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ABSTRACT

Surface wave analysis and inversion have been developed to improve P-wave imag-

ing for hydrocarbon reservoirs in land environments. This requires elastic wave

modeling validation based on an accurate near-surface geology model. However,

conventional modeling approaches with uniform grids pose significant challenges to

represent complex geometry of near-surface heterogeneities and irregular surface to-

pography. To solve this issue, numerical simulation of elastic wave propagation is

implemented based on the spectral-element method, which is ideal for applying flexi-

ble unstructured grids. Locally-refined hybrid grids are used to describe the complex

boundaries of subsurface structures, and refined grids are effective to reduce compu-

tational costs.

Three representative examples of geological features as near-surface heterogeneities

are analyzed in seismic modeling with synthetic earth models. The structures are a

shallow small scatterer, a collapsed karst structure and a low-velocity top layer with

surface topography. The earth model geometry and material properties are based

on the data from the recently released SEAM 2 project “arid model.” The resulting

seismograms show that scattered surface waves from the shallow velocity anomalies

are affected by the shape of modeling grids, properties of filling materials, attenu-

ation, and curved surface topography. Specifically, the shallow scatterer, which is

filled with low-velocity materials, shows a significant amount of trapped seismic en-

ergy and generates multiple scattered surface waves. These unwanted waves from

trapped energy are strongly based on the surface topography and attenuation factor,

Q. Since scattered surface waves are sensitively affected by various geological features

and modeling factors, advanced seismic forward modeling approaches should be used
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for the accurate near-surface modeling. This study shows the capability and poten-

tial of the spectral-element method with advanced conforming grids to handle high

impedance contrast boundaries for the analysis of interaction between the seismic

wave scattering and complex heterogeneous shallow media. It will lead to improve

distinguishing of seismic noise caused by shallow anomalies from the valuable signals

associated with hydrocarbon reservoirs.
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1. INTRODUCTION

Land seismic activity is increasing around the world for onshore hydrocarbon

reservoirs. However, the seismic data from land environments contain significant

scattered surface waves, and they cause challenging problems in seismic interpreta-

tion. These unwanted waves are generated from complex near-surface heterogeneities.

Dry riverbeds and subsurface collapsed karst structures are the representative exam-

ples of the near-surface heterogeneities (Keho and Kelamis, 2012), and they show the

obvious seismic effects in the Arabian limestone deserts (Al-Husseini et al., 1981).

A case study from Saudi Arabia (McNeely et al., 2012) showed how important the

accurate near-surface model is to image low-relief structures, because the first 500 m

of shallow geology in Saudi Arabia is very complex. Furthermore, the extreme low-

velocity material properties in shallow layers is another challenging factor. Since their

low-velocity material properties, strong seismic energy is trapped in shallow struc-

tures and generates unwanted multiple noises. This signal contamination masks the

upcoming body wave reflections from deep structures, which should be interpreted.

The seismic effects of shallow small scatterers have been studied in forward mod-

eling (Almuhaidib and Toksoz, 2014), (Gelis et al., 2005), (Zeng et al., 2012) with

simple synthetic near-surface models, and these studies show advanced approaches

to analyze surface wave scattering. However, the near-surface of an arid region

field environment is quite complex, so additional factors, such as complex geometry

subsurface structures, or low-velocity sand layers on the free-surface with irregular

topography, should be considered for accurate seismic forward modeling.

The most challenging parts in near-surface forward modeling are the complex

geometry of subsurface structures and high impedance contrast. Even though most
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seismic full waveform modeling relies on conventional finite-difference solutions, there

are two critical limitations to apply them for near-surface modeling. Since finite-

difference relies on regular Cartesian grids, the grids cannot conform to the complex

geometry of near-surface heterogeneities, and the results are not accurate enough.

Specifically, the irregular surface topography causes significant differences in surface

wave propagation (Appelo and Petersson, 2009; Bohlen and Saenger, 2006; Roberts-

son, 1996; Tessmer et al., 1992), but finite-difference solutions with regular Carte-

sian grids suffer from the curved free-surface condition (Graves, 1996; Muir et al.,

1992). Furthermore, the grid spacing on the entire model should be uniform, and

it requires extremely fine grids and significant computational resources because of

the near-surface low-velocity materials. Near-surface surface rocks in Saudi Arabia

show about 1000m/s velocity material property, and sands have much less properties

(500 ∼ 1000m/s) (Bridle et al., 2007). For example, a sand dune finite-difference

modeling study (Yilmaz, 2013) used extreme fine grid spacing (0.25m). However, it

is not possible to use this excessive grid on an entire large-scale model with hydrocar-

bon reservoirs. Many other approaches have been developed to reduce computational

costs in extreme fine grid modeling (Chung et al., 2011; Gibson et al., 2014; Ma et al.,

2004; Reshetova et al., 2011) and they showed potential possibilities.

In this study, I applied locally-refined hybrid grids in complex near-surface syn-

thetic earth models to analyze the seismic effects of shallow heterogeneities. To

prevent dispersion error from unstructured grids, the spectral-element method for

the elastic wave simulations has been used with 4th order basis functions. Resulting

seismograms of three representative examples of geological features as near-surface

heterogeneities (Figure 1.1): low-velocity top layer, shallow scatterers, collapsed karst

structures, are compared to analyze the each seismic effect. Scattered surface waves

from these anomalies are strongly dependent on modeling grid design, filling ma-
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terials, attenuation factor, and topography. Specially, the shallow scatterer, which

is filled with low-velocity materials, shows a significant amount of trapped seismic

energy in the scatterer and generates multiple scattered surface waves. Amplitude of

these unwanted waves from the scatterer, which acts as a secondary source, strongly

relies on the variation of surface topography and attenuation factor, Q. These impor-

tant factors are used to be ignored in most forward modeling researches, because they

relies on the conventional finite-difference method for its efficiency. Since scattered

surface waves are sensitively affected by various geological features and modeling fac-

tors, advanced seismic forward modeling approaches should be used for the accurate

near-surface modeling. The approach of the spectral-element method with locally-

refined hybrid grids in this study shows the capability and potential to handle high

impedance contrast boundaries for the analysis of interaction between the seismic

wave scattering and complex heterogeneous shallow media.
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(a)

(b) (c)

Figure 1.1: Cross section of the benchmark model; SEAM 2 project“arid model”.
(a) whole size of the geology model data (10km× 3.75km), (b) only small scale part
(500m × 450m) from the black box of Figure (a), and (c) simplified model to focus
on near-surface anomalies: a small size shallow scatterer, a buried collapsed filled
karst structure, and a low-velocity top layer.
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2. METHOD: SPECTRAL-ELEMENT METHOD AND MESH GENERATION

2.1 Spectral-Element Method

The spectral-element method is based on a weak formulation of the wave equa-

tion and combines the flexibility of the finite-element method with the accuracy of

the pseudo-spectral method (Komatitsch et al., 2005). The discretization of the ele-

ments in the wavefield domain is based on high-degree Lagrange interpolation, and

integration over each element is accomplished based on the Gauss-Lobatto-Legendre

integration(GLL) rule (Komatitsch and Tromp, 1999). Traditional high-order finite-

element methods, which use Gauss-Legendre integration, have suffered from expen-

sive computational costs. However, this approach using the spectral-element method

leads to an exactly diagonal mass matrix. Therefore, the algorithm can be drastically

simplified in matrix inversion calculation.

