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ABSTRACT

The inference of species divergence time is a key step in the study of phylogenetics.

Methods have been available for the last ten years to perform the inference, but,

there are two significant problems with these methods. First, the performance of

the methods does not yet scale well to studies with hundreds of taxa and thousands

of DNA base pairs. A study of 349 taxa was estimated to require over 9 months of

processing time. Second, the accuracy of the inference process is subject to bias and

variance in the specification of model parameters that is not completely understood.

These parameters include both the topology of the phylogenetic tree and, more

importantly for our purposes, the set of fossils used to calibrate the tree.

In this work, we present new algorithms and methods to improve the performance

of the divergence time process. We demonstrate a new algorithm for the computa-

tion of phylogenetic likelihood and experimentally illustrate a 90% improvement in

likelihood computation time on the aforementioned dataset of 349 taxa with over

60,000 DNA base pairs. Additionally we show a new algorithm for the computation

of the Bayesian prior on node ages that is experimentally shown to reduce the time

for this computation on the 349 taxa dataset by 99%.

Using our high performance methods, we present a novel new method for assessing

the level of support for the ages inferred. This method utilizes a statistical jackknifing

technique on the set of fossil calibrations producing a support value similar to the

bootstrap used in phylogenetic inference.

Finally, we present efficient methods for divergence time inference on sets of trees

based on our development of subtree sharing models. We show a 60% improvement

in processing times on a dataset of 567 taxa with over 10,000 DNA base pairs.
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1 INTRODUCTION

Figure 1.1: The Tree of Life Represented as a Wheel.[48]

”The affinities of all the beings of the same class have sometimes been

represented by a great tree... ”

- Charles Darwin 1859

Darwin envisioned the relationship between all the various species as a great

tree with living species as the leaves and branches leading downward to extinct

1



ancestors. It’s a big tree, a recent estimate[63] places the number of living species at

8.8 million ± 1.3 million. While the representation may vary (see Figure 1.1), the

tree metaphor has become the core of modern phylogenetics.

As with physical trees, the lengths of the branches are significant to the age of

the tree. Our research focus has been on the age of the branches, not the structure

of the tree.

1.1 Phylogeny of the Squirrels

While projects such as the Open Tree of Life (http://opentreeoflife.org) seek to

develop an all-encompassing tree, the vast majority of phylogenetic analysis focus

on a particular branch of the tree. We will start this discussion by looking at the

branch of the tree of life associated with the familiy Sciuridae; the Squirrels. This

family includes 273 species in 50 genera found on all the continents except Australia

and Antarctica. The phylogeny of a representative sample of the squirrels (65 taxa)

is shown in Figure 1.2. We developed this phylogeny as part of the Quantitative

Phylogenetics class (ENTO-606) and it closely matches the most recent published

phylogeny of the squirrels. In this figure, the node labeled (a) represents the most

recent common ancestor (MCRA) of the family. Evolution flows to the right and

internal nodes such as node (b) indicate extinct species. Living species (taxa) are

labeled and shown on the right of the figure. In order to properly root the tree,

an additional group of closely related species, the Dormice (c), are included in the

analysis. The length of the branches may indicate any number of things including

an estimate of the amount of evolution that has occurred on the branch, the time

that has transpired or other, statistical confidence, measures.

Contemporary, model based, methods of tree inference produce phylogenetic trees

with branch lengths, b, that indicate the amount of evolution estimated to have oc-

2
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Figure 1.2: The Phylogeny of the Squirrels. In this figure the existing species are
shown on the right. The node labelled (a) is the most recent common ancestor
(MCRA) of the family. Branches flow to the right indicating the path of evolution
and internal nodes (e.g. Node b) indicate extinct ancestors. To provide a root for
the tree an additional group of species, the Dormice (c) are included as the outgroup.

curred along the branches. In the case of Figure 1.2 the values annotating the

branches are estimates of the amount of evolution expressed as the probability of

mutation for each of the characters (sites) in the DNA sequences for the species
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Figure 1.3: Divergence Time of the Ground Squirrels. The annotations on each
branch refer to the length of the branch calibrated to millions of years. For ex-
ample, the node marked with a star shows that the prairie dogs diverged from
the groundhog/golden squirrel linage 5.92 million years ago. Geological era’s are
shown to allow for correlation of species divergence to geological events. Images
used: Prairie Dog[1], Groundhog[15], Golden Squirrel[29], Antelope Squirrel[52],
Eastern Chipmunk[38], Yellow-pine Chipmunk[57], Red-tailed Chipmunk[40], Allen’s
Chipmunk[71], Siberian Chipmunk[34], Rock Squirrel[80].

(taxa). While branch lengths are interesting, what we’re really interested in is some-

thing that we can compare with other phylogeny’s (and historical events); the dates,

d, of the speciation events.

Were the rate, r, of evolution constant, r could simply be factored in and the

times determined as d = r/b. But, since biology is never simple, the rate of evolution

will vary.

Why do we care about the dates? Aren’t branch lengths sufficient? We are
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natural historians, we want to know when things occurred, not just some abstract

information like branch lengths. Adding dates to historical events allows us to tem-

porally connect events and draw further conclusions from the data.

Consider the ground squirrels as represented by the tribe Marmotini in Figure 1.3.

This group represents a group of ground dwelling creatures distinct from the generally

arboreal squirrels and includes the chipmunks, ground hogs and prairie dogs. The

divergence times computed using the tree from Figure 1.2 are shown in the figure in

units of Millions of Years. These times closely approximate the most recent published

divergence time data for the family[96]. It is apparent from the figure that there was

an significant increase in the species of ground squirrels during the late Miocene to

early Pliocene eras. It is also known that there was a large increase in savannas and

grasslands worldwide during the same period [16]. It is therefore possible to conclude

an expansion in habitat fostered an expansion in ground dwelling animals like the

Marmotini. The addition of divergence time data allowed for the correlation of these

evolutionary events providing additional evidence in support of both events. Dates

allow evolutionary events to be compared not only other evolutionary events (like

the expansion of grasslands) but with geological and historical events like volcanic

eruptions.

This begs the question of why divergence time isn’t always done as part of phy-

logenetic analysis? An informal survey of recent phylogenetic studies by the authors

showed that less than half of the studies that included more than 100 taxa also in-

cluded the determination of divergence time. While the exact reasons in each case

are unknown it is our hypothesis that there is a lack of confidence in the results of

what is a computationally expensive process.

Further complicating the issue is the workflow. Divergence time is the last step

in what has been a long process, the time from the start of sample collection to
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the generation of the consensus tree can easily be years. But the divergence time

inference itself can be a long process. A set of primate data[73] consisting of just 349

taxa was estimated to require a 9 month run time to compute the divergence time

using the MCMCTree program[93]. Adding nearly a year to the time of publication

is not reasonable in most cases. And this is for a single run. It is typically desirable

to experiment with the parameters to the process and review the results of multiple

runs. This is not practical given such long run times. For a researcher to spend days

or even weeks doing a thorough divergence time analysis with multiple experiments

seems reasonable, spending months to years does not.

Our research has been concerned with the lengths of the branches, not the topol-

ogy of the tree. We assume a topology (or topologies) have been already been in-

ferred. We introduce new algorithms for the computation of phylogenetic divergence

time that significantly reduce the time required for the process. We further provide

a new statistical measure to assess the quality of the ages produced.

The time required to compute the divergence time is a function of the number

of taxa and the length of the DNA sequences used. The time complexity of the

most common algorithms is O(lsn2 lg n) where n is the number of taxa, l is the

number of genes and s is the number of sites in the DNA sequence for each gene.

While this equation is polynomial, the values for both s and n can be large. In the

example of the primate study above, the total number of sites under analysis, s,

was approximately 61,000 over 79 genes with n = 349 taxa. But newer studies are

further increasing both of these numbers. Dr. Murphy’s lab is currently working

with datasets of 500,000 base pairs and we have been in discussion with researchers

interested in analyzing upwards of 30,000 taxa. It is also important to note that

this computational complexity is per iteration. In the case of the squirrel analysis,

2 million iterations were used to achieve stationarity. In the case of the primates
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dataset, 100,000 iterations were used to achieve stationarity.

1.2 Our Research

Jackknifing Multi-Tree Dating

Single-Tree Dating

Likelihood Prior of
Ages

Prior of
Rates

Prior of
Nuisance

Figure 1.4: Organization of Our Research. We focus initially on algorithms to effi-
ciently date single trees. In particular, new algorithms for the computation of the
likelihood and the prior of ages as presented. We then use this core to show a new
technique, calibration jackknifing, that allows for the generation of a new support
measure on the ages of nodes. We end with a new set of algorithms for efficiently
dating set of trees.

Our goal has been to improve the methods available for studying and understand-

ing the evolutionary process. While there are robust methods that allow researchers

to infer the structure of evolutionary trees, the methods that allow the inference of

speciation dates are less mature. In particular, as the size of studies has increased

the time required to perform divergence time inference has made the process pro-

hibitive. As previously mentioned, run times of several months have been estimated

for studies with only a few hundred species (taxa).

To this end, we have researched new, high performance, algorithms for the compu-

tation of phylogenetic divergence time that will allow for the inference of divergence

time for much larger sets of taxa than had previously been possible.
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As researchers have studied ever larger sets of taxa, the validity of the divergence

time process itself has been called into question. We have developed a new measure

to assess the phylogenetic support for the ages inferred.

Finally, divergence time inference is usually the last step in a long process. Typ-

ically a final topology has been determined prior to dating. We hypothesize that

performing the dating process prior to determining the final tree will improve the

quality of the mode.

We have developed a new divergence time framework, AncestralAge, and used it

to host the new algorithms and methods developed.

• Efficient likelihood calculation.

The likelihood of a tree and it’s associated parameters (e.g. ancestral node

ages) refers to the probability that a set of parameters were responsible for the

set of taxa observed today.

The computation of this value is typically the most expensive single component

of divergence time inference (or any phylogenetic inference for that matter).

We have developed a new algorithm, subtree site compression, for the compu-

tation of phylogenetic likelihood that reduces the time required for likelihood

computation by over 90%.

• Efficient calculation of the prior on node ages.

The use of a Bayesian framework for divergence time inference allows great

flexibility in the specification of fossil calibrations. This information is incor-

porated into the statistical model in the form of a Bayesian prior on the ages

of the ancestral nodes.

We demonstrate a new algorithm for the computation of the prior of node ages
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that reduces what had been a time complexity of O(n2 lnn) to best and worst

case complexities of O(n) and O(n2) respectively.

• Support measures for divergence time.

The use of fossils as “calibrations” for the process is known to be error prone[39][64].

But there are few methods available to assess the “quality” of the fossil cal-

ibrations. It has been possible for researchers to build multiple sets of fossil

calibrations to study the impact of difference sets of calibrations. But this has

been a arduous, error-prone, manual process.

We have developed a method of creating multiple copies of a tree with varying

sets of calibrations using jackknifing[33]. With this method it becomes simple

and efficient to request dating using varying sets of fossil calibrations. Using

these jackknife replicates, we have developed a new support measure for the

ages produced during divergence time inference. We compute this support

measure for the aforementioned primates dataset and discuss it’s significance.

• Efficient calculation of divergence time on multiple trees.

We hypothesize that if it were feasible to date sets of trees prior to their consol-

idation into a single tree, bias resulting from the consensus process itself could

be reduced. As with calibration jackknifing, it has always been possible to

perform multiple divergence time runs on different trees. But, the performance

of the process has scaled directly with the number of trees being dated leading

to even more excessive run times.

To facilitate research into the dating of multiple sets of trees, we have developed

new models for the relationship between trees in a set. These models allow the

divergence time process to leverage common subtrees improving efficiency and
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increasing the number of trees that can be dated in parallel.

The next section in this document discusses aspects of phylogenetics that are

important to divergence time inference. Following that section is a discussion of the

existing methods and programs available for divergence time inference.

The remainder of the document follows the overall structure shown in Figure 1.4.

Section 4 is the description and analysis of out new likelihood algorithms. Section 5

is the description and analysis of our new algorithm for the computation of the prior

on ages. Section 6 introduces our calibration jackknifing and new support measure

for ages. Section 7 provides detail on our algorithm and models for dating multiple

trees efficiently.

We then show an experimental analysis of our algorithms performance in Sec-

tion 8. We conclude in Section 9 with a summary of the work and a discussion of

additional research that is enabled by the AncestralAge platform.

1.3 Terminology

A number of terms are used in the divergence time process. For the sake of clarity

we define a number of the ones that will appear in this document.

Phylogenetic trees are undirected acycle graphs with labels on vertices of degree

one only. Individual trees might or might not be rooted and, in most but not all cases,

the final, published, tree will be rooted. For purposes of divergence time, inferred

trees are considered to be rooted. The vertices of trees will be categorized as leaves,

inner nodes and the root. A leaf in a tree refers to a labeled node of degree one

(one incident edge). Leaves correspond to the taxa in a phylognentic tree. Vertices

of degree three (three incident edges) will be referred to as inner nodes and, for our

purposes, must be unlabeled. Inner nodes correspond to the extinct ancestors of

existing taxa. The one vertex of degree two (two incident edges) will be referred to
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as the root and also must be unlabeled. Phylogenetically, the root represents the

most recent common ancestor (MRCA) of the taxa in the tree.

From a graph perspective, phylogenetic trees are undirected but common usage

(that we will follow) considers a flow of evolution from the root out to the leaves

corresponding to the passage of time.

There are two related trees that factor into divergence time; first a tree represent-

ing the evolution of the taxa being studied. This will be referred to as the species

tree. For a given study, multiple partitions of the DNA data may be used. These

partitions often are associated with particular genes. While the association of parti-

tions to genes is not a requirement, for consistency we will use the term gene tree to

refer to the tree associated with a single partition of the DNA data.

In statistics (and evolutionary biology) the term log refers to the natural loga-

rithm (base e). In computer science the term log refers to the logarithm base 2. For

consistency in this document we will use ln or loge to refer to the natural logarithm

and lg or log2 to refer to the logarithm base 2.

In Markov Chain, Monte Carlo (MCMC) methods the fundamental unit is the

MCMC step. In a step new values are in turn proposed for each of the model param-

eters and their impact evaluated. Specification of processing for MCMC methods is

typically in terms of the number of MCMC steps to be taken.

The terms ages, dates and time are frequently confounded in the literature. We

will use the term age to refer to a length of time from the present to the date when

an event occurred. We will use the term time to refer to a duration. For example

an edge in a tree has a duration and therefore a time associated with it. The term

branch length refers to a distance and as such is the result of a rate r being applied

for some period of time t. In phylogenetics, rates are commonly specified as the

percentage of DNA bases that change in a unit of time. When multiplied by a time
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value this generates a branch length that correlates to the number of DNA bases

that have changed along the edge.
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2 THE BUILDING BLOCKS OF DIVERGENCE TIME

The divergence time process uses methods and data in common with other por-

tions of the phylogenetic workflow. All modern methods are based on the comparison

of molecular information usually consisting of DNA sequences although other data

such as amino acid or protein sequences may also be used. The DNA molecule

is a long sequence of the four bases (adenine (A), cytosine (C), guanine (G) and

thymine(T)). Each base bonds to another base on the opposing DNA strand. These

bonded pairs are referred to as base pairs (BP). Each position on one of the two

strands is referred to as a site.

2.1 Multiple Sequence Alignment

Sites
--TATACATGCAAGCATCCCCGGTGAGAACCTCTATA
CTTATACATGCAAGCATCCCTAGTGAGATCCTCTATG
-TTATATATGCAAGCA--CCCAGTGA--ACCTCTGTA
CTTATACATGCAAGCGTCCCCAGCGA--TCCTCTGC-
--TATACATGC-AGTATCCTCGGTGAGAAGCTCTATA
TCTACACGTGTAAATG-ATTCGGCGAGAACCCTCC--
CTTGCGCATGCAGGTA--CTCAGTGGGAACATCTACA
-TTATACATGC-AGCATCCCTGGTGA--ACCGCTAT-
CTTATACCTGCAAGCA-CCCCGG-GA--ACCTCTATA
CTTACACATGCAAGAATCCCCAGTGA--ACCTCT---

TATACATGCAAGCATCCCCGGTGAGAACCTCTATA

CTTATACATGCAAGCATCCCTAGTGAGATCCTCTATG

TTATATATGCAAGCACCCAGTGAACCTCTGTA

CTTATACATGCAAGCGTCCCCAGCGATCCTCTGC

TATACATGCAGTATCCTCGGTGAGAAGCTCTATA

CTTACACATGCAAGAATCCCCAGTGAACCTCT

CTTATACCTGCAAGCACCCCGGGAACCTCTATA

TTATACATGCAGCATCCCTGGTGAACCGCTAT

CTTGCGCATGCAGGTACTCAGTGGGAACATCTACA

TCTACACGTGTAAATGATTCGGCGAGAACCCTCC

Figure 2.1: Multiple Sequence Alignment. Images used: Prairie Dog[1],
Groundhog[15], Golden Squirrel[29], Antelope Squirrel[52], Eastern Chipmunk[38],
Yellow-pine Chipmunk[57], Red-tailed Chipmunk[40], Allen’s Chipmunk[71],
Siberian Chipmunk[34], Rock Squirrel[80].
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A fundamental input to the divergence time process is the set of DNA for the

taxa of interest. It is comparisons between these sets of DNA that provide estimates

of the relationships between the taxa and the amount of evolution that has occurred.

To compare the sequences across the set of taxa, it is necessary to align the

sequences. As sites will not only have changed but have been inserted and deleted

the alignment may contain holes or gaps as shown in Figure 2.1. The placement of

these gaps is critical to the quality of the alignment.

This is a complex computational (and manual) process. While there are auto-

mated tools available for this step, typically there is some level of manual curation

subsequent to the automated alignment. A considerable amount of research has

been, and continues to be, focused on the alignment problem[69].

The result of the alignment process is referred to as the multiple sequence align-

ment (MSA). The MSA is a matrix where rows represent the taxa and the columns

represent the sites occupied by the bases of the DNA (or gaps).

2.2 Phylogenetic Inference

Divergence time depends on the availability of a tree (or set of trees in our case)

that best model the evolutionary relationships between the taxa. Additionally, the

methods used for phylogenetic inference, particularly Bayesian methods, provide the

core algorithms for divergence time.

A variety of methods are available for inferring a tree from the MSA. Early

methods looked only at the sequence alignment and attempted to minimize the

number of mutations required to convert one sequence into another. This method,

maximum parsimony [79], assumes that any DNA base may change into any other

DNA base at any time with an equal probability.

Contemporary methods take a model based approach with the addition of a
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transition matrix that allows the researcher to vary the probabilities associated with

mutation events. This transition probability matrix (TPM) defines an evolutionary

model wherein the rows and columns of the model are the four DNA bases (A,C,G,T)

and the cells of the matrix define the probability of a transition from the one base

to another. The TPM, along with the MSA, is then used to “score” a tree. This

score, referred to as the likelihood, is either optimized directly (maximum likelihood

methods) or used as part of Bayesian inference.

2.2.1 Tree Space

To find the “best” tree, search methods are required since exhaustive search for

all but the smallest trees (≤ about 10 taxa) is not feasible as the number of possible

binary trees associated with a set of taxa is (2n−e)!!. For even the modest 65 species

of Squirrels included in Figure 1.2, the number of possible trees is an incomprehensi-

ble 1.6× 10107. When branch lengths are included the number of potential solutions

becomes infinite. The problem of finding the optimal tree (including branch lengths)

becomes one of searching an infinite “tree space” for the “best” solutions.

In phylogenetics, maximization of the likelihood score is commonly used as it

provides good results with reasonable performance.[75]. Another approach is through

the use of Bayesian inference. In the Bayesian model, the likelihood is just one

component of the score. The Bayesian model allows the inclusion of additional,

prior, knowledge into the calculations. This is particularly important for divergence

time inference. In divergence time inference, additional information in the form of

estimated dates for fossils, is used to “calibrate” the tree. Logically, these calibrations

are in fact “prior information” and fit naturally into the Bayesian framework. There

has been research into the use of maximum likelihood methods for divergence time

inference [95]. But, to date, no methods have been developed that allow for the
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inclusion of multiple, varied, calibration points in a maximum likelihood statistical

framework.

We will therefore focus on Bayesian methods in the remainder of this document.

2.2.2 Likelihood

”Likelihood is the hypothetical probability that an event that has already occurred

would yield a specific outcome. The concept differs from that of a probability in that

a probability refers to the occurrence of future events, while a likelihood refers to

past events with known outcomes.”

- Wolfram Mathworld[88]

The term probability refers to chance that a set of parameters today will generate

some specific event in the future. Likelihood defines the probability that a set of

parameters (θL in Figure 2.2) in the past were responsible for the set of data observed

in the present. In phylogenetic terms the parameters θL are the tree, the rates of

evolution for each the branches and the dates for the inner nodes and root. The

observed data are are the living taxa and their DNA sequences.

Today
θPθL

Likelihood that some set of
parameter value in the past 
produced what we observe today.

Probability that some set of
parameter values today will produce
an outcome in the future.

The Past The Future

Figure 2.2: Likelihood and Probability. Likelihood refers to the probability that a
set of parameters produced the data observed today. Probability refers a set of data
and parameters today producing some outcome in the future.
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Evolutionary Model

                                   Sites
Antelope Squirrel    CTTATACATGCAAGCATCCCCGGTGAGAACCTCTATA
Prairie Dog          CTTATACATGCAAGCATCCCCAGTGAGAACCTCTATG
Groundhog            CTTATACATGCAAGCATCCCCAGTGA--ACCTCTATA
Rock Squirrel        CTTATACATGC-AGTATCCTCGGTGAGAACCTCTATA
Golden Squirrel      CTTATACATGC-AGTA--CCCAGTGA--ACCTCTATA
Brooke's Squirrel    CTTACACATGCAAATA--TTCGGTGAGAACCTCTATA
Yellow-pine Chipmunk CTTACACATGCAAGTA--CTCAGTGAGAACCTCTACA
Siberian Chipmunk    CTTATACATGC-AGCATCCCCGGTGA--ACCTCTATA
Eastern Chipmunk     CTTATACATGCAAGCATCCCCGGTGA--ACCTCTATA
Allen's Chipmunk     CTTACACATGCAAGAATCCCCAGTGA--ACCTCTATA

Multiple Sequence Alignment

Groundhog

Red-Tailed Chipmunk
Yellow-pine Chipmunk

Siberian Chipmunk
Eastern Chipmunk

Prairie Dog

Antelope Squirrel

Allen's Chipmunk

Rock Squirrel

Golden Squirrel

Proposed Tree

Scored Tree

Groundhog

Red-Tailed Chipmunk
Yellow-pine Chipmunk

Siberian Chipmunk
Eastern Chipmunk

Prairie Dog

Antelope Squirrel

Allen's Chipmunk

Rock Squirrel

Golden SquirrelLikelihood

Computation

A G C T

A * κ 1 1

G κ * 1 1

C 1 1 * κ

T 1 1 κ *

Figure 2.3: Likelihood of a Phylogenetic Tree. To determine the likelihood of a pro-
posed tree, the evolutionary model is applied to the MSA. The log of the probabilities
of each site in the MSA are summed to generate the final likelihood score.

A tree has a likelihood probability based on the evolutionary model as expressed

in the TPMs and the MSA. Figure 2.3 illustrates the components of the likelihood

model. The inference process needs to compute this value each time there is a change

in the model parameters. In the case of phylogenetic inference, this would include

topological and branch length changes. For divergence time inference, the topology

is fixed but the branch lengths are computed as the product of rates over time and

both the times and rates are model parameters.

The phylogenetic likelihood is computed as the sum of the log of the likelihoods of

each of the n columns (xh) in the alignment given the evolutionary model parameters

(θ).
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l = log(L) =
n∑
h=1

log(f(xh|θ)) (2.1)

The probability function for a column, f(xh|θ), is the sum of the probabilities

of of all possible values (A,C,G,T) for all of the taxa based on the proposed tree.

Calculation of the likelihood is the typically the most computationally expensive

component of any of the model based phylogenetic methods.

2.2.3 Bayesian Inference

Since the Bayesian model is currently the most prevalent statistical model for

divergence time, we will focus on it’s structure and application to divergence time.

