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ABSTRACT

The theory of global games has shown that converting games with complete infor-

mation to related games with incomplete information results in a unique equilibrium

prediction that typically coincides with risk-dominance. This dissertation experi-

mentally investigates this prediction in three different games: stag hunt, bargaining,

and entry games. There are two treatments in each of these games, complete and

incomplete information. In the stag hunt games, subjects under incomplete infor-

mation conditions deviate significantly from the equilibrium prediction in favor of

payoff dominance. They play similar strategies to those under complete information

conditions. In the bargaining games most subjects conform to the risk-dominant

prediction of global games theory, and convergence is stronger in games with incom-

plete information. In the entry games, in contrast to previous studies, subjects do

not over-enter the market. This is because when too many people enter the market,

firms’ entry decisions become strategic substitutes, and subjects earn more by staying

out of the market. There is less entry than the global games prediction. From these

three games, I can conclude that subjects follow the comparative static predictions of

global games theory, if not the precise predictions. Global games theory predictions

are more powerful if there is no payoff dominance as an alternative prediction.
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1. INTRODUCTION: GLOBAL GAMES AS AN EQUILIBRIUM SELECTION

TOOL

Multiple strict equilibria arise in many economic situations: for example, team

production, public good provision, currency attacks, bank runs, market entry, and

technology adoption, see Cooper (1999). The refinements literature attempts to

solve this indeterminacy by imposing additional rationality restrictions or by requir-

ing additional robustness properties to refine the Nash equilibrium concept. How-

ever, because the equilibria are strict they survive all of the usual refinements, see

Van Damme (1991).

In an innovative paper, Carlsson and van Damme (1993b) demonstrate that con-

verting a complete information game with multiple strict equilibria into an incom-

plete information game, called a global game, results, in many cases, in a unique

dominance solvable equilibrium prediction. The conversion is motivated by the ob-

servation that even in complete information games, where the game form is common

knowledge, players are uncertain about others’ utility from the game. Usually, the

theory of global games assumes a special case of this general problem in which the

incomplete information game arises from players each observing a noisy signal of a

common state variable.

Morris and Shin (2001) motivate the importance of global games analysis by

observing that it is a “...heuristic device that allows the economist to identify the

actual outcomes in such games, and thereby open up the possibility of systematic

analysis of economic questions which may otherwise appear to be intractable.” Mul-

tiple equilibra are the consequence of two modeling assumptions: First, the economic

fundamentals are assumed to be common knowledge; second, players are assumed to

1



Table 1.1: A Class of Stag Hunt Games
A B

A 1, 1 0, q
B q, 0 q, q

be certain about others’ behavior in equilibrium, see also Morris and Shin (2000).

They write, “...global games allow modelers to pin down which set of self-fulfilling

beliefs will prevail in equilibrium.”

(Carlsson and van Damme, 1993b, p.1012) do not rely only on common knowledge

of rationality to justify the global games’ predictions. They argue that for a great

variety of learning processes the sequence of choices will eventually converge to the

set of strategies that survive iterated elimination of strictly dominated strategies,

see Milgrom and Roberts (1991). This suggests that the global games approach may

also be interpreted as the stochastic steady state of a realistic learning process.

In this dissertation, I test the predictions of the global games theory in laboratory

experiments in three different games: stag hunt, bargaining and entry games. In all of

these three games, there exists a unique Nash equilibrium in games with incomplete

information, in which players only observe some payoffs with noise; however, there

are multiple Nash equilibria in games with complete information. I summarize these

three games in this chapter. Chapters 2, 3 and 4 discuss in more detail about stag

hunt, bargaining and entry games, respectively. Chapter 5 concludes the dissertation.

1.1 Global Stag Hunt Games

The class of stag hunt game forms, depicted in table 1.1, models a situation in

which symmetric players have two choices: a risky choice (A) and a safe choice (B).

Choice B guarantees a payoff of q while choice A yields a high payoff of 1 if the other

player also chooses A, but yields a low payoff of 0 if the other player chooses B. If

2



Table 1.2: A Class of Global Stag Hunt Games Observed by Player i
A B

A 1, 1 0, q + εi
B q + εi, 0 q + εi, q + εi

q ∈ [0, 1], the game has two strict equilibria: either both players choose A or both

players choose B. The equilibria are Pareto ranked, and (A,A), a payoff-dominant

equilibrium, dominates (B,B), a secure equilibrium. While this favors A, strategic

uncertainty, which is inherent in the strategy coordination problem, may lead players

to choose B instead. Intuitively, if q is high, then it is more likely that players will

choose B.

Harsanyi and Selten (1988) develop risk dominance as the selection principle when

payoff dominance fails to make a unique prediction. For a 2×2 game, risk dominance

is equivalent to choosing the equilibrium with the larger basin of attraction under

best response dynamics. It is straightforward to show that the (A,A) equilibrium

has the larger basin of attraction when q < 0.5 in which case both payoff dominance

and risk dominance agree on the selection of all A. However, when q > 0.5 the (B,B)

equilibrium has the larger basin of attraction in which case payoff dominance and

risk dominance conflict.

Carlsson and van Damme (1993b) develop an equilibrium selection theory based

on the idea that the payoff parameters of a game cannot be observed with certainty.

The complete information stag hunt game in table 1.1 is replaced by a payoff per-

turbed game: a global stag hunt game. In this game, each player observes the payoff

table in table 1.2 but his/her payoff is determined by the actual table in table 1.1.

Following (Carlsson and van Damme, 1993a, Section 4), we assume that every-

thing about the stag hunt game is common knowledge except the payoff to the safe

3



choice q. Each player receives a signal qi = q+ εi that provides an unbiased estimate

of q. The signals are noisy so q is not common knowledge amongst the players. Let

q denote a random variable that is distributed on the interval [a.b] where a < 0 and

b > 1. So it is possible that q > 1 in which case B strictly dominates A and it

is possible that q < 0 in which case A strictly dominates B. Let (ε1, ε2) denote a

two-tuple of zero mean independently and identically distributed random variables.

The εi are assumed to be independent of q and to be distributed within [−E,E]

where E < −a
2

and E < b−1
2

. The incomplete information model is described by the

following rules:

1. (q, ε1, ε2) are randomly generated to obtain (q, q1, q2).

2. Player i observes qi and chooses between A and B.

3. Each player i receives payoffs which determined by choices made in step 2 and

the actual value of q in the table 1.1 with the mean matching protocol.

Because each player observes a different estimated value of q, the only strategy

that can be a best response is a threshold strategy. Carlsson and van Damme (1993b)

show that there exists only one threshold, 1 q∗, that survives iterated elimination of

strictly dominated strategies in the Global Stag Hunt Game.In this game, a unique

threshold, q∗ = 0.5. Remarkably this is true for any ε > 0 that are arbitrary small

(smaller than −a
2

and b−1
2

). Carlsson and van Damme’s argument thus gives another

reason to expect the risk-dominant equilibrium if the players have arbitrarily small

uncertainty about q. In the Global Stag Hunt Game, using a threshold of 0.5 is the

unique dominance solvable equilibrium.

4



Table 1.3: A Class of Bargaining Games
A B

A W,X 100, 100
B 100, 100 Y, Z

1.2 Global Bargaining Games

In a bargaining game shown in table 1.3, there are two strict equilibria in pure

strategies: (A,A) and (B,B). Many equilibrium selection principles have been pro-

posed to select an equilibrium when there are multiple equilibria. One of the prin-

ciples that has been widely used is payoff dominance. It compares the efficiency of

equilibria and selects the equilibrium that all players earn the most. In this game,

because the row player earns more with (A,A) while the column player earns more

with (B,B); there is no payoff-dominant equilibrium.

Harsanyi and Selten (1988) develop risk dominance as the selection theory when

payoff dominance fails to make a unique prediction. In 2× 2 games, risk dominance

is equivalent to choosing the equilibrium with the larger basin of attraction under

best-response dynamics. In other words, it selects the equilibrium with the larger

product of the deviation losses. In this game, risk dominance selects (A,A) when

(W−100)×(X−100) > (Y−100)×(Z−100) and (B,B) when (W−100)×(X−100) <

(Y − 100)× (Z − 100).

There are at least two other equilibrium selection principles that have been widely

used in bargaining: Rawlsian and Utilitarian. Rawlsian (Rawls (1971)) selects the

equilibrium that maximizes the payoff of the worst off player; it selects (B,B) in this

game because Y and Z are both greater than X. Utilitarian selects the equilibrium

with the largest payoff sum; it selects (A,A) when W +X > Y +Z and (B,B) when

1A threshold q∗ refers to a strategy in which a player chooses A if qj < q∗ and B if qj > q∗

5



Table 1.4: A Class of Global Bargaining Games (a, left) Actual Payoff Table; (b,
right) Subject i’s Estimated Payoff Table.

A B
A W,X 100, 100
B 100, 100 Y, Z

A B
A Wi, Xi 100, 100
B 100, 100 Yi, Zi

W +X < Y + Z.

Carlsson and van Damme (1993b) develop an equilibrium selection theory (a

global game) based on the idea that the payoff parameters of a game cannot be

observed with certainty. The complete information bargaining game in table 1.3 is

replaced by a payoff perturbed game: a global bargaining game, as in table 1.4. The

global game can be described by the following steps:

1. Nature selects W,X, Y, Z.

2. Each player independently observes W,X, Y, Z with some noise, so we denote

them as Wi, Xi, Yi, Zi for subject i.

3. Each player chooses between A and B simultaneously.

4. Each player receives payoffs as determined by the game form in step 1 and all

players’ choices in step 3.

In other words, player i observes a game on table 1.4b but the payoffs are de-

termined by a game on table 1.4a. Carlsson and van Damme (1993b) show that for

any 2×2 game, under some restrictions, iterated elimination of dominated strategies

in the global game forces each player to select an equilibrium equivalent to the risk

dominance criteria. The restrictions are (1) the initial subclass of games is large

enough and contains games with different equilibrium structures and (2) the noise is

6



Table 1.5: A Class of Entry Games where Q ∈ [0, 400]
No. of choice A 0 1 2 3 4 5 6

A Q Q+ 50 Q+ 100 Q+ 200 Q+ 100 Q+ 50 Q
B 300 300 300 300 300 300 300

independently distributed and is sufficiently small.2

Under incomplete information (i.e., global bargaining games), there exists a

unique equilibrium that is the same as the equilibrium derived from the risk domi-

nance criterion. Other equilibrium selection principles including Rawlsian and Util-

itarian are no longer equilibria because observing different parameters can lead to

different choices.

1.3 Global Entry Games with Strategic Substitutes and Complements

The class of entry game with strategic substitutes and complements, depicted in

Table 1.5, models a situation in which symmetric players have two choices: A, enter

the market, and B, do not enter the market. Choosing B and staying out of the

market guarantees a payoff of 300 regardless of other players’ choices. If a person

chooses A and enters the market, the payoff depends on Q and the number of other

players who choose to enter the market. The payoff is highest when 3 other players

also choose A; the payoff is lower as the number of other players who choose A is

further away from 3.

Under complete information, there is a unique dominance solvable equilibrium

when Q is less than 100 where all players play B; and when Q is more than 300 where

all players play A. Multiple equilibria exist when Q ∈ (100, 300). Two symmetric

equilibria are the following: (1) All players choose B; (2) Each player plays a mixed

strategy in which all players have the same probability of choosing A for the same

2See Carlsson and van Damme (1993b) for details of the proof.
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Table 1.6: A Class of Global Entry Games where Q ∈ [0, 400], Qi = Q + Ei where
Ei ∈ {−120,−119, ..., 0, ..., 120}

No. of choice A 0 1 2 3 4 5 6

A Qi Qi + 50 Qi + 100 Qi + 200 Qi + 100 Qi + 50 Qi

B 300 300 300 300 300 300 300

value of Q. There are also many asymmetric equilibria.

In the game with incomplete information, the fundamental state variable (Q)

cannot be observed with certainty. Each player observes the incomplete information

in Table 1.6 but the actual payoffs are determined by the game in Table 1.5. In

contrast to the game with complete information conditions, there exists a unique

threshold equilibrium in which players choose A and enter the market as long as

Qi ≥ 182 and choose B and stay out of the market when Q < 182 in game with

incomplete information conditions.

1.4 Global Games Experiments

There are different predictions between complete and incomplete information,

i.e., multiple equilibria in games with complete information and a unique equilib-

rium in games with incomplete information. Therefore, I experimentally test the

predictions under both complete and incomplete information in all three games.

The experimental results are used to: (1) compare the results of the game with com-

plete information to those with incomplete information; and (2) test if the subjects

conform to the global games predictions.

The results from the global stag hunt games show that subjects under complete

information play similar strategies to those under incomplete information. Under

complete information, subjects coordinate on the payoff maximizing equilibrium,

as expected. Under incomplete information, subjects exhibit substantial deviations

8



from the equilibrium prediction of global games, coordinating just as well as subjects

in the complete information treatment.

In contrast to the results from the global stag hunt games, the majority of subjects

in the global bargaining games conform to the global games theory. When using a

finite mixture model, two-third of the subjects under incomplete information and

about half of the subjects under complete information can be classified as the risk

dominance (or global games) type. The results support the global games theory as

risk dominance is more salient under incomplete information. It also suggests that

players may use different strategies in games with different information conditions.

The implied “social preferences” of people are different under different information

conditions. Incomplete information can change people with different strategies to

use similar strategies in bargaining games.

The results from the global entry games with strategic substitutes and comple-

ments are in contrast to previous literature about global entry games with strategic

complements only: subjects in my experiments do not enter the market more often

than theoretical predictions as subjects in previous studies do. In fact, they enter

the market less often, i.e., use thresholds lower than the theoretical prediction. The

results indicate that subjects do not over-select risky options in the absence of payoff

dominance.
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2. WHEN LESS INFORMATION IS GOOD ENOUGH: EXPERIMENTS WITH

GLOBAL STAG HUNY GAMES

2.1 Introduction

Previous experimental work has shown that when playing a sequence of stag

hunt games, each having multiple equilibria, most subjects can coordinate on the

Pareto superior equilibrium, see Rankin, Van Huyck and Battalio (2000). This result,

however, was documented in an environment with complete information, i.e., where

subjects knew all individuals’ exact payoffs. Ideally, such coordination would persist

in environments with incomplete information as well since knowing payoffs with

precision may not always be possible. According to the theory of global games of

Carlsson and van Damme (1993b), adding even a very small amount of noise to

the payoffs–which transforms the game into one of incomplete information–yields a

unique equilibrium that is less efficient than what is found in lab experiments with

complete information.. Despite this unfavorable theoretical prediction, departures

from equilibrium behavior have been widely documented in the lab and the field.

As a result, it is unclear whether having incomplete information would significantly

reduce social welfare in practice.

In this chapter, I conduct an experiment where each subject plays a sequence of

perturbed stag hunt games in one of two treatments: one with complete and one

with incomplete information. Under complete information, subjects coordinate on

the payoff maximizing equilibrium, as expected. Under incomplete information, sub-

jects exhibit substantial deviations from the equilibrium prediction of global games,

coordinating just as well as subjects in the complete information treatment. Thus

the efficiency loss from observing imprecise information is not as drastic as theory
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Table 2.1: A Class of Stag Hunt Games
A B

A 1, 1 0, q
B q, 0 q, q

would suggest.

The class of stag hunt game forms depicted in Table 2.1 models a situation in

which symmetric players have two choices: a risky choice (A) and a safe choice (B).

Choice B guarantees a payoff of q while choice A yields a high payoff of 1 if the

other player also chooses A, but yields a low payoff of 0 if the other player chooses

B. If q ∈ [0, 1]., the game has two strict equilibria: either both players choose A or

both players choose B. The equilibria are Pareto ranked in which (A,A), a payoff-

dominant equilibrium, dominates (B,B), a secure equilibrium. While this favors A,

strategic uncertainty, which is inherent in the strategy coordination problem, may

lead players to choose B instead. Intuitively, if q is high, then it is more likely that

players will choose B. In fact, risk dominance (Harsanyi and Selten (1988)) selects

(A,A) when q < 0.5 and (B,B) when q > 0.5.

Given the fact that it is more attractive to choose B when q is high, I expect

players to play “threshold” strategies where the players choose A if q ≤ q∗ and B if

q > q∗ for some q∗ ∈ [0, 1]. Any strategy profile where both players use threshold

strategies with the same q∗ will constitute an equilibrium because players will always

end up playing (A,A) when q ≤ q∗ and (B,B) when q > q∗.

Previous experimental research demonstrates the selection of the high-payoff equi-

librium is reached even when the structure of the game is changed in each period.

However, this game assumes that subjects know the payoff structure with extreme

precision, (i.e., complete information). This assumption may not be realistic as
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subjects may not be able to observe, or it may be too costly to observe precise infor-

mation. Therefore, I introduce noise to the value of q as in global games by Carlsson

and van Damme (1993b). In this global stag hunt game, each player independently

observes the value of q with noise in each period. Payoff dominance is no longer an

equilibrium because even when players use the same threshold, observing different

estimated values of q can lead them to select different choices. The theory of global

games has shown that the only equilibrium in this game is the risk-dominant thresh-

old (q∗ = 0.5) and iterated elimination of dominated strategies forces the players to

conform to this unique dominance solvable equilibrium.

The unique equilibrium prediction from global stag hunt games has lower ex-

pected payoffs than the payoff dominance observed in previous studies. However,

it has been shown in many settings that people may deviate from the equilibrium,

especially when playing the equilibrium yields low payoffs.1 Therefore, it is unclear

whether having less precise information would significantly reduce the social welfare

as the theory suggests.

Given the uncertainty about behavior, I compare a sequence of perturbed stag-

hunt games in two treatments: complete information and incomplete information.

Under complete information treatment, subjects observe the actual value of q with

certainty, while under incomplete information treatment, subjects observe the value

of q with noise that is uniformly distributed with zero mean.

Our results show that under complete information, most subjects use threshold

strategies that are close to the payoff-dominant equilibrium as expected.2 Under in-

complete information, subjects deviate significantly from the theory; only two out of

1Prisoners’ dilemma is a good example , see Rapoport and Chammah (1965) for many experi-
mental results.