In geophysics, the most widely used approach for seismic wave propagation for-

ward modeling was the finite-difference method (Kelly et al., 1976). Although the

finite-element method has obvious advantages based on flexible meshes for com-

plex geological structures, its accuracy was lacking. To overcome this problem, the

pseudo-spectral method was proposed. This approach is highly accurate, but it can-

not handle the complex geometries in the earth model. The spectral-element method

was first announced in the field of fluid dynamics (Patera, 1984). This method com-

bines the advantages of both the finite-element and the pseudo-spectral methods.

Thus, it can handle complex geometries with great accuracy. This approach was first

used in geophysics in 1991 (Seriani and Priolo, 1991). Based on this study, many ge-

ological applications in not only 2-dimensions (Komatitsch et al., 2000; Komatitsch

and Tromp, 2003; Liu et al., 2012) but also 3-dimensions have been published (Galvez
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et al., 2014; Komatitsch and Vilotte, 1998; Lee et al., 2008).

The spectral-element method has caused great interest in computational seismol-

ogy because the exact diagonal mass matrix leads to a simple explicit time scheme,

and it is effective for parallel implementation. Furthermore, notable improvement for

near-surface modeling was developed in 2002 (Komatitsch and Tromp, 2002a). The

3-dimensional heterogeneous earth models were implemented, including topography,

attenuation and even anisotropy (Komatitsch and Tromp, 2002b). These were chal-

lenging topics in conventional finite-difference methods, but they were inevitable fac-

tors to overcome in near-surface modeling. The accuracy of the new spectral-element

method was compared to the traditional finite-element method and the analytical

solution for the wave equation (De Basabe and Sen, 2007). The spectral-element

method has been used for various research topics in geophysics (Galvez et al., 2014;

Luo et al., 2009), and the development of this approach is still in progress.

In this study of seismic wave propagation, an open source software package,

SPECFEM2D (http://geodynamics.org/cig/software/specfem2d), which is based on

the spectral-element method is used. The software can simulate forward and adjoint

seismic wave propagation in 2D acoustic, elastic, poroelastic or coupled acoustic-

elastic media, with convolution PML absorbing conditions. The SPECFEM2D pack-

age was first developed by Dimitri Komatitsch and Jean-Pierre Vilotte at IPG in

Paris (France) from 1995 to 1997. Since then, it has been developed and maintained

by CIG seismology group (http://geodynamics.org/cig/working-groups/seismology),

and the code is released open-source under the CeCILL version 2 liceense. Among

their various software packages, this SPECFEM2D package considers 2-D SH and

P-SV wave propagation, and the solver can run both in serial and in parallel. All

SPECFEM2D software is written in Fortran2003 with full portability in mind, and

conforms strictly to the Fortran2003 standard. The package uses parallel program-
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ming based upon the Message Passing Interface (MPI), and the next release of the

code will include support for GPU graphics card acceleration.

2.2 Mesh Generation Tool CUBIT

Since shallow velocity anomalies usually have low-velocity material properties,

extremely fine grids are an indispensable part of near-surface modeling. The mesh

scheme as locally-refined quadrilateral hybrid grids is adopted in this study to re-

flect these geological conditions of the near-surface model. A hybrid grid means a

combination of uniform square-shaped structured grids and partially unstructured

quadrilateral grids. Unstructured fine grids are applied to only the shallow part.

On the other hand, the relatively less complex deep part has traditional regular

Cartesian grids.

Even though the advantage of the unstructured grids, mesh generation usu-

ally requires expert techniques and takes a large amount of work. To overcome

this problem, a mesh generation software program CUBIT (Sandia Laboratory,

http://cubit.sandia.gov) has been used. The benefit of this tool for the spectral-

element method in seismology simulation was proven in the paper (Casarotti et al.,

2008). I developed a MATLAB code to arrange complex CUBIT mesh data, and

extract 2-D cross section to apply the locally-refined hybrid grids to SPECFEM2D.

This approach drastically reduces the total number of elements in the entire model.

Thus, the total simulation running time can be also decreased. Since these hybrid

grids contain regular Cartesian grids at the deep part, traditional modeling input

data format in geophysics field (SEG-Y format data) can be applied easily. There-

fore, the potential possibility of this locally-refined hybrid grids approach needs to

be considered for near-surface modeling.
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(a)

(b)

Figure 2.1: Comparison between the regular grid and locally-refined hybrid grids.
(a) traditional uniform fine grid. (b) locally-refined hybrid grids. The near-surface
layer (orange) has finer grid than the deep layer (green).
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3. MODELING TESTS: NEAR-SURFACE MODELS

3.1 Simple Near-Surface Modeling

To analyze the seismic effects from near-surface velocity anomalies, simplified

synthetic earth model (Figure 3.1) is made by CUBIT software. The anomalies are

three near-surface geological features: the low-velocity top layer, a shallow small

circular shape scatterer, and a collapsed karst structure. The depth of the karst

structure is between 100m ∼ 150m, and the length of the upper boundary is 300m.

The semi-circle shapes on its left and right sides represent the features of collapsed

subsurface karst structures (Metwaly and Alfouzan, 2013). On the other hand, the

shallow scatterer has a 10m radius perfect circle shape. This ideal assumption can

be different from the realistic shape of shallow anomalies, but circular geometry is

applied as a first step of the shallow anomalies’ complex geometry. The center of the

scatterer is located in the middle part (250m, 25m), and the distance between the

free-surface and the scatterer upper boundary is only 15m.

Figure 3.1: Simple synthetic near-surface model
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Table 3.1: Material properties and modeling parameters of the simple synthetic near-
surface earth model in Figure 3.1.

Material Depth Vp Vs Shortest Grid
Layers (m) (km/s) (km/s) wavelength (m) size (m)

1st layer 0 ∼ 50 1.8 1.0 16.7 2
2nd layer 50 ∼ 300 3.8 2.1 35.0 4
3rd layer 300 ∼ 500 3.0 1.7 28.3 4
scatterer 15 ∼ 35 0.8 0.4 6.7 1

karst structure 100 ∼ 150 2.5 1.4 23.3 4

As I mentioned in the introduction chapter, all the geometry and material prop-

erties of near-surface velocity anomalies are based on the official released data “arid

model” of the SEAM 2 project, and detail values of material properties are shown in

Table 3.1. The most challenging part is that the minimum velocity is only 0.4 km/s

inside the scatterer. Since the spectral-element method modelings use high-order

basis functions, I decided to use 1 m grid spacing, so the number of elements in

the shortest wavelength is about 6. The unstructured grids, generated by CUBIT

software, changes the grid size gradually from 1m to 4m.

Simple earth models with only one anomaly, the karst structure model (Figure

3.2-a) and the scatterer model (Figure 3.2-b), are developed to identify the wave

propagations. These anomalies are filled with low-velocity materials, so the distor-

tions of wave propagation from them are shown in snapshots (Figure 3.2-c & d).

S-wave and surface wave (Rayleigh wave) propagation is captured at time 0.3 sec.

The first snapshot (Figure 3.2-c) from the karst structure model shows a distorted

S-wave because of the subsurface karst structure. The S-wave propagation in this

low-velocity anomaly is obviously slower than the surface wave, and the semi-circle

shape on the right side of the karst structure boundary reflects the S-wave strongly.

