3.1.7. Let A be a unital, stably finite C*-algebra with the property that

every ideal in A admits a non-trivial projection. Consider an action α : Γ→ Aut(A)

with induced action α̂ : Γ→ OAut(K0(A)). The following are equivalent:

1. A is Γ-simple.

2. α is W -minimal.

77



3. α is K0-minimal.

4. There are no non-trivial Γ-invariant order ideals H ⊂ K0(A).

Proof. The equivalence of (1) and (2) was shown in Propostion 3.1.6.

(2)⇒ (3): Let 0 6= x ∈ K0(A)+, then x = [p]0 for some non-zero p ∈ Pm(A). By

hypothesis there are group elements t1, . . . , tn such that

〈αt1(p)⊕ · · · ⊕ αtn(p)〉 =
n∑
j=1

〈αtj(p)〉 =
n∑
j=1

α̂tj(〈p〉) ≥ 〈1〉.

By definition 1 - r := αt1(p)⊕· · ·⊕αtn(p) and so 1 ∼ q ≤ r where q is a subprojection

of r in Mmn(A). Since r−q ⊥ q, a small computation will give the desired inequality,

indeed:

[1]0 ≤ [1]0 + [r − q]0 = [q]0 + [r − q]0 = [r − q + q]0 = [r]0 = [αt1(p)⊕ · · · ⊕ αtn(p)]0

=
n∑
j=1

α̂tj([p]0) =
n∑
j=1

α̂tj(x).

(3)⇒ (1): Suppose (0) 6= I ⊂ A is a Γ-invariant ideal. By our assumption on A,

we can find a nonzero projection p ∈ I. Now find group elements t1, . . . , tn such that

[αt1(p)⊕ · · · ⊕ αtn(p)]0 =
n∑
j=1

[αtj(p)]0 =
n∑
j=1

α̂tj([p]0) ≥ [1]0.

Apply the order embedding V (A) ↪→ W (A) which gives 〈αt1(p)⊕ · · ·⊕αtn(p)〉 ≥ 〈1〉

so that

1⊕ 0n−1 ≈ 1 - αt1(p)⊕ · · · ⊕ αtn(p).

Now follow the exact reasoning as Propostion 3.1.6 to deduce that 1 ∈ I and I = A.

(3) ⇒ (4): Suppose (0) 6= H ⊂ K0(A) is a Γ-invariant order ideal. Since H+
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is spanning, we can locate a non-zero x in H+ := H ∩ K0(A)+. By (3) there are

t1, . . . , tn ∈ Γ with
∑n

j=1 α̂tj(x) ≥ [1]0 ≥ 0. Each α̂tj(x) is in H so
∑n

j=1 α̂tj(x) ∈ H,

and H being hereditary implies that [1]0 is in H. Now given any z ∈ K0(A)+, there

is an n ∈ Z+ such that 0 ≤ z ≤ n[1]0. Using again the fact that H is hereditary we

have z ∈ H, thus K0(A)+ ⊂ H whence K0(A) = H.

(4)⇒ (3): Let 0 6= x ∈ K0(A)+. Consider the set

L :=

{
y ∈ K0(A) : ∃n ∈ Z+,∃t1, . . . , tn ∈ Γ such that 0 ≤ y ≤

n∑
j=1

α̂tj(x)

}
.

Two facts are fairly clear about L ⊂ K0(A)+: L + L ⊂ L and L is hereditary, that

is, if z ∈ K0(A) and y ∈ L with 0 ≤ z ≤ y then z ∈ L. It is natural to then define

the subgroup H = L − L. We show that H is in fact a non-zero Γ-invariant order

ideal. To that end set H+ = H ∩K0(A)+ and note that L ⊂ H+. Then

H = L− L ⊂ H+ −H+ ⊂ H,

so H = H+ −H+. Also, if z ∈ K0(A) with 0 ≤ z ≤ y − y′ ∈ H, with y, y′ ∈ L, then

since y − y′ ≤ y and L is hereditary, we have z ∈ L ⊂ H so H is hereditary as well.

H 6= (0) since x ∈ H. Finally, if y ∈ L and t ∈ Γ, then 0 ≤ y ≤
∑n

j=1 α̂tj(x) for

certain group elements t1, . . . , tn. Applying the order isomorphism α̂t we get

0 ≤ α̂t(y) ≤ α̂t
( n∑
j=1

α̂tj(x)
)

=
n∑
j=1

α̂ttj(x),

which implies that α̂t(y) ∈ L and α̂t(L) ⊂ L. So α̂t(H) = α̂t(L)−α̂t(L) ⊂ L−L = H

which is what we wanted. By our hypothesis, H = K0(A), so that [1]0 ∈ H. Writing

[1]0 = y−y′ ≤ y for some y, y′ in L and recalling that L is hereditary ensures [1]0 ∈ L,
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which means that there are group elements t1, . . . , tn with
∑n

j=1 α̂tj(x) ≥ [1]0, and α

is thus K0-minimal.

3.1.2 K-theoretic Topological Transitivity

We now aim to develop a notion of topological transitivity in the noncommutative

setting, and we do this using K-theory. An action Γ y X of a group on a locally

compact Hausdorff space is termed topologically transitive if for every pair U, V of

non-empty open subsets of X, there is a group element s ∈ Γ with s.U ∩ V 6= ∅.

When X is compact, it is routine to check that every minimal action is topologi-

cally transitive (see Proposition 3.1.2 above) but the converse is false in general as

witnessed by the translation action Z y Z∞ on the one-point compactification of

the integers with the point ∞ being fixed. An action Γ y X is said to have the

intersection property if each non-zero ideal of C0(X)oλ Γ has non-zero intersection

with C0(X). As minimality of an action is linked with simplicity of the crossed

product, topological transitivity is associated with primitivity. The following is an

abbreviated form of Proposition 2.8 of [33].

Proposition 3.1.8. Consider a continuous action of a discrete group on a locally

compact Hausdorff space X. If C0(X)oλ Γ is prime, then the action is topologically

transitive. Conversely, if the action is topologically transitive and has the intersection

property, then C0(X)oλ Γ is prime.

After we develop a notion of topological transitivity in the noncommutative set-

ting we will establish a more general result (see Theorem 3.1.12).

Definition 3.1.9. Let (A,Γ, α) be a C∗-system. Call an action α topologically tran-

sitive if for every pair of non-zero x, y ∈ W (A), there is group element t ∈ Γ and a

non-zero z ∈ W (A) with z ≤ x and α̂t(z) ≤ y.
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The following Proposition shows that this definition is consistent with the estab-

lished notion of topological transitivity in the commutative setting. Recall that for

f, g ∈ M∞(C(X))+, we have f - g if and only if supp(f) ⊂ supp(g), where supp(·)

denotes the support.

Proposition 3.1.10. Let X be a locally compact space, and let k : Γ y X be a

continuous action with induced action α : Γ→ Aut(C0(X)). Then k is topologically

transitive if and only if α is topologically transitive.

Proof. Assume that that k is topologically transitive, and let x = 〈g〉, y = 〈f〉

be non-zero elements in W (C0(X)). Since f and g are continuous matrix valued

functions on X, U = {x|f(x) 6= 0} and V = {x|g(x) 6= 0} are open and non-

empty. Therefore, there is a s ∈ Γ such that s.U ∩ V 6= ∅. Consider any non-empty

open subset Y ⊂ s.U ∩ V and find a non-zero continuous function h : X → [0, 1]

with supp(h) ⊂ Y . Since supp(h) ⊂ V ⊂ supp(g) we have that h - g whence

0 6= z := 〈h〉 ≤ 〈g〉 = x. Also,

supp(s−1.h) = s−1. supp(h) ⊂ s−1.Y ⊂ s−1.(s.U) = U ⊂ supp(f),

thus s−1.h - f which gives α̂s−1(z) = 〈s−1.h〉 ≤ 〈f〉 = y.

Conversely, now suppose α : Γ y C0(X) is topologically transitive and consider

a pair U, V of non-empty open subsets of X. Find continuous non-zero mappings

f, g : X → [0, 1] with supp(f) ⊂ U and supp(g) ⊂ V . There is then a non-

zero z ∈ W (C0(X)) and t ∈ Γ with z ≤ 〈f〉 and α̂t(z) ≤ 〈g〉. Say z = 〈h〉 for

some continuous h ∈ C0(X,M+
n ). Then supp(h) ⊂ supp(f) ⊂ U and t. supp(h) =

supp(t.h) ⊂ supp(g) ⊂ V . Now set Y := {x|h(x) 6= 0}, a non-empty open set and

observe that ∅ 6= Y ⊂ supp(h) ⊂ U ∩ t−1.V .
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The next result shows that, as in the commutative case, every minimal action is

topologically transitive. A standard piece of notation will be used in the proof: if

a ∈ A+, and ε > 0, set (a− ε)+ := f(a) where f : [0,∞)→ [0,∞) is the continuous

function f(t) = max{0, t− ε}.

Proposition 3.1.11. Let A be a unital C*-algebra. If α : Γ→ Aut(A) is a minimal

action, then it is topologically transitive.

Proof. Let x, y ∈ W (A) be non-zero, without loss of generality we may assume

x = 〈a〉 and y = 〈b〉 with a, b ∈ A+. By minimality there are group elements

t1, . . . , tn ∈ Γ with

〈αt1(a)⊕ · · · ⊕ αtn(a)〉 =
n∑
j=1

〈αtj(a)〉 =
n∑
j=1

α̂tj(〈a〉) =
n∑
j=1

α̂tj(x) ≥ 〈1〉.

