The Plateau complex is composed dominantly of harzburgite with Plateau complex (Permian) - dunites near the contact between the plagioclase zone and the Plateau complex. Near the contact sub-kilometer to kilometer scale is highly heterogeneous. Much of the area mapped as plagioclase wanes within tabular bands. Pyroxenite bands represent less than 10% of total exposure, and dunite Compositional banding and mineral cleavages are oriented roughly N-S, dipping steeply west. Lineation from unserpentinized peridotite to melange varies depending on the location in the massif. In the northwest corner of the massif, where the Patuki melange is thickest, the ultramafics are strongly the fault. The fault zone also includes zones of intense brecciation. Fault kinematics were not directly observed, but are inferred based off of map patterns. If the fault zone is cut by a fault, this is tentatively interpreted to be younger than other faults and melange in the Red Hills, as it is tentatively inferred to have ground down rock outcroppings and locally transported the talus.

The Patuki Melange (Permian-Tertiary?) - Serpentine melange forming the western, northern, and eastern edges of the Red Hills. Faulting of the Serpentine melange has occurred along the Red Hills fault. This structure separates Permian to Triassic rocks of the Caples Group cut by the fault. Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

The Red Hills fault. Kinematics along the Red Hills fault were not consistent, perhaps the result of a change between earlier and more recent faulting. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault. Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

The Red Hills fault. Kinematics along the Red Hills fault were not consistent, perhaps the result of a change between earlier and more recent faulting. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.

Most faults have shallowly plunging lineations, left lateral shear sense indicators, and left-lateral offset shear zones. Shear sense indicators within serpentinized peridotites, deformed basaltic dikes and deformed mafic dike - Surface trace of cross-section'.

The Red Hills fault is characterized by a roughly 100 meter-wide zone of intense serpentinization. The melange also contains abundant rodingite dikes. This structure separates CENOZOIC FROM PERMIAN rocks of the Caples Group cut by the fault.