In a Bayesian inference, the goal is to determine what is known as the posterior

probability; the set of parameters that have the highest probability given the data,

P (θ|D). Classical “frequentest” statistics optimize the probability of the data given

the parameters, P (D|θ). This probability is the likelihood that the parameters spec-

ified gave rise to the data observed today. Bayes formula provides the conversion

from the likelihood to to the posterior probability:

P (θ|D)P (D) = P (D|θ)P (θ) (2.2)

P (θ|D) =
P (D|θ)P (θ)

P (D)
(2.3)

In Bayesian terms, the probability of the parameters, P (θ), is referred to as

the prior and allows the model to include understanding about the values of the

parameters independent of the data. The probability of the data in the denominator

of the right hand side acts to normalize the values allowing the probabilities to

integrate to 1.
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Figure 2.4: Bayesian Inference of a Phylogenetic Tree. The chart on the left shows
the likelihood values for my squirrel data returned from the iterative process. The
first portion of the plot up to step 600,000 reflects the algorithm seeking the true
posterior distribution. This section is referred to as the “burnin” and is discarded.
Trees are sampled on a regular basis (e.g. every thousandth tree). These sampled
trees are then put through a consensus generation process to produce the final tree.

Typically, Bayesian methods depend on iterative techniques to determine the

distribution of the posterior. The desired goal is to run the iterative process until it

has converged on the “true” distribution of the posterior. In practice, achievement

of a stationary process is used as a proxy for convergence. In Figure 2.4 the log

of the likelihood is plotted over time. At around iteration (or step) 600,000 the

values stabilize and the process is referred to as stationary. Thousands to millions

of steps are generally required to reach stationarity. Trees are sampled at regular

points during the iterative processing generating thousands to tens of thousands

of samples. Since the samples provide a discrete approximation of the continuous
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Figure 2.5: Sampling from the Posterior Distribution. To determine the probability
density function (PDF) for some parameter µ the MCMC process randomly samples
from a distribution proportional to the desired distribution “filling in” the area under
the curve.

posterior distribution there is unlikely to be a single tree that represents the highest

posterior probability (the maximum a posteriori or MAP).

Markov chain Monte Carlo (MCMC) methods provide a numerical method for

evaluating the probability distribution function described by the posterior through

sampling. The Markov chain portion of the name indicates that the steps in the

process refer only to the current state, prior state is not considered in the computation

of the next step. The Monte Carlo portion of the name refers to the use of random

values in the computation of the steps of the process. The most prevalent sampling

algorithm is that of Metropolis-Hastings[43]. The Metropolis-Hastings algorithm

allows samples from a distribution (the posterior distribution in this case) to be drawn

as long as the value of a function g(x) can be computed that is proportional to the

desired distribution. This eliminates the need to compute the normalization factor

(the denominator in equation (3.1)). For each iteration, new parameter values are

chosen, typically by drawing from a normal distribution given the current parameter
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values. The new value of the proportional function, g′(x) is compared to the prior

iterations value g(x). if g′(x) > g(x) the new parameter values are accepted. If

g′(x) ≤ g(x) the new parameter values are accepted with a small probability α

specified by the user. Otherwise the new parameter values are rejected. By this

means the area under the probability curve is filled in as shown in Figure 2.5.

In complex models with large numbers of free parameters, it is impractical to

choose values for all the tree parameters at once and expect more than a very small

percentage of the samples to be accepted. The use of Gibbs sampling, as first de-

scribed by Stuart and Donald Geman in 1984[37], provides a solution to this problem

at increased computational cost. Using Gibbs sampling, each MCMC iteration is fur-

ther broken into propositions for each parameter. For each parameter in turn, a new

value is drawn for the parameter and the posterior probability computed. Accep-

tance and rejection are the same as for the Metropolis-Hastings algorithm. There

are two consequences of Gibbs sampling to note:

1. The likelihood is now recomputed after each parameter is drawn multiplying

the number of likelihood computations by the number of parameters. This can

have a significant performance impact.

2. There is a significant amount of correlation between likelihood values within

the same iteration since not all parameters are sampled at the same time. The

implication of this is that it may take some time for the Markov chain to reach

the desired distribution, in essence overcoming the correlation induced by the

Gibbs sampler. For this reason, it is usually necessary to discard the initial

portion of the chain (the “burnin”). For example, in Figure 2.4 it can be seen

that the likelihood starts out low and over the course of the first approximately

600,000 iterations continued to improve. It isn’t until after 600,000 iterations
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Figure 2.6: Three Evolutionary Trees with a Common Edge. While the overall topol-
ogy of each of the trees is different, they all share a common edge, RA|SEY . This
edge would appear in either a strict or majority consensus tree.

that the Markov chain achieves “stationarity” indicating that the process has

stabilized on the posterior distribution.

2.3 Consensus Tree

Since evolution occurred one way, not many, the goal of phylogenetic inference

is the production of a single tree that represents the best hypothesis of how evo-

lution actually occurred. In order to determine the single tree that most closely

approximates the MAP point, a method of consensus generation is used wherein the

sampled trees are analyzed and consolidated into a single tree. A variety of methods

are available for this consensus generation [11] but, the goal of all the methods is to

produce the tree most informative of the set of trees being combined.

The most frequently used methods depend on the building a tree based on sets

of edges in the sampled trees. Edges that appear in either all the trees (the strict

consensus) or > 50% of the trees (the majority consensus) may be selected to appear

in the final tree. In Figure 2.6 the edge separating the Red Tailed Squirrel and

Allen’s Squirrel from the other three taxa appears in all three trees. This edge would

appear in either the strict or majority trees.

Branch length in the consensus will typically represent the mean or median values
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for the branch. The variance of the branch lengths is not usually reported.

Consensus methods, by their nature, induce bias. One dataset we studied of

20,000 trees over 150 taxa was developed by the combination of two Bayesian runs.

The consensus tree incorporated information from both runs but cluster analysis of

the data[7] indicated that there were two distinct clusters of data. This clustering

was lost in the consensus tree.

Divergence time inference is typically performed on the single, final, consensus

tree developed. We hypothesize that this tree is therefore subject to significant bias

as a consequence of the consensus process. We further hypothesize that were larger

sets of trees selected prior to consensus dated independently, the impact of this bias

on the dates would be reduced. A consensus tree would still be produced subsequent

to dating but, the bias induced in the consensus process would not impact the dating.
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3 THE ORIGIN OF ANCESTRAL AGE

The goal of this research was the development of new computational methods for

divergence time inference. Out intent was not to investigate new statistical methods

or models but, to provide new algorithms for computation using existing statistical

models. We first discuss the origins of the statistical model then we discuss the model

itself and finally the MCMCTree implementation of the model that first sparked our

interest in divergence time.

Figure 3.1 illustrates the progression of MCMC research leading to modern diver-

gence time methods. MCMC methods were first developed during the second world

war as part of the atom bomb research. During the 1950’s and 1960’s research was

focused on the theoretical aspects of MCMC methods as the computational overhead

made the methods difficult to implement on any other than the largest computers

then available.

By 1994 desktop computers had achieved sufficient performance to allow for prac-

tical experimentation into MCMC methods and their application to phylogenetics. In

1994, Yang produced the PAML package[91] which provided an MCMC method for

inference of the phylogenetic tree. The first divergence time algorithm, Multidivtime,

was developed by Thorne, et al. in 1998[86]. In 2001 Huelsenbeck and Ronquist devel-

oped the first version of the Mr. Bayes program for phylogenetic inference[49] which

remains the most prevalent MCMC package for phylogenetic tree inference. In 2006,

Yang and Rannala extended the PAML package with the development of the MCM-

CTree program[94] for divergence time inference and the following year Drummond

et al. produced the Beast program[27] which also includes divergence time inference.
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Figure 3.1: Origins of Divergence Time Algorithms. The early work on MCMC
methods was largely theoretical due to limitations in computer hardware. With the
availability of high speed desktop computers in the early 1990’s, MCMC methods
were applied first to phylogenetic inference and then to divergence time.

3.1 Divergence Time Inference

”All models are wrong, but some are useful”

- George Box 1987[6]

Equation (3.1) provides the general Bayesian formulation for the divergence time

model as implemented in the MCMCTree program.

f (t, r, θ|D) =
f (D|t, r, θ) f (r|t, θ) f (t|θ) f (θ)

f(D)
(3.1)

The posterior probability of a set of times, rates (t and r respectively) and other,

nuisance, parameters, θ, given the data is equal to the likelihood of the data D given

the times, rates and parameters f (D|r, θ) multiplied by the priors for the rates,

times and parameters. This is normalized by the marginal probability of the data,
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f(D).

The problem with the computation of this value becomes apparent when the

probabilities are expanded, for example the probability of the data expands into a

high dimension integral without a closed form solution

f(D) =

∫
t

∫
r

∫
θ

f (D|t, r, θ) f (t, r, θ) dr dθ (3.2)

Fossil calibrations are included through the prior on the times, f (t|θ). If tC is

the set of calibrated nodes and tC̄ = t− tC is the set of nodes without calibrations,

then the prior can be constructed as:

f(t|θ) = f(tC , tC̄ |θ) (3.3)

= f ′(tC̄ |tC , θ)f(tC |θ) (3.4)

where f ′() defines the conditional distribution of the non-calibration nodes based

on the calibration nodes and parameters.

The probability of the data, f(D) is computed by integrating the time, rates and

parameters out of the likelihood.

f(D) =

∫ ∫ ∫
f (D|t, r, θ) dr dt dθ (3.5)

This formulation is, in practice, intractable. To avoid this issue the Metropolis-

Hastings algorithm[43] is employed. This algorithm makes use of the ratio between

two values of the posterior; the original or old value f(t, r, θ|D) and a new value

f(t′, r′, θ′|D) obtained by sampling new values for the parameters. This allows the

denominator to drop out of what is known as the acceptance ratio (Equation (3.7)).
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If this ratio is greater than zero the proposed new parameters are accepted. If the

ratio is less than or equal to zero the proposal is still accepted with some probability

p drawn from a uniform distribution 0 < p < 1.

f(t′, r′, θ′|D)

f (t, r, θ|D)
=
f (D|t′, r′, θ′) f (r′|t′, θ′) f (t′|θ′) f (θ′) 1

f(D)

f (D|t, r, θ) f (r|t, θ) f (t|θ) f (θ) 1
f(D)

(3.6)

=
f (D|t′, r′, θ′) f (r′|t′, θ′) f (t′|θ′) f (θ′)

f (D|t, r, θ) f (r|t, θ) f (t|θ) f (θ)
(3.7)

In practice, proposing new values for all parameters at once generated few ac-

cepted proposals. Geman and Geman demonstrated[37] that sampling individual

parameters and computing the acceptance ratios after the change of individual pa-

rameters was statistically equivalent to Metropolis-Hastings and generated consider-

ably more accepted proposals. This technique, known as Gibbs sampling, is used in

all modern Bayesian phylogenetic programs including MCMCTree and AncestralAge.

Existing divergence time algorithms implement the statistical model using a com-

plex set of inputs:

1. An aligned set of DNA sequences, the multiple sequence alignment (MSA) for

the set of taxa.

2. A evolutionary model defining the transition probabilities associated with a

DNA base mutating from one value to another.

3. A phylogenetic tree with estimates of the amount of evolution that has occurred

along each branch.

4. A set of fossil calibration dates along with associated bounds and statistical

distributions..
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5. Statistical parameters defining the distributions associated with the rates of

evolution along the branches.

There has been a significant amount of research into the sensitivity of the process

to the specification of the MSA and evolutionary model[22][24][97]. Even so, there

remain significant concerns as to how well supported the results of the process are[89].

The issues with fossil specification have also been well studied[50], but, with the

high computational cost associated with divergence time, it was not feasible to run

multiple experiments to determine the sensitivity of the model to different sets of

calibrations.

3.1.1 Model Parameters

The statistical model exposes a large set of parameters that each must be esti-

mated. For the model implemented in MCMCTree and AncestralAge this set includes

the following:

• The ages of each ancestral node in the species tree. These are the principal

parameters being inferred. In the case of the primates dataset, there are a total

of 348 age parameters (including the root) for the 349 taxa in the study (n− 1

inner and root nodes).

• The average rate of evolution along each branch of each gene tree. In reality

the rate of evolution can vary throughout the existence of a species but it is

typically modeled as an average across the branch. It is also well understood

that, even within the same species, the rate can vary between genes hence the

requirement for unique rates for each gene tree. In the primates dataset there

are 21,584 rate parameters across the 79 genes in the study.
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• There are a number of other parameters that, while important to the model,

are not of any particular interest in the result. These are referred to as nui-

sance parameters and include the evolutionary model parameters (e.g. κ in the

Kimura ’80 model) and parameters that are used in the computation of the

priors of the various parameters (e.g. the gamma distribution α and β values

used to model the rates at the root of the gene trees). These parameters are

associated with individual gene trees. For the primates dataset there are an

additional 1027 nuisance parameters across the 79 genes.

It is important to note that for each parameter change, the acceptance ratio must

be computed.

3.1.2 Components of the Model

To compute the acceptance ratio the four terms in the numerator of Equation

(3.1) must each be computed. AncestralAge supports a set of algorithms for the com-

putation of the terms using the mathematical models developed for the MCMCTree

program[92].

3.1.2.0.1 Likelihood The likelihood can be considered the probability that the

parameters as specified yielded the result seen (e.g. the sequence alignment of the

existing taxa). For divergence time this calculation is across the entire tree and needs

to consider the ages of each ancestral node, the rates of evolution across each branch

and the parameters of each evolutionary model. In other words, all of the parameters

of the model.

3.1.2.0.2 Prior on Ages It is through the use of the prior on ages that the fossil

calibrations are included in the model. This is a natural and easily justified use of

the Bayesian prior as the fossil record does comprise prior knowledge about the ages

of the ancestors of the existing species.
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The challenge in the design of this prior is to allow specification of the fossil

calibrations to include uncertainty in the calibration values. In MCMCTree, Beast

and now AncestralAge this is accomplished by the specification of parameters for

each calibration[94]. These parameters are fixed, hyperparameters, in the model.

3.1.2.0.3 Prior on Evolutionary Rates In the simplest case, the rate of evolution

will be constant, the “Molecular Clock” hypothesis. In this case, the prior for evo-

lutionary rates would be a constant across all branches of a gene tree. The other

extreme is to allow the rates on branches to vary independently. In this case, the

prior is modeled as a gamma distributed random variable with specified shape (α)

and scale (β).

But, it is reasonable to consider that there will be some relationship between the

rate in a descendant and it’s ancestors rate. This, correlated, model is handled in

MCMCTree and AncestralAge using a prior where the rate for a branch is a random

variable drawn from a gamma distribution with a mean specified as the rate for the

branch’s immediate ancestor[68].

All three of these models are supported in MCMCTree as well as AncestralAge.

3.1.2.0.4 Prior on Nuisance Parameters The priors on the other, nuisance, param-

eters depend on the type of parameter:

• The parameters of the evolutionary models (e.g. the α and β values in the

Kimura ’80 model) are each independently modeled as random variables drawn

from gamma distributions with hyperparameters specified by the user.

• The character frequency parameters used in those evolutionary models that

require them (e.g. the HKY 1985 model) are modeled using a Dirichet process

prior.
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Sites
Prairie Dog ATTACACATGCAAGTATCCCCTTCCCAGTGAGAATGCCC...

Groundhog CTTACACATGCAAGCATCCCCGCCCCAGT--GAATGCCC...

Golden Squirrel CTTATACATGC-AGCATCCCCGCCCCGGTGAGAATGCCC...

...

(a) Multiple Sequence Alignment. In most likelihood algorithms any columns with
gaps are ignored in the calculation.

A G C T
A * κ 1 1
G κ * 1 1
C 1 1 * κ
T 1 1 κ *

(b) Evolutionary Model
(K80). The value of the
parameters (κ in this case)
are estimated from the
data.

Prairie Dog

Groundhog
0.03

0.06

0.07

(c) Tree with Branch Lengths. The branch lengths
represent the amount of evolution along the branch.

Figure 3.2: Components of the Likelihood Model.

• The evolutionary rates for each gene tree in the molecular clock model are

modeled using a gamma prior with hyperparameters specified by the user.

• For the independent rate model, both the mean rate and it’s variance are spec-

ified using gamma distributions with hyperparameters specified by the user.

• For the correlated rate model, the prior on the mean and variance of the rate

at the root of the gene tree are specified using gamma distributions with hy-

perparameters specified by the user.

3.1.3 Likelihood

The MSA, evolutionary model and tree define the likelihood model in a very

similar manner to that used for phylogenetic inference.

The MSA, an example of which is shown in Figure 3.2(a), provides a best estimate
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of the relationship between the DNA sequences of the taxa. Since insertions and

deletions of bases occur randomly (although not all survive) during the evolution

of the sequences, the characters of one taxa’s DNA sequence will not necessarily

represent the same portion of a DNA sequence of another taxa. For this reason, the

MSA is only an estimate of the relationship between the sequences since the exact set

of insertions and deletions cannot be known. Gaps in the sequences introduced by

insertions and deletions and typically treated as missing data although the statistical

validity of this approach is the subject of ongoing research[87].

The evolutionary model defines the probabilities of one DNA character changing

into another. Models vary from simple in the case of the Jukes-Cantor mode wherein

all the probabilities are equal to the GTR (Generalized Time Reversible) model in

which each individual probability is a separate parameter. As an example the K80

model (Kimura 1980) is shown in Figure 3.2(b). The four DNA bases (A,G,C,T) are

also representative of two types of nitrogeneous bases, purines (A,G) and pyrimidines

(C,T). In it’s original formulation, this model used two parameters α and β. The

α parameter represented the probability that a base will change into the same type

of nitrogeneous base (e.g. purine to purine) and is referred to as the transition

probability. The β parameter represented the probability that a base will change

into the other type of nitrogeneous base (e.g. purine to pyrimidine) and is referred

to as the transversion probability. The model is generally simplified as shown in

Figure 3.2(b) with the transversion rate set to 1 and the transition/transversion

ratio α/β referred to as κ.

The phylogenetic tree has already been discussed, but, it is important to note

that branch lengths are a critical part of the model as shown in Figure 3.2(c). For

divergence time inference, the factors leading to the branch lengths (age, rate) will

be inferred but the branch lengths provide the best possible estimate for the ini-
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Figure 3.3: Tree Calibration and Rate Estimation. Fossils are used to “pin” nodes of
the tree to branch points in the tree. Each fossil has a level of variability associated
with it as shown by the distribution under the fossil. The distributions for the rates
along the branches are also specified.

tial values. In MCMCTree branch lengths are not allowed in the input tree. In

AncestralAge the branch lengths are used in the computation of the initial values.

3.1.4 Tree Calibration

In order to determine the date of the speciation events, it is necessary to provide

calibration for the tree. This is provided through the use of fossils. For example,

in Figure 3.3 three fossils are shown at different points in the tree for the Marmots.

There are a number of issues with the use of fossils as calibration points:

1. The placement of the fossils in the tree is usually based on morphological

characteristics as DNA is generally not available. It is well known that sim-

ilar morphological characteristics may evolve independently. In fact, prior to

DNA data being available, it was accepted that all the flying squirrels, tribe
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Pteromyini, evolved their gliding ability through a common ancestor. But once

molecular data was included it became apparent that the gliding ability evolved

separately in the Americas and Eurasia from ancestors that did not have the

capability. This complicates the placement of the fossil for a gliding squirrel.

2. Many organisms do not leave a fossil record. In particular many of the inver-

tebrates do not have structures that would survive over geological time. This

limits the set of taxa which can currently be dated.

3. The age of fossils is not exact. All modern radiometric methods have some

variance associated with them. In Figure 3.3 this is represented by the distri-

butions shown under the fossils. It may be possible to provide upper and/or

lower limits, referred to as hard bounds” on the age of the fossil or it may be

preferable to allow the age to vary out to the tails of a distribution.

4. A species exists for some period of time. There are existing species that have

changed little over geological time. It is generally impossible to know if a fossil

represents an early specimen of the species or a later one. In other words where

on the branch the specimen represented by the fossil should be placed.

5. In early divergence time models fossils were always considered extinct ancestors

of existing species. But, as shown in Figure 3.4 it is possible that the fossil

represents an evolutionary “dead end” as is the case of Homo neanderthalensis.

3.1.5 Rate Correlation

The goal of divergence time inference is to determine the lengths of time associ-

ated with each branch of the tree. This is accomplished by first inferring the rates

for each branch and then using these rates to infer the times for each branch. There

are several models for the rates:
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Figure 3.4: Tips vs. Branches. Not all fossils represent ancestors of existing species
(the “branch” model). For example Homo neanderthalensis is not an ancestor of
Homo sapiens but an extinct evolutionary “dead end”.

1. The molecular clock hypothesis[98] postulates that the rate of evolutionary

change is approximately constant over time and across lineages. In this model

each branch of the tree will have the same rate. While this model may be

usable in many cases the hypothesis has been shown to be violated by groups

such as the mammals[59].

2. At the other extreme, if the rate of mutation can both vary over time and over

different lineages each branch can have a completely independent rate. While

it can be argued that this, the most complex, hypothesis would allow for any

possible rate it also ignores any potential for correlation between rates. It is

certainly reasonable to think that the rate of evolution didn’t suddenly change

when a new species.

3. Between these two extremes there are a number of possible hypothesis that

allow for correlation between rates associated with different taxa. One of these

models, implemented by both Yang[68] in the MCMCTree program and Drum-

mond et al.[27] in the Beast Program, bases the rate for a branch on the rate
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Beast V1.8 MCMCTree V4.8
Combined phylogenetic and diver-
gence time inference. No option to
use existing tree.

Divergence time inference only, tree
provided by user.

Utilizes Beagle library for paral-
lel (CPU/GPU) likelihood compu-
tations.

Serial implementation only.

Limited multi-gene support
through the *Beast program.

Comprehensive multi-gene support.

Tip or branch dating both sup-
ported.

Tip or branch dating both sup-
ported.

Multiple statistical distributions
for fossils (normal, lognormal,
gamma).

Multiple statistical distributions for
fossils (normal, t, gamma).

Java Application C Application

Table 3.1: Comparison Between Beast and MCMCTree. Key differences are the
ability of MCMCTree to accept a user-provided tree and the use of the parallel
Beagle library by Beast.

of the branch’s most recent ancestor.

3.2 Software for Divergence Time Inference

While the original Multidivtime program is still available, it is not actively under

development. The two programs in most use today for divergence time inference are

Beast[27] and MCMCTree[94] although other programs exist[45][84]. Both programs

are widely used and actively developed by their original authors.

3.2.1 Beast and MCMCTree

A comparison of the Beast and MCMCTree shown in Table 3.1. The key difference

is that Beast is intended to perform both phylogenetic inference and divergence time

inference as a single step. This creates a issue in cases where the researcher has spent

considerable time and effort producing a tree using other methods.

Beast supports a wide variety of options for the specification of the model[28][27]
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including:

• Use of different evolutionary models for different genes even to the extent of

allow a mix of DNA and other (i.e. Amino Acid) data within an analysis.

• Separate priors for each gene allowing different models to be used for different

genes.

• A large number of different models including birth only (Yule) processes[77]

and Birth-Death process models[94] for the prior on the trees (including the

prior on ages).

It is possible to specify a starting tree for the MCMC process to Beast but the

topology of the tree is considered a model parameter and perturbed throughout the

process. It is also possible to define sets of taxa corresponding to subtrees (clades)

that will be fixed throughout the process so it is at least theoretically possible to

define all the clades in a tree to fix the tree topology. But it is possible, even likely,

that this use of the clade functionality would destabilize the MCMC process leading

to invalid results.

Specification of fossil calibrations to Beast is through the clade mechanism. The

user specifies the members of the clade and the age for the MRCA of the clade. The

distribution for the calibration is specified as a prior on the clade.

Beast implements the Beagle[2] library for parallel computation of the likelihood.

Our own experiments on the squirrel data have shown an approximately 50% im-

provement in elapsed time for Beast when GPU support using the Beagle library is

enabled. If, as is the case in most model based phylogenetic programs, the compu-

tation of the likelihood consumes 90% or better of the total time, an improvement

of 50% seems modest. Improvements in other likelihood computations have been as
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high as 500%[14] in general likelihood computations and as high as 300% for phy-

logenetic likelihood[21]. This causes one to question whether the implementation is

the limitation or if the nature of the Beast model is limiting the scalability of the

highly parallel GPU model.

Even though both Beast and MCMCTree are actively used, MCMCTree is in-

tended for divergence time inference only. Therefore the statistical methods from

MCMCTree have been used as the basis for the methods in AncestralAge.