This can be used to infer the location of subsurface karst structures in the seis-
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(a) (b)

(c)

(d)

Figure 3.2: Snapshots of wave propagation in simple near-surface models. (a) karst
model, (b) scatterer model, (c) snapshot from karst model, and (d) snapshot from
scatterer model. The snapshots show vertical component of each point displacement,
and the obvious circular waves at 0.3 s are S-waves. The red star shows the location
of source at the surface (0 m , 0 m), and the grey rectangular box shows the size of
each synthetic model. Wide range of x-axis distance is used to ignore the artificial
reflections from the left and right boundaries.
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mogram. The scatterer, filled with extremely low-velocity materials, shows strong

seismic energy trapped in it (Figure 3.2-d). The reason for this high amplitude is the

strong direct surface wave whose amplitude decreases exponentially with increasing

depth. Since the depth of the scatterer is shallow, we can see the strongest seis-

mic energy in this snapshot. This trapped energy generates continuous forward and

back-scattered surface waves, and it corrupts the seismic data quality. This signal

contamination used to be simply erased and ignored as ground roll in traditional seis-

mic data processing. However, the amplitude and propagation patterns of scattered

waves should be carefully analyzed in modeling, because this can be used for surface

wave inversion to distinguish noise from scattered waves by upcoming P-waves.

3.1.1 Difference between regular Cartesian grids and locally-refined hybrid grids

Based on the analysis of seismic wave propagation in simple earth models, I

compared the difference between regular Cartesian grids and locally-refined hybrid

grids on the same synthetic near-surface model (Figure 3.1). The shapes of these two

grid schemes on the same material base synthetic near-surface model are shown in

Figure 3.3. The figures are focused around the shallow circular scatterer, which has

the most complex geometry of material boundary in a simple near-surface model,

and the karst structure boundaries are drawn by the same grid schemes. Because of

extreme low-velocity material in the scatterer, the cell size of a regular Cartesian grid

(Figure 3.3-a) is only 1 m in both x & z axis. However, locally-refined unstructured

grids (Figure 3.3-b) show various cell sizes from 1 m in the circular scatterer to 4 m

in the deep part. The colorbar of figures shows the material velocity properties, and

the structured grid in the deep part is fine enough to prevent the artificial dispersion

errors because of relatively high velocity material properties. The unstructured grids

12



(a)

(b)

Figure 3.3: Two different grids near the shallow small circular scatterer in the simple
synthetic earth model (Figure 3.1). (a) regular Cartesian grid, (b) locally refined
hybrid grid. Figure (b) shows more smooth curved material boundary around the
scatterer.
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can change the grid size to use fewer numbers of elements in the model, and it can

also represent a much smoother material boundary of the circular scatterer. The

irregular shape of unstructured grids around the velocity anomalies can generate

conforming mesh on the curved line smoothly without any sharp edges. When we

use regular Cartesian grids, the curved line of material boundaries should be drawn

with artificial sharp edges of 90-degree angles. This used to be ignored for large scale

structures, but near-surface models have to consider small scale anomalies that are

sensitive to grid shape.

Since we analyzed the wave propagation in the simple karst model and scatterer

model in previous chapter, these two models are used again to compare different

modeling grid designs. The Figure 3.4 shows the differences in results between two

different grid schemes in karst structure models (Figure 3.2-a). From left to right,

the synthetic seismogram shows the result from regular Cartesian grids, locally-

refined unstructured grids and the difference between them by data subtraction.

The seismogram from the karst structure model shows almost same result. The

most different signals in Figure 3.4-c are the artificial reflections at the end (time

0.52 s) from non-perfect absorbing boundary conditions in the unstructured grid

model. Apart from that difference, most of the other signals are the same, because

the geometry of the karst structure is relatively simple, and the length and height of

this structure is much longer than the seismic wavelength.

However, the resulting seismogram from the scatterer models (Figure 3.2-b) show

a notable difference between the two different grid models. The seismogram from the

regular Cartesian grids (Figure 3.5-a) and locally-refined unstructured grids (Figure

3.5-b) seem almost the same, but the difference between them (Figure 3.5-c) shows

various amplitude and propagation patterns of multiple scattered surface waves. To

be specific, the amplitude of first scattered waves from the direct surface wave is
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(a) (b)

(c)

Figure 3.4: Synthetic seismograms with different grids in the karst model.(a) regular
grid karst model, (b) hybrid grid karst model, (c) the difference between (a) & (b).
The grid shows few difference because the karst structure size is relatively bigger
than the grid spacing.
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(a) (b)

(c)

Figure 3.5: Synthetic seismograms with different grids in the scatterer model.(a)
regular grid scatterer model, (b) hybrid grid scatterer model, (c) the difference be-
tween (a) & (b). The difference of grids shows the different signals. The amplitude
of scattered surface wave is affected by the shape of grid in the small size velocity
anomaly.
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different, and the regular Cartesian grid model shows stronger backward scattered

waves. Otherwise, the amplitude of multiple scattered waves from trapped seismic

energy in the scatterer is weaker than that of the unstructured grid model. Since

grids are generated based on at least five cells per the shortest wavelength, this dif-

ference cannot be defined as artificial dispersion errors from the coarse grid in the

spectral-element simulation with unstructured grids. This shows that the shape of

modeling grids causes the different geometry of small scale velocity anomalies, and

this decreases the accuracy of near-surface modeling. This seems a small difference,

but we can predict a significant difference in surface wave inversion, which we should

consider carefully with the wave amplitude with attenuation factor.

3.1.2 Effect of materials in scatterer

In the previous chapter, we found that the low-velocity solid scatterer generates

multiple scattered surface waves. However, this small size scatterer may be filled

with various kinds of materials in real arid karst areas. A case study (Peters et al.,

1990) shows that the shallow karst regions in Saudi Arabia contain various near-

surface anomalies that are filled with low-velocity sediments or water. Air-filled

small cavities or large caves are also found in these karst areas in shallow weathered

layers.

To compare and analyze the seismic effect difference due to the materials inside

the scatterer, three types of additional scatterer models are used. These have the

same geometry as the previous low-velocity solid scatterer model of Figure 3.2-b, but

the inside materials are high-velocity solid, water, and air. In these models, the upper

layer material P-wave velocity is 3.8 km/s, the same property of the high-velocity

scatterer is 5.0 km/s, and the Vp of water and air cases are each 1.5 km/s and only
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0.3 km/s. Since water and air are acoustic material, S-wave velocity is applied to

only solid materials as V p/1.8. The density of water is 1.0 g/cm3, but air density is

assumed to be extremely low at 0.001 g/cm3.

The resulting seismograms from these three difference scatterer models are com-

pared in Figure 3.6. From left to right, results are generated from the high-velocity

solid-filled scatterer, low-velocity solid-filled scatterer the same as Figure 3.5-b, water-

filled cavity and air-filled cavity. The first result (Figure 3.6-a) is the simplest, be-

cause the high-velocity scatterer does not trap seismic energy. The scatterer causes

only simple scattering from the direct surface wave. However, the water-filled cavity

case (Figure 3.6-c) shows faint multiple scattered surface waves from trapped en-

ergy in the water-filled cavity. Their amplitude is obviously weaker than the result

from the low-velocity scatterer model (Figure 3.6-b). The notable difference between

the low-velocity scatterer model and the water-filled cavity model is not only the

amplitude of waves, but also the time intervals of multiple scattered surface waves

from the scatterer. The time interval of regenerated scattered surface waves in the

low-velocity solid scatterer model is about 0.04 s, but the water-filled cavity case

shows about 0.02 s, which is only half of the previous result. Since water contains

only P-wave energy, which is weaker and faster than that of surface wave energy,

scattered surface waves as multiples has a fast velocity, and the interval time be-

tween multiples become shorter. We can say that, the scattering surface waves by

upcoming P-waves, which is very important to identify hydrocarbon reservoirs, may

present short multiple intervals in seismogram. This time interval difference between

surface wave trapped energy and P-wave trapped energy must be considered to do a

more accurate surface wave analysis.

