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ABSTRACT

In this paper, I propose a new semi-parametric GARCH-in-Mean model. Since

many empirical papers have the mix results on the risk-return relation, the cause of

problem may come from the misspecification of conditional mean equation or condi-

tional variance equation or both of them. My model uses non-parametric estimation

in conditional mean equation and semi-parametric estimation in conditional vari-

ance equation which allows the non-linear risk return relation in conditional mean

equation and allows the non-linear relation between the volatility and the cumula-

tive sum of exponentially weighted past returns. Three parameters on my model are

GARCH parameter, the leverage effect parameter and leptokurtic parameter. I also

extend my model to include four exogenous variables, dividend yield, term spread,

default spread and momentum into conditional mean equation by using additive

model which allows each variable to have non-linear relation with the return. An

empirical study on S&P 500 suggests that risk has a small affect on market return.

However, when four exogenous variables are added to the model, my model shows

that the risk-return relation has a positive hump shape.
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1. INTRODUCTION

In the area of finance and time series econometrics, one of the most interesting

topics is the relation between risk and return. Merton (1973) proposes that the

relation between the expected returns and their variance is positive and linear pat-

tern as shown in equation (1.1). Merton’s intertemporal capital asset pricing model

(ICAPM) explains that when investors face the additional risk, they will expect for

more return in order to compensate the risk.

E[(rmt − rft) | Ft−1] = γVAR[(rmt − rft) | Ft−1] = γσ2
t (1.1)

where rmt is the returns on the market portfolio and rft is the returns on risk-free

asset.

However, there are many empirical papers study on this topic and surprisingly

the results still unclear. Some papers report the positive relation on risk-return trade

off and some papers report the negative relation, for example, the result from Backus

and Gregory (1993), French et al. (1987), Gennotte and Marsh (1993), Lee et al.

(2001), Lundblad (2007), Theodossiou and Lee (1995) and Whitelaw (2000). One

of the most important papers in this area is Engle et al. (1987)’s paper. Engle et

al. (1987) propose ARCH-in-Mean model which captures the risk-return relation by

insert the conditional variance into the conditional mean equation as it’s shown in

equation (1.2a) and the conditional variance is determined by the previous lagged of

error term from the conditional mean equation as it’s shown in equation (1.2c).
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yt = c+ γσ2
t + εt (1.2a)

εt = ξtσt (1.2b)

σ2
t = ω + αε2t−1 (1.2c)

where yt is the excess returns, E(εt | Ft−1) = 0, E(ε2t | Ft−1) = σ2
t , σ

2
t is the

conditional variance of the excess returns and ξt ∼ i.i.d.(0, 1).

Based on ARCH-in-Mean model, the conditional variance equation (1.2c) can

be easily turned to Bollerslev(1986)’s GARCH model as σ2
t = ω + αε2t−1 + βσ2

t−1.

In order to capture the leverage effect, the conditional variance equation (1.2c) can

be modified to Nelson(1991)’s EGARCH model as log σ2
t = ω + α(ξt−1 + η|ξt−1| +

β log σ2
t−1) and also can be modified to Glosten et al.(1993)’s GJR-GARCH model

as σ2
t = ω + α(ε2t−1 + ηε2t−11(εt−1<0)) + βσ2

t−1. In both EGARCH and GJR-GARCH

model, the parameter η will capture the asymmetric effects between good news and

bad news.

Base on parametric ARCH-in-Mean model in equations (1.2), one of the causes of

getting mixed results may come from the misspecification of the model’s functional

form. Since the ARCH-in-Mean has two main equations, equation (1.2a) is the

conditional mean equation which captures the risk-return relation and equation (1.2c)

shows the factors that determine the conditional variance. The misspecification

problem may come from the conditional mean equation or the conditional variance

equation or both of them.

To overcome the misspecification problem, we can apply the non-parametric es-

timation to the GARCH-in-Mean model. Linton and Perron (2003) propose to use

the non-parametric estimator in the conditional mean equation to allow for the flex-
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ibility of functional form of risk-return relation. So they use a smooth and unknown

function µ(·) in equation (1.3) instead of the linear model in equation (1.2a) in order

to allow the functional form of mean equation to be flexible.

yt = µ(σ2
t ) + εt (1.3)

However, for the conditional variance equation (1.2c) , Linton and Perron (2003)

still use the parametrically E-GARCH which has the benefit on capturing the leverage

effect and still allow conditional variance to be highly persistent. In their paper, they

also report that the monthly excess returns on CRSP data have a nonlinear relation

with their risk. The risk-return relation appears to be hump-shape.

Conrad and Mammen (2008) propose the iterative semi-parametric approach

which applies a non-parametric in the conditional mean equation. They also pro-

pose the test for parametric specification. According to their test, they report that

the risk-return relation is linear on the monthly CRPS excess return data which is

support the prediction of the ICAPM. However, they found the non-linear relation

on the daily data which is support Linton and Perron (2003)’s results.

Christensen et al.(2012) argue that Conrad and Mammen (2008) algorithm has

some questionable point. Since Conrad and Mammen (2008)’s model requires a

consistent estimator for the starting values, the Quasi Maximum Likelihood (QML)

estimator they use is actually inconsistent if the risk-return relation is indeed non-

linear. In order to solve this problem, Christensen et al. (2012) come up with

the model which does not rely on starting consistent estimator. Instead of using the

traditional GARCH model, Christensen et al. (2012) apply the double autoregressive

model of Ling (2004) which is using y instead of ε in the conditional variance equation

as shown in equation (1.4).
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σ2
t = ω + αy2

t−1 + βσ2
t−1 (1.4)

Zhang et al.(2013) support the idea of Ling (2004) and Christensen et al. (2012).

They show that QMLE for the GARCH-in-Mean model that uses y instead of ε

in the conditional variance equation is asymptotically normal. Their simulations

and empirical results show that the estimation performs well and has comparable

performance compare to the traditional GARCH-in-Mean model.

Linton and Perron (2003) state that the semi-parametric model which based on

GARCH structure cannot define µ̂(σ2
t ) in equation (1.3) so easily because σ2 depends

on lagged ε which in turn depends on lagged µ. Therefore, the idea of Ling (2004)’s

double autoregressive model which replacing ε with y in equation (1.4) can overcome

this difficulty.

For the literatures above, even though they use non-parametric estimation in

conditional mean equation but they still leave the conditional variance equation to

be parametric model. Regardless the risk return relation and set the mean equation

(1.2a) as yt = εt , there are some literatures study on the non-parametric method in

Engle (1982)’s ARCH and Bollerslev (1986)’s GARCH model. Pagan and Schwert

(1990) and Pagan and Hong (1991) propose the nonparametric technique in ARCH

model where equation (1.2c) can be set as σ2
t = f(yt−1, yt−2, ..., yt−d) and f(·) is a

smooth but unknown function. However, the information set contains a limit number

of lagged which contrasts to the fact that most of the financial data have a highly

persistent conditional variance.

Engle and Ng (1993) propose the PNP or partially non-parametric in GARCH

model where σ2
t = βσ2

t−1 + f(yt−1) and f(·) is a smooth but unknown function.

