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ABSTRACT

This thesis presents a new reinforcement learning mechanism suitable to be em-

ployed in artificial spiking neural networks of leaky integrate-and-fire (LIF) or Izhike-

vich neurons. The proposed mechanism is upgraded from, and closely built upon the

learning algorithm introduced by Florian, in which local synaptic plasticity is based

on the relative spike-timing of the pre and post-synaptic neurons (STDP), and is

modulated by a global reinforcement signal.

This work introduces and deals with multiple challenges identified in existing

reinforcement learning schemes, that includes the distal reward problem, the spa-

tial credit assignment problem and the response numbness problem. A number of

improvements, that are inspired either from the biological elements or from similar

implementations in non-spiking neural networks, are suggested to handle these chal-

lenges, and are validated through biologically-inspired experiments. The notion and

implementation of attentional feedback that handles the spatial credit assignment

problem during synaptic reinforcement are introduced. The effects of attenuated re-

wards, which gate network learning after satisfactory reinforcement is achieved, are

also demonstrated. This aids in the exploration of the agent to discover other reward-

able behaviors during learning. A spike-rate based input encoding scheme termed as

balanced-pair binary state (BPBS) encoding, and a corresponding methodology for

response selection are also introduced to improve network stability and confidence

in response selection.

The proposed techniques are validated using multiple biologically-inspired single

agent as well as multi-agent game-theoretic experimental tasks. The single-agent

tasks include exclusive OR (XOR) function reproduction and a bot walking task. The
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multi-agent interactive and cooperative tasks demonstrated include the general-sum

iterated prisoners’ dilemma (IPD) game problem and the distributed SensorNetwork

problem from the NIPS ’05 reinforcement learning benchmarks.

The results and findings discussed in this work validate that the proposed im-

provements to existing implementations of reinforcement learning could, in fact, lead

to better brain-like learning and behavior in artificial agents.
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NOMENCLATURE

CR Conditioned Response

CS Conditioned Stimulus

DA Dopamine

DA-STDP Dopamine-modulated Spike-Timing Dependent Plasticity

DR Distal Reward

HH Hodgkin-Huxley

IPD Iterated Prisoner’s Dilemma

LIF Leaky Integrate-and-Fire

LTD Long Term Depression

LTP Long Term Potentiation

MARL Multi-Agent Reinforcement Learning

MDP Markov Decision Process

NIPS Neural Information Processing Systems

RL Reinforcement Learning

STDP Spike-Timing Dependent Plasticity

UR Unconditioned Response

US Unconditioned Stimulus

VTA Ventral Tegmental Area

XOR Exclusive OR
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1. INTRODUCTION

1.1 Background and Motivation

Human beings are, and essentially every living organism is, inherently hedonistic.

They continually engage in a pursuit for pleasure, and at every point in the course of

their lives, the inherent goal of their mind is to promote or reinforce self behaviours

that maximize pleasure, either short-term or long-term, while suppressing those that

earn them punishments. They are programmed so, and it is that simple.

From the perspective of machine learning, approaches like supervised and un-

supervised learning have been explored with brain-inspired systems like artificial

neural networks. While supervised training provides labeled examples of target re-

sponse for each observation or behavior, unsupervised learning lets the learning agent

make models from training data without explicit expert supervision [1]. These ap-

proaches have led to learning techniques that handle precision problems, and perform

human-like tasks to varying degrees of efficiency, concurrency and speed [2].

A critical notion that created a new branch of study in machine learning is that

of an agent or an artificial system that mimics the way a human learns, instead of

just the way he performs [3]. This is closely related to the reality of the existence of

interaction between the brain and its environment. Interaction represents the transfer

of feedback from the environment to the agent, for every action initiated by the agent,

that affected the environment in some way. This feedback evaluates and positively

reinfores the action performed by the agent in the context of the task at hand, and is

in turn used by the agent to learn to act rewardably in similar situations within its

environment. Thus reinforcement learning (RL), with this non-expert feedback from

the environment that aids learning, sits in the middle of supervised and unsupervised
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Figure 1.1: Machine learning strategies

learning (Figure. 1.1).