2There is one remarkable cohort in which all eight subjects use the payoff-dominant threshold
in the last 50 periods.
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nine cohorts use the thresholds that are closer to the theoretical equilibrium thresh-

old than the payoff-dominant threshold. All other cohorts use thresholds that are

close to the payoff-dominant threshold: their behavior is similar to subjects in the

complete information treatment. The efficiency loss from observing imprecise infor-

mation is substantially smaller than the theoretical prediction.

To my knowledge, this paper is the first to examine the predictions of global

games theory in the stag hunt game. It is also first to compare the results of the

game with complete information to those with incomplete information. The closest

paper to mine, Rankin, Van Huyck and Battalio (2000), only examine the game

under complete information; my design in the complete information treatment is

intentionally similar to theirs.3 That paper reports an experiment in which subjects

play a sequence of 75 perturbed stag hunt games under complete information where

payoffs, action labels, and game forms are changed in each period. They show

that payoff dominance emerges as an equilibrium selection principle. In the last 15

periods, most subjects use threshold strategies that are close to 1, a payoff-dominant

threshold, and more than half of the subjects select a risky choice even when the

value of q is as large as 0.97.

In summary, this paper considers a sequence of perturbed stag-hunt games in

two treatments: complete information and incomplete information. Although under

incomplete information treatment, the theory predicts subjects will coordinate on

3Our design is different from Rankin, Van Huyck and Battalio (2000) in three important ways.
First, subjects are matched against everyone in the cohort each period and receive a payoff equal to
the mean of the matches. Stahl and Van Huyck (2002) call this protocol mean matching. Getting
feedback from everyone in the cohort aids the speed of adjustment and reduces the high variance
within cohort. Second, q is allowed to be smaller than 0 and larger than 1 as required by the
global games theory to get a unique equilibrium. In order to apply iterated dominance argument,
it requires the initial subclass of games to be large enough and contains games with different
equilibrium structures. Lastly, actions labels are fixed (a risky choice is always labeled A and a safe
choice is always labeled B) and subjects play the games for 100 periods. After each period, each
subject receives feedback on the the actual value of q, number of subjects in the cohort who chose
A and B, and his/her payoff.
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the risk-dominant threshold; subjects deviate significantly from that threshold to-

ward payoff-dominant threshold. We find no significant difference between subjects’

earnings in two treatments which suggests that the efficiency loss from not observing

precise information may not be as high as the theory predicts.

2.2 Analytical Framework

To study whether subjects can coordinate with imprecise information, I intention-

ally choose a stag hunt game because of the its different prediction under complete

and incomplete information. Under complete information, any strategy profile where

both players use the same threshold strategy will constitute an equilibrium. However,

under incomplete information, iterated elimination of dominated strategies forces the

players to conform to the unique threshold equilibrium which is not efficient. Given

this theoretical prediction, it is unfavorable for subjects in incomplete information

to coodinate.

To focus the analysis, consider complete information stag hunt game forms where

n identical players, indexed by i, simultaneously choose between A and B. Let k

denote the number of players, including i, that choose A. Each player i is matched

with the other n− 1 players and earns the average payoff, from these matches using

Table 2.1. This is the matching protocol used in the experiment, which is called a

mean matching protocol. Player i’s payoff to A is p(k, n) = k−1
n−1
·1+

(
1− k−1

n−1

)
·0 = k−1

n−1

for k ≥ 14 and to B is q.

Suppose q ∈ (0, 1), consider the strategy assignment in which all n players choose

A. Since k = n, the payoff to A is 1. Deviating from the strategy assignment yields

q, which is less than 1 by assumption. Hence, playing A is a best response to the

4Since k cannot be less than 1 when player i chooses A, define p (k, n) ≡ 0 for k < 1. Notice
that p(x) is non-decreasing with p(0) = 0 and p(1) = 1 as required by (Carlsson and van Damme,
1993a, p.239).
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other n−1 players choosing A and by symmetry a strict Nash equilibrium. Consider

the strategy assignment in which all n players choose B. The payoff to B is always q.

Deviating from the strategy assignment yields 0, which is less than q by assumption.

Hence, playing B is a best response to the other n − 1 players choosing B and by

symmetry a strict Nash equilibrium.5

All of the players prefer all A, which yields them 1, over all B, which yields them

less than 1. The presence of multiple Pareto ranked equilibria confronts the player

with a strategy coordination problem. While this favors A, strategic uncertainty,

which is inherent in the strategy coordination problem, may lead players to choose

B instead. Intuitively, if q is high, then it is more likely that players will choose B.

2.2.1 Equilibrium Selection

Harsanyi and Selten (1988) struggle with the choice of selection theory and ulti-

mately give priority to payoff dominance, which compares the efficiency of equilibria

and, if it exists, selects the equilibrium that all players prefer. In the class of stag

hunt games under consideration this principle selects the all A equilibrium regard-

less of the value of q, which does not capture the intuitive notion discussed in the

introduction that the likelihood of all A should depend on q.6

Given the fact that it is more attractive to choose B when q is high, I expect a

rational player to play a “threshold” strategy where the player chooses A if q ≤ q∗

and B if q > q∗ for some q∗ ∈ [0, 1]. Any strategy profile where all players use

threshold strategies with the same q∗ will constitute an equilibrium because the

group will always end up playing all A when q ≤ q∗ and all B when q > q∗. The

payoff dominance has a threshold of 1 because it suggests subject to select A when

5There are no other strict Nash equilibria, see (Carlsson and van Damme, 1993a, Proposition
2.1).

6In the global stag games to be introduced below, A is not always the payoff-dominant equilib-
rium anymore since q can be larger than 1; in which case, B strictly dominates A.
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Table 2.2: A Class of Global Stag Hunt Games Observed by Player i
A B

A 1, 1 0, q + εi
B q + εi, 0 q + εi, q + εi

q ≤ 1.

Harsanyi and Selten (1988) develop risk dominance as the selection principle when

payoff dominance fails to make a unique prediction. For n = 2, risk dominance is

equivalent to choosing the equilibrium with the larger basin of attraction under best

response dynamics. It is straightforward to show that the (A,A) equilibrium has the

larger basin of attraction when q < 0.5 in which case both payoff dominance and

risk dominance agree on the selection of all A. However, when q > 0.5 the (B,B)

equilibrium has the larger basin of attraction in which case payoff dominance and

risk dominance conflict.

For n > 2, (Harsanyi and Selten, 1988, p.207-209) use the tracing procedure to

select the risk-dominant equilibrium. It is straightforward to check the conditions

given in Proposition 3.1 of Carlsson and van Damme (1993a) to find the critical value

of q, denoted q∗, that determines if risk dominance and payoff dominance conflict:

q∗ = 0.5 as in the case where n = 2. Risk dominance selects all A when q < 0.5 and

all B when q > 0.5, a threshold of 0.5.

2.2.2 Global Stag Hunt Games

Carlsson and van Damme (1993b) develop an equilibrium selection theory based

on the idea that the payoff parameters of a game cannot be observed with certainty.

The complete information stag hunt game in Table 2.1 is replaced by a payoff per-

turbed game: a global stag hunt game. In this game, each player observes the payoff

table in Table 2.2 but his/her payoff is determined by the actual table in Table 2.1.
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Following (Carlsson and van Damme, 1993a, Section 4), I assume that everything

about the stag hunt game is common knowledge except the payoff to the safe choice

q. Each player receives a signal qi = q + εi that provides an unbiased estimate of

q. The signals are noisy so q is not common knowledge amongst the players. Let q

denote a random variable that is distributed on the interval [a.b] where a < 0 and

b > 1. So it is possible that q > 1 in which case B strictly dominates A and it is

possible that q < 0 in which case A strictly dominates B. Let (ε1, ε2, . . . , εn) denote

an n-tuple of zero mean independently and identically distributed random variables.

The εi are assumed to be independent of q and to be distributed within [−E,E]

where E < −a
2

and E < b−1
2

. The incomplete information model is described by the

following rules:

1. (q, ε1, ε2, . . . , εn) are randomly generated to obtain (q, q1, q2, . . . , qn).

2. Player i observes qi and chooses between A and B.

3. Each player i receives payoffs which determined by choices made in step 2 and

the actual value of q in Table 2.1 with the mean matching protocol.

Because each player observes different estimated value of q, the only strategy that

can be a best response is a threshold strategy. We can show that there exists only

one threshold, q∗, that survives iterated elimination of strictly dominated strategies

in the Global Stag Hunt Game. If all but player i use a threshold q∗, player i will

also use a threshold q∗ if his expected payoffs from choosing A and B are the same

when observing q∗. His expected payoff from choosing B is q∗. Player j would choose

A if qj < q∗ and B if qj > q∗ , so player i’s expected payoff from choosing A when

17



observing p∗ is given by7

n∑
k=1

p (k, n)× (n−1)!
(k−1)!(n−k)!

2(n−1)
,

which is the expected value from choosing A when the number of players choosing

A is from {1, 2, . . . , n} . If we let this equation equals q∗, we can see that q∗ = 0.5.8

Remarkably this is true for any ε > 0 that are arbitrary small (smaller than −a
2

and

b−1
2

). Carlsson and van Damme’s argument thus gives another reason to expect the

risk-dominant equilibrium if the players have arbitrarily small uncertainty about q.

In the Global Stag Hunt Game, using a threshold of 0.5 is the unique dominance

solvable equilibrium. Any thresholds p 6= 0.5 cannot be constituted as a mutual best

response or an equilibrium for every player in the group. This is because if all players

except player i use the same threshold of p, player i’s expected payoff from choosing

A when observing qi = p is 0.5 which is not equal to p, the expected payoff from

choosing B.

2.2.3 Global Stag Hunt Game Used in the Experiment

In this experiment, I transform the game in Table 2.1 to the game in Table 2.3:

G2 = 400×{G1 + 0.25}, where G2 is the game used in the experiment and G1 is the

game in Table 2.1. Our main reason is to avoid decimal points and negative earnings

in any periods. We use a group size n = 8.

Under complete information, the payoff dominance threshold is 500 and the risk

dominance threshold is 300. Under incomplete information, a unique threshold equi-

librium Q∗ satisfies

72(n−1) is a number of all possible cases from the fact that each player j has the same probability

to choose A or B. p(k, n) = k−1
n−1 is the payoff when k players including player i choose A. (n−1)!

(k−1)!(n−k)!

is a number of cases where k players including player i choose A.
8In general, this may not give the same critical value as risk dominance when n is greater than

two, but for the mean matching protocol p∗ = 0.5.
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Table 2.3: Version of Global Stag Hunt Game Form Used in the Experiment (a, left)
Actual Payoff Table; (b, right) Subject i’s Estimated Payoff Table.

A B
A 500,500 100, Q
B Q, 100 Q,Q

A B
A 500,500 100, Q+ Ei

B Q+ Ei, 100 Q+ Ei, Q+ Ei

Q∗ =
8∑

k=1

[100 + {400× ( k−1
n−1

)}]× 7!
(k−1)!(8−k)!

27
.

That is Q∗ = 300, the risk dominance threshold.

2.3 Experimental Design

The stage game form used in the experiment is given in Table 2.3: each player ob-

served the right table but his/her payoff was determined by the left table. The stage

game was played 100 times to give adequate experience for the iterated elimination of

strictly dominated strategies to convergence to equilibrium. The values of Q used in

the experiment were integers in the interval 0 to 600, that is, Q ∈ {0, 1, 2, . . . , 600}.

The sequences of a hundred values of Q were generated by a computer using a uni-

form distribution. As stated in the instructions, “Many sequences of one hundred

Qs were generated. One of these sequences will be used in today’s session.” The

sequence was chosen to be representative of a uniform distribution even in small

samples. The units denote twentieths of a cent.

Two treatments were conducted. In the baseline treatment of complete informa-

tion about Q, Ei = 0, that is the observed and the actual table were identical. In

the incomplete information treatment, Q was only observed with error. The private

signal error was Ei ∈ {−50,−49, . . . , 49, 50}. The sequences were generated in the
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same way as the Q sequences. The same sequence of Q + Ei was used in all ses-

sions of a treatment, but different sequences were used for the complete information

treatment and the incomplete information treatment.

The instructions were read aloud to ensure the game was common information

among the participants. After the instructions the participants filled out a question-

naire to establish that the participants knew how to calculate their earnings. There

were always mistakes on at least one questionnaire and the section on calculating

earnings was always reread to the participants. Many more mistakes were made in

the incomplete information treatment than the complete information treatment. The

appendix contains the instructions, questionnaire, and screen shots of the graphical

user interface. After each period, each subject received feedback on the actual value

of q, number of subjects in the cohort who chose A and B, and his/her payoff.

Three sessions of three cohorts, or a total of nine cohorts, were conducted for

each treatment. Each cohort consisted of eight participants. Thus, each treatment

used 72 participants and the total number of participants was 144. The participants

were Texas A&M University undergraduates recruited campus wide using ORSEE,

see Greiner (2004).

The experiment was programmed and conducted with the software z-Tree, see

Fischbacher (2007). The experiment was conducted in the Economic Research Lab-

oratory at Texas A&M University, which has 36 networked participant stations, in

February and March of 2013. A five dollar show up fee plus their earnings in the

session were paid to the participants in private and in cash. The average earnings

were about $29.19 for a session that lasted between 70 and 90 minutes.

After the decision making portion of the session was completed and while they

waited for their earnings to be calculated, participants filled out a questionnaire that

asked them to explain their behavior in the session.
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2.4 Experimental Results

2.4.1 Basic Results

A useful way to look at the data is with histograms of the frequency of A among a

cohort by either the private signal, Q+Ei, or Q depending on whether the treatment

is complete information or incomplete information. Figures 1 to 18 report the his-

tograms by 25 period intervals for the incomplete information treatment and by 50

period intervals for the complete information treatment. The incomplete information

treatment fills more bins, because usually there are eight different observations per

period, than the complete information treatment, where all eight observations are

for the same Q. Also, there appeared to be more learning going on with incomplete

information than complete information.

Cohorts 1 to 9 were conducted under the incomplete information conditions.

Looking down the page, one can see how the histograms are changing with experience.

Cohorts 1 and 2 in figures 2.1 to 2.4 show evidence of learning to play the unique

equilibrium of the incomplete information game, 300; that is, fewer participants are

choosing A when the private signal is over 400 in each twenty-five period interval.

These two cohorts are the only ones to do this.

Cohort 3 in figures 2.1 to 2.4 is more typical of the results in the incomplete in-

formation treatment. In periods 76 to 100, the participants implemented an almost

perfect step function at 450, that is, when the private signal was less than 450 every-

one in every period choose A, the risky action associated with the payoff-dominant

equilibrium, and when the private signal was more than 450 almost everyone in every

period choose B.

Cohort 4 in figures 2.5 to 2.8 shows some unraveling towards the unique equilib-

rium but for signals in (400,450] more than fifty percent of the play is A. Cohorts 5

21



and 6 in figures 2.5 to 2.8 and Cohorts 7 to 9 in figures 2.9 to 2.12 all converge on

a transition from all A to all B at around a private signal of about 450, well above

the unique global game equilibrium threshold of 300.

Cohorts 10 to 18 were conducted under the complete information treatment.

Cohort 10 in figures 2.13 and 2.14 is perhaps the most remarkable. Cohort 10 coor-

dinated perfectly on payoff dominance as the selection principle, that is, when Q was

in [0,500] all eight participants played A in every period from 51 to 100 and when

Q was in (500,600] all eight participants played B in every period from 51 to 100.

However, Cohort 10 is the only complete information cohort to do this.

Cohort 15’s histogram is almost a perfect step function but at Q equals 400. The

remaining complete information cohorts all appear to step down at a Q in [400, 500].

The threshold (step down) coordinated on is cohort specific.

2.4.2 Estimated Thresholds

The histograms in figures 2.1 to 2.18 appear to us to have the shape of a logistic

function. In order to get a more precise measure of the heterogeneity of the various

cohorts, I estimated the following logit model on the cohort data for periods 76 to

100:

p(Q+ E) =
eb0+b1(Q+E)

1 + eb0+b1(Q+E)
,

where p(Q+E) is the probability of A. Table 2.4 reports the estimated parameters

and the critical value for the eighteen cohorts. The reported estimate for cohort

12 excludes subject 17, who feel asleep twice, nodded off repeatedly, and appears

to have played randomly. In the questionnaire, he wrote that he played randomly,

which makes him a self-reported step-0 thinker and not a threshold user.

While it is notable that the two values close to the risk-dominant threshold of

300 occurred in the incomplete information treatment and the one value essentially
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Table 2.4: Estimated Logit Models and Critical Values by Cohort for Last 25 Periods.
Cohort Treatment b0 b1 Q+ E = p−1(0.5) Rank

cohort 1 Incomplete 18.193 -0.056 326.9 1
cohort 2 Incomplete 13.617 -0.037 369.3 2
cohort 3 Incomplete 97.956 -0.216 454.8 11
cohort 4 Incomplete 14.551 -0.033 436.8 7
cohort 5 Incomplete 31.069 -0.068 460.3 15
cohort 6 Incomplete 29.868 -0.068 439.8 8
cohort 7 Incomplete 28.753 -0.062 460.1 14
cohort 8 Incomplete 24.569 -0.054 455.5 12
cohort 9 Incomplete 76.780 -0.167 458.9 13
cohort 10 Complete 1195.46 -2.421 494.0 18
cohort 11 Complete 41.826 -0.091 460.6 16
cohort 12 Complete 18.977 -0.047 407.2 4
cohort 13 Complete 32.420 -0.072 453.4 10
cohort 14 Complete 23.003 -0.051 452.8 9
cohort 15 Complete 286.596 -0.716 400.6 3
cohort 16 Complete 18.248 -0.043 422.4 5
cohort 17 Complete 68.294 -0.145 471.8 17
cohort 18 Complete 27.261 -0.063 435.9 6
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at the payoff-dominant threshold of 500 occurred in the complete information treat-

ment, I cannot reject the hypothesis that both treatments were drawn from the same

distribution. The Mann-Whitney test statistic is 83 for the incomplete information

treatment and 88 for the complete information treatment. For significance at the

10 percent level, the test statistic for the incomplete information treatment would

have to be less than 71.9 Most estimated thresholds are around 450 regardless of

treatment. A stochastic steady state appears to have emerged for most cohorts with

a threshold in the interval [400,500]. These thresholds are cohort specific and would

seem difficult to predict on an apriori basis.

