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ABSTRACT

The field of inverse problems is an area of applied mathematics that is of great

importance in several scientific and industrial applications. Since an inverse problem

is typically based on non-linear and ill-posed models it is often a very difficult problem

to solve.

In this thesis we consider a model inverse problem in which we seek to reconstruct

a coefficient in an elliptic partial differential equation from finite data. Firstly, we

provide a general framework for solving such problem in Chapter 1. Then, the inverse

problem is transformed into a system of ODEs by the method of characteristics. The

emphasis is on the following three aspects, where new results are obtained:

a) Uniqueness of the solution of our model problem follows under some assump-

tions (given in Chapter 2), involving some basic concepts and using the method of

characteristics. A result concerning uniqueness of the unknown parameter in the re-

duced model problem is proved, when the dependent variable u is completely known.

b) Error estimates are derived in two dimensions using radial basis function (RBF)

methods (Chapter 3, 4). An RBF inequality related to our model problem is reviewed

in Chapter 3. Also an error estimate between the exact value and the approximate

value of the unknown coefficient is given in Chapter 4. This inequality shows us

that our parameter uncertainty is bounded by a norm in a suitable space, as well

as properties of the domain and information gathered from observational data. To

prove this inequality, we also derive a PDE estimate, a Sobolev embedding estimate

and a RBF interpolation estimate in Chapter 4.

c) Numerical methods and reconstruction algorithms are presented (Chapter 5).

We provide two different algorithms to reconstruct the unknown parameter a and
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multiple numerical simulations are presented in Chapter 5. Numerical results show

that the error estimate ‖ã − a‖L∞ and mesh norm h have a linear relationship in

the log-log plane. We compare the approximation results in 3 cases: a = 1 on

the boundary ∂Ω, a = 1 on a non-characteristic curve Λ and asymptotic boundary

condition. Numerical results show that more a priori information gives us better

approximations.
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1. INTRODUCTION

A simple example of an inverse problem is to determine an unknown parameter

in a model based on information we have been given through observation. There

are many situations when we may not know all the parameters and they may not

be easy to measure directly. These parameters frequently have to be inferred from

observation of the system. But we may be able to measure some other quantities

related to the parameters we are interested in. From the measurement data we have

collected, we estimate the unknown parameters in the model.

Inverse problems have long been of interest in many fields of applied sciences, such

as electrical impedance tomography [10], elastic imaging [5], parameter identification

[26] and image processing [8].

From a mathematical point of view the goal of an inverse problem is to approxi-

mately invert a forward operator. There are three main questions that arise when we

try to solve an inverse problem: existence, uniqueness and stability. In mathematics,

we have a classic definition of a well-posed problem given by J. Hadamard [21]:

1. There exists a solution.

2. The solution is unique.

3. The solution is a continuous function of the data, which is also called stability.

A problem that lacks any one of these properties is called ill-posed.

Inverse problems tend to be ill-posed which means that the problem has no unique

or stable solution. In other words, small changes or perturbations in measurement

data can result in large differences in the corresponding solutions, for example, the

reconstructed parameters.
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Fortunately, many ill-posed problems can be solved in a stable manner by apply-

ing regularization. The use of regularization techniques is often necessary to solve

the inverse problem in the presence of measurement noise.

After this brief introduction of the field of inverse problems, let us take a look at

a particular model problem. This will also introduce the ultimate goal of our work.

1.1 Model problem

A model problem is formulated here for the purposes of introducing our ultimate

goal. We will see how to apply characteristic methods and radial basis function

(RBF) methods to such ill-posed inverse problems in the next few chapters.

In order to derive our model problem, we first consider a time-dependent diffusion

problem.

Let Ω ∈ R2 be a bounded domain and T > 0. We consider the following diffusion

equation:

∂u(x, t)

∂t
−∇ · (a(x)∇u(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ) (1.1)

u(x, 0) = u0(x), x ∈ Ω (1.2)

u(x, t) = q(x, t), x ∈ ∂Ω, t ∈ (0, T ). (1.3)

Here u(x, t) is a state variable and describes the density of a quantity at position x

and at time t. The term on the left hand describes the diffusion of u(x, t), including

a(x) as the diffusion coefficient. The term on the right side, f(x, t) is a smooth

function and describes additional sources and/or sinks.

Inverse Problem:

Is it possible to reconstruct a good approximation to the diffusion coefficient a(x)
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from the following set of finite measurement data?

u(xi, t) = gi(t), i = 1, 2, ...k, t ∈ (0, T ).

We assume the points xi are distinct.

If we define new variables U(x),V (x) by

U(x) =

∫ T

0

u(x, t)dt, (1.4)

F (x) =

∫ T

0

f(x, t)dt, (1.5)

and integrate (1.1) over [0, T ], the differential equation (1.1) reduces to

−∇ · (a(x)∇U(x)) = F (x) + u0(x)− u(x, T ), x ∈ Ω. (1.6)

On the other hand, the measurement data give us:

U(xi) =

∫ T

0

u(xi, t)dt =

∫ T

0

gi(t)dt = Gi, i = 1, 2, ...k. (1.7)

This time-dependent problem becomes a special case of the following elliptic

equation in divergence form with finite data:

Let Ω ∈ R2 be a compact domain with smooth boundary. Given Dirichlet bound-

ary data and interior data at prescribed points:

u(xi, yi) = gi, (xi, yi) ∈ Ω, i = 1, 2, ...k

u(x, y) = q(x, y), (x, y) ∈ ∂Ω
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we seek to find a pair (ã, ũ) with sufficient smoothness satisfying

∇ · (ã∇ũ) = f (1.8)

ũ(xi, yi) = gi, (xi, yi) ∈ Ω, i = 1, 2, ...k, (1.9)

where f and gi are known.

Clearly, given finite measurement data there is not a unique solution for the

reconstruction, but we are interested in estimating the error of the approximation. In

other words, we are interested in precisely quantifying the uncertainty. Uncertainty

quantification (UQ) is a very active field of research and quantifying the uncertainty

in numerical simulations is critical for successfully predicting the model response

and decision-making. For example, in weather prediction, we would like to identify

possible scenarios, and estimate their likelihood. Understanding and quantifying

uncertainties help us to make accurate prediction for real weather activities [41].

Fields of application of uncertainty quantification include but are not limited to

turbulence models [38], computational electromagnetics [9], pollutant spreading [37]

and risk assessment in finance fields [11].

Uncertainties can come from variability in the environment, in the geometry

(e.g., material properties), but also from boundary and initial conditions as well as

parameters in the model whose exact values are unknown.

The sources of uncertainty that we consider in our model problem are parameter

uncertainties which are caused by imprecise knowledge of the input data, e.g. uncer-

tainty due to finite observational data or measurement errors. Our model parameters

must be estimated from noisy and indirect observational data. Uncertainty is inte-

gral to this endeavor: observational errors, model errors, and issues of ill-posedness

yield uncertainties in model parameters. This results in numerical models that are
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subject to uncertainty in boundary or initial conditions as well as model parameter

values. Quantifying the resulting uncertainty in parameters is then an essential part

of the reconstruction process.

In Chapter 4, the main result of this thesis will be presented that an error estimate

inequality between the exact value a and the approximate value ã of the form

‖a− ã‖L∞ ≤ Chτ−4(‖u‖W τ,2(Ω)), τ > 4 (1.10)

holds for a under certain assumptions. Here h is the radius of the largest inner empty

disk of interpolation points. The spaces L∞ and W τ,2 are defined in Chapter 2.

We now consider a famous inverse conductivity problem, which is also similar to

our model problem.

Let Ω ∈ Rn be a compact domain with smooth boundary and the conductivity

σ : Ω → (0,∞) is measurable, positive and bounded away from zero and infinity.

Assuming there are no sources or sinks of current in Ω, every voltage potential f

on ∂Ω induces a unique voltage potential u inside Ω which satisfies the following

conductivity equation:

∇ · (σ∇u) = 0 in Ω (1.11)

u = f on ∂Ω. (1.12)

The inverse conductivity problem tries to determine whether one can uniquely

determine and reconstruct the conductivity σ from full or partial knowledge of the

associated Dirichlet-to-Neumann map on the boundary, i.e. the map that takes a

voltage potential on the boundary (Dirichlet data) into the resulting current flux

through the boundary (Neumann data):
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Λσ : u |∂Ω→ σ ∂u
∂ν
|∂Ω

Here ν is the unit outer normal to the boundary and the normal derivative on the

boundary can be defined as an element of H−1/2(∂Ω) by:

〈σ∂u
∂ν
, g〉 =

∫
Ω

σ∇u · ∇gdx (1.13)

where g ∈ H1(Ω) and dx denotes the Lebesgue measure.

This inverse conductivity problem is the mathematical problem behind a method

for medical imaging called Electrical Impedance Tomography (EIT) [44]. One of the

important early papers on the inverse conductivity problem was authored by A.P.

Calderón [7] in 1980. He showed the injectivity of a linearized problem near σ ≡ 1.

Other more recent papers solve the inverse conductivity problem in dimension two

with various assumptions, such as Kohn and Vogelius [27] [28], Alessandrini [2] [3],

Nachman [32] and finally Astala and Päivärinta [4]. Kohn and Vogelius solved the

uniqueness question for the class of real-analytic conductivities [27], a result that

was later generalized to piecewise real-analytic conductivity [28]. Stability results

were obtained by Alessandrini in [2] and [3]. Nachman converted the conductivity

equation into the Schrödringer equation and proved uniqueness for σ ∈ W 2,p, p > 1

. The paper of Astala and Päivärinta solved the inverse conductivity problem most

generally: there were no requirements on the smoothness of the conductivity. It must

be positive and bounded away from zero and infinity, which is physically realistic.