3.2.2 Other Divergence Time Programs

The RelTime package[83][84], developed by Tamura et al. seeks to provide a

simplified approach to divergence time by estimating the relative divergence times for

a phylogeny using only the branch lengths without calibrations. A greedy algorithm

processes from the root down to the leaves of a tree in a single pass estimating the

evolutionary rates for each edge. Edges with statistically unsupportable rates are

then revisited and re-estimated.

Of particular interest is the relationship between this algorithm and the algorithm

used for setting the initial values in the AncestralAge platform. The initial rates in

AncestralAge are also estimated using the branch lengths and then these values are

used with the fossil calibrations to estimate the initial ages for the inner nodes and

the root.

Heath et al. have developed the DPPDiv program [44][45][46] which implements

Bayesian divergence time inference using a Dirichlet process prior. This prior is

efficient to calculate but it is difficult to implement variable distributions on the

fossil calibrations using this model.
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3.3 The MCMCTree Program

The MCMCTree program performs Markov chain Monte Carlo inference using

the Metropolis-Hastings algorithm and Gibbs sampling. A single Markov chain is

implemented which limits the use of convergence diagnostics, most of which depend

on the relationship between multiple Markov chains. It is for this reason the pro-

gram’s author recommends performing two runs of the program to see if it reaches

stationarity at approximately the same set of divergence times.

The program supports two different methods of computing the likelihood, an

approximated method and exact computation. The approximated algorithm depends

on a predetermined set of gradient and second derivative values to allow for a Taylor

series approximation of the likelihood value without the need to examine the DNA

sequences. The gradient vector and second derivative (Hessian) matrix are computed

in a step prior to the actual divergence time computation.

Inputs to MCMCTree include all the items previously specified in Section 3.1. A

multiple sequence alignment for each loci to be processed is specified but not all taxa

need to be represented in all the alignments.

A large number of evolutionary models are available with all the models available

for computation using the approximated likelihood algorithm and a subset of the

simpler (fewer free parameters) models available to the exact likelihood algorithm.

A tree must be provided and its topology will not be modified by MCMCTree.

Branch lengths are not accepted and will be re-estimated by MCMCTree. We are

of the opinion that this re-estimation increases the time required for MCMCTree to

reach stationarity.

Fossil calibrations are specified as annotations to the input tree. The user is able

to specify the statistical distribution (and it’s parameters), upper and lower bounds
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for the calibration and whether the bounds are soft (the tail of the distribution may

extend past the bound) or hard (the tail of the distribution is limited at the bound.

The fossil calibrations are used to define the prior for the times of each branch.

A statistical model is provided for the rates to be inferred along with Bayesian

priors for the rates. The program supports three models for the rates:

1. A fully correlated rate model that follows the molecular clock hypothesis.

2. A fully independent rate model where each branch may have it’s own indepen-

dent rate.

3. An auto-correlated mode where each branch has a rate correlated to the rate

of it’s immediate ancestor.

The exact likelihood algorithm follows the pruning algorithm of Felsenstein[32].

It requires a loop over the DNA sequences each time the likelihood is computed and

has a computational complexity of O(lbn2 lg n). Due to the cost of this algorithm the

development of MCMCTree has focused on the approximated likelihood algorithm.

The approximated likelihood model is intended to reduce the computation of

the likelihood to a Taylor series approximation using the first and second derivative

values. The computation of the derivative values is accomplished through the use

of one of the other programs in the PAML suite, BASEML. The BASEML program

performs an MCMC computation on the likelihood function sufficient to generate

the gradient vector and the Hessian matrix. This process is performed for each

locus being processed and the results combined into a single file. Since the actual

DNA sequences are not used as part of the MCMCTree approximated likelihood

computation the complexity of the likelihood process is reduced to O(n2 log n). The

main issue with the approximated model is it’s dependence on the Taylor series
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expansion. As long as the true rates for the branches follow the approximate value

generated from the Taylor series the approximation is effective. But, when the rates

diverge from the molecular clock model they no longer fit the approximation well

and the accuracy of the model degrades. For this reason the approximated model

tends to loose accuracy as the number of taxa increases or for groups of taxa that

are known to be in violation of the molecular clock (e.g. the Mammals).

3.3.1 Software Engineering Issues in MCMCTree

While investigating the source of the 9 month MCMCTree run time estimate for

the primates dataset it became apparent that there were a number of issues with the

engineering of MCMCTree.

• MCMCTree was derived from the older BASEML and CODEML programs

using the same global data structures implemented in those programs. These

structures are not entirely appropriate to divergence time calculations and ad-

ditional structures ave been added to accommodate divergence time with the

consequence there are cases where one data field appears in multiple structures

with the specific use dependent on when the code was written. All major data

structures are arrays with, for example, parent and children node references in

tree structures represented as indexes into the arrays instead of memory point-

ers. This approach creates overhead to perform index to address conversion as

well as tying dynamic structures like trees to fixed arrays.

• During computation of the gradient vectors and Hessian matrices no informa-

tion is provided to give the user an idea how long the process will take. While

a detailed analysis has not been performed, experimental results indicate that

the computational complexity of BASEML is likely to be at best quadratic and,

in all likelihood, cubic or worse. For example, computation of the gradient and
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Hessian matrix with 100 taxa and 10,000 base pairs was completed in less than

10 minutes. But an attempt to compute the gradient and Hessian for a 3400

taxa study with over 40,000 base pairs gave no indication of when it would

complete after more than 24 hours of execution. Note, all experimental tests

were executed on the Texas A&M Brazos supercomputer using 2.5Mhz, 8 core

nodes each with 16GB of memory unless otherwise specified.

• Instead of using dynamic allocation, all of the data structures are of fixed,

constant size. This limits the capacity of the program but also implies rigorous

bounds checking on the structures. But, bounds checking was only partly

implemented creating numerous opportunities for data to overrun the arrays

and cause program crashes. In particular the array that was used to accumulate

statistics would not have been sufficient for the samples from the primates 9

month study and the run would have generated a segmentation fault processing

the statistics at the end of the run after a full 9 months of execution time.

• There are numerous dense blocks of code such as the following that are almost

impenetrable even after automated reformatting.

1 i f ( ( i r +1)%max2(mcmc . sampfreq , mcmc . sampfreq∗mcmc. nsample /1000)==0) {

2 i f (com . np<nxpr [0 ]+ nxpr [ 1 ] ) { nxpr [0 ]=com . np ; nxpr [ 1 ] = 0 ; }

3 for ( j =0; j<nxpr [ 0 ] ; j++) p r i n t f ( ” %5.3 f ” , mx[ j ] ) ;

4 i f (com . np>nxpr [0 ]+ nxpr [ 1 ] && nxpr [ 1 ] ) p r i n t f ( ” −” ) ;

5 for ( j =0; j<nxpr [ 1 ] ; j++) p r i n t f ( ” %5.3 f ” , mx[ com . np−nxpr [1 ]+ j ] ) ;

6 }

• There is a single large file containing not only function declarations but their

definitions as well that are included in all the PAML programs including MCM-

CTree. This module has numerous levels of conditional compilation making
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determination of the exact code path generated in an particular program diffi-

cult.

All of these issues indicated to us that, instead of adding new capabilities to

MCMCTree, a new framework should be developed.

3.3.2 Our Work with MCMCTree

In our initial research into divergence time, we made a number of enhancements

to MCMCTree to improve it’s performance[20].

1. Performance of the approximated likelihood algorithm

2. Program reliability and robustness

3. Program restartability

After implementing algorithmic enhancements in all three areas the primates

dataset was successfully dated in 14 days, nearly 20 times faster than the original 9

month (270 day) estimate.

3.3.2.1 MCMCTree Approximated Likelihood Algorithm

Based on performance profiling of the code it was apparent that the approximated

likelihood computation consumed over 99% of the CPU time required. Further, it

was the likelihood computation for new proposed rates (as opposed to other parame-

ters) that consumed the majority (95%) of the likelihood time. Analysis of the code

indicated that for each variable proposition during Gibbs sampling, the entire likeli-

hood tree was recomputed. But, detailed examination of the computations involved

showed that for a given rate proposition the only values changed would be those as-

sociated with the immediate parent and immediate children of the node whose rate

was being proposed.
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Figure 3.5: MCMCTree CPU times for Varying Numbers of Loci and Taxa. Results
are for synthetic data generated from random trees.

Based on this intuition I developed a new approximated likelihood algorithm that

only recomputed the likelihood for the immediate parent and immediate children of

the node being proposed and the adjusted the overall likelihood by the change in

value for the nodes updated.

Figure 3.5(a) shows the results of the new algorithm compared to the Yang’s old

algorithm on a set of synthetic data. This data was generated by first randomly
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creating a tree with the number of taxa required. The Seq-Gen program[66] was

then used to generate synthetic DNA sequences of fixed length (1000 base pairs

total) divided across varying numbers of loci. For Figure (a) the number of taxa was

held constant at 20 and the number of loci varied from 1 to 50. Each run was allowed

to continue for 100,000 MCMC steps. As can be seen the new algorithm performed

up to 15 times faster than Yang’s algorithm and the difference was continuing to

increase. Also, the performance of the new algorithm was increasing in a linear

fashion as would be expected since the likelihood computation was now independent

of the number of loci.

Figure 3.5(b) shows the performance of the new algorithm compared to Yang’s

old algorithm for varying numbers of taxa at 5 and 20 loci on the same synthetic

data. Once again the new algorithm significantly outperformed Yang’s old algorithm

with, in this case, a run time 6 times faster than the original at 20 loci and 200 taxa.

3.3.2.2 MCMCTree Reliability

In order to improve the reliability of the program comprehensive bounds checking

on all the fixed arrays was added. At this point the design of the data structures was

not changed but a future implementation should make use of dynamically allocation

instead of fixed arrays. Data structure should be designed for the needs of the

divergence time process, not just added to an existing set.

The statistics module was redesigned to use dynamic memory allowing for much

larger study sizes than had previously been possible.

3.3.2.3 MCMCTree Restart

As discussed, after the implementation of the new approximated likelihood algo-

rithm the run time for the primates dataset dropped to 14 days from the original 9

month estimate. But this is still a long time to run given the possiblity of an unre-
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lated system crash losing several days of work. We had the opportunity to mentor

an undergraduate research student at Vassar College in New York who undertook

the project of developing a checkpoint/restart capability for MCMCTree. This ca-

pability saved the state of the program at a user-specified interval (time or MCMC

steps) and could restart from any of the saved checkpoints.

3.4 Ancestral Age

As a result of our work with MCMCTree, it was apparent that there were signif-

icant opportunities for improvement in the implementation of the divergence time

algorithms. Yang, et al. had focused their research into the approximation methods

for likelihood. But, these accuracy of these methods degrades as the molecular clock

is violated[26][25]. We developed the subtree site compressed likelihood algorithm

discussed in the next chapter to allow for high performance computation of the exact

likelihood.

The computation of the prior on ages in MCMCTree was also a brute force

algorithm that did not consider either the structure of the data or the nature of

the MCMC process itself. In chapter 5 we present our prior of ages algorithm that

considers both the structure of the data and the implications of Gibbs sampling.
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4 ALGORITHMS FOR COMPUTING THE LIKELIHOOD OF A TREE

In many, if not most, phylogenetic programs, the computation of the likelihood

is the most expensive component of the inference process.

4.1 Motivation

 

Likelihood
O(n2scd2)

Prior of Ages
O(n2 lg n)

Prior of Rates
O(ng)

 
Prior of Nuisance

O(ng)

>>

>>

>>
n: Number of taxa
g : Number of genes
s: Number of sites
c: Number of gamma rate categories
d: Number of codes (e.g. TCAG)

Figure 4.1: Relative Costs of the Model Components. This figure shows a ranking
of the relative cost of each component of the computational model along with the
computational complexity of the component. The costs are all relative to a single
MCMC step as the cost per step does not vary significantly.

As shown in Figure 4.1, the likelihood consumes the majority of the CPU time

in divergence time inference. In tests on MCMCTree in excess of 95% of the total

CPU time is consumed by the exact likelihood computation.

This is in spite of the fact that the computational complexity of the likelihood

calculation on a gene tree, O(n2scds) (c is the number of gamma rate categories and
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d is the number of code values), is polynomial. The problem is two-fold; first the

values for the number of taxa, n, and number of sites, s, can be large and second,

the number of times this calculation is run in a single MCMC step can be large.

For example, in the case of the primates dataset, n is 349 and s is 61,249. Other

studies we have see include either larger numbers of taxa (over 4,000 in one case)

or much larger sequence lengths (up to 500,000). As the cost of DNA sequencing

decreases and the library of previously sequenced taxa[70][4] continues to increase

the size of studies will continue to increase.

The second factor, the number of times the computation is run in an MCMC

step, is a function of the number of parameters in the model. In the MCMCTree

and AncestralAge models the number of parameters np can be computed as follows:

np =(n0 − 1)+ Number of age parameters

g∑
i=1

(ni − 1)+ Number of rate parameters

(m+ 4)l Number of nuisance parametes (4.1)

where g is the number of independent genes, n0 is the number of taxa in the

species tree, ni is the number of taxa included in gene i and m is the number of

parameters in the evolutionary model (0 ≤ m ≤ 9).

As explained in section A, the full tree likelihood does not require computation for

changes to an age or a rate parameter. In these cases only a path from the changed

node to the root requires evaluation. The depth of a tree will vary depending on the

topology, with the worst case depth being n−1 in the case of a so-called “caterpillar”

tree and the best case being a balance tree with depth lg n so the average path length
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will be half of the depth of the tree, (n− 1)/2 or lnn/2.

For the age parameters, each parameter proposal will require computation of the

likelihood across all the genes. Assuming all taxa appear in all genes, this will require

a total of g calculations. Each calculation will be along an average of half the path

length to the root yielding a best case complexity for one calculation of:

Ca1 =
lg n

2
sgcd

2 (4.2)

where sg is the number of sites in the gene. Across all the genes the number of

sites will sum to s giving:

Ca =
lg n

2
sgc2 (4.3)

as the computation complexity for the computation of a single age parameter.

So, for the all age parameters in a species tree, the computational complexity will

cost per parameter time the number of parameters:

O(Lages) = (n− 1)
lg(n)

2
scd2

' scd2n log n (4.4)

For rate parameters, the complexity will be similarly determined as the number of

parameters times the cost per computation. Assuming again that every taxa appears

in every gene, the number of calculations will equal g(n− 1).
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O(Lrates) = g(n− 1)
log(n)

2
sgcd

2

' gsgcd
2n log n

' scd2n log n (4.5)

Finally, for the nuisance parameters the complexity will equal the number of

parameters times the cost of a full likelihood computation at the gene:

O(Lnuisance) = (m+ 4)g
n

2
scd2

' mgscd2n (4.6)

Therefore, for the best case the overall complexity of the likelihood computation

for an MCMC step is:

O(L) = O(Lages) +O(Lrates) +O(Lnuisance)

= scd2n lg n+ scd2n lg n+mlscd2n

' scd2n lg n (4.7)

In the worst case, the calculations are the same with the exception that the lg n/2

path to the root is replaced with half the “caterpillar” distance n/2:
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O(L) = scd2n2 + scd2n2 +mgscd2n

' scd2n2 (4.8)

It should be remembered that this computation is per-MCMC step and the num-

ber of steps is typically in the hundreds of thousands or better.

It should be apparent from this analysis that the primary focus for any improve-

ments in performance or efficiently should be the likelihood computation. There have

been a number of different approaches to reducing the cost of the likelihood com-

putation including algorithmic improvements [76][32], approximation methods [25]

and parallelization of the process [5][51][2][35]. For the most part these approaches

have been focused on the problem in the context of phylogenetic inference wherein

the topology of the tree is being inferred along with the edge lengths. In the context

of divergence time inference where the tree topology is fixed, there has been far less

research done[21].

In any optimization problem there are generally three methods for improving

performance:

1. Reduce the time required for a particular operation.

2. Reduce the number of times an operation is performed.

3. Devise a method for approximating the results of the operation.

In the case of likelihood the computation of likelihood at a particular point in

the tree is straightforward, our research has focused on reducing the number of times

the basic computation is performed.
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4.2 Likelihood Computation on a Tree

The likelihood of a species tree is computed as the produce of the likelihoods of

each of the genes included in the analysis:

L =
l∏

i=1

Li (4.9)

This value is typically computed as the sum of the natural logarithms of the

likelihoods at each gene. As the size of the tree increases, the likelihood values

become very small. The use of the natural logarithm of the value provides protection

from numeric over and under flows.

lnL =
l∑

i=1

lnLi (4.10)

Within a gene, the likelihood is computed as the product of the likelihood for

each site. Once again, this is typically computed as the sum of the logarithms of the

individual sites giving the species tree likelihood as:

lnL =
l∑

i=1

si∑
j=1

lnLi,j (4.11)

where si is the number of site in gene i.

To compute the likelihood at a site in the alignment, two components are required:

1. The alignment values.

The values for the associated taxa from the column in the multiple sequence

alignment corresponding to the site of interest. For example, in Figure 4.2 at

some site i the Golden Squirrel has a “T” in the alignment and the Groundhog

has a “C”.
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CTTACACATGCAAGAATCCCCAGTGA--ACCTCT---

19.50

Figure 4.2: Likelihood for a Pair of Leaf Nodes. At some site i, the Golden Squirrel
has a “T” in it’s DNA sequence and the Groundhog has a “C”. The likelihood that
the ancestor of these creatures had the various DNA codes is computed using the
code values and the TPMs.

2. A transition probability matrix (TPM).

The TPM defines the probabilities associated with a site changing from one

code value to another. The matrix is an expression of the evolutionary model

for a specified edge length. For example, in the Kimura 1980 model the α

and β parameters define the rates at which two different types of changes,

transitions and transversions, occur. The actual probabilities of these events

occurring is dependent on the length of the edge. A longer edge will have a
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greater probability of a change occurring than a shorter edge.

The relationship between the TPM and the rate matrix is defined by:

P = eQb (4.12)

where P is the TPM, Q is the rate matrix and b is the edge length.

For our purposes the edge length is defined as the rate of evolution over the

time associated with the edge, r× t. The important implication of this is that

any time the rate or time changes for a edge, the TPM needs to be computed.

The result of this computation is a vector of length c (4 for DNA). We will refer

to this as the likelihood vector.

In Figure 4.2 the likelihood vector for the MRCA of the Golden Squirrel and the

Groundhog is being computed given the DNA codes at the site for the taxa and the

TPMs computed for the individual edges leading to the MRCA. At the MRCA, the

vector is computed such that each entry in the table corresponds to the likelihood

that the ancestor had the associated DNA code as it’s value. For example, in this

case the likelihood that the MRCA had a “T” at the site is 0.1110.

To compute the overall likelihood at a site, the vectors are computed for each

ancestral node in a depth first traversal with the vector at the root of the tree giving

the likelihoods of each of the code values at the site. This is shown in Figure 4.3

across a set of five of the Marmots. Each edge will have a unique TPM corresponding

to it’s rate and time values. At the root of the tree, the product of the likelihoods

for each of the codes (actually the sum of the logs of the likelihoods) is computed

and returned as the likelihood for the overall site.

To compute the value at a specific ancestral node, a series of products and sums
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Figure 4.3: Likelihood for a Site. Values are computed bottom up in the tree with
the value for the overall site being the product (or sum of the logs) of the values for
the DNA codes.

is computed. Figure 4.4 demonstrates the computation at the MRCA of the Golden

Squirrel, Groundhog and the Prairie Dog. For a particular code value in the likelihood

vector for the MRCA (“C” in this example), the product of the likelihoods for the two

children are computed. In the case that the child is another inner node, the specific

value in the likelihood vector is computed as the sum of the likelihood that any of

the codes in the child’s likelihood vector would change into the code of interest. For

example, in this case, the likelihood that the child has a “T” at the site is multiplied

by the probability of a “T” changing into “C”, the code of interest. This is summed

with the values for a “C”, “A” and “G” respectively changing into a “C”.

If the child is an existing species, the probability is simply pulled from the TPM.
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Figure 4.4: Likelihood at an Inner Node. For a given position in a likelihood vector,
the likelihood is computed as the product of the right child’s likelihood and the left
child’s TPM value.

In this case the Prairie Dog has an “A” in at the site. The value used to compute the

MRCA’s “C” likelihood is the probability that the Prairie Dog’s “A” would change

into a “C”.

In terms of operations performed, each position in a likelihood vector will re-

quire a minimum of one multiplication (for the product of the children’s likelihoods).

Additionally, for each child that represents an inner node, and additional 4 multi-

plications (assuming DNA) and three additions are required. Therefore the total

operations required to compute a likelihood vector at a site (still assuming DNA) is

either 4 when the children are both leaf nodes, 4× (1 + 2× (4 + 3)) = 60 when the

children are both inner nodes and 4× (1 + (4 + 3)) = 32 when one child is a leaf and
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Figure 4.5: Dimensions of the Likelihood Computation. Gamma rate categories are
shown adding an additional dimension to the likelihood vectors and TPMs.

the other an inner node.

To complete the discussion, there is one additional factor to consider. Typically,

it is modeled that the rate of evolution may vary within a DNA sequence. This is

usually modeled as a gamma distribution. For a true continuous model, it would be

necessary to integrate the likelihoods across the gamma distribution at every site.

Research has shown[95] that the use of a discrete approximation to the continuous

distribution produces acceptably similar results. This is accomplished by dividing

the gamma probability distribution into categories of equal probability. The mean

value for each of the categories is then used as an approximation to the value for the

entire category.
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--TATACATGCAAGCATCCCCGGTGAGAACCTCTATA
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TCTACACGTGTAAATG-ATTCGGCGAGAACCCTCC--
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112311132111111121111111111111

Figure 4.6: Full Column Compression. Columns 3 and 9 have identical values for all
taxa and therefore are compressed into a single column with a count of 2.

In Figure 4.5 the likelihood vectors and TPMs have been extended with an ad-

ditional dimension to accommodate the discrete gamma categories.

4.3 Subtree Site Compression

Most phylogenetic and divergence time programs support a simple compression

technique wherein the sites in the alignment are examined and duplicate sites com-

pressed. Each site in the alignment has a counter added to indicate the number of

copies of the site found. During the summation of the logs of the site likelihoods,

the log value is multiplied by the counter to generate the equivalent of repeatedly

computing the same value for the multiple copies of the site. In Figure 4.6 sites 3

and 9, for example, have identical values for every taxa and there the counter for

that pattern is set to 2.

This technique provides some improvement in the overall performance. For ex-

ample, the 61,249 sites in the 79 genes included in the primates dataset compress

to 32,789 unique sites (47% compression). The problem is that as the number of

taxa in an alignment increases, the probability of finding duplicate sites decreases.

In the primates dataset the highest compression ratios appeared in the genes with
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Figure 4.7: Subtree Site Compression. At the lowest level the MSA for the Groundhog
and the Golden Squirrel compresses to just 12 sites. At the next level the compression
is to 16 sites.

the fewest taxa.

The advantage to this technique is that is it independent of the tree topology.

This type of compression has been applied in virtually all phylogenetic and divergence

time programs. Our insight was that if the topology of the tree is fixed, as is the

case in divergence time inference, there is a similar approach could be taken to the

compression of subtrees.

Consider an alignment containing only a pair of the taxa from a larger tree. If two

different sites in this two taxa alignment have the identical values, they will produce

the same likelihood vectors since the edge lengths (and therefore the TPMs) will be

the same. Therefore there is no need to repeat the computation for any subsequent

site containing the same pattern for those two taxa. This approach, subtree site

compression, can be applied to every subtree in the gene.

As an example consider two of the taxa from our Marmots study, the Golden
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Squirrel and the Groundhog. In Figure 4.7 just the two sequences for these species

are shown and the results with the results of applying subtree site compression. The

35 sites in the alignment compress to just 12 unique combinations, a 66% reduction.

Going up another level in the tree, if the Prairie Dog is added to the alignment and

subtree compression performed again, the 35 sites are reduced to 16 sites, a 54%

reduction.

Using subtree site compression, it can be seen that the maximum number of

combinations appearing in the compressed set at any inner node will be min(5n, s)

where n is the number of leaves in the subtree and s is the length of the original

alignment. Obviously 5n will quickly exceed even large numbers of sites but, every

inner node whose children are both leaves will have a maximum of (c + 1)2 where c

is the number of codes (4 in the case of DNA). One more than the number of codes

is used to allow for the “unknown” or missing data code. In a balanced tree n/2 of

the n− 1 inner nodes will satisfy this condition.