While supervised learning has proved to be very efficient and precise, it is not

very much biologically plausible. There is no teacher inside the brain, or outside,

that always has and provides the precise action sequence that is expected from the

person or his brain for every situation observed by him in his environment [3]. Also,

in realistic tasks, which are interactive, obtaining exhaustive examples of correct

behavior to teach a system might be unrealistic or very difficult. Reinforcement

learning is also unique in the fact that, in many interesting applications, the future

observations made by a system depend on the current action or set of actions that

it chooses to perform. A system that learns this way has to explore its options to

determine which action is rewarded in a specific situation, and in course of time,

exploit this knowledge to maximize the rewards. This is the natural way of learning

and survival in intelligent living organisms [4]. Understanding the human brain
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requires that the models and learning mechanisms that we use to study it be very

much closely inspired by its structure and function. Since reinforcement learning is

evidently the way the human brain learns behavior, it makes a lot of sense to pursue

it as the strategy to make brain-inspired aritifical systems learn and function.

1.2 Biological Reward System

The reinforcement learning or the reward system in the brain has the Basal

Ganglia (Figure. 1.2) at its core. This part of the brain controls responses to

natural rewards like food and sex, that leads to motivation and drive. These rewards

are stimuli that act as behavioral reinforcement agents. They cause an increase

in the probability of a behavior if it is frequently associated with or followed by

them. The reward pathways in the brain include a set of structures which play

an important role in regulating internal activities, and thereby behavior, based on

rewards. Dopamine (DA) is an extracellular neurotransmitter from the neurons

of the ventral tegmental area (VTA) that is used as a chemical messenger across

different internal structures of the brain to propagate the effects of these rewards [5].

Modeling of the dopamine pathways and the related mechanisms is therefore key to

computationally implementing reinforcement learning.

1.2.1 Classical and Instrumental Conditioning

Conditioning is the process of training a system to behave in a certain expected

way [6]. A mouse trained using food to solve a maze, and a dog trained to salivate

when a bell is rung are examples of conditioning in animals. Among the several types

of conditioning, classical conditioning and operant or instrumental conditioning are

interesting, especially from the perspective of training machines.

Classical conditioning is the processing of behavior modification in organisms

brought about by the pairing or association of a neutral stimulus and a potent stim-
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Figure 1.2: Basal Ganglia in the human brain

ulus to invoke a desired response, which was previously observed only in response to

the neutral stimulus. This was demonstrated by Ivan Pavlov through his experiments

with dogs [7]. Another example is the Little Albert experiment [8].

Table 1.1: Classical conditioning

Period Stimulus Response

Before conditioning US (food) UR (salivation)

Before conditioning NS (bell) No response

During conditioning US+NS UR (salivation)

After conditioning NS=CS CR (salivation)

Ringing of a bell is an example of a neutral stimulus (NS), which becomes the

conditioned stimulus (CS). This is paired with an unconditioned stimulus (US), for

instance, the pleasure from eating food. Pavlov’s dog inherently has an unconditioned
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response (UR) to food (US), which is salivation. By frequently associating the ringing

of a bell (CS) with the presence of food (US), Pavlov demonstrated that a conditioned

response of salivation could be induced just by presenting the conditioned stimulus,

though this effect is impermanent. Pavlov’s dog would eventually start drooling

whenever the bell is rung (Table. 1.1). In this case, the unconditioned stimulus or

the food acts as a reward for the dog to learn the response to a previously neutral

stimulus. Classical conditioning provides the principle to train or modify the behavior

of learning agents through reinforcement learning.

Instrumental or operant conditioning is a bit complicated than classical condi-

tioning due to the effects of positive and negative reinforcements that could affect

behavior at the same time. Classical conditioning deals with only one of these rein-

forcements at any time. If a monkey is shut in a chamber with a lever, and could

press the lever at any time to get a reinforcer like food or Heroin, the monkey is seen

to get addicted to the reinforcer, and his lever-pressing action is reinforced [9]. This

is an example of instrumental conditioning.