Figures 2.19 and 2.20 illustrate the estimated logit models. The lines in the fig-

ures show the critical values at which fifty percent of the participants in a cohort

are choosing A and fifty percent are choosing B. The incomplete information co-

horts have two outliers and seven tightly clustered around 450, while the complete

information cohorts have almost a uniform distribution in the [400,500] interval.

2.4.3 Debriefing Questionnaire

After the 100 choices were made, the subjects were asked to complete a debriefing

questionnaire consisting of four questions. The first question was, “What strategy

did you use while playing this game? Please include details about what led you to

choose A or B.” The answers were revealing. Seventy-two percent of the subjects in

the incomplete information treatment and ninety-two percent of the subjects in the

complete information treatment reported using a threshold. For example, a subject

reported, “I chose B when the odds were that Q was greater than 500. I used the

estimate to decide this.” Twenty-five different exact thresholds are mentioned in

the 144 subject responses ranging from 300 to 500. One subject used a threshold

9See Conover (1980) Table A7. The two-sample t statistic for a difference in treatment means
is -0.8, which is also not statistically significant.

24



of 300, the risk-dominant threshold. The most common exact threshold was chose

A if Q is less than 500 and B otherwise. It was chosen by nineteen percent of the

subjects. Other popular choices were thresholds at 450, 400, and 440 to 445 in order

of decreasing popularity.10

The last group, 440 to 445, comes from subjects who best respond to the belief

that one opponent chooses B. A typical answer was, “I choose A or B depending

on the spread that I was given for choice B. I calculated the costs of one of my

’teammates’ deviating from A and choosing B. If one person deviated and I picked

A I would receive 442, if 2 picked B I would get 385 and so on. If the bottom

boundary of my spread for Q was greater than 442 I choose B. If it was not then I

chose A.”

Ten percent of the subjects reported what we call a fuzzy threshold. They would

chose A for sure if Q was less than w and B for sure if Q was more than z, where

w < z, and sometimes one or the other for Q in [w, z]. For example, a subject wrote,

“If B was over 500, I would choose B. If B was under 400 I automatically chose A.

If B was between 400 and 500, I debated whether or not to choose B, more times

than not deciding to do so.”11

The second debriefing question was, “Did you change your strategy over time?”

Fifty-four percent of the subjects in the incomplete information treatment and two-

thirds of the subjects in the complete information treatment reported changing their

strategy over time.

The third debriefing question question was, “If you changed your strategy, what

10If we treat a strict threshold player as someone who always chose A for Q below some value
and always chose B for Q above the same value, then inspecting the individual data reveals that
for the last 25 periods 76 percent of the subjects in the incomplete information treatment and 81
percent of the subjects in the complete information treatment were strict threshold players.

11Subjects using a fuzzy threshold seem to be engaged in fast and slow thinking popularized by
Kahneman (2011). Schotter and Trevino (2013) exploit the difference in measured response time
to accurately predict observed individual thresholds in a global game.
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made you change it?” The typical response was the behavior of the other players

in particular the need to coordinate on the same threshold. For example, a subject

wrote, “I was initially choosing the highest number of all those provided, so that was

typically A unless B was a higher number. However, through the experiment other

participants stopped choosing the highest number (A = 500) when B became more

than 400.” Our interpretation of this quote is that the participant started using

what might be called a wishful thinking strategy (Maximax) because they write that

the payoff to A was 500. Over time they learned that the group was coordinating

on a threshold of 400 and this led them to change their behavior. Reading the

debriefing answers from the cohort that perfectly coordinated on the payoff-dominant

threshold of 500, cohort 10, I am now convinced that subjects initially started with a

wishful thinking strategy rather than any equilibrium concept like payoff dominance.

It is only after observing dis-coordination that they begin thinking about how to

coordinate with the group.

The forth question asked participants, “If you could play this game again, what

would you do?” Fifty-one percent answered that they would do the same thing.

Thirty-one percent answered that they would change their strategy especially using

the strategy that they adopted at the end of the session earlier. Other frequently

mentioned answers include wishing that they could communicate and that they chose

A more often.

A comparison of the location of the logit estimate of the group threshold by 25

period bins reveals very little movement in the estimated threshold. For the nine

incomplete information cohorts, the average absolute value of the change from the

estimated threshold in the first 25 periods and the last 25 periods is 22 units. For the

nine complete information cohorts, the average absolute value of the change from the

estimated threshold in the first 25 periods and the last 25 periods is also 22 units.
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Interestingly, eight out of the nine incomplete information cohorts decline between

the first and last 25 periods, that is, in the direction predicted by the theory, while

five of nine complete information cohorts increase, which is slightly more than one

would expect from chance.

2.4.4 Discussion

We find no significant difference between subjects in complete and incomplete

information treatments. The results are positive for efficiency’s standpoint; coor-

dination persists in environments with incomplete information. Despite the fact

that subjects under incomplete information treatment should conform to the risk-

dominant threshold, they deviate significantly toward an efficiency threshold.

It might seem puzzling that there is so little learning in the incomplete informa-

tion treatment when myopic best-response dynamic theory suggests that subjects

should be learning iterated dominance. If we always round down fractions to inte-

gers, it takes 20 best response iterations to go from the payoff-dominant assignment

of all use a threshold of 500 to the risk-dominant assignment of all use a threshold

of 300. Without rounding the process does not converge in a finite number of itera-

tions. But notice that learning iterated dominance requires subjects to move to less

efficient outcomes, which previous work suggests subjects are reluctation to do, see

Van Huyck, Cook and Battalio (1997).

A calculation of the monetary incentive to deviate from an assignment may ex-

plain why subjects are not learning iterated dominance. In the incomplete infor-

mation treatment, the best response, c∗, to an assignment of all play a threshold

p is given by the following equation: c∗ = 60 + 4
5
p. Consider an assignment to a

threshold strategy combination of all use 450. The best response is a threshold of

420. However, the optimization premium, the monetary incentive to give a best re-
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sponse, is an average of 3.75 units or 0.2 cents. This calculation is myopic because as

behavior converges on 300 the group is moving to less efficient outcomes. If everyone

conformed to a threshold of 450, they would each earn $24.90 for the session. All

participants using the risk-dominant threshold of 300, which is what best response

learning converges to, would earn an average of $23.35 for the session, which is a $1.55

dollar difference for the session and approximately a 1.6 cent difference per period.

The lost efficiency is about eight times larger than the monetary incentive to best

respond given an assignment to everyone to use 450 as their threshold. Previous work

has shown that subjects are reluctant to converge towards less efficient outcomes.

This reluctance combined with a low myopic incentive to best respond may explain

the similar behavior observed under complete and incomplete information.

The low optimization premium relative to the inefficiency of the unique equilib-

rium is a property of the equilibrium solution. Scaling up the payoffs will make both

larger by the same proportion. This can be seen in figure 2.21, which graphs the

Expected Utility of the payoff-dominant threshold, Eu(qi|500) in red, and the risk-

dominant threshold, Eu(qi|300) in blue, given a realization of qi. The horizontal axis

graphs qi and the vertical axis graphs Eu(qi|p). Notice that the Expected Utility

function is discontinuous at Eu(500|500). At the payoff-dominant threshold of all

play 500 the expected utility from playing A is not 500, because on average half the

participants observe a qj above 500 and play B, which earns 100 per match, and half

the participants observe a qj below 500 and play A, which earns 500 per match, mak-

ing the expected earnings 300. For observations qi ∈ {0, 1, . . . , 448, 449} the player

can be sure that in a payoff-dominant assignment all of the other players receive a

signal that induces them to play A and they all earn 500. Similar considerations give

the risk-dominant, Eu(qi|300), function.

The dashed line and black dot in the function give the best response, 460, to
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an assignment of all play 500. The area of the shaded triangle gives the expected

earnings gained from deviating from the assignment to the best response. The differ-

ence between playing 460 and 500 is from observations qi ∈ {460, 461, . . . , 498, 499}

in which strategy 460 plays B while strategy 500 plays A. The average expected

earnings lost from playing 500 is 6.67 (from the triangle area, 4,000, divided by 600).

The area of the shaded polygon minuses the area of the shaded triangle gives the

expected earnings lost from moving from the payoff dominance to the risk dominance

(and global games solution). This loss is, on average, 33.33 or about five times larger

than the gains from playing 460 instead of 500 when all other players play 500. Scal-

ing the payoffs from 600 to 6,000 or 600,000 will not change the relative areas of the

two shapes.

2.5 Literature Review

There is a large literature on repeated stag hunt games, see Battalio, Samuelson

and Van Huyck (2001) for references. Rankin, Van Huyck and Battalio (2000) es-

timate thresholds from individual data from an experiment with similar stag hunt

games, that is, in terms of this paper for 100 < Q < 500. They find that most

subjects can coordinate on high thresholds which are close to the payoff-dominant

equilibrium. Stahl and Van Huyck (2002) using finite mixture models reject the

threshold specification in favor of learning conditional behavior from individual data

from an experiment with two ranges of experience: one with 100 < Q < 500 and

one with 300 < Q < 500. They find that experiencing with a greater range of Stag

Hunt games increases the likelihood of coordinating on high thresholds. Other dif-

ferences include using random matching in Rankin, Van Huyck and Battalio (2000)

and mean matching in Stahl and Van Huyck (2002) and this paper. The answers to

the debriefing questionnaire used in the experiment strongly support the view that
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subjects are using threshold strategies over learning conditional behavior.

Most of the experimental literature which tests global games predictions focuses

on variations of the speculative attack model of Morris and Shin (1998). In this game,

an individual has two choices: ’attack’ and ’not attack’. A player who attacks has an

opportunity cost T . If a sufficient number of players choose to attack, they succeed

and each of the attacking agents earns an amount Y . They assume that the number of

players needed for a successful attack is a non-increasing function in Y . In this game,

if Y < T , the dominant strategy is ’not attack’. There exists Ȳ such that for Y > Ȳ ,

the dominant strategy is ’attack’. For Y such that T < Y < Ȳ , there are two pure

Nash Equilibria, all ’attack’ and all ’not attack’. The value of Y varied from period to

period. The first test of global games predictions in the speculative attack model was

Heinemann, Nagel and Ockenfels (2004). They could not find a threshold difference

between two treatments. However, they find equilibrium multiplicity under common

information treatment but uniqueness under private information treatment. The

unique equilibrium that they find under private information treatment is different

from my results which suggests equilibrium multiplicity. Cornand (2006) considers

two treatments in which subjects can observe two signals. In one treatment, subjects

observe both private and common signals whereas subjects in another treatment

observe two common signals. She finds that in the treatment with both private and

common information, subjects use the public signal as a focal point.

Crawford, Costa-Gomes and Iriberri (2010) criticizes the global games approach

on two grounds. First, there is no evidence that people initially perceive the un-

certainty in a game as if they were playing a global game, that is, an incomplete

information version of the game with special payoff perturbations. Instead, the in-

complete information in a global games analysis is constructed to allow the iterated

dominance argument. Second, the experimental evidence surveyed in their paper
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suggests that people stop far short of the many steps of iterated dominance that is

needed to make a global games analysis yield a precise prediction. These two rea-

sons could explain why subjects can coordinate under incomplete information in my

experiment.

2.6 Conclusion

It has been shown that a Pareto superior equilibrium can be attained when play-

ing a sequence of similar stag hunt games with complete information. However,

precise information may not always be available or it may be too costly to obtain.

This paper tests whether such coordination would presevere with less precise in-

formation. Therefore, I run an experiment where each subject plays a sequence of

perturbed stag hunt games with either complete or incomplete information. Under

complete information, there is one cohort in which all eight subjects select the choices

that are consistent with payoff dominance in the last 50 periods. All other cohorts

use thresholds that are closer to the payoff dominance than the risk dominance.

Under incomplete information, the theory of global games has shown that subjects

should conform to a unique dominance solvable equilibrium that is risk-dominant.

However, only one cohort uses a threshold closes to this prediction. All other cohorts

deviate significantly from the prediction and coordinate just as well as subjects in

the complete information treatment. Under incomplete information, iterated elimi-

nation of dominated strategies forces the players to conform to a unique dominance

solvable equilibrium. However, both estimated thresholds and self-report reveal little

tendency to converge to that equilibrium.

It might seem puzzling that subjects in the incomplete information treatment do

not converge to the theoretical prediction when myopic best-response dynamic theory

suggests that subjects should be learning iterated dominance. One explanation could
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be that the gains from playing best response are small compared to the efficiency loss

from moving to the equilibrium, so they would rather coordinate on high thresholds.12

Another explanation could be that subjects may treat the imprecise information as

if it were precise and play accordingly. We leave it as a future extension of my work

to experimentally investigate which explanation explains the results better.

For efficiency’s standpoint, my results are quite positive because they suggest

that coordination on socially desirable outcomes can be reached without having to

spend resources to obtain precise information. One open question is to consider if

people would pay to know the information with precision. Based on my results, the

benefit from doing so is small, which suggests that they should not be willing to pay

unless the cost is rather low.

12Previous work suggests subjects are reluctant to play best response when it requires them to
move to less efficient outcomes, see Van Huyck, Cook and Battalio (1997) for example.

32



Figure 2.1: Cohorts 1 to 3 Periods 1 to 25

Figure 2.2: Cohorts 1 to 3 Periods 26 to 50

Figure 2.3: Cohorts 1 to 3 Periods 51 to 75
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Figure 2.4: Cohorts 1 to 3 Periods 76 to 100

Figure 2.5: Cohorts 4 to 6 Periods 1 to 25

Figure 2.6: Cohorts 4 to 6 Periods 26 to 50
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Figure 2.7: Cohorts 4 to 6 Periods 51 to 75

Figure 2.8: Cohorts 4 to 6 Periods 76 to 100

Figure 2.9: Cohorts 7 to 9 Periods 1 to 25
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Figure 2.10: Cohorts 7 to 9 Periods 26 to 50

Figure 2.11: Cohorts 7 to 9 Periods 51 to 75

Figure 2.12: Cohorts 7 to 9 Periods 76 to 100
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Figure 2.13: Cohorts 10 to 12 Periods 1 to 50

Figure 2.14: Cohorts 10 to 12 Periods 51 to 100

Figure 2.15: Cohorts 13 to 15 Periods 1 to 50
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Figure 2.16: Cohorts 13 to 15 Periods 51 to 100

Figure 2.17: Cohorts 16 to 18 Periods 1 to 50

Figure 2.18: Cohorts 16 to 18 Periods 51 to 100
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Figure 2.19: Estimated Probability of Choosing A given the Value of Q + Ei, Logit
Models: Incomplete Information Treatment

Figure 2.20: Estimated Probability of Choosing A given the value of Q, Logit Models:
Complete Information Treatment
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Figure 2.21: The Eu(qi|500) Function and the Eu(qi|300) Function.
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3. PRUDENCE, JUSTICE, AND BENEVOLENCE: EVIDENCE FROM

REPEATED GLOBAL BARGAINING GAMES

3.1 Introduction

Bargaining problems usually result in multiple, mutually inconsistent ways to

divide a surplus. Bargaining problems with multiple equilibria result in a partic-

ularly difficult strategy coordination problem, because people may fundamentally

disagree about the desirability of the different equilibria. Many economists thought

that bargaining problems were inherently intractable; see Edgeworth (1881) for an

early formalization of the problem. Many equilibrium selection principles have been

proposed to select a unique equilibrium including Utilitarian (select the equilibrium

with the largest payoff sum), Rawlsian (select the equilibrium that maximizes the

welfare of the worst off player), and risk dominance (select the equilibrium with

the larger basin of attraction). However, Carlsson and van Damme (1993b) show

that if we introduce noise to the payoffs, creating incomplete information versions of

standard bargaining problems called global bargaining games, there exists a unique

equilibrium that is typically the equilibrium selected by risk dominance. Therefore,

we would expect risk dominance to be more salient under incomplete information.

This paper reports an experiment where each subject plays a sequence of per-

turbed bargaining games in one of two information conditions: complete and incom-

plete information. The bargaining game models a situation in which players have

two ways to divide a surplus: if both players select the same choice, the surplus is

divided according to that particular choice. However, if two players fail to coordinate

on the same choice and select different choices, each player earns a small fixed payoff.

In most games, there are two strict equilibria, one of which is risk-dominant. The
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Table 3.1: A Class of Bargaining Games
A B

A W,X 100, 100
B 100, 100 Y, Z

results show that risk dominance performs the best in predicting subjects’ choices.

Moreover, risk dominance (which is also a global games prediction) is more salient

under incomplete information. The results also imply that the “social preferences”

of groups differ under different information conditions.

The class of bargaining games depicted in Table 3.1 models a situation in which

players have two choices, A and B, to divide a surplus. If players select the same

choice, the surplus is divided according to that particular choice. However, if two

players select different choices, each player earns a fixed but small payoff for a misco-

ordination. This results in a multiplicity of Nash equilibria: (A,A) or (B,B). Which

equilibrium will be selected by the players would depend on the payoffs according

to each equilibrium; i.e., the values of W,X, Y, Z. There are at least three equi-

librium selection principles that have been proposed to select a unique equilibrium:

Utilitarian , Rawlsian, and risk dominance. Utilitarian selects the equilibrium with

the largest payoff sum; Rawlsian selects the equilibrium that maximizes the welfare

of the worst off player; and risk dominance selects the equilibrium with the larger

basin of attraction.1 It is unclear which of the three principles is the most salient in

predicting players’ behavior in a bargaining game.

However, in many situations, subjects may not be able to observe payoffs with

precision.2 There is some evidence that players behave differently in games with com-

plete and incomplete information. Therefore, I introduce noise to the payoffs, as in

1In a 2× 2 game, a basin of attraction refers to a product of deviation losses
2For example, a buyers and a seller may not know each other’s willingness to buy or to sell.
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the theory of global games introduced by Carlsson and van Damme (1993b). In global

bargaining games, each player independently observes the payoffs of W,X, Y, Z, with

noise in each period. Carlsson and van Damme (1993b) show that under certain con-

ditions, there exists a unique equilibrium that is often the equilibrium selected by risk

dominance. Neither Utilitarian equilibrium nor Rawlsian equilibrium exists under

incomplete information since players may observe different payoffs which can lead

to different strategies. Therefore, I would expect risk dominance to be more salient

under incomplete information.