There is a sequence (vk)k≥1 in Mn×1(A) with v∗k(αt1(a)⊕ · · · ⊕αtn(a))vk → 1 in A as

k →∞. For each k write vk = (vk,1, . . . , vk,n)T so that

( n∑
j=1

v∗k,jαtj(a)vk,j

)
k≥1

−→ 1, as k →∞.

With k large enough we have
∥∥1−

∑n
j=1 v

∗
k,jαtj(a)vk,j

∥∥ < 1/2. There is a y ∈ A with

(1A − 1/2)+ = y∗
( n∑

j=1

v∗k,jαtj(a)vk,j

)
y,

which gives 1A =
∑n

j=1 u
∗
jαtj(a)uj where uj = 21/2vk,jy. It follows that for every

j = 1, . . . , n

b =
n∑
j=1

b1/2u∗jαtj(a)ujb
1/2 ≥ b1/2u∗jαtj(a)ujb

1/2 ≥ 0.
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Choose an i such that b1/2u∗iαti(a)uib
1/2 6= 0 (there is one since b 6= 0), and set

c = αt−1
i

(b1/2u∗iαti(a)uib
1/2) = (αt−1

i
(uib

1/2))∗aαt−1
i

(uib
1/2).

Then c 6= 0, c - a and αti(c) - b. With z := 〈c〉, we have z ≤ x and α̂ti(z) ≤ y so α

is topologically transitive.

Recall that a C∗-algebra B is prime if for every pair of non-trivial ideals I, J ⊂ B,

IJ = I ∩ J 6= (0). It natural to ask what dynamical conditions give rise to prime

reduced crossed products. We briefly study this issue.

A C∗-system (A,Γ, α) is said to have the intersection property if every ideal

I ⊂ A oλ,α Γ has non-trivial intersection with A. If the action α is properly outer,

then the intersection property follows (see lemma 3.2.15). When A = C0(X), proper

outerness is equivalent to topological freeness, and it well known that if the action

is topologically free, the reduced crossed product C0(X) oλ Γ is prime if and only

if the action Γ y X is topologically transitive. We now can generalize this to the

noncommutative setting.

Theorem 3.1.12. Let A be a C∗-algebra, Γ a countable discrete group and α : Γ→

Aut(A) an action. If Aoλ,αΓ is prime then α is topologically transitive. Conversely,

if (A,Γ, α) has the intersection property and α is topologically transitive then Aoλ,αΓ

is prime.

Proof. Assume α is topologically transitive and that (A,Γ, α) has the intersection

property. Let I and J be non-zero ideals in A oλ,α Γ. By the intersection property

there are 0 6= x ∈ I∩A and 0 6= y ∈ J∩A. Set a = x∗x ∈ I∩A+ and b = y∗y ∈ J∩A+.

By topological transitivity there is a 0 6= z ∈ W (A) and t ∈ Γ with z ≤ 〈a〉 and

α̂t(z) ≤ 〈b〉. Writing z = 〈c〉 for some c ∈ Mn(A)+, we have c - a and αt(c) - b.
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There is a sequence vk ∈M1×n(A) with v∗kavk → c as k →∞. If vk = (vk,1, . . . , vk,n),

and c = (ci,j)i,j then for every 1 ≤ i, j ≤ n we get v∗k,iavk,j → ci,j as k → ∞. Note

that v∗k,iavk,j ∈ A ∩ I for each i, j, k, so ci,j ∈ A ∩ I for every i, j. Since A ∩ I is a

Γ-invariant ideal in A we know that αt(ci,j) ∈ A ∩ I for every i, j.

Similarly there is a sequence uk ∈M1×n(A) with u∗kbuk → αt(c) as k →∞ giving

u∗k,ibuk,j → αt(ci,j) for every i, j where uk = (uk,1, . . . , uk,n). Since u∗k,ibuk,j belongs

to A ∩ J for every i, j so do the αt(ci,j). With c non-zero, there is a ci,j 6= 0 so that

αt(ci,j) ∈ (A ∩ I) ∩ (A ∩ J) ⊂ I ∩ J . Thus Aoλ Γ is prime.

Conversely, now suppose Aoλ Γ is prime. Let x, y ∈ W (A) be nonzero. We can

write x = 〈a〉 and y = 〈b〉 with a, b ∈Mn(A)+. Since Aoλ Γ is prime, Mn(Aoλ Γ) ∼=

Mn(A)oλ,α(n) Γ is prime, so we can find a non-zero c ∈Mn(A) and s ∈ Γ with

0 6= b1/2cus−1a1/2 = b1/2cus−1a1/2usus−1 = b1/2cαs−1(a1/2)us−1 .

Multiplying on the right by the unitary us, we get v := b1/2cαs−1(a1/2) is non-zero in

Mn(A). Setting w = αs(v) we get z := 〈ww∗〉 ≤ 〈a〉 = x since

ww∗ = αs(v)αs(v)∗ = αs(b
1/2c)a1/2(αs(b

1/2c)a1/2)∗ = αs(b
1/2c)aαs(b

1/2c)∗ - a.

On the other hand,

w∗w = αs(v)∗αs(v) = αs(v
∗v) = αs(αs−1(a1/2)c∗bcαs−1(a1/2))

= a1/2αs(c)
∗αs(b)αs(c)a

1/2 = (αs(c)a
1/2)∗αs(b)αs(c)a

1/2 - αs(b),

which says that z = 〈ww∗〉 = 〈w∗w〉 ≤ 〈αs(b)〉 = α̂s(〈b〉) = α̂s(y). Therefore we

have found 0 6= z ∈ W (A), and t := s−1 ∈ Γ with z ≤ x and α̂t(z) ≤ y as was

required.
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We end with a cute result that will be needed later on.

Proposition 3.1.13. Let (A,Γ, α) be a C∗-system. Then α is W -n-minimal if and

only if α is W -n-filling.

Proof. The n-minimal property easily follows from the n-filling property. For the

converse, let x1, . . . , xn be non-zero in W (A). Let t1 = e. Since α is n-minimal, α is

topologically transitive, so we can find 0 6= z1 ≤ x1 and t2 ∈ Γ with z1 ≤ t2.x2. Next,

again by transitivity find 0 6= z2 ≤ z1 and t3 ∈ Γ with z2 ≤ t3.x3. We continue in this

fashion until we find 0 6= zn−1 ≤ zn−2 and tn ∈ Γ with zn−1 ≤ tn.xn. Now apply the

n-minimal property to locate s1, . . . , sn in Γ with
∑n

j=1 sj.zn−1 ≥ 〈1〉. From these

orderings we get

s1tn.xn ≥ s1.zn−1, s2tn−1.xn−1 ≥ s2.zn−2 ≥ s2.zn−1, . . .

. . . , sn−1t2.x2 ≥ sn−1.z1 ≥ sn−1.zn−1, sn.x1 ≥ sn.z1 ≥ sn.zn−1.

We thus obtain
n∑
j=1

sn−j+1tj.xj ≥
n∑
j=1

sj.zn−1 ≥ 〈1〉

so that α is indeed W -n-filling.

3.2 Finiteness, Paradoxical Decompositions, and The Type Semigroup

In this section we study K-theoretic conditions, in the form of paradoxical phe-

nomena, that characterize finite and infinite crossed products. As a brief reminder,

a projection p ∈ A is properly infinite if there are two subprojections q, r ≤ p with

qr = 0 and q ∼ p ∼ r. The algebra A is properly infinite if 1A is properly infinite.

A simple algebra A is termed purely infinite if every hereditary C∗-subalgebra of A

contains a properly infinite projection. In the simple case, S. Zhang showed that A
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is purely infinite if and only in RR(A) = 0 and every projection in A is properly

infinite [55]. It was a longstanding open question whether there existed a unital,

simple, separable, and nuclear C∗-algebra which was neither stably finite or purely

infinite. M. Rørdam settled the issue in [43] by exhibiting a unital, simple, nuclear,

and separable C∗-algebra D containing a finite and infinite projection p, q. It follows

that A = qDq is unital, separable, nuclear, simple, and properly infinite, but not

purely infinite. It is natural to ask if there is a smaller class of algebras for which

such a dichotomy exists. Theorem 3.2.22 below is a result in this direction.

3.2.1 Paradoxical Decompositions

We first construct infinite algebras arising from crossed products by generalizing

the notion of a local boundary action to the noncommutative setting. A continuous

action Γ y X of a discrete group on a locally compact space is called a local boundary

action if for every non-empty open set U ⊂ X there is an open set V ⊂ U and t ∈ Γ

with t.V ( V . Laca and Spielberg showed in [32] that such actions yield infinite

projections in the reduced crossed product C0(X)oλ Γ. Sierakowski remarked that

the condition t.V ( V for some non-empty open set V and group element t ∈ Γ

is equivalent to the existence of open sets U1, U2 ⊂ X and elements t1, t2 ∈ Γ such

that U1 ∪ U2 = X, t1.U1 ∩ t2.U2 = ∅, and t1.U1 ∪ t2.U2 6= X. He generalized this by

defining paradoxical actions. A transformation group (X,Γ) is n-paradoxical if there

exist open subsets U1, . . . , Un ⊂ X and elements t1, . . . , tn ∈ Γ such that

n⋃
j=1

Uj = X,

n⊔
j=1

tj.Uj ( X.

He then showed that the algebra C(X)oλ Γ is infinite provided that X is compact

and the action Γ y X is n-paradoxical for some n. We do the same here in the
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noncommutative setting.

Let α : Γ→ Aut(A) be a C∗-dynamical system where Γ is a discrete group. Once

again, we look at the induced actions α̂ : Γ y K0(A)+ and α̂ : Γ y W (A) given by

t.x = α̂t(x) for t ∈ Γ and x ∈ K0(A)+ or W (A).