The idea is that such conditioning methods could be modeled and employed to

train machines with a suitable learning mechanism.

1.3 Reinforcement Learning

Formally, reinforcement learning within a system could be defined as the process

of developing a policy π, internal to the learning agent, that maps observations or

situations to actions, with the aim of maximizing a numerical global reward delivered

to the system, in the long run, by the environment [3]. The environment of a learning

agent includes passive response systems as well as other active agents that learn

simultaneously while contributing to the learning of other agents. This opens up

the interesting domain of multi-agent learning systems, and the context of multi-
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agent reinforcement learning (MARL). The fundamental differences in single-agent

and multi-agent tasks are enumerated in Table. 1.2.

Table 1.2: Single-agent and multi-agent learning tasks

Single Agent Tasks Multi-Agent Cooperative Tasks

Agents function independently Agents act cooperatively

Agents action directly determines the
reward payoff

Environments payoff depends on the
joint action of the participating
agents

Centralized Fault tolerant, decentralized

No interaction except with the
environment

Interaction and simultaneous
learning. One agents reactions
(change in strategy etc.) affects the
other agents.

Figure 1.3: Interaction between a learning agent and its environment

In the reinforcement learning scenario, the interactions between a learning agent
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(a) (b)

Figure 1.4: The formal reinforcement learning model

and its environment happen through three main steps (Figures. 1.3, 1.4a). At every

time step δ(t) (which need not be of fixed length), the agent performs an action

At ∈ A(St) that belongs to the set of actions applicable to the observed situation

St. This action affects the environment or itself in some way. Following this, it

receives a new observation St+1 from the environment along with a numerical reward

Rt+∆t that evaluates the performed action in the context of the task at hand. In

most realistic cases the reward is not delivered immediately following an action, but

delayed by as much as few seconds. This is the single agent model of reinforcement

learning.

The reward which leads to positive or negative reinforcement of performed actions

is intended to help the agent learn a desirable observation-specific action. These re-

wards could be delivered instantaneously or be delayed. For example, in Pavlovian

conditioning, the reward is presented to the dog after a delay, and the dog is able to

successfully associate an observation to an action. Also, in interesting applications,

an action at the present time could affect the observations provided by the environ-

ment in the future. This sequential decision making scenario resembles a Markov

decision process (MDP), and can be modeled as one (Figure. 1.4b), with the condi-

7



tion that the transition probabilities and the reward probabilities are unknown or in

other words stochastic from the perspective of the agent.

1.3.1 Principles and Elements

Reinforcement learning is backed by the principle or notion that any real-life goal

of an agent could be translated to the objective of maximizing its long-term reward.

The internal goal of the agent is to create a policy π that maps observations to

rewardable actions. Two processes aid the agent in this regard:

1. Exploration: The process of discovering and exercising several possible actions

∈ A(St), for a particular observation St.

2. Exploitation: Maximizing reward from experience using a policy that maps

observations to rewardable actions.

A good balance of exploration and exploitation results in efficient reinforcement

and learning of observation-mapped behaviors in partially or completely known ob-

servations or environments.

For any interactive task, the corresponding reinforcement learning model of it

includes a

1. State space (S)

2. Action space (A)

3. State transistion rules (Ta(S, S
′))

4. Reward policy (Ra(S, S
′))

The state space, S, could include low-level sensations like temperature and po-

sition which could be observed by a mechanical agent, symbolic abstractions of con-

figurations or an internal state of the agent, like happiness or surprise. The states
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could represent an agent’s internal state or any change that occurs to its environment

or other agents in its environment as a result of the agent’s action(s). The action

space, A, could include low-level activations like voltage or current to the motors,

high-level control operations like walking or rotating, or one that causes internal

change of state like shifting focus to another task. As previously mentioned, in re-

alistic reinforcement learning tasks that are perceived as Markov decision processes,

the state transition rules Ta and rewarding policies Ra are usually stochastic to the

agent.