The algorithm for subtree site compression adds two addition entities at each

inner node in the tree; a hash table and a site lookup table. The hash table is used

to determine whether, as the subtree alignment is scanned, the code combination has

been seen before. The site lookup table is used to index into the likelihood vectors

and TPMs for the descendants of the node.

At a given inner node in the tree, the sites corresponding to an alignment of only

those leaves that are descendants of the node are considered, one at a time. The

concatenation of the code values for the leaves at the site is used as the key into the

hash table. If the key already exists in the hash table, no further processing is done.

If the key does not exist in the hash table it is added and an entry is appended to

the site lookup table. This index of the new entry in the site lookup table is set as

the value pointed to by the hash table entry.
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Figure 4.8: Subtree Site Compression Algorithm. The structures supporting the like-
lihood calculation for a set of three species is shown. At the lower level, the ancestor
of the Golden Squirrel and the Groundhog has three unique site combinations shown
as three entries in the hash, site lookup and likelihood vectors. The ancestor of all
three species has four unique combinations in it’s alignment. The entries in the site
lookup table pointing to the descendant of the Golden Squirrel and the Groundhog
contain indicies into the likelihood vectors for the descendant.

The site lookup table entry contains two fields, one for each of the descendants of

the node. These fields provided the indices into the descendants likelihood vectors or

TPMs. To compute the likelihood for an alignment position on an inner node, the site

lookup table entries for the position are used to get the index into the descendants

likelihood vector (if an inner node) or the descendants TPM (if a leaf node). If

the descendant is a leaf node, the index points to the row in the descendants TPM
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corresponding to the value of the site in the leaf. If the descendant is an inner node,

a key is constructed containing the site values for only those leaves that are under

the descendant. This key is then used to access the descendant node’s hash table

and retrieve the index value in the descendants likelihood table.

At the root node there is one additional field in the site lookup table, the repeat

count as in the original site compression algorithm.

As an example, if we start at the Golden Squirrel and Groundhog in Figure 4.8

their ancestor will have a hash table, site lookup table and likelihood vector. An

alignment of five columns of the sequences from each of the taxa is shown. Out of

these five site, there are only three unique combinations, AC, GG and CA; therefore

the hash table will only contain those three entries. The first row in the site lookup

table will point to the “A” row in the TPM for the Golden Squirrel and the “C”

row in the TPM for the Groundhog. Similarly the second and third rows in the site

lookup table will point to the appropriate rows in the descendants TPMs.

As the next level up in the tree, the ancestor of three species, the Golden Squirrel,

the Groundhog and the Prairie Dog is shown. In this case, there four entries in

the hash table for the level corresponding to the four unique values appearing the

alignment of the three species. The first site lookup table row contains an index into

the likelihood vector for the Golden Squirrel and Groundhog’s descendant vector

corresponding to that portion of the key associated with the Golden Squirrel and

Groundhog (AC). The other half of the first site lookup table row contains the

index of the “T” row in the Prairie Dog’s TPM.

4.4 Analysis

At any inner node in a tree the subtree site compression is limited by two factors;

first the total length of the sequence alignment and second the number of leaves in
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Figure 4.9: Impact of Tree Topology on Subtree Site Compression. In the balanced
tree on the left, each of the nodes b1 and b2 will have a maximum of 52 = 25 rows
in their likelihood vectors and the root, b3 will have a maximum of 54 = 625. In the
unbalanced tree on the right, the lowest inner node u1 and the root u3 will have the
same maximums as the balanced tree (52 = 25 and 54 = 625), but the other inner
node u2 will have a maximum of 53 = 125 rows in it’s likelihood vector.

the subtree. In the worst case, the number of rows in the likelihood vector at a

subtree site compressed node will be the number of codes plus one (to account for

the “unknown” or “missing” code value) taken to the power of the number of leaves.

For example, in the case of an inner node whose children are both leaves using the

4 DNA codes, the most rows that will exist in the likelihood vector is (4 + 1)2 = 25

(see Figure 4.9).

The maximum number of rows in any given likelihood vector for a DNA coded

alignment is therefore the minimum of the sequence alignment length, s, and 5n

where n is the number of taxa in the subtree.

Given the exponential growth in the maximum number (5n) associated with the

leaf count, the maximum will quickly become limited by the sequence alignment

length with performance no worse than the existing site compression method. But,

in a balanced tree, n/2 out of the n − 1 total inner nodes will have two children

and in these cases the leaf count exponent will, in all probability, be significantly
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Site Compression Subtree Site Compression

Total Aligned Length 61,249 61,249
Total Likelihood Computations 4,427,618 438,138
Floating Point Operations/Computation 32 32

Total floating point operations 141,683,776 14,020,416
Estimated time on current hardware 0.109 sec 0.011 sec

Table 4.1: Comparison Between Site and Subtree Site Compression. The time re-
quired to compute the likelihood with the commonly used site compression algorithm
and out subtree site compress is shown. Time estimates were computed on a 3.0GHz
Intel Core i7 based system.

smaller than the sequence alignment length. Using DNA again, even with three or

four leaves there is a good chance that the maximum for the leaf exponential would

be less than the maximum for a typical sequence alignment.

At the other extreme, in a completely unbalanced “caterpillar” tree, the sequence

length would quickly dominate the worst case and the impact of subtree site com-

pression would be limited to the lowest one (52), two (53) or possibly three (54)

nodes.

Using the primates data, we will compare the performance of current existing site

compression with our subtree site compression algorithm.

As shown in Table 4.1, there are a total 10,792 inner nodes in the 79 genes with

a total sequence length of 61,249 sites compressed to 32,789 unique sites. Factoring

in the individual sequence length for each gene, a total of 4,427,618 site likelihood

calculations will be performed to fully compute the likelihood for the species tree.

With an average of 32 floating point operations (flops) per site likelihood calculation,

a total of 141,683,776 flops will be performed to compute the likelihood for the tree.

The number of leaf edge calculations (n) will be roughly equal to the number of

inner node edge calculations, n−2, so the average flops to compute the likelihood at a

particular node and site will be considered the average of the leaf (4) and inner node
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(60) values; 32. Using this value the calculation of likelihood across the entire tree

will require 141,683,776 flops. Running on a modern desktop machine (3.0GHz Intel

Core i7) this has been experimentally shown to require, on average, 0.109 seconds.

For the subtree site algorithm, the 10,792 inner nodes in the 79 genes compressed

to a total of 438,138 positions in the various likelihood vectors for this same number of

site likelihood computations. Using the same average flops for a calculation the total

flops to compute the tree likelihoods is only 14,020,416. Experimentally, the time

required for this computation using the same hardware as before is 0.011 seconds, a

90.1% reduction over the site compression alone.

4.5 CPU and GPU Algorithms

The initial implementation of the subtree compressed likelihood algorithm was

a serial, CPU based, algorithm. We hypothesized that a GPU algorithm could

provide even better performance than the CPU algorithm. To test this hypothesis

we developed a GPU implementation of the algorithm. In this implementation we

endeavored to keep all the likelihood related data on the GPU as data transfer from

memory to the GPU memory is a known bottleneck in GPU processing. We therefore

implemented the calculation of the TPMs and the likelihood vectors on the GPU with

only the final likelihood value for a gene tree being retrieved from GPU memory.

Performance testing of the version indicated that the performance of the GPU

version was on the order of 5x slower than the CPU version. Subsequent analysis

indicated that the problem was that the compression allowed by the subtree site

compression algorithm reduced the width of the likelihood vectors computed on the

GPU such that any gain from parallel processing of these sets was overshadowed by

the cost of initiating the computation on the GPU.

We have considered the possibility of computing rate parameter proposals for the
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entire set of genes in parallel. Looking at the statistical model, the computation of

the acceptance ratio for a rate parameter proposal is dependent only on values in the

gene tree. Therefore it should be possible to compute rate parameters across all the

gene trees in parallel. At present no implementation exists to allow this approach to

be tested.

4.6 Summary

Our subtree site compression algorithm has been shown to significantly reduce the

computational requirement for likelihood calculation. While the cost of an individual

likelihood calculation has not changed, we have been able to reduce considerably the

number of times the calculation is run.

While the most benefit will come when the tree is balanced, there is some benefit

in even the most unbalanced cases. In practice the biological datasets we have worked

with are neither completely balanced nor completely unbalanced. In practice, as

experimental results have shown on the primates dataset, there can be a considerable

improvement (90% in this case) in the efficiency of the likelihood calculation.
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5 ALGORITHM FOR COMPUTING THE PRIOR PROBABILITY OF AGES

The Bayesian prior on the ages of the nodes in the tree ties the fossil calibrations

into the statistical model. There has been some discussion of the use of other non-

Bayesian methods for the computation of divergence time[26] but incorporation of

fossil data into these models has not been successfully accomplished. The use of a

Bayesian prior for fossil calibrations is a natural and easy to comprehend method of

incorporating the calibration information in the model. The fossils are actually prior

knowledge about the model.

5.1 Motivation

New values for the prior are only required when a new node age is proposed and

therefore only computed n− 2 times for each MCMC iteration. The computational

complexity per MCMC step not excessive either, O(n2 log n). The problem is that

the constant multiplier for the computation is large. A large computation is required

for each node in the tree. In the MCMCTree the computation of the likelihood

consumes approximately 93% of the total time, the next largest component of the

time is the prior of ages which requires approximately 5% of the total time. In

AncestralAge with our high performance likelihood algorithm the portion of the

total time consumed by the prior of ages is 31%, still less than the likelihood but

far larger than the 13% required for the priors of the rates and nuisance parameters

combined.

In the case of likelihood our approach to optimization was to reduce the number of

times a simple calculation was performed. In MCMCTree the approach was to add an

approximated likelihood computation. For the prior of ages, since the computation

is performed relatively few times, the approach has been to reduce the cost of an
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individual computation of the prior.

5.2 Statistical Model

The challenge in the design of the prior is to include the fossil calibrations in such

a fashion that uncertainties in the fossil dates can be expressed in the model. To this

end both MCMCTree and Beast implement priors based on a birth-death process

model with species sampling (BDS) [54][67][90].

Other models have also been used. Beast also implements a prior based of a birth

only “Yule” model[47] that is a simplification of the birth-death model. Probably

the most studied alternative is the use of Dirchlet process prior (DPP) originally

devised by Kishino, Thorne and Bruno[56] and most recently applied in the DPPDiv

program by Heath[45]. The key issue with the DPP model is the inability to specify

arbitrary statistical distributions for the fossil calibrations. In DPP models the path

from each leaf to the root is broken into segments modeled using the multivariate

Dirichlet distribution. This implies homogeneity in the specification of the calibration

points. But if the information about the calibration points varies, as it will given the

variability of fossil dating methods, this prior loses statistical power as the variation

among fossils increases.

The BDS model is parameterized using the following three parameters:

• The birth rate per linage λ.

• The death rate per linage ν.

• The sampling percentage ρ.

Using notation similar to that of Yang[94] the process is conditioned on the

number of taxa n and the age of the root tr. Non root nodes tr̄ are grouped into two

categories with c nodes that have fossil calibrations tc and n− 2− c nodes without
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fossil calibrations tc̄. The prior is then expressed as the joint density of the root node,

the calibration nodes and the non-calibrations codes conditioned on the calibration

nodes, f(t) = f(t1)f(t)f(tc̄|tc).

If an estimation of the root age is available either through a calibration or another

estimate, it can be included in the calculation of the calibration node density. If an

estimate is not available for the root, it’s density can be computed from the BDS

process using the number of existing species and the parameters of the BDS model.

Specifics of this calculation can be found in in Yang, et al.’s paper[94].

5.2.1 Calculation of the Calibration Node Density

The density of the calibration nodes is calculated as the product of the densities

of the individual nodes:

f(tC) =
x∏
i=0

pi(ti) (5.1)

where pi(ti) is the probability of age ti according to the probability density func-

tion (PDF) associated with the calibration.

Since the individual node calculations are independent, each calculation can be

specified using distinct distributions and parameters. Similar to the support in

MCMCTree the AncestralAge platform supports a number of specifications for the

individual priors:

1. Lower bounds where the node time t will be greater than the bound specified

tL, with a small probability pL (default = 0.025) that the node time will be

less than the bound. Since the upper age is unspecified, the area beyond tL is

modeled as an improper uniform prior. The area before tL is modeled with a
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sharp decay using a factor θ = log(0.1)/ log(0.9).

f(t) =


pL

θ
tL

(
t
tL

)θ−1

t < tL

pL
θ
tL

t ≥ tL

(5.2)

2. Upper bounds where the node time t will be less than the bound specified tU ,

with a small probability pU (default = 0.025) that the node time will be greater

than the bound. Since the lower age is zero, the area below tU is modeled as

an proper uniform prior. The area beyond tU is modeled with a sharp decay

using a factor θ = (1− pL)/(pLtU) to allow f(t) to be continuous.

f(t) =


1−PU
tU

t < tU

pUθe
−θ(t−tU ) t ≥ tU

(5.3)

3. Both upper and lower bounds where the node time t will be within the specified

bounds (tL < t ≤ tU) with, once again, a small probability pB that t will be

outside of either of the bounds. A default of 0.025 is used as the default that

t will be less than tL and similarly that t will exceed tU . The area between

the bounds is modeled as a proper uniform prior. The area below tLis modeled

using a power decay with a factor θL = (1−pB)/(pB(tU− tK)). The area above

tU is modeled with an exponential decay with a factor θU = (1−2pB) (pB(tU −

tK)) that .
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f(t) =


pB

θL
tL

(
t
tL

)θ−1

0 < t < tL

1−2pB
tU−tL

tL < t ≤ tU

pBθUe−θU (t−tU ) t > tU

(5.4)

4. A gamma prior where the density is specified with the common gamma α and

β parameterization.

f(t) =
βα

Γ(α)
tα−1e−βt (5.5)

5. A normal prior where the density is specified with the usual µ and σ parame-

terization.

f(t) =
1√
2πσ

e−
(t−σ)2

2σ2 (5.6)

5.2.2 Calculation of the Non-Calibration Node Density

The conditional density of the non-calibration nodes f(tc̄|tc) is derived using the

theory of order statistics[18]. As shown by Yang[90], the speciation times under the

BDS model are order statistics from the kernel:

g(t) =
λp1(t)

vt1
(5.7)

where p1(t) is the probability that the linage starting at time t will leave exactly

71



one descendant in a sample of size ρn.

p1(t) =
1

ρ
P (0, t)2e(µ−λ)t (5.8)

P (0, t) is the probability that a linage starting at time t will leave at least one

descendant in a sample of size ρn.

P (0, t) =
ρ(λ− µ)

ρλ+ [λ(1− ρ)− µ]e(µ−λ)t
(5.9)

and

vt1 = 1 =
1

ρ
P (0, tr)e

(µ−λ)tr (5.10)

normalizes the density using the root age.

It is useful to note that in the case where µ = λ these calculations simplify

considerably.

Using this kernel the conditional distribution of the non-calibration nodes can be

computed as

f(tc̄|tc) =
fBDS(tc, tc̄|tR, n)

fBDS(tc|tR, n)
. (5.11)

The joint density of the node ages under the BDS model is computed as

fBDS(tc, tc̄|tR, n) = (n− 2)!
n−2∏
i=1

g(ti) (5.12)

To determine the marginal density of the calibration nodes fBDS(tC), the cumu-

lative density function (CDF) of the kernel is used:
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G(t) =

∫ t

0

g(x)dx (5.13)

Therefore the marginal density of the calibration nodes given the root and number

of nodes is

fBDS(tc|tR, n) =
(n− 2)!∏c

1 h(i)

C∏
1

G′(i) (5.14)

where

h(i) =


(Ri − 1)! i = 0

(Ri −Ri−1 − 1)! 0 < i < c

(n− 2−Ri−1)! i = c

(5.15)

and

G′(i) =


G(ti)

Ri−1 i = 0

(G(ti)−G(ti−1))Ri−Ri−1−1 0 < i < c

(1−G(ti−1))n−2−Ri i = c

(5.16)

where R defines a list containing the rankings of the ages of all c calibration

nodes among the n− 2 node ages.

By expanding equation (5.11) and canceling terms, the conditional density of the

non-calibration nodes given the calibration nodes can then be calculated as

f (tc̄|tc) =
s−2∏

i=1,i 6∈c

g(ti)

∏c
i=0 h(i)∏c
i=0G

′(i)
(5.17)
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Figure 5.1: Building the Sorted Age List. During a depth-first traversal of the species
tree, the ages of the nodes are added to a list. Entries in the list that are associated
with calibration nodes are marked as such and the list is sorted.

In practice, this is computed using the logs of the values

ln f (tc̄|tc) =
s−2∑

i=1,i 6∈c

ln g(ti) +
c∑
i=0

lnh(i)−
c∑
i=0

lnG′(i) (5.18)

5.3 Algorithm Description

In MCMCTree the prior of ages is computed through a depth first traversal of

the species tree each time a new age proposed. During the traversal nodes are added

to the list of ages as shown in Figure 5.1.

If a calibration node is encountered during the traversal, the contribution of

the node to the calibration node density (section 5.2.1) is computed. As shown in

Figure 5.2 the PDF of the current age of the calibration node is computed from the

distribution specified. The product of these probabilities is then computed as the

sum of the natural logarithms of the values.
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Figure 5.2: Computing the Density of the Calibration Nodes. This figure shows an
example of the computation of the density of a pair of calibration nodes. During
a traversal of the species tree, the current ages of nodes with fossil calibrations are
used to determine the PDF associated with the fossil distribution. The logs of these
PDF values are summed to arrive at the contribution of the calibration nodes to the
prior.

If a non-calibration node is encountered, the BDS PDF value for the age is deter-

mined and it’s log summed to the non-calibration density (the first term in Equation

(5.18).

Once the traversal is complete, the list of ages is sorted in ascending order allowing

the ranks of the calibrations nodes to be determined. The area under the PDF curve

is then divided into segments. The dividing points for the segments are the ages of

the calibration nodes as shown in Figure 5.3. The density used in the computation of

the conditional probability is computed as the ratio between the factorial of number

of non-calibration nodes in the segment (the difference between the ranks of the

calibration nodes bounding the segment) and the area under the PDF curve for the

segment raised to the power associated with the number of non-calibration nodes in

the segment.

The root is excluded from this calculation even if it has a calibration but it’s
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Figure 5.3: Computing the Conditional Probability of the Non-Calibration Nodes
Given the Calibration Nodes. The g(t) function is computed for each non-calibration
node. The marginal density of the calibration nodes is computed by dividing the
area under the PDF curve of the BDS distribution into segments with the dividing
points defined by the ages of the calibration nodes. The relative weight given to the
segment is defined by the number of non-calibration nodes in the segment.

age is used as the upper limit of the BDS distribution. The number of segments is

therefore c+1. For the first segment, zero is used as the lower bound on the segment.

Computationally, factorials are computed by taking advantage of the fact that the

gamma function value for a positive integral value is the factorial. The log gamma

function provides an efficient computation of the log of the factorial while reducing

the chance of numeric underflows.

A closed form solution to the integral of the g(t) function is available as

G(t) =
ρλ

vtR
× 1− e(µ−λ)t

ρλ+ [λ(1− ρ)− µ] e(µ−λ)t
(5.19)

which simplifies to
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Figure 5.4: Our Prior of Ages Data Structures. A prior node (PN) is associated with
each species tree node. The age pointer vector (APV) is built during replication.
Each segment of the PDF of the BDS distribution has entries in the conditional
density vector (CDV) and conditional density function vector (CDFV).

G(t) =
(1− ρλtR)t

tR(1 + ρλt)
(5.20)

in the case λ = µ.

5.3.1 Our Prior of Ages Algorithm

The key to out new prior algorithm is a set of data structures that allow inter-

mediate values to be retained across computations.

These structures are shown in Figure 5.4. All structures are built during the

replication process (Section A and Figure A.2). The structures are populated during

the initial value process and will persist throughout the execution of the model.

Each non-leaf node in the species tree will have an associated prior node (PN).

A common prior node class is further extended into non-calibration and calibration

node classes depending on whether the species tree node has an associated fossil

calibration. Instead of a list of ages a vector of pointers (APV) to the PNs is main-
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tained. By maintaining this list as a vector it is possible to compute the rank value

by subtracting indicies into the vector without the requirement to traverse a list.

A reference to the parameter containing the current age of the node along with

the index of the node in the APV is held in each PN instance. The non-calibration

subclass extends this information with the addition of a pointer to the function

responsible for computing the g(t) value along with the log of the current g(t) function

value.

A pair of vectors is associated with the segments of the birth-death-sampling

PDF. Each segment will have an entry in the conditional density vector (CDV)

as well as an entry in the conditional density function vector (CDFV). Each CDV

entry will contain the current values of the h(i) and G′(i) functions (the second

and third terms in Equation (5.18) associated with the segment. The CDV entry

will also hold pointers to the starting and ending prior node instances. A CDFV

entry is associated with but independent of a CDV entry as it’s information is static

throughout the execution of the model while the CDV entry contents are volatile. The

CDFV entry contains pointers to the functions used to compute the h(i) and G′(i)

values for the segment. In reality these functions are functional objects (functors)

that are initialized depending on the position of the CDFV entry in the CDV list. For

example, the first h(i) CDFV entry will always compute it’s function value with the

knowledge that it’s the first segment. This is particularly important for the first and

last CDFV entries as their computations differ from the computations for “middle”

nodes (see Equations (5.15) and (5.16)).

Computation of the prior is handled as transactions against the data structures

with the goal being minimization of the computation required for any individual

transaction. A new proposed age for a node in the species tree triggers the trans-

actions. Transaction are categorized depending on whether the node with the age
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(b) Changed State of the Data Structures

Figure 5.5: Change in the Age of a Non-Calibration Node. In the figure the first PN
in the APV has a new age proposed. This causes a shift in the position of the node
in the APV. The only computation required is to calculate the change in the g(t)
value for the node.

proposal holds a fossil calibration.

• A change in the date of a non-calibration node that does not affect the ordering

of the APV.

In this case, none of the rankings of the calibration nodes change and therefore

79



t: 3.50
fn* g(t)
ln(g(t))

t: 5.92
fn* G(t)
ln(G(t))

Age
Pointer
Vector

t: 10.33
fn* G(t)
ln(G(t))

Prior
Nodes

Conditional
Density
Vector

ln(h(4)), ln(G′(0))

ln(h(1)), ln(G′(1))

ln(h(2)), ln(G′(2))

Conditional
Density

Function Vector

fn* h(i1), fn* G′(0)

fn* h(i2), fn* G′(1)

fn* h(i3), fn* G′(2)

0

0

21.00

19.50

10.33
9.73

5.92

5.78

5.63

3.50

3.31

(a) Initial State of the Data Structures

t: 3.50
fn* g(t)
ln(g(t))

t: 5.70
fn* G(t)
ln(G(t))

Age
Pointer
Vector

t: 10.33
fn* G(t)
ln(G(t))

Prior
Nodes

Conditional
Density
Vector

ln(h(3)), ln(G′(0))

ln(h(2)), ln(G′(1))

ln(h(2)), ln(G′(2))

Conditional
Density

Function Vector

fn* h(i1), fn* G′(0)

fn* h(i2), fn* G′(1)

fn* h(i3), fn* G′(2)

0

0

21.00

19.50

10.33
9.73

5.78

5.70

5.63

3.50

3.31

(b) Changed State of the Data Structures

Figure 5.6: Change in the Age of a Calibration Node. In this example the age of
the first calibration node is changed. The position of the PN in the APV changes
requiring calculation of the CDV entries that border the calibration’s PN.

there is no change to any of the values in the CDV. The new value for the prior

can be computed as the old value updated with the change in the g(t) value

associated with the single non-calibration node.
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(b) Changed State of the Data Structures

Figure 5.7: Change in the Age and Position of a Calibration Node. In this example
the age of the first calibration is changed such that the ordering of the calibration
PNs is changed. In this case all CDV entries that reference either of the calibration
PNs require recomputation.

ln f(t) = ln f(t) + ∆lng(t) (5.21)

• A change in the date of a non-calibration node that changes the ordering of
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the APV.

In this case, the new node age is either younger or older than one or more

nodes in the APV. If the movement of the node does not alter the ranking

of the calibration nodes the order of the entries in the APV is changed. The

remainder of the transaction is handled the same as for the previously discussed

change that did not affect the ordering. In other words if the new node age

did not change the position of any calibration nodes in the APV. This case is

shown in Figure 5.5 for the first non-calibration node.