Proposition 3.2.1. Let A be a stably finite C*-algebra with cancellation and such

that K0(A)+ has Riesz refinement. Let α : Γ → Aut(A) be a K0-paradoxical action

in the sense that there exist x1, . . . , xn ∈ K0(A)+ and group elements t1, . . . , tn ∈ Γ

with
n∑
j=1

xj ≥ [1A]0, and
n∑
j=1

α̂tj(xj) < [1A]0.

Then Aoλ Γ is infinite.

Proof. Denote by ι : A → A oλ Γ the canonical embedding. Given that
∑n

j=1 xj ≥

[1A]0, there is an r ∈ P∞(A) with
∑n

j=1 xj = [1A]0 + [r]0. With the refinement

property one can find elements {yj}nj , {zj}nj ⊂ K0(A)+ with

xj = yj + zj,
n∑
j=1

yj = [1A]0,
n∑
j=1

zj = [r]0.

Then
∑n

j=1 α̂tj(yj) ≤
∑n

j=1 α̂tj(xj) < [1A]0. Cancellation implies there are mutually

orthogonal projections p1, . . . , pn in A with [pj]0 = yj, as well as mutually orthogonal

projections q1, . . . , qn in A with [qj]0 = α̂tj(xj) = α̂tj([pj]0) = [αtj(pj)]0. It also

implies that qj ∼ αtj(pj) as projections in A for each j, whence ι(qj) ∼ ι(αtj(pj)) ∼

ι(pj) as projections in Aoλ Γ. Setting p =
∑

j pj, and q =
∑

j qj we obtain

ι(q) =
n∑
j=1

ι(qj) ∼
n∑
j=1

ι(pj) = ι(p).

On the other hand [p]0 =
[∑

j pj
]

0
=
∑

j[pj]0 =
∑

j yj = [1A]0. Cancellation once
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more implies p ∼ 1A and therefore ι(p) ∼ ι(1A) = 1AoλΓ. Thus we have ι(q) ∼ 1AoλΓ.

All is needed to show is that ι(q) 6= 1AoλΓ. To this end we observe that

[q]0 =
[ n∑
j=1

qj
]

0
=

n∑
j=1

[qj]0 =
n∑
j=1

α̂tj(xj) < [1]0,

so that [1A]0 − [q]0 = [1A − q]0 6= 0, which implies 1 − q 6= 0 by stable finiteness.

Therefore ι(q) 6= ι(1A) = 1AoλΓ and Aoλ Γ is infinite as claimed.

A similar result holds with less restrictions on the underlying algebra A but with

a slight strengthening on the dynamics. For this result we will make the following

convention: for x, y ∈ W (A) we shall write x < y to mean x + z ≤ y for some

non-zero z ∈ W (A).

Proposition 3.2.2. Let A be a unital C*-algebra and let α : Γ → Aut(A) be an

action which is W -paradoxical in the sense that there exist x1, . . . , xn ∈ W (A) and

group elements t1, . . . , tn ∈ Γ with
∑n

j=1 xj ≥ 〈1A〉 and
∑n

j=1 α̂tj(xj) < 〈1A〉. Then

Aoλ Γ is infinite.

Proof. Again let ι : A→ Aoλ Γ denote the canonical embedding and for t ∈ Γ write

ut for the canonical unitary in A oλ Γ that implements the action αt : A → A, so

that ι(αt(a)) = utι(a)u∗t ≈ ι(a) for every a ∈ A and t ∈ Γ. If a ∈ Mn(A)+ then by

amplification we have ι(n)(α
(n)
t (a)) = (ut ⊗ 1A)ι(n)(a)(ut ⊗ 1n)∗ ≈ ι(n)(a) for every

t ∈ Γ. For economy we will omit denoting the amplification when the context is

understood.

For each j = 1, . . . , n set xj = 〈aj〉 for aj ∈M∞(A)+. Then we have

〈1A〉 ≤
n∑
j=1

xj =
n∑
j=1

〈aj〉 = 〈a1 ⊕ . . .⊕ an〉,
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which implies 1A - ⊕nj=1aj in M∞(A)+. Applying ι we get 1AoλΓ - ⊕nj=1ι(aj) ≈

⊕nj=1ι(αtj(aj)) in M∞(Aoλ Γ)+.

By our convention we have

〈αt1(a1)⊕ . . .⊕ αtn(an)⊕ b〉 =
n∑
j=1

α̂tj(xj) + 〈b〉 ≤ 〈1A〉

for some non-zero b ∈M∞(A)+. Thus αt1(a1)⊕. . .⊕αtn(an)⊕b - 1A and ι(αt1(a1))⊕

. . .⊕ ι(αtn(an))⊕ ι(b) - 1AoλΓ. Together we get

1AoλΓ ⊕ ι(b) - ι(αt1(a1))⊕ . . .⊕ ι(αtn(an))⊕ ι(b) - 1AoλΓ.

Since 1AoλΓ ⊕ ι(b) - 1AoλΓ andι(b) 6= 0, work in [30] implies that A oλ Γ is infinite

as claimed.

We make the brief remark that an action Γ y A is K0-paradoxical in the above

sense with n = 2 if and only if there is a non-zero x ∈ Σ(A) (the scale of A) and

t ∈ Γ with α̂t(x) < x.

Perhaps what has been called paradoxical is misleading because, in a sense, para-

doxicality implies the idea of duplication of sets. Gleaning from the ideas explored

in [28], we define a notion of paradoxical decomposition with covering multiplicity in

the noncommutative setting.

Definition 3.2.3. Let A be a C∗-algebra, Γ a discrete group and α : Γ → Aut(A)

an action with its induced action α̂. Let 0 6= x ∈ K0(A)+ and k > l > 0 be

positive integers. We say x is (Γ, k, l)-paradoxical if there are x1, . . . , xn in K0(A)+
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and t1, . . . , tn in Γ such that

n∑
j=1

xj ≥ kx, and
n∑
j=1

α̂tj(xj) ≤ lx.

If an element x ∈ K0(A)+ fails to be (Γ, k, l)-paradoxical for all integers k > l > 0

we call x completely non-paradoxical. The action α will be called completely non-

paradoxical if every member of K0(A)+ is completely non-paradoxical.

The notion of a quasidiagonal action was first introduced in [28] and further

studied in the previous chapter from a K-theoretic viewpoint. We observed that

MF (or equivalently QD) actions of discrete groups Γ on AF algebras admit, in a

local sense, Γ-invariant traces on K0(A), so it should come to no surprise that these

actions do not allow paradoxical decompositions at the K-theoretic level. The next

proposition illustrates this principle and provides us with our first class of examples

of completely non-paradoxical actions.

Proposition 3.2.4. If α : Γ→ Aut(A) is an MF action of a discrete group Γ on a

unital AF algebra, then α is completely non-paradoxical.

Proof. Suppose 0 6= x ∈ K0(A)+ is (Γ, k, l)-paradoxical for some positive integers

k > l > 0, so that there are x1, . . . , xn in K0(A)+ and t1, . . . , tn in Γ such that

y :=
n∑
j=1

xj ≥ kx and z :=
n∑
j=1

α̂tj(xj) ≤ lx.

Consider the finite sets F = {t1, . . . , tn} ⊂ Γ, and S = {y−kx, lx−z, x1, . . . , xn, x} ⊂

K0(A)+. Since α is quasidiagonal, Proposition 2.2.8 guarantees existence of a sub-

group H ≤ K0(A) which contains all the F -iterates of S, and a group homomorphism

β : H → Z with β(α̂t(g)) = β(g) for each t ∈ F and g ∈ S. Also, β(g) > 0 for
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0 < g ∈ S. Clearly y, z, kx, lx all belong to the subgroup H, and since β(y−kx) ≥ 0,

we have kβ(x) = β(kx) ≤ β(y). Similarly, β(z) ≤ lβ(x). Now using the Γ-invariance

of β,

kβ(x) ≤ β(y) = β

( n∑
j=1

xj

)
=

n∑
j=1

β(xj) =
n∑
j=1

β(α̂tj(xj))

= β

( n∑
j=1

α̂tj(xj)

)
= β(z) ≤ lβ(x).

This is absurd since β(x) > 0 and l < k. Thus no such non-zero x exists.

It was shown by Kerr and Nowak [28] that quasidiagonal actions by groups whose

reduced group algebras are MF give rise to MF crossed products, which are always

stably finite. Indeed, it is the finiteness of the crossed product that is an obstruction

to a positive element being paradoxical.

Proposition 3.2.5. Consider a C*-dynamical system (A,Γ, α) with stably finite

reduced crossed product A oλ Γ. Then the induced α̂ : Γ y K0(A)+ is completely

non-paradoxical.

Proof. Suppose on the contrary that 0 6= [p]0 := x ∈ K0(A)+ is (Γ, k, l) paradoxical

for some integers k > l > 0 where p ∈ Pm(A). We then have elements x1, . . . , xn in

K0(A)+ and t1, . . . , tn ∈ Γ with

n∑
j=1

xj ≥ kx and
n∑
j=1

α̂tj(xj) ≤ lx.

If ι : A ↪→ A oλ Γ, ι : a 7→ aue, denotes the canonical embedding, apply ι̂ :

K0(A)+ → K0(Aoλ Γ)+ which is order preserving to obtain

kι̂(x) = ι̂(kx) ≤ ι̂
( n∑
j=1

xj
)

=
n∑
j=1

ι̂(xj) =
n∑
j=1

ι̂α̂tj(xj) = ι̂
( n∑
j=1

α̂tj(xj)
)
≤ ι̂(lx) = lι̂(x).
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Here we used the fact that for a projection q in A and s ∈ Γ we have

ι̂([q]K0(A)) = [ι(q)]K0(AoλΓ) = [usqu
∗
s]K0(AoλΓ) = [αs(q)]K0(AoλΓ)

= ι̂[αs(q)]K0(A) = ι̂α̂s([q]K0(A)),

so that ι̂ = ι̂α̂s agree as maps K0(A)+ → K0(Aoλ Γ)+.