1.4 Research Objectives

As discussed in this chapter, reinforcement learning is identified as a suitable

mechanism to train machines in a brain-inspired way. Modeling and studying math-

ematical equivalents of reinforcement learning rules would improve our understand-

ing of the brain. This research effort was initiated with the following objectives and

goals.

1. Understand existing reinforcement learning frameworks that are applicable to

spiking neural networks.

2. Evaluate these frameworks in the context of interactive tasks and applications,

and identify problems and core limitations.

3. Improve the learning mechanisms with features that could handle the identified

limitations.

4. Validate the enhancements for game-theoretic and control tasks, and provide

future directions to further enhance and optimize the solutions.
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2. COMPUTATIONAL NEURAL NETWORKS

The biological brain is a large neural network, and our goal is to model the learn-

ing agent as one. Neurons form the fundamental computational units in the brain,

and they communicate with each other using spike trains, which are series of all-or-

none signals at varying rates [10]. Several of these elements of the biological brain

have to be modeled to implement brain-inspired learning techniques in machines.

2.1 Spiking Single Neuron Models

An investigation of the existing computational models of neurons, which are the

fundamental units of cognition in the brain, leads to the fact that third generation

neural network models are particularly interesting because of their ability to add

more realism to neural network simulation [11]. Networks composed of spiking neu-

rons fall into this category. These models of spiking networks include, in addition to

neuronal and synaptic states, the notion of time in their operation. There is a hand-

ful of popular spiking single-neuron models used in large scale network simulations.

While the Hodgkin-Huxley (HH) model [12] is classic and good at reproducing sig-

nificant diversity in the features of biological neurons, it is non-linear and complex

with several model variables, which makes it tough to be simulated and analyzed

mathematically. The leaky integrate-and-fire (LIF) neuron model [13], on the other

hand, is very simple and computationally very inexpensive, but lacks the feature

diversity. Izhikevich introduced a model [14] that replicates a wide set of features

exhibited by diverse types of biological neurons, while being computationally simple.

At this point, LIF and the Izhikevich neuron models are of interest to us especially

because of their low computational complexity.
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2.1.1 The LIF Model

The leaky integrate-and-fire model models a spiking neuron as an RC circuit

(Figure. 2.1). It accumulates aggregated current input with a leak until its voltage

crosses a threshold, vth (Eqn. 2.1). A spike is generated at the positive threshold-

crossing (Eqn. 2.2), and at this point the membrane potential is reset to vr.

τm ˙vm = vresting − vm(t) +RmIm(t) (2.1)

vm(t) = vrifvm(t) ≥ vth (2.2)

(a) (b)

Figure 2.1: Equivalent RC model of an LIF neuron

vm(t) denotes the neuron membrane potential at time t, τm is the membrane

time constant (=RmCm), and Rm is the membrane resistance. While being compu-

tationally simple, this model does not generate biologically realistic spikes (Figure.

2.1b).
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Figure 2.2: The Izhikevich single-neuron model features

2.1.2 The Izhikevich Model

The Izhikevich model (Figure. 2.2) is comparable to the LIF model in terms

of computational complexity [14]. But this model can exhibit spike patterns that

closely mimic a variety of biological neurons (Figure. 2.3).

v̇ = 0.04v2 + 5v + 140− u+ I (2.3)

u̇ = a(bv − u) (2.4)

v = candu = u+ difv ≥ 30mV (2.5)

Equations 2.3-2.5 summarize the model, where v represents the membrane po-

tential of the neuron, and I represents the input current to the neuron through its

dendrites. a, b, c and d are dimensionless parameters that give rise to spiking be-

haviors corresponding to different neuron types. Parameters a, b, c and d in the

model could be adjusted to switch between different firing patterns (Figure. 2.3).