Linton and Mammen (2005) follow the same idea and propose a semi-parametric
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ARCH (∞) model where σ2
t (θ, f) =

∑∞
j=1 ψj(θ)f(yt−j) and f(·) is a smooth but

unknown function. The coeffificients ψj(θ) ≥ 0 and
∑∞

j=1 ψj(θ) < ∞. Li et al.

(2005) propose to use the nonparametric series method in the conditional variance

equation and they found a significant negative risk-return relation in 6 out of 12

markets. Audrino and Bühlmann (2001) and Bühlmann and McNeil (2002) propose

their non-parametric GARCH model where σ2
t = f(yt−1, σ

2
t−1) and f(·) is a smooth

but unknown function.

σ2
t = f(yt−1) + βf(yt−2) + β2f(yt−3) + ...+ βt−1f(y0) (1.5a)

σ2
t = g

{
t∑

j=1

βj−1f(yt−j; η)

}
(1.5b)

σ2
t = g(Ut−1) (1.5c)

where Ut =
∑t

j=0 β
jf(yt−j; η)

Yang (2006) proposes the semi-parametric extension of the GJR-GARCH model.

The idea is σ2
t in equation (1.2c) can be expressed as it shown in equation (1.5a). For

the GARCH(1,1) model, f(y) in (1.5a) can be shown that f(y) ≡ αy2 + ω. In the

case of GJR-GARCH model, f(y) ≡ α(y2 +ηy2
1(y<0)) +ω. Both GARCH and GJR-

GARCH model can be consider as the sub-model of Yang (2006)’s semiparametric

GARCH model. To allow function g(·) in the equation (1.5b)and (1.5c) to be flexible,

Yang (2006) uses the non parametric technique in the conditional variance equation

to estimate function g(·). The smooth and unknown function g(·) allows the non-

linear relation between the returns volatility and the cumulative sum of exponentially

weighted past returns. Yang (2006) applies his semi-parametric GARCH model to

study on the foreign exchange market and found that his model outperforms the
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parametric GJR-GARCH model and GARCH(1,1) model.

Mishra, Su and Ullah (2010) propose a combined semi-parametric estimator,

which incorporates the parametric and non-parametric estimators of the conditional

variance in a multiplicative way. They show the benefit of their model over pure

non-parametric model and pure parametric model. However, they use parametric

estimator in conditional mean model to capture risk-return relation in the conditional

mean equation.

In this paper, we propose a new semi-parametric GARCH-in-Mean model which

allows the functional form in both conditional mean equation and conditional vari-

ance equation to be flexible. Since Christensen et al.(2012)’s apply non-parametric

method only in the conditional mean equation and leave the conditional variance

equation follows GARCH(1,1) process. We extend Christensen et al.(2012)’s model

by using the non-parametric estimation in conditional mean equation and Yang

(2006)’s semiparametric GARCH model in conditional variance equation. For the

conditional variance equation, we follow Christensen et al.(2012) and Ling (2004) by

using y instead of ε as it’s shown in equation (1.4). The benefit of using y instead

of ε is that the model estimation will not rely on any initial value from parametric

estimation.

6



2. MODEL

In this paper, we extend Christensen et al.(2012)’s semiparametric GARCH-in-

Mean model by using the non-parametric estimation in conditional mean equation

and Yang (2006)’s semiparametric GARCH model in conditional variance equa-

tion. Christensen et al.(2012) use non-parametric estimation only in conditional

mean equation and leave the conditional variance equation to follow parametrically

GARCH(1,1) as it’s shown below.

yt = µ(σ2
t ) + εt (2.1a)

εt = ξtσt (2.1b)

σ2
t = ω + αy2

t−1 + βσ2
t−1 (2.1c)

In equation (2.1c), Christensen et al.(2012) follow the idea of Ling (2004)’s Double

AutoRegressive model by using y instead of ε. The traditional GARCH-in-Mean

model has a difficulty that µ(σ2
t ) in equation (2.1a) cannot be estimated so easily

because σ2 depends on lagged ε which in turn depends on lagged µ(·). By replacing

ε with y, then σ2 will not depend on the function µ(·).

To capture the leverage effect, we follow Glosten et al.(1993)’s GJR-GARCH

model by replace equation (2.1c) with

σ2
t = ω + α(y2

t−1 + ηy2
t−1 1(yt−1<0)) + βσ2

t−1 (2.2)

Then, we follow Yang (2006)’s idea by transforming equation (2.2) to
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σ2
t =

ω

(1− β)
+ α

{
t∑

j=1

βj−1v(yt−j; η)

}
(2.3a)

σ2
t =

ω

(1− β)
+ α{Ut−1} (2.3b)

where Ut−1 =
∑t

j=1 β
j−1v(yt−j; η) and v(y; η) ≡ (y2 + ηy2

1(y<0)).

We can see that equation (2.1c) can be transform to equation (2.3b) in which

presents the linear relation between the conditional variance σ2
t and the cumulative

sum of exponentially weighted past returns Ut−1. We follow Yang (2006)’s idea by

relax the the functional form in equation (2.3b) as it’s shown below.

σ2
t = g(Ut−1) (2.4)

where g(·) is a smooth and unknown function and can be estimated by non-parametric

method.

Now we can turn Christensen et al.(2012)’s semiparametric GARCH-in-Mean

model to our new semiparametic GARCH-in-Mean model as it’s shown below.

yt = µ(σ2
t ) + εt (2.5a)

εt = ξtσt (2.5b)

σ2
t = g(Ut−1) (2.5c)

where Ut−1 =
∑t

j=1 β
j−1v(yt−j; η), v(y; η) ≡ (y2 + ηy2

1(y<0)) and ξt ∼ i.i.d.(0, 1).

Normally, in parametric GARCH model, εt is assumed to has a normal distribu-

tion, such as Engle (1982). However some studies, such as Nelson (1991), show that
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εt has a thick tail distribution. So we follow Li et al. (2005) and Linton and Perron

(2003) by assume that εt has a generalized error distribution (GED). The density

function of the generalized error distribution is shown here,

f(ε) = ν{exp[−0.5|(ε/σ)/λ|ν ]}{λ2(1+1/ν)Γ(1/ν)}−1 (2.6)

where Γ(·) is the gamma function, and λ ≡ [2(−2/ν)Γ(1/ν)/Γ(3/ν)]1/2.

For GED, ν is a tail-thickness parameter. We have a standard normal distribution

when ν = 2. When ν < 2, the distribution has a thicker tails than the normal

distribution. When ν > 2, the distribution has a thinner tails than the normal

distribution. We will get a double exponential distribution when ν = 1 and uniformly

distribution when ν =∞.