Given different theoretical predictions under the two information conditions, I

conduct an experiment where each subject plays a series of perturbed bargaining

games in one of two treatments: complete information and incomplete information.

Under complete information, subjects observe the actual payoffs with certainty while

under incomplete information, subjects only observe the payoffs with noise that is

uniformly distributed with zero mean.

The results show that the Rawlsian principle performs better than the Utilitar-

ian principle in predicting subjects’ choices under both conditions. Risk dominance

performs the best under both information conditions, but it is not statistically dif-

ferent from Rawlsian under the complete information condition. One approach to

analyzing the behavior of subjects is to classify them by type. Foe example, those

whose bahavior is consistent with the Utilitarian principle would be classified as the

Utilitarian type. We use a finite mixture model regression to estimate the fraction

of behavior that is consistent with each type. Half of the subjects under complete

information and two thirds of the subjects under incomplete information can be clas-

sified, using a finite mixture model of subject types, as the risk dominance type. The

results support the global games theory, which predicts a unique equilibrium, risk

dominance, in the game with incomplete information. The results also imply that
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different behavior may occur when subjects observe different information; players

may select equilibria with different criteria under different information conditions.

To my knowledge, this paper is the first to compare three equilibrium selection

principles and examine the predictions of global game theory in bargaining games. It

is also the first to compare the results of the game with complete information to those

with incomplete information. The closest paper to mine, Van Huyck and Battalio

(2002), only examines the bargaining game under complete information. Moreover,

they vary the payoffs with special properties: all games have two strict, efficient

equilibria in which the Rawlsian principle selects one equilibrium and the Utilitarian

principle selects another equilibrium. Security is varied so that risk dominance selects

the Utilitarian equilibrium half the time and the Rawlsian half the time. They

observe, in contrast with my paper, more emergence of a Utilitarian convention than

a Rawlsian convention, and there is no emergence of a risk dominance convention.

In summary, this paper considers a sequence of perturbed bargaining games in

two treatments: complete information and incomplete information. The results show

that risk dominance is best in predicting choices; comparing between Rawlsian and

Utilitarian principles, the strategies are more consistent with Rawlsian than Util-

itarian . Moreover, risk dominance is more salient under incomplete information

than complete information. This supports the global games theory which predicts

a unique equilibrium, in games with incomplete information, to be the same as the

risk-dominant equilibrium. The results also suggest that players may use different

strategies against games with different information conditions.

3.2 Related Literature

There is a great deal of on bargaining experiments. Most studies consider a

single fixed game where players bargain over a fixed sum of payoffs; see Roth (1995)
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and (Camerer, 2003, p. 151-198) for surveys. Most experimental results show that

splitting surplus equally is a salient norm (the 50-50 norm); see Janssen (2006) and

Andreoni and Bernheim (2009) for example. One exception is the experiments by

Van Huyck et al. (1995) where participants play symmetric bargaining games with the

same earnings matrix every period. In their DS game, they observe unequal-division

conventions emerging even though equal-division is an efficient strict equilibrium.

They argue that security reduces the salience of the equal division and can drive a

laboratory cohort toward an unequal division convention.

Most experimental work on bargaining (and other games) considers a single fixed

game. Crawford (2002) argues that “real analogies are seldom this perfect and how

players learn from others’ behavior in games that are similar but not identical is

an important open question”.3 Van Huyck and Battalio (2002) study a class of

2 × 2 asymmetric bargaining games. In their experiments, participants play simi-

lar, but not identical, bargaining games for 70 periods. All games have two strict

efficient equilibria in which the Rawlsian principle selects one equilibrium and the

Utilitarian principle selects another equilibrium. Risk dominance selects a Utilitar-

ian equilibrium in odd periods (U -games) and a Rawlsian in even periods (R-games).

In contrast to my paper, they observe more emergence of the Utilitarian convention

than either the Rawlsian or risk dominance convention. From 26 eight-person co-

horts, four cohorts converge to the Utilitarian convention for both U and R games

while only one cohort converges to the Rawlsian convention for both U and R games.

There is no cohort that converges to the risk dominance convention in which it con-

verges to the Utilitarian convention for U games and to Rawlsian convention for R

games. If considering either U -games or R-games separately, 15 cohorts converge to

3Rankin, Van Huyck and Battalio (2000) opened an investigation of this issue with similar stag
hunt games.
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the Utilitarian convention for U -games while only 8 cohorts converge to the Rawlsian

convention for R-games.

Our paper is also related to Charness and Rabin (2002) who study two-person

dictator games. In my experiments, two players decide simultaneously between two

choices. One player needs to sacrifice some of his payoffs to coordinate on the same

choice with another player, in order for both players to receive higher payoffs than

the disagreement payoffs. However, in Charness and Rabin (2002) only one player

(a dictator) can choose between two allocations. They show that many subjects are

willing to sacrifice some of their payoffs to help their counterparts. For example,

about half of the subjects select (375,750) over (400,400) and about one third of the

subjects select (500,700) over (600,300).4

Lastly, this paper is also related to the global games theory. Most of the ex-

perimental literature testing global games predictions focuses on variations of the

speculative attack model of Morris and Shin (1998). Heinemann, Nagel and Ock-

enfels (2004) is the first experimental paper to test this prediction; they find that

subjects use different strategies under complete information but similar strategies

under incomplete information.

3.3 Analytical Framework

In order to focus the analysis, consider the following game. Table 3.1 describes

the game where two players make a decision simultaneously between choice A and

choice B. If both players select A (B), the row player will earn W (Y ) and the column

player will earn X (Z). If two players select different choices (i.e., one player selects

choice A and another player selects choice B), each of them earns a fixed payoff

of 100 as a disagreement payoff. When W,X, Y, Z are greater than a disagreement

4For number in parentheses (A,B): A refers to the payoff of the dictator and B refers to the
payoff of the other player.
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payoff of 100, there exist two strict Nash equilibria which are (A,A) and (B,B). If

W > Y and X > Z, both players prefer an equilibrium (A,A). In this situation, it is

obvious that A will be selected by both players. To avoid these situations, I assume

W to be greater than both Y and Z; and X to be smaller than both Y and Z; i.e.,

Y, Z ∈ (X,W ). In this case, the row player earns higher payoff with (A,A) while the

column player earns higher payoff with (B,B).

3.3.1 Equilibrium Selection Principles

In a bargaining game shown in Table 3.1, there are two strict equilibria in pure

strategies: (A,A) and (B,B). Many equilibrium selection principles have been pro-

posed to select an equilibrium when there are multiple equilibria. One of the prin-

ciples that has been widely used is payoff dominance. It compares the efficiency of

equilibria and selects the equilibrium that all players earn the most. In this game,

because the row player earns more with (A,A) while the column player earns more

with (B,B); there is no payoff-dominant equilibrium.

Harsanyi and Selten (1988) develop risk dominance as the selection criterion when

payoff dominance fails to make a unique prediction. In 2× 2 games, risk dominance

is equivalent to choosing the equilibrium with the larger basin of attraction under

best-response dynamics.5 In other words, it selects the equilibrium with the larger

product of the deviation losses. In this game, risk dominance selects (A,A) when

(W−100)×(X−100) > (Y−100)×(Z−100) and (B,B) when (W−100)×(X−100) <

(Y − 100)× (Z − 100).

There are at least two other equilibrium selection principles that have been widely

used in bargaining contents: Rawlsian and Utilitarian. The Rawlsian principle

(Rawls (1971)) selects the equilibrium that maximizes the payoff of the worst off

5This prediction is the same to Nash’s bargaining solution (Nash (1951)) which compares the
product of utility differences between the agreement and the disagreement point.
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Table 3.2: A Class of Global Bargaining Games (a, left) Actual Payoff Table; (b,
right) Subject i’s Estimated Payoff Table.

A B
A W,X 100, 100
B 100, 100 Y, Z

A B
A Wi, Xi 100, 100
B 100, 100 Yi, Zi

player; it selects (B,B) in this game because Y and Z are both greater than X. The

Utilitarian principle selects the equilibrium with the largest payoff sum; it selects

(A,A) when W +X > Y + Z and (B,B) when W +X < Y + Z.

With these three equilibrium selection principles, all games have one of the three

possibilities: (1) all three principles select (B,B); (2) Utilitarian selects (A,A) while

Rawlsian and risk dominance select (B,B); and (3) Utilitarian and risk dominance

select (A,A) while Rawlsian selects (B,B). Note that (1) Rawlsian always selects

(B,B) since Y and Z are both greater than X; and (2) the case in which risk

dominance selects (A,A) while Rawlsian and Utilitarian select (B,B) is not possible.6

3.3.2 Global Bargaining Games

Carlsson and van Damme (1993b) develop an equilibrium selection theory (a

global game) based on the idea that the payoff parameters of a game cannot be

observed with certainty. The complete information bargaining game in Table 3.1 is

replaced by a payoff perturbed game: a global bargaining game, as in Table 3.2. The

global game can be described by the following steps:

1. Nature selects W,X, Y, Z.

6Suppose that Utilitarian selects (B,B), we know that Y +Z > W +X. Because Y,Z ∈ (X,W )
and let W = a+Y where a is a constant; we have Z > X+a. We can construct (Y−100)×(Z−100) >
(W − 100− a)× (X − 100 + a) = (W − 100)× (X − 100) + a(W −X − a) > (W − 100)× (X − 100)
since W − a = Y > X. Therefore, (Y − 100)× (Z− 100 > (W − 100)× (X − 100). In this case, risk
dominance would select (B,B). This implies that if Utilitarian and Rawlsian agree on the same
equilibrium, risk dominance would predict that equilibrium as well.
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2. Each player independently observes W,X, Y, Z with some noise, so we denote

them as Wi, Xi, Yi, Zi for subject i.

3. Each player chooses between A and B simultaneously.

4. Each player receives payoffs as determined by the game form in step 1 and all

players’ choices in step 3.

In other words, player i observes a game on Table 3.2b but the payoffs are de-

termined by a game on Table 3.2a. Carlsson and van Damme (1993b) show that for

any 2×2 game, under some restrictions, iterated elimination of dominated strategies

in the global game forces each player to select an equilibrium equivalent to the risk

dominance criterion. The restrictions are (1) the initial subclass of games is large

enough and contains games with different equilibrium structures, and (2) the noise

is independently distributed and is sufficiently small. 7

Under incomplete information (i.e., global bargaining games), there exists a

unique equilibrium that is the same as the equilibrium derived from the risk domi-

nance criterion. Other equilibrium selection principles including Rawlsian and Util-

itarian are no longer equilibria because observing different parameters can lead to

different choices.

A global game does not imply that players always coordinate on the risk-dominant

equilibrium of the actual game even though they play the same strategies. In fact,

each player selects the risk-dominant equilibrium according to each player’s estimated

payoff game, which may end up with different strategies in some situations. However,

coordination on the actual game is ensured when noise vanishes.

7See Carlsson and van Damme (1993b) for details of the proof.
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3.3.3 Non-Equilibrium Concepts

Experimental evidence suggests that people often deviate systematically from

equilibrium, especially when they have no experience with the game. Stahl and

Wilson (1994, 1995) and Nagel (1995) introduce a non-equilibrium model based on

level-k thinking. In this model, level-0 thinkers play uniformly over their action

set, level-1 thinkers best respond to a belief that everyone else is a level-0 thinker,

level-2 thinkers best respond to a belief that everyone else is a level-1 thinker, and

so on. In this bargaining game, level 0 thinkers would play A and B with equal

probability. A level 1 row player would choose A because her expected payoff of

playing A, (0.5×W ) + (0.5× 100), is higher than her expected payoff of playing B,

(0.5×100) + (0.5×Y ) since W > Y . Similarly, a level 1 column player would choose

B since Z > X. Level 2 row players would match the choice of level 1 column player

and choose B, while level 2 column players would choose A. Therefore, odd-step

thinkers (level 1, 3, 5, ... ) select T if playing as row players and select B if playing

as column players, while even-step thinkers (level 2, 4, 6, ... ) select B if playing as

row players and select A if playing as column players. A pair will select the same

choice when the difference between their levels is an odd number and different choices

when it is an even number.8

An even more naive theory is maximax, where a player attempts to earn the

maximum possible benefit available as if all other players will also act so as to

maximize her payoff. In other words, player i picks the strategy si which maximizes

a payoff gi(si, s−i) over all possible (si, s−i) ∈ Si×S−i. In previous chapter, the most

common strategy described in the debriefing questionnaire of a global stag hunt game

was maximax. In the global bargaining game, maximax results in the row player

8If at least one player is a step-0 thinker, the coordination will be successful half of the time.
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selecting A and the column player selecting B; that is, it results in discoordination,

unlike the global stag hunt game. Hence, if players bring this decision rule into the

laboratory they will have to then learn a more sophisticated strategy to successfully

coordinate on a pure strategy equilibrium.

3.4 Experimental Design

To accommodate the requirement of global games theory that the initial subclass

of games contains games with different equilibrium structures, I let the values of W,

X, Y , and Z used in the experiment to be integers in the interval 0 to 600, that

is, W,X, Y, Z ∈ {0, 1, 2, . . . , 600}. In order to compare a treatment with complete

information to a treatment with incomplete information, I used the same values under

both conditions. The stage game form used in the experiment is given in Table 3.3.

participants in a treatment with complete information observed the actual payoff

table as in Table 3.3a, while participants in a treatment with incomplete information

only observed the estimated payoff table as in Table 3.3b.

The stage game was played for 100 periods to give adequate experience to learn

to solve a multiple equilibria problem. In each period, four values were generated

using a uniform distribution between 0 and 600. Since I have a restriction that

Y, Z ∈ (X,W ), I set W equal to the largest value, X equal to the smallest value, and

Y and Z equal to either the second or the third largest value (with equal probability).

In each period, each player was assigned a role as either a row or a column player;

however, the payoff table was shown on each player’s screen as if he/she was always

a row player. In addition, action labels were also scrambled to prevent players from

using non-strategic details to solve their coordination problem.

Two treatments were conducted in this paper. In the baseline treatment of com-

plete information about the payoff table, every player observed the actual table; that
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Table 3.3: A Global Bargaining Game Form Used in the Experiment (600 > W >
{Y, Z} > X > 0) (a, left) Actual Payoff Table; (b, right) Subject i’s Estimated
Payoff Table.

A B
A W,X 100, 100
B 100, 100 Y, Z

A B
A Wi, Xi 100, 100
B 100, 100 Yi, Zi

is Wi = W , Xi = X, Yi = Y and Zi = Z. In the incomplete information treatment,

the payoff table was only observed with noise. Each player i observes the private

estimate values of W,X, Y, Z, which we denote Wi, Xi, Yi, Zi. The private value of

Wi was Wi ∈ {W − 50,W − 49, . . . ,W + 49,W + 50}. Note that Wi and Wj, for

players i and j, were generated separately, and they were very likely to be different

values in each period. The private values of Xi, Yi, Zi were generated in the same

manner as Wi. So, in each period, 32 error terms (integers between -50 and 50) were

generated: four values (for W,X, Y, Z) for each of eight players in a cohort. The same

sequence of the actual payoff tables was used for all cohorts under both information

treatments, and the same sequence of the error terms was used in all cohorts under

the incomplete information treatment. The only difference between the two treat-

ments was that players in the incomplete information treatment observed the payoff

tables with errors, while players in the complete information treatment observed the

actual payoff tables.

Each participant was randomly matched with a new counterpart in each period,

within a cohort of eight participants. After each period, each participant received

feedback on the actual payoff table (for the incomplete information treatment), her

and her counterpart’s choices, and the earnings for that period for her and her

counterpart. Participants were paid for all 100 periods with the exchange rate of 12

points for a cent.
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Two sessions of three cohorts and one session of two cohorts for a total of eight co-

horts were conducted for each treatment. Each cohort consisted of eight participants.

Thus, each treatment has 64 participants and the total number of participants was

128. The participants were Texas A&M University undergraduate students recruited

campus wide using ORSEE, see Greiner (2004).

The instructions were both shown on screen and read aloud to ensure the game

was common information among the participants. After the instructions, the partic-

ipants filled out a questionnaire to establish that they knew how to calculate their

earnings. In sessions with any mistakes on any questionnaires, the section on calcu-

lating earnings was reread to the participants to ensure that they understood how

to play the game.

The experiment was programmed and conducted with the software z-Tree, see

Fischbacher (2007). The experiment was conducted in the Economic Research Lab-

oratory (ERL) at Texas A&M University in June 2013. A five dollar show up payment

plus their earnings in the session were paid privately to the participants in cash. The

average earnings is $25.54 for a session that lasted about 2 hours.

After the decision making portion of the session was completed and while they

waited for their earnings to be calculated, participants filled out a second question-

naire that asked them to explain their behavior in the session.

3.5 Experimental Results

Subjects in my experiments played a sequence of 100 global bargaining games.

Because I allowed the agreement payoffs to be less than 100, in some games there

exists a unique Nash equilibrium as either (A,B) or (B,B).9 Sections 5.1 and 5.2

consider basic results and type classification, respectively. Section 5.3 reports a

9Since I scrambled the action labels, (A,B) may be labeled (B,A) and (B,B) may be labeled
(A,A).

53



Table 3.4: Percentages of Decisions that Comply with Each Equilibrium Selection
Principle by Cohorts

Cohort Treatment Risk Dominance Utilitarian Rawlsian Maximax

1 Incomplete 73% 66% 57% 52%
2 Incomplete 68% 52% 76% 51%
3 Incomplete 72% 57% 74% 55%
4 Incomplete 65% 54% 63% 50%
5 Incomplete 77% 68% 61% 53%
6 Incomplete 72% 57% 68% 53%
7 Incomplete 70% 60% 63% 60%
8 Incomplete 75% 64% 64% 54%

1-8 Average 71% 60% 66% 54%

9 Complete 73% 65% 63% 56%
10 Complete 68% 48% 80% 50%
11 Complete 68% 54% 73% 51%
12 Complete 68% 56% 68% 55%
13 Complete 71% 60% 68% 54%
14 Complete 68% 65% 63% 50%
15 Complete 67% 56% 73% 52%
16 Complete 72% 65% 65% 53%

9-16 Average 69% 59% 69% 53%

debriefing questionnaire about how subjects played this game.