The reset mechanism (Eqn. 2.5) is triggerred when the membrane voltage crosses 30

mV.
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Figure 2.3: Spiking pattern diversity exhibited by Izhikevich’s neuron model (Elec-
tronic version of the figure and reproduction permissions are freely available at
www.izhikevich.com)

2.2 Synaptic Plasticity

A synapse represents the connection between two neurons, that permits one neu-

ron to pass information to the other (Figure. 2.4). Biological neural networks are

believed to learn memories and behaviors primarily by modifying their synaptic

weights by an inherent ability called Synaptic Plasticity. Synaptic plasticity refers

to the activity-dependent change in the strength of the synapses between neurons,

and it is evidenced to be the primary cause that makes learning possible by rewiring

the brain as interactions happen [15].
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Figure 2.4: Representation of a synapse

Two terms become relevant here:

1. Long-Term Potentiation: The persistent strengthening of synapses that depend

on recent patterns of neural activity.

2. Long-Term Depression: Activity-dependent weakening in the synaptic strength

following neural activity or stimulus.

The interplay between potentiation and depression of synapses in a neural net-

work leads to numerous configurations of the network, that results in different regis-

trations of stimuli, and exhibition of behaviors by an organism.

2.2.1 Spike-Timing Dependent Plasticity

In 1949, Hebb proposed that when a neuron persistently fires together with other

neurons, the synaptic strength between this neuron and the others increases [16].

A more popular saying is, Neurons which fire together, wire together. A concept of

synaptic plasticity called the spike-timing dependent plasticity (STDP) [17], intro-

duced by M.M. Taylor in 1973, provides a substrate to Hebbian learning, in that it

proposes that if synapses which have a pre-synaptic spike occur just before a post-

synaptic one were potentiated more than those which have the reverse timing, there

would be an efficient memory recording of the input patterns in the network. STDP
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STDP(δt) =

{
A+e

−δt/τ+, if δt ≥ 0

−A−eδt/τ−, if δt < 0

Figure 2.5: STDP function

is an experimentally verified classic technique in spiking networks of neurons [18]. It

strengthens or weakens synapses based on the relative timing between a pre-synaptic

and post-synaptic spike (Figure. 2.6).

The change of strength, ∆wj(t), of a synapse from a pre-synaptic neuron j is

dependent on the spike times at the presynaptic neuron and the post synaptic neu-

rons. If tn1
j represents the arrival times of the presynaptic spikes, and tn2

i represents

the arrival times of spikes at the ith post-synaptic neuron, then the total change in

weight of the synapse is given by the equation 2.6. n1 and n2 represent the spike

indices of the corresponding neurons [19].

∆wj(t) =
N∑

n1=1

N∑
n2=1

STDP(tn2
i − t

n1
j ) (2.6)

The STDP function is an exponential piecewise function (Figure. 2.5). The time

constants τ+ and τ− are usually the same, and are in the order of 20 ms. A+ and

A− scale the amount of potentiation and depression respectively, and are usually set

to 1, although they could be made dependent on the current value of the synaptic

strength. STDP has been used widely to selectively and meaningfully potentiate

synapses in a network [20][21].
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(a)

(b)

Figure 2.6: Spike-timing dependent plasticity (STDP)
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3. REINFORCEMENT LEARNING IN SPIKING NETWORKS

3.1 Dopamine-modulated Synaptic Plasticity

The previous chapters introduced the fact that synaptic potentiations within the

internal structures of the brain are influenced by the neuronal spike-timings as well

as by the release and presence of a global neuromodulator called dopamine (DA).

Dopamine plays an important role in the long-term potentiation (LTP) and depres-

sion (LTD) of synapses [22]. Reward-modulated synaptic plasticity or reinforcement

learning in aritificial spiking neural networks is based on a simple hypothesis that

STDP potentiation and depression could be modulated by a global reward signal

(modeling the dopamine), and thus be made selective [25][26]. In other words,

dopamine is hypothesized to gate STDP-induced synaptic potentiations. When

STDP conditions (near-coincident firing of pre and post synaptic spikes) are met

during spiking activity, whether or not a synapse is potentiated depends on the

presence of the global, extracellular dopamine in the network.