The fact that Aoλ Γ is stably finite now implies that ι̂(x) = 0,which means that

ι(p) = 0, so p = 0, a contradiction.

3.2.2 A Noncommutative Type Semigroup

We wish to establish a converse to Proposition 3.2.5. For this we shall need more

machinery. Analogous to the type semigroup of a general group action (see [53]), we

associate to each suitable C∗-system (A,Γ, α) a preordered abelian monoid S(A,Γ, α)

which correctly reflects the above notion of paradoxicality in K0(A), and then resort

to an extension result (Theorem 3.2.11 below) in the spirit of Tarski’s theorem tying

the existence of states on S(A,Γ, α) to non-paradoxicality. We embark on the details.

Let us first recall the notion of equidecomposability for group actions and the

construction of the type semigroup. Suppose a group Γ acts on a set X, and let C

be a Γ-invariant subalgebra of the power set P(X). Orthogonality is then built in as

we enlarge the action as follows. Let Y = X × N0, and G = Γ × Perm(N0) where

N0 = N ∪ {0}. We then have a canonical action Gy Y given by

(t, σ).(x, n) = (t.x, σ(n)).

For a set E ⊂ Y , and j ∈ N0 the jth level of E is the set Ej = {x ∈ X : (x, j) ∈ E}.

We say that E is bounded if only finitely many levels Ej are non-empty. Now consider
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the algebra of G-invariant subsets

S(X,C) = {E ⊂ Y : E is bounded and Ej ∈ C, ∀j ∈ N0}.

Subsets E,F ∈ S(X,C) are said to be G-equidecomposable, and we write E ∼G F , if

there are E1, . . . , En ∈ S(X,C), and g1, . . . , gn ∈ G such that:

E =
n⊔
j=1

Ej, and F =
n⊔
j=1

gj.Ej.

The notation t is used to emphasize the fact that the partitioning sets are disjoint.

Reflexivity and symmetry of the relation ∼G are straightforward, and transitivity

follows from taking refined partitions. We quotient out by the equivalence relation

∼G, setting

S(X,Γ,C) := S(X,C)/ ∼G,

and write [E] for the equivalence class of E ∈ S(X,C). Addition is then defined on

classes via

[ n⋃
j=1

Ej × {j}
]

+

[ m⋃
i=1

Fi × {i}
]

=

[ n⋃
j=1

Ej × {j} ∪
m⋃
i=1

Fi × {n+ j}
]
.

A little work shows that addition is well defined and [∅] is a neutral element. Endowed

with the algebraic ordering, S(X,Γ,C) has the structure of a preordered abelian

monoid, often referred to as the type semigroup [53].

We aim to construct a similar monoid for noncommutative C∗-systems (A,Γ, α),

at least in the presence of sufficiently many projections. The philosophy is that ele-

ments of the positive cone K0(A)+ would represent our “subsets” as it were, and the

idea of refined partitions is reflected by suitable refinement properties displayed in
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the additive structure of K0(A)+. If we are to translate the notion of equidecompos-

ability to the K0-setting, we shall require that A be an algebra for which the monoid

K0(A)+ has the the Riesz refinement property. This discussion thus motivates the

following definition.

Definition 3.2.6. Let A be a C∗-algebra, Γ a discrete group, and let α : Γ→ Aut(A)

an action. We define a relation on K0(A)+ as follows:

x ∼α y (x, y ∈ K0(A)+)

⇐⇒

∃ {uj}kj=1 ⊂ K0(A)+, {tj}kj=1 ⊂ Γ, such that
k∑
j=1

uj = x and
k∑
j=1

α̂tj(uj) = y.

Lemma 3.2.7. If A is a stably finite C*-algebra such that K0(A)+ has the Riesz

refinement property, then ∼α as defined above is an equivalence relation.

Proof. Let x, y ∈ K0(A)+. Clearly x ∼α x, simply take u1 = x and t1 = e. If

x ∼α y, via the decomposition x =
∑k

j=1 uj and y =
∑k

j=1 α̂tj(uj), set vj = α̂tj(uj)

and sj = t−1
j for j = 1, . . . k. It clearly follows that

k∑
j=1

vj = y and
k∑
j=1

α̂sj(vj) =
k∑
j=1

α̂t−1
j

(α̂tj(uj)) =
k∑
j=1

uj = x

whence y ∼α x. Transitivity is a little harder, and here is where the fact that K0(A)+

has the Riesz refinement property will surface. To that end, suppose x ∼α y ∼α z

via

x =
k∑
j=1

uj, y =
k∑
j=1

α̂tj(uj) and y =
l∑

j=1

vj, z =
l∑

j=1

α̂sj(vj).

Since
∑k

j=1 α̂tj(uj) =
∑l

j=1 vj and K0(A) has the interpolation properties, there are
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elements {wij : 1 ≤ j ≤ l, 1 ≤ i ≤ k} ⊂ K0(A)+ such that

l∑
j=1

wij = α̂ti(ui) and
k∑
i=1

wij = vj.

We then compute

∑
i,j

α̂sjti(α̂t−1
i

(wij)) =
∑
i,j

α̂sj(wij) =
∑
j

α̂sj
(∑

i

wij
)

=
∑
j

α̂sj(vj) = z,

while

∑
i,j

α̂t−1
i

(wij) =
∑
i

α̂t−1
i

(∑
j

wij
)

=
∑
i

α̂t−1
i

(α̂ti(ui)) =
∑
i

ui = x.

which gives the desired decomposition for x ∼α z.

We can now make the following definition.

Definition 3.2.8. Let A be a C∗-algebra such that K0(A)+ has the Riesz refinement

property. Let Γ → Aut(A) be an action. We set S(A,Γ, α) := K0(A)+/ ∼α, and

write [x]α for the equivalence class with representative x ∈ K0(A)+.

For a general group action Gy X on an arbitrary set, it is not difficult to see that

we may define addition on equidecomposability classes. Indeed if E,F,H,K ⊂ X

with E ∩ H = ∅, F ∩ K = ∅, E ∼ F and H ∼ K then it is routine to verify that

(E t H) ∼ (F t K). This gives an idea for a well defined additive structure on

S(A,Γ, α). Define addition on classes simply by [x]α + [y]α := [x + y]α for x, y in

K0(A)+. It is routine to check that this operation is well defined; indeed if z ∼α x
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via x =
∑k

j=1 uj and z =
∑k

j=1 α̂tj(uj),then

[z]α + [y]α = [z + y]α =

[ k∑
j=1

α̂tj(uj) + y

]
α

=

[ k∑
j=1

uj + y

]
α

= [x+ y]α = [x]α + [y]α.

We make a few elementary observations concerning S(A,Γ, α) when A is stably

finite. Firstly, S(A,Γ, α) is not just a semigroup but an abelian monoid as [0]α is

clearly the neutral additive element. Impose the algebraic ordering on S(A,Γ, α),

that is, set [x]α ≤ [y]α if there is a z ∈ K0(A)+ with [x]α + [z]α = [y]α. This gives

S(A,Γ, α) the structure of an abelian preordered monoid. Notice at once that if

x, y ∈ K0(A)+ with x ≤ y (in the ordering of K0(A)) then [x]α ≤ [y]α in S(A,Γ, α).

To see this, x ≤ y implies y−x := z ∈ K0(A)+, so [y]α = [x+ z]α = [x]α+ [z]α which

gives [x]α ≤ [y]α. Next, we observe that if [x]α = [0]α, for some x in K0(A)+, then in

fact x = 0. Indeed, say x =
∑

i ui, and
∑

i α̂ti(ui) = 0 for some elements ti ∈ Γ and

ui ∈ K0(A)+, then for each i, α̂ti(ui) = 0 and so ui = 0 which gives x = 0. Here we

used the important fact that for stably finite algebras A, K0(A)+∩(−K0(A)+) = (0).

All together, there is an order preserving, faithful, monoid homomorphism

ρ : K0(A)+ → S(A,Γ, α) given by ρ(g) = [g]α.

This next fact shows that we have in fact constructed a noncommutative analogue

of the type semigroup construction studied in [53].

Proposition 3.2.9. Let X be the Cantor set, Γ a discrete group, and Γ y X a

continuous action with corresponding action α : Γ → Aut(C(X)). Write C for the

Γ-invariant algebra of all clopen subsets of X. Then the type semigroup S(X,Γ,C)

is isomorphic to S(C(X),Γ, α) constructed above.

Proof. Let f ∈ K0(C(X))+ = C(X;Z)+, then we can write f =
∑n

j=1 1Ej where the
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Ej are clopen subsets of X. Note that such a representation is not unique.

Claim. Suppose f =
∑n

j=1 1Ej =
∑m

j=1 1Fj , then

n⊔
j=1

Ej × {j} := E ∼Γ F :=
m⊔
j=1

Fj × {j},

so that [E] = [F ] in the type semigroup S(X,Γ,C).