The seismogram of the air-filled cavity model (Figure 3.6-d) is also different from

the water-filled case (Figure 3.6-c). Air-filled cavity cases were regarded the same as
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(a) (b)

(c) (d)

Figure 3.6: Synthetic seismograms from scatterer models with different filling materi-
als. (a) high-velocity solid-filled scatterer, (b) low-velocity solid-filled scatterer is the
same as Figure 3.5-b , (c) water-filled scatterer, (d) air-filled cavity. The scattered
surface waves are different due to the materials in scatterer.
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water-filled cavity cases in the past (Oristaglio, 2012). However, the air-filled cavity

doesn’t generate multiple wave noises from trapped seismic energy. We can only

find rare scattered surface waves, which come from upcoming reflected P & S waves.

The air-filled cavity result is similar to the high-velocity solidd scatterer simulation

rather than water-filled cavity simulation.

To clarify the seismic waves inside these challenging water-filled and air-filled

cavity, I compared snapshots of the seismic wave propagation inside the cavities.

Two different types of snapshot for each case were used. One type was a horizontal

X-component displacement snapshot, and the other type was a vertical Z-component

displacement snapshot. These two different snapshots were useful to analyze both

transverse waves and longitudinal waves. The trapped seismic waves inside the air-

filled cavity showed both X & Z components. This energy came from the direct

surface waves, but it didn’t penetrate the boundary of the cavity. However, the waves

inside the water-filled cavity were different. The transverse waves were obviously

converted into longitudinal waves in the water, and those strong waves regenerated

seismic scattered waves to the outside of the cavity. This noise was related not only

to the seismic energy inside the cavity but also to the boundary waves around the

circular cavity. These waves are complex, but it supports the previous discussion

that P-wave energy affects mainly the scattered seismic noise from the water-filled

cavities.

The seismogram results show different amounts of trapped seismic energy inside

the scatterer, and the scattered noise waves are strongly dependent on the materials

inside the scatterer. This demonstrates that if we could distinguish multiple scat-

tered surface waves based on an accurate near-surface modeling, then it would be

possible to erase the noise successfully in seismic data processing and improve the

inversion for P-wave imaging of deep structures.
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3.1.3 Effect of attenuation

To identify the multiple scattered surface waves from the trapped energy in low-

velocity anomalies correctly, attenuation should be considered in forward modelings.

The attenuation factor Q is theoretically defined in seismology (Aki and Richards,

2002) to identify the amount of decreasing amplitude with ray path distance increas-

ing in wave propagation.

1

Q(w)
= −∆E

2πE
(3.1)

where E is the peak strain energy, −∆E is the energy loss per cycle and Q is

sometimes called the qualityfactor. Since this Q is inversely related to the strength

of the attenuation, low-Q value means more attenuating regions than high-Q. In

general seismology, the energy loss per cycle is very small and amplitude can be

derived as in the following approximation.

A(x) = A0e
−wx
2cQ (3.2)

where x is measured along the propagation direction and c is the wave velocity.

If c = α for P waves, Qα is used for attenuation, and if c = β for S waves then Qβ is

used. The amplitude A(x) of harmonic waves may be written as a product of a real

exponential of amplitude decay due to attenuation and an imaginary exponential

describing the oscillations (Shearer, 1999).

This Q factor has been developed and applied in spectral-element method mod-

eling (Komatitsch and Tromp, 2002a,b), so the simple low-velocity scatterer model,

which has the strongest trapped energy, is used again with the attenuation Q fac-
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(a) (b)

(c)

Figure 3.7: Synthetic seismograms of low-velocity material scatterer models with
different attenuation conditions. (a) No attenuation, (b) attenuation Q factor =
100. (c) the difference between (a) & (b). The scattered surface wave amplitude is
strongly affected by the attenuation factor.
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tor. The result of these modelings are presented in Figure 3.7. From left to right,

seismograms are obtained from non-attenuation modeling (Q = 9999), attenuation

modeling (Q = 100), and the difference between two results by subtraction. The

difference (Figure 3.7-c) shows that amplitude of direct surface wave is decreased

as offset distance from source location increase, and the amplitude of multiples in

Figure 3.7-b is less than Figure 3.7-a. This indicates that attenuation in synthetic

forward modeling is important to compare results with field data for sensitive scat-

tered surface waves analysis.

3.1.4 Effect of topography

The most notable benefit of using the spectral-element method modeling is the

flexibility in applying complex free-surface topography. Since surface waves strongly

depend on the condition of free-surface, many approaches in conventional finite-

difference have been developed for topography (Appelo and Petersson, 2009; Bohlen

and Saenger, 2006; Robertsson, 1996; Tessmer et al., 1992). I developed new karst

structure model (Figure 3.8-d) and the scatterer model(Figure 3.9-d) including the

Gaussian curved shape of free-surface topography. I compared these with previous

flat free-surface model results to show how these challenging near-surface factors

affect scattered surface waves.

Two different receiver locations are used. From left to right, the seismograms in

Figure 3.8 and Figure 3.9 show the seismogram from the curved free-surface model

with a constant receiver line elevation (z = 0m), and the curved free-surface model

with a constant receiver line depth (d = 10m) offset from Gaussian curved free-

surface geometry, the flat free-surface topography model as reference and the geom-

etry of earth model. The surface receiver line elevation is constant as 0m in Figure
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(a) (b)

(c) (d)

Figure 3.8: Synthetic seismograms from karst models with topography. (a) curved
free-surface karst model with flat receiver line, (b) curved free-surface karst model
with conforming receiver line, (c) flat free-surface karst model as reference, (d) sketch
of the curved free-surface karst model. Irregular topography can be inferred from
the shape of direct surface waves. Furthermore, the hill also induces the scattered
backward surface wave propagation.
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(a) (b)

(c) (d)

Figure 3.9: Synthetic seismograms from scatterer models with topography. (a)
curved free-surface scatterer model with flat receiver line, (b) curved free-surface
scatterer model with conforming receiver line, (c) flat free-surface scatterer model
as reference, (d) sketch of the curved free-surface scatterer model. Since the hill
decrease the amplitude of surface waves at shallow scatterer, the trapped seismic en-
ergy is much smaller than that of the flat free-surface model. Thus, scattered surface
wave noises in (a) & (b) are much smaller than (c).
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3.8-a & Figure 3.9-a. That means that only a few receivers in the middle part are

buried in the dune under the free-surface. Otherwise, all receivers in Figure 3.8-b

& Figure 3.9-b are buried at a constant depth 10m from the curved free-surface.

As we can see in seismograms, shape of the direct surface waves are different. The

former cases have discontinued surface wave line, and latter cases have continuous

line with a distorted flat part at the middle. These obvious changes of direct surface

wave line due to the different receivers location lead us to easily predict the effect of

free-surface topography, and this can be used for interpretation in the next step.