Modulated-STDP or DA-STDP deals with the application of a reward (modeling

Figure 3.1: Dopamine-modulated synaptic plasticity
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dopamine delivery) to enhance the potentiation of synapses by STDP. The idea is

that, if synapses are potentiated only when the network receives a reward, activations

related to the corresponding stimulus-action pair get potentiated, thereby strength-

ening a single response to a stimulus. The variability of the network is thus reduced

leading to a registration of the input configuration. The effects of the reward are in

terms of the long-term potentiations, which are exploited when a similar stimulus is

presented later (Hebbian learning). This is exploitation of knowledge. When there

is nil or minimum reward, the synapses do not get strengthened and the network is

thereby allowed to behave on its own without any reinforcement. This permits vari-

ability in the response of the network, leading to exploration of behavior. This idea

sits in the center of reward-modulated synaptic plasticity for reinforcement learning:

dwij

dt
= γ∆wSTDP

ij d(t) (3.1)

˙d(t) =
−d(t)

τd
+ DA(t) (3.2)

Figure. 3.1 illustrates the effects of dopamine in the modulated-STDP technique

introduced in [25], exlcluding the influence of the eligibility trace (introduced later).

The change in strength ∆wij of a synapse between neurons j and i is the product of

a learning rate factor (γ < 1), the STDP-induced weight change (∆wSTDP
ij ), and the

dopamine signal d(t) (Eqn. 3.1). DA(t) models the actual source of extracellular

dopamine in the network, while d(t) represents its model of decaying delivery to the

synapses. τd is the time constant for the decay, and is in the order of 20 ms [25].

This is a simple mathematical model of how dopamine could affect synaptic

plasticity. There are multiple limitations in applying this learning rule to practical

tasks, which are discussed in the forthcoming sections.
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3.2 The Distal Reward Problem

In the hippocampal region of the brain, tetanus is seen to induce potentiation

(LTP/LTD) of synapses, which are enhanced or modulated by the D1 receptors that

release dopamine. It is observed that the effects of tetanus on the resulting long-term

potentiations disappear if dopamine is delivered seconds later [23]. At a higher level,

in practical applications, rewards are not delivered instantaneously to the learning

agent. There are delays in evaluating the effects of actions performed, and hence in

the delivery of rewards. For example, in Pavlovian and instrumental conditioning,

rewards are delivered to the dog seconds after rewardable actions for potentiation,

which are still effective in conditioning the dog’s response. These delayed rewards are

somehow effective in strengthening the correct set of synapses. The brain determines

which firing patterns or synpases to reward when the patterns are no longer active

at the rewarding instant. To persist these patterns the brain cannot freeze its state

until rewards are delivered. The problem therefore is to pick or remember the reward-

worthy synapses, for an earlier action, during an active episode of neural activity.

This is also called the temporal credit assignment problem.

Learning rules represented by equations 3.1-3.2 clearly would not be effective in

the potentiations of the correct synapses, if the rewards are delayed. This is because,

the effect of STDP becomes negligent when the actual reward is delayed, and thus

the potentiation could not be effectively modulated by the incoming reward.

3.3 Eligibility Traces

Dopamine modulation of tetanus-induced LTP in the Hippocampus [24] suggests

that, instead of the dopamine delivery and modulation being expected instanta-

neously, there must be a short time window after the synaptic activations within

which they are allowed to be delivered and thus effect modulation of the previously
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active synapses.

Figure 3.2: Dopamine-modulated synaptic plasticity with eligibility trace

Eligibility traces are a common and popular solution to the distal reward prob-

lem [25][26]. Each synapse in the network, between a presynaptic neuron j and

postsynaptic neuron i, is associated with a trace signal Zij(t), which is stepped

up or down when near-coincident spikes occur, depending on the relative timing

(Figure. 3.2). The traces decay with a time-constant τz. They aid the system in

remembering active synapses during an earlier point in time, and thus lead to effec-

tive LTP/LTD when the reward/punishement is delivered with a delay. Of course,

there is a finite waiting period, that depends on τz, during which the efficacy of

this memory fades, and beyond which there is no effect of reward or punishment on

those synapses. Therefore, the idea with eligibility traces is to combine STDP with

a decaying memory trace of synaptic activations so that delayed rewards are still

effective in potentiating synapses that were active a few seconds earlier.
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Two related prior-arts implementing and validating the role of eligibility traces

in DA-modulated STDP are detailed in [25] and [26]. They are summarized in the

following subsection.