It is clear that ∪nj=1Ej = ∪mj=1Fj. By choosing a common clopen refinement, we

may assume that there are disjoint clopen sets H1, . . . , Hr, where r ≥ n,m, such

that each Ej and each Fj is a union of distinct Hi. For each i = 1, . . . , r set the

multiplicities of the Hi as

ni :=
∣∣{j : Hi ⊂ Ej}

∣∣ =
∣∣{j : Hi ⊂ Fj}

∣∣.
In this case we have f =

∑r
i=1 ni1Hi . For each pair (i, j) set

∆i,j =


Hi, if Hi ⊂ Ej

∅ if Hi ∩ Ej = ∅

With a j fixed we run through all the Hi and get
⊔r
i=1 ∆i,j × {j} = Ej × {j}. Then

E =
n⊔
j=1

Ej × {j} =
n⊔
j=1

r⊔
i=1

∆i,j × {j} =
r⊔
i=1

n⊔
j=1

∆i,j × {j} ∼
r⊔
i=1

ni⊔
j=1

Hi × {j} := H.

By a similar argument F ∼ H, and transitivity gives E ∼ F and the Claim is thus

proved.
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We now define a map ψ : K0(C(X))+ → S(X,Γ,C) by

ψ(f) =

[ n⊔
j=1

Ej × {j}
]

where f has representation f =
∑n

j=1 1Ej with Ej ⊂ X clopen. Thanks to the

Claim, this map is well defined as any representation of f will do. Also, it is routine

to check that ψ is additive and onto. Moreover, ψ is invariant under the equivalence

∼α. To see this, suppose f, g ∈ K0(C(X))+ and f ∼α g. By definition and by writing

members of K0(C(X))+ as sums of indicator functions on clopen sets we can find

clopen sets E1, . . . , En ∈ C and group elements t1, . . . , tn ∈ Γ with

f =
n∑
j=1

1Ej , and g =
n∑
j=1

1tj .Ej .

Since
⊔n
j=1 Ej × {j} ∼

⊔n
j=1 tj.Ej × {j} we get that ψ(f) = ψ(g). The map ψ thus

descends to a surjective monoid homomorphism ψ : S(C(X),Γ, α)→ S(X,Γ,C) with

ψ([f ]α) = ψ(f). To establish injectivity we construct a left inverse ϕ : S(X,Γ,C)→

S(C(X),Γ, α) as follows. Set

ϕ

([ n⊔
j=1

Ej × {j}
])

=

[ n∑
j=1

1Ej

]
α

.

To show that ϕ is well defined, suppose E =
⊔n
j=1Ej × {j} ∼ F =

⊔m
j=1 Fj × {j},

then there exist l ∈ N, Ck ∈ C, tk ∈ Γ and natural numbers nk,mk for k = 1, . . . , l,

such that

E =
l⊔

k=1

Ck × {nk}, F =
l⊔

k=1

tk.Ck × {mk}.
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For each fixed j, we see that
⊔
{k: nk=j}Ck = Ej, so

∑
{k: nk=j} 1Ck = 1Ej . Therefore

n∑
j=1

1Ej =
n∑
j=1

∑
{k: nk=j}

1Ck =
l∑

k=1

1Ck ∼α
l∑

k=1

1tk.Ck =
n∑
j=1

1Fj .

where the last equality follows from same reasoning. It follows that ϕ([E]) = ϕ([F ]).

Also ϕ is clearly additive and onto. For an element [f ]α ∈ S(C(X),Γ, α), where f

has representation f =
∑n

j=1 1Ej , we see that

ϕ ◦ ψ([f ]α) = ϕ ◦ ψ(f) = ϕ

([ n⊔
j=1

Ej × {j}
])

=

[ n∑
j=1

1Ej

]
α

= [f ]α.

We conclude that ψ is a monoid isomorphism. Since both monoids are preordered

with the algebraic ordering ψ is actually an isomorphism of preordered monoids.

Next we look at how (Γ, k, l)-paradoxically is reflected in our monoid S(A,Γ, α).

Lemma 3.2.10. Let A be a stably finite C*-algebra such that K0(A)+ has Riesz

refinement, and let α : Γ→ Aut(A) be an action. Then an element 0 6= x ∈ K0(A)+

is (Γ, k, l)-paradoxical if and only if k[x] ≤ l[x] in S(A,Γ, α).

Proof. Suppose 0 6= x ∈ K0(A)+ is (Γ, k, l)-paradoxical. Then kx ≤
∑n

j=1 xj and∑n
j=1 α̂tj(xj) ≤ lx for some xj in K0(A)+ and tj in Γ. Then from our above remarks:

k[x]α = [kx]α ≤
[ n∑
j=1

xj

]
α

=

[ n∑
j=1

α̂tj(xj)

]
α

≤ [lx]α = l[x]α.

Now assume k[x]α ≤ l[x]α for integers k > l > 0. Then for some z in K0(A)+ we

have

[kx+ z]α = [kx]α + [z]=k[x]α + [z]α = l[x]α = [lx]α
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. By definition there are elements x1, . . . , xn in K0(A)+ and t1, . . . , tn ∈ Γ with

kx ≤ kx+ z =
l∑

j=1

xj and
l∑

j=1

α̂tj(xj) = lx,

which witnesses the (Γ, k, l)-paradoxicality of x. The proof is complete.

Before going any further let us recall some terminology. Let (W,≤) be a pre-

ordered abelian monoid. For positive integers k > l > 0, we say that an element

θ ∈ W is (k, l)-paradoxical provided that kθ ≤ lθ. If θ fails to be paradoxical for

all pairs of integers k > l > 0, call θ completely non-paradoxical. Note that θ is

completely non-paradoxical if and only if (n + 1)θ � nθ for all n ∈ N. The above

lemma basically states that in its setting, an element x ∈ K0(A)+ is completely

non-paradoxical with respect to the action α̂ exactly when [x]α is completely non-

paradoxical in the preordered abelian monoid S(A,Γ, α). An element θ in W is said

to properly infinite if 2θ ≤ θ, that is, if it is (2, 1)-paradoxical. If every member of

W is properly infinite then W is said to be purely infinite. A state on W is a map

ν : W → [0,∞] which is additive, respects the preordering ≤, and satisfies ν(0) = 0.

If a state β assumes a value other than 0 or ∞, β it said to be non-trivial. The

monoid W is said to be almost unperforated if, whenever θ, η ∈ W , and n,m ∈ N

are such that nθ ≤ mη and n > m, then θ ≤ η.

The following result is a main ingredient in the proof of what is known as Tarski’s

theorem. It is a Hahn-Banach type extension result and is essential in establishing

a converse to Proposition 3.2.4. A proof can be found in [53].

Theorem 3.2.11. Let (W,+) be an abelian monoid equipped with the algebraic or-

dering, and let θ be an element of W . Then the following are equivalent:

1. (n+ 1)θ � nθ for all n ∈ N, that is θ is completely non-paradoxical.
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2. There is a non-trivial state ν : W → [0,∞] with ν(θ) = 1.

We mean to apply Theorem 3.2.11 to our preordered monoid S(A,Γ, α). Note

that such a ν, which arises in the landscape of complete non-paradoxicality will not

in general be finite on all of S(A,Γ, α). One needs the right condition on the action

α, or more precisely, α̂, to guarantee finiteness everywhere. Suppose we considered

θ = [u]α as in Theorem 3.2.11, where u = [1]0 is the order unit in K0(A). If we

compose the state ν with the the above ρ : K0(A)+ → S(A,Γ, α), this would give

us, in a sense, an invariant ‘state’ at the K-theoretic level, but perhaps not finitely

valued everywhere, but with a finite value at [1]0. To ensure finiteness at every

x ∈ K0(A)+ we would require that finitely many Γ-iterates of x lie above [1]0. This

is exactly the notion of K-theoretic minimality we looked at in Section 3.1.

Proposition 3.2.12. Let A be a stably finite unital C*-algebra for which K0(A)+

has Riesz refinement (sr(A) = 1 and RR(A) = 0 for example). Let α : Γ→ Aut(A)

be an action on A. Consider the following properties.

1. For every 0 6= g ∈ K0(A)+, there is a faithful Γ-invariant positive group ho-

momorphism β : K0(A) → R with β(g) = 1, (Γ-invariant in the sense that

β ◦ α̂ = β on K0(A)).

2. There is a faithful Γ-invariant state β on (K0(A), K0(A)+, [1]0).

3. α is completely non-paradoxical.

Then we have (1) ⇒ (2) ⇒ (3). If the action α is minimal, then (3) ⇒ (1) whence

all the conditions are equivalent.

Proof. (1)⇒ (2): Simply take g = [1]0.
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(2) ⇒ (3): Assume that x ∈ K0(A)+ is (Γ, k, l)-paradoxical for some integers

k > l > 0 with paradoxical decomposition
∑n

j xj ≥ kx and
∑n

j α̂tj(xj) ≤ lx for

certain xj ∈ K0(A)+ and tj ∈ Γ. Apply the α̂-invariant state β and get

kβ(x) = β(kx) ≤ β
( n∑

j

xj
)

=
n∑
j

β(xj) =
n∑
j

β(α̂tj(xj)) = β
( n∑

j

α̂tj(xj)
)

≤ β(lx) = lβ(x).

Now since β is faithful, we may divide by β(x) > 0 and get k ≤ l which is absurd.

Assuming the action α is minimal we prove (3)⇒ (1). Fix a non-zero g ∈ K0(A)+.

Since the action is completely non-paradoxical, it follows from Lemma 3.2.10 that

for every positive integer n, (n + 1)[g]α � n[g]α. Theorem 3.2.11 then states that

S(A,Γ, α) admits a non-trivial state ν : S(A,Γ, α)→ [0,∞] with ν([g]α) = 1.

Claim: ν is finite.