For the big picture, We need to estimate three parameters, β, η and ν, then

we can calculate U(·). After we know U(·), We can estimate function g(·) by non-

parametric method which will consequently give us the estimated conditional vari-

ance, σ̂2
t . Then, We can estimate function µ(·) by non-parametric method which

reveals the relationship between risk and return.
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3. ESTIMATION

Our new semi-parametic GARCH-in-Mean model is presented here,

yt = µ(σ2
t ) + εt (3.1a)

εt = ξtσt (3.1b)

σ2
t = g(Ut−1) (3.1c)

where Ut−1 =
∑t

j=1 β
j−1v(yt−j; η), v(y; η) ≡ (y2 + ηy2

1(y<0)) and ξt ∼ i.i.d.(0, 1).

Suppose that we know the true value of parameters β and η. Then, we can

calculate v(y; η) = (y2+ηy2
1(y<0)) and Ut(y; β, η) =

∑t
j=0 β

jv(yt−j; η). By substitute

equation (3.1c) into equation (3.1a), we have yt = µ(g(Ut−1)) + εt. Let define the

function F (·) = µ(g(·)), then we have

yt = F (Ut−1) + εt (3.2)

First, we simply estimate function F (·) by non-parametrically regress yt on Ut−1.

After we know function F̂ (U), we can find ε̂2t = yt− F̂ (Ut−1). Since E(ε2t |Ut−1 = u) =

σ2
t = g(u), we can simply estimate function g(·) by non-parametrically regress ε̂2t on

Ut−1. After we know function ĝ(U), we can easily find σ̂2
t = ĝ(Ut−1). Then, we come

back to equation (3.1a) where yt = µ(σ2
t ) + εt and non-parametrically regress yt on

σ̂2
t .

For the big picture, we have 3 smooth and unknown functions to be estimated,

F̂ (·), ĝ(·) and µ̂(·). Normally, we can nonparametrically estimate these functions

by a simple kernal estimation as it was done by Christensen et al.(2012) and Yang

10



(2006). However, the performance of kernal estimation is heavily depending on the

bandwidth and to do the least square cross validation bandwidth selection is a very

time consuming. In this paper, I decide to use the generalized additive model (GAM)

of Wood (2006) to estimate the function ĝ(·) and µ̂(·).

To understand the GAM, let consider a simple model as yi = f(xi) + εi. Then

we assumed that function f(·) has a polynomial basis, so f(x) =
∑q

j=1 bj(x)βj.

In the case of a cubic polynomial, we have b1(x) = 1, b2(x) = x, b3(x) = x2,

b4(x) = x3, then f(x) = β1 + β2x+ β3x
2 + β4x

3. Then the cubic spline is basically a

connection of multiple cubic regressions and we call the connection point as a “knot”.

The performance of regression splines is heavily depending on the locations and the

number of knots.

Wood (2006) suggests to use the penalized regression splines. The idea is we

can keep the number of knots fixed, at a size a little larger than it is believed to

be necessary. Then, we adding a “wiggliness” penalty to the least squares fitting

objective function as

‖y −Xβ‖+ λ

∫ 1

0

[f ′′(x)]2dx (3.3)

In penalized regression splines, we have parameter λ as a smoothing parameter

which control the tradeoff between model fit and model smoothness. When λ→∞

, it will become a straight line estimate of f(·) and when λ → 0, it will become an

un-penalized regression spline estimate. Now we can see that the performance of

the model depend on how we estimate the value of a smoothing parameter. If λ is

too high, our model will be over smoothed. If λ is too low, our model will be under

smoothed. Wood (2006) suggest that we can choose λ to minimize the generalized

cross validation score.
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GCV =
n
∑n

i=1(yi − f̂i)2

[tr(I − A)]2
(3.4)

With the penalized regression splines, we can easily estimate F̂ (·) in equation

(3.2) and ĝ(·), µ̂(·) in equation (3.1). One of the benefits of using Wood (2006)’s

GAM is we can easily extend our model by adding more exogenous variables into the

conditional mean equation. Christensen et al.(2012) put four exogenous variables

linearly into the conditional mean equation as it’s shown below.

yt = µ(σ2
t ) + α1x1,t + α2x2,t + α3x3,t + α4x4,t + εt (3.5)

where the four explanatory variables in Christensen et al.(2012) are the dividend

yield, term spread, default spread and momentum.

By using Wood (2006)’s GAM, we can relax the linear assumption on those

exogenous variables on Christensen et al.(2012). Then we will have the additive

model on the conditional mean equation.

yt = µ(σ2
t ) + f1(x1,t) + f2(x2,t) + f3(x3,t) + f4(x4,t) + εt (3.6)

Now suppose we don’t know the parameters β and η. Let define γ = (β, η) and

γ ∈ Γ where Γ = [β1, β2] × [η1, η2] and 0 < β1 < β2 < 1,−∞ < η1 < η2 < +∞.

So, each value of γ create the unique vector Uγ,t. For each vector Uγ,t, we will get

the unique function F̂γ(·), ĝγ(·) and µ̂γ(·) . We will replace γ with any γ′ ∈ Γ and

observe how the estimated F̂γ′(·), ĝγ(·) and µ̂γ(·) changes.

From equation (2.5b), we assume that εt has a generalized exponential distribu-

tion (GED) with the density function in equation (2.6). For any γ′ = (β′, η′) ∈ Γ,

since each value of γ will create the unique estimated F̂γ(·), ĝγ(·) and µ̂γ(·), we will

12



keep replacing γ with any γ′ ∈ Γ until we find the γ′ that maximize the following

log likelihood function.

γ̂ = argmax
γ′∈Γ

log(
νexp[−1

2
| z
λν

]|
λ2(1+1/ν)Γ(1/ν)

) (3.7a)

z =
y − µ̂γ(·)√

ĝγ(·)
(3.7b)

where Γ(·) is the gamma function, and λ ≡ [2−2/νΓ(1/ν)/Γ(3/ν)]1/2.

The maximization of equation (3.7) will give us the estimated parameters, β, η

and ν. The parameter β will tell us how the effect of past returns on volatility decays

overtime. The parameter η will tell us about the leverage effect or the asymmetric

effect of good news and bad news. The parameter ν will tell us about the thickness

of a distribution tails.

Our semi-parametric GARCH-in-Mean model offer some advantages over Chris-

tensen et al.(2012)’s semiparametric GARCH-in-Mean model. First, we nest GJR-

GARCH model into our model. Our model accounts for the leverage effect via the

parameter η. Second, we relax the functional form of both conditional mean equation

and conditional variance equation to be flexible while Christensen et al.(2012)allow

only conditional mean equation to be relax and still keep conditional variance equa-

tion to follow parametrically GARCH(1,1) process. Third, our model allow for thick

tail distribution by using generalized error distribution (GED).
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3.1 Estimation Procedure

yt = µ(σ2
t ) + εt (3.8a)

εt = ξtσt , εt|Ωt−1 ∼ GED(0, σ2
t , ν) (3.8b)

σ2
t = g(Ut−1) (3.8c)

where Ut−1 =
∑t

j=1 β
j−1v(yt−j; η), v(y; η) ≡ (y2 + ηy2

1(y<0)) and ξt ∼ i.i.d.(0, 1).