3.3.1 Izhikevich’s Eligibility Trace

3.3.1.1 Implementation

Izhikevich [25] defines two state variables for a synapse - the synaptic strength

w, and a synaptic tag c that models an enzyme whose activation plays an important

role in plasticity (Figure. 3.3). The synaptic tag is a slow decaying process (Eqn.

3.3), and represents the eligibility trace.

Figure 3.3: Izhikevich’s model of a synapse with eligibility trace

ċ =
−c
τc

+ STDP(τ )δ(t− tpre/post) (3.3)

ẇ = cd (3.4)

τ = tpost − tpre (3.5)

The dynamics of the eligibility trace and synaptic strength are captured by equa-

tions 3.3-3.5. d(t) represents the extracellular concentration of dopamine in the

network, as computed using Equation 3.2, and τd (usually 0.2s) is its time constant

for decay. Every reward delivery to the network is represented by a step increase of
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dopamine level by 0.5 uM (Figure. 3.2). δ(t) is the dirac delta function which in-

creases the synaptic tag by a step that is exponentially proportional to the difference

in the relative timing of the pre and post synaptic spikes.

The synaptic tag c decays with a time constant of τc = 1s, and this models the

sensitivity of the synaptic plasticity to a delayed reward.

3.3.1.2 Experimental Setup and Validation

A network of 1000 Izhikevich neurons was employed to validate the DA-STDP

rule proposed in [25]. It consisted of 80% excitatory neurons (regular spiking (RS);

Figure. 2.3) and 20% inhibitory neurons (fast spiking (FS)). Each neuron is con-

nected to another neuron with a probability of 0.1 (100 synapses per neuron on

average). The synaptic weights were limited to 0 to 4mV. For spike-timing depen-

dent plasticity, A+ and A− were set to 1 and -1.5 respecively. The neurons received

random input currents between 0 and 30 mA at each timestep of 1ms.

Figure 3.4: Synapse potentiated by Izhikevich’s eligibility trace
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Figure 3.5: A histogram of the synaptic strengths in the network

The objective of this experiment was to validate dopamine-based reinforcement of

a single synapse during spiking activity. A single excitatory synapse was randomly

chosen from the network, its strength was set to 0, and was monitored. Every

time the postsynaptic neuron fires within 10 ms from the firing of the presynaptic

neuron, the dopamine concentration is stepped to 0.05 uM, not instantaneously, but

with a delay that is randomly picked between 1 and 3 seconds. Such coincident

firing would initially occur randomly, but due to reinforcement of the synapse, the

frequency increases eventually, leading to a very strong response (maximum synaptic

strength) at the end of the experiment (Figure. 3.4). The red curve represents

the dopamine concentration d(t), and the red cross-marks represent time-points of

dopamine delivery at source (DA(t)) to the network. The blue curve is the strength

of the synapse w(t), which is seen to get continuosly reinforced.

In Figure. 3.5, which is a histogram of the synaptic weights in the network,

the blue circle points to the strength of the selected synapse, comparing it with the

strengths of all the other synapses in the network.
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3.3.2 Florian’s Eligibility Trace

3.3.2.1 Implementation

Another implementation of eligibility traces for handling the credit assignment

problem is provided in [26]. The learning rule (Equations 3.6-3.7) was derived

from the gradient-descent based online partially observable Markov decision process

(OLPOMDP) algorithm introduced in [27]. OLPOMDP assumes that the interaction

between the learning agent and its environment to be a partially observable Markov

process.