To see this, employ K-minimality of the action to obtain group elements t1, . . . , tn

such that
∑n

j=1 α̂tj(g) ≥ [1]0. Now for an arbitrary [x]α in S(A,Γ, α) with x belonging

to K0(A)+, there is a positive integer m with x ≤ m[1]0 ≤ m
∑n

j=1 α̂tj(g). Therefore

[x]α ≤
[
m

n∑
j=1

α̂tj(g)

]
α

= m

[ n∑
j=1

α̂tj(g)

]
α

= m[ng]α = mn[g]α.

Applying ν yields ν([x]α) ≤ ν(mn[g]α) = mnν([g]α) = mn. The Claim is therefore

proved.

We now compose ν with our above ρ : K0(A)+ → S(A,Γ, α) to yield β′ :

K0(A)+ → ([0,∞),+) a finite order preserving monoid homomorphism given by

β′(x) = ν([x]α). Note how β′ is invariant under the action α̂ : Γ y K0(A)+. Indeed,
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for t in Γ, and x in K0(A)+,

β′(α̂t(x)) = ν([α̂t(x)]α) = ν([x]α) = β′(x).

By universality of the Grothendieck enveloping group construction, there is a unique

extension of β′ to a group homomorphism on all of K0(A), which we will denote as

β, given simply by β(x− y) = β′(x)− β′(y) for x, y in K0(A)+. Clearly β is still Γ-

invariant. The final product is a bona fide Γ-invariant positive group homomorphism

β : K0(A)→ R, with β(g) = 1. We now show how β is faithful which will complete

this direction. Assume 0 6= x ∈ K0(A)+. Minimality ensures the existence of group

elements t1, . . . tn with
∑n

j=1 α̂tj(x) ≥ [1]0. Now we find a positive integer m for

which m[1]0 ≥ g, so that m
(∑n

j=1 α̂tj(x)
)
≥ g. Applying β gives

1 = β(g) ≤ β
(
m
( n∑
j=1

α̂tj(x)
))

= m
( n∑
j=1

β(α̂tj(x))
)

= m
( n∑
j=1

β(x)
)

= mnβ(x)

thus β(x) 6= 0 and β is indeed faithful.

We now are ready to establish the long desired converse.

Theorem 3.2.13. Let A be a stably finite unital C*-algebra for which K0(A)+ has

Riesz refinement (sr(A) = 1 and RR(A) = 0 for example). Let α : Γ→ Aut(A) be a

minimal action on A. Consider the following properties.

1. There is an Γ-invariant faithful tracial state τ : A→ C.

2. Aoλ Γ admits a faithful tracial state.

3. Aoλ Γ is stably finite.

4. α is completely non-paradoxical.
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5. There is a faithful Γ-invariant state β on (K0(A), K0(A)+, [1]0).

Then we have the following implications:

(1)⇔ (2)⇒ (3)⇒ (4)⇒ (5).

If A is exact and projections are total in A (e.g. RR(A) = 0) then (5) ⇔ (1).

Furthermore, if A is AF and Γ is a free group, then (1) through (5) are all equivalent

to Aoλ Γ being MF.

Proof. It is well known that (1) ⇔ (2) ⇒ (3). Also, (3) ⇒ (4) is Proposition 3.2.5

and (4)⇒ (5) is Proposition 3.2.12.

(5) ⇒ (1): Since A exact, such a β arises from a tracial state τ : A → C, via

τ(p) = β([p]) for any projection p ∈ A ([44]). We need only to show the Γ-invariance

of τ . For any s ∈ Γ and projection p in A,

τ(αs(p)) = β([αs(p)]) = β ◦ α̂s([p]) = β([p]) = τ(p).

Using linearity, continuity, and the fact that the projections are total in A, it follows

that τ(αs(a)) = τ(a) for every a ∈ A and s ∈ Γ which yields the invariance.

Now we let Γ = Fr and A an AF algebra. In [41] the author shows that Aoλ Fr

is MF if and only if it is stably finite.

Recall that a continuous affine action of an amenable group Γ on a compact

convex subset K of a locally convex space admits a fixed point.

Corollary 3.2.14. Let A be a simple, unital, AF algebra and Γ a discrete amenable

group. Then any action α : Γ→ Aut(A) is completely non-paradoxical.
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Proof. Let T (A) denote the compact convex set of all tracial states on A viewed as

a subset of the locally convex space A∗ with the weak*-topology. The group Γ acts

continuously and affinely on T (A) by t.τ(a) = τ(αt−1(a)) for t ∈ Γ and a ∈ A. Since

Γ is amenable, T (A) has a fixed point. Now apply Theorem 3.2.13.

3.2.3 Purely Infinite Crossed Products

A continuous action Γ y X of a discrete group on a compact Hausdorff space

is called a strong boundary action if X has at least three points and for every pair

U, V of non-empty open subsets of X there exists t ∈ Γ with t.U c ⊂ V . Laca and

Spielberg showed in [32] that if Γ y X is a strong boundary action and the induced

action Γ y C(X) is properly outer then C(X)oλ Γ is purely infinite and simple.

Jolissaint and Robertson [26] made a generalization valid in the noncommutative

setting. They termed an action α : Γ→ Aut(A) as n-filling if, for all a1, . . . , an ∈ A+,

with ‖aj‖ = 1, 1 ≤ j ≤ n, and for all ε > 0, there exist t1, . . . , tn ∈ Γ such that∑n
j=1 αtj(aj) ≥ (1 − ε)1A. They showed that A oλ Γ is purely infinite and simple

provided that the action is properly outer and n-filling and every corner pAp of A

is infinite dimensional. Using ordered K-theoretic dynamics we shall provide an

alternate simpler proof of this result below, albeit for a smaller class of algebras.

The following lemma contains ideas from Lemma 3.2 of [45].

Lemma 3.2.15. Let (A,Γ, α) be a C*-dynamical system with A separable and Γ

countable and discrete. Assume that α is properly outer. Then for every non-zero

b ∈ (Aoλ Γ)+ there is a non-zero a ∈ A+ with a - b.

Proof. We know that E(b) 6= 0 since b is non-zero and E is faithful. Set b1 = b/‖E(b)‖

so that ‖E(b1)‖ = 1. Let 0 < ε < 1/16. Find a δ > 0 with δ(1+‖b1‖)
1−δ < ε. Next find

a non-zero positive c ∈ Cc(Γ, A)+ with ‖c − b1‖ < δ. Write c =
∑

s∈F csus where F
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is a finite subset of Γ. Note that E(c) = ce 6= 0, and also
∣∣1 − ‖ce‖∣∣ ≤ δ. Setting

d = c/‖ce‖ we estimate

‖b1 − d‖ =
1

‖ce‖
∥∥‖ce‖b1 − c

∥∥ =
1

‖ce‖
∥∥‖ce‖b1 − b1 + b1 − c

∥∥
≤ 1

‖ce‖
(
|‖ce‖ − 1|‖b1‖+ ‖b1 − c‖

)
≤ 1

1− δ
(δ‖b1‖+ δ) =

δ

1− δ
(1 + ‖b1‖) < ε.

Now let η > 0 be so small that |F |η < 1/8. Since A is separable and α is

properly outer, we apply Lemma 7.1 of [35] and obtain an element x ∈ A+ with

‖x‖ = 1 satisfying

‖xE(d)x‖ = ‖xdex‖ > ‖de‖ − η = 1− η, ‖xdsαs(x)‖ < η ∀s ∈ F \ {e}.

Therefore we have

‖xE(d)x− xdx‖ ≤
∥∥∥∥ ∑
s∈F\{e}

xdsusx

∥∥∥∥ ≤ ∑
s∈F\{e}

‖xdsusx‖

=
∑

s∈F\{e}

‖xdsusxu∗s‖ =
∑

s∈F\{e}

‖xdsαs(x)‖ ≤ |F |η < 1/8.

A straightforward use of the triangle inequality now gives

‖xE(b1)x− xb1x‖ ≤ 2ε+ 1/8 < 1/4, ‖xE(b1)x‖ ≥ 3/4.

Let a := (xE(b1)x − 1/2)+. Then a ∈ A and a 6= 0 since ‖xE(b1)x‖ > 1/2. Also by

Proposition 2.2 of [42] we know a - xb1x - b1 - b.

Theorem 4.1 in [45] concentrates on the commutative case. We, however, make
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the observation that the same proof holds true for noncommutative algebras. Recall

that a C∗-algebra A has property (SP) if every non-zero hereditary subalgebra admits

a non-zero projection.

Theorem 3.2.16. Let (A,Γ, α) be a C*-dynamical system with A separable with

property (SP) and Γ countable and discrete. Assume that α is minimal and properly

outer (so that Aoλ Γ is simple). Then the following are equivalent:

1. Aoλ Γ is purely infinite.

2. Every non-zero projection p in A is properly infinite in Aoλ Γ.

Proof. (1)⇒ (2): Every non-zero projection in any purely infinite algebra is properly

infinite.

(2) ⇒ (1): By Theorem 7.2 in [35] we know that the reduced crossed product

A oλ Γ is simple. Therefore, it suffices to show that every hereditary subalgebra

admits an infinite projection. To this end, let B ⊂ A oλ Γ be a hereditary C∗-

subalgebra and let 0 6= b ∈ B. By lemma 3.2.15 there is a non-zero a in A with

a - b. Since A has property (SP), the hereditary subalgebra of A generated by a,

Ha = aAa, contains a non-zero projection q ∈ Ha. By our assumption q is properly

infinite relative to AoλΓ, and q - a - b. Since q is a projection, there is a z ∈ AoλΓ

with q = z∗bz. Now consider v := b1/2z. Then q = v∗v ∼ vv∗ = b1/2zz∗b1/2 ∈ B.

Thus p := vv∗ is the desired properly infinite projection in B.