The evidence of topography in seismogram is important to analyze scattered

surface waves from velocity anomalies. In the karst model seismogram (Figure 3.8-a

& b), there is another backward scattered surface waves due to the surface dune.

The karst structure model does not include the shallow scatterer, and the first layer

of this model is even homogeneous. The backward scattered surface wave can be

misunderstood to image an accurate near-surface model, and this wave shows the

reason why we have to use accurate unstructured grid forward modeling to handle

the surface topography.

The topography hill also causes a big effect on the trapped seismic energy inside

the shallow scatterer. The figure 3.9 shows significant different amplitude of multiple

scattered waves. Since the trapped seismic energy in the shallow scatterer strongly

depends on the direct surface wave, increasing the height of the topography of the

dune decreases the surface wave amplitude. Consequently, less energy is trapped in

the velocity anomaly, and scattered surface waves become weaker. Since the ultimate

goal of this study is the accurate surface wave analysis and inversion to improve P-

wave imaging, even a tiny difference of scattered surface waves should be carefully

understood.
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3.1.5 Effect of low-velocity top layer

Although many factors have been discussed to analyze each effect in the seismo-

gram, the low-velocity top layer must be the most difficult factor because of surface

wave dispersion. Wave dispersion refers to frequency dispersion, which means that

waves of different wavelengths travel at different phase velocities. Because of the

low-velocity top layer, a lot of seismic energy is trapped, and it causes severe surface

wave dispersion. Since the amplitude of the surface wave is larger than that of other

waves, dispersed surface has been used to explore shallow layers in engineerings (Al-

malki and Munir, 2013; Park et al., 1999; Xia et al., 1999). Previous studies used

Rayleigh wave dispersion to find subsurface S-wave velocity properties or to detect

near-surface cavities. This approach has the potential possibility to improve not only

near-surface surface wave inversion, but also obscure scattered surface waves, which

come from reflected P & S waves from deep target structures.

As the first step for challenging surface wave dispersion analysis, a seismogram

(Figure 3.10-a) from a simple 3 layered earth model including the low-velocity top

layer, is analyzed. The velocity anomalies are ignored, so the seismogram shows only

simple reflections and dispersion. Even though this simple model has only three hor-

izontal layers, the seismic data signal quality is poor because of strong surface wave

dispersion. Unfortunately, the seismogram shows some multiple backward scattered

surface waves from the middle of the earth model. These noise signals are artifacts

caused by the changing cell size and geometry in the unstructured grid in the low-

velocity top layer. They can be ignored because subtraction of seismograms will

eliminate them.

Even though the wave dispersion is severe because of the low-velocity top layer,

the karst structure and shallow scatterer as velocity anomalies also show obvious
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(a) (b)

(c) (d)

Figure 3.10: Synthetic seismograms from karst models with the low-velocity top layer.
(a) result from the karst model without the karst structure as velocity anomaly, (b)
result from the karst model of (d), (c) the difference between (a) & (b), (d) sketch
of the karst model with the low-velocity top layer. Surface wave dispersion makes
signals more complicated, but the signal difference can be found obviously in (c).
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(a) (b)

(c) (d)

Figure 3.11: Synthetic seismograms from scatterer models with the low-velocity top
layer. (a) result from the scatterer model without the scatterer structure as velocity
anomaly, (b) result from the scatterer model of (d), (c) the difference between (a) &
(b), (d) sketch of the scatterer model with the low-velocity top layer. Surface wave
dispersion makes signals more complicated, but the trapped energy in the scatterer
is also obvious.
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differences in the seismograms. Figure 3.10-b is the seismogram with the subsurface

karst structure, and Figure 3.10-c is the difference between Figure 3.10-a and Figure

3.10-b. Even though the challenging top layer contaminates the entire signal, the

effect of the karst structure can be identified. As we discussed in previous simple

near-surface models, the karst structure shows S-wave distortion and reflection from

the edge of the karst structure. The scatterer model with the top layer result is more

complex. All the dispersed high amplitude surface waves are trapped in this scatterer,

and all generate multiple unwanted coherent noises (Figure 3.11-b). Even though we

can pick up the only effect from the scatterer in Figure 3.11-c, the multiple scattered

surface waves are more complicated than the result from the simple model without

the low-velocity top layer (Figure 3.6-b). This shows that surface wave analysis and

inversion have to consider this challenging low-velocity top layer in data processing,

and we should apply all the factors mentioned above carefully in forward modeling.
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3.2 Complex Near-Surface Modeling

The complex near-surface earth model (Figure 3.12) is also developed to clarify

the analysis of scattered surface wave propagation. This model includes most of the

near-surface anomalies in limestone deserts: the collapsed karst structure, the shallow

scatterer, the low-velocity top layer with curved free-surface topography, which we

discussed in previous simple modelings. The entire complex model size (x, z) is 1,000

m× 500 m, and it has 7 horizontal layers with various size of collapsed filled karst

structures. The material properties of each layer and anomaly is in the Table 3.2,

and the sizes of shallow scatterers are in the Table 3.3.

It was not easy to handle shallow scatterers in seismic forward modeling because

of their slowest S-wave velocity as 800 m/s. Because of this material property, the

minimum grid spacing should be only 2 m on the near-surface parts of this complex

earth model to implement the SPECFEM2D simulation. Since the size of scatterer

is very small, another mesh generation software, Gmsh, is used instead of CUBIT.

The Gmsh has more benefits in drawing complex geometries of small size anomaly

boundaries, and it is convenient to generate unstructured quadrilateral grids. The

unstructured grids in the model change the grid size gradually from 2 m to 6 m.

The unstructured grids, generated by Gmsh, could not use effective absorbing

boundary conditions in SPECFEM2D forward modeling. Artificial reflections from

left and right boundaries corrupts the signal quality, and scattered surface waves

due to the shallow scatterer is not obvious. To erase these unwanted noises, the

other complex model is developed for the seismogram subtraction. This new complex

model has the same geometry and material properties, but it doesn’t include 7 shallow

small scatterer. These similar complex near-surface models are presented in Figure

3.12. The only Figure 3.12-a includes shallow small scatterers in the middle part of
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Table 3.2: Material properties of complex near-surface earth model structures. The
units are g/cm3 for density and km/s for P & S-wave velocities. The material mini-
mum velocity property is 0.8 km/s at the shallow scatterers

Layers Density Vp Vs
(from top to bottom) (g/cm3) (km/s) (km/s)

1st 1.95 1.8 1.0
2nd 2.12 2.5 1.4
3rd 2.22 3.0 1.7
4th 2.01 2.0 1.1
5th 2.12 2.5 1.4
6th 2.22 3.0 1.7
7th 2.30 3.5 1.9

shallow scatterers 1.87 1.5 0.8
collapsed karst structure (left) 2.10 2.0 1.1

collapsed karst structure (right) 2.12 2.5 1.4

the 2nd layer, but Figure 3.12-b doesn’t have them. Two seismograms from these

earth models are compared to extract the only scattered surface waves due to the

shallow scatterers. Seismograms are presented in Figure 3.13, Figure 3.14, and Figure

3.15. The 3rd seismogram in each figure is the difference result, which subtracts 2st

seismogram from the 1nd seismogram. This subtraction is efficient at analyzing

elastic wave scattering from the shallow small scatterers.