If the new node age does cause a change in the position of one or more cal-

ibration nodes the contents of both CDV entries that border on the changed

calibration node(s) need to be recomputed.

ln f(t) = ln f(t)+

∆ ln g(t)+

∆ lnh(i− 1) + ∆ lnh(i)+

∆G′(i− 1) + ∆G′(i) (5.22)

• A change in the date of a calibration node that does not change the ordering

of the APV.

The PDF value for the new calibration date is computed whenever a new date

is proposed for a calibration node. In the case where the ordering of the APV is

not changed the new value for the calibration nodes G(t) function is computed

and the values for the G′(i) values for the two CDV entries that refer to the

calibration node are recalculated. Note that the h(i) functions do not require

82



recalculation since the ranking of the nodes has not changed.

ln f(t) = ln f(t)+

∆ ln f(tPN)+

∆G′(i− 1) + ∆G′(i) (5.23)

The G′(i) value as shown in Equation (5.16) is computed using the difference

between the CDF values for the bordering CDV segments. This value is raised

to the power associated with the number of non-calibration nodes associated

with the segment. Since, in this case, only one of the CDF values has changed,

the change in the log of the G′(i) can be computed as

∆G′(i) = (ranki−1 − ranki)(lnG′new(i)− lnG′old(i)) (5.24)

requiring only one computation of the CDF.

• A change in the date of a calibration node that changes the ordering of the

APV.

As with any change to a calibration node, the PDF value for the new date

is computed. A change to the position of a calibration node in the APV

will by definition change the ranking for at least that node. This will require

recalculation of the two CDV nodes that border the node. In this case the

rankings of the nodes have changed and both the h(i) and G′(i) values will need

to be recomputed. This case is shown in Figure 5.6 where the first calibration

node is now younger that one of the non-calibration nodes.
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ln f(t) = ln f(t)+

∆ ln f(tPN)+

∆ lnh(i− 1) + ∆ lnh(i)+

∆G′(i− 1) + ∆G′(i) (5.25)

If the change in the ordering of the APV is such that the node moves past one

or more calibration nodes, the set of CDV entries requiring recomputation will

increase to encompass any entries whose borders have changed. This case is

shown in Figure 5.7

5.4 Analysis

In the MCMCTree algorithm, the time complexity for the computation in a single

MCMC step is composed of the following components, repeated for each of the n−1

inner nodes:

• The traversal of the species tree building the age list: O(n).

• A traversal of the species tree computing the density of the calibration nodes:

O(n).

• Sorting the age list: O(n log n).

• Traversing the sorted age list computing the density of the non-calibration

nodes: O(n).

giving an overall complexity of (n− 1)(n log n) ∼ O(n2 log n).
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As previously discussed the difference between this computation and the likeli-

hood computation is that the likelihood computation is a fairly simple set of multi-

plications and additions repeated a very large number of times. This computation is

repeated a much smaller n− 1 number of times for each MCMC step. But while the

computational complexity of a single age parameter proposal computation O(n log n)

is itself reasonable, there is a large constant multiplier with this calculation associ-

ated with the computation of PDF of each calibration node time and the g(t), h(i),

G(t) and G′(i) function values.

The space complexity is only that associated with the age list (both sorted and

unsorted): O(n).

For our algorithm, the complexity is related to the distance up or down the list

a node moves as the result of a new age proposal. Since the data structures are only

adjusted during each MCMC step, there is no cost associated with the list generation

or sort during MCMC processing.

In the worst case, it is theoretically possible that an age proposal could cause a

calibration node to move from one end of the APV to the other. If, as well, all inner

nodes had calibrations associated with them the result would be the recalculation of

n + 1 total CDV entries for a worst case complexity of O(n) for one age parameter

proposal and O(n2) for an MCMC step.

In practice this is extremely unlikely for two reasons. First, the step size used

for age proposals is small. If a step size were used that caused nodes to move large

distances within the APV the MCMC process itself would be unstable and probably

never reach stationarity. Second, the number of nodes with calibrations tends to

be a small percentage of the overall nodes (4% in the case of the primates dataset)

so that the length of the CDV is small relative to the total number of inner nodes

(n− 1).
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The best case complexity for a single age parameter proposal is simply O(1)

and for an MCMC step O(n). If there is no movement in the APV, only a single

calculation of g(t) or G(t) and 2 associated CDV entries would be required for a

single age parameter calculation.

Experimental analysis of 110,000 MCMC steps over the primates dataset showed

that in 73% of the new age proposals no positional changes occurred in the APV and

of the remaining 27% of the proposals only 4 proposals (out of a total of 3,480,000

age proposals) moved a node (calibration or non-calibration) more than one slot in

the APV. This shows that, in reality, the performance of our new algorithm is much

closer to O(n) than O(n2).

In terms of space complexity there is some additional memory required but no

change in the actual complexity. There is a prior node and an entry in the APV for

each inner node (including the root) in the species tree to give a space complexity

of O(n) for these structures. For the CDV and CDFV, the number of entries is

equal to one more than the number of calibrations; O(c + 1). Since the number of

calibration nodes cannot exceed the number of non-leaf nodes c ≤ n the worst space

space complexity for these structures will also be O(n) giving a total complexity of

O(n) for all the structures.

Doing an experimental analysis of the performance of the prior using the same cri-

teria discussed in section 4.4, it is estimated that the MCMCTree prior computation

for one new age proposal required:

• 205 FLOPS for each node with a calibration. This does not include the cost of

computing the PDF of the calibration node which will vary depending on the

distribution and associated parameters selected for the calibration.

• 144 FLOPS for each node without a calibration.
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On the primates dataset, there are a total of 349 taxa − 1 = 348 inner nodes of

which 14 have calibrations attached. Therefore, the average FLOPS required for a

computation of the prior is

(394− 14) ∗ 144 + (14 ∗ 205) = 50, 703 (5.26)

repeated for each of the 348 non-leaf nodes for which the time is being inferred

50, 703 ∗ 348 = 17, 644, 644 (5.27)

Repeating this calculation with AncestralAge using experimentally determined

value of 1.35 as the number of calculations required for a calibration or non-calibration

node age proposal:

1.35 ∗ 144 + 1.35 ∗ 205 = 471 FLOPS per age proposal (5.28)

which when repeated for each of the 348 non-leaf nodes yields

471 ∗ 348 = 163, 908 (5.29)

total FLOPS required for an MCMC step, a 99.1% improvement

5.5 Summary

By retaining the various intermediate values associated with prior computation,

it has become possible to reduce the computation of the prior to an effective per-

MCMC step complexity of O(n) from an original complexity of O(n2 log n). This

improvement comes at the expense of some additional memory required per n but

no overall change the the space complexity (O(n)).
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It has been experimentally demonstrated that, using the primates dataset, a

99.1% improvement in the computation of the prior was achieved.
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6 SUPPORT MEASURE FOR AGES

The AncestralAge platform has the capability to generate multiple jackknife repli-

cates each with a subset of the fossil calibrations.

Bootstrapping and jackknifing are similar statistical mechanisms for resampling

data. In the case of bootstrapping the sampling is with replacement. For example in

phylogenetic bootstrapping, columns from the multiple sequence alignment (MSA)

are sampled into a bootstrap replicate but since the sampling is with replacement

some columns will appear more than once in the replicate and some will not appear

at all. In jackknifing the sampling is without replacement, either a sample appears

once or not at all.

While it would be possible to generate bootstrap replicates for divergence time

by sampling the set of fossil calibrations with replacement, there is no current sig-

nificance to having a calibration appear more than once on a node (AncestralAge

does allow multiple calibrations on a node but their ages are averaged). Therefore

we decided to use jackknifing where replicates were generated with subsets of the

calibrations randomly sampled without replacement from the full set of calibrations.

By generating sets of replicates and dating them independently it is possible to

provide a new support measure to assess the divergence time process.

6.1 Motivation

Fossil calibrations are typically obtained through the use of radiometric dating.

These methods all carry their own limitations[3]. Mixtures of fossil dates using dif-

ferent methods may exhibit different bias and variance. As methods have improved

previously dated fossils may not fit well with more recently dated specimens. Addi-

tionally, in many taxonomic areas the fossil record is sparse and other methods may
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be used (e.g. geological strata) to estimate specimen age with potentially larger bias

and/or variance.

In phylogenetics the bootstrap is used to provide a measure of support for the

topology. Sets of bootstrap replicates are generated and tree inferred. The support

for a particular subtree is then determined as the percentage of replicates in which

the subtree appears.

Until now there has been no comparable measure for divergence time. We propose

a new support measure for divergence time based on multiple jackknife replicates. At

a particular node, n, the ages for the replicates tr are compared with the age of the

node in the baseline tree tb (with all calibrations). While a number of comparisons are

possible we choose to compare the tr replicate ages with the 95% credibility interval

(CI) for tb computed during MCMC processing. The support for the baseline age tb

is then computed as the percentage of replicate ages tr that are within the 95% CI.

We believe that if the set of calibrations is varied but the age of a node is stable

(within the 95% CI) then there is strong support for the age reported. Conversely, if

the ages of the node vary outside of the 95% CI when the calibration set is varied, we

believe this indicates instability in the model, either in the set of fossil calibrations

or in the other model parameters (e.g. MSA, evolutionary model).

It has always been possible to manually generate multiple divergence time runs

with different sets of fossil calibrations. But, the performance of the divergence time

inference process and the practical difficulty of specifying multiple calibration sets

has limited the ability of researchers to experiment with different sets of calibrations.

With the new AncestralAge algorithms, it is now possible to date multiple trees

efficiently making jackknifing computationally practical.
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6.2 Algorithm

During the replication phase of the process (see Appendix A) the directed acyclic

graph (DAG) data structure containing the trees is replicated in it’s entirety. Each

of these replicates is allowed to run on a separate, parallel, execution thread.

To support calibration jackknifing, the user specifies, in addition to the calibration

information itself:

• The number of jackknife replicates desired.

• The percentage of the fossil calibrations to include in each replicate (pr).

The first replicate always contains the full set of of calibrations and is referred to as

the baseline. Subsequent replicates are generated by randomly selecting calibrations

from the full set. Each calibration has probability pr of being selected.

Dating then proceeds normally with the jackknife replicates executing on separate

execution threads.

6.3 Experimental Analysis

To investigate the support for the ages in the primates dataset we generated a set

of 20 jackknife replicates each containing a randomly selected 50% of the calibrations

and dated both the base tree and the replicates. We then computed the support

measure for each age in the baseline as the percentage of replicates whose ages fell

within the 95% CI for the baseline age. Support values are only reported if the

support value is > 90%. Calibrations are also shown on the appropriate tree nodes

to allow their placement to be analyzed.

The full tree is reported in Appendix E. In Figure 6.1, a section of the tree

is shown for the Lorisoidae, a superfamily of nocturnal, largely arboreal primates.

There is a single calibration specified for the MRCA of the superfamily. While not
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Figure 6.1: Support for the Lorisoidae. The superfamily Lorisoidae evidences a
number of nodes with < 90% support.

shown in Figure 6.1 there is an additional calibration between the MRCA and the

root applied to next older ancestor of the superfamily. There are other subtrees

of similar size in the overall tree that are well supported, this subtree had a large

number of nodes with < 90% support.

Focusing in on one of the values, the 75% value for the ancestor of the Galago

matschiei, we see in Figure 6.2 that all the replicates with the exception of one have

dates older than the baseline.

If we look at which calibrations are included in which replicate it is apparent

that these two calibrations supply a stabilizing influence on the ages. In cases where

both calibrations appear in the replicate, the ages for the node most closely approx-

imate the baseline age. There were two replicates where neither of the calibrations

appeared in the replicated. These two replicates showed the greatest deviation from

the baseline.
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Figure 6.2: Jackknife Values for the Galago 75% Support Node. The individual
replicate ages associated with the immediate ancestor of Galago matschiei are shown
ordered by age. The baseline age is shown at the far right and the 95% CI is marked
on the Y axis.

Even considering the inclusion or exclusion of the calibrations, it was apparent

that there was a more variation in ages in this subtree than in others in the overall

tree. It would be interesting to compare the age support values here with phyloge-

netic bootstrap support values to determine if there is any correlation between the

bootstrap and jackknife support values.

For comparison Figure 6.3 shows the clade that contains the Lemurs, family

Lemuridae. In this case, there is only a single calibration between the taxa and the

root of the tree. But even with only a single calibration the ages were remarkably

stable.

We hypothesize that the presence of only a single calibration might, in some

cases, be preferable to multiple calibrations in the path to the root. In cases where
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Figure 6.3: Support for the Lemuridae. The family Lemuridae is shown.Even though
this family only had a single calibration, it’s node ages were largely stable.

there are multiple calibrations along a path to the root there is a greater chance

that the calibrations would, if not conflict, at least tend to pull the ages in opposing

directions. Consider again the case of the Loris superfamily where there were two

calibrations between the taxa and the root. Both calibrations were specified with

the same age range. It is possible that one of the calibration ages was pulled to the

maximum age and the other to the minimum. If one or the other of the calibrations

(or both) were removed, the node would be free to move more than it might have

otherwise and demonstrated increased variance in the dates of the descendant nodes.

In the case of the Lemurs, with a single calibration there would be no potential for

this antagonism between calibrations.

As a counterpoint to this analysis consider the situation with the Hominids as

shown in Figure 6.4. In this case, there are calibrations on three of the four nodes

between Homo sapiens and the MRCA of the family and, not shown, an additional 3
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Figure 6.4: Support for the Hominidae. The hominids show high degrees of support.
The presence of three calibrations is believed to provide stability to the ages inferred.

between the MRCA and the root. The family showed considerable stability across the

replicates. In this case, with 50% sampling, there were always at least 3 calibrations

between H. sapiens and the root so that the impact of removing one, two or even

three calibrations in the path was minimized.

6.4 Summary

Calibration jackknifing provides a powerful tool for understanding the impact of

fossil calibrations on divergence time inference.

With the addition of this capability, is has become possible to create a whole new

class of support measures on divergence time. We demonstrated one such support

measure based on credibility intervals around the ages in the original tree with the

full set of calibrations.

Using this support measure, we investigated the stability of the ages on the
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primates dataset. Several key points and opportunities for further research were

apparent:

• Additional calibrations can help stabilize the ages provided the specifications

do not conflict. Calibration node ages that are pushed to one limit or another

should be examined.

• If properly specified, even a small number of calibrations can generate stable

ages. We found considerable stability in cases where there was only a single

calibration on the path to the root.

• We wonder if there is there any correlation between phylogenetic bootstrap

support and age jackknife support value? Do branches with poor bootstrap

support also tend to have poor age support.

At present, AncestralAge produces unique output trees for each jackknife repli-

cate. For this work, the computation of the jackknife support was a separate post-

process of this data. In the future, it would be desirable to either integrate this

capability directly into AncestralAge or provide a post-analysis tool to process the

results of AncestralAge experiments.
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7 ALGORITHMS FOR DATING MULTIPLE PHYLOGENETIC TREES*

We hypothesized that by dating multiple trees prior to the consensus process

it would be possible to produce a more statistically supportable dated consensus

tree. In order to facilitate research in this are we devised algorithms for efficiently

dating multiple trees using AncestralAge. In this chapter we will first discuss the

QuickQuartet (QQ) algorithm used to select related sets of trees. Using structures

based on those in QQ we will then discuss the algorithms and issues with multiple

tree dating in AncestralAge.

7.1 Motivation

With previous methods, the cost of dating single trees was high enough to make

dating multiple trees, even through the use of high performance clusters, time pro-

hibitive. Now with our high performance single tree methods it becomes, at least

theoretically, possible to date multiple trees efficiently and study the differences be-

tween performing the consensus before and after dating the tree(s). Our focus in

this research has been the development of efficient methods for dating which will

facilitate the analysis of these new methods as well as the dating of larger studies.

The first aspect of the multiple tree dating problem is the selection of the set of

trees which will be dated. Large modern Bayesian phylogenetic studies have gener-

ated 105 or more trees from a single run[72][58]. While it might be computationally

possible with our new algorithms to date large numbers of trees, it becomes very

difficult to properly assign fossil calibrations across large sets of topologically diverse

*Portions of this section reprinted with permission from “A Fast Algorithm for Computing the
Quartet Distance for Large Sets of Evolutionary Trees.” by R. Crosby & T. Williams, (January
2012), In Lecture Notes in Computer Science, Bioinformatics Research and Applications, (pp 60-71)
c©Springer Berlin Heidelberg
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trees. In practice, we have found in difficult to create valid calibration sets across as

few as 50 input trees. Therefore, the selection of the set of trees to date becomes of

significant interest.

The second aspect of the multiple tree dating problem is the development of

algorithms that are more efficient than the brute force independent processing of

each of t trees. In our work on quartet distance algorithms we found that, in a

typical phylogenetic dataset, there was a considerable amount of common structure

in the trees. There will be portions of the phylogeny that are well supported by

the molecular data and will appear across some or all of the trees. Given this

commonality, our research focused on leveraging common topological features of the

trees.

7.2 Tree Distance Measures

The first step in the new workflow is the selection of a set of trees for dating. It

would be tempting to date all available trees and in fact there may be cases where

this is an appropriate approach. But, there are a couple of factors to consider:

1. A sampled set of trees may produce equally accurate results at a much lower

computational cost. Sampled methods are know to produce results as good

as 100% testing for many processes. Will this hold true for divergence time?

What level of sampling is appropriate?

2. The dating process is expensive. Even with new, high efficiency, algorithms it

may not be practical to date the large numbers of trees produced by Bayesian

inference. For example sets of biological data our lab has worked with have

33,306 and 20,000 trees respectively.
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There are several possible approaches to tree selection. Of particular interest are

the following three:

1. Random selection of a subset of the trees. This is by far the simplest approach

and would provide a representative sample of the input. It should be possible

to prove analytically that the results of a sampled approach will, within some

margin of error ε, approximate the results from dating the entire set of trees.

2. Choose a set of trees “nearest” to the consensus tree.

This approach would bias the selected trees toward the consensus tree but still

allow for the inclusion of topological variance around the existing consensus.

To determine the trees nearest the consensus likelihood scores could be used or

tree distance measures could be employed to find a subset of trees that most

closely resemble the existing consensus tree.

3. Select trees from closely related clusters. Use clustering methods to find the set

of logical clusters in the data then, using distance methods, select sets of trees

around those clusters. This approach would allow for the removal of outliers

in the data and still be sensitive to the structure of the data. For example,

in the previously mentioned 20,000 tree dataset there are two distinct clusters

resulting from two runs of Bayesian analysis. Just using the trees most closely

related to the existing consensus tree would ignore this inherent structure in

the data.

For either of the last two approaches, a distance measure could be employed.

Distance measures can be used to quantify the relationship between trees. Smaller

“distances” imply more similarity between trees than larger distance values. While
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there are a number of distance measures available, the quartet distance is of particular

interest in this case.

7.2.1 The Quartet Distance

The quartet distance has several properties that make it interesting:

1. It is efficient to compute. Practical algorithms exist that allow for computation

of the quartet distance in O(n2) where n is the number of taxa. Algorithms

exist with even better computational complexities but are not, in practice,

more efficient for phylogenetic data.

2. It is relatively insensitive to minor changes in topology. Some other measures

such as the Robinson-Foulds distance can show maximal distances for minor

perturbations of the topology.

3. The range of distance values for a pair of trees is from zero to
(
n
4

)
. This allows

for a finer set of distinctions than is possible for measures based on other aspects

of tree topology like bipartitions which only allow n− 2 possible values.

A binary tree is uniquely defined by it’s set of
(
n
4

)
quartets. The quartet dis-

tance is the number of quartets that differ between two trees. Consider Figure 7.1.

Tree T1 contains two internal edges e1 and e2. Removing edge e1 from the tree

generates the quartets SR|EY , AS|EY and AR|EY . Edge e2 generates additional

quartets AR|SY and AR|SE. Let Q(T1) and Q(T2) represent the set of quartets in

trees T1 and T2, respectively. Then, the quartet distance between the two trees is

|Q(T1)−Q(T2)|+|Q(T2)−Q(T1)|
2

, where Q(T1) − Q(T2) is the set of quartets in T1 that are

not in T2. In Figure 7.1, the quartet distance between T1 and T2 is 2+2
2

= 2.

The original definition of the quartet distance between trees containing n leaves

was done by Estabrook [30]. An O(n2) time algorithm, upon which my recent work
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Figure 7.1: Two Evolutionary Trees and their Set of Quartets. Quartets in bold are
shared by both trees.

was based, was developed by Bryant et al.[12]. Subsequently additional algorithms

with time complexities of O(n log2 n) and O(n log n) were developed by Brodal et

al.[9] [10]. The O(n2) and O(n log2 n) algorithms were implemented in the QDist

program [60] by Mailund et al.. All of these algorithms are based on an insight

related to ordered quartets; Brodal et al. [9] observed that the number of quartets

for a tree can be viewed as twice the number of ordered quartets (where the direction

of the center, connecting, edge is significant). Let A represent the set of taxa (leaves)

based on the edge pointing upward. B and C represent the sets of taxa from the

other two downward pointing edges. Equation 7.1 defines the total number of ordered

quartets can be evaluated as the sum of the ordered quartets present at each of the

inner nodes of a tree.

(
|A|
2

)
|B||C|+

(
|B|
2

)
|A||B|+

(
|C|
2

)
|A||B| (7.1)
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Figure 7.2: Generation of the DAG Structure. The first taxa encountered in the
input is used as the common root (e.g. Rock Squirrel). Each of the three trees
shown in (a), (b) and (c) have their own copies of the root node. Common subtrees
(i1 and i2) are detected and stored only once in the DAG as shown in (d).

Stissing et al. further extended this work with an implementation of the QDist

program that computed the all pairs distance for sets of trees [78] once again using the

O(n2) and O(n log2 n) algorithms to give complexities of O(t2n2) and O(t2n log2 n)

for all pairs distances. To efficiently compute the quartet distance, Stissing loaded all

the trees under analysis into a common directed acyclic graph (DAG) data structure

(Figure 7.2). This structure provides a unique root for each tree but subtrees shared

across multiple trees are also shared in the DAG as shown in Figure (d). During

processing of the trees the taxa (leaves) of the trees are colored with respect to the

first, source, tree T1 and the number of taxa with each color is computed with respect

to the second, target, tree T2.
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When comparing two trees, the set of shared ordered quartets represented by

a node in the first tree and a node in the second tree can be determined for a

particular pair of edges [78]. By summing the values for all pairs of edges (3×3 = 9)

incident to the two nodes, the count of directed quartets at the pair of nodes can be

determined. This value, when divided by 2, gives the number of shared, unordered

quartets exposed by the pair of nodes.

7.2.2 The QuickQuartet Algorithm

Our QuickQuartet algorithm[19] is based on QDist’s implementation of the Stiss-

ing et al. algorithm for single tree pair comparison but with a new all-to-all pairs

algorithm. When computing the quartet distance between two trees, QuickQuartet

identifies additional common bipartitions in the DAG with the use of color strings.

These shared bipartitions are not recognized by the Stissing et al. approach and re-

sults in QuickQuartet’s performance improvement by up to two orders of magnitude

over QDist.

For each internal edge, there is a single bipartition and many quartets. That is, a

bipartition exposes a set of quartets. Given a bipartition B, the number of quartets

contained in it is
(
p
2

)
×
(
q
2

)
, where p and q are the number of taxa in the sets X and

Y , respectively. For the bipartition EJL|ST , the number of embedded quartets is(
3
2

)
×
(

2
2

)
or 3. In this example, if another tree had bipartition EJL|ST , then we could

automatically say that they had 3 quartets in common based on exploring a single

bipartition. This is a significant source of cost savings leveraged by QuickQuartet

with the use of color strings.

Let U be the set of unique taxa names in any arbitrary order. |U | = n, which

is the number of taxa. More specifically, U = {u1, u2, . . . , un}, where a1 is the first

taxa name, a2 is the second taxa name, etc. We can represent a coloring of a node i
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Rock
Squirrel

Red-TailedAllen's

Siberian Yellow 
Pine

Eastern Allen's

Red-TailedSiberian

Allen'sEasternYellow 
Pine

Rock
Squirrel

Rock
Squirrel

9 2

6 1 d6,7 6 1

a1

6 3 b2,5 9 3

3 0 c3,4 3 0
g

f

e

i j

h

(f) Step 7, compute up vector for node d.
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Figure 7.3: The QDist Algorithm. The yellow and gray boxes at a source tree’s inner
node represent the down and up vectors computed during the downward upward tree
traversals, respectively. The up vector at node k in the source tree is the sum of the
its down vector and its children’s down vectors. Each box contains an entry for each
target tree.

compactly by using a color string S, where |S| = |U |. That is S = {s1, s2, s3, .., sn},

where each si is the color assigned to taxa ai. The possible colors of a node are
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represented by A, B, and C. Consider the trees in Figure 7.3. Let U= {Rock

Squirrel, Red-Tailed Squirrel, Allen’s Squirrel, Siberian Squirrel, Eastern Squirrel,

Yellow Squirrel}. The coloring for node a in Figure 7.3b is S = {AACBBA} for tree

T1. Node e for tree T2 has the same color scheme even though the trees T1 and T2

have different topologies and are represented as distinct nodes in the DAG. Finding

a color string at a previously computed source tree inner node eliminates traversing

the remaining target trees resulting in significant running time improvements.