3.5.1 Basic Results

A useful way to look at the data is to look at how accurate each equilibrium

selection principle is in predicting players’ choices. We will consider only the periods

that the earnings table has Wi > {Yi, Zi} > Xi > 100 because there are two strict

Nash Equilibria and these equilibria cannot be Pareto ranked. Fifty-three games

under complete information and thirty-five to forty-five games under incomplete

information have this property.10 If we randomly select a choice, either A or B,

10Under incomplete information, each player observes different estimate earnings table, that is
why the number of games that satisfy my restriction are different.
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made by a player in each period, we should have a correct prediction half of the

time. Since each selection principle predicts one choice in each period, it makes a

good prediction if it has a correct prediction significantly greater than 50%. Table

3.4 reports the percentage of correct prediction for each selection principle by cohort

for the incomplete information treatment and the complete information treatment,

respectively.

Cohorts 1 to 8 were conducted under the incomplete information condition. No

selection principle can predict the decisions perfectly, and most participants used a

combination of principles. Each method was used more than 50% of the time, which

means that it performed better than a random selection. The global games pre-

diction, which is equivalent to the risk dominance criterion, has the highest correct

prediction for six cohorts, excluding cohorts 2 and 3 in which the Rawlsian principle

makes a slightly better prediction (but it is not significantly different from the risk

dominance criterion). On average, players selected the global games choices about

71% of the time. It is surprising that the Utilitarian principle, which generates the

highest payoff over time, performs much worse than risk dominance and Rawlsian.

Comparing between Rawlsian and Utilitarian principles, players selected the Rawl-

sian choices more often (66% compared to 60%). Rawlsian makes a better prediction

than Utilitarian for 6 cohorts, excluding cohorts 1 and 5. Maximax performs the

worst in every cohort; the correct prediction rate is a little over 50%. This is prob-

ably because of the fact that, if every player used the maximax strategy, it is very

likely that it will result in a mismatch, and each of them would earn only 100 points

for that period.

Cohorts 9 to 16 were conducted under the complete information conditions. Co-

hort 10 is perhaps the most remarkable. More than 80% of the choices made by

cohort 10’s players were consistent with Rawlsian and less than 50% were consistent
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with the Utilitarian principle. This cohort showed a very strong tendency toward the

Rawlsian principle. For other cohorts, the Utilitarian principle predicts the choices

better than Rawlsian for only two cohorts, cohort 9 and cohort 14. The choices made

by cohorts 9, 13 and 16 were consistent with risk dominance by more than 70% of

the time.

3.5.2 Type Classification

We follow Costa-Gomes, Crawford and Broseta (2001) to conduct a maximum

likelihood error-rate analysis for my participants’ choices. The model is a finite

mixture model in which each participant’s type is drawn from a common prior dis-

tribution over three types, which are risk dominance, Utilitarian, and Rawlsian and

remains constant for the whole session.11

Let i = 1, ..., N index the participants in the treatment and let k = 1, ..., 3 index

types. We assume that each player normally follows the predictions of a particular

type, but in each game he makes an error with probability εk ∈ [0, 1], type k’s error

rate. With probability εk, a participant makes choices randomly which means he

selects either A or B with probability 0.5. For a type-k participant, the probability

of type k’s decision is 1− 0.5εk and the probability of another decision is 0.5εk.

The likelihood function can be constructed as follows. Let Qi denote the total

number of games for player i that I include in my analysis.12 Let xik denote the

number of games that player i makes a choice that is consistent with type k. Let pk

denote participants’ common prior type probabilities where p1 + p2 + p3 = 1, and let

εk denote type k’s error rate. Participant i’s log-likelihood function with a particular

11We have tried four types including maximax type; the results suggest no player is a maximax
type.

12We only include the games that satisfy Wi > Yi, Zi > Xi > 100 in this analysis. There are 53
games for the complete information treatment and 35 to 45 games for the incomplete information
treatment.
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Table 3.5: Aggregate Type Classification (Type 1 is Risk Dominance, Type 2 is
Utilitarian, and Type 3 is Rawlsian).

Treatment Incomplete Complete
p1 0.6648 0.5256

(0.1260) (0.0498)
p2 0.0894 0.1085

(0.0281) (0.0342)
p3 0.2458 0.3659

- -
ε1 0.5071 0.5133

(0.3700) (0.0261)
ε2 0.7845 0.7214

(0.1139) (0.0920)
ε3 0.2561 0.3505

(0.1316) (0.0319)
N 2512 3392

sample with choice profile xi can be written as:

lnLi(p, ε|xi) = ln

[
3∑

k=1

pk
∏

(1− 0.5εk)x
i
k(0.5εk)Q

i−xi
k

]
. (3.1)

The aggregate log-likelihood function is given by:

lnL(p, ε|x) =
N∑
i=1

ln

[
3∑

k=1

pk
∏

(1− 0.5εk)x
i
k(0.5εk)Q

i−xi
k

]
(3.2)

With three types, this model has 5 independent parameters to estimate: 2 inde-

pendent type probabilities pk
13 and 3 independent error rates εk.

Table 3.5 estimates equation (2) using maximum likelihood for incomplete in-

formation and complete information treatments separately. Under incomplete in-

formation conditions, the risk dominance type makes up two-third of the estimated

type distribution. The Rawlsian type makes up one-quarter and the Utilitarian type

13We do not estimate p3 as p3 = 1− (p1 + p2).
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makes up less than 10% of the type distribution. The results are consistent with

Table 3.3 where most choices are consistent with risk dominance. Error rates are

quite high which suggests that players do not follow their types consistently. This is

not surprising given that the expected payoff from two equilibria are similar in many

games. The Risk dominance type follows its type’s action about 49% while Rawlsian

type follow its type’s action about 74%.

Under complete information, risk dominance type makes up about 53% of the

estimated type distribution. Rawlsian makes up 37% and Utilitarian makes up a

little over 10% of type distribution. The result under two conditions are similar.

The main difference is I observe higher proportion of participants as risk dominance

types under the incomplete information condition than the complete information

condition. This suggests that incomplete information makes risk dominance or the

global games solution become more salient.

3.5.3 Debriefing Questionnaire

After the 100 choices were made, the participants were asked to complete a de-

briefing questionnaire consisting of four questions. The first question was, “What

strategy did you use while playing this game? Please include details about what led

you to choose A or B.” The answers were revealing. We cannot categorize many

participants because their answers were not clear about the criteria they were using

to make a decision. A typical answer was, “I tried to choose the answer I thought the

other participant would choose.” Many choices were consistent with risk dominance;

however, no participant mentioned risk dominance. This is not surprising because we

do not expect them to report that they select “the outcome with the larger product

of the deviation losses” or “the equilibrium with the larger basin of attraction under

best response dynamics” anyway.
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Despite a high rate of uncategorized answers, many answers can be categorize

as Rawlsian, Utilitarian, or maximax. Thirty-four percent of the participants in

the incomplete information treatment and thirty-nine percent of the participants in

the complete information treatment mentioned equality or maximizing the payoff of

the worst-off player (Rawlsian). For example, a participant reported, “I tried to be

fair and chose the outcomes that would be the most equal.” Only eleven percent

of the participants in the incomplete information treatment and nine percent of the

participants in the complete information treatment said they selected the choice with

the larger sum of the payoffs (Utilitarian). For example, a participant reported, “I

would pick the highest combined number. So if choice A had a higher total than

choice B when I would add up the numbers I would choose choice A.” Nine percent

of the participants in each treatment reported using maximax as one participant

reported, “I chose the highest number on the left side of the box because that was

how much I was going to earn.”

The second debriefing question was, “Did you change your strategy over time?”

Forty-seven percent of the participants in the incomplete information treatment and

forty-four of the participants in the complete information treatment reported chang-

ing their strategy over time.

The third debriefing question question was, “If you changed your strategy, what

made you change it?” The typical answer was to try to coordinate better with other

players after their initial strategies did not work out well. For example, a participant

reported, “I had to adapt my strategy because evidently many other people don’t

know how game theory works. I had to try to put myself in their shoes and think

about what they were going to pick and adjust my pick accordingly. I feel that the

end result would have been much better if I would have taken the uneducated route

the whole time.” Some participants were frustrated about other players’ choices so
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they decided to change their strategies as one participant reported, “There were a

few people in my group who would refuse to give up 10 or 20 points so that the other

person could double theirs. That made me pretty frustrated, so after that I was less

charitable.”

The last question asked participants, “If you could play this game again, what

would you do?” Forty-three percent answered that they would do the same thing.

Thirty percent answered that they would begin with their strategy that they adopted

at the end of the session earlier. Some participants reported that they would use

a maximax strategy in every period.14 Other frequently mentioned answers include

wishing that other players would choose the choices that they expect, or they could

eliminate those who play irrationally.

3.6 Conclusion

Bargaining problems usually result in multiple ways to divide a surplus. Many

equilibrium selection principles have been proposed to select a unique equilibrium.

However, once we introduce noise as in global games theory, only the risk-dominant

criterion survives as the equilibrium selection principle. This paper tests the salience

of this prediction. Therefore, I run an experiment where each subject plays a sequence

of perturbed bargaining games with either complete or incomplete information. The

results show that risk dominance can explain the strategies of subjects better than

either Rawlsian and Utilitarian under both information conditions. Risk dominance

is more salient in sessions with incomplete information than sessions with complete

information which supports the global games theory.

One may be interested in whether the Rawlsian or Utilitarian principles is more

salient. The results from a debriefing questionnaire reveals that more people have

14The typical words using for a maximax strategy were “play selfishly” or “play aggressively”.
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preferences toward Rawlsian than Utilitarian; more than one third of answers from

subjects can be classified as the Rawlsian type, with only ten percent as the Utilitar-

ian type. This is consistent with the real decisions in the experiment as the Rawlsian

principle can explain the choices better than the Utilitarian principle under both

information conditions.

The fact that risk dominance is more salient under incomplete information also

suggests that players may use different strategies in games with different information

conditions. The implied “social preferences” of people are different under different

information conditions. Incomplete information can change people with different

strategies to use similar strategies in bargaining games. One open question is what

drives people under two different information conditions to play differently.

It is not easy to coordinate in my bargaining games as the results show that the

miscoordination rate is very high (almost one-third under complete information and

even higher under incomplete information). Testing behavior in other bargaining

games, especially when it is easier to coordinate, is worth considering.
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4. EQUILIBRIUM SELECTION IN GLOBAL ENTRY GAMES WITH

STRATEGIC SUBSTITUTES AND COMPLEMENTS

4.1 Introduction

Previous experimental work has shown that when playing a sequence of global

entry games, most subjects deviate from the global games predictions in favor of

payoff dominance, i.e., they enter the market more often than theoretical predictions,

see Heinemann, Nagel and Ockenfels (2004) and Cornand (2006) for example. These

results were documented in an environment with strategic complements only, i.e.,

there is a non-decreasing function between the payoffs from entering the market and

the number of firms who enter the market. Karp, Lee and Mason (2007) analyze

an entry game with strategic substitutes and complements where the relationship

between the payoffs from entering the market and the number of firms who enter

the market is an increasing function in some regions and a decreasing function in

other regions. They show that under incomplete information with certain conditions,

there exists a unique threshold equilibrium in which firms enter the market when the

observed fundamental value is above a certain threshold and do not enter the market

otherwise. In contrast to games with incomplete information, there are multiple

equilibria in games with complete information. With both strategic substitutes and

complements, over-entry does not yield higher payoffs than the equilibrium strategy.

This is in contrast with the usual entry games with strategic complements only,

where deviating from the equilibrium strategy might yield higher payoffs.

In this chapter, I conduct an experiment where each subject plays a sequence

of perturbed entry games with strategic substitutes and complements in one of two

treatments: one with complete and one with incomplete information. Under com-
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Table 4.1: A Class of Entry Games where Q ∈ [0, 400]
No. of choice A 0 1 2 3 4 5 6

A Q Q+ 50 Q+ 100 Q+ 200 Q+ 100 Q+ 50 Q
B 300 300 300 300 300 300 300

plete information, subjects’ strategies vary, which is consistent with the predictions

of multiple equilibria. Under incomplete information, subjects deviate from the equi-

librium, but in a different way from previous studies with entry games with strategic

complements only. They enter the market less often than the theoretical prediction,

which is consistent with risk-averse behavior since entering the market is risky. Thus

in the absence of payoff dominance, global games can predict subjects’ behavior

better than when there is a payoff dominance.

The class of entry game with strategic substitutes and complements, depicted in

Table 4.1, models a situation in which symmetric players have two choices: A, enter

the market, and B, do not enter the market. Choosing B and staying out of the

market guarantees a payoff of 300 regardless of other players’ choices. If a person

chooses A and enters the market, the payoff depends on Q and the number of other

players who choose to enter the market, as shown in the table. An example of a game

with these properties is a market with both positive network effects and congestion.

In such a market, positive network effects may make it more attractive for a firm to

enter a new market if few other firms also enter. However, if a large number of firms

enter, the market becomes too crowded and further entry is unattractive.

Given the fact that it is more attractive to choose A when Q is high, I expect

players to play “threshold” strategies where the players choose A if Q > Q∗ and B

if Q ≤ Q∗. However, under complete information conditions, in which all payoffs are

common knowledge, using the same thresholds will not benefit players because the
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results will be either all or no players in the market. The payoffs are minimized in

that situation; therefore, I expect different players to use different thresholds.

In contrast to games with complete information, there exists a unique threshold

in games with incomplete information under certain conditions. Under incomplete

informtaion, the fundamental state variable (Q) cannot be observed with certainty:

each player observes an independent signal of Q. In this game, there exists a unique

threshold where players enter the market when observing Q ≥ 182. This is from the

fact that, even when subjects use the same threshold, observing different signals of

Q can lead to different choices. This benefits players, since the payoffs from entering

are higher when about half of people enter the market.

Previous experimental research on entry games with strategic complements demon-

strates that subjects deviate from the global games predictions in favor of payoff

dominance; they choose A more often than theoretical predictions. Deviating from

the predictions is reasonable in those games because doing so can generate higher

payoffs for subjects. However, in this paper, no payoff dominance exists in games

with incomplete information, and deviating from the equilibrium threshold does not

yield higher payoffs as there are congestion effects. Therefore, I expect that subjects

will not select A more often than the equilibrium predictions as observed in previous

papers. In fact, I expect that subjects would select A less often than equilibrium

because selecting A is risky.

Given different theoretical predictions, I compare a sequence of entry games with

strategic substitutes and complements in two treatments: complete information and

incomplete information. Under complete information treatment, subjects observe

the actual value of q with certainty, while under incomplete information treatment,

subjects observe the value of q with noise that is uniformly distributed with zero

mean.
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Our results show that under complete information, subjects use different thresh-

olds as expected. Under incomplete information, subjects use similar thresholds but

are higher than theoretical predictions. This is in contrast with entry games with

strategic complements which indicates that subjects use lower thresholds than theo-

retical predictions. Thus my results indicate that without payoff dominance, players

do not over-select risky options.

To my knowledge, this paper is the first to examine the predictions of global

games theory in the entry games with strategic substitutes and complements.

In summary, this paper considers a sequence of perturbed entry games with strate-

gic substitutes and complements in two treatments: complete information and in-

complete information. There is an evidence of multiple equilibria in games with

complete information. In contrast, subjects under incomplete information treatment

play similar thresholds which are higher than theoretical predictions but consistent

with risk-averse behavior.

4.2 Analytical Framework

Consider the entry game with strategic substitutes and complements given in

Table 4.1, which is played by 7 identical players. Let i index the player. The

players simultaneously choose between A, enter the market, and B, do not enter the

market. The secure choice of do not enter the market, B, guarantees a payoff of

300 regardless of other players’ choices. If a person chooses to enter the market, A,

the payoff depends on the fundamental state variable, Q, and the number of other

players who choose to enter the market. Players who choose A receive the highest

payoff when 3 other players also choose A; the payoff is lower as the number of other

players who choose A is further away from 3.
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4.2.1 Equilibrium with Complete Information

Under complete information, there is a unique dominance solvable equilibrium

when Q is less than 100, all players play B, or when Q is more than 300, all players

play A. Multiple equilibria exist when Q ∈ (100, 300). Two symmetric equilibria are

the following: (1) All players choose B; (2) Each player plays a mixed strategy in

which all players have the same probability of choosing A for the same value of Q.

There are also many asymmetric equilibria.

When Q < 300, all players choosing B is a symmetric equilibrium in secure

strategies. Players who choose B receive a payoff 300 regardless of all other players’

choice. Three-hundred is greater than the payoff that a player would receive if she

chose A, because if no other player or all other players chose A, she would receive a

payoff Q which is less than 300. No player has an incentive to change the strategy

because if she deviates and selects A, her payoff would be Q which is less than 300,

the payoff if she chose B.

There exists strict asymmetric Nash equilibria in which 4 players choose A when

Q ∈ (100, 200), 5 players choose A when Q ∈ [200, 250), and 6 players choose A

when Q ∈ [250, 300). Consider a case where Q = 120, each of 4 players who selects

A receives a payoff Q + 200 = 320 and players who select B receive a payoff 300.

Each player who selects A has no incentive to deviate to B because it results in a

lower payoff of 300. Each player who selects B also has no incentive to deviate to A

because it results in 5 players selecting A, which lowers their payoff to Q+100 = 220,

less than 300 from choosing B.1 A similar argument can be made for all the other

1Note that an outcome in which 1, 2, or 3 players choose A cannot be an equilibrium. Suppose
that such an equilibrium existed, each person who selects A would receive a payoff at least 300 in
order for him not to deviate to B. If one more player selects A when there are less than 4 As would
increase the payoff for those who select A, then a person who previously chose B would want to
deviate to A. Therefore, no equilibrium has 1, 2, or 3 players choosing A.
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values of Q. In these asymmetric equilibria, players receive different expected payoffs.

Players who select A receive a higher payoff than those who select B. The strategy

coordination problem is severe in these asymmetric equilibria, because they require

the right number of players to select A and B given Q and the right number of

players are different for different values of Q.