Three different source locations (250 m, 500 m, 750 m on the x-axis) are used

to see the wave scattering at the middle part of the complex earth model. The

3rd seismogram in each figure, differences between the seismograms with/without

the shallow scatterers, shows some yellow polygons on the seismogram to clarify the

location of the shallow scatterers. These marks are helpful to find where the scatter-

ing begins. Even though the size of shallow scatterers are relatively small, obvious

wave scatterings are found from every seismograms. The dominant frequency (f0) of

source Ricker wavelet was 30Hz, so the shortest wavelength in the 2nd layer should
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(a)

(b)

Figure 3.12: Complex near-surface model with material S-wave velocity. (a) model
contains 7 layers with curved free-surface, and 9 collapsed karst structures as velocity
anomalies. (b) model as same as (a) except the existence of 7 shallow collapsed
karst structured as velocity anomalies. The minimum value at the shallow velocity
anomalies is only 800 m/s, thus it requires small grid spacing despite of large scale
earth model. Red line shows the location of receiver line, and stars indicate 3 different
locations of seismic sources. The difference between (a) & (b) will show the seismic
effect of shallow small size anomalies in the model.
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Table 3.3: Size of shallow karst structures as velocity anomalies in complex near-
surface earth model (Figure 3.12). The shortest wavelength in the 2nd layer is about
23.3 m, so the length and height of some scatterers are shorter than the wavelength.

Scatterers Width Height
(from left to right) (m) (m)

1st 24 9
2nd 20 7
3rd 45 16
4th 16 8
5th 19 12
6th 46 16
7th 19 10

be about 23.3 m (= Vs/(2 × f0) = 1400/60). Even though the length and height

of some scatterers are shorter than the shortest wavelength, the shallow scatterers

cause serious noise and mask other reflection signals.

The noises due to the shallow scatterers show similar multiple scattered surface

waves to the previous simple test modeling. Since the material inside the scatterers is

filled with low-velocity solid materials, some seismic energy of strong direct waves is

trapped in scatterers. Even though the scattered waves from 7 scatterers are mixed in

the seismograms, the trapped energy inside the scatterers obviously generate multiple

scattered surface waves in regular time intervals at the same locations.

Not only the scattered surface waves, but also the effect of curved surface to-

pography and wave dispersion is shown in the complex model seismograms. The

curved free-surface distorts the strongest direct surface wave line in the seismogram,

so the line is not perfectly straight. If the surface topography were more complex

with irregular shape, the direct wave in seismogram would have been distorted more

severely just like the results in previous simple test modeling. The surface wave

dispersion is also found in the complex model seismograms. Since the first layer has
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low-velocity material properties and shallow layers are heterogeneous, direct surface

wave dispersion is found in the seismograms. These dispersion waves also cause scat-

tering at the shallow scatterers, so we can find them in the seismogram of difference

despite their weak amplitude.

Although the scattered waves in the complex earth model cannot be identified

exactly, seismic analysis of the previous simple test models were useful to infer that

complex waves. Seismic effect of those factors: filling material inside the scatterers,

irregular surface topography, surface wave dispersion due to shallow heterogeneous

layers, are analyzed in both simple and complex synthetic near-surface models. The

different modeling grid design and attenuation factor, Q are not applied to the com-

plex model this time, but they are also worth attempting for the accurate near-surface

models though the modeling is not easy to implement.
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(a)

(b)

(c)

Figure 3.13: Synthetic seismogram from complex near-surface models. The source
location on the x-axis is 250 m as yellow star in Figure 3.12. (a) result from the
model with 7 shallow extreme low-velocity anomalies, (b) result from the model
without shallow anomalies. (c) differences between the models with/without the
shallow scatterers.
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(a)

(b)

(c)

Figure 3.14: Synthetic seismogram from complex near-surface models. The source
location on the x-axis is 500 m as red star in Figure 3.12. (a) result from the model
with 7 shallow extreme low-velocity anomalies, (b) result from the model without
shallow anomalies.(c) differences between the models with/without the shallow scat-
terers.

37



(a)

(b)

(c)

Figure 3.15: Synthetic seismogram from complex near-surface models. The source
location on the x-axis is 750 m as white star in Figure 3.12. (a) result from the model
with 7 shallow extreme low-velocity anomalies, (b) result from the model without
shallow anomalies.(c) differences between the models with/without the shallow scat-
terers.
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4. DISCUSSION

The benefit of the spectral-element method with locally-refined hybrid grids in

near-surface modeling have been discussed. Even though the unstructured grids on

irregular surface topography show more accurate results, we need to consider the

computational costs too. To estimate the efficiency of the spectral-element method,

a conventional finite-difference method is compared as a reference solution. An open

source code seismic CPML is used with 4th order accuracy, and the same size simple

model is implemented by both this code and SPECFEM2D based on the spectral-

element method. The simulation running times have linear relations to the total

number of cells in entire model. Thus, a small scale model is used to compare two

different algorithms. Because of small time steps in the spectral-element method due

to high order basis functions, it takes about 5 times longer to run the simple model

than the 4th order finite-difference method. However, the potential possibility from

locally-refined grids in the spectral-element method should be considered in a large

scale earth model, such as the SEAM 2 project “arid model”(10 km× 3.75 km).

Based on the minimum value of S-wave velocity in the earth model is about 400

m/s, I assumed that the Ricker wavelet source has 30 Hz dominant frequency, and

the finite-difference method needs at least 10 cells in the shortest wavelength to get

accurate enough results. On the other hand, the spectral-element method requires

only five cells in the shortest wavelength; the total number of cells in the entire

model must be smaller than the cells for the finite-difference method. Furthermore,

locally-refined grids can be used in the spectral-element method, so I assumed the

fine grid spacing (1 m) only applied upto 200 m depth from the surface. The grid

cell size in the finite-difference method should be 0.5 m on entire model, but in the
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spectral-element method, the grid spacing size has both fine 1 m and coarse 4 m. If

we need a large scale earth model as 10 km× 3.75 km, the finite-difference method

needs 20,000 × 7,500 (= 150,000,000) cells, but the spectral-element method requires

only 7,062,500 cells. The cell numbers in finite-difference method is about 20 times

larger than that of the spectral-element method.

Since the finite-difference method requires 20 times as many cells and is about 5

times faster than the spectral-element method, the spectral-element method would

be 4 times faster to handle a large scale near-surface model to implement wave

propagation simulation. This rough discussion shows that using the spectral-element

method has more benefits in both accuracy and efficiency than the finite-difference

method to obtain authentic results for accurate near-surface modeling and analysis

of scattered surface wave field.

Table 4.1: Comparison of simulation running time.

Finite-difference Spectral-element method
Cells per wavelength 10 5

Cell size 0.5m 1 ∼ 4m
Totam cells 20, 000× 7, 500 7, 062, 500

Ratio of cell number 21.2 n n
Time for same model size 0.2 t t
Estimated simulation time 4 T T

40



5. CONCLUSION

Numerical simulation of elastic wave propagation is implemented based on the

spectral-element method and shows the seismic effects from near-surface anomalies.