There are similarities between the inverse conductivity problem and our model

problem. They both seek to recover the coefficient from an elliptic equation. The

major difference between them is the amount of data used to recover the coefficient.

The inverse conductivity problem uses complete information on the boundary but

our model problem has only finite interior data. There are results for the inverse
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conductivity with Dirichlet-Neumann as well as interior data, see [29], [30].

1.2 Contents of the thesis

The thesis is divided into 6 chapters. In Chapter 2, we introduce some basic con-

cepts regarding Sobolev spaces and the method of characteristics. Then we will use

this method to prove the uniqueness of the solution of the unknown model problem

under some assumptions. Based on the paper in Narcowich, Ward and Wendland

[35], a short review of an RBF inequality related to our model equation is analyzed in

Chapter 3. In Chapter 4, we derive an error estimate inequality to compare between

the exact value and the approximated value. We propose a numerical algorithm to

reconstruct the unknown variable a in Chapter 5. A number of simulations are also

considered. In Chapter 6 conclusions are presented.
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2. MODEL PROBLEM

In this chapter we will first introduce the concepts related to Sobolev spaces,

Hölder spaces and the method of characteristics. After that, we will apply the

method of characteristics to our model problem. Then a result concerning existence

and uniqueness of the solution of a reduced model problem is proved.

2.1 Mathematical preliminaries

In this section we present the necessary theoretical background to this thesis. We

give a brief overview of Sobolev spaces and their norms. Afterwards we define Hölder

spaces and norms. Finally, we recall basic properties of method of characteristics that

will be helpful in the following section where we prove the existence and uniqueness

of the solution of a reduced model problem.

2.1.1 Sobolev spaces

Throughout this thesis Sobolev spaces and norms will play an important role.

Consequently, we briefly summerize the definition of a Sobolev space and its norm

in the following:

Definition 2.1.1 (Lp norm, [14]). For 1 ≤ p <∞,

‖u‖Lp =

(∫
|u|p
) 1

p

(2.1)

Definition 2.1.2 (Lp(Ω) space, [14]). For 1 ≤ p <∞,

Lp(Ω) = {u : Ω→ R | u is Lebesgue measurable, ‖u‖Lp(Ω) <∞}. (2.2)

8



Definition 2.1.3 (L∞ norm and space, [14]).

L∞(Ω) = {u : Ω→ R | u is Lebesgue measurable, ‖u‖L∞(Ω) <∞} (2.3)

where

‖u‖L∞(Ω) = ess supΩ|u|.

Definition 2.1.4 (Multi-index notation, [14]). A vector of the form α = (α1, ..., αn),

where each component αi is a non-negative integer , is called a multi-index of order:

|α| = |α1|+ |α2|+ · · ·+ |αn|.

Assume u : U → R,x ∈ U , given a multi-index α define:

Dαu(x) =
∂|α|u(x)

∂xα1
1 · · · ∂xαnn

.

Definition 2.1.5 (Sobolev Norm, [14]). For n ∈ N, k > 0 and 1 ≤ p <∞,

‖u‖k,p =

 ∑
0≤|α|≤k

‖Dαu‖pp

 1
p

(2.4)

After introducing the Sobolev norm and multi-index notation, we recall the def-

inition of Sobolev spaces, which is related to the Sobolev norm. To understand this

concept, we also give the definition of weak derivatives.

Definition 2.1.6 (Weak derivatives, [14]). Suppose u, v ∈ L1
loc(Ω), and α is a Multi-

index. We say that v is a αth-weak partial derivative of u, written

Dαu = v,

9



provided ∫
Ω

uDαφdx = (−1)|α|
∫

Ω

vφdx. (2.5)

for all test functions φ ∈ C∞c (Ω). (C∞c (Ω) denotes the space of functions in C∞(Ω)

with compact support.)

Definition 2.1.7 (Sobolev Spaces, [14]). For k > 0 and 1 ≤ p < ∞, the Sobolev

space

W k,p(Ω)

consists of all locally summable functions u : Ω→ R such that for each multi-index

α with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω).

Usually, we write Hk(Ω) = W k,2(Ω). After all the introductions about the integer

valued Sobolev spaces, we would like to give some definitions about the fractional

Sobolev spaces and norms.

Definition 2.1.8 (Fractional Sobolev spaces, [36]). Let Ω be a domain in Rn, s ∈

(0, 1). For any p ∈ [1,∞), we define W s,p(Ω) as follows:

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p

+s
∈ Lp(Ω× Ω)

}
. (2.6)

i.e, an intermediary Banach space between Lp(Ω) and W 1,p(Ω).

Definition 2.1.9 (Fractional Sobolev norm, [36]). Let Ω be a domain in Rn, s ∈

(0, 1). For any p ∈ [1,∞),

‖u‖W s,p(Ω) :=

(∫
Ω

|u|p dx+

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

(2.7)
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where the second term in (2.7)

|u|W s,p(Ω) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

(2.8)

is also called Gagliardo seminorm of u.

2.1.2 Hölder spaces

We state in this section the definitions and results we shall need from the theory

of Hölder spaces.

Definition 2.1.10 (Hölder Seminorm, [14]). Let Ω be a open subset in Rd. If

µ ∈ (0, 1], the usual Hölder seminorm is given by

[f ]0,µ;Ω = sup
x,y∈Ω

|f(x)− f(y)|
|x− y|µ

. (2.9)

Definition 2.1.11 (Hölder Space, [14]). The class of f ∈ C(Ω) such that [f ]0,µ;Ω <

∞ will be denoted as the Hölder space C0,µ(Ω). Functions in C0,µ(Ω) are said to be

uniformly Hölder continuous with exponent µ.

Definition 2.1.12 (Hölder Norm, [14]). The full Hölder norm of f is defined as

follows:

‖f‖0,µ;Ω = sup
x∈Ω
|f(x)|+ [f ]0,µ;Ω. (2.10)

We may also define spaces of continuously differentiable functions whose kth

derivative is Hölder continuous.

Definition 2.1.13. For any integer k ≥ 0, we let Ck,µ(Ω) denote the set of all

functions in f ∈ Ck(Ω) with Dβf ∈ C0,µ(Ω) for each multi-index β with |β| = k.
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For f ∈ Ck,µ(Ω), we define the semi-norm:

[f ]k,µ;Ω =
∑
|β|=k

sup
x,y∈Ω

|Dβf(x)−Dβf(y)|
|x− y|µ

. (2.11)

The appropriate full norm is given by

‖f‖k,µ;Ω =
∑
|β|≤k

sup
x∈Ω
|Dβf(x)|+ [f ]k,µ;Ω (2.12)

where β ranges over all multi-indices of appropriate orders.

2.1.3 Sobolev embedding theorems

In this section we summarize the Sobolev Embedding Theorems. We start by

considering continuous, compact, and bounded operators first, and then provide

Sobolev Embedding Theorems for both integer and fractional Sobolev spaces.

Definition 2.1.14 (Operators, [1]). Let X, Y be normed spaces and f an operator

from X into Y .

1. f is continuous if and only if f(xn)→ f(x) in Y whenever xn → x in X.

2. f is compact if f(A) is precompact in Y whenever A is bounded in X.

3. f is bounded if f(A) is bounded in Y whenever A is bounded in X.

4. f is completely continuous if it is continuous and compact.

Definition 2.1.15 (Embeddings, [1]). The normed space X is embedded in the

normed space Y , denoted by X → Y if:

1. X is a vector subspace of Y and
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2. the identity operator I defined on X into Y by Ix = x for all x ∈ X is

continuous.

X is compactly embedded in Y if the embedding operator I is compact.

The next statement is Sobolev embedding theorem. It is an important result

when proving the error estimates in chapter 4.

Theorem 2.1.1 (Sobolev Embedding Theorem, [1]). Let Ω be a bounded domain in

Rn with Lipschitz boundary. Let k ≥ 1 and let 1 ≤ p ≤ ∞.

1. If either k > l and 1 ≤ p ≤ q ≤ ∞ are two extended real numbers such that

1

q
=

1

p
− k − l

n
(2.13)

then

W k,p(Ω) ⊆ W l,q(Ω). (2.14)

2. If (k − r − α)/n = 1/p with α ∈ (0, 1), then

W k,p(Ω) ⊂ Cr,α(Ω). (2.15)

3. If k > n
p

+ 1, then

W k,p(Ω) ⊂ C0,1(Ω). (2.16)

In addition, we have several embedding theorems for fractional Sobolev spaces.

Before we state the embedding theorems, we need the following definition as a con-

straint for the domain.

Definition 2.1.16 (Extension domain, [36]). For any s ∈ (0, 1), and any p ∈ [1,∞),

we say that an open set Ω ∈ Rn is an extension domain for W s,p, if there exists a
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positive constant C = C(n, p, s,Ω) such that: for every function u ∈ W s,p(Ω), there

exists ũ ∈ W s,p(Rn) with ũ(x) = u(x) for all x ∈ Ω and ‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω).

Theorem 2.1.2 (Theorem 5.4, [36]). Let s ∈ (0, 1) and p ∈ [1,∞) and Ω ⊆ Rn be

an open set of class C0,1 with bounded boundary (Lipschitz domain). Then W s,p(Ω)

is continuously embedded in W s,p(Rn), namely for any u ∈ W s,p(Ω), there exists

ũ ∈ W s,p(Rn) such that ũ
∣∣
Ω

= u, and

‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω) (2.17)

where C = C(n, p, s,Ω).

Theorem 2.1.3 (Theorem 6.7, [36]). Let s ∈ (0, 1) and p ∈ [1,∞), such that sp < n.