Since this game is symmetric, a more accurate equilibrium prediction might be

the symmetric mixed strategy equilibrium. Let pi denote the probability that player

i chooses A. In a symmetric strategy combination all players use the same mixed

strategy pi = p. In order for each player to play a mixed strategy, the expected payoffs

from choosing A and B must be equal. For Q ≤ 181, there is no such equilibrium

since the expected payoffs from choosing A is less than 300 for any p.2

For Q = 182, there exists an equilibrium with p = 0.53. The value of p is higher

when the value of Q is higher and it approaches 1 when Q approaches 300. This

equilibrium has a monotonic relationship (an increasing function) between p and Q

for Q ∈ [182, 300].

Many experiments about global games show that many players use threshold

strategies. A threshold strategy is a strategy in which players choose B when Q < Q
∗

and choose A when Q ≥ Q
∗
, and we call Q

∗
a threshold. From the three types of

equilibria discussed above, only the first equilibrium (secure strategy) is a threshold

strategy. The secure strategy has a threshold of 300. One example of a threshold

strategy is maximax.3 In this game, a player selects the choice that gives the highest

possible payoff, as if all other players also act to maximize her payoff. In this game,

2The probability p that maximizes the expected payoff of choosing A is 0.5 for any values of Q.
With p = 0.5, the expected payoff of choosing A is Q + 118.75. This payoff is higher than 300,
the payoff of choosing B, when Q is greater than 181.25. So, no mixed strategy equilibrium exists
when Q ≤ 181.

3Van Huyck and Viriyavipart (2014) report that many subjects in their global stag hunt games
experiments used a maximax strategy.
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maximax consists of a threshold of 100, which is not an equilibrium.

Experimental evidence suggests that people often deviate systematically from

equilibrium especially when they have no experience with the game. Stahl and

Wilson (1994, 1995) and Nagel (1995) introduce a non-equilibrium model based on

level-k thinking. In this model, level-0 thinkers play uniformly, level-1 thinkers best

respond to a belief that everyone else is a level-0 thinker, level-2 thinkers best respond

to a belief that everyone else is a level-1 thinker, and so on. In this game, level-1

players have a threshold of 182 given the belief that all other players choose randomly

(level-0).4 Level-2 players will play a threshold of 300 given the belief that all other

players have a threshold of 182.5 Because the threshold of 300 is an equilibrium,

level-3 and higher level players would also play this threshold.

4.2.2 Coordination and Efficiency with Complete Information

In this game, the most efficient outcome is when 4 players choose A and 3 players

choose B when Q > 100 and all players choose B when Q ≤ 100. The average

expected payoff per period if all players can agree on this strategy, which is not an

equilibrum strategy for Q ≥ 200, is 364.34.6 The expected payoff from playing either

a secure strategy or the symmetric mixed strategy equilibrium in which all players

use the same mixed strategy pi = p is 312.59 which is about 86% of the most efficient

outcome. The expected payoff from playing the pure-strategy equilibrium in which

4The payoff of choosing A when all other players choose A with probability 0.5 is Q+ 118.75 for
any values of Q. The best response for this believe is to choose A when Q is greater than 181.25
which is a threshold of 182. This threshold is the same threshold as the equilibrium threshold under
incomplete information.

5When all other players use the same threshold, player i’s payoff from choosing A is Q because
there are either all players or no player choosing A. Therefore, the best response for this believe is
a threshold of 300.

6If Q ≤ 100, the payoff is 300. If Q > 100, players who choose A earn Q + 200 and players who
choose B earn 300, so the average payoff is 4

7 × (Q + 200) + 3
7 × 300 = 4

7Q + 242.86. This average
over the range of Q ∈ [101, 400] is 386. Therefore, the expected payoff over the whole range is
364.34.
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Table 4.2: A Class of Global Entry Games where Q ∈ [0, 400], Qi = Q + Ei where
Ei ∈ {−120,−119, ..., 0, ..., 120}

No. of choice A 0 1 2 3 4 5 6
A Qi Qi + 50 Qi + 100 Qi + 200 Qi + 100 Qi + 50 Qi

B 300 300 300 300 300 300 300

no player chooses A when Q ∈ [0, 100], 4 players choose A when Q ∈ (100, 200), 5

players choose A when Q ∈ [200, 250), 6 players choose A when Q ∈ [250, 300), and

all players choose A when Q ∈ [300, 400] is 324.45. This is about 89% of the most

efficient outcome.

4.2.3 Equilibrium Selection with Incomplete Information

In the game with incomplete information, the fundamental state variable (Q)

cannot be observed with certainty. Each player observes the incomplete information

in Table 4.2 but the actual payoffs are determined by the game in Table 4.1. Similar

to the game with complete information, the payoff from choosing B is 300, which

dominates A if Qi < 100 (the maximum expected payoff from choosing A is when 3

other players choose A, Q+ 200 which is less than 300).

Choosing A when Qi > 300 has a minimum expected payoff equals to Qi which

dominates B (when all players chose B). We can use the concept of global games to

pin down a unique equilibrium threshold in which all players choose A when Qi ≥ Q∗

and choose B when Qi < Q∗. If a player observes Qi = Q∗, he knows that each other

player has a 50% chance to observe Qj > Q∗and chooses A; and a 50% chance to

observe Qj < Q∗ and chooses B. We can calculate the expected payoff of player i

choosing A when observing Qi = Q∗ from:

EπA(Q∗) =
6∑

k=0

p(k) · EπA,k(Q∗),
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where EπA(Q∗) is the expected payoff of choosing A when observing Q∗, p(k) is

the probability that k other players choose A, EπA,k(Q∗) is the expected payoff of

choosing A when observing Q∗ and k other players choose A. The probability that k

players choose A is calculated from p(k) =
6!

k!(6−k)!

26
.7 Player i’s expected payoffs from

choosing A when Qi = Q∗ are Q∗, Q∗ + 50, Q∗ + 100, Q∗ + 200, Q∗ + 100, Q∗ + 50,

and Q∗for k = 0, 1, 2, 3, 4, 5, 6, respectively. Player i is indifferent between choosing

A and B when Qi = 181.25; therefore, Q∗ = 182 which means that each player would

choose A when observing Qi ≥ 182 and choose B when observing Qi < 182.

All other thresholds cannot be constituted as a mutual best response or an equi-

librium for every player in the group. For example, if all other players except player

i use a threshold of 300 (a secure strategy); player i should choose A when observing

Qi = 300 since his expected payoff from playing A is 419 which is much higher than

the payoff of 300 from choosing B. His best response threshold is 233 in this case.

If all other players use a threshold less than or equal to 160, player i’s best response

threshold is 300. It is interesting that if all other players use a threshold between

161 and 178, player i’s best response is not monotonic. For example, if the threshold

is 170, player i should choose A when observing Qi ∈ [182, 258] and Qi ≥ 300 and

choose B when observing Qi < 182 and Qi ∈ [259, 299].

4.2.4 Coordination and Efficiency with Incomplete Information

Under incomplete information, the most efficient symmetric outcome is when all

players use a threshold of 289. The expected payoff for each player if all players

can agree on this threshold is 334.05 per period. However, this threshold is not

an equilibrium. If all other players use this threshold, player i has a best response

7Each of 6 players has 2 choices, A and B with the same probability, so there are 26 possibilities.
The number of possibilities that k players choose A is 6Ck which is the number of different,
unordered combinations of k objects from a set of 6 objects. 6Ck can be calculated from 6!

k!(6−k)! .

So, the probability that k players choose A is
6!

k!(6−k)!

26 .
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threshold of 227 in which he earns an expected payoff 343.51 per period.

An expected payoff from playing the unique equilibrium threshold of 182 is 316.85

per period. This is about 95% of the expected payoff from the most efficient thresh-

old. Another interesting threshold is 300, a secure strategy under complete informa-

tion, an expected payoff from playing this threshold is 333.70. This is about 99.9%

of the expected payoff from the most efficient threshold. The best response threshold

given that all other players use a threshold of 300 is 233 with the expected payoff

344.78.

4.3 Experimental Design

The stage game form used in the experiment is given in Table 4.2. The stage

game was played 100 times to give adequate experience for the iterative elimination

of strictly dominated strategies to convergence to equilibrium. The values of Q used

in the experiment were integers in the interval 0 to 400, that is, Q ∈ {0, 1, 2, . . . , 400}.

The sequences of a hundred values ofQ were generated by a computer using a uniform

distribution. As stated in the instructions, “Many sequences of one hundred Qs were

generated. One of these sequences will be used in today’s session.” The sequence

was chosen to be representative of a uniform distribution even in small samples. The

units denote fifteenths of a cent.

Two treatments were conducted. In the baseline treatment of complete infor-

mation about Q, Ei = 0. In the incomplete information treatment, Q was only

observed with error. The private signal error was Ei ∈ {−120,−119, . . . , 119, 120}.

The sequences were generated in the same way as the Q sequences. We used the

same sequence of Q for both treatments.

The instructions were read aloud to insure the game was common information

among the participants. After the instructions the participants filled out a question-
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naire to establish that the participants knew how to calculate their earnings. There

were always mistakes on at least one questionnaire and the section on calculating

earnings was always reread to the participants.

Two sessions of three cohorts and one session of two cohorts for a total of eight co-

horts were conducted for each treatment. Each cohort consisted of seven participants.

Thus, each treatment used 56 participants and the total number of participants was

112. The participants were Texas A&M University undergraduates recruited campus

wide using ORSEE, see Greiner (2004).

The experiment was programmed and conducted with the software z-Tree, see

Fischbacher (2007). The experiment was conducted in the Economic Research Lab-

oratory at Texas A&M University in April 2014. A five dollar show up fee plus their

earnings in the session were paid to the participants in private and in cash. The

average earning is about $26.14 for a session that lasted about 90 minutes.

After the decision making portion of the session was completed and while they

waited for their earnings to be calculated, participants filled out a questionnaire that

asked them to explain their behavior in the session.

4.4 Experimental Results

Subjects in my experiments played a sequence of 100 global entry games.8 Section

4.3.1 reports basic results and Section 4.3.2 estimate the threshold using logit model.

4.4.1 Basic Results

A useful way to look at the data is with the frequency of A among a cohort by

either the private signal, Qi, or Q depending on whether the treatment is incomplete

information or complete information. Tables 4.3 and 4.4 report the frequency for the

complete information treatment for the first and the last 50 periods, respectively.

8100 games used in my experiments are shown in the appendix.
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Tables 4.5 and 4.6 report the frequency for the incomplete information treatment for

the first and the last 50 periods, respectively.

Cohorts 1 to 8 on Tables 4.3 and 4.4 were conducted under the complete infor-

mation conditions. Looking at the tables, it is clear that subjects used threshold

strategies: they selected A when Q were high and B when Q were low. There were

some choices that are dominated strategies, i.e., they selected A when Q < 100 or

selected B when Q > 300. The proportion of people who chose dominated strategies

are small and those who chose B when Q > 300 could be interpreted as other-

regarding preferences since that would help other group members earned higher for

that period. 9 In the last 50 periods, 80% of choices were A when Q ∈ [250, 300)

and less than half of choices were A when Q ∈ [200, 250) except cohort 1 who chose

A more often than other cohorts.

Cohorts 9 to 16 on Tables 4.5 and 4.6 were conducted under the incomplete in-

formation conditions. Under incomplete information, there exists a unique threshold

of 182. Similar to subjects under complete information treatment, it is clear that

subjects used threshold strategies: they selected A when Qi were high and B when

Qi were low. There were some learning from the first 50 periods to the last 50 peri-

ods. When Qi were less than 150, very few choices were A, especially in the last 50

periods. When Qi ∈ [200, 250), a little more than a half of choices were A; therefore,

it is very clear that they had threshold strategies between 200 and 250.

4.4.2 Estimated Thresholds

The distributions in Tables 4.3 to 4.6 appear to us to have the shape of a logistic

function. In order to get a more precise measure of the heterogeneity of the various

cohorts, I estimated the following logit model on the cohort data for periods 76 to

9There was one person who reported he made choice to avoid coins, and tried to earn exactly
$25; however, he ended up getting $25.10 since I rounded the cents up to the nearest 10-cent.
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Table 4.7: Estimated Logit Models and Critical Values by Cohort for Last 25 Periods

Cohort Treatment b0 b1 Qi = p−1(0.5) Rank

1 Complete -7.208 0.035 205.1 1
2 Complete -13.523 0.058 231.8 11
3 Complete -7.146 0.030 238.9 14
4 Complete -12.277 0.053 230.9 10
5 Complete -9.558 0.039 246.1 16
6 Complete -15.842 0.067 235.6 13
7 Complete -16.831 0.070 242.1 15
8 Complete -5.688 0.024 234.4 12

9 Incomplete -9.335 0.044 213.8 6
10 Incomplete -6.659 0.031 211.9 4
11 Incomplete -7.357 0.033 225.8 9
12 Incomplete -5.513 0.026 212.8 5
13 Incomplete -6.794 0.032 213.9 7
14 Incomplete -10.752 0.049 220.7 8
15 Incomplete -6.802 0.033 205.7 2
16 Incomplete -6.935 0.033 211.8 3

100:

p(Qi) =
eb0+b1(Qi)

1 + eb0+b1(Qi)
,

where p(Q+E) is the probability of A. Table 4.7 reports the estimated parameters

and the threshold for the sixteen cohorts.

While it is notable that cohort 1 has the lowest estimated threshold among all

cohorts, it is the only cohort under complete information that has a low thresh-

old. All other cohorts under complete information have higher thresholds than all

cohorts under incomplete information. The Mann-Whitney test statistic indicates

that two groups are significatly different (p-value = 0.02). Cohorts 2 to 8 under

complete information have similar thresholds between 230 and 246 and all cohorts

under incomplete information have similar threshold between 206 and 226.
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4.5 Literature Review

Most of the experimental literature testing global games predictions focuses on

variations of the speculative attack model of Morris and Shin (1998) or an entry

game. The first test of global games predictions in the entry game was Heinemann,

Nagel and Ockenfels (2004). In this game, an individual has two choices: ’attack’ and

’not attack’. A player who attacks has an opportunity cost T . If a sufficient number

of players choose to attack, they succeed and each of the attacking agents earns an

amount Y . They assume that the number of players needed for a successful attack

is a nonincreasing function in Y . In this game, if Y < T , the dominant strategy is

’not attack’. There exists Ȳ such that for Y > Ȳ , the dominant strategy is ’attack’.

For Y such that T < Y < Ȳ , there are two pure Nash Equilibria, all ’attack’ and all

’not attack’. The value of Y varied from period to period. Undominated threshold

strategies were used by 92 percent of their subjects. In private information sessions,

estimated mean thresholds were close to the unique equilibrium with low assurance

conditions and below the unique equilibrium with high assurance conditions. In com-

mon information sessions, estimated mean thresholds were between the thresholds

of the payoff-dominant equilibrium and the global game solution. However, assum-

ing subjects believe that other players choose to attack with a probability of 2
3

for

any state fit the data better. Estimated mean thresholds followed the comparative

statics of the global game solution and were higher under private information than

under common information. This implies that common information reduces the at-

tack threshold and increases the prior probability of devaluation in the speculative

attack game.

79



Kneeland (2012) classifies a restricted sample of subjects from Heinemann, Nagel

and Ockenfels (2004) into level-k types10 and an equilibrium type. She estimates

that around 70% of subjects are level-k types and 30% are equilibrium types. She

suggests that, “Under limited depth of reasoning, public information coordinates the

beliefs of players with different depths of reasoning, increasing coordination.”

Cornand (2006) has two more treatments in the speculative attack game as in

Heinemann, Nagel and Ockenfels (2004). In both treatments, subjects can observe

two signals. In one treatment, subjects observe both private and common signals

whereas subjects in another treatment observe two common signals. She finds that

in the treatment with both private and common information, subjects use the public

signal as a focal point. This implies that one clear public signal can control private

information beliefs from private information.

Kawagoe and Ui (2010) consider a global game with ambiguous variance of noise

terms. They show in their experiment that low quality information (high variance)

makes less players choose the safe action, whereas uncertainty of information quantity

(ambiguous variance) makes more players choose the safe action. They suggest that

providing a more precise variance of noise terms can decrease the probability of a

credit crisis.

Duffy and Ochs (2012) model a speculative attack as a dynamic global game where

subjects have multiple periods to decide whether to attack or not. They find little

difference between static and dynamic games and suggest that assuming a speculative

attack game as a static game is reasonable. In contrast, Brindisi, Celen and Hyndman

(2014) observe a significant difference between static and dynamic global games in

their two-person investment games. They show that endogeneous timing for making a

decision in global games sufficiently improves welfare. In their experiment, a player

10She assumes 3 level-k types: L1,L2 and L3.
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with optimistic beliefs about the profitability of investment invests earlier, which

leads to an investment by others who would not invest otherwise. They argue,

“the behavioral difference between static and dynamic global investments games is

sufficiently different to justify a continued focus on behavior in dynamic games”.

Shurchkov (2013) focuses on learning in a dynamic speculative attack global game.

She finds that subjects act more aggressively than the theoretical predictions when

faced with a high cost of attacking. In addition, the results show a high degree of

learning where subjects adjust their beliefs about other subjects’ behavior between

the stages of the experiment.

In these papers, behavior follows the comparative static prediction of global

games, but not the exact thresholds that the theory would dictate. Subjects of-

ten coordinate on thresholds different from the global games prediction in favor of

payoff dominance in which they can earn more. Allowing subjects to be able to ob-

serve other subjects’ behavior, as in dynamic global games, can reduce strategic risk

of miscoordination, and can move thresholds toward payoff dominance threholds. In

addition, the differences in behavior under common and private information are not

significant which suggests low level of learning to use iterated dominance arguments

in private information conditions.

4.6 Conclusion

It has been shown that in global entry games with strategic complements, subjects

deviate from an equilibrium prediction in favor of payoff dominance. However, in

many situations strategic substitutes may result when there is as a congestion effect.

This paper considers global entry games with strategic substitutes and complements.

With strategic substitutes, payoff dominance does not exist and deviating from an

equilibrium prediction does not generate higher payoffs to players.
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Each subject participates in either complete or incomplete information treat-

ments. Under complete information, subjects play different strategies as expected.