Locally-refined hybrid grids are applied to represent the complex geometry of the

subsurface structures and irregular surface topography. This approach shows more

accurate results and has the potential to reduce excessive computational costs. The

complex hybrid grids are generated by using commercial software CUBIT, and the

spectral-element method as an effective high-order finite-element method can utilize

these unstructured grids in complex near-surface earth models. Various synthetic

near-surface earth models are used, and the resulting seismograms from each case

study are interpreted. The collapsed karst structure model shows S-wave distortion

at the edge of its boundary, and the shallow small size scatterer acts as a secondary

source generating scattered surface waves. Since both structures are filled with low-

velocity materials, they generate unwanted seismic waves and corrupt the seismic

data quality.

The size of shallow scatterer in the near-surface modeling is very small, but it

causes a significant seismic effects. It is filled with low-velocity materials, and a large

amount of seismic energy from the direct surface wave is trapped in it. This energy

continuously generates multiples and masks the upcoming signals, which we really

need to identify. The trapped energy inside the scatterer is sensitively affected by

shape of modeling grids and filling material properties. The resulting seismogram

of unstructured grid model, which has more benefits in drawing complex geometry

of the scatterer, shows differences of wave amplitude from that of the conventional

regular Cartesian grid model. The result from the regular Cartesian grid model
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causes artificial larger amplitude of scattered waves, and the trapped energy amount

is smaller than that of the unstructured grid model. This indicates that forward

modeling should handle unstructured conforming grids instead of regular Cartesian

grids to obtain more accurate results. The different materials also show different

scattered surface wave propagation. The high-velocity solid scatterer and air-filled

cavity show weak scattered surface waves because there is no trapped seismic energy

inside the scatterer. However, the low-velocity solid scatterer and water-filled cav-

ity contain high amplitude seismic energy and generate complex multiple scattered

surface waves. In the past, we considered an air-filled cavity as a water-filled cavity

because both are acoustic materials. However, this study shows that the analysis

of trapped energy inside the scatterer is more important than identifying the filling

materials.

Seismic effects of attenuation, curved topography and low-velocity top layer are

also considered to analyze more accurate scattered surface waves. As the number

of attenuation factor Q in forward modeling decreasing, the amplitude of multiple

scattered waves from the trapped energy in shallow scatterer decreases. The geom-

etry of curved topography can also generate scattered surface waves, which can be

misunderstood as the effect of shallow scatterer. The discontinuous direct surface

wave in the seismogram can be used to identify the existence of irregular free-surface

topography. The low-velocity top layer, which is common in arid regions, causes sur-

face wave dispersion and severely corrupts the signals. However, the seismic effects

of karst structure and shallow scatterer as subsurface velocity anomalies are obvi-

ous in each seismogram, and the characteristic of wave propagation due to velocity

anomalies are similar to that from the simple synthetic modelings.

Since scattered surface waves are sensitively affected by various geological fea-

tures and modeling factors, advanced seismic forward modeling approaches should
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be used for the near-surface modeling. In this study, the spectral-element method

with locally-refined hybrid grids shows the capability and potential to overcome the

challenging heterogeneity problems in the near-surface modeling. I expect that this

study can lead to better distinguishing seismic noise caused by shallow anomalies

from valuable signals. Accurate near-surface modelings will be used for seismic acqui-

sition and data processing in arid karst regions, and improve surface wave validations

for imaging upcoming P-waves associated with hydrocarbon reservoirs.
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APPENDIX A

SPECTRAL-ELEMENT METHOD

A.1 Theoretical features in the spectral-element method

The goal of seismic wave modeling is to solve the equation of motions in terms

of displacement, velocity or acceleration in media. The reference book (Aki and

Richards, 2002) shows a general expression derived from elastic theory, and it relates

the displacement inside the medium with the stress and external forces acting on the

volume. The general equation of wave propagation in simple 1-dimensional medium

can be written as the following equation.

ρ(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
µ(x)

∂u(x, t)

∂x

)
= fs(x, t) (A.1)

The x is the spatial coordinate and t is the time. ρ(x) is the density, u(x, t) is the

displacement field, fs is an external source and µ(x) is an elastic coefficient. The line

domain model in the spectral-element method is divided into several elements, but

they do not have the same length because of GLL points A.3. The elements are non-

overlapping but only connected at one grid node. As in the finite-element method,

the wave equation in its differential form is not considered. “Weak formulation” is

considered in the spectral-element method, and it uses the integrated form of the

functions. In the weak formulation, we can see how the model is discretized and

how to link the mesh data to the entire model. On each discrete element, we use a

rule for the interpolation of functions and corresponding interpolating polynomials.

After that, special integration quadrature will be introduced, and this will show us

two matrices: elemental mass matrix and elemental stiffness matrix. Then we apply
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the “assembly” to assign the functions into the correct grid points in the global mesh.

We will obtain a linear system of equation to solve the wave propagation.

Let’s begin with a 1-dimensional wave equation in an inhomogeneous elastic

medium.

ρ
∂2u

∂t2
− ∂

∂x

(
µ
∂u

∂x

)
= f (A.2)

The first step is to multiply the above equation by a time independent test function

v(x) on both sides. This can be any arbitrary function. After that, we integrate the

equation, but these steps do not change the solution of the previous equation.

vρ
∂2u

∂t2
− v ∂

∂x

(
µ
∂u

∂x

)
= vf (A.3)

∫
vρüdx−

∫
v5 (µ5 u) dx =

∫
vfdx (A.4)

∫
vρüdΩ−

∫
vµ5 udΓ +

∫
5vµ5 udΩ =

∫
vfdΩ (A.5)

The general integration by parts can be derived by the “chain rule” and the

“Gaussian divergence theorem.” The boundary in a 1-dimensional domain only

consists of two points, and we use the free-surface boundary condition, which means

a zero-stress condition on these boundary points.

∫
µ5 udΓ = µ

∂u

∂x

∣∣∣∣∣
Γ

= σΓ = 0 (A.6)

The final form of the weak formulation will be the equation below. This is the “weak
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form” of the 1-dimensional wave equation.

∫
vüdx+

∫
5vµ5 udx =

∫
vfdx (A.7)

The next step is to solve the linear system of equations, and we will use the

Gauss-Lobatto-Legendre (GLL) quadrature of order N . The model domain has to

be divided into ne elements, and certain rules to create a solid match between mesh

and corresponding elements will be used. This process is usually tricky and time

consuming; however, this constitutes the advantage of the spectral-element method

over conventional finite-difference methods.

Figure A.1: 1-dimensional domain decomposition and mapping. The line domain is
divided into three elements in this figure.

Figure A.1 shows the idea of dividing the entire domain Ω into elements. Each

element is transformed, and mapped onto the standard interval [−1, 1] of the GLL in-

tegration quadrature. This “mapping function” transforms the “global” coordinates
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into “local” coordinates. Generally, the mapping is done by using shape functions,

which interpolates the solution between the discrete values obtained at the mesh

nodes.

Figures A.2 shows the simple Lagrange polynomials of degree N = 1 and 2 as

shape functions in the 1-dimensional spectral-element method. The shape functions

can be written as below.

l0(ξ) =
ξ − (+1)

−1− (+1)
= −ξ − 1

2
, l1(ξ) =

ξ − (−1)

1− (−1)
=
ξ + 1

2
(A.8)

Even though the above shape functions are simple, typically, degree N = 4 ∼ 8 is

chosen for the polynomials in the spectral-element method to calculate more accurate

results. Using the same points for interpolation and integration is the key feature of

the spectral-element method to efficiently use these high-order Lagrange polynomials.