Let Ω ⊆ Rn be a bounded extension domain for W s,p. Then there exists a positive

constant C = C(n, p, s,Ω) such that for any f ∈ W s,p(Ω), we have

‖f‖Lq(Ω) ≤ C‖f‖W s,p(Ω) (2.18)

where q ∈ [p, p? := np
n−sp ].

Theorem 2.1.4 (Theorem 6.10, [36]). Let s ∈ (0, 1) and p ∈ [1,∞), such that

sp = n. Let Ω ⊆ Rn be a bounded extension domain for W s,p. Then there exists a

positive constant C = C(n, p, s,Ω) such that for any f ∈ W s,p(Ω), we have

‖f‖Lq(Ω) ≤ C‖f‖W s,p(Ω) (2.19)

where q ∈ [p,∞).

Theorem 2.1.5 (Theorem 7.1, [36]). Let s ∈ (0, 1) and p ∈ [1,∞). Let q ∈ [1, p],

Ω ⊆ Rn be a bounded extension domain for W s,p and I be a bounded subset of Lp(Ω).
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Suppose that

sup
f∈I

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dxdy <∞.

Then I is pre-compact in Lq(Ω).

Theorem 2.1.6 (Corollary 7.2, [36]). Let s ∈ (0, 1) and p ∈ [1,∞) such that sp < n.

Let q ∈ [1, p? = np
n−sp), Ω ⊆ Rn be a bounded extension domain for W s,p and I be a

bounded subset of Lp(Ω). Suppose that

sup
f∈I

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dxdy <∞.

Then I is pre-compact in Lq(Ω).

Theorem 2.1.7 (Theorem 8.2, [36]). Let s ∈ (0, 1) and p ∈ [1,∞) such that sp > n.

Let Ω ⊆ Rn be a Lipschitz domain for W s,p. Then there exists C > 0, depending on

n, s, p and Ω, such that

‖f‖C0,α(Ω) ≤ C‖f‖W s,p(Ω) (2.20)

for any f ∈ W s,p, with α := sp−n
p

.

In addition, for any q ∈ [1,∞), there exists C2 > 0 that

‖f‖Lq(Ω) ≤ C2‖f‖W s,p(Ω) (2.21)

for any f ∈ W s,p.

Taking into account the previous theorems, we are able to give the General

Sobolev inequalities stated in the following theorem.

Theorem 2.1.8 (General Sobolev inequalities, [14]). Let Ω be a bounded open subset

of Rn, with a C1 boundary. Assume u ∈ W k,p(Ω).
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(i) If k < n
p
, then u ∈ Lq(Ω), where 1

q
= 1

p
− k

n
. We have in addition the estimate:

‖u‖Lq(Ω) ≤ C‖u‖Wk,p(Ω) (2.22)

the constant C depending only on k, p, n and Ω.

(ii) If k > n
p
, then u ∈ Ck−[n

p
]−1,µ(Ω), where µ = [n

p
]+1− n

p
if n

p
is not an integer,

or µ is any positive number < 1, if n
p

is an integer. We have in addition the estimate:

‖u‖
C
k−[np ]−1,µ

(Ω)
≤ C‖u‖Wk,p(Ω) (2.23)

the constant C depending only on k, p, n, µ and Ω. (Note: [x] defines the nearest

integer to x.)

2.1.4 Method of characteristics

First-order partial differential equations can be reformulated as systems of or-

dinary differential equations along characteristic curves or characteristics. We will

briefly discuss the method in this section and apply it to our work in the next section.

Consider the first-order, nonlinear equation,

F (~x, u,Du) = 0, ~x ∈ Rn in U, (2.24)

subject to the boundary condition:

u = g on Γ (2.25)

where Γ ⊆ ∂U and g : Γ→ R are given. We also suppose that F , g are continuous.

First, we parameterize Γ by the vector ~r = (r1, r2, ..., rn−1) ∈ Rn−1, so that

Γ = (γ1(~r), γ2(~r), ..., γn(~r)). We also define z(s) = u(~x(s)) and ~p(s) = Du(~x(s)),
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that is, ~p(s) = (p1(s), p2(s), ..., pn(s)), where pi(s) = uxi(~x(s)).

We rewrite our equation as

F (~x, z, ~p) = 0.

Definition 2.1.17 (Evans, [14]). We define 2n+ 1 characteristic equations by:

dxi
ds

= Fpi .

dz

ds
=

n∑
i=1

piFpi .

dpi
ds

= −Fxi − Fzpi.

(2.26)

for i = 1, 2, ..., n. The functions ~x(s),z(s) and ~p(s) are called the characteristics. The

graph of the solution to this system of ODEs must be a union of integral curves. These

integral curves are called the characteristic curves of the original partial differential

equation.

For i = 1, 2, ..., n, we give the initial conditions as follows:

xi(~r, 0) = γi(~r).

z(~r, 0) = g(~r).

pi(~r, 0) = hi(~r).

(2.27)

where the functions hi, i = 1, 2, ..., n satisfy the following compatibility conditions :

F (γ1(~r), ...γ1(~r), g(~r), h1(~r), ...h1(~r)) = 0.

gri = h1(~r)
∂γ1

∂ri
+ · · ·+ hn(~r)

∂γn
∂ri

, i = 1, 2, ...n− 1.
(2.28)

Note z(~r, 0) is uniquely determined by the boundary condition and the choice of

point ~x(~r, 0), but the vector function ~h satisfying (2.28) may not exist or may not
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be unique. But if they do exist, we are able to find a unique solution to this system

from ODE theory.

In order to guarantee that we can invert the function z(~r, s) to the function u(~x),

we require an additional boundary condition near Γ:

Definition 2.1.18 (Noncharacteristic Boundary Condition, [14]). We denote h(~r) =

(h1(~r), h2(~r), ...hn(~r)) and say (Γ(~r), g(~r), h(~r)) is noncharacteristic if

D~p(Γ(~r), g(~r), h(~r)) · ν(Γ(~r)) 6= 0 (2.29)

where ν(Γ(~r)) denotes the outward unit normal to ∂U at Γ(~r).

Then, we have the following Lemma:

Lemma 2.1.9. If Γ is noncharacteristic (2.29), then there exists an open interval

I ⊂ R containing 0, a neighborhood W of ~r = ~x(r1, r2, ..., rn−1) in Γ ⊂ Rn−1, and

a neighborhood V of h(~r) = (h1(~r), h2(~r), ...hn(~r)) in Rn, such that for each x ∈ V

there exists unique s ∈ I, y ∈ W such that

x = G(s, y). (2.30)

Proof. The key ingredient used in the proof is Inverse Function Theorem. The proof

of this lemma can be found in Evans [14] and is omitted here.

The technique of reducing a partial differential equation to a system of ordi-

nary differential equations by introducing these characteristic equations is called the

method of characteristics. Now we will proceed to solve equation (1.8) for our model

problem, using the method of characteristics.
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2.2 Reduction to a first order system of ODEs

In this section we reduce our model problem to a system of ODEs.

At first, We give some assumptions to our problem as follows:

Assumption 2.2.1. • Existence: there is a smooth solution u of ∇· (a∇u) = f ,

given f and a sufficiently smooth.

• Uniform ellipticity: there exists a constant c > 0, such that c−1 ≤ a(x, y) ≤ c.

• No interior extrema: |∇u| ≥ δ > 0.

• Noncharacteristic boundary condition. See Definition 2.1.18.

Note that the first item of the previous assumptions implies that (1.8) admits a

solution in Hk(Ω) for some k (see [14]). We will later use this regularity result. The

second item ensures the positivity of a and the third item is the consequence of the

maximum principle for (1.8). We state last item more precisely as follows. For each

r ∈ R and (γ1(r), γ2(r)) ∈ ∂Ω,

∂u

∂γ1

· γ′2(r)− ∂u

∂γ2

· γ′1(r) 6= 0. (2.31)

This result comes from the definition of noncharacteristic boundary condition in last

section.

To guarantee that our approximation a will be positive, we simplify our problem

by making the transformation a(x, y) = eφ(x,y). Equation (1.8) then becomes:

eφ · (∇φ · ∇u+∇2u) = f (2.32)
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which yields:

F (~x, φ,Dφ) = ∇φ · ∇u
|∇u|

+
∇2u

|∇u|
− e−φ · f
|∇u|

= 0. (2.33)

A solution φ(x(s), y(s)) := z(s) parameterized by arc length s has to satisfy:

dz

ds
=

d

ds
φ(x, y) =

∂φ

∂x
· dx
ds

+
∂φ

∂y
· dy
ds
. (2.34)

Comparison with (2.33) suggests setting
dx

ds
=

ux
|∇u|

and
dy

ds
=

uy
|∇u|

, so that:

dz

ds
=
∂φ

∂x
· ux
|∇u|

+
∂φ

∂y
· uy
|∇u|

= −∇
2u

|∇u|
+
e−φ · f
|∇u|

. (2.35)

Therefore, the PDE has been transformed to the system of ODEs along the charac-

teristic curves:

dφ

ds
=− ∇

2u

|∇u|
+
e−φ · f
|∇u|

.

dx

ds
=

ux
|∇u|

.

dy

ds
=

uy
|∇u|

.

(2.36)

For convenience, we also assume that a = 1 on the boundary, which implies that

φ = 0 on the boundary.

We will use equations (2.36) to reconstruct the unknown conductivity a(x, y)

from u(x, y).

2.3 Existence and uniqueness of solutions with known function u

In this section, our model problem is reduced to a problem where u is completely

known. We derive a result concerning existence and uniqueness for the reduced model

problem.
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After introducing the method of characteristics, we now have the tools to demon-

strate the local existence and uniqueness of the reduced model problem.