Under incomplete information, subjects use thresholds above the theoretical predic-

tions. The results are different from subjects in previous research who use thresholds

below the theoretical predictions. The main difference from previous literature is the

absence of the payoff dominance. Without payoff dominance, subjects do not enter

the market (choose a risky option) too often.
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5. SUMMARY

Carlsson and van Damme (1993a) introduce a global game as a tool for equilib-

rium selection in games with multiple equilibria. The theory of global games converts

a complete information game with multiple strict equilibria into an incomplete infor-

mation game, where players only observe a noisy signal of a common state variable.

This results in many cases in a unique dominance solvable equilibrium prediction.

My dissertation theoretically and experimentally examines global games in three

different games: stag hunt, bargaining and entry games. In all of these games, there

are multiple equilibria in games with complete information conditions; however, there

is a unique equilibrium in games with incomplete information conditions.

In stag hunt games, subjects under incomplete information play similar strate-

gies to those under complete information. Under complete information, subjects

coordinate on the payoff maximizing equilibrium, as expected. Under incomplete in-

formation, subjects exhibit substantial deviations from the equilibrium prediction of

global games, coordinating just as well as subjects in the complete information treat-

ment. I argue that gains from deviating from an equilibrium can drive experimental

cohorts away from the equilibrium toward an efficient alternative.

Subjects in the two other games play strategies that are closer to the global games

theory when compared with subjects in the stag hunt games. In the bargaining

games, around two-thirds of the subjects can be classified as the risk dominance (or

global games) type using a finite-mixture model. Global games theory can predict

better than alternative principles including Utilitarian and Rawlsian principles in

bargaining games.

The results from global entry games with strategic substitutes and complements
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are substantially different from the results from global entry games with only strategic

complements in previous literature. Subjects in my experiments enter the market

less often than theoretical predictions, while subjects in previous studies enter the

market more often than theoretical predictions. The results indicate that in the

absence of payoff dominance, subjects do not select risky options too often.

In summary, global games theory can be a useful tool in selecting an equilibrium

from a game with multiple equilibria under complete information. Although experi-

mental subjects do not strictly follow the prediction of the global games theory, they

follow its comparative static predictions. One alternative that could drive exper-

imental subjects away from the prediction is payoff dominance, in which subjects

could earn more from deviating from an equilibrium. Without payoff dominance,

subjects plays closer to the prediction of the theory.
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APPENDIX A

GLOBAL STAG HUNT GAMES

A.1 100 Games Used in Chapter 2
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Table A.1: Incomplete Information Treatment: Q and Qi: Periods 1 to 25
Period (Q,Q1, Q2, . . . , Q8)

1 (275, 260, 269, 311, 265, 230, 296, 257, 266)
2 (113, 104, 91, 108, 122, 132, 154, 67, 155)
3 (496, 537, 462, 538, 494, 513, 504, 516, 501)
4 (403, 453, 403, 388, 386, 382, 358, 410, 420)
5 (66, 67, 29, 112, 70, 38, 92, 60, 110)
6 (548, 593, 585, 540, 571, 523, 517, 587, 543)
7 (323, 346, 337, 280, 274, 340, 281, 277, 362)
8 (121, 144, 161, 145, 153, 140, 135, 171, 151)
9 (577, 570, 539, 587, 534, 563, 577, 543, 586)
10 (363, 331, 379, 383, 365, 315, 357, 372, 368)
11 (15, -22, 60, 64, -7, 32, 60, 33, 28)
12 (315, 327, 334, 356, 288, 283, 299, 357, 294)
13 (432, 424, 396, 459, 470, 413, 413, 411, 412)
14 (482, 449, 456, 492, 472, 518, 479, 506, 480)
15 (125, 83, 141, 136, 108, 141, 84, 111, 124)
16 (37, 19, -6, 87, 17, 38, -10, 3, 76)
17 (486, 523, 528, 469, 521, 468, 482, 517, 505)
18 (165, 136, 173, 158, 127, 186, 169, 212, 152)
19 (19, 58, 25, -31, 4, 5, 42, 45, 33)
20 (335, 362, 331, 315, 361, 354, 359, 297, 354)
21 (243, 283, 203, 287, 229, 201, 281, 216, 195)
22 (475, 474, 458, 474, 428, 515, 503, 466, 429)
23 (247, 204, 217, 216, 270, 234, 261, 266, 218)
24 (220, 176, 247, 200, 255, 251, 242, 253, 201)
25 (429, 391, 420, 472, 407, 412, 423, 405, 423)
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Table A.2: Incomplete Information Treatment: Q and Qi: Periods 26 to 50
Period (Q,Q1, Q2, . . . , Q8))

26 (110, 111, 107, 72, 102, 160, 60, 103, 67)
27 (329, 351, 355, 296, 350, 293, 368, 281, 289)
28 (290, 272, 335, 296, 332, 293, 299, 254, 328)
29 (502, 490, 466, 482, 485, 548, 540, 473, 523)
30 (15, -25, 37, 38, 57, 59, -30, 53, 43)
31 (106, 106, 131, 107, 131, 132, 70, 102, 86)
32 (402, 413, 402, 360, 423, 361, 402, 362, 381)
33 (55, 89, 85, 5, 95, 43, 7, 61, 30)
34 (596, 616, 602, 582, 613, 566, 582, 594, 563)
35 (4, -9, 4, -42, -5, 16, 14, 27, 28)
36 (484, 502, 470, 437, 450, 453, 485, 510, 473)
37 (56, 42, 9, 25, 57, 95, 84, 45, 43)
38 (282, 277, 328, 268, 290, 332, 240, 316, 318)
39 (230, 204, 261, 203, 252, 229, 217, 183, 274)
40 (426, 434, 439, 454, 422, 459, 440, 394, 467)
41 (39, 63, 16, 1, -9, 10, 7, 78, 11)
42 (253, 277, 227, 225, 263, 280, 242, 236, 206)
43 (74, 66, 108, 106, 117, 94, 87, 78, 63)
44 (325, 282, 348, 322, 307, 278, 375, 345, 350)
45 (117, 158, 74, 138, 141, 160, 112, 79, 123)
46 (399, 414, 360, 365, 390, 388, 362, 426, 449)
47 (308, 344, 280, 354, 310, 303, 349, 304, 352)
48 (255, 236, 290, 212, 228, 207, 245, 234, 272)
49 (571, 558, 612, 553, 575, 521, 603, 613, 587)
50 (174, 136, 139, 138, 213, 142, 186, 202, 144)
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Table A.3: Incomplete Information Treatment: Q and Qi: Periods 51 to 75
Period (Q,Q1, Q2, . . . , Q8)

51 (329, 379, 303, 374, 314, 304, 328, 305, 317)
52 (236, 208, 236, 277, 255, 215, 235, 239, 240)
53 (544, 511, 524, 555, 555, 575, 519, 494, 502)
54 (92, 140, 54, 100, 123, 51, 65, 53, 60)
55 (463, 426, 465, 508, 504, 448, 456, 504, 462)
56 (259, 209, 291, 277, 242, 213, 271, 234, 250)
57 (397, 404, 418, 415, 362, 438, 404, 440, 347)
58 (497, 500, 451, 452, 472, 494, 503, 472, 453)
59 (455, 458, 480, 420, 438, 497, 448, 414, 488)
60 (119, 111, 75, 156, 117, 96, 82, 123, 107)
61 (576, 543, 619, 547, 601, 566, 597, 569, 549)
62 (477, 503, 503, 519, 479, 491, 481, 527, 478)
63 (46, 67, 85, 69, 88, 32, 87, 50, 22)
64 (169, 149, 152, 196, 124, 146, 166, 206, 219)
65 (204, 161, 176, 170, 173, 209, 231, 246, 162)
66 (225, 262, 241, 187, 242, 249, 175, 177, 232)
67 (513, 549, 552, 477, 546, 517, 557, 552, 483)
68 (5, 31, -1, 11, -42, 43, 2, 39, -34)
69 (420, 385, 414, 386, 385, 419, 416, 412, 397)
70 (47, 42, 75, 41, 34, 17, 30, 82, 57)
71 (307, 274, 292, 324, 356, 320, 310, 326, 324)
72 (551, 572, 519, 591, 559, 504, 534, 583, 594)
73 (576, 543, 589, 587, 526, 614, 538, 578, 580)
74 (158, 123, 172, 190, 195, 132, 172, 135, 117)
75 (87, 92, 90, 48, 129, 118, 119, 73, 48)
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Table A.4: Incomplete Information Treatment: Q and Qi: Periods 76 to 100
Period (Q,Q1, Q2, . . . , Q8))

76 (412, 437, 455, 422, 412, 417, 380, 409, 375)
77 (433, 408, 383, 412, 464, 460, 468, 483, 404)
78 (180, 160, 168, 199, 155, 152, 148, 180, 130)
79 (591, 567, 626, 557, 594, 568, 603, 638, 609)
80 (370, 345, 344, 378, 408, 371, 354, 367, 375)
81 (600, 594, 642, 628, 609, 583, 622, 566, 571)
82 (192, 189, 189, 215, 185, 242, 240, 184, 222)
83 (337, 371, 324, 292, 356, 318, 371, 370, 364)
84 (116, 121, 101, 98, 163, 79, 139, 148, 68)
85 (361, 404, 358, 338, 342, 334, 398, 363, 401)
86 (342, 322, 351, 387, 308, 380, 388, 351, 390)
87 (550, 573, 510, 501, 510, 569, 576, 521, 511)
88 (51, 70, 76, 24, 55, 14, 24, 66, 73)
89 (582, 602, 595, 604, 586, 616, 540, 563, 585)
90 (309, 342, 288, 344, 276, 291, 324, 273, 296)
91 (508, 480, 533, 540, 495, 536, 506, 504, 523)
92 (157, 161, 192, 129, 199, 131, 185, 191, 171)
93 (367, 412, 375, 334, 358, 364, 412, 375, 378)
94 (201, 158, 201, 154, 233, 216, 228, 178, 199)
95 (143, 121, 112, 161, 121, 115, 132, 109, 141)
96 (224, 243, 196, 250, 260, 272, 176, 265, 258)
97 (502, 550, 464, 494, 529, 487, 472, 540, 549)
98 (211, 236, 209, 186, 189, 252, 259, 210, 229)
99 (287, 322, 321, 272, 243, 241, 265, 268, 333)
100 (319, 281, 294, 349, 275, 321, 272, 294, 290)
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Table A.5: Complete Information Treatment: Q: Periods 1 to 50
Period Q Period Q

1 433 26 192
2 255 27 596
3 329 28 165
4 600 29 180
5 224 30 402
6 577 31 370
7 174 32 397
8 484 33 259
9 46 34 113
10 19 35 230
11 287 36 117
12 66 37 403
13 121 38 551
14 106 39 236
15 582 40 247
16 591 41 497
17 550 42 275
18 169 43 367
19 315 44 432
20 39 45 204
21 158 46 329
22 225 47 477
23 576 48 496
24 290 49 92
25 426 50 342
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Table A.6: Complete Information Treatment: Q: Periods 51 to 100
Period Q Period Q

51 37 76 319
52 110 77 15
53 420 78 363
54 87 79 116
55 143 80 548
56 325 81 399
57 220 82 571
58 4 83 15
59 119 84 337
60 544 85 51
61 308 86 508
62 5 87 429
63 125 88 74
64 513 89 307
65 243 90 502
66 455 91 576
67 282 92 482
68 335 93 47
69 253 94 486
70 309 95 502
71 412 96 55
72 361 97 323
73 157 98 475
74 56 99 211
75 201 100 463
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Table A.7: Chapter 2 Instructions-Complete Information
A B

A 500,500 100, Q
B Q, 100 Q,Q

A.2 Instructions

A.2.1 Complete Information Treatment

Instructions

This session consists of one hundred separate decision making periods. You will

participate in a group of eight people. At the beginning of period one, each of the

participants in this room will be randomly assigned to a group of size eight and will

remain in the same group for the entire one hundred decision making periods of the

experiment. Hence, you will remain grouped with the same seven other participants

for the next one hundred periods.

At the beginning of each period, you and all other participants will choose an

action. An earnings table (on the next page) is provided which tells you the earnings

you receive given the action you and all other participants chose. The actions you

may choose are row A or row B. During a period everyone will have the same earnings

table.

Your earnings are located in each cell. Units are twentieths of a cent. Your choice

will be matched with the choices of the other participants in your group. You will

receive the average of these earnings. The following table lists your choices A and B

in the rows, and other participants in your group’s choices in the columns.

Table

You have 2 choices, A and B, for all 100 periods. If you chose A and 5 other

participants chose A and 2 chose B, then you would earn (500*5 + 100*2)/7 = 385.71
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points or 19.29 cents. If you chose A and 2 other participants chose A and 5 chose

B, then you would earn (500*2 + 100*5)/7 = 214.29 points or 10.71 cents. You will

always receive Q points or Q/20 cents if you chose B.

What is Q?

When you choose B, your earning is Q. Q is an integer between 0 and 600 ran-

domly determined by the computer. That means any number between 0 and 600 is

equally likely to be picked by the computer.

One hundred values of Q have been generated by a computer. Many sequences

of one hundred Qs were generated. One of these sequences will be used in today’s

session. All participants in the session will have the same value of Q in each period.

Making a choice

Making a choice consists of clicking on the button representing the row of your

choice, which changes the numbers (in the table) to green and activates a confirma-

tion button below the earnings table. You may either confirm your choice or change

it by clicking on the button representing the other row. Your choice is not final until

you have clicked on the confirm button.

After you have made a choice, a ”please wait” message will be displayed and then

the outcome will be reported.

Summary

*** The experiment consists of one hundred separate decision making periods.

*** You have been randomly assigned to a group of size eight and will remain in

the same group for the entire one hundred decision making periods of the experiment.

*** You make a choice by clicking on a button, which changes the numbers to

green. You must also confirm your choice by clicking on the ’confirm’ button.

*** Each period, if you choose A, your choice will be matched with all of the

other choices and your earnings will be the average outcome. If you choose B, you
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will earn Q as explained before.

*** Your balance at the end of the session will be paid to you in private and in

cash.
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Table A.8: Chapter 2 Instructions-Incomplete Information
A B

A 500,500 100, Q
B Q, 100 Q,Q

A.2.2 Incomplete Information Treatment

Instructions

This session consists of one hundred separate decision making periods. You will

participate in a group of eight people. At the beginning of period one, each of the

participants in this room will be randomly assigned to a group of size eight and will

remain in the same group for the entire one hundred decision making periods of the

experiment. Hence, you will remain grouped with the same seven other participants

for the next one hundred periods.

At the beginning of each period, you and all other participants will choose an

action. An earnings table (on the next page) is provided which tells you the earnings

you receive given the action you and all other participants chose. The actions you

may choose are row A or row B. During a period everyone will have a private estimate

of the same earnings table.

Your earnings are located in each cell. Units are twentieths of a cent. Your choice

will be matched with the choices of the other participants in your group. You will

receive the average of these earnings. The following table lists your choices A and B

in the rows, and other participants in your group’s choices in the columns.

Table

You have 2 choices, A and B, for all 100 periods. If you chose A and 5 other

participants chose A and 2 chose B, then you would earn (500*5 + 100*2)/7 = 385.71

points or 19.29 cents. If you chose A and 2 other participants chose A and 5 chose
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B, then you would earn (500*2 + 100*5)/7 = 214.29 points or 10.71 cents. You will

always receive Q points or Q/20 cents if you chose B.

What is Q?

When you choose B, your earning is Q. Q is an integer between 0 and 600 ran-

domly determined by the computer. That means any number between 0 and 600 is

equally likely to be picked by the computer.

One hundred values of Q have been generated by a computer. Many sequences

of one hundred Qs were generated. One of these sequences will be used in today’s

session. All participants in the session will have the same value of Q in each period.

Before you make a decision you will not be told what Q is but instead you will

receive an estimate of Q, which we will denote by E. Let’s be more precise. After

the computer randomly determines Q, it also picks a random integer between Q - 50

and Q + 50. This is your estimate E. Any number between Q - 50 and Q + 50 is

equally likely to be picked by the computer. Although E does not tell you what Q is

exactly, it gives an estimate of it. For example if you receive an estimate E = 406,

then you know that Q is not less than 406 - 50 = 356 and it is not more than 406 +

50 = 456.

Note that although Q will be the same for you and the other participants, your

estimates can be different. That is, for the same Q, the computer also randomly

picks other estimates exactly in the same manner for all other participants. All of

these estimates are chosen independently. Therefore, it is very likely that they will

be different numbers; however, all estimates will be between Q - 50 and Q +50.

Making a choice

Making a choice consists of clicking on the button representing the row of your

choice, which changes the numbers (in the table) to green and activates a confirma-

tion button below the earnings table. You may either confirm your choice or change
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it by clicking on the button representing the other row. Your choice is not final until

you have clicked on the confirm button.

After you have made a choice, a ”please wait” message will be displayed and then

the outcome will be reported.

Summary

*** The experiment consists of one hundred separate decision making periods.

*** You have been randomly assigned to a group of size eight and will remain in

the same group for the entire one hundred decision making periods of the experiment.

*** You make a choice by clicking on a button, which changes the numbers to

green. You must also confirm your choice by clicking on the ’confirm’ button.

*** Each period, if you choose A, your choice will be matched with all of the

other choices and your earnings will be the average outcome. If you choose B, you

will earn Q as explained before.