• Step:1 Estimate parameter γ̂ = (β̂, η̂) by performing equation (3.7). Then, we

calculate v̂(y; η̂) = (y2 + η̂y2
1(y<0)) and Ût =

∑t
j=0 β̂

j v̂(yt−j; η̂).

• Step:2 Estimate F (·) by nonparametrically regress yt on Ût−1.

• Step:3 After we know F̂ (·), we can calculate ε̂2t = yt − F̂ (Ût−1). Then, we can

estimate g(·) by nonparametrically regress ε̂2t on Ût−1.

• Step:4 After we know ĝ(·), we can calculate σ̂2
t = ĝ(Ût−1). Then, we can

estimate µ(·) by nonparametrically regress yt on σ̂2
t .

14



4. SPECIFICATION TEST

Since this paper uses the generalized additive model (GAM) of Wood (2006)

to estimate the model which is based on series regression, we bring two consistent

specification tests to test the relationship between risk and return. We use the two

specification tests from Hong and White (1995) and Sun and Li (2006). These two

specification tests use nonparametric series regression as same as our model. The

purpose of specification test is to test whether the risk return relation is linear or not.

Let E(y|σ2) = µ0(σ2) and let the parametric regression model is f(σ2, γ). For the

null hypothesis, the risk return relation has a linear relationship. For the alternative

hypothesis, the risk return relation is not a linear pattern.

H0 P (µ0(σ2) = f(σ2, γ0)) = 1 for some γ0 ∈ Γ (4.1a)

Ha P (µ0(σ2) 6= f(σ2, γ0)) = 1 for some γ0 ∈ Γ (4.1b)

Under H0, Hong and White (1995) specification test is shown here
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HWn =
(nm̂n − R̂n)

Ŝn

d−→ N(0, 1) (4.2a)

m̂n =
1

n

n∑
t=1

v̂tε̂t (4.2b)

ε̂t = yt − f(σ̂2
t , γ̂) (4.2c)

v̂t = µ̂(σ̂2
t )− f(σ̂2

t , γ̂) (4.2d)

R̂n =
n∑
t=1

pk(σ̂2
t )
′(P ′P )−1pk(σ̂2

t )ε̂
2
t (4.2e)

Ŝ2
n = 2

n∑
t=1

n∑
s=1

{pk(σ̂2
t )(PP )−1pk(σ̂2

t )}2ε̂2t ε̂
2
s (4.2f)

where pk(σ̂2
t )is a k × 1 vector of base functions evaluated at xt. P is n× k with i-th

row given by pk(σ̂2′
t ).

Hong and White (1995) specification test is based on the sample covariance be-

tween the parametric model’s residual and the discrepancy between parametric and

non-parametric estimator. Hong and White (1995) use series regression to estimate

the non-parametric model. Under correct specification, Hong and White (1995) test

converges in distribution to a unit normal. Under misspecification, Hong and White

(1995) test diverges to infinity faster than parametric rate, n−1/2.

Under H0, Sun and Li (1995) specification test is shown here
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SLn = n
În

Ŝn

d−→ N(0, 1) (4.3a)

În =
1

n

n∑
t=1

n∑
s=1,s 6=t

ε̂tp
k(σ̂2

t )
′(P ′P )−1pk(σ̂2

s)ε̂s (4.3b)

Ŝ2
n = 2

n∑
t=1

n∑
s=1,s 6=t

{pk(σ̂2
t )(PP )−1pk(σ̂2

t )}2ε̂2t ε̂
2
s (4.3c)

ε̂t = yt − f(σ̂2
t , γ̂) (4.3d)

where pk(σ̂2
t )is a k × 1 vector of base functions evaluated at xt. P is n× k with i-th

row given by pk(σ̂2′
t ).

Sun and Li (1995) argue that Hong and White (1995) specification test can have

finite sample bias from involving some non-zero center terms. Moreover, Hong and

White (1995) test is based on under-smoothing conditions on series estimators. Then

Sun and Li (1995) propose the alternative specification test which does nit have a

non-zero center term and allows for optimal smoothing under general condition. Sun

and Li (1995) show that their test is better than Hong and White (1995) test.

In this paper, we employ both Hong and White (1995) and Sun and Li (1995)

specification test to test the relationship between risk and return. We will compare

the performance of these tests in our Monte Carlo simulation and show which test is

better in to test the relationship between risk and return.
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5. MONTE CARLO SIMULATION

Since our model allows the functional form in both conditional mean equation

and conditional variance equation to be flexible, the conditional mean equation can

reveal both linear and non-linear relation between risk and return. Moreover, the

conditional variance equation in our model not only nests both GARCH(1,1) and

GJR-GARCH but also allow the relationship between the volatility σ2
t and the cu-

mulative sum of exponentially weighted past returns Ut−1 to be non-linear. Since

our model is the extension of Christensen et al.(2012), we construct the Monte Carlo

Simulation with the cases from Christensen et al.(2012) to show that even though

we use non-parametric technique in both conditional mean equation and conditional

variance equation, it still works very well.

yt = µ(σ2
t ) + εt (5.1a)

εt = ξtσt , εt|Ωt−1 ∼ GED(0, σ2
t , ν) (5.1b)

σ2
t = g(Ut−1) (5.1c)

where Ut−1 =
∑t

j=1 β
j−1v(yt−j; η), v(y; η) ≡ (y2 + ηy2

1(y<0)) and ξt ∼ i.i.d.(0, 1).

In our simulation, we have 6 cases, three cases for the linear risk-return relation

and other three cases for the non-linear risk-return relation. All of 6 cases are from

Christensen et al.(2012). For the conditional mean equation, L1-L3 are the case that

risk and return has linear relation while N1-N3 are the non-linear cases.
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•N1: µ(σ2
t ) = σ2

t + 0.5 sin(10σ2
t )

•N2: µ(σ2
t ) = 0.5σ2

t + 0.1 sin(0.5 + 20σ2
t )

•N3: µ(σ2
t ) = σ2

t + 0.12 sin(3 + 30σ2
t )

•L1: µ(σ2
t ) = 0.05σ2

t

•L2: µ(σ2
t ) = 0.5σ2

t

•L3: µ(σ2
t ) = σ2

t

In Christensen et al.(2012), the conditional variance follows GARCH(1,1) pro-

cess but in this paper we extend it to GJR-GARCH model as σ2
t = ω + α(ε2t−1 +

ηε2t−11(εt−1<0)) +βσ2
t−1. As we show before, the traditional parametric GJR-GARCH

model is actually the linear relation between the conditional variance σ2
t and the

cumulative sum of exponentially weighted past returns Ut−1.

σ2
t =

ω

(1− β)
+ α{Ut−1} (5.2)

where Ut−1 =
∑t

j=1 β
j−1v(yt−j; η) and v(y; η) ≡ (y2 + ηy2

1(y<0)).

For the conditional variance equation, all 6 cases are generate from GJR-GARCH

model with is the linear relation between the conditional variance σ2
t and the cumula-

tive sum of exponentially weighted past returns Ut−1 as it’s shown in equation (5.2).