Applying the definitions from Section 2.1.4 to our equation (2.33), we define

~x(s) = (x(s), y(s)), z(s) = φ(x(s), y(s)) and ~p(s) = Dφ(x(s), y(s)). We also pa-

rameterize ∂Ω by r, so that ∂Ω = (γ1(r), γ2(r)). Our equation (2.33) has the new

form:

F (~x, z, ~p) = ~p(s) · ∇u
|∇u|

+
∇2u

|∇u|
− e−z(s) · f
|∇u|

= 0. (2.37)

We define 5 characteristic equations by

dz

ds
= F~p = −∇

2u

|∇u|
+
e−z · f
|∇u|

.

d~x

ds
= ~p · F~p =

∇u
|∇u|

.

d~p

ds
= −F~x − Fz · ~p = −F~x +

e−z · f
|∇u|

~p.

(2.38)

Initial conditions are given as follows:

~x(r, 0) = (γ1(r), γ2(r)).

z(r, 0) = 0.

~p(r, 0) = (h1(r), h2(r)).

(2.39)

To prove the local existence and uniqueness of the solution of the reduced model

problem, we start with several lemmas. First of all, we prove the following lemma:

Lemma 2.3.1. For any point (γ1(r0), γ2(r0)) ∈ ∂Ω, there exists a unique solution

(h1(r), h2(r)) of equation (2.28) for all r ∈ ∂Ω sufficiently close to r0 such that the

solution satisfies compatibility conditions.

Proof. According to (2.28), (h1(r), h2(r)) satisfies the following system of linear equa-
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tions:

f(γ1(r), γ2(r))−∇2u(γ1(r), γ2(r)) =
∂u(γ1, γ2)

∂γ1

h1(r) +
∂u(γ1, γ2)

∂γ2

h2(r).

0 =
dγ1(r)

dr
h1(r) +

dγ2(r)

dr
h2(r).

(2.40)

Recall from our assumption that ∂Ω is noncharacteristic. By (2.31), we have∣∣∣∣∣∣∣
∂u
∂γ1

∂u
∂γ2

dγ1(r)
dr

dγ2(r)
dr

∣∣∣∣∣∣∣ =
∂u

∂γ1

· γ′2(r)− ∂u

∂γ2

· γ′1(r) 6= 0.

Therefore, this system of linear equation has unique solution for (h1(r), h2(r)).

Consequently, Lemma 2.3.1 guarantees compatibility condition on the boundary.

The next lemma is about existence and uniqueness of the solution of the system of

ODEs. We omit the proof since it is a direct application of ODE Existence Theorem

[45].

Lemma 2.3.2. There is a unique local solution to the characteristic equations (2.38)

with initial conditions (2.39).

Remark : We need Lipschitz continuity of ∇2u to prove the uniqueness of the

solution.

The following lemma describes the local invertibility from (r, s) to (x, y).

Lemma 2.3.3. For each r0, there exists an open set V containing the point (r0, 0) and

an open set W containing the point G(r0, 0) = (x(r0, 0), y(r0, 0)) = (γ1(r0), γ2(r0)),

such that

G : V → W

is one-to-one and onto, and the inverse function

G−1 : W → V
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is C1.

Proof. This is a straightforward consequence of Lemma 2.1.9.

We have all the lemmas we need to prove the local existence and uniqueness of

the solution of the reduced model problem, so let us state the theorem.

Theorem 2.3.4. For any point (γ1(r0), γ2(r0)) ∈ ∂Ω, there exists a unique solution

of (2.33) with boundary condition φ = 0 on ∂Ω in some neighborhood V containing

(γ1(r0), γ2(r0)).

Proof. According to Lemma 2.3.2, let (~x(r, s), z(r, s), ~p(r, s)) be the unique local

solution of (2.38), (2.39) in a neighborhood V of (γ1(r0), γ2(r0)). We can invert

the function ~x(r, s) in some neighborhood near (γ1(r0), γ2(r0)) by Lemma 2.3.3. We

assume without loss of generality that this neighborhood is also V . To be more

precisely, we can find functions r,s such that r = r(~x),s = s(~x) in V .

Now, let us define

φ(~x) ≡ φ(x, y) ≡ z(r, s) = z(r(~x), s(~x))

for every point x ∈ V .

We assert that this function φ solves our model PDE (2.33) with boundary con-

dition φ = 0. In order to prove this, first of all, let us demonstrate that

F (~x(r, s), z(r, s), ~p(r, s)) = 0. (2.41)

To see this, note

F (~x(r, 0), z(r, 0), ~p(r, 0)) = 0 (2.42)
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by the compatibility conditions (2.28). Moreover, we have

∂F

∂s
(~x, z, ~p) =

∂F

∂~x

∂~x

∂s
+
∂F

∂z

∂z

∂s
+
∂F

∂~p

∂~p

∂s

= F~x · F~p + Fz · (~p · F~p) + F~p · (−F~x − Fz · ~p) (By (2.38) )

= 0.

This result and (2.42) lead to (2.41). In view of definition of φ and (2.41), we can

conclude that

F (~x, φ, ~p) = 0. (2.43)

It remains to prove:

~p = Dφ. (2.44)

In order to show this, we need following two identities:

∂z

∂s
(r, s) = ~p · ∂~x

∂s
(2.45)

and

∂z

∂r
(r, s) = ~p · ∂~x

∂r
. (2.46)

These two identities will help us prove (2.44). We obtain our first identity using

characteristic equations (2.38). To establish second identity, we fix r and set:

L(s) =
∂z

∂r
(r, s)− ~p · ∂~x

∂r
(r, s). (2.47)

It is easy to check that L(0) = 0 according to the compatibility conditions (2.28). In
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addition, we can compute:

L′(s) =
∂2z

∂r∂s
− (

∂~p

∂s

∂~x

∂r
+ ~p · ∂

2~x

∂r∂s
) (2.48)

= (
∂~p

∂r

∂~x

∂s
+ ~p · ∂

2~x

∂s∂r
)− (

∂~p

∂s

∂~x

∂r
+ ~p · ∂

2~x

∂r∂s
) (By (2.45) ) (2.49)

=
∂~p

∂r

∂~x

∂s
− ∂~p

∂s

∂~x

∂r
(2.50)

=
∂~p

∂r
· F~p + (F~x + Fz · ~p)

∂~x

∂r
. (By (2.38) ) (2.51)

Now differentiate (2.41) with respect to r:

F~x ·
∂~x

∂r
+ Fz ·

∂z

∂r
+ F~p ·

∂~p

∂r
= 0. (2.52)

We employ this identity in (2.48), obtaining:

L′(s) = Fz · (~p ·
∂~x

∂r
− ∂z

∂r
) = −FzL(s). (2.53)

Note that F is Lipschitz continuous with respect to z. Hence L(s) solves the linear

ODE (2.53), with the initial condition L(0) = 0. Consequently, L(s) = 0 and so

identity (2.46) is verified.

We finally employ (2.45) and (2.46) in proving (2.44). Indeed,

∂φ

∂~x
=

∂z

∂s

∂s

∂~x
+
∂z

∂r

∂r

∂~x

= (~p · ∂~x
∂s

)
∂s

∂~x
+ (~p · ∂~x

∂r
)
∂r

∂~x
(By (2.45), (2.46) )

= ~p · (∂~x
∂s

∂s

∂~x
+
∂~x

∂r

∂r

∂~x
)

= ~p.

This concludes the proof of (2.44), and so completes the proof of existence of the
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solution.

Uniqueness of the solution is guaranteed due to uniqueness theorem for ODEs

and uniqueness of local invertibility.

Remark: Although we have utilized the full characteristic equations (2.38) in

the proof of Theorem 2.3.4, once we know the solution exists, we can use some of

equations (2.36) (which do not involve ~p(·) to compute the solution. Observe also

the characteristics x(s) emanating from distinct points on ∂Ω cannot cross, owing to

uniqueness of solutions of the initial-valued problem for the ODE.

Corollary 2.3.5. For any point (x0, y0) ∈ ∂Ω, there exists a unique solution of (1.8)

with boundary condition a = 1 on ∂Ω in some neighborhood V containing (x0, y0).

Proof. It follows from Theorem 2.3.4 and the mapping a = eφ.
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3. THE RBF METHOD

The radial basis function (RBF) interpolation method has become one of the

primary tools for interpolating scattered data. The method’s ability to handle arbi-

trarily scatted data and to provide good accuracy have made it particularly popular

in several different types of application, such as medical imaging and neural net-

works. In this chapter we study basic properties about the RBF method and then

apply them to our work. A RBF interpolation error estimate is reviewed in the last

section of this chapter.

3.1 Introduction

The problem of interpolating scattered data occurs naturally in many areas of

applied mathematics and the sciences. This includes surface reconstruction, image

restoration and surface deformation.

The modern approach to scattered data interpolation can be traced back to the

1960s with the pioneering work of D. Shepard [43] on what is called today Shepard’s

interpolation. Shepards applied his method to surface modeling. In the 1970s, R.

Hardy [24] developed different methods called the multiquadrics(MQ) and the inverse

multiquadrics(IMQ).

From a mathematical point of view, a general scattered data interpolation prob-

lem can be formulated in the following way. Let f be an unknown function from Rn

to R. Let x1, . . . , xk be a set of points in Rn and s1, . . . , sk be a set of values in R.

We wish to construct an interpolation f̃ to f such that:

f̃(xi) = si, i = 1, . . . , k.