*** Your balance at the end of the session will be paid to you in private and in

cash.
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APPENDIX B

GLOBAL BARGAINING GAMES

B.1 100 Games Used in Chapter 3
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Table B.1: Values of W,X, Y, Z: Periods 1 to 25
Period W X Y Z

1 416 403 506 122
2 167 581 388 507
3 45 448 349 123
4 403 117 514 2
5 291 483 312 480
6 309 117 571 102
7 568 47 423 242
8 108 293 522 85
9 41 232 344 5
10 283 169 39 423
11 383 466 277 595
12 236 234 496 101
13 186 88 414 6
14 307 494 201 590
15 349 426 447 204
16 457 378 479 362
17 496 463 588 425
18 124 203 125 182
19 320 93 481 67
20 424 36 0 547
21 581 88 214 139
22 181 366 317 356
23 492 180 275 182
24 389 6 112 18
25 560 201 206 328
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Table B.2: Values of W,X, Y, Z: Periods 26 to 50
Period W X Y Z

26 278 383 578 224
27 41 490 128 135
28 386 40 119 235
29 391 451 577 73
30 126 219 9 540
31 195 138 559 49
32 307 331 562 295
33 120 288 213 189
34 314 321 283 445
35 279 180 517 74
36 116 564 143 158
37 158 591 478 178
38 575 268 369 420
39 278 267 366 213
40 403 251 242 590
41 224 525 482 406
42 352 397 26 534
43 299 515 583 136
44 264 163 554 100
45 138 292 40 296
46 78 587 268 387
47 299 426 266 490
48 45 271 236 260
49 25 338 319 251
50 98 472 167 463
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Table B.3: Values of W,X, Y, Z: Periods 51 to 75
Period W X Y Z

51 81 405 565 14
52 7 483 196 61
53 519 390 538 327
54 202 468 389 331
55 107 423 282 262
56 35 246 61 96
57 325 356 570 222
58 270 482 197 564
59 81 481 477 206
60 566 49 547 363
61 506 181 505 498
62 279 345 46 468
63 12 302 56 58
64 81 451 541 35
65 28 588 541 77
66 232 481 246 368
67 1 345 333 141
68 297 288 556 90
69 100 408 345 302
70 294 128 377 73
71 450 20 247 86
72 172 199 478 121
73 503 262 282 425
74 466 139 361 457
75 511 458 66 554
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Table B.4: Values of W,X, Y, Z: Periods 76 to 100
Period W X Y Z

76 290 537 338 430
77 461 142 179 175
78 540 115 317 160
79 531 117 210 448
80 429 426 528 378
81 166 556 291 215
82 147 562 327 432
83 437 289 569 134
84 429 600 504 460
85 185 369 287 337
86 209 292 507 77
87 582 211 333 213
88 537 19 199 515
89 592 103 129 259
90 512 34 97 218
91 435 1 278 221
92 504 83 159 135
93 88 238 165 133
94 387 210 156 506
95 508 263 335 381
96 348 356 63 485
97 439 105 131 369
98 144 326 101 545
99 565 10 259 563
100 249 555 271 408
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Table B.5: Chapter 3 Instructions-Complete Information
A B

A W,X 100, 100
B 100, 100 Y, Z

B.2 Instructions

B.2.1 Complete Information Treatment

Instructions

This session consists of one hundred separate decision making periods. You will

participate in a group of eight people. At the beginning of period one, each of the

participants in this room will be randomly assigned to a group of size eight and will

remain in the same group for the entire one hundred decision making periods of the

experiment. Hence, you will remain grouped with the same seven other participants

for the next one hundred periods.

In each period, you will be randomly matched with one of the other participants

in your group. At the beginning of each period, you and your counterpart will

observe an earnings table (on the next page) which tells you the earnings you and

your counterpart receive given the actions you and your counterpart chose. The

actions you may choose are row A or row B. During a period everyone will have a

private estimate of the same earnings table.

Table

You will have 2 choices, A and B, for all 100 periods. The table lists your choices

in the rows, and your counterpart’s choices in the columns. Your choice will be

matched with your counterpart. Your earnings, in black, are located on the left of

each cell while your counterparts earnings, in blue, are located on the right. Units

are fifteenths of a cent.
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Table B.6: Chapter 3 Instructions-Complete Information-Example
A B

A 360, 240 100, 100
B 100, 100 300, 300

In each period, there are 4 possible outcomes:

1) If you chose A and your counterpart chose A, then you would earn W points

or W/12 cents and your counterpart would earn X points or X/12 cents.

2) If you chose A and your counterpart chose B, then each of you would earn 100

points or 100/12 = 8.33 cents.

3) If you chose B and your counterpart chose A, then each of you would earn 100

points or 100/12 = 8.33 cents.

4) If you chose B and your counterpart chose B, then you would earn Y points

or Y/12 cents and your counterpart would earn Z points or Z/12 cents.

What are W, X, Y, Z?

W, X, Y, and Z are integers between 0 and 600 randomly determined by the

computer. One hundred values for each of W, X, Y, and Z have been generated by a

computer. Many sequences of them were generated. One of these sequences will be

used in today’s session. All participants in the session will have the same selected

sequence for each of W, X, Y, and Z.

Example

For example, suppose you observe the earning table as shown above. There are

4 possible outcomes:

1) If you chose A and your counterpart chose A, then you would earn 360 points

or 30 cents and your counterpart would earn 240 points or 20 cents.

2) If you chose A and your counterpart chose B, then each of you would earn 100

108



points or 8.33 cents.

3) If you chose B and your counterpart chose A, then each of you would earn 100

points or 8.33 cents.

4) If you chose B and your counterpart chose B, then you would earn 300 points

or 25 cents and your counterpart would earn 300 points or 25 cents.

Making a choice

Making a choice consists of clicking on the button representing the row of your

choice, which changes the numbers (in the table) to green and activates a confirma-

tion button below the earnings table. You may either confirm your choice or change

it by clicking on the button representing the other row. Your choice is not final until

you have clicked on the confirm button.

After you have made a choice, a ”please wait” message will be displayed and then

the outcome will be reported.

Summary

*** The experiment consists of one hundred separate decision making periods.

*** You have been randomly assigned to a group of size eight and will remain in

the same group for the entire one hundred decision making periods of the experiment.

*** You make a choice by clicking on a button, which changes the numbers to

green. You must also confirm your choice by clicking on the ’confirm’ button.

*** Each period, your choice will be randomly matched with one participants

choice in your group. In each cell of the earnings table, your earnings are shown on

the left and your counterparts earnings are shown on the right.

*** Your balance at the end of the session will be paid to you in private and in

cash.
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Table B.7: Chapter 3 Instructions-InComplete Information
A B

A W,X 100, 100
B 100, 100 Y, Z

B.2.2 Incomplete Information Treatment

Instructions

This session consists of one hundred separate decision making periods. You will

participate in a group of eight people. At the beginning of period one, each of the

participants in this room will be randomly assigned to a group of size eight and will

remain in the same group for the entire one hundred decision making periods of the

experiment. Hence, you will remain grouped with the same seven other participants

for the next one hundred periods.

In each period, you will be randomly matched with one of the other participants

in your group. At the beginning of each period, you and your counterpart will

observe an earnings table (on the next page) which tells you the earnings you and

your counterpart receive given the actions you and your counterpart chose. The

actions you may choose are row A or row B. During a period everyone will have a

private estimate of the same earnings table.

Table

You will have 2 choices, A and B, for all 100 periods. The table lists your choices

in the rows, and your counterpart’s choices in the columns. Your choice will be

matched with your counterpart. Your earnings, in black, are located on the left of

each cell while your counterparts earnings, in blue, are located on the right. Units

are fifteenths of a cent.

In each period, there are 4 possible outcomes:
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1) If you chose A and your counterpart chose A, then you would earn W points

or W/12 cents and your counterpart would earn X points or X/12 cents.

2) If you chose A and your counterpart chose B, then each of you would earn 100

points or 100/12 = 8.33 cents.

3) If you chose B and your counterpart chose A, then each of you would earn 100

points or 100/12 = 8.33 cents.

4) If you chose B and your counterpart chose B, then you would earn Y points

or Y/12 cents and your counterpart would earn Z points or Z/12 cents.

What are W, X, Y, Z?

W, X, Y, and Z are integers between 0 and 600 randomly determined by the

computer. One hundred values for each of W, X, Y, and Z have been generated by a

computer. Many sequences of them were generated. One of these sequences will be

used in today’s session. All participants in the session will have the same selected

sequence for each of W, X, Y, and Z.

Before you make a decision you will not be told what W, X, Y, and Z are but

instead you will receive estimates of them. Let’s be more precise. After the computer

randomly determines W, it also picks a random integer (w) between W - 50 and W

+ 50. This is your w. Any number between W - 50 and W + 50 is equally likely

to be picked by the computer. Although w does not tell you what W is exactly, it

gives an estimate of it. For example if you receive an estimate w = 406, then you

know that W is not less than 406 - 50 = 356 and it is not more than 406 + 50 =

456. Similarly, you will observe x, y, and z as estimates of X, Y, and Z in the same

manner to w in each period. You will also see the range of possible values of W, X,

Y, and Z in the earnings table.

Although W, X, Y, and Z will be the same for you and your counterpart, your

estimates can be different. That is, for the same W (this also true for X, Y, and Z),
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Table B.8: Chapter 3 Instructions-Incomplete Information-Example
A B

A 400, 200 100, 100
B 100, 100 270, 320

A B
A 360, 240 100, 100
B 100, 100 300, 300

the computer also randomly picks other estimates exactly in the same manner for

all other participants. All of these estimates are chosen independently. Therefore,

it is very likely that they will be different numbers; however, all estimates will be

between W - 50 and W + 50.

Example

For example, suppose you observe the earning table as shown above. There are

4 possible outcomes:

1) If you chose A and your counterpart chose A, then you would earn 360 points

or 30 cents and your counterpart would earn 240 points or 20 cents.

2) If you chose A and your counterpart chose B, then each of you would earn 100

points or 8.33 cents.

3) If you chose B and your counterpart chose A, then each of you would earn 100

points or 8.33 cents.

4) If you chose B and your counterpart chose B, then you would earn 300 points

or 25 cents and your counterpart would earn 300 points or 25 cents.

Making a choice

Making a choice consists of clicking on the button representing the row of your

choice, which changes the numbers (in the table) to green and activates a confirma-

tion button below the earnings table. You may either confirm your choice or change

it by clicking on the button representing the other row. Your choice is not final until

you have clicked on the confirm button.
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After you have made a choice, a ”please wait” message will be displayed and then

the outcome will be reported.

Summary

*** The experiment consists of one hundred separate decision making periods.

*** You have been randomly assigned to a group of size eight and will remain in

the same group for the entire one hundred decision making periods of the experiment.

*** You make a choice by clicking on a button, which changes the numbers to

green. You must also confirm your choice by clicking on the ’confirm’ button.

*** Each period, your choice will be randomly matched with one participants

choice in your group. In each cell of the earnings table, your earnings are shown on

the left and your counterparts earnings are shown on the right.

*** Your balance at the end of the session will be paid to you in private and in

cash.
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APPENDIX C

GLOBAL ENTRY GAMES WITH STRATEGIC SUBSTITUTES AND

COMPLEMENTS

C.1 100 Games Used in Chapter 4
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Table C.1: Value of Q: Periods 1 to 50
Period Q Period Q

1 255 26 165
2 172 27 21
3 273 28 84
4 57 29 154
5 239 30 262
6 8 31 30
7 152 32 277
8 316 33 205
9 128 34 171
10 320 35 7
11 132 36 230
12 95 37 299
13 167 38 36
14 240 39 369
15 199 40 208
16 4 41 93
17 398 42 152
18 323 43 45
19 24 44 308
20 321 45 287
21 241 46 200
22 287 47 80
23 58 48 302
24 290 49 92
25 426 50 342
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Table C.2: Value of Q: Periods 51 to 100
Period Q Period Q

51 245 76 180
52 256 77 354
53 117 78 175
54 35 79 231
55 398 80 202
56 185 81 121
57 233 82 26
58 295 83 358
59 326 84 235
60 112 85 306
61 213 86 157
62 139 87 341
63 367 88 287
64 265 89 62
65 373 90 264
66 278 91 99
67 400 92 356
68 126 93 86
69 294 94 209
70 173 95 186
71 347 96 251
72 202 97 171
73 124 98 38
74 192 99 212
75 206 100 177
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Table C.3: Chapter 4 Instructions-Complete Information
No. of choice A 0 1 2 3 4 5 6

A Q Q+ 50 Q+ 100 Q+ 200 Q+ 100 Q+ 50 Q
B 300 300 300 300 300 300 300

C.2 Instructions

Instructions

This session consists of one hundred separate decision making periods. You will

participate in a group of seven people. At the beginning of period one, each of the

participants in this room will be randomly assigned to a group of size seven and will

remain in the same group for the entire one hundred decision making periods of the

experiment. Hence, you will remain grouped with the same six other participants

for the next one hundred periods.

In each period, you and all other participants will choose an action. An earnings

table (on the next page) is provided which tells you the earnings you receive given

the action you and all other participants in your group in that period chose. The

actions you may choose are row A or row B. During a period everyone will have a

private estimate of the same earnings table.

Table

Your earnings are located in each cell. Units are fifteenths of a cent. You have 2

choices, A and B, for all 100 periods. If you chose A and no other participant chose

A, then you would earn Q points. If you chose A and 1 other participant chose A,

then you would earn Q+50 points. If you chose A and 2 other participants chose A,

then you would earn Q+100 points. If you chose A and 3 other participants chose A,

then you would earn Q+200 points. If you chose A and 4 other participants chose A,

then you would earn Q+100 points. If you chose A and 5 other participants chose
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A, then you would earn Q+50 points. If you chose A and 6 other participants chose

A, then you would earn Q points. If you chose B, you will earn 300 points regardless

of what the other six participants in your group chose.

What is Q?

When you choose A, your earning is between Q and Q+200 depending on the

number of other participants in your group who chose A. Q is an integer between 0

and 400 randomly determined by the computer. That means any number between 0

and 400 is equally likely to be picked by the computer.

One hundred values of Q have been generated by a computer. Many sequences

of one hundred Qs were generated. One of these sequences will be used in today’s

session. All participants in the session will have the same value of Q in each period.

Making a choice

Making a choice consists of clicking on the button representing the row of your

choice, which changes the numbers (in the table) to green and activates a confirma-

tion button below the earnings table. You may either confirm your choice or change

it by clicking on the button representing the other row. Your choice is not final until

you have clicked on the confirm button.

After you have made a choice, a ”please wait” message will be displayed and then

the outcome will be reported.

Summary

*** The experiment consists of one hundred separate decision making periods.

*** You have been randomly assigned to a group of size eight and will remain in

the same group for the entire one hundred decision making periods of the experiment.

*** You make a choice by clicking on a button, which changes the numbers to

green. You must also confirm your choice by clicking on the ’confirm’ button.

*** In each period, if you choose A, you will earn between Q and Q+200 de-
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pending on the number of other participants in your group who chose A as explained

before.

*** In each period, if you choose B, you will earn 300 points.

*** Your balance at the end of the session will be paid to you in private and in

cash and the exchange rate is 1,500 experimental points for a dollar.
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Table C.4: Chapter 4 Instructions-Incomplete Information
No. of choice A 0 1 2 3 4 5 6

A Q Q+ 50 Q+ 100 Q+ 200 Q+ 100 Q+ 50 Q
B 300 300 300 300 300 300 300

C.2.1 Incomplete Information Treatment

Instructions

This session consists of one hundred separate decision making periods. You will

participate in a group of seven people. At the beginning of period one, each of the

participants in this room will be randomly assigned to a group of size seven and will

remain in the same group for the entire one hundred decision making periods of the

experiment. Hence, you will remain grouped with the same six other participants

for the next one hundred periods.

In each period, you and all other participants will choose an action. An earnings

table (on the next page) is provided which tells you the earnings you receive given

the action you and all other participants in your group in that period chose. The

actions you may choose are row A or row B. During a period everyone will have a

private estimate of the same earnings table.

Table

Your earnings are located in each cell. Units are fifteenths of a cent. You have 2

choices, A and B, for all 100 periods. If you chose A and no other participant chose

A, then you would earn Q points. If you chose A and 1 other participant chose A,

then you would earn Q+50 points. If you chose A and 2 other participants chose A,

then you would earn Q+100 points. If you chose A and 3 other participants chose A,

then you would earn Q+200 points. If you chose A and 4 other participants chose A,

then you would earn Q+100 points. If you chose A and 5 other participants chose
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Table C.5: Chapter 4 Instructions-Incomplete Information-Estimated Earnings Table
No. of choice A 0 1 2 3 4 5 6

A E E + 50 E + 100 E + 200 E + 100 E + 50 E
B 300 300 300 300 300 300 300

A, then you would earn Q+50 points. If you chose A and 6 other participants chose

A, then you would earn Q points. If you chose B, you will earn 300 points regardless

of what the other six participants in your group chose.

What is Q?

When you choose A, your earning is between Q and Q+200 depending on the

number of other participants in your group who chose A. Q is an integer between 0

and 400 randomly determined by the computer. That means any number between 0

and 400 is equally likely to be picked by the computer.

One hundred values of Q have been generated by a computer. Many sequences

of one hundred Qs were generated. One of these sequences will be used in today’s

session. All participants in the session will have the same value of Q in each period.

Estimate earnings table

Before you make a decision you will not be told what Q is but instead you will

receive an estimate of Q, which we will denote by E. Let’s be more precise. After the

computer randomly determines Q, it also picks a random integer between Q - 120

and Q + 120. This is your estimate E. Any number between Q - 120 and Q + 120

is equally likely to be picked by the computer. Although E does not tell you what

Q is exactly, it gives an estimate of it. For example if you receive an estimate E =

206, then you know that Q is not less than 206 - 120 = 86 and it is not more than

206 + 120 = 326.

Note that although Q will be the same for you and the other participants, your
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estimates can be different. That is, for the same Q, the computer also randomly

picks other estimates exactly in the same manner for all other participants. All of

these estimates are chosen independently. Therefore, it is very likely that they will

be different numbers; however, all estimates will be between Q - 120 and Q +120.

Making a choice

Making a choice consists of clicking on the button representing the row of your

choice, which changes the numbers (in the table) to green and activates a confirma-

tion button below the earnings table. You may either confirm your choice or change

it by clicking on the button representing the other row. Your choice is not final until

you have clicked on the confirm button.

After you have made a choice, a ”please wait” message will be displayed and then

the outcome will be reported.

Summary

*** The experiment consists of one hundred separate decision making periods.

*** You have been randomly assigned to a group of size eight and will remain in

the same group for the entire one hundred decision making periods of the experiment.

*** You make a choice by clicking on a button, which changes the numbers to

green. You must also confirm your choice by clicking on the ’confirm’ button.

*** In each period, if you choose A, you will earn between Q and Q+200 de-

pending on the number of other participants in your group who chose A as explained

before.

*** In each period, if you choose B, you will earn 300 points.

*** Your balance at the end of the session will be paid to you in private and in

cash and the exchange rate is 1,500 experimental points for a dollar.
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