For all 6 cases, we set ω = 0.01 and α = 0.1. For the GARCH parameter β and

leverage effect parameter η, we set them as follow.
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•N1: β = 0.70 η = 0.80

•N2: β = 0.87 η = −0.80

•N3: β = 0.80 η = 0

•L1: β = 0.90 η = −0.80

•L2: β = 0.82 η = 0.80

•L3: β = 0.80 η = 0

From equation (5.1b), we assume that ξt ∼ N(0, 1) then we expect to see ν = 2.

For the sample size, we generate the data at T = 3, 400 and throw the first 400

observations away in order to avoid the start-out effect, so our sample size is equal

to 3,000. We repeat the simulation for 1,000 times.

For the parameters estimation, we need to estimate 3 parameters, GARCH pa-

rameter β, leverage effect parameter η and leptokurtic parameter ν. We use grid

search to find the optimal parameter that maximize the GED log likelihood func-

tion. For all cases, we generate data under normal distribution assumption then the

true value of ν0 = 2. For parameter ν, we set the lower bound and upper bound of

grid search to be between 1.8 and 2.2 with 0.05 increment. Since β and η are set

different in each case, the lower bound and upper bound of grid search will be set

differently.

In case N1, β0 = 0.70 then the lower bound and upper bound of β grid search is

between 0.60 and 0.80 with 0.01 increment. We set η0 = 0.80 then the lower bound

and upper bound of η grid search is between 0 and 2 with 0.1 increment. In case

N2, β0 = 0.87 then the lower bound and upper bound of β grid search is between

0.80 and 0.99 with 0.01 increment. We set η0 = −0.80 then the lower bound and

upper bound of η grid search is between -2 and 0 with 0.1 increment. In case N3,

β0 = 0.80 then the lower bound and upper bound of β grid search is between 0.70
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and 0.90 with 0.01 increment. We set η0 = 0 then the lower bound and upper bound

of η grid search is between -1 and 1 with 0.1 increment.

In case L1, β0 = 0.90 then the lower bound and upper bound of β grid search is

between 0.80 and 0.99 with 0.01 increment. We set η0 = −0.80 then the lower bound

and upper bound of η grid search is between -2 and 0 with 0.1 increment. In case L2,

β0 = 0.82 then the lower bound and upper bound of β grid search is between 0.70

and 0.90 with 0.01 increment. We set η0 = 0.80 then the lower bound and upper

bound of η grid search is between 0 and 2 with 0.1 increment. In case L3, β0 = 0.80

then the lower bound and upper bound of β grid search is between 0.70 and 0.90

with 0.01 increment. We set η0 = 0 then the lower bound and upper bound of η grid

search is between -1 and 1 with 0.1 increment.

5.1 Monte Carlo Simulation Results

The first panel in figure A.1 to A.6 shows the simulation results in conditional

mean equation from 6 cases. The blue line is the true mean function while the orange

line is the pointwise median of our model. The two red lines are the pointwise 5%

and 95% quantiles of our model. For the non-linear risk return relation in case N1

to N3, we can see that our estimator can reveal the true function very well as the

orange line follow the blue line very closely. For the linear risk return relation in case

L1 to L3, our model works very well as we expected. The second panel figure A.1 to

A.6 shows a histogram of estimated conditional variance, σ̂2. We can see that when

σ̂2 is dense, the red confidence band is very narrow. In contrast, when σ̂2 is sparse,

the red confidence band is become wide.

For figure A.7 to A.12, we show the simulation result in conditional variance equa-

tion from 6 cases. Since all 6 cases follow GJR-GARCH process, the true function of

conditional variance equation is linear as is shown in blue line. The orange line is the
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pointwise median of our model while the two red lines are the pointwise 5% and 95%

quantiles of our model. For all 6 cases, our model work very well in order to reveal

the true function of conditional variance. The second panel figure A.7 to A.12 shows

a histogram of the cumulative sum of exponentially weighted past returns, Ut. We

can see that when Ut is dense the red confidence band is very narrow. In contrast,

when Ut is sparse the red confidence band is become wide.

In order to measure the goodness of fit, we provide the mean square error on

both conditional mean equation and conditional variance equation. We calculate the

mean square error by the following equation.

MSE(mean) =
1

T

T∑
t=1

(yt − µ̂(σ̂2
t ))

2 (5.3a)

MSE(var) =
1

T

T∑
t=1

(σ2
t − ĝ(Ût−1))2 (5.3b)

For table B.1, we show how our model’s fit improve when the sample size is

bigger for the case N1. As we can see, for the mean square error of conditional mean

equation, when sample size increase from 500 to 3,000, our model has the same level

of performance. For conditional variance equation, when the sample is increasing,

the mean square error is decreasing. It means that the bigger sample will give a

better result.

For the parameters estimation, our model has 3 parameters to be estimated,

GARCH parameter β, leverage effect parameter η and leptokurtic parameter ν. Fig-

ure A.13 to A.18 show the results on GARCH parameter estimation for all 6 cases.

The curve on these figures are the density of β̂ over 1,000 times Monte Carlo simula-

tion. The green vertical line show the true value of β0 in each cases. For all 6 cases,
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we can see that the peak of density curve is located near the true value of β which

means our model can estimate GARCH parameter β very well.

Figure A.20 to A.25 show the results on leverage effect parameter estimation for

all 6 cases. For all 6 cases, we can see that the peak of density curve is located near

the true value of η or the green vertical line which means our model can estimate

leverage effect parameter η very well.

Figure A.26 to A.31 show the results on leptokurtic parameter estimation for all

6 cases. Since all 6 cases are generate on under normality assumption, we expect

to see ν̂ = 2. We can see that the peak of density curve is located near the true

value of ν or the green vertical line which means our model can estimate leptokurtic

parameter ν very well.

Table B.2 shows the parameters estimation result from 1,000 times Monte Carlo

simulation for all 6 cases. We report the median, 5% quantiles and 95% quantiles of

3 parameters, β, η and ν. For GARCH parameter β, we can see that the median of

our estimations are very close to the true values for all 6 cases. For leverage effect

parameter η, the median of our estimations also perform very well for all 6 cases.

For leptokurtic parameter, we expect to see ν̂ = 2 because our data are generated

from normal distribution. We can see that the median of ν̂ in all 3 cases are equal to

2 which mean that our model work very well on revealing the leptokurtic parameter.

Moreover table B.3 shows mean and standard deviation of all 3 parameter estimation

for all 6 cases.

Now we show how the parameter estimation performance responses on the sample

size. We show only on case N1 with difference sample size from 500 to 3,000. From

table B.4, we can see the median of our estimator is very close to the true value in all

data sets. However, when the sample is small as 500, the confidence bands are wide

compare to the sample size 3,000. When the sample size increase, the confidence
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band becomes narrow which means our model becomes more precise.