Note that in general there are infinitely many functions that would satisfy these
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conditions. For instance the piecewise constant function, f̃(x) = si if x = xi and 0

otherwise is always a solution. We usually assume that f has some smoothness prop-

erties such as continuity or differentiability. Moreover, we often choose f̃ belonging

to a certain class of functions. By constraining the solution space, we are implicitly

making some assumptions on the type of function that f̃ is.

It is important to understand that interpolation is not always desirable. For

example, our data may be corrupted by measurement errors, but we do want to

construct an approximation which is close to the function values in some sense.

In one dimension, many methods can solve this problem, such as polynomial and

Fourier interpolation. Most of these involve the same general idea: a set of basis

function Fj(x)kj=1 is chosen such that a linear combination of these functions satisfies

the interpolation conditions. Specifically, a function s(x) is found of the form:

s(x) =
k∑
j=1

λjFj(x). (3.1)

The interpolation conditions lead to a linear system of equations which determines

the coefficients λj. This system is guaranteed to be non-singular whenever the data

points are distinct.

For data in more than one dimension, the methods described above no longer

work. It can be shown that for any set of basis function Fj(x)kj=1 that are independent

of the data points, there exists sets of distinct data points x1, . . . , xk such that the

linear system of equations is singular. In other words, there is no interpolation of

the form (3.1). This result is referred to as Haar’s Theorem [20].

This non-singular problem can be solved by a different approach for creating

a interpolation function. We use a linear combination of a single basis function

that varies radially about its center instead of taking linear combination of a set of
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basis functions that are independent of the data points. This approach, provided by

R.Hardy [24], is referred to as the radial basis function (RBF) method.

The RBF method is a generalized version of the MQ method constructed in 1968

by R.Hardy [24]. He developed this method to solve a problem from cartography.

Following the publication of Hardy’s MQ method, many people began using the

method in other areas, such as problems in hydrology(approximating the average

rainfall in a region), photogrammetry (reconstructing images), and geology (approx-

imating ground water levels from well-logs). See [25] for more details.

Around the same time, methods similar to the MQ method began appearing.

J.Duchon [12] [13] took a variational approach and developed interpolants that led

to thin plate splines.

A mathematical formulation of the RBF method was finally provided in 1986 by

Micchelli [31].

In [15], Richard Franke compared radial basis functions with some of the other

methods, such as polynomial interpolation, tensor product methods and finite ele-

ment methods. He conducted careful numerical experiments using different methods,

including radial basis functions, and concluded that they provide excellent accuracy

when interpolating scattered data. Franke summarized his result in [16], and found

the RBF method to be the best method in this sense when compared to the other

tested methods, thus providing an excellent reason for applying radial basis methods

to our work.

3.2 Preliminaries

Radial basis function methods can provide interpolation to function values given

at irregularly positioned points. Moreover, these interpolations are often excellent

approximations to the underlying function, even when the number of interpolation
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points is small.

They are conceptually easy to understand and the accuracy of approximation is

usually very satisfactory. It is convenient to add a low-degree polynomial term to

RBF interpolation in order to reproduce polynomial functions. The RBF kernels

corresponding to the differential operators ∇m have a non-trivial null space that

contains exactly these polynomials.

In this section we review some definitions and conditions to the RBF method to

guarantee its non-singularity.

Before we describe the RBF method, we give one more definition.

Definition 3.2.1. Let Pdm be the space of all d-variate polynomials with a degree

less than m. Furthermore, let M denote the dimension of Pdm, then M =
(
m−1+d
m−1

)
.

Definition 3.2.2. (RBF interpolation method). Given a set of k distinct data

points V = {vj}kj=1 and corresponding data values {f(vj)}kj=1, a radial basis function

approximation with a polynomial term can be written as

s(v) =
k∑
j=1

λjF (‖ v − vj ‖) +
M∑
i=1

cipi(v), v ∈ Rd (3.2)

where {pi(v)}Mi=1 is a basis for Pdm and F (r), r > 0, is some real-valued radial function,

also called the kernel of the RBF. The coefficients {λj}kj=1 and {ci}Mi=1 are chosen to

satisfy the linear system:

s(vi) = f(vi), j = 1, . . . , k

k∑
j=1

λjpi(vj) = 0, i = 1, . . . ,M
(3.3)

which are often called the natural boundary conditions.
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Here, the set of scattered points V is unisolvent for Pdm; that is, if p ∈ Pdm and

p(vj) = 0, j = 1, . . . , k then p = 0. It guarantees that the interpolation method can

reproduce the polynomial space Pdm. This can be a very useful property for many

applications. For a choice of functions F and polynomial orders m, the existence

and uniqueness of the solution of the linear system (3.3) is ensured when F is a

conditionally positive definite function (see [31]).

Definition 3.2.3. Let F : Rd → R be a continuous function. We say that F is

conditionally positive definite of order m ∈ N0 , iff for all N ∈ N, for all sets of

pairwise distinct points X = {xj}Nj=1 ⊆ Rd, and all α ∈ RN\{0} satisfying:

N∑
j=1

αjp(xj) = 0, for all p ∈ Pdm (3.4)

the quadratic form

N∑
j,k=1

αjαkF (xj − xk) (3.5)

is positive.

Theorem 3.2.1 (Uniqueness, [31]). Let F be conditionally positive definite of order

m. The function s defined in equation (3.2) is the unique solution to the problem

of interpolation with polynomial reproduction, provided that c and λ are required to

satisfy (3.3).

Typical examples for kernels F (r) which satisfy the above requirement include:

• Gaussian F (r) = e−εr
2

• Linear F (r) = r
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• Thin-plate Splines F (r) = r2 ln r (in two dimensions)

• Hardy’s MultiQuadrics (MQ): F (r) = (r2 + c2)1/2

• Inverse MultiQuadrics (IMQ): F (r) = (r2 + c2)−1/2

• Wendland’s compactly supported ([46]): F (r) = (1− r)4
+(4r + 1)

Schoenberg [42] provided a sufficient condition to guarantee conditionally positive

definiteness of F . To understand his result it is necessary to introduce the idea of

completely monotone function.

Definition 3.2.4. (Completely Monotone Function). A function f is called com-

pletely monotone on [0,∞) if

1. f ∈ C[0,∞).

2. f ∈ C∞(0,∞).

3. (−1)kf (k)(r) ≥ 0 for r > 0 and k = 0, 1, 2, ....

We denote the class of such functions by CM [0,∞).

For example, The function f(r) =
1

r
is in CM [0,∞). In general, the following

theorem characterizes the completely monotone function.

Theorem 3.2.2 (Bernstein-Widder [47]). A function f belongs to CM(0,∞) if and

only if there is a nonnegative Borel measure dη defined on [0,∞) such that

f(σ) =

∫ ∞
0

e−σtdη(t) (3.6)

is convergent for 0 < σ <∞. Moreover, f is in CM [0,∞) if and only if the integral

converges for σ = 0.
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Schoenberg [42] found the connection between positive definite functions and

completely monotone functions. His result is as follows:

Theorem 3.2.3 (Schoenberg [42]). A radical function F (r) is positive definite on

Rn for all n if and only if f(r) := F (
√
r) is in CM [0,∞). In other words, f(r) is

completely monotone function and continuous at r = 0.

From this theorem we can conclude, for example, the Gaussian kernel is positive

definite since for k = 0, 1, 2... and r > 0,

f(r) = F (
√
r) = e−εr ⇒ (−1)kf (k)(r) = εke−εr > 0.

But we can not make the same conclusion for the MQ and linear kernels since in

both cases f(r) > 0 and f ′(r) > 0. However, Micchelli [31] generalizes Schoenberg’s

theorem to the m = 1 case.

Theorem 3.2.4 (Micchelli [31]). A continuous radical function F (r) is an order 1

conditionally positive definite function on Rn for all n if and only if − d

dr
F (
√
r) is

completely monotonic on (0,∞).

There is also an analogue for m > 1 proved by K.Guo, S.Hu and X.Sun [19].

Theorem 3.2.5. A continuous radical function F (r) is an order m conditionally

positive definite function on Rn for all n if and only if (−1)m
dm

drm
F (
√
r) is completely

monotonic on (0,∞).

Consider Duchon’s thin plate spline kernel in two dimensions, F (r) = r2 ln r.

To apply our theorem, we note that F (
√
r) =

1

2
r ln r. It is easy to verify that

(−1)2 d
2

dr2
r ln r =

1

r
, which is completely monotonic on (0,∞) as we mentioned before.

Therefore, Duchon’s thin plate spline kernel in two dimensions is a conditionally

positive definite function of order 2.
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The thin plate spline kernel is of particular practical interest since it is related

to the minimization of a bending energy. In fact Duchon [12] derived (3.3) as the

solution to a variational problem when d = 2. He proved that the function s given

by (3.2) minimizes the following integral:

∫
[sx1x1 ]

2 + [sx2x2 ]
2 + [sx3x3 ]

2. (3.7)

One can also find an alternative way to prove this in Powell [39], [40].

In n dimensions, the idea of thin plate splines is to choose a function f(x) that

exactly interpolates the data and also minimizes the bending energy,

∫
|D2f |2dX (3.8)

where D2f is the matrix of second-order partial derivatives of f and |D2f |2 is the

sum of squares of the matrix entries.

If k > n/2 is an integer, then we can define the thin plate spline corresponding

to n and k as follows:

Fn,k(x) = cn,k‖x‖2k−n
2 , n odd

Fn,k(x) = cn,k‖x‖2k−n
2 ln‖x‖2, n even

where cn,k is a constant chosen so that the distributional Fourier transform Fn,k(ω) =

‖ω‖−2k
2 , if ω 6= 0. This function Fn,k is conditionally positive definite of order k −

dne+1 (Note: dne is the ceiling function, which denotes the smallest following integer

of n.)