The Lagrange polynomials can be generally defined as below.

lNi =
∏

j=0,j 6=i

ξ − ξj
ξi − ξj

(A.9)

These Lagrange polynomials have an important characteristic. Each polynomial has

exactly the value 1 at the coordinate xi and exactly 0 at all other nodes in the element.

Between the points, the polynomial can have any value, but it should be continuous.

A.2 Simple numerical test to compare the traditional high-order finite-element

method and the spectral-element method

Many published papers have explained the theoretical features of the spectral-

element method, but none of them show simple examples of comparison between

the traditional high-order finite-element method and the spectral-element method.
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(a)

(b)

Figure A.2: Shape functions of each polynomial degree N . (a) N = 1, (b) N = 2

53



Figure A.3: Lagrange interpolation of degree N = 4 on the reference segment [−1,
1]. The 5(= N + 1) Gauss-Lobatto-Legendre points can be distinguished along the
horizontal axis. All Lagrange polynomials are, by definition, equal to 1 or 0 at each
of these points. Note that the first and last points are exactly −1 and 1 (Komatitsch
et al., 2005).

The exact diagonal mass matrix is the key point of the spectral-element method,

so a simple numerical test is implemented to show the local mass matrices in both

algorithms. Figure A.4 shows the plot from the numerical test to calculate the

function arctangent((x−0.8)×50). This shows the effect of “h-p refinement” in the

finite-element method, which increases the number of degrees of freedom (DOF ) to

get more accurate results. Simple 1-dimensional domain x from 0 to 1 is divided into

5 sections of uniform grid, and the analytic solution is shown in blue curve line for

reference.

Figure A.4-a as “h-refinement” shows the accuracy change with the increasing

number of elements. The L2 norm percentages are calculated to show the number

of errors in the numerical test based on the analytical solution. As the number of
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(a)

(b)

Figure A.4: Plots of simple numerical tests to show “h-p refinement”. (a) “h-
refinement”, which refers to making a mesh finer, and (b) “p-refinement”, which
refers to increase the order of basis function polynomials while the number of mesh
cells remains the same.
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Figure A.5: Plot of a simple numerical test to compare the finite-element and the
spectral-element method. Both algorithms, based on the same high-order (4th) basis
function, show similar results, and they are shown in Table A.1.

elements increase from 5, 10, 15 to 20, the L2 norm decreases: 8.91, 2.37, 0.81 to

0.32. The increasing order of basis function also demonstrates similar results. Figure

A.4-b as “p-refinement” shows the accuracy change from increasing the order of basis

function in the traditional finite-element method. As the order increase from 1st to

4th, then the L2 norm decreases: 8.91, 1.46, 0.30 to 0.13. The increase of DOF shows

the improved accuracy of the numerical calculation, but the calculation running time

should be considered as a computational cost.

This result of the high-order basis function finite-element method is compared

with the result based on the spectral-element method (Figure A.5). Both algorithms

use the same number of elements and the same basis function order as 4th. The

difference between the two algorithms is only the integration rules, which is the

traditional Gaussian-Legendre rule in the finite-element method and the Gaussian-
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Table A.1: Comparison the finite-element and the spectral-element methods in ac-
curacy & efficiency in Figure A.3. 4th order based calculation by the finite-element
and the spectral-element methods show different results. The accuracy of the finite-
element method is a little bit higher than the spectral-element method, but the sim-
ulation running time of the spectral-element method is faster than the finite-element
method.

Algorithm Order of basis function L2 norm Time (ms)
FEM 1st 8.91 10.6
FEM 4th 0.13 37.9
SEM 4th 0.49 32.1

Table A.2: One of 5×5 size local mass matrices in simple numerical test calculation.
(a) matrix from the finite-element method, and (b) matrix from the spectral-element
method. The matrix in the spectral-element method (b) is exactly diagonal matrix,
which makes the simulation faster than the traditional finite-element method.

(a)

Finite-Element Method
1.0 1.0 −0.6 0.2 −0.1
1.0 6.3 −1.4 0.9 0.2
−0.6 −1.4 6.6 −1.4 −0.6
0.2 0.9 −1.4 6.3 1.0
−0.1 0.2 −0.6 1.0 1.0

(b)

Spectral-Element Method
+1.0 0.0 0.0 0.0 0.0
0.0 +5.4 0.0 0.0 0.0
0.0 0.0 +7.1 0.0 0.0
0.0 0.0 0.0 +5.4 0.0
0.0 0.0 0.0 0.0 +1.0

57



Lobatto-Legendre rule in the spectral-element method. The results of this compar-

ison are presented in Table A.1. The L2 norm from the high-order finite-element

method is 0.13 and the L2 norm from the spectral-element method is 0.49. Even

though the L2 norm value from the spectral-element method is a little higher than

that of the finite-element method, it shows less running time. The running time

difference shows a small value in this test, but in 3 dimensional simulations, this

must be an important factor to reduce the simulation running time from large-scale

modeling. This is caused by the mass matrix, and one of the local mass matrices

in both algorithms is shown in Table A.2. We can see that the mass matrix in the

spectral-element method shows exactly diagonal matrix (Table A.2-b).
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A.3 Gauss-Lobatto-Legendre collocation points and integration weights

Table A.3: Polynomial degree in spectral-element method, collocation points and
integration weights of Gauss-Lobatto Legendre quadrature.

Polynomial Degree Collocation Points Integration weights
N xi wi
2 0 1.3333

± 1.0000 0.3333
3 ± 0.4472 0.8333

± 1.0000 0.1667
4 0 0.7111

± 0.6547 0.5444
± 1.0000 0.1000

5 ± 0.2852 0.5549
± 0.7651 0.3785
± 1.0000 0.0667

6 0 0.4876
± 0.4688 0.4317
± 0.8302 0.2768
± 1.0000 0.0476

7 ± 0.2093 0.4125
± 0.5917 0.3411
± 0.8717 0.2107
± 1.0000 0.0357
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APPENDIX B

SUPPLEMENTARY MEDIA FILES

Supplementary movie files for this thesis show the simulations of elastic wave

propagation in various near-surface models for this research. The movies from the

complex near-surface model with different source locations are listed as below.

movie nearSurface TopoModel srcX250 SEM.avi: Shows the wave propaga-

tion on the model of Figure 3.12-a with a source on the free-surface located at

250 m in x-axis.

movie nearSurface TopoModel srcX500 SEM.avi: Shows the wave propaga-

tion on the model of Figure 3.12-a with a source on the free-surface located at

500 m in x-axis.

movie nearSurface TopoModel srcX750 SEM.avi: Shows the wave propaga-

tion on the model of Figure 3.12-a with a source on the free-surface located at

750 m in x-axis.

Additional simulation movie files were uploaded to analyze the seismic waves

through a big size water-filled cavity and an air-filled cavity. The diameter is 100 m,

and the center depth of the circular cavity is 65 m. Unstructured conforming grids

are used to make smooth boundary of the circular cavity.

air BigCavity DispX SEM2.avi: Shows the horizontal component displacement

of the wave propagation through a big circular shallow air-filled cavity.

air BigCavity DispZ SEM2.avi: Shows the vertical component displacement of

the wave propagation through a big circular shallow air-filled cavity.
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water BigCavity DispX SEM2.avi: Shows the horizontal component displace-

ment of the wave propagation through a big circular shallow water-filled cavity.

water BigCavity DispZ SEM2.avi: Shows the vertical component displacement

of the wave propagation through a big circular shallow water-filled cavity.
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