We now embark on studying to what extent paradoxical systems (A,Γ, α) char-

acterize purely infinite reduced crossed product algebras Aoλ Γ.

Proposition 3.2.17. Let (A,Γ, α) be a C*-system for which A has cancellation and

K0(A)+ has the Riesz refinement property. Let 0 6= r ∈ P(A) and set g = [r]0 ∈

K0(A)+. The following properties are equivalent:
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1. There exist x, y ∈ Cc(Γ, A) that satisfy x∗x = r = y∗y, xx∗ ⊥ yy∗, xx∗ ≤ r,

yy∗ ≤ r, and whose coefficients are partial isometries.

2. g is (k, 1)-paradoxical for some k ≥ 2.

3. θ = [g]α is properly infinite in S(A,Γ, α).

Proof. (1) ⇒ (2): Write x =
∑

s∈F usvs and y =
∑

s∈L usws where F,L ⊂ Γ are

finite subsets, and vs, ws ∈ A are partial isometries. For each s in F set ps := v∗svs

and p′s := vsv
∗
s . Similarly for every s ∈ L set qs := w∗sws and q′s := wsw

∗
s . If we apply

the conditional expectation E : Aoλ Γ→ A to the equality r = x∗x we get

r = E(r) = E
( ∑
s,t∈F

v∗su
∗
sutvt

)
=
∑
s,t∈F

E(v∗su
∗
sutvt) =

∑
s∈F

v∗svs =
∑
s∈F

ps.

The second to last equality follows from the fact that for s, t ∈ F we have

E(v∗su
∗
sutvt) = E(v∗sus−1tvt(us−1t)

∗us−1t) = E(v∗sαs−1t(vt)us−1t) = δs,tv
∗
svs.

Therefore, the projections ps are mutually orthogonal subprojections of r that sum

to r. Similarly all the qs, for s ∈ L, are mutually orthogonal subprojections of r with

r =
∑

s∈L qs. Thus, in K0(A)+ we have

∑
s∈F

[ps]0 +
∑
s∈L

[qs]0 =

[∑
s∈F

ps

]
0

+

[∑
s∈F

qs

]
0

= 2[r]0.

Now we note that for s, t in F with s 6= t we have vsv
∗
t = vsv

∗
svsv

∗
t vtv

∗
t = vspsptv

∗
t =

0. Computing xx∗ we get

xx∗ =
∑
s,t∈F

usvsv
∗
t u
∗
t =

∑
s∈F

usvsv
∗
su
∗
s =

∑
s∈F

αs(p
′
s).
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Similarly yy∗ =
∑

s∈L αs(q
′
s). From

∑
s∈F

αs(p
′
s) +

∑
s∈L

αs(q
′
s) = xx∗ + yy∗ ≤ r

we conclude that the projections αs(p
′
s), αs(q

′
s) are mutually orthogonal subprojec-

tions of r whence in K0(A) we have

[r]0 ≥
[∑
s∈F

αs(p
′
s) +

∑
s∈L

αs(q
′
s)

]
0

=
∑
s∈F

[αs(p
′
s)]0 +

∑
s∈L

[αs(q
′
s)]0

=
∑
s∈F

α̂s([p
′
s]0) +

∑
s∈L

α̂s([q
′
s]0) =

∑
s∈F

α̂s([ps]0) +
∑
s∈L

α̂s([qs]0).

Therefore g = [r]0 is (2,1)-paradoxical.

(2) ⇒ (1): Suppose
∑n

j=1 xj ≥ k[r]0 and
∑n

j=1 α̂tj(xj) ≤ [r]0 for some k ≥ 2,

group elements t1, . . . , tn ∈ Γ, and xj ∈ K0(A)+. Since k[r]0 ≥ 2[r]0 we may assume

k = 2. For some u ∈ K0(A)+ we then have
∑n

j=1 xj = [r]0 + [r]0 + u. Refinement

implies that there are subsets {yj}nj=1, {zj}nj=1 and {uj}nj=1 of K0(A)+ with

n∑
j=1

yj = [r],
n∑
j=1

zj = [r],
n∑
j=1

uj ≥ 0, and xj = yj + zj + uj, ∀j.

Using the fact that A has cancellation we know that there are mutually orthogonal

projections pj ∈ P(A) with [pj]0 = yj for j = 1, . . . , n. Similarly there are mutually

orthogonal projections qj ∈ P(A) with [qj]0 = zj for j = 1, . . . , n. Therefore,

∑
j

[αtj(pj)]0 +
∑
j

[αtj(qj)]0 =
∑
j

α̂tj(yj) +
∑
j

α̂tj(zj)

≤
∑
j

α̂tj(yj) +
∑
j

α̂tj(zj) +
∑
j

α̂tj(uj) =
∑
j

α̂tj(xj) ≤ [r]0.

We again use the fact that A has cancellation and find mutually orthogonal subpro-
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jections of r e1, . . . , en; f1, . . . , fn ∈ P(A) with [ej]0 = [αtj(pj)]0 and [fj]0 = [αtj(qj)]0

for every j. Cancellation also implies that there are partial isometries vj and wj in

A with

v∗j vj = αtj(pj), vjv
∗
j = ej, w∗jwj = αtj(qj), wjw

∗
j = fj.

Now set a :=
∑n

j=1 vjuj and b :=
∑n

j=1wjuj where uj = utj . Note that for i 6= j

we compute v∗j vi = v∗j vjv
∗
j viv

∗
i vi = v∗j ejeivi = 0, so

a∗a =
∑
i,j

u∗jv
∗
j viui =

∑
j

u∗jv
∗
j vjuj =

∑
j

u∗jαtj(pj)utj =
∑
j

αt−1
j

(αtj(pj)) =
∑
j

pj := p.

In order to compute aa∗ we note that for i 6= j we have

vjuju
∗
i v
∗
i = vjv

∗
j vjuju

∗
i v
∗
i viv

∗
i = vjαtj(pj)uju

∗
iαti(pi)v

∗
i = vjujpju

∗
juju

∗
iuipiu

∗
i v
∗
i

= vjujpjpiu
∗
i v
∗
i = 0,

whence

aa∗ =
∑
i,j

vjuju
∗
i v
∗
i =

∑
j

vjuju
∗
jv
∗
j =

∑
j

vjv
∗
j =

∑
j

ej := e.

Similarly b∗b =
∑

j qj := q, and bb∗ =
∑

j fj = f .

Now define x := av where v is the partial isometry in A with v∗v = r and

vv∗ = p. Such a v exists because [p]0 =
[∑

j pj
]

0
=
∑

j[pj]0 =
∑

j yj = [r]0 and

A has cancellation. Similarly define y := bw where w ∈ A satisfies w∗w = r and

ww∗ = q. We compute

x∗x = v∗a∗av = v∗pv = v∗vv∗v = r2 = r,

110



and

y∗y = w∗b∗bw = w∗qw = w∗ww∗w = r2 = r.

Moreover, since a and b are partial isometries, and e ⊥ f we have

xx∗yy∗ = avv∗a∗bww∗b∗ = avv∗a∗aa∗bb∗bww∗b∗ = avv∗a∗efbww∗b∗ = 0.

Next we observe that xx∗ is a subprojection of r; indeed, since e ≤ r,

rxx∗ = ravv∗a∗ = raa∗avv∗a∗ = reavv∗a∗ = eavv∗a∗ = aa∗avv∗a∗ = avv∗a∗ = xx∗

Similarly yy∗ is a subprojection of r.

Finally we verify that the coefficients of x and y are partial isometries. Write

x = av =
n∑
j=1

vjujv =
n∑
j=1

vjαtj(v)uj,

and compute

(vjαtj(v))∗vjαtj(v) = αtj(v
∗)v∗j vjαtj(v) = αtj(v

∗)αtj(pj)αtj(v) = αtj(v
∗pjv),

but since pj ≤ p for every j, v∗pjv is a projection: (v∗pjv)2 = v∗pjvv
∗pjv =

v∗pjppjv = v∗pjv. Therefore αtj(v
∗pjv) is a projection for each j and so the co-

efficients of x, vjαtj(v), are partial isometries. An identical argument works for the

coefficients of y. This completes the implication (2)⇒ (1).

(2) ⇔ (3): By definition [g]α is infinite in S(A,Γ, α) if and only if 2[g]α ≤ [g]α,

and by Proposition 3.2.10, we know this occurs if and only if g is (2, 1)-paradoxical.

Clearly g is (2, 1)-paradoxical if and only if g is (k, 1)-paradoxical for some k ≥ 2.
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At this point we can supply an alternate proof of Jolissaint and Robertson’s result

using ordered K-theory, but first, two basic lemmas. Recall that a partially ordered

group (G,G+) is said to be non-atomic if, for every non-zero g > 0, there is an h ∈ G

with 0 < h < g.

Lemma 3.2.18. If A is a unital stably finite C*-algebra with property (SP) such

that pAp is infinite dimensional for every projection p ∈ A, then (K0(A), K0(A)+)

is non-atomic.

Proof. Let 0 < g = [q]0 belong to K0(A)+ for some non-zero q ∈ Pn(A). Then

clearly there is a non-zero b ∈ A+ with b - q. By property (SP) there is a non-zero

projection p ∈ bAb. A little work gives p - b. By hypothesis the corner pAp is

infinite dimensional and thus every masa of pAp is infinite dimensional. Inside such

an infinite dimensional masa we can find positive elements a1, a2 of norm one with

a1a2 = 0. Now find non-zero projections pi ∈ aiAai for i = 1, 2. Then p1, p2 are

non-zero orthogonal subprojections of p. It follows that g > [p1]0 > 0.