Franke [16] considered different radial basis functions including the thin plate

spline in his comparison of multivariate approximation methods. He found that this
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thin plate spline provided the most accurate interpolation of all methods tested for

interpolation in two dimensions (more generally, in even dimensions).

We use thin-plate splines of order m = 2 to be our basis function in the numerical

simulations. Compactly supported radial basis functions have been invented for the

purpose of getting finite-element type approximations (Brenner and Scott [6]). In

future work, we will consider local error estimates with compactly supported RBFs

[17], [18], [22], [23].

By definition 3.2.2, we are looking for approximation for our solution u(x, y) of

form:

ũ(x, y) =
k∑
j=1

λjFj(x, y) + P (x, y) (3.9)

where Fj(x, y) is the RBF and P (x, y) is a low-degree polynomial:

P (x, y) = c1 + c2x+ c3y. (3.10)

The unknown coefficients λj and ci are determined from the interpolation conditions

and the following constraints:

k∑
i=1

λi =
k∑
i=1

λixi =
k∑
i=1

λiyi = 0. (3.11)

Once coefficients λj and ci are found, (3.9) can be used to estimate value of the

function u(x, y) and its derivatives at any point.

3.3 RBF interpolation

Most of the error estimates for RBF interpolation depended on using reproducing

kernel Hilbert space or native space methods. But these error estimates have their

own limitations. In many applications of RBF methods, the functions generating the
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data may not have the right properties to be in native space that depends on the

kernel F (r).

We assume for the rest of this section that our RBF kernel F (r) has either a

classical Fourier transform that satisfies

c1(1 + ‖ω‖2
2)−τ ≤ F̂ (ω) ≤ c2(1 + ‖ω‖2

2)−τ , ω ∈ Rn

or a generalized Fourier transform that satisfies

c1‖ω‖−2τ
2 ≤ F̂ (ω) ≤ c2‖ω‖−2τ

2 , ω ∈ Rn\0,

where we take τ > n/2. It’s easy to verify that the thin-plate splines satisfy the

conditions.

The next theorem is related to RBF interpolation, which is vital in proving the

error estimates of our reconstruction.

Above all, we introduce some quantities that will be useful in the theorem.

Definition 3.3.1. Let X = {v1, v2, ...vN} be a finite set of points in Ω. The mesh

norm for X relative to Ω is given by:

hX,Ω = sup
v∈Ω

inf
vj∈X
‖v − vj‖2. (3.12)

It measures the maximum distance any point in Ω can be from X and expresses

how well the data fills a region of interest Ω. The mesh norm can be used to bound

the approximation error.
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Definition 3.3.2. The separation distance is given by

qX = inf
j 6=k
‖vj − vk‖2. (3.13)

This quantity measures how close the data are together.

Finally, we have the mesh ratio ρ = h/q ≥ 1 provides a measure of how uniformly

points in X are distributed in Ω.

Now one result concerning the RBF interpolation error estimate is presented here:

Theorem 3.3.1 (RBF Interpolation Inequality, [35]). Let τ = k + s with 0 ≤ s < 1

and k ∈ N with k > n/2. If f ∈ W τ,2(Ω), then

‖f − f̃‖Wβ,2(Ω) ≤ Chτ−βX,Ω‖f‖W τ,2(Ω), 0 ≤ β ≤ τ (3.14)

where τ depends on the choice of the kernel F (r) and f̃ is the RBF interpolation of

f .

The key to prove this theorem is the following two lemmas:

Lemma 3.3.2 ( [34], Prop.3.2 and Cor.3.6). Under the assumptions made in Theo-

rem 3.3.1, we have the estimate:

‖f − f̃‖L2(Ω) ≤ ChτX,Ω‖f‖W τ,2(Ω). (3.15)

Lemma 3.3.3 ( [35], Prop.12.1.5 and Theorem 12.2.7). Suppose T : W τ,2(Ω) →

W τ,2(Ω) is a linear operator, where Ω ∈ Rn is a Lipschitz domain. We also assume
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that the operator is bounded in the following way:

‖Tf‖L2(Ω) ≤ C1‖f‖W τ,2(Ω), f ∈ W τ,2(Ω) (3.16)

‖Tf‖W τ,2(Ω) ≤ C2‖f‖W τ,2(Ω), f ∈ W τ,2(Ω). (3.17)

Then, for every 0 < β < τ , we also have

‖Tf‖Wβ,2(Ω) ≤ C
1−β/τ
1 C

β/τ
2 ‖f‖W τ,2(Ω). (3.18)

We refer to [33], [34] and [35] for details.
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4. ERROR ESTIMATE

In this chapter, we will establish an error estimate for our approximation ã to

the unknown coefficient a under certain assumptions.

The key ingredients to the error estimate result are a PDE estimate, a Sobolev

embedding estimate and an RBF interpolation estimate.

For the remaining of this chapter, let ũ denote the RBF interpolation of u from

the observed data and ã denote the approximate value of a satisfying (1.8).

4.1 PDE estimate

To obtain our error estimate, we make the following assumptions:

Assumption 4.1.1. • For simplicity, we assume f = 0.

• The solution u of the equation ∇ · (a∇u) = 0 exists.

• There exists a constant c > 0, such that c−1 ≤ a(x, y) ≤ c, i.e., uniformly

elliptic.

• u ∈ W τ,2(Ω), where τ > 4 depends on the choice of kernel F (r).

• |∇u| ≥ δ1 > 0, i.e., there is no interior maximum in Ω.

Remark: Recall from Chapter 2, we don’t have existence and uniqueness in gen-

eral case so we must assume the existence of a sufficiently smooth solution u.

Besides these assumptions, we also require that the RBF interpolation ũ satisfy

|∇ũ| ≥ δ2 > 0 to assure that |∇ũ| is bounded away zero. First, we prove the following

lemma, in which we claim that the length of each characteristic curve is finite. We

denote g as the diameter of the space Ω.
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Lemma 4.1.1. Given that Assumptions 4.1.1 are satisfied, then any characteristic

curve Γ connecting two distinct points a1, a2 ∈ Ω from equations:

dψ

ds
= −∇

2u

|∇u|
. (4.1)

dx

ds
=

ux
|∇u|

. (4.2)

dy

ds
=

uy
|∇u|

. (4.3)

If Γ(0) = a1 ∈ Ω, Γ(t) = a2 ∈ Ω, there exists a constant C(c, δ1, ‖u‖L∞(Ω)), such that

|t| ≤ C. The length of the characteristic Γ is equal to |t|.

Proof. We introduce another function (a potential) via

a
∂u

∂x
=

∂v

∂y
.

a
∂u

∂y
= −∂v

∂x
.

The pair of functions (u, v) form a new coordinate system with basic vectors:

e1 = (
ux
|∇u|

,
uy
|∇u|

), e2 = (
vx
|∇v|

,
vy
|∇v|

).

This coordinate system is also orthogonal since:

e1 · e2 =
uxvx + uyvy
|∇u||∇v|

.

=
ux · (−auy) + uy · (aux)

|∇u||∇v|
.

= 0
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We denote J as the Jacobian matrix and its determinant:

det(J) = |∂(u, v)

∂(x, y)
| = uxvy + uyvx = a|∇u|2. (4.4)

By taking into account our assumption 4.1.1, J is also nonsingular:

0 <
1

c
· δ2

1 ≤ det(J) ≤ c · |∇u|2L∞ <∞. (4.5)

Thus we have a mapping between two coordinate systems:

 du

dv

 = J

 dx

dy

 . (4.6)

Or, in the opposite direction:

J−1

 du

dv

 =

 dx

dy

 . (4.7)

Let’s compute the length of characteristic curve in two different coordinate sys-

tems:

L =

∫ t

0

√
(
dx

ds
)2 + (

dy

ds
)2ds (4.8)

=

∫ a′2

a′1

√√√√√√(
du

ds
,
dv

ds
)(J−1)′J−1

 du
ds

dv
ds

ds (4.9)

where a′1, a′2 denote the transform of a1,a2 in (u, v)-coordinates.

Let us consider separately the left and right hand-side of the above equality. The
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left hand-side equals t plainly follows from (4.1). Indeed,

∫ t

0

√
(
dx

ds
)2 + (

dy

ds
)2ds =

∫ t

0

1 · ds = t. (4.10)

On the right hand-side, by taking into account (4.5) and also:

dv

ds
= vx

dx

ds
+ vy

dy

ds
= 0. (4.11)

We get:

∫ a′2

a′1

√√√√√√(
du

ds
,
dv

ds
)(J−1)′J−1

 du
ds

dv
ds

ds ≤ c

δ2
1

∫ a′2

a′1

√√√√√√(
du

ds
,
dv

ds
)

 du
ds

dv
ds

ds(4.12)

≤ c

δ2
1

· ‖a′2 − a′1‖ (4.13)

≤ c

δ2
1

· 2 · ‖u‖L∞(Ω). (4.14)

Finally, combining (4.10) with (4.14), we obtain our estimate:

|t| ≤ C(c, δ1, ‖u‖L∞(Ω)). (4.15)

We use this lemma to prove the following PDE error estimate between exact value

a and approximate value ã.

Theorem 4.1.2. Given that Assumptions 4.1.1 are satisfied, then there exists a

positive constant C = C(g, ‖∇u‖L∞ , ‖∇2u‖L∞ , δ1, δ2), such that, for any 0 < µ ≤ 1,

the following inequality holds:

‖a− ã‖L∞ ≤ C(‖∇2(u− ũ)‖0,µ;Ω + ‖∇(u− ũ)‖0,µ;Ω). (4.16)
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Proof. Based on the mapping a(x, y) = eφ(x,y), we have:

|a− ã| = |eφ − eφ̃| (4.17)

≤ C1|φ− φ̃|. (4.18)

Note that φ is the solution of the following system of ODE:

dφ

ds
=− ∇

2u

|∇u|
.

dx

ds
=

ux
|∇u|

.

dy

ds
=

uy
|∇u|

.