The QDist algorithm creates cost savings by identifying nodes in the trees that

have the exact same subtrees (e.g., node d in Figure 7.3b). However, in Figure 7.3b,

QDist would redo the calculation for nodes a and e even though both nodes represent

the same bipartition and induce the exact same coloring. QuickQuartet, on the other

hand, identifies those nodes as being identical bipartitions and retrieves a previously

calculated and saved down vector. This eliminates the need to perform the traversal

of any of the target trees at that specific source tree inner node. Thus, by saving

the down vectors associated with bipartitions (color strings) a t tree traversals can

be eliminated every time a common bipartition is found.

A map (implemented as a hash table) keyed by the color string is used to store the

down vector associated with the coloring. The hash key is generated by a standard

universal hashing algorithm operating on the color string. Prior to performing the

traversal of a target tree, the hash table is queried using the current color string. If

the down vector has already been computed for the color string, it is retrieved from

the hash table and the set of target tree traversals is not performed. If the color

string is not in the hash table, the down vector is computed and inserted in the hash

table.

While the identification of shared bipartitions using color strings is responsible

for the time performance improvement in QuickQuartet, there was an additional
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improvement that to reduce memory utilization. It was noted that the life of the

down vectors is known. The life of a down vector is bounded by the first and last

trees in which the vector’s associated inner node appears. Since inner nodes are not

duplicated in the DAG, by keeping track of the last tree that uses an inner node, we

can free down vectors after the last tree containing the node is processed as the source

tree. As a result, the vector storage increases to an upper limit during the middle of

the quartet distance computation but then decreases as vectors were released thus

reducing the algorithm’s overall memory requirements.

Although QuickQuartet outperforms QDist in practice, the overall best and worst

case time complexities of the algorithms remain the same. In the worst case, there

would be no bipartitions in common and there would be no common DAG nodes.

A common DAG node is a sufficient but not a necessary condition for the existence

of a common bipartition. Without any common DAG nodes, each source tree inner

node will force the traversal of each other target tree with the resulting worse case

time complexity of O(t2n2) for t trees over n taxa. In the best case, all bipartitions

would be in common (i.e., all t trees are identical) and discovered during the first

and only traversal of a source tree. During this one source tree traversal, only the

first target tree traversal set would produce unique results. No subsequent target

traversals would be required as the counts for all DAG nodes would have already been

computed. This yields the same best case time complexity as QDist of O(t2 + n2).

QuickQuartet performance is significantly better than that of the original QDist

program on biological data. Figure 7.4 shows the results of sets of tests on a biological

dataset from the lab of Dr. Doug Soltis[72] comparing QuickQuartet with the original

QDist algorithm. As can be seen QuickQuartet is 125 times faster than QDist which

was unable to process more than 10,000 of the 33,306 trees in the dataset due to

memory limitations on a 32GB supercomputer node.
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Figure 7.4: QQ Algorithm Performance. The performance of the QQ algorithm is
compared to the old QDist algorithm. On a biological dataset of 33,306 trees[72] over
567 taxa QDist was only able to process 10,000 trees before running out of memory
(32GB). QQ was able to process the entire 33,306 tree dataset. At the 10,000 tree
level QQ performed 125 times faster than QDist.
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Figure 7.5: Quartet Distance Between Three Dissimilar Trees. (a) shows three dis-
similar trees. (b) is the quartet distance matrix generated for the trees.

7.2.3 The Heterogeneous QuickQuartet Algorithm

The algorithm of Stissing et al.[78] assumes that a coloring of the taxa relative to

T1 will be indicative of the coloring relative to the second tree, T2. This is not the case

when T2 contains taxa not appearing in T1 (heterogeneous trees). Figure 7.5 illus-

trates the computation of the quartet distance across three trees containing different

sets of taxa.

107



Rock
Squirrel

Red-Tailed Allen'sSiberian Eastern

Yellow
Pine

Prairie Dog

Root Root Root

Allen's Red-Tailed

Rock
Squirrel

Siberian

Yellow
Pine

Eastern

g

h

f i

k

l

j

(T
1
) (T

2
) (T

3
)

c

b

a

d

e

(a) All leaves set to the NC color

Rock
Squirrel
A

Red-Tailed
A

Allen's
A

Siberian
A

Eastern
A

Yellow
Pine
A

Prairie Dog

Root Root Root

Allen's
A

Red-Tailed
A

Rock
Squirrel
A

Siberian
A

Yellow
Pine
A

Eastern
A

g

h

f i

k

l

j

(T
1
) (T

2
) (T

3
)

c

b

a

d

e

(b) All leaves in the source tree (T1)
have been set to A.

Rock
Squirrel
B

Red-Tailed
A

Allen's
A

Siberian
A

Eastern
B

Yellow
Pine
B

Prairie Dog

Root Root Root

Allen's
A

Red-Tailed
A

Rock
Squirrel
B

Siberian
A

Yellow
Pine
B

Eastern
B

g

h

f i

k

l

j

(T
1
) (T

2
) (T

3
)

c

b

a

d

e

0,0

(c) The larger subtree of a has been
colored B and taxa reachable from the
upward edge of node a colored C (of
which there are none). A traversal of
each of the other trees is then per-
formed and the counts at node a com-
puted.

Rock
Squirrel
C

Red-Tailed
A

Allen's
A

Siberian
B

Eastern
C

Yellow
Pine
C

Prairie Dog

Root Root Root

Allen's
A

Red-Tailed
A

Rock
Squirrel
C

Siberian
B

Yellow
Pine
C

Eastern
C

g

h

f i

k

l

j

(T
1
) (T

2
) (T

3
)

c

d

e

0,0

3,3 b

a

(d) The process was repeated for node
b.

Rock
Squirrel
C

Red-Tailed
C

Allen's
C

Siberian
C

Eastern
C

Yellow
Pine
C

Prairie Dog

Root Root Root

Allen's
C

Red-Tailed
C

Rock
Squirrel
C

Siberian
C

Yellow
Pine
C

Eastern
C

g

h

f i

k

l

j

(T
1
) (T

2
) (T

3
)

d

e

0,0

3,3 b

a

c
0,0
0,0

(e) The counts for the subtree rooted
at node c are computed as sum of the
counts at node c and its subtrees.

Rock
Squirrel
C

Red-Tailed
C

Allen's
C

Siberian
C

Eastern
C

Yellow
Pine
C

Prairie Dog

Root Root Root

Allen's
C

Red-Tailed
C

Rock
Squirrel
C

Siberian
C

Yellow
Pine
C

Eastern
C

g

h

f i

k

l

j

(T
1
) (T

2
) (T

3
)

e

a

0,0
0,0 c

3,3
3,3 b d

3,1
3,1

4,2
7,3

0,0
10,6

0
6

0
3

0
3

(f) All vectors after completion of the
algorithm.

Figure 7.6: QQHet Algorithm on Trees from Figure 7.2.

In order to handle heterogeneous trees the impact of any taxa appearing in T2

but not in T1 needs to be reconciled. This is accomplished by the addition of an

additional “no color” color or NC. Additionally, since the algorithm of Stissing et

al.[78] arbitrarily rooted the DAG at the first leaf encountered, there is no guarantee

that this leaf appears in the full set of trees. To handle this condition, a dummy

root leaf is inserted into each tree (see Figure 7.6). This dummy leaf is always set to
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color NC.

For the computation of the directed shared quartet count at a particular node

the number of taxa with each of the three colors at each of the three edges is re-

quired. Within QuickQuartet the values for the downward edges were recursively

computed. The color counts associated with the upward facing edge were computed

by subtracting the counts for the downward edges from the total counts for each

color.

But this count would be incorrect in the case where T1 and T2 do not contain

the same set of leaves. As shown in Figure (a) to properly compute the counts for

the upward subtree, all leaves in all trees are initially set to color NC. Then, a

depth-first traversal of T1 excluding the added root is performed setting all leaves to

the initial color A (see Figure (b)). Since the total number of leaves with each of the

colors will not be known in this case it is necessary to get the number of taxa with

each of the colors respective to T2 prior to each traversal of T2.

This requires a traversal of T2 getting counts for each color prior to the main

traversal of T2 to compute the directed quartets in common. When the all pairs

distances are being computed for a set of t trees, for each inner node in T1 each of

the other t − 1 trees is considered T2 in turn and a traversal of T2 performed. The

algorithm is illustrated in Figure 7.6.

As expected the performance of the QQHet algorithm was slightly worst within

a constant factor than that of the QQ algorithms as shown in the Figure 7.7. The

figure shows the ratio of the two algorithm’s performance on subsets of biological

datasets of 20,000 trees over 150 taxa and 33,306 trees over 567 taxa.
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hog and the Prairie Dog. As with the QQ DAG this common subtree is connected
to both T1 and T2.

7.3 Data Structures

We based the data structures in AncestralAge on the DAG structure used in

QQ. But, for divergence time both the species tree and the associated gene trees

both need to be considered in the structure of the DAG. The current AncestralAge

implementation also requires that each species tree include the same set of taxa

110



(homogeneous trees). This structure is illustrated in Figure 7.8.

7.3.1 Species Tree Representation

The construction of the DAG in QQ was based on the original algorithm of

Mailund[78] which processed each tree through a set of steps:

1. The tree was parsed and internally an unrooted tree was built.

2. The unrooted tree was converted into a rooted tree using a common root.

3. The rooted tree was traversed and for each internal node encountered, the

subtree associated with the root was used to search the current DAG. If the

set of leaves in the subtree were found in a subtree of the DAG, the structures

was compared. If the structures matched, the new tree was attached to the

appropriate point in the DAG.

There were two issues with this approach; first, divergence time required rooted

trees. Second, the search algorithm of Mailund could not be proven to find all

common subtrees as the ordering of the leaves in the input could effect the search.

To address these issues a new algorithm was developed to generate the species

tree DAG in AncestralAge. This algorithm processes each tree as follows:

1. The input is assumed to be a rooted binary tree.

Methods are provided in AncestralAge to allow specification of an outgroup.

2. A depth-first traversal of the tree is performed.

During traversal the set of leaves associated with each inner node of the tree

is accumulated. When the inner node is seen during the backtracking phase of

the traversal, a string is build to represent the subtree. The string is similar
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to a newick string in that it is a parenthetical representation of the structure

of a tree. To build the string the subtrees of a given node are ordered based

on the collating sequence of the leaves in each of the subtrees. For example a

subtree of ((d,b),(c,a)) would generate subtree keys of (b,d) and (a,c) for the

subtrees that would ordered into a key for the node of (a,c),(b,d). The ordering

is required to guarantee that common subtrees are identified regardless of any

isomorphism. For example, within a newick string a specification of (a,c) and

(c,a) define the same subtree with only a difference in ordering.

The string generated for each inner node is used as the key to a hash table.

The value in the hash table is a pointer to an existing node in the DAG that

matches the subtree. If a string is found in the hash table, the new tree is

connected to the existing subtree in the DAG. Otherwise the string is added

to the hash table as a new key.

3. Once all the trees have been loaded into the DAG the hash table is not longer

required and is freed.

While the overall computational complexity of the DAG construction process is

the same as that for QQ, O(n), the AncestralAge algorithm requires only a single

traversal of the input as opposed to two traversals required in the QQ algorithm.

But, even if there are topological similarities between trees, there will potentially

be differences in the edge lengths between the trees. In order to support these

differences, each node in the DAG contains a vector of entries (tree nodes) each of

which contains information associated with a single tree. For example, if an inner

node appears in common between four species trees, there will be four entries in

the tree specific node vector at the inner node. Within the tree node the following

information is found:
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Figure 7.9: Species and Gene Trees. The tree on the left, T1, contains 4 taxa with
internal nodes. The first gene tree, G1, only has DNA sequences for three of the taxa
while the second gene tree, G2, has DNA sequences for all four taxa.

• The age parameter for the node in the tree.

• A pointer to the prior of ages entry for the node (Sections 5.3.1).

• Gene tree pointers.

7.3.2 Gene Tree Representation

Each gene tree will be composed of a subset of the leaves in each species tree.

The gene trees are represented as a set of overlay’s on the species tree. The topology

of a given gene tree is not directly specified in the input. What is specified is the

multiple sequence alignment (MSA) associated with the gene tree. The species tree

then provides the topological backbone for the gene tree. But since the gene tree

MSA might (in practice frequently) not include all taxa in the input, the tree may be

be missing various nodes corresponding to leaves and connecting nodes. The species

tree and gene tree relationship is shown in Figure 7.9. In this figure, a subset of the

Marmots of four species is represented in the species tree. But, DNA is only available

for the first gene for three of the species. DNA is available for all four species in the

second gene.
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Figure 7.10: Age and Rate Structures. The relationship between the species tree
nodes, the tree nodes and the gene nodes is shown. In this example, the subtree
rooted at N2 appears in both T1 and T2 so there are two entries in it’s tree node
vector with separate ages for each tree. But, N2 does not appear in G1 since there is
no DNA sequence for the Groundhog in G1. Therefore, the gene node vector for each
tree has a null entry in the slot for G1 while the entries for G2 are both populated
with the rates and TPM pointers associated with each tree.

To represent both the gene trees and allow independence between multiple species

tree nodes that share common subtrees, the structures shown in Figure 7.10 are used.

A node in the species tree (N2 in this case) points to the previously discussed tree

node vector. In this case, N2 is common between two trees, T1 and T2. In addition

to the age of the node in the associated tree, the tree node contains a pointer to a

vector of gene tree nodes. There is an entry in this gene tree node vector for each

gene tree. Since there is no DNA sequence data for the Groundhog in G1 the entry

is marked as missing (null). Since N2 does exist in G2, each gene node contains a

rate value and transition probability matrix (TPM) for the ancestral edge associated

with the gene tree node.

7.4 Dating Models

While the DAG structure discussed in the preceding sections allows for the repre-

sentation of each species tree as an effectively independent entity with separate ages

and gene trees, it also allows for models that leverage the common structures.
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Figure 7.11: The Independent Ages, Independent Rates Model. In this model each
tree has it’s own set of edge rates and node ages. For the common subtree, each of
the edges has two rates, one for each of the trees that include the subtree. The same
is true of the node ages, each node in the common subtree has a pair of ages, one for
each of T1 and T2.

In the following discussion, the number of parameters associated with each model

is discussed. An MCMC step is an iterative process through the model parameters

proposing new values for each parameter in turn. The computational complexity

for an MCMC step is therefore function of the number of parameters as well as the

complexities of the computation associated with each individual parameter proposal.

Our approach to improving the performance of the multiple tree dating process has

been to reduce the total number of parameters.

7.4.1 Independent Ages, Independent Rates

This is the base model wherein each species tree is effectively independent. The

structures discussed in the preceding sections are fully populated as shown in Figure

7.11. Each of the t trees composed of n taxa has a unique age parameter for each

non-leaf node in the model giving O(tn) age parameters.

Furthermore, each of the g gene trees is replicated for each of the t trees. For clock

models other than the molecular clock, each node in a gene tree with the exception
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of the root has a rate parameter that gives the mean rate across the edge leading to

the parent of the node. For the molecular clock model, there is only a single rate

parameter for each gene tree. Therefore, there are O(tgn) rate parameters exposed

in this model.

There is no computational advantage to this model over a set of completely

independent runs with one tree per execution.

To gain an understanding of the impact of the multiple tree models experiments

were performed using a dataset of 567 angiosperms[13]. In this study a total of

10,339 DNA base pairs in 5 genes were used to produce 33,306 sampled trees.

For our experimental analysis QQ was used to generate a distance matrix of the

33,306 sampled trees including the published tree. The sampled trees were then

ranked by their quartet distance from the published tree.

Sets of trees of sizes t ∈ {1, 5, 10...100} were generated from this ranked list such

that the first tree in every set was the published tree and the remaining trees were

the t− 1 trees “nearest” the published tree. Since divergence time inference had not

been performed as part of the original study, a set of calibrations was synthetically

estimated to allow dating.

As shown in Figure 7.12 , the time per iteration increases, as expected, linearly

with the number of trees. Iteration times varied 21.89 seconds for the single tree up

to 16 minutes 12.92 seconds for the 45 tree set. Another way of looking at this data

is to consider the time required to perform an MCMC step on one tree from the set.

The time required to take an MCMC step on a single tree was 21.89 seconds for the

single tree set. This value decreased to 21.62 in the 45 tree set. This small decrease

was not statistically significant.
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Figure 7.12: Iteration Times for the Fully Independent Model. On the 567 taxa
angiosperm dataset sets of trees varying in size from a single tree to 100 trees were
run using the fully independent model. Times shown are those required for a single
MCMC step. The chart illustrates the linear scaling expected from this model.
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Figure 7.13: The Independent Ages, Common Rates Model. In this model each edge
in the common subtree has only a single rate (r5, r6, r7 and r8). Each inner node
in the common subtree still has two independent ages corresponding to trees T1 and
T2.
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Figure 7.14: Age and Rate Structures for the Common Rates Model. To support the
common rates model the existing structures are modified such that only one vector
of gene nodes is used. Each of the tree nodes points to this single, common node.

7.4.2 Independent Ages, Common Rates

In this model, the ages of each node in each species tree are allowed to be in-

dependent. But, the rates associated with the edges in the gene trees for common

subtrees are considered to be the same across trees. This case is illustrated in Figure

7.13. The hypothesis in this case is that even if structural differences in the overall

species tree will impact the ages of the nodes, within a common gene subtree, an

edge is truly common and would therefore only have a single rate regardless of the

species tree.

To support this model the structures from Figure 7.10 are modified as shown in

Figure 7.14. For common subtrees a single vector of gene tree nodes is instantiated

at each common species tree node. Each of the tree nodes is then pointed to this

common vector.

As with the fully independent model, each of the t trees composed of n taxa

has a unique age parameter for each non-leaf node in the model giving O(tn) age

parameters.

But, the number of rate parameters is reduced by the number of common subtrees

found. In the worst case where the are no common subtrees, the number of rate
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Figure 7.15: Trees with Conflicting Calibrations. Two calibrations are specified; C1

is believed to be the ancestor of existing taxa a and c while C2 is the ancestor of
existing taxa e and f . In tree T1 this places the calibration node C2 closer to the
root than C1 implying that C2 must be older than C1. But in T2 the movement of
the subtree containing taxa a and b causes C1 to appear closer to the root than C2

creating a conflict in the specification with T1.

parameters remains the same as in the fully independent model O(tgn). In the best

case, where the trees share a 100% of the structure, the number of rate parameters

reduces to O(gn) since each rate for each gene tree node will be shared across all

species trees.

As with the fully independent model, QQ was used to generate a distance matrix

of the 33,306 sampled trees and the published tree from the study. The sampled

trees were then ranked by their quartet distance from the published tree.

The same sets of trees as were used in the fully independent model were once again

tested, this time using the independent ages, common rates model. It was discovered

that specification of calibrations across multi-tree sets caused various conflicts in the

calibration dates that restricted the number of trees that could be dated, even with

small numbers of calibrations (< 10).
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Consider the trees in Figure 7.15. There are two calibrations specified. C1 is

believed to be the extinct ancestor of taxa a and c. C2 is believed to be the extinct

ancestor of e and f . In T1 the topology is such that C1 will be farther from the

root than C2 so the calibration specification indicates C1 <= C2. But, given the

specification of C1 <= C2 there is a conflict in T2. In this case C1 will, due to it’s

morphological specification, appear closer to the root than C2. Now the specification

of C1 <= C2 will be in conflict with the topology of the tree. While this is an

obvious conflict, it is our belief that there are a number of other combinations that

will also generate conflicts. The full development of the conflict set and development

of methods to handle these conflicts are outside of the scope of this work.

For the purpose of this work the set of conflicts was managed such that we were

able to date up to 65 trees using the independent ages, common rates model.

Figure 7.16 shows the results using set sizes of {1, 5, 10...65}. Using the indepen-

dent ages, common rates model, the impact of common subtrees can be seen. The

second set of points in Figure 7.16 shows the same set of trees processed using the

independent ages/common rates model. In this case the iteration times also appear

to increase linearly, but at a much slower rates reflecting the commonality among

the trees. It should be remembered that these trees were selected to all be “close” to

published tree, so it is expected that a large set of common subtrees would be found.

Iteration times for this model with a single tree are the same 21.89 seconds as for

the full independent model. But this value only increases to 9 minutes 13.60 seconds

at 65 trees, an improvement of 61.0%. Looking at the time required to perform an

MCMC step on one tree from the set, the initial 21.89 second time for the fully

independent model decreased to 8.52 seconds at 65 trees.

It had been expected that the percentage of improvement would increase with

the number of trees. While not apparent from Figure 7.16, there was a continuous
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Figure 7.16: Iteration Times for the Independent Ages, Common Rates Model. On
the 567 taxa angiosperm dataset, sets of trees varying in size from a single tree to
100 trees were run using both the fully independent and independent ages/common
rates models. Times shown are those required for a single MCMC step. The chart
illustrates the increasing advantage seen from the reduction in the number of rate
parameters.

increase in the percentage of improvement. With the set of 5 trees, the improvement

was 49.1%. As the number of trees was increased, this improvement also increased

at every step to the aforementioned 61.0% improvement for the 65 tree dataset.

We hypothesize that since the trees selected were all “close” to each other the

common portions of the tree were nearly the same. We believe that were the set of

trees to be chosen by another method (e.g. random selection) a different curve would

be seen.

7.4.3 Common Ages, Common Rates

This model constrains the ages as well as the rates for common subtrees. The

idea here is that a common subtree could be considered as phylogenetically isolated.
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Figure 7.17: The Common Ages, Common Rates Model. In this model there are is
only a single age for each of the inner nodes in the common subtree.
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Figure 7.18: Age and Rate Structures for the Common Ages and Rates Model. To
support the common ages and rates model the existing structures are modified such
that only one tree node is instantiated. Each of the species nodes points to this
single, common tree node.

The common ancestor of the taxa in the subtree is considered to root a tree that

diverged at one specific time only, not at different times for different species trees.

This model is illustrated in Figure 7.17.

The structures from the common rates model are further simplified as shown in

figure 7.18. One tree node is associated with each node in the species tree. This single

tree node in turn points to a single gene node vector containing the evolutionary rates.

In this model the number of rate parameters is the same as for the independent
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ages, common rates model with best and worst case parameter counts of O(gn) and

O(tgn) respectively.

Once again, for the age parameters, if there are no common subtrees the number

of age parameters will be the same as the number for the fully independent model,

O(tn). In the best case where the trees fully share the same structure, the number

of parameters would reduce to just the number of non-leaf nodes O(n).

This model suffered from the same set of issues with calibrations as the indepen-

dent ages, common rates model. While the model did successfully compute the ages,

the ages inferred were, in many cases unsupportable. Using the fully independent

model results as the baseline, over 30% of the node ages at the 65 tree level for the

common ages, common rates model fell outside of the 95% CI on the baseline results.

This variation did not occur with the independent ages, common rates model where

less than 8% of the ages in the 65 tree set were outside of the 95% baseline CIs.

We hypothesize that the algorithm for the prior of ages may not properly handle

this model. In the case of a common subtree that, for example, contains a calibra-

tion, how should the age prior vector and conditional density vector structures be

organized? Should these structures remain separate across the trees?

Figure 7.19 shows the results using set sizes of {1, 5, 10...65}. The third set of

points in Figure 7.19 shows the same set of trees processed using the common ages,

common rates model. In this case, the iteration times also appear to increase linearly

but at an even slower rates reflecting the reduce set of model parameters. Iteration

times for this model with a single tree are the same 21.89 seconds as for the full

independent model. But this values only increases to 2 minutes 35.06 seconds at 65

trees, an improvement of 89.1% over the fully independent model. Looking at the

time required to perform an MCMC step on one tree from the set, the initial 21.89

second time for the fully independent model decreased to 2.39 seconds at 65 trees.
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Figure 7.19: Iteration Times for the Common Ages, Common Rates Model. On the
567 taxa angiosperm dataset, sets of trees varying in size from a single tree to 100
trees were run using all three models. Times shown are those required for a single
MCMC step. The chart illustrates the increasing advantage seen from the reduction
in the number of age parameters.