Now we bring 2 nonparametric specification tests to test the conditional mean

equation on all 6 cases. We apply Hong and White (1995) and Sun and Li (2006)

specification test. The reason that we use these 2 tests is that their tests are based on

nonparametric series estimation as same as our model. Table B.4 shows the results of

Hong and White (1995) and Sun and Li (2006) specification test on our 6 simulation

cases. The numbers on Table B.5 are the percentage of rejection rate at 5%. On

these 2 tests, the null hypothesis is the true function which show the relationship

between risk and return is the linear pattern. For case N1 to N3, the conditional

mean equation has a nonlinear relation between risk and return then we expect to

see a high rejection rate of null hypothesis on these 2 tests. For case L1 to L3, the

true function of the conditional mean equation is linear then we expect to see a that

we fail to reject the null hypothesis.

Case L1 to L3 on table B.5 show that Hong and White (1995) and Sun and Li

(2006) specification test perform very well from T = 500 to T = 3, 000. The rejection

rate on case L1 to L3 is very close to 5%. For case N1 to N3 on table B.5, both test

perform not quite well when the sample size is small at T = 500. However when

sample increase from T = 500 to T = 3, 000, these 2 test perform significantly better.

We have to note our 2 test perform quite poor on case N2 because if we see the figure

A.2, most of the risk is in the range of 0.10 to 0.20 in which the true function in

those area is a negative linear shape.
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6. EMPIRICAL STUDY

In this section, we show the results on the real financial data. We apply our new

semi-parametric GARCH-in-Mean model to Standard and Poor (S&P) 500 stock

market index. For the data set, we use the daily data of S&P 500 index from

January 2, 1990 to December 31, 2014 which T = 6, 246. The data set is provided by

CRSP. From our model in equation (2.5), yt is defined as the valued weighted return

include dividend.

In this section, we will have 2 parts. First, we will focus only on the risk return

relation which is based on equation (2.5). In conditional mean equation, we will

estimate only function µ(·) to reveal the relationship between risk and return. In

second, we will follow Christensen et al. (2012) by adding 4 exogenous variables,

dividend yield, term spread, default spread and momentum. In Christensen et al.

(2012), these 4 variables are adding to their model in a linear way. However our

model offer more flexibility by using Wood (2006)’s additive model which is based

on nonparametric series estimation as it’s shown in equation (3.6).

For the dividend yield, some paper uses it for determining the return such as

Campbell and Shiller (1988a,b), Fama and French (1988,1989) and Christensen et

al. (2012). We follow Christensen et al. (2012) by calculate the dividend yield

from
∑

j>0 dt−j over 12 months period which include t− 1 and then divided by pt−1.

Campbell (1987), Fama and French (1988,1989) and Christensen et al. (2012) use the

term spread to determine the return. We calculate the term spread by the difference

between 10 years and 1 year treasury constant maturity rate. The default spread

has been used by Fama and French (1988,1989) and Christensen et al. (2012) to

determine the return. We calculate the default spread by the difference between Baa
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and Aaa Moody’s seasoned corporate bond yield. The momentum has been used

by Keim and Stambaugh (1986), Carhart (1997) and Christensen et al. (2012) to

determine the return. We calculate the momentum by logPt−1 − logP and P is the

average of the market index over 12 months which ending on period t− 1.

For the confidence bands, we follow Linton and Perron (2003) and Christensen et

al. (2012) by using the wild bootstrap. We compute the nonparametric confidence

bands by the following algorithm.

• Step 1: With β̂, η̂, ν̂, µ̂(·), ĝ(·), Ût−1 =
∑t

j=1 β̂
j−1(y2

t−1 + η̂y2
t−11(yt−1<0)),

σ̂2
t = ĝ(Ût−1), ξ̂t =

yt−µ̂(σ̂2
t )

σ̂t
, ξct = ξ̂t − 1

T

∑T
t=1 ξ̂t

• Step 2: ut, a discrete variable taking the value -1 and 1 with equal prob (0.5).

Draw (u1, u2, ..., uT ) , ξ∗t = ξctut

• Step 3: Given initial starting value for y0.,

Û∗t−1 =
∑t

j=1 β̂
j−1(y∗2t−1 + η̂y∗2t−11(yt−1<0)), σ̂∗2t = ĝ(Û∗t−1),

ε̂∗t = ξ∗t σ̂
∗
t , y∗t = µ̂(σ̂∗2t ) + ε̂∗t

• Step 4: With the bootstrapped sequence {y∗t }Tt=1, calculated β̂∗, η̂∗, ν̂∗, µ̂(·)∗, ĝ(·)∗

by our new semi-parametric GARCH-in-Mean model.

• Step 5: We repeat step 2 to 4 n times. The pointwise p 100% confidence

band around µ̂(·) is calculated by p/2 and (1− p)/2 quantiles of the empirical

distribution of the n bootstrapped estimates µ̂(·)∗ of µ̂(·). The standard er-

rors of β̂, η̂ and ν̂ are estimated from the sample standard deviation of the n

bootstrapped estimates β̂∗, η̂∗ and ν̂∗.
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6.1 Empirical Results on S&P 500

In this section, we show the result on the risk return relation which is based on

equation (2.5). We apply our new semiparametric GARCH-in-Mean model to daily

data of S&P 500 return. The data set of S&P 500 is shown in figure A.32. Figure

A.33 shows the estimation results on the conditional mean equation on equation

(2.5a). The blue line is our new semiparametric estimation while the 2 red lines are

5% and 95% quantiles curves. The second panel of Figure A.33 shows the histogram

of estimated conditional variance, σ̂2. For the S&P 500 index, we find the positive

and significant relation between risk and return. However, the slope of blue line is

quite flat, so we can interpret that risk has a little effect on return.

Figure A.34 shows the comparison on the conditional mean equation from dif-

ferent model. We perform the traditional parametric GRACH-in-Mean (GM) and

GJR GRACH-in-Mean (GJR) model as it’s shown on brown and black line. Our

new semi-parametric GARCH-in-Mean model is shown in blue line or NP-both. The

yellow line (LM) is the estimation of our model in equation (2.5) but use the lin-

ear regression instead of nonparametric series regression on both function µ(cdot)

in conditional mean equation and function g(·) in conditional variance equation. So

the yellow line or LM is basically the parametric GJR GARCH-in-Mean model but

using yt instead εt in conditional variance equation as in Ling (2004). The red line

(NP-mean) is the estimation of our model in equation (2.5) but use the nonparamet-

ric estimation only in conditional mean equation and leave the conditional variance

equation to be estimated by linear regression. The red line or NP-mean follows

Christensen et al. (2012) approach. However the difference between NP-mean and

Christensen et al. (2012) is that we use the series estimator while Christensen et

al. (2012) use kernel method. The reason that we use series estimator is because we
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want to compare their approach to our model which also based on series estimation

method.

From Figure A.34, we can see that our estimator, LM and NP-mean are very

close to each other while GM and GJR have a steeper slope. For GM, it’s reveal

the positive and significant risk return relation. However, GJR shows the positive

but insignificant risk return relation. All 5 approaches confirm Merton (1973)’s

intertemporal capital asset pricing model (ICAPM) that risk and return has a positive

relation.