(4.19)

Now for each characteristic curve, we can write:

|φ− φ̃| = |
∫ t

0

(
dφ

ds
− dφ̃

ds
)ds| (4.20)

=

∫ t

0

| ∇
2u

|∇u|
− ∇

2ũ

|∇ũ|
|ds (4.21)

=

∫ t

0

|∇
2u|∇ũ| − ∇2ũ|∇u|
|∇u||∇ũ|

|ds (4.22)

=

∫ t

0

|(∇
2u−∇2ũ)|∇ũ|+∇2ũ(|∇ũ| − |∇u|)

|∇u||∇ũ|
|ds. (4.23)

Apply Lemma 4.1.1 to (4.23), we obtain:

|φ− φ̃| ≤ C2(
‖∇2(u− ũ)‖L∞

|∇u|
+
‖∇2ũ‖L∞‖∇(u− ũ)‖L∞

|∇u||∇ũ|
). (4.24)

43



Then by Assumptions 4.1.1

|φ− φ̃| ≤ C2(
‖∇2(u− ũ)‖L∞

δ1

+
‖∇2ũ‖L∞‖∇(u− ũ)‖L∞

δ1δ2

)

≤ C2(
‖∇2(u− ũ)‖0,µ;Ω

δ1

+
‖∇2ũ‖L∞‖∇(u− ũ)‖0,µ;Ω

δ1δ2

).

Together with (4.18), let C be a positive constant:

C = C(C1, C2, g, ‖∇u‖L∞ , ‖∇2u‖L∞ , δ1, δ2),

we obtain:

|a− ã| ≤ C(‖∇2(u− ũ)‖0,µ;Ω + ‖∇(u− ũ)‖0,µ;Ω). (4.25)

This is true for every characteristic curve, hence, we have:

‖a− ã‖L∞ ≤ C(‖∇2(u− ũ)‖0,µ;Ω + ‖∇(u− ũ)‖0,µ;Ω). (4.26)

4.2 Sobolev embedding estimate

Recall one case of General Sobolev inequalities from Chapter 2:

Theorem 4.2.1 (General Sobolev inequalities). Let Ω be a bounded open subset of

Rn, with a C1 boundary. Assume u ∈ W k,p(Ω). If k > n
p
, then u ∈ Ck−[n

p
]−1,µ(Ω),

where µ = [n
p
] + 1 − n

p
if n

p
is not an integer, or µ is any positive number < 1, if n

p

is an integer. We have in addition the estimate:

‖u‖
C
k−[np ]−1,µ

(Ω)
≤ C‖u‖Wk,p(Ω) (4.27)

the constant C depending only on k, p, n, µ and Ω.

The aim of this section is to present a Sobolev embedding error estimate based
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on Theorem 4.2.1.

In order to do this, we provide the following lemma which would be helpful.

Lemma 4.2.2. Let Ω be a bounded open subset of R2, with a C1 boundary. Assume

u ∈ W 2,2(Ω). For any 0 < µ < 1, we have the following inequality:

‖u‖0,µ;Ω ≤ C‖u‖W 2,2(Ω). (4.28)

Proof. Let n = p = 2, 0 < µ < 1 and k = 2. This lemma is a direct result of

Theorem 4.2.1.

Theorem 4.2.3. Given that Assumptions 4.1.1 are satisfied, then there exists a

positive constant C, such that, for any 0 < µ < 1, the following inequality holds:

‖a− ã‖L∞ ≤ C(‖u− ũ‖W 4,2(Ω)). (4.29)

Proof. Using the estimate (4.16) and Lemma 4.2.2, we obtain:

‖a− ã‖L∞ ≤ C(‖∇2(u− ũ)‖0,µ;Ω + ‖∇(u− ũ)‖0,µ;Ω).

≤ C(‖∇2(u− ũ)‖W 2,2(Ω) + ‖∇(u− ũ)‖W 2,2(Ω)).

≤ C(‖u− ũ‖W 4,2(Ω) + ‖u− ũ‖W 3,2(Ω)).

≤ C(‖u− ũ‖W 4,2(Ω)).

4.3 RBF interpolation estimate

In this section we derive an inquality between the exact value a and the approx-

imate value ã based on the RBF interpolation inequality from Chapter 3.

The main result is stated in the following theorem.
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Theorem 4.3.1. Given that Assumptions 4.1.1 are satisfied, then there exists a

positive constant C, such that the following inequality holds:

‖a− ã‖L∞ ≤ Chτ−4(‖u‖W τ,2(Ω)), τ > 4, (4.30)

where τ depends on the choice of the kernel F (r).

Proof. We note that ũ is the RBF interpolation of u.

Let β = 4 and n = 2, by Theorem 3.3.1, the following estimate holds:

‖u− ũ‖W 4,2(Ω) ≤ Chτ−4(‖u‖W τ,2(Ω)). (4.31)

Then using the estimate (4.29),

‖a− ã‖L∞ ≤ C(‖u− ũ‖W 4,2(Ω) (4.32)

≤ Chτ−4(‖u‖W τ,2(Ω)), (4.33)

and the theorem is proved.

Remark: The requirement τ > 4 is sharp, and the space W τ,2(Ω) is “optimal”,

in the sense that if u belongs to a weaker space (W τ,2(Ω), τ ≤ 4), ∇2u is not

necessarily Lipschitz continuous, and the characteristic system (2.36) may not have

a unique solution.
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5. NUMERICAL METHODS AND RESULTS

In this chapter, we describe an algorithm for the approximation of a. Then, we

will test the algorithm on some examples. We also would like to apply our algorithm

to check the error estimate inequality from last chapter. To test our algorithm,

we assume that we know a, f ,u perfectly. Here u is a solution of the equation

−∇ · (a∇u) = f . We also choose k interior points by u(xi, yi) = gi, i = 1, 2, ..., k.

We provide two different algorithms based on the boundary condition of a. To make

sure our algorithms work, we also need to assume |∇ũ| 6= 0.

5.1 Case I: a = 1 on the boundary ∂Ω

Our model problem is to reconstruct coefficient a ∈ C∞(Ω̄) from the ellip-

tic equation −∇ · (a∇u) = f with finite data. As described above, after mapping

a(x, y) = eφ(x,y), this ultimately leads to a system of ordinary differential equations

(2.36) along the characteristic curves. Let ũ be the RBF interpolation of u and com-

pute ∇ũ and ∇2ũ by RBF method. Then, we can recover φ̃ along each characteristic

curve from the following system of ODEs:

dφ

ds
=− ∇

2ũ

|∇ũ|
+
e−φ · f
|∇ũ|

.

dx

ds
=

ũx
|∇ũ|

.

dy

ds
=

ũy
|∇ũ|

.

(5.1)

with initial data φ(x0, y0) = 0 on the boundary ∂Ω.

Finally, we have our approximation to a by inverting the mapping and denote it

as ã.

Test Case I : Let Ω be [−1, 1]2, we consider the following test case with radial
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parameter a.

Let

a(r) =

 2− 2|r|2, |r| <
√

2/2,

1, otherwise.
(5.2)

f(x, y) = 0. And u(x, y) is the numerical solution of the equation −∇ · (a∇u) = f .

Figure 5.1: The upper graph shows the approximation ã of the model problem and

the lower graph shows the exact parameter of the model problem.

Given k = 400 = 20 · 20 uniformly distributed interior points in Ω, a plot of the

comparison between the approximation ã and the exact a can be seen in Figure 5.1.

Figure 5.3 is a logarithmic plot of the error estimates for the specific number

of uniformly distributed interior points. It shows that the the numerical error is

exponentially decreasing.
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Figure 5.2: Relationship between the number of interior points k and the error
estimate ‖ã− a‖L∞ .

Figure 5.3: Relationship between the number of interior points k and the error
estimate ‖ã − a‖L∞ in log-log plane in case I. The slope of regression line is −1.42
and the power of mesh norm h is 2.84.
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Here is another special test case with sequence an. We apply our algorithm when

the parameter a is close to a discontinuous function.

Test Case II : Let

an(r) =


1/3, |r| ≤ 1/2− 1/n,

2nr − n+ 4

6
, 1/2− 1/n < |r| < 1/2 + 1/n,

1, |r| ≥ 1/2 + 1/n,

(5.3)

where n > 2.

The sequence an converges pointwise to the function, a defined by

a(r) =


1/3, |r| < 1/2,

2/3, |r| = 1/2,

1, |r| > 1/2.

(5.4)

Although all the functions an are continuous, the limit function a is not.

In Figure 5.4 the reconstruction is displayed together with the exact parameter

a50, given k = 100 uniformly distributed interior points.

And Figure 5.5 and 5.6 describe the error estimate between a50 and ã50. Here we

choose k = N ·N uniformly distributed interior points.

Next, we take a different approach to our test case I. Because the difficulty of

finding k uniformly distributed interior points is not practical, we try to choose k

random interior points to make sure the algorithm still works.

To be clear, we test 20 times for each number k, which is the whole number

of interior points, then we use average mesh norm h̄ and average error estimate

‖ã− a‖L∞ to compare. First, we would like to show the relationship between h̄ and

k as follows:
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Figure 5.4: The upper graph shows the approximation ã50 of the model problem
and the lower graph shows the exact parameter a50 of the model problem, given
k = 100 = 10 · 10 equally spaced lattice points.