7.5 Summary

In order to efficiently data multiple species trees in a single run, three models

have been presented.

1. The independent ages, independent rates model provides the maximum inde-

pendence between the individual trees but with no performance advantage over

separate dating of the trees.

2. The independent ages, common rates model posits that rates for a edge in a

gene tree are the same regardless of the final species tree topology or ages.

This model provided statistically value results with a significant improvement

in performance.
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3. The common ages, common rates model assumed that the ages of nodes in

common subtrees would always be the same. This is in addition to the as-

sumption that the rates for an edge in a gene tree in a common subtree would

always be the same.

In all models it was found that the specification of the calibrations was challenging

over large sets of trees. Calibrations in AncestralAge are created on the MRCA of

sets of taxa specified by the user. Specification of this set, in cases there the tree

topology varied around the taxa specified, frequently caused situations where ages

either could not be estimated or would have been illogical.

Using the 567 taxa angiosperm dataset of Soltis et al. we demonstrated a 89.1%

improvement in CPU time for a set of 65 trees using the common ages, common

rates model. While this is certainly significant, it is important to note that the time

required for an MCMC iteration is still approximately 2.5 minutes making an MCMC

run of 100,000 steps require just under seven months to complete.

To gain understanding of the impact of all three models on the MCMC process,

we determined the number of MCMC parameters for each of the models varying

the number of trees. Since MCMC step processing iteratively proposes new values

for each of the MCMC parameters, we expected to see the relationship between the

number of parameters and the time for each MCMC step. The MCMC parameter

counts for each of the models with varying numbers of trees is shown in Figure 7.20.

As expected, the number of parameters for the fully independent model increased

linearly with the number of tree. But, of particular interest, parameter counts for

the common rates/independent ages model increase much more slowly that would

have been expected from Figure 7.16. In fact at 65 trees, there were 80.0% fewer

parameters but only a 61.0% improvement in step time. We are of the opinion that
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Figure 7.20: MCMC Parameter Counts for the Multiple Tree Models. The number
of MCMC parameters for each of the three models is shown for varying numbers of
trees drawn from the 567 taxa angiosperm dataset.

this reflects the cost of the set of rate parameter proposals (and the computation of

the prior of rates) relative to the overall cost of an MCMC step. The rate parameter

proposals comprise the largest group of parameters. But, age and nuisance parame-

ters remain and will continue to scale with the number of trees even as the portion

of the MCMC step time associated with rate parameter proposals decreases. With

this decrease in the time spend computing rate parameter proposals, the portion of

the CPU time spent computing age parameter proposals increases.

In the case of the common ages, common rates model, the improvement in CPU

time did more closely correlate to the number of parameters. CPU time decreased

by 90.8% at the 65 tree level and parameter counts decreased by 89.1% compared

to the fully independent model. We believe this indicates that computation of rate

and age parameter proposals consume far more of the total CPU than the remaining
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nuisance parameters.
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8 ANALYSIS

In this chapter we provide an analysis of the AncestralAge from both the per-

spective of the dates inferred and the performance of the algorithms.

8.1 Model Validation

The objective of this research was not to develop new statistical models for di-

vergence time. The objective was to develop new algorithms using the existing

statistical model of MCMCTree. We considered it critical that the output of Ances-

tralAge was both consistent with MCMCTree and reproducable[8]. To this end we

provide a comparison of the results from comparable executions of AncestralAge and

MCMCTree.

Three datasets were used, two that are provided as examples with the MCMCTree

program and our Family Scuridae dataset. Each of the datasets was run with both

AncestralAge and MCMCTree using the same parameters (evolutionary model, MSA,

input tree and prior hyperparameters). ForMCMCTree the datasets were processed

using both the approximated and exact likelihood algorithms.

Conventional comparisons of phylogenetic trees rely on the comparison of likeli-

hood values between the trees. In order for the likelihood values to be comparable

they must be generated using identical methods. Typically, likelihood values vary

significantly between phylogenetic programs even if the programs produce identical

trees. These differences are a consequence of the numerical methods used for the

computation. This situation was found to also be the case between AncestralAge

and MCMCTree. While the actual dates inferred were very close in all cases, the

likelihood values varied significantly.

So, for purposes of this validation process, the results for each of the datasets
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were compared based on an analysis of the dates returned by the two programs.

Differences in dates between the two programs were normalized by the mean of the

two dates giving an indication of the relative difference.

d = 2(d1 − d2)/(d1 + d2) (8.1)

It was expected that the differences would be within a small tolerance, ε. Ad-

ditionally, it was hypothesized that the dates returned by AncestralAge would fall

within the 95% credibility interval as returned by MCMCTree and the dates from

MCMCTree would fall within the 95% credibility intervals returned by AncestralAge.

• Dataset 1 - DatingSoftBounds

This dataset was provided as an example in the PAML distribution and was

extensively analyzed by Yang, et al.[94]. There are 7 taxa in the tree with 3331

DNA sites in one gene.

The dates returned by MCMCTree for both the approximated and exact likeli-

hood algorithms were compared with the results returned by AncestralAge. In

all cases the results from AncestralAge were within ε = 0.01 (.99 < d < 1.01) of

the results returned by the MCMCTree exact likelihood algorithm and within

ε = 0.015 (.985 < d < 1.015) of the results returned by the MCMCTree ap-

proximated likelihood algorithms.

In all cases the dates returned by AncestralAge were within the 95% credibility

interval returned by MCMCTree and the dates returned by MCMCTree fell

within the 95% credibility interval returned by AncestralAge.

• Dataset 2 - TipDate.FluH1

This dataset was provided as an example in the PAML distribution and was
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also extensively analyzed by Yang, et al.[74]. There are 289 viral taxa in the

tree with 1710 DNA sites in one gene. In the original analysis, tip dating was

used. But, for our purposes, conventional, branch, dating was applied.

The dates returned by MCMCTree for both the approximated and exact like-

lihood algorithms were compared with the results returned by AncestralAge.

In all cases the results from AncestralAge were within ε = 0.005 (.995 < d <

1.005) of the results returned by the MCMCTree exact likelihood algorithm and

within ε = 0.015 (.985 < d < 1.015) of the results returned by the MCMCTree

approximated likelihood algorithms.

In all cases the dates returned by AncestralAge were within the 95% credibility

interval returned by MCMCTree and the dates returned by MCMCTree fell

within the 95% credibility interval returned by AncestralAge.

• Dataset 3 - Scuridae

This dataset of 80 taxa with 7618 total DNA sites in 5 genes was analyzed by

the author as part of the Texas A&M Quantitative Phylogenetics class.

The dates returned by MCMCTree for both the approximated and exact likeli-

hood algorithms were compared with the results returned by AncestralAge. In

all cases the results from AncestralAge were within ε = 0.01 (.99 < d < 1.01) of

the results returned by the MCMCTree exact likelihood algorithm and within

ε = 0.03 (.97 < d < 1.03) of the results returned by the MCMCTree approxi-

mated likelihood algorithms.

In all cases the dates returned by AncestralAge were within the 95% credibility

interval returned by MCMCTree and the dates returned by MCMCTree fell

within the 95% credibility interval returned by AncestralAge.
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8.2 Performance Analysis

To understand the performance on AncestralAge a set of synthetic data was

generated. This approach allowed the parameters associated with the theoretical

computation complexity to be varied and their impact verified.

8.2.1 Methods

A tree generator, TGen, capable of constructing sets of trees with varying num-

bers of taxa, was developed to facilitate testing. The generator allowed specification

of the similarity between the trees in terms of the percentage of quartets that would

appear in common across the trees (the quartet consensus). The generator also al-

lowed the user to specify how balanced (or unbalanced) the resulting trees should

be.

The trees produced by TGen were used as input to the seq-gen program[66]

to produce DNA sequences varying the lengths of the sequences and the numbers

of partitions (genes) of the data. All sequences were generated using the HKY[81]

evolutionary model with a transition/transversion ratio, κ, of 2 and gamma variation

among sites using 4 discrete categories.

All sets were processed by AncestralAge. Attempts to use MCMCTree were

unsuccessful as even the smaller tests produced extremely long runs times (days to

months).

Each test was allowed to run for 100 MCMC steps. Performance information

was obtained through API calls to the Linux kernel as well as the through the PAPI

performance library[23]. We hypothesized that 100 MCMC steps would be sufficient

to overcome the impact of any initialization and termination. In all cases the CPU

time required for initialization and termination outside of the MCMC process itself

was less than 1% of the total CPU.
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Figure 8.1: CPU Times for Varying Numbers of Genes. The number of genes,
l ∈ {10, 20...100}, was varied for a constant sequence length of 2000 sites per gene.
Each set contained 10 trees of 100 taxa each.

Values reported are the average times required for a single MCMC step. All

tests were run on the Texas A&M University Brazos high performance cluster (http:

//brazos.tamu.edu). Each node on the cluster consists of dual 2.5GHz Intel quad

core processors and 32GB of memory.

8.2.2 Varying Numbers of Genes

Sets of trees with l ∈ {10, 20...100} genes were generated. Each gene had inde-

pendent data but a constant sequence length of 2000 sites. Each set contained 10

trees with 100 taxa per tree.

Based on the computational complexities of the components of the MCMC step

it was believed that the performance would be linear with respect to the number of

genes. In Figure 8.1 the results of the running each of the sets on each of the three

multi-tree models is shown. The overall curve for each model does show a generally

linear increase for each of the models. The performance of the common rates and

common ages models tracked closely with the fully independent model. Since the

number of trees in each set was constant (although the trees themselves were not the
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Figure 8.2: CPU Times for Varying DNA Sequence Lengths. The total number of
sites across 10 genes was varied from 10000 to 100000 in increments of 1000. Each
set contained 10 trees with 100 taxa. The times displayed are the average for MCMC
steps.

same) the level of sharing would be relatively constant.

The curves for each of the models show unexpected behavior from 40 to 60 genes

with the value for 40 genes higher than expected and the values for 50 and 60 genes

lower than expected. There are several possible explanations for this behavior. We

believe the discontinuity is most likely an artifact of the synthesis process although

it is also possible that some other issue occurred (e.g. memory constraints in Ances-

tralAge). Interestingly the impact of this discontinuity decreased with the common

rates and common ages models. Further experimentation will be required to under-

stand this discontinuity.

8.2.3 Varying Sequence Lengths

Sets of trees with varying DNA sequence lengths, s ∈ {1000, 2000...10000}, sites

per gene were generated. Each set contained 10 trees with 100 taxa and 10 genes

per tree.

As with the number of genes, it was anticipated that the performance would be
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linear with respect to the number of DNA sites. In Figure 8.2 the results for the three

multi-tree models are shown. While all three curves appear linear at the start, as

the number of sites increases above 6000 the values appear to increasing at a greater

than linear rate (possibly quadratic).

To understand this behavior we did an analysis of the site data. We found that for

shorter sequences (particularly s < 4000) the lengths of the subtree site compressed

vectors was generally less than the theoretical limits (min(5n, s)) but that as the

length of the sequences increased this shifted such that by the time we had reached

10,000 sites per gene the majority of the vectors were of the maximum lengths. We

therefore are of the opinion that if the number of sites was increased further, all the

sites would be at their limits and the performance increase would be linear from that

point on.

As with the test varying the number of genes, there was a discontinuity found

in the middle of the range. In this case the discontinuity only appeared to impact

one set of points (the 6,000 sites/gene set) and we are of the opinion that this is an

artifact of the generation process.

8.2.4 Varying Numbers of Taxa

Sets of trees with varying numbers of taxa, n ∈ {20, 40...200}, were generated.

Each set contained 10 trees with 10 genes of 200 sites each.

In this case, the computational complexity indicated that the performance should

be quadratic in the number of taxa. For this experiment, the results as shown in

Figure 8.3 could support either linear or quadratic models. With the fully indepen-

dent model, the data could support a quadratic model but with a modest constant

multiplier. For the common rates and common ages models, the curves appear linear

but we would argue that with further increases in the size of the data the quadratic
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Figure 8.3: Step CPU Times for Varying Numbers of Taxa. The number of taxa n,
was varied from 20 to 200 in increments of 20. Each set contained 10 trees with 10
genes of 200 sites each. The times displayed are the average for MCMC steps.

nature of the complexity would become evident.

8.2.5 Varying Numbers of Trees

Sets with varying numbers of trees, t ∈ {10, 20...100}, were generated. Each tree

had 100 taxa and 10 genes of 200 sites.

As shown in Figure 8.4 the performance of all three models was, as expected,

linear in the number of trees. It was anticipated that the performance benefit from

the common ages and rates models would increase. What was of particular interest

was the performance increase with the common ages model over the other models as

the number of tree increased. As previously discussed, with the primates data the

performance increase with the common ages model was approximately 2x over the

common rates model. But with the synthetic data, at 200 taxa, the increase was

closer to 6x. We hypothesize that there was a higher degree of subtree sharing in the

synthetic data sets. It would be interesting to generate additional sets of synthetic

data varying the level of quartet consensus and observing the change in performance

at the different levels.
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Figure 8.4: CPU Times for Varying Numbers of Trees. The number of trees in a set
was varied from 10 to 100 in increments of 10. Each tree had 100 taxa and 10 genes
of 200 sites each. The times displayed are the average for MCMC steps.

8.2.6 Summary

We have shown experimental validation for the theoretical computational com-

plexity of AncestralAge. Varying the key components of the complexity; the numbers

of trees, genes, taxa and sites we showed that the performance was within expected

values.

When we varied the number of sites, we observed what appeared to be a greater

than linear increase in CPU time. We believe this is a result of the nature of the

subtree site compression algorithms and that linear scaling would be demonstrated

with larger sample sizes.

When we varied the number of taxa, we observed a much closed to linear scaling

than would have been expected. We believe that the complexity is in actuality

quadratic but that the constant multiplier is small and it would take significantly

larger sample sizes to demonstrate quadratic behavior.

There were several discontinues noted in the data. Further investigation will be

required to understand if these are artifacts of the synthetic data generation process
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or if there are aspects of the AncestralAge algorithms yet to be uncovered.
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9 CONCLUSIONS AND FUTURE WORK

Phylogenetic divergence time has proven to be a rich area for computational re-

search. When we started our work with the MCMCTree program it became apparent

that this program had been developed as a test bed for statistical theory relating

to divergence time. Issues of computational performance were secondary (or worse).

The other significant application, Beast, took a different approach to the problem

hypothesizing that combining phylogenetic inference with divergence time inference

would produce a better model. In some, small, cases this has been proven [41] [36]

but this combination also limits the ability of the biologist to independently estimate

the phylogenetic tree and the dates for the nodes of the tree.

We found that neither of these programs scaled to the hundreds of trees and

thousands of base pairs of DNA that are being used in modern studies. We were able

to improve the performance of MCMCTree through a new approximated likelihood

algorithm. But, this did not help in cases where the molecular clock was violated

and the approximation model failed.

In order to provide a framework for further research into the process of phyloge-

netic divergence time, we developed the AncestralAge framework. This framework

has facilitated research into new algorithms in a number of areas relating to diver-

gence time including likelihood computation and Bayesian prior computation.

In order to improve the efficiency and performance of the dating process we first

focused on developing new algorithms for dating individual trees. Our subtree site

compression algorithm for the computation of phylogenetic likelihood has demon-

strated a 90.1% improvement over existing methods. Our incremental prior of ages

algorithm has shown as better than 100x improvement over the comparable compu-
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tation in MCMCTree.

The modular design of the AncestralAge framework has also allowed research

into alternative parallel methods for likelihood computation. Our research into a

highly parallel GPU algorithm demonstrated that our high optimized subtree site

compression algorithm did not translate well as the level of parallelism possible had

been reduced as the overall amount of work required had also been reduced.

One of the significant questions we investigated was the sensitivity of the model to

changes in the set of calibrations. With the development of calibration jackknifing

we were able to develop a novel new support measure for the ages of the nodes.

We demonstrated the use of this measure on the primates dataset. With previous

methods (MCMCTree) it required 14 days to date a single tree with the approximated

likelihood algorithm. We were able to date the base tree and 20 replicates using out

exact likelihood algorithm in just under 10 days on a single cluster node.

We hypothesized that dating multiple trees prior to the consensus would allow

for reduced bias and variance in the final tree. We produced new, high performance,

algorithms for the computation of the quartet distance across all pairs of a set of

trees allowing selection of sets of trees of interest for dating. While the fundamental

questions around multiple tree dating remain outstanding we have developed models

for sharing structures across multiple trees that will, in the future, facilitate research

into this question.

9.1 Future Work

Frequently research will generate new sets of questions for study. This work has

been no exception. There are a number of areas that are worthy of additional study

including:

• The common rate and common age multiple tree models.
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Additional research will be required to best determine how to specify cali-

brations in the multiple tree models. How should conflicting calibrations be

handled and what are the implications of that handling?

The prior of ages algorithm will require additional research to understand how

to manage the computation of the prior when the sets of calibrations may vary

between the trees.

• Development of more efficient parallel GPU algorithms.

The initial GPU implementation was less efficient than the serial version of the

same algorithm. We found that through the subtree site compression algorithm

the width of the calculations sent to the GPU was not sufficient to counter the

overhead of dispatching the work to the GPU. We are of the opinion that it will

be possible to overcome these issues by computing the likelihood for multiple

nodes in parallel. Of particular interest will be understanding the threshold

where the GPU width is sufficient to overcome the cost of dispatching work to

the GPU.

• Use of AncestralAge to study the impact of performing the consensus after

dating.

While it will be desirable to further improve the performance and capacity of

the multiple tree dating capability, there is addition research that can be done

with the numbers of trees that can currently be dated.

It will be interesting to generate consensus trees from the set of dated trees

generated and compare the results with the published consensus trees.

• Additional experimentation using of AncestralAge to gain further understand

into the impact of the support measure for node ages.
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We analyzed a single tree from one study. But, there is considerably more

research that can now be done to understand the impact of the numbers, types

and distributions associated with fossil calibrations on the divergence time

process.

• Extension of the AncestralAge framework to support additional capabilities.

There are a number of additional capabilities that would prove valuable includ-

ing:

– Support for dating using Amino Acid sequences.

– Extension of the evolutionary models to include the percentage of invari-

ant sites.

– Support for “Tip” dating where the dates for leaves can be specified. This

is of particular interest in virology.

9.2 Conclusion

We have demonstrated new algorithms for phylogenetic divergence time that push

the boundaries of our knowledge in this area. Our hope is that this work will one

one hand provide biologists a new set of tools for phylogenetics and, on the other

hand, provide computer scientists with a new framework and algorithms for research

into computational biology.
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APPENDIX A

THE ANCESTRAL AGE FRAMEWORK

A framework was required that would allow efficient implementation of the di-

vergence time algorithms. This implementation would act as the test platform for

the various algorithms as well as providing a working implementation for use by

biologists.

During the design phase of the project, it was determined that the existing di-

vergence time programs, Beast and MCMCTree, were not appropriate for the imple-

mentation of the new algorithms. In the case of Beast, the architecture is extensible,

but, the focus of the platform is on phylogenetic inference with divergence time as

a secondary feature. The fear was that the impact of the new divergence time al-

gorithms would be hard to determine in the context of phylogenetic inference. In

the case of MCMCTree the previously discussed software engineering issues would

have significantly complicated the implementation of new algorithms. Additionally,

our previous work on MCMCTree had shown that the monolithic structure of the

program made implementation of new data structures extremely difficult.

It was therefore determined that the best approach to the implementation of the

new algorithms would be in a new divergence time framework, AncestralAge. This

framework was designed to meet the following goals:

• Allow for simplified implementation of algorithms for discrete aspects of the

divergence time problem. Addition of a new version of an algorithm should

not require significant modification to the framework.

• The framework would itself be high performance. Overhead for the framework

155



would be kept to a minimum.

• The framework would be operating system independent. It should run on any

of the major systems (Unix, OS/X, Windows) in common use at this time.

• The framework would provide detailed performance data as part of the archi-

tecture.

• The framework would provide a set of common, extensible, services including

task management and operating logging. These services would themselves be

modular and extensible.

AncestralAge was created to meet these goals.

As part of this research a rigorous analysis was performed of the statistical model

and it’s computational implications. The goal was to minimize the work required for

each and every parameter change. In the following discussion the implication to each

of the model components for a change in a particular type of parameter is discussed.

This analysis provided key insights into the structure of the computational model

implemented by AncestralAge.

Age Parameter Proposals. When a new age is proposed for an ancestral node,

only some components of the model require updating. In equation (3.7) it can be

seen that the node ages (t) are not included in the prior on nuisance parameters and

therefore there is no need to compute that prior as part of the acceptance ratio for

ages. For the other model components the following apply:

Likelihood. Since it is frequently the case that not all species appear in all

gene trees, there will be nodes “missing” from the gene trees. When a new age is

proposed for a parameter associated with node in the species tree, the likelihood will
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change for each gene tree that contains the node but omitting gene trees where the

node is missing.

But, it is not necessary to compute the likelihood for the entire gene tree. Con-

tributions to the likelihood from siblings of the node with the new age will not have

changed and do not require recomputation. Additionally, as the gene tree is walked

from the changed node to the root, siblings of any of the ancestors of the nodes along

the path to the root will not require recomputation either. But, as the transition

probabilities for a branch are functions of the both the times and the rates at the

branch, it is necessary to recompute the values for the immediate children of the

changed node. Therefore, in summary, if intermediate values are preserved within

the gene trees, it is only necessary to recompute from the children of the changed

node to the root for each gene tree in which the changed node appears.

Prior on Ages. Due to the model used for the prior of ages, the scope of a

change to the prior will vary depending on the magnitude of the change. To compute

the prior the ages of each node in the species tree are sorted and this sorted list is

used for the computation of the prior. If an age is changed, the impact of the change

will depend on whether the ordering in the sorted list is changed. In the simplest

case, the list ordering is not changed and the only computation required will be

for the changed node. If the list ordering has changed, calculations will need to be

performed for that portion of the list whose ordering has changed. For example, if

the node A was previously older than node B, but, as a result of the proposed new

age it is now younger than node B, the contribution of both nodes A and B to the

prior will need to be recomputed.

Prior on Rates. The impact of an age parameter change will depend on the

rate model used:
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• For the molecular clock model, there is no relationship between the single rate

for a gene tree and the node ages. Therefore there is no requirement to update

the rate prior on an age change.

• For the independent clock model, the node ages do not figure into the calcu-

lation of the rates at the gene tree nodes. Therefore, as with the molecular

clock, there is no need to update the prior on an age change.

• For the correlated clock model, the value of the prior is calculated using the

edge length in the gene trees. This length is calculated as the product of the rate

and the time duration of the edge. Therefore any change in node age will effect

the prior computed from the immediate descendants and immediate ancestor

of the changed node. Our early work on MCMCTree determined that a key

component of the excessive time estimate for the primates study was a result of

recomputing the prior on rates across the entire gene tree. This optimization

allowed for a significant reduction in the time required for MCMCTree.

Rate Parameter Proposals. As with changes to age parameters, only some

model components require updating on a new rate proposal. Referring once again to

equation (3.7), it can be seen that the rate does not factor into the prior on ages or

the prior on the nuisance parameters and therefore those model components would

cancel out on a rate change.

It should be noted that in the molecular clock model there are no rate parameters

on any of the branches. The only parameter related to rates is the overall rate for

each gene tree.

Likelihood. As rates are associated with a single gene tree, a new rate pa-

rameter will only require updating of at most one gene tree. Assuming again that
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intermediate values have been saved during computation of the overall gene tree,

a rate change will only impact the edge with the changed rate and it’s ancestors

leading up to the root. Once again, siblings of the changed edge and the siblings of

it’s ancestors will not be effected and will not require recomputation.

Prior on Rates. When a rate is changed, the edge length computed as the

product of the rate and the time duration for the edge changes for that branch

only, therefore only the contribution of that edge to the overall prior needs to be

recomputed.

Nuisance Parameter Proposals. This is not a single type of parameter although,

in general, all the nuisance parameters operate at the gene tree level. For example,

if an evolutionary model parameter is changed, all transition probability matrices

for the gene tree will need to be updated and the likelihood for the entire gene tree

recomputed.