From Figure A.35 shows the result on conditional variance equation (2.5a). The

blue line is our new semiparametric estimation while the 2 red lines is 5% and 95%

quantiles curves. Our result shows that relation between the estimated variance σ̂2
t

and the cumulative sum of exponentially weighted past returns Ut−1 is linear.

Table B.6 show the estimation results on 3 parameters, β, η and ν. The standard

error is calculated by standard deviation of bootstrap parameter and point estima-

tion. For the GARCH parameter, β, we get 0.92 with standard error 0.0125 which

is very significant. For leverage effect parameter, η, we get 100 with very high stan-

dard error 98.99. So the leverage effect seems to be in significant for this data set.

For leptokurtic parameter, ν, we get 1.4 with standard error 0.0186 which is very

significant. So we have the evidence that the distribution of ε has a fat tail shape.

In order to compare the performance of various approaches, we follow Christensen

et al. (2012) by using the following goodness of fit measures.
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MSE(mean) =
1

T

T∑
t=1

(yt − µ̂(σ̂2
t ))

2 (6.1a)

MSE(var) =
1

T

T∑
t=1

{(yt − µ̂(σ̂2
t ))

2 − σ̂2
t }2 (6.1b)

The results on the goodness of fit are shown in Table B.7. Table B.7 shows that

LM, NP-mean and our model or NP-both have the same level of fit and perform better

than traditional parametric GARCH model for the conditional mean equation. For

the fit on conditional variance equation, our model which relaxes functional form on

both conditional mean and variance equation performs the best among 5 approaches.

6.2 Empirical Results on S&P 500 with 4 Exogeneous Variables

In these section, we follow Christensen et al. (2012) by adding 4 exogenous

variables into our new semiparametric GARCH-in-Mean model. All 4 variables are

assumed to be the determinate of the return then these variables are adding to

conditional mean equation. We improve Christensen et al. (2012) approach by relax

the function form of these 4 exogenous variables. We apply Wood (2006)’s additive

model as it’s shown in equation (3.6). The 4 exogenous variables are dividend yield,

term spread, default spread and momentum. The data sets of these 4 variables are

shown in figure A.36 to A.39.

Figure A.40 shows the estimation results on the conditional mean equation on

equation (2.5a). The blue line is our new semiparametric estimation while the 2 red

lines is 5% and 95% quantiles curves. The second panel of Figure A.40 shows the

histogram of estimated conditional variance, σ̂2. For the S&P 500 index, we find the

positive and significant relation between risk and return when risk is greater than 1.

Figure A.41 shows the comparison on the conditional mean equation from dif-
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ferent model. Our new semi-parametric GARCH-in-Mean model is shown in blue

line. The yellow line (LM) is the estimation of our model in equation (2.5) but

use the linear regression instead of nonparametric series regression on both function

µ(·) in conditional mean equation and function g(·) in conditional variance equation.

So the yellow line or LM is basically the parametric GJR GARCH-in-Mean model

but using yt instead εt in conditional variance equation as in Ling (2004). The red

line (NP-mean) is the estimation of our model in equation (2.5) but use the non-

parametric estimation only in conditional mean equation and leave the conditional

variance equation to be estimated by linear regression. The red line or NP-mean fol-

lows Christensen et al. (2012) approach. However the difference between NP-mean

and Christensen et al. (2012) is that we use the series estimator while Christensen

et al. (2012) uses kernel method. The reason that we use series estimator is be-

cause we want to compare their approach to our model which also based on series

estimation method. From Figure A.41, we can see that All 5 approaches confirm

Merton (1973)’s intertemporal capital asset pricing model (ICAPM) that risk and

return has a positive relation. However, we can see that our estimator reveal that the

risk-return relation is not in a linear shape. Our result supports Linton and Perron

(2003)’s study that risk and return relation has a hump shape.

For first panel in Figure A.42 to A.45, the blue line is our estimator on each

exogenous variables while the 2 red lines are 5% and 95% quantiles curves. The

second panels in A.42 to A.45 show the histogram of each exogenous variables. Figure

A.42 shows the positive but insignificant relationship between dividend yield and

return. Figure A.43 shows that term spread and return relation has a convex shape.

When term spread is in the range between −0.5 to 1.5, term spread has a negative

and significantly effect on return. When term spread is in the range between 1.5 to

3.5, term spread has a positive and significantly effect on return. Figure A.44 shows
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the negative and significantly relationship between default spread and return when

default spread is in the range of 0.6 to 1.0. Figure A.45 shows that momentum and

return relation has a hump shape.

From Figure A.46 shows the result on conditional variance equation (2.5a). The

blue line is our new semiparametric estimation while the 2 red lines is 5% and 95%

quantiles curves. Our result shows that relation between the estimated variance σ̂2
t

and the cumulative sum of exponentially weighted past returns Ut−1 is linear.

Table B.8 show the estimation results on 3 parameters, β, η and ν. The standard

error is calculated by standard deviation of bootstrap parameter and point estima-

tion. For the GARCH parameter, β, we get 0.92 with standard error 0.0095 which

is very significant. For leverage effect parameter, η, we get 100 with very high stan-

dard error 95.62. So the leverage effect seems to be in significant for this data set.

For leptokurtic parameter, ν, we get 1.4 with standard error 0.0246 which is very

significant. So we have the evidence that the distribution of ε has a fat tail shape.

The results on the goodness of fit are shown in Table B.9 Table B.9 shows that

our model or NP-both which relaxes functional form on both conditional mean and

variance equation performs the best among 5 approaches for the conditional mean

equation. For the fit on conditional variance equation, our model also performs better

than other 4 approaches. So the goodness of fit supports that our model which uses

the nonparametric estimator on both conditional mean and variance equation is

better than fix the function form on either or both conditional mean and variance

equation to be a linear.
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7. CONCLUSION

We propose the new semi-parametric GARCH-in-Mean model which relaxes the

functional form on both conditional mean and variance equation. We use the non-

parametric series estimator to capture the non-linear relation between risk and re-

turn. We extend model by using additive model to capture the nonlinear relation on

4 exogenous variables, dividend yield, term spread, default spread and momentum.

Our Monte Carlo simulation shows how our model works. We show that our

model can reveal the true function on conditional mean equation whether it is lin-

ear or nonlinear. Our model can estimate the parameters quite precisely. Three

parameters on our model can capture the GARCH parameter, leverage effect and

leptokurtic of the distribution.