Lemma 3.2.19. Let A be a unital C*-algebra and α : Γ → Aut(A) an action.

Consider the following properties:

1. The action α is n-filling.

2. The action α is W -n-minimal.

3. The action α is W -n-filling.

4. The action α is K0-n-filling..

Then (1)⇒ (2)⇒ (3)⇒ (4).
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Proof. (1) ⇒ (2): Let x ∈ W (A). We can find a positive norm-one element b ∈ A+

with b - x. By hypothesis there are group elements t1, . . . , tn with

n∑
j=1

αtj(b) ≥ (1/2)1A.

The result follows since

〈1A〉 = 〈(1/2)1A〉 ≤
〈 n∑
j=1

αtj(b)
〉
≤ 〈⊕jαtj(b)〉 =

n∑
j=1

〈αtj(b)〉 =
n∑
j=1

α̂tj(〈b〉) ≤
n∑
j=1

α̂tj(x).

(2)⇔ (3): This was shown in Proposition 3.1.13 above.

(3)⇒ (4): This follows from the fact that if p, q ∈ P∞(A) and 〈p〉 ≤ 〈q〉 in W (A),

then [p]0 ≤ [q]0 in K0(A).

Proposition 3.2.20. Let A be a separable C*-algebra with cancellation, property

(SP), and for which (K0(A), K0(A)+) is non-atomic and K0(A)+ has Riesz refine-

ment (an algebra of real rank zero and stable rank one will do). Let α : Γ→ Aut(A)

be a properly outer action which is K0-n-filling for some n ∈ N. Then A oλ Γ is

simple and purely infinite.

Proof. By theorem 3.2.16 it suffices to prove that every projection p in A is properly

infinite in A oλ Γ. Now by Proposition 3.2.17 we need only show that g = [p]0

in K0(A)+ is (2, 1)-paradoxical. Since K0(A)+ is non-atomic we may find non-zero

elements x1, . . . , x2n ∈ K0(A)+ with
∑2n

j=1 xj ≤ g. By the n-filling property there are

group elements t1, . . . , t2n with

n∑
j=1

α̂tj(xj) ≥ [1]0, and
2n∑

j=n+1

α̂tj(xj) ≥ [1]0.

Together
∑2n

j=1 xj ≤ g and
∑2n

j=1 α̂tj(xj) ≥ 2[1]0 ≥ 2g and thus g is (2, 1)-paradoxical.
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The following result generalizes Theorem 5.4 of [45] to the noncommutative case.

Theorem 3.2.21. Let A be a unital, separable, exact C*-algebra whose projections

are total. Moreover, suppose A has cancellation and K0(A)+ has the Riesz refinement

property. Let α : Γ→ Aut(A) be a minimal and properly outer action. Consider the

following properties:

1. The semigroup S(A,Γ, α) is purely infinite.

2. Every non-zero element in K0(A)+ is (k, 1)-paradoxical for some k ≥ 2.

3. The C*-algebra Aoλ Γ is purely infinite.

4. The C*-algebra Aoλ Γ is traceless.

5. The semigroup S(A,Γ, α) admits no non-trivial state.

Then the following implications always hold: (1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5). If the

semigroup S(A,Γ, α) is almost unperforated then (5) ⇒ (1) and all properties are

equivalent.

Proof. (1) ⇔ (2): We have already seen that x ∈ K0(A)+ is (k, 1)-paradoxical for

some k ≥ 2 if and only if θ = [x]α is properly infinite in S(A,Γ, α).

(2) ⇒ (3): Let r be a non-zero projection in A. By assumption [r]0 is (2, 1)-

paradoxical, so by lemma 3.2.17 r is properly infinite in A oλ Γ. Then A oλ Γ is

purely infinite by Theorem 3.2.16.

(3)⇒ (4): Purely infinite C∗-algebras are always traceless.

(4) ⇒ (5): Suppose ν : S(A,Γ, α) → [0,∞] is a non-trivial state. Suppose

0 < ν([x]α) <∞ where x ∈ K0(A)+ is non-zero. Composing with the quotient map
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ρ : K0(A)+ → S(A,Γ, α) we get an order preserving monoid homomorphism β′ =

ν ◦ ρ : K0(A)+ → [0,∞] with 0 < β′(x) <∞. As in the proof of Proposition 3.2.12,

minimality of the action ensures that β′ is finite on all of K0(A)+. Extending β′ to

K0(A) gives a Γ-invariant positive group homomorphism, β, on K0(A). Since A is

exact and projections are total, β comes from a Γ-invariant tracial state on A (see

Theorem 1.1.11 in [44]), so that Aoλ Γ admits a trace, a contradiction.

Now we assume that S(A,Γ, α) is almost unperforated and prove (5)⇒ (1). Let

θ = [x]α be a non-zero element in S(A,Γ, α). If θ is completely non-paradoxical

then by Tarski’s Theorem S(A,Γ, α) admits a non-trivial state. So, assuming (5),

we must have (k + 1)θ ≤ kθ for some k ∈ N. So

(k + 2)θ = (k + 1)θ + θ ≤ kθ + θ = (k + 1)θ ≤ kθ.

Repeating this trick we get (k + 1)2θ ≤ kθ. Since S(A,Γ, α) is almost unperforated

we conclude 2θ ≤ θ and θ is properly infinite.

We conclude this chapter with a result that combines Theorem 3.2.13 and The-

orem 3.2.21. In this way we obtain the desired dichotomy, albeit under suitable

conditions.

Theorem 3.2.22. Let A be a unital, separable, exact C*-algebra whose projections

are total. Moreover suppose A has cancellation and K0(A)+ has the Riesz refinement

property. Let Γ be a countable discrete group and let α : Γ → Aut(A) be a minimal

and properly outer action such that S(A,Γ, α) is almost unperforated. Then the

reduced crossed product Aoλ Γ is a simple C*-algebra which is either stably finite or

purely infinite.
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4. SUMMARY AND CONCLUDING REMARKS

The overarching theme in chapter two is that of finite-dimensional approximation

properties of a topological nature witnessed in reduced crossed products. These

emerge as consequences of approximation properties at the level of the dynamics.

For example, we studied MF actions and noticed the presence of norm microstates

in the reduced crossed product. We showed that an obstruction to this property

is also an obstruction to stable finiteness. Indeed, the main achievement there was

that we described MF crossed products using a K-theoretic coboundary condition.

Consequently, in the case of a free group Fr acting on an AF algebra A, we saw that

A oλ Fr is MF if and only if A oλ Fr is stably finite (Theorem 2.2.14). Then in

chapter 3 we looked at the grand theme of finiteness in C∗-crossed products. Under

suitable conditions on the underlying algebra−conditions that ensure that the K0

group is well-behaved, we learned that stable finiteness is characterized by a complete

non-paradoxicality property at the level of the induced dynamics on K-theory (see

Theorems 3.2.13 and 3.2.21). Combining Theorem 3.2.22 and Theorem 2.2.14 we

obtain the following dichotomous result.

Corollary 4.0.23. Let A be an AF algebra and let α : Fr → Aut(A) be a minimal,

properly outer action with almost unperforated type-semigroup S(A,Fr, α). Then

Aoλ Γ is either MF or purely infinite.

We end our discussion by mentioning a few interesting questions and avenues for

future research.

It is unknown to the author if there are examples of minimal and properly outer

actions on C∗-algebras satisfying the conditions in Theorem 3.2.22 for which the type

semigroup is not almost unperforated. In particular, is there a free and action of the
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free group F2 on the Cantor set X for which S(X,F2,C) is not almost unperforated?

Although Ara and Exel construct actions of a finitely generated free group on the

Cantor set for which the type semigroup is not almost unperforated, these actions

are not minimal [1]. Moreover, almost unperforation may be too strong a condition

to establish (5) ⇒ (1) in Theorem 3.2.21. What is required is that every ‘infinite

element’ (in the sense that (k + 1)x ≤ kx for some k) is properly infinite. This is a

priori a weaker condition than almost unperforation.

The author is convinced that Theorem 2.2.14 can be extended to actions of free

groups on AT-algebras, or even a larger class of separable C∗-algebras that are clas-

sifiable. If such an extension holds, then a similar result as 4.0.23 would hold for

these algebras.

We observed in Proposition 2.1.9 that any action of a free group on a UHF algebra

A is quasidiagonal; consequently A oλ Fr is always MF. It is unknown if the same

permanence holds for countable discrete groups Γ whose group C∗-algebra C∗λ(Γ) is

MF. That is, if C∗λ(Γ) is MF, and Γ acts on a UHF algebra A, is Aoλ Γ also MF?

The Pimsner-Voiculescu sequence leaves much to be desired when one is interested

in the order structure of K0(Aoλ Fr) in the case where it is known that Aoλ Fr is

stably finite. More precisely, in the notation of Theorem 2.2.14, if A is an AF-algebra,

is the group isomorphism

K0(Aoλ Fr) ∼= K0(A)/Hσ

an isomorphism of ordered abelian groups? The question boils down to whether or

not the K-theory map ι̂ : K0(A)+ → K0(A oλ Fr)+ is onto, where ιA ↪→ A oλ Fr

is the canonical inclusion. In the same spirit we can also ask the following: is the
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well-defined map

S(A,Γ, α) = K0(A)+/ ∼α−→ K0(Aoλ Fr)+ ([x]α 7→ [ι(x)]K0(AoλFr))

injective? A positive answer to both these questions would give us a complete de-

scription of K0(A oλ Fr) in terms of the dynamics and relate almost unperforation

of the type semigroup to that of the K0-group of the crossed product. These queries

seem to be elusive both to the author and experts in the field.
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