In the case of these parameters, none of the changes will impact the ages of the

nodes and therefore the prior on ages would cancel out.

Likelihood. As mentioned, the nuisance parameters have an effect across an

entire gene tree and therefore a change in any of these parameters will require re-

computation of the likelihood for the entire gene tree.

Prior on Rates. Changes to evolutionary model parameters will not effect the

rates at any of the edges and therefore will allow the prior on rates to cancel out.

But, changes to the mean or variance parameters at the root of the gene trees will

effect the rates prior in the independent and correlated models. For the molecular

clock model there are no rate parameters and therefore no prior on the rates. The

only parameters in this model are the mean and variance parameters on the rate at

the root of each gene tree..
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Prior on Nuisance Parameters. Each of the nuisance parameters will make

a contribution to the overall prior for the nuisance parameters but only requires

computation of the prior for the single changed parameter. In general, this will only

involve determination of the probability density value for the new parameter value

in the distribution specified by the hyperparameters involved.

Capabilities of AncestralAge. While the long term goal will be to provide a

robust set of divergence time methods the focus of the initial implementation has

been on the subset of the capabilities provided by MCMCTree and Beast that would

most meet the needs of biologists working on phylogenetic studies. These capabilities

are:

1. Support for the DNA nucleotide model. At some future point, the Amino Acid

or Protein model could be added.

2. Support for a subset of the IUPAC codes for nucleotides[17]. The codes for

nucleotides T,C,A and G along with “any” character and missing are supported.

Codes for the other possible combinations of nucleotides are not supported at

this time.

3. Support for the most common evolutionary models:

• Jukes-Cantor model (JC69)[53].

• Kimura two parameter model (K80)[55].

• Felsenstein 1981 model (F81)[32].

• Felsenstein 1984 model (F84)[31].

• Hasegawa, Kishino and Yano 1985 model (HKY85)[42].

• Tamura 1992 model (T92)[81].

160



• Tamura and Nei 1993 model (TN93)[82].

• Generalized Time Reversible model (GTR)[85].

4. Support for common statistical distributions for fossil calibrations:

• Fixed or soft lower bounds[94].

• Fixed or soft upper bounds[94].

• Fixed or soft upper and lower bounds[94].

• Gamma distributed calibration ages.

• Normally distributed calibration ages.

5. Support for discrete gamma variation between sites. At some future point

support for the percentage of invariant sites could be added.

6. Support for three clock (evolutionary rate) models as defined by Yang[68]:

(a) A single rate for all branches in a gene tree (the molecular clock).

(b) Independent rates for branch drawn from a common gamma distribution.

(c) Branch rates drawn from a common gamma distrbution with the mean

of the distribution set based on the rate for the ancestral branch (the

correlated model of Yang and Rannala).

7. Support for the prior of node ages using the birth-death-sampling process of

Yang and Rannala[94]. Additional algorithms such as the Yule process or

Dirichlet process prior[45] for node ages could be implemented at some future

point.

8. Support for multiple input trees. Common structure will be leveraged to im-

prove computational efficiency.

161



RunAA.py
Script

libAA
Shared Library

Nexus,
Yaml
Input

Trace
Files

Tree
Files

Sampled
Tree
Files

Summary
Files

Run
Log

Figure A.1: AA High Level Architecture. This figure illustrates the overall structure
of the AncestralAge framework. The RunAA.py command line interface is responsi-
ble for parsing program options and loading the input data. These options and data
are loaded into the LibAA shared library for processing. The LibAA shared library
is responsible for writing the various output files from the process.

9. Support for multiple MCMC chains or multiple jackknife replicates. Each

tree is included in each of the chains or jackknife replicates. At this time

either multiple MCMC chains or multiple jackknife replicates may be used but

multiple MCMC chains across multiple jackknife replicates is not supported.

Architecture of AncestralAge. As shown in Figure A.1, the core of Ances-

tralAge is a shared library, LibAA, providing the framework for the algorithms

implemented. In programs such as MCMCTree a considerable amount of code is

required to manage the basic housekeeping tasks of interpreting options and loading

input data. But these tasks are handled easily and with minimal programming in

scripting languages such as Python. By the use of a scripting language it becomes

possible to quickly support multiple input formats and the large set of configura-
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tion options required by divergence time methods. Therefore the setting of program

options and acquisition of the input data is handled by a Python script: RunAA.py.

The LibAA shared library exposes it’s capabilities though an API with “C”,

“C++” and Python language bindings available. All outputs are generated through

the LibAA library. In addition to a single log file output, for each tree in each

replicate (MCMC chain or jackknife) the following files are produced:

• The final tree generated as a Nexus file suitable as input to the FigTree[65]

visualization program.

• A textual summary file is produced giving detailed information on all the model

parameters.

• Trace records in CSV format that can be used as input to the Tracer program

to provide visual and statistical validation of the MCMC process.

• The trees sampled during the MCMC process as a Nexus file suitable for input

to the TreeHouse[7], TreeZip[62] or Phash[61] tree analysis tools.

LibAA: A Shared Library for Divergence Time Inference. The LibAA

shared library is implemented in C++ conforming to the C++11 language standard.

The components of the library are shown in Figure A.2.

A typical use of the library is in four phases:

1. The process parameters and data are loaded into the library using methods

provided. The data includes the trees to be dated, the DNA sequences for the

trees and set of genes (loci) and taxa to be included. Trees are loaded into

a common directed acyclic graph data structure reducing duplication in cases

where common subtrees exist.
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Figure A.2: Components of the AA Shared Library. The four phases of processing
are shown at the top of the figure. Parameter and data loading produces the common
directed acyclic graph data structure. This data structure is replicated during model
construction using a library of available algorithms and initial values are assigned to
all parameters. The replicates are then passed to a set of processing tasks to execute
the MCMC steps.

2. A model is generated from the input parameters and data. Since, at this

point, there is complete information on the set of operations to be performed

in each MCMC step it is possible to generate a model that includes only those

algorithms required (e.g. rate clock models) for the run in process. This allows

the MCMC step execution path to be optimized prior to starting the process

thereby improving processor efficiency.

The model is assembled from a library of algorithms including:

• CPU and GPU versions of the likelihood computation (see Chapter 4).

• The initial value model in use (discussed below).
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• A set of algorithms to build transition probability matrices depending on

the evolutionary model chosen.

• Algorithms for the computation of the priors of node ages and node rates.

Different versions of the algorithms are used depending on the clock model

in use (see Section A).

The model is then replicated with a replicate being generated for each MCMC

chain or jackknife replicate requested.

3. Initial values are determined for all model parameters. MCMCTree does not

allow for the input of branch lengths as part of the tree under analysis, initial

values for all parameters are determined through an iterative fitting process

that might or might not produce results similar to the branch lengths returned

from the phylogenetic inference.

It is our hypothesis that by using branch lengths provided in the input trees,

a better starting point for the process will be used thereby contributing to

quicker MCMC convergence. We therefore use any branch length information

provided in the input along with the fossil calibrations to set the initial ages of

the inner nodes and roots as well as the rates associated with the edges of the

gene trees.

4. Finally, the model is executed. Each replicate is allowed to run on a separate

thread with the typical case being that the number of replicates would exceed

the number of cores available on a given processor.

RunAA.py: An Extensible Command Line Interface to LibAA. The

RunAA.py script is provided as a command line interface to the LibAA shared library.

This script may be run directly from the command line on Unix and OS/X systems
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and through the python interpreter on Windows systems. Library options (e.g.

number of MCMC steps to run) may be provided either on the command line or

as part of an input file. Two formats of input file are supported, the standard

Nexus format as well as in a Python friendly, Yaml (Yet Another Markup Language),

format.

The options available from the command line are shown in the script output when

the “–help” option is provided. A sample help output is provided in Appendix B. A

sample Nexus format file is provided in Appendix C and a sample Yaml format file

is provided in Appendix D.
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APPENDIX B

RunAA.py HELP OUTPUT

$ . /RunAA. py −−help
usage : RunFDivT . py [−h ] [−−noconso le ] [−−dontrun ]

[−−s td in fmt {yaml , nexus , newick } ] [−−bdlambda FLOAT]
[−−bdmu FLOAT] [−−bdrho FLOAT] [−−burnin INT ]
[−−clockmeanalpha FLOAT] [−−clockmeanbeta FLOAT]
[−−clockmeandcon FLOAT] [−−clockmodel CMODEL]
[−−c lockvara lpha FLOAT] [−−c l ockvarbe ta FLOAT]
[−−c lockvardcon FLOAT] [−−dumprepl i cates ]
[−−no−dumprepl i cates ] [−−dumptrees ] [−−no−dumptrees ]
[−− f i l ename FILENAME] [−− f i l e o v e r w r i t e ]
[−−no−f i l e o v e r w r i t e ] [−−gapchar CHAR] [−−hashb i t s INT ]
[−− logdebug ] [−−no−logdebug ] [−− l o g f i l e FILENAME]
[−− l o g p e r f ] [−−no−l o g p e r f ] [−− l o g s t a t s ] [−−no−l o g s t a t s ]
[−−miss ingchar CHAR] [−−ngen INT ] [−−n r e p l i c a t e s INT ]
[−−nruns INT ] [−−nthreads INT ] [−− r e p l i c a t e p c t FLOAT]
[−−sample f req INT ] [−−seed INT ] [−− s eqchar s STRING]
[−−usegpu ] [−−no−usegpu ]
f i l e s [ f i l e s . . . ]

Perform phy logene t i c d ive rgence time a n a l y s i s on an input f i l e . Command l i n e
opt ions are app l i ed a f t e r any f i l e s are loaded . This a l l ows o v e r r i d i n g o f any
opt ions in the f i l e s .

p o s i t i o n a l arguments :
f i l e s Input F i l e ( s ) . At l e a s t one f i l e must be inc luded .

Mult ip l e f i l e s may be s p e c i f i e d and w i l l be read in
the order s p e c i f i e d . S ince the re are some c o n s t r a i n t s
on how parameters are loaded ( e . g . taxa be f o r e t r e e s )
t h i s must be cons ide r ed in the order o f the f i l e s on
the command l i n e . I f ’@’ i s s p e c i f i e d as one o f the
f i l e names , input w i l l next be read from s td in at that
po int . Note other f i l e s can be read be f o r e and a f t e r
s td in i f r equ i r ed . The type o f f i l e i s assumed based
on the f i l e ex tens i on . For nexus f i l e s ex t en s i on s
’ . nexus ’ and ’ . nex ’ are supported . For newick t r e e
f i l e s , ’ . t re ’ and ’ . newick ’ are supported . For yaml
input , ’ . yaml ’ i s va lue .

op t i ona l arguments :
−h , −−help show t h i s help message and exit
−−noconso le Do not produce conso l e output . Normally , a l l output i s

d i r e c t e d to the conso l e a long with any f i l e s p e c i f i e d
with the −− l o g f i l e parameter . I f t h i s opt ion i s
s p e c i f i e d , con so l e output w i l l be d i s ab l ed and only
−− l o g f i l e output produced . In t h i s case i f −− l o g f i l e
i sn ’ t s p e c i f i e d the re i sn ’ t any output at a l l .

−−dontrun Do not automat i ca l l y run the MCMC proce s s a f t e r
l oad ing a l l input . Normally , a l l input f i l e s w i l l be
read and loaded then the MCMC proce s s run .

−−s td in fmt {yaml , nexus , newick}
Format to use for input read from s td in . The d e f a u l t
i s the standard yaml format as de s c r ib ed in the
documentation . I f ’ nexus ’ i s s p e c i f i e d , the s td in must
be a proper ly formatted nexus f i l e . I f ’ newick ’ i s
s p e c i f i e d , the input must c o n s i s t o f one or more
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newick format t r e e s
−−bdlambda FLOAT Time p r i o r − Birth death lambda . Value i s a f l o a t i n g

po int number
−−bdmu FLOAT Time p r i o r − Birth death mu. Value i s a f l o a t i n g po int

number
−−bdrho FLOAT Time p r i o r − Birth death rho . Value i s a f l o a t i n g

po int number
−−burnin INT Numer o f burnin gene ra t i on s to exc lude from output .

The value must be l e s s than the number o f g ene ra t i on s
s p e c i f i e d ( ngen ) . Defau l t i s ze ro .

−−clockmeanalpha FLOAT
Clock models − mean o f r a t e s gamma alpha
hyperparameter . Value i s a f l o a t i n g po int number .
Defau l t i s 1 . 0

−−clockmeanbeta FLOAT
Clock models − mean o f r a t e s gamma beta hyperparameter
Value i s a f l o a t i n g po int number . Defau l t i s 1 . 0

−−clockmeandcon FLOAT
Clock models − mean o f r a t e s d i r i c h l e t concent ra t i on
hyperparameter . Value i s a f l o a t i n g po int number .
Defau l t i s 1 . 0

−−clockmodel CMODEL Clock model ( g loba l , independend , c o r r e l a t e d ) .
−−c lockvara lpha FLOAT

Clock models − var iance o f r a t e s gamma alpha
hyperparameter

−−c l ockvarbe ta FLOAT Clock models − var iance o f r a t e s gamma beta
hyperparameter

−−c lockvardcon FLOAT Clock models − var iance o f r a t e s d i r i c h l e t
concent ra t i on hyperparameter

−−dumprepl i cates Dump t r e e s a f t e r r e p l i c a t i o n
−−no−dumprepl i cates
−−dumptrees Dump t r e e s a f t e r load p r i o r to r e p l i c a t i o n
−−no−dumptrees
−−f i l ename FILENAME F i l e name root for a l l output f i l e s . This name i s used

as the base o f a l l the non−conso l e output f i l e s ( e . g .
t race , t r e e f i l e s ) . I f the f i l e s a l r eady e x i s t the run
w i l l be aborted without ove rwr i t i ng the f i l e s . I f the
value ’%( date ) ’ i s inc luded in the f i l ename , the
cur rent date o f the form yy−mm−dd w i l l be inc luded in
the generated names . I f the value ’%( time ) ’ i s
inc luded in the f i l ename , the cur rent time o f the form
hh−mm−s s w i l l be inc luded in the generated names .

−− f i l e o v e r w r i t e Allow any e x i s t i n g output f i l e s to be ove rwr i t t en .
Defau l t ac t i on i s to abort i f e x i s t i n g output f i l e s
are found .

−−no−f i l e o v e r w r i t e
−−gapchar CHAR Sequence al ignment : gap charac t e r . Defau l t i s ’− ’ .
−−hashb i t s INT Number o f b i t s in the subt ree hash t ab l e . Defau l t i s

24 which should be adequ i te for most a n a l y s i s .
Performance o f the subt ree hash can be monitored by
enab l ing −− l o g s t a t s

−−logdebug Enable debugging output . The module must have been
compiled with debugging s p e c i f i e d (DEBUG=1 on the
scons command l i n e ) . I f debugging wasn ’ t compiled in
t h i s opt ion i s ignored

−−no−logdebug
−− l o g f i l e FILENAME Write conso l e output to t h i s f i l e as we l l as stdout .

I f the f i l e a l r eady e x i s t s i t w i l l be over r idden
−−l o g p e r f Enable performance data output ( i f compiled in )
−−no−l o g p e r f
−− l o g s t a t s Enable run s t a t i s t i c s output
−−no−l o g s t a t s
−−miss ingchar CHAR Sequence al ignment : miss ing data cha rac t e r . Defau l t i s

’ ? ’ .
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−−ngen INT Number o f MCMC gene ra t i on s . This i n c l u d e s any burnin
gene ra t i on s reques ted . A value must be s p e c i f i e d for
t h i s parameter , the re i s no d e f a u l t

−−n r e p l i c a t e s INT Number o f j a c k k n i f e r e p l i c a t e s to generate . The f i r s t
r e p l i c a t e always conta in s a l l the c a l i b r a t i o n s .
Subsequent r e p l i c a t e s might or might not conta in a l l
the c a l i b r a t i o n s depending on the r e p l i c a t i o n
percentage reques ted . This va lue i s mutually e x c l u s i v e
with the number o f MCMC cha ins ( nruns ) .

−−nruns INT Number o f MCMC cha ins . This va lue determines the
number o f MCMC cha ins ( runs ) to be done on each input
t r e e . This va lue i s mutually e x c l u s i v e with j a c k k n i f e
r e p l i c a t i o n ( n r e p l i c a t e s ) .

−−nthreads INT Number o f p a r a l l e l CPU threads . Defau l t i s the number
o f c o r e s a v a i l a b l e .

−−r e p l i c a t e p c t FLOAT Percentage o f c a l i b r a t i o n s to in c lude in each
j a c k k n i f e r e p l i c a t e s . The value must be > 0 .0 and <
1 0 0 . 0 . The d e f a u l t i s to 100 .0 which w i l l i n c lude a l l
c a l i b r a t i o n s in a l l r e p l i c a t e s .

−−sample f req INT Number o f g ene ra t i on s between samples o f the cha ins .
Both t r e e s and a l l parameter va lue s are sampled at the
same time . Defau l t i s to take 1000 samples a c r o s s the
non−burnin gene ra t i on s i f the number o f g ene ra t i on s
w i l l support i t ( non−burnin gene ra t i on s >= 10 ,000 ) . I f
the number o f non−burnin gene ra t i on s i s l e s s than
10 ,000 a value i s choosen to produce at l e a s t 100
samples .

−−seed INT Random seed to use . I f not s p e c i f i e d a value w i l l be
generated .

−−s eqchar s STRING Sequence al ignment : set o f c h a r a c t e r s in the
al ignment . Defau l t i s ’TCAG’ .

−−usegpu Enable GPU support . I f GPU support i s unava i lab l e ,
t h i s va lue w i l l be ignored . Defau l t w i l l be to enable
support .

−−no−usegpu
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APPENDIX C

SAMPLE NEXUS INPUT FILE

#NEXUS
[
Sample NEXUS F i l e
]
begin data ;

dimensions ntax=8 nchar =49;
format datatype=dna miss ing=? gap=−;

matrix
Taxa 1 AAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−
Taxa 2 TATATATATATATATATATATATACGCGCGCGCGCGCGCGCGCGCGCGCG
Taxa 3 A?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA
Taxa 4 ACGACGACGACGACGACGACGTGATGATGATGATGATATATATATATATA
Taxa 5 GGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−AAAAAAAAAAT
Taxa 6 TATATATATATATATATATATATACGCGCGCGCGCGCGCGCGCGCGCGCG
Taxa 7 GGGGGGGGGGCCCCCCCCCC−−−−−−−−−−??????????AAAAAAAAAA
Taxa 8 CCCCCCCCCCTTTTTTTTTT−−−−−−−−−−AAAAAAAAAAGGGGGGGGGG

end ;

begin s e t s ;
cha r s e t ’ Locus 1 ’ = 1−20;
cha r s e t ’ Locus 2 ’ = 21−49;

end ;

begin taxa ;
Dimensions ntax =8;
Taxlabe l s Taxa 1 Taxa 2 Taxa 3 Taxa 4 Taxa 5 Taxa 6 Taxa 7 Taxa 8 ;

end ;

begin t r e e s ;
t r e e t1 = ( ( Taxa 1 : 1 , Taxa 2 : 2 ) : 3 , ( ( Taxa 3 : 4 , ( Taxa 4 : 5 , Taxa 5 : 6 ) : 7 ) : 8 ,

( Taxa 6 : 9 , ( Taxa 7 : 1 0 , Taxa 8 : 1 1 ) : 1 2 ) : 1 3 ) : 1 4 ) ;
t r e e t2 = ( ( Taxa 1 : . 1 , Taxa 3 : . 3 ) : 1 1 , ( ( Taxa 2 : . 2 , ( Taxa 7 : . 7 , Taxa 8 : . 8 )

: 1 2 ) : 1 3 , ( Taxa 6 : . 6 , ( Taxa 4 : . 4 , Taxa 5 : . 5 ) : 1 4 ) : 1 5 ) : 1 6 ) ;
t r e e t3 = ( ( Taxa 1 : 1 . 1 , ( Taxa 2 : 1 . 2 , ( Taxa 3 : 1 . 3 , Taxa 4 : 1 . 4 ) : 2 1 ) : 2 2 ) : 2 3 ,

( Taxa 5 : 1 . 5 , ( Taxa 6 : 1 . 6 , ( Taxa 7 : 1 . 7 , Taxa 8 : 1 . 8 ) : 2 4 ) : 2 5 ) : 2 6 ) ;
end ;

begin f d i v t ;
opt i ons c lockmodel=c o r r e l a t e d ngen=100000 sample f req =1000 burnin=1000

nruns=3 f i l e o v e r w r i t e=true ;
emodel model=khky85 parms =(1.0 , 0 . 5 ) gammacats=4 gammaparms= ( 0 . 5 , 1 . 0 ) ;
outgroup ( Taxa 1 ) ;

end ;

begin c a l i b r a t i o n s ;
c a l 1 descendents=(Taxa 3 , Taxa 4 ) type=lowerupper minage =1.0 maxage =4.5 ;

end ;
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APPENDIX D

SAMPLE YAML INPUT FILE

#
# Sample Yaml F i l e
#

opt ions :

Seed : 16361

ClockModel : Corre la ted

NGen : 100000
SampleFreq : 1000
Burnin : 1000
NRuns : 4
F i l eOverwr i t e : true

emodel :
model : HKY85
parms : [ 1 . 0 , 0 . 5 ]
gammacats : 4
gammaparms : [ . 5 , 1 ]

taxa :
− Taxa 1
− Taxa 2
− Taxa 3
− Taxa 4
− Taxa 5
− Taxa 6
− Taxa 7
− Taxa 8

l o c i :
− Loc i 1
− Loc i 2
− Loc i 3
− Loc i 4
− Loc i 5
− Loc i 6

sequences :
Taxa 1 :

Loc i 1 : AAAAAAAAAA?GGGGGGGGGCCCCC
Loc i 2 : AAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−
Loc i 3 : AAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−
Loc i 4 : AAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−A
Loc i 5 : AAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−AAAAAAAAAA

GGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−
Loc i 6 : AAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−AAAAAAAAAA

GGGGGGGGGGCCCCCCCCCCTTTTTTTTTT−−−−−−−−−−AAAAAAAAAAGGGGGGGGGGCCCCC
Taxa 2 :

Loc i 1 : TTTTTTTTTT??????????AAAAA
Loc i 3 : TATATATATATATATATATATATACGCGCGCGCGCGCGCGCGCGCGCGCG
Loc i 5 : A?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?

G?A?GA?G?A?GA?G?A?GA?G?A?GA?G?A?GA?
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Taxa 6 :
Loc i 2 : GGGGGGGGGGCCCCCCCCCC−−−−−−−−−−??????????AAAAAAAAA
Loc i 4 : ACGACGACGACGACGACGACGTGATGATGATGATGATATATATATATATAT
Loc i 6 : T−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT

−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT−GAT

t r e e s :
t1 : ( ( Taxa 1 : 1 , Taxa 2 : 2 ) : 3 , ( ( Taxa 3 : 4 , ( Taxa 4 : 5 , Taxa 5 : 6 ) : 7 ) : 8 , ( Taxa 6 : 9 ,

( Taxa 7 : 1 0 , Taxa 8 : 1 1 ) : 1 2 ) : 1 3 ) : 1 4 ) ;
t2 : ( ( Taxa 1 : 1 , Taxa 3 : 3 ) : 1 1 , ( ( Taxa 2 : 2 , ( Taxa 7 : 7 , Taxa 8 : 8 ) : 1 2 ) : 1 3 ,

( Taxa 6 : 6 , ( Taxa 4 : 4 , Taxa 5 : 5 ) : 1 4 ) : 1 5 ) : 1 6 ) ;
t3 : ( ( Taxa 1 : 1 , ( Taxa 2 : 2 , ( Taxa 3 : 3 , Taxa 4 : 4 ) : 2 1 ) : 2 2 ) : 2 3 , ( Taxa 5 : 5 , ( Taxa 6 : 6 ,

( Taxa 7 : 7 , Taxa 8 : 8 ) : 2 4 ) : 2 5 ) : 2 6 ) ;

c a l i b r a t i o n s :
− descendents :
− Taxa 7
− Taxa 8
l a b e l : Some f o s s i l
type : Gammadist
alpha : 2 . 0
beta : 1 . 0

− descendents :
− Taxa 3
− Taxa 4
Type : NormalDist
Mu : 10 .001
Sigma : 2 .000

172



APPENDIX E

JACKKNIFE SUPPORT FOR THE PRIMATES
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