Figure 5.5: Relationship between the number of interior points k and the error
estimate ‖ã50 − a50‖L∞ .
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Figure 5.6: Relationship between the number of interior points k and the error
estimate ‖ã50 − a50‖L∞ in log-log plane. The slope of regression line is −1.643 and
the power of mesh norm h is 1.643.

Figure 5.7: Relationship between the number of interior points k and the average
mesh norm h̄.
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Figure 5.8: Relationship between the number of interior points k and the average
mesh norm h̄ in log-log plane. The slope of regression line is −0.4876.

From the graph in Figure 5.8, we notice that the average mesh norm h̄ is not

proportional to
√
k as in the uniformly distributed case, but still very close.

Next, we show the relationship between average mesh norm h̄ and our average

logarithmic error estimate ‖ã− a‖L∞ in Figure 5.9.

The graph illustrates that the power of mesh norm compared to error estimate

in this case is lower than in the uniformly distributed case.

Finally, we would like to present series of plots between the exact value of a and

our approximation ã while increasing the total number of random interior points. In

each plot, the upper graph shows the approximation ã of the model problem and the

lower graph shows the exact parameter of the model problem.

In the absence of a known boundary, one typical situation is the following case.
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Figure 5.9: Relationship between the average mesh norm h̄ and the error estimate
‖ã− a‖L∞ in log-log plane. The slope of regression line is 1.986.

Figure 5.10: Comparison between the approximation ã and the exact value a when
k = 100 in case I.
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Figure 5.11: Comparison between the approximation ã and the exact value a when
k = 300 in case I.

Figure 5.12: Comparison between the approximation ã and the exact value a when
k = 500 in case I.
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5.2 Case II: a = 1 on the non-characteristic curve Λ

We assume that characteristic curves leaving Λ cover the whole domain. In the

algorithm we have proposed, we can still do the transformation and use RBF methods

to compute ũ, ∇ũ and ∇2ũ. The problem is whether we can recover the coefficient

φ from the ODEs by integration along the characteristic curves. Even we don’t have

any information on the boundary value, we can start our integration from the curve

Λ by letting φ(x0, y0) = 0 and stop the integration when hitting the boundary. After

doing this, the remain steps are the same as in case I.

Let’s take a look at our test example. Let Ω be [−1, 1]2, the exact value of a

defined as follows:

a(r) = 5− 2|r|2, (5.5)

f(x, y) = 0. And u(x, y) is the numerical solution of the equation −∇ · (a∇u) = f .

Let Λ be the straight line y = x− 2 and also assume a = 1 on Λ.

Clearly, the characteristic curves leaving Λ cover the whole domain.

In Figure 5.13−5.15 the approximations ã are displayed together with exact value

a at k random interior points. In each plot, the upper graph shows the approximation

ã of the model problem and the lower graph shows the exact parameter of the model

problem.

One important thing gain from the figures is that the area close to the curve Λ

produces better approximation of exact a. The reason here is due to better RBF

approximation of ũ, ∇ũ and ∇2ũ near Λ.

Furthermore, in Figure 5.16, we have logarithmic plot showing the relationship

between the average mesh norm h̄ and average error estimates ‖ã− a‖L∞ :

As can be seen from Figure 5.16, the error estimate is not as good as in case I,

but still reasonably accurate.
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Figure 5.13: Comparison between the approximation ã and the exact value a when
k = 100 in case II.

Figure 5.14: Comparison between the approximation ã and the exact value a when
k = 300 in case II.
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Figure 5.15: Comparison between the approximation ã and the exact value a when
k = 500 in case II.

Figure 5.16: Relationship between the average mesh norm h̄ and the error estimate
‖ã− a‖L∞ in log-log plane in case II. The slope of regression line is 1.633.
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Finally, we consider the case when we only have interior data, and no explicit

boundary conditions.

5.3 Case III: asymptotic boundary condition

This is the most difficult case in that we don’t know anything about the boundary,

no data information and no location information. We only assume that the following

asymptotic boundary condition is satisfied:

lim
|x|→∞

a(x) = 1. (5.6)

We can still use RBF methods to reconstruct ũ and try to reconstruct our coeffi-

cient from ODEs. However, the most difficult part is to find the appropriate initial

data for our integration. Our aim is to find a new algorithm to solve this problem.

The main steps as follows:

(1) Use RBF methods to ũ, ∇ũ and ∇2ũ.

(2) Set up ODEs to recover a.

(3) Guess initial data ˜a(x0, y0) for each characteristic curve.

(4) Integrate along each characteristic curve to both directions.

(5) Stop the integration in either direction when |∇2ũ| < ε. We define ε = 10−3.

(6) Adjust the boundary data such that the average of ã at the endpoints equals

the constant 1.

(7) Re-integrate along each characteristic curve using the new initial data.

(8) Invert the mapping and compute the error estimate ‖ã− a‖L∞ .

We make a slight change to our first example to illustrate our new algorithm.

We provide the definition of the exact a. However, this time we don’t have any

information about Ω and the boundary data on Ω. The only thing we can use in our

algorithm is k random interior points.
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Figure 5.17: Comparison between the approximation ã and the exact value a, given
k = 100 randomly chosen interior points.

Let’s begin with our test function a:

a(r) =

 2− 2|r|2, |r| <
√

2/2,

1, otherwise.
(5.7)

f(x, y) = 0. And u(x, y) is the numerical solution of the equation −∇ · (a∇u) = f .

The comparison between the exact a and the approximation ã of the model

problem is shown in Figure 5.17.

Figure 5.17− 5.19 indicate that our approximation gets better when we increase

the number of interior points. Another thing we deduce from the plots is that the

domain of approximation ã is larger than the support of a. The reason behind this is

our new stopping criteria: we stop the integration when |∇2ũ| < ε. Our next graph
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Figure 5.18: Comparison between the approximation ã and the exact value a, given
k = 300 randomly chosen interior points.

Figure 5.19: Comparison between the approximation ã and the exact value a, given
k = 500 randomly chosen interior points.
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Figure 5.20: Relationship between the average mesh norm h̄ and the error estimate
‖ã− a‖L∞ in log-log plane in case III. The slope of regression line is 1.175

Figure 5.20 is the logarithmic form of the error estimate we have in this case.

5.4 Experimental uncertainty

In this section, we want to discuss the stability of our algorithm under some

additional experimental uncertainty, that is observation error. In other words, we

assume that our k random interior points satisfy u(xi, yi) = gi + ψi, i = 1, 2, ..., k,

where ψi is a uniformly distributed random number which satisfies |ψi| < R1 for

appropriate value of R1. ψi simulates ”white noise” with amplitude R1.

For convenience, we go back to our first test case in case I and also fix k = 300

total random interior points.

For different value of R1, we have series of plots to compare between exact value

and approximation value of a.
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Figure 5.21: Comparison between the approximation ã and the exact value a when
R1 = 0.4.

Figure 5.22: Comparison between the approximation ã and the exact value a when
R1 = 0.2.
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Figure 5.23: Comparison between the approximation ã and the exact value a when
R1 = 0.1.

Figure 5.24: Relationship between the average mesh norm h̄ and the error estimate
‖ã− a‖L∞ in log-log plane in experimental uncertainty. The slope of regression line
is 1.303.
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5.5 Summary

The numerical results in this chapter are summarized in Table 5.1.

Type of measurements Boundary condition hr

Uniformly distributed

interior points
a = 1 on the boundary ∂Ω r = 2.84

Random subset of uniformly

distributed interior points
a = 1 on the boundary ∂Ω r = 1.91

a = 1 on non-characteristic
Random interior points

curve Λ
r = 1.63

Asymptotic boundary
Random interior points

condition
r = 1.18

Table 5.1: Summary of the numerical results

After reviewing the figures, we would like to point out three important observa-

tions. First of all, the error estimates in each plot, no matter what the boundary

condition is or even in the case of no boundary information, decrease when we in-

crease our total number of interior points. In other words, the error decreases when

we decrease the value of mesh norm h.

Second, and most importantly, the error between exact value a and approximate

value ã has a linear relationship in the log-log plane. We observe that better boundary

conditions in terms of stronger constraints generate better approximation for a.

A third note to mention here is that the distribution of inner points also affects our

approximation. Uniformly distributed interior points have better approximation than

random interior points. Performing multiple simulations with random interior points
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and then using the average value of the approximations reduces the uncertainty.
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6. CONCLUSIONS

We have shown that one can recover the exact value of the parameter a uniquely

from (6.1) if u is completely known in a region Ω with a = 1 on the non-characteristic

boundary.

We also showed that one can find an approximation ã for the unknown parameter

a in the elliptic equation:

∇ · (a∇u) = f (6.1)

from finite data:

u(xi, yi) = gi, i = 1, 2, ...k

with error estimate:

‖a− ã‖L∞ ≤ Chτ−4(‖u‖W τ,2(Ω)), τ > 4 (6.2)

under certain smoothness assumptions.

The space W τ,2(Ω), τ > 4 appears to be ”optimal” since for any weaker Sobolev

space (W τ,2(Ω), τ ≤ 4), ∇2u is not necessarily Lipschitz continuous, and the char-

acteristic system of ODEs (2.36) may not have a unique solution.

If we know a priori information on the boundary of a region (Case I), along a

non-characteristic curve (Case II) or using asymptotic boundary condition (Case III),

we have found the numerical order of approximation with respect to the mesh norm

h. Numerical results show that better boundary condition (more constraints) give

us better approximations. The numerical algorithm also works when exact value a

is close to a piecewise continuous function, in other words, it requires less continuity

of a than theory demands.
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We have also demonstrated that the errors bounding the numerical reconstruc-

tions are consistent with the theoretical error estimates.
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