For the empirical study on S&P 500 index, we show that risk has a very small im-

pact on market return. However, when we add 4 exogenous variables, dividend yield,

term spread, default spread and momentum, our model reveals that risk and return

has a positive hump shape relation which is support Linton and Perron (2003)’s

study. Our model also reveals that there is no leverage effect on the market and also

found the evidence that the distribution has a fat tail rather than normal.
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APPENDIX A

FIGURES

Figure A.1: Semi-parametric estimates of conditional mean equation for case N1
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Figure A.2: Semi-parametric estimates of conditional mean equation for case N2

Figure A.3: Semi-parametric estimates of conditional mean equation for case N3
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Figure A.4: Semi-parametric estimates of conditional mean equation for case L1

Figure A.5: Semi-parametric estimates of conditional mean equation for case L2
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Figure A.6: Semi-parametric estimates of conditional mean equation for case L3

Figure A.7: Semi-parametric estimates of conditional variance equation for case N1
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Figure A.8: Semi-parametric estimates of conditional variance equation for case N2

Figure A.9: Semi-parametric estimates of conditional variance equation for case N3
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Figure A.10: Semi-parametric estimates of conditional variance equation for case L1

Figure A.11: Semi-parametric estimates of conditional variance equation for case L2
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Figure A.12: Semi-parametric estimates of conditional variance equation for case L3

Figure A.13: Estimates of GARCH parameter, β, for case N1
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Figure A.14: Estimates of GARCH parameter, β, for case N2

Figure A.15: Estimates of GARCH parameter, β, for case N3
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Figure A.16: Estimates of GARCH parameter, β, for case L1

Figure A.17: Estimates of GARCH parameter, β, for case L2
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Figure A.18: Estimates of GARCH parameter, β, for case L3

Figure A.19: N1: η0 = 0.80

Figure A.20: Estimates of leverage effect parameter, η, for case N1

47



Figure A.21: Estimates of leverage effect parameter, η, for case N2

Figure A.22: Estimates of leverage effect parameter, η, for case N3
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Figure A.23: Estimates of leverage effect parameter, η, for case L1

Figure A.24: Estimates of leverage effect parameter, η, for case L2
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Figure A.25: Estimates of leverage effect parameter, η, for case L3

Figure A.26: Estimates of leptokurtic parameter, ν, for case N1
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Figure A.27: Estimates of leptokurtic parameter, ν, for case N2

Figure A.28: Estimates of leptokurtic parameter, ν, for case N3
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Figure A.29: Estimates of leptokurtic parameter, ν, for case L1

Figure A.30: Estimates of leptokurtic parameter, ν, for case L2
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Figure A.31: Estimates of leptokurtic parameter, ν, for case L3

Figure A.32: Return of S&P 500 from 1990 to 2014.
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Figure A.33: Semi-parametric estimates of conditional mean equation

Figure A.34: Comparison of estimated mean equations
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Figure A.35: Semi-parametric estimates of conditional variance equation

Figure A.36: Dividend yield
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Figure A.37: Term spread

Figure A.38: Default spread
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Figure A.39: Momentum

Figure A.40: Semi-parametric estimates of conditional mean equation
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Figure A.41: Comparison of estimated mean equations

Figure A.42: The relationship between dividend yield and return

58



Figure A.43: The relationship between term spread and return

Figure A.44: The relationship between default spread and return
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Figure A.45: The relationship between momentum and return

Figure A.46: Semi-parametric estimates of conditional variance equation
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APPENDIX B

TABLES

Table B.1: Goodness of fit comparison for case N1

MSE(mean) MSE(var)
T=500 0.2209 0.003708
T=1000 0.2230 0.002456
T=2000 0.2242 0.001786
T=3000 0.2246 0.001636

Table B.2: Parameters estimation results I

β0 Q5 β̂ Q95 η0 Q5 η̂ Q95 ν0 Q5 ν̂ Q95
N1 0.70 0.65 0.70 0.75 0.8 0.3 0.8 1.5 2.0 1.85 2.0 2.15
N2 0.87 0.81 0.87 0.92 -0.8 -1.4 -0.9 -0.4 2.0 1.85 2.0 2.15
N3 0.80 0.75 0.80 0.84 0.0 -0.3 0.0 0.4 2.0 1.85 2.0 2.15
L1 0.90 0.83 0.90 0.94 -0.8 -1.3 -0.9 -0.4 2.0 1.85 2.0 2.15
L2 0.82 0.74 0.81 0.87 0.8 0.1 0.8 1.8 2.0 1.85 2.0 2.15
L3 0.80 0.71 0.80 0.87 0.0 -0.7 0.0 0.8 2.0 1.85 2.0 2.15
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Table B.3: Parameters estimation results II

β0 mean s.d. η0 mean s.d. ν0 mean s.d.
N1 0.70 0.6967 0.0311 0.8 0.8244 0.3434 2 2.0115 0.0849
N2 0.87 0.8683 0.0321 -0.8 -0.8680 0.2908 2 2.0095 0.0848
N3 0.80 0.7963 0.0267 0.0 0.0168 0.2050 2 2.0084 0.0838
L1 0.90 0.8944 0.0356 -0.8 -0.8624 0.2772 2 2.0045 0.0869
L2 0.82 0.8118 0.0377 0.8 0.8754 0.4846 2 2.0077 0.0832
L3 0.80 0.7948 0.0463 0.0 0.0156 0.4479 2 2.0080 0.0859

Table B.4: Comparison of estimated parameters for case N1

β0 Q5 β̂ Q95 η0 Q5 η̂ Q95 ν0 Q5 ν̂ Q95
T=500 0.70 0.60 0.69 0.79 0.8 0.0 0.8 2.0 2.0 1.80 2.1 2.20
T=1000 0.70 0.61 0.70 0.77 0.8 0.0 0.8 1.9 2.0 1.82 2.0 2.19
T=2000 0.70 0.63 0.70 0.76 0.8 0.2 0.8 1.6 2.0 1.83 2.0 2.18
T=3000 0.70 0.65 0.70 0.75 0.8 0.3 0.8 1.4 2.0 1.85 2.0 2.15

Table B.5: Specification test: rejection rate (%) at 5%

L1 L2 L3 N1 N2 N3
T=500 Hong and White 2.1 2.1 2.1 75.8 5.8 49.1

Sun and Li 8.8 3.9 4.1 82.8 14.1 51.6
T=1000 Hong and White 2.2 3.1 4.6 98.1 18.4 88.3

Sun and Li 9.6 3.8 6.3 99.5 37.2 91.8
T=2000 Hong and White 2.7 3.5 5.9 100 51.9 99.2

Sun and Li 5.9 2.7 5.3 100 67.3 99.8
T=3000 Hong and White 1.5 3.9 4.7 100 77.9 100

Sun and Li 4.1 1.3 3.4 100 87.0 100

Table B.6: Parameters estimation results

Parameter Estimation Standard Error
β 0.92 0.0125
η 100 98.99
ν 1.4 0.0186
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Table B.7: Goodness of fit: S&P 500

1990-2014
MSE(mean) GM 1.2842

GJR 1.2788
LM 1.2780

NP-mean 1.2779
NP-both 1.2780

MSE(var) GM 12.4502
GJR 12.1375
LM 11.5769

NP-mean 11.5750
NP-both 11.5514

Table B.8: Parameters estimation results

Parameter Estimation Standard Error
β 0.92 0.0095
η 100 95.62
ν 1.4 0.0246

Table B.9: Goodness of fit: S&P 500 with 4 exogenous covariates

1990-2014
MSE(mean) GM 1.2841

GJR 1.2804
LM 1.2762

NP-mean 1.2754
NP-both 1.2613

MSE(var) GM 12.4737
GJR 12.1778
LM 11.4996

NP-mean 11.4520
NP-both 10.8472
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