ẇij = γR(t)Zij(t) (3.6)

τz
dZij(t)

dt
= −Zij(t) + P+

ij (t)fi(t) + P−ij (t)fj(t) (3.7)

Aligning with the generic reward-modulated learing rule introduced in the previ-

ous section, the change in strength wij of a synapse, between a presynaptic neuron

j and a post-synaptic neuron i, depends on the learning factor γ, the actual reward

R(t) and an eligibility trace Zij . In this implementation, STDP is integrated into

the eligibility trace signal. δt is the discrete time-step at which the network is simu-

lated, usually set to 1 ms, and τz is the decay time-constant for the eligibility trace,

usually set to 20 ms.

P+
ij (t) = P+

ij (t− δt)e−δt/τ+ +A+fj(t) (3.8)

P−ij (t) = P−ij (t− δt)e−δt/τ− +A−fi(t) (3.9)

P+
ij (t) and P−ij (t) track the influence of pre and post-synaptic spikes respec-

tively by summing up their effects over time. For every spike of a presynaptic and
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postsynaptic neuron, P+
ij (t) and P−ij (t) are updated according to equations 3.8 and

3.9. Also, for every presynaptic spike at time t, fj(t) = 1, and for every postsy-

naptic spike, fi(t) = 1, these parameters otherwise being zero. The dynamics of

the various variables in this mechanism is demonstrated in Figure 3.6, which pro-

vides an intuition to the way STDP and eligibility traces are integrated into this

implementation.

Figure 3.6: Dynamics of the Florian DA-STDP variables

From Figure 3.6, it could be inferred that the result of the eligibility trace imple-

mentation in [26] is quite similar to the one by Izhikevich in [25]. This DA-STDP

mechanism has been demonstrated to work for single-action instrumental condition-

ing tasks, one of which is described in the following section.
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3.3.2.2 Experimental Setup and Validation

The implementation of the DA-STDP technique described in [26] consisted of

a feedforward network of three layers composed of LIF neurons - 60 in the input

layer, 60 in the hidden layer and 1 neuron in the output layer (Figure. 3.7). These

neurons had a resting potential of -70mV, a time constant τ of 20ms, and a spike

threshold of -54mV. The network was simulated in a time resolution of δ(t) =1ms.

For spike-timing dependent plasticity, parameters τ+ and τ− were set to 20ms, and

A+= 1, A−=-1, while the eligibility trace time constant τz was set to 20ms.

Figure 3.7: Network design for the XOR task

Each layer in the network was fully connected to its next layer. Each binary input

was associated with a group of 30 neurons (50% inhibitory), and the binary value
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was coded as the spiking rate at the input. The absolute value of synaptic weights

were limited to, and clipped at 2.5 mV. Poisson spike trains were generated at a

specific rate depending on the input value, and were fed to the input layer. Binary

value 0 was represented by a poisson spike rate of 0 Hz, and 1 by spikes 40 Hz. For

example, for the (0,1) case, the first group of neurons were all fed poisson spikes at

0 Hz, and the second group of 30 neurons were fed spikes at 40 Hz.

The input binary values coded as poisson spike rates were presented to the input

layer, and as spikes arrived at the output layer, rewards were delivered according to

the following rules. At the output neuron, the system was rewarded (R(t) = +1)

for every spike, for cases (0,1) and (1,0). There was a punishment of (R(t) = −1)

for every spike at the output neuron, for cases (0,0) and (1,1). The objective was

to create a policy that results in the following input-output mappings: [(0,0)⇒0,

(0,1)⇒1, (1,0)⇒1, (1,1)⇒0]. When the spike rate at the output neuron was higher

than a threshold, the response was decoded as 1, and when it was low, it was decoded

as 0. Each epoch, involving input presentation and decoding, lasted for 500ms. An

episode, leading to satisfactory learning, consisted of 200 training epochs. At the

end of the training phase, there was a testing phase where the learning rate was set

to 0, and the number of spikes at the output neuron was counted for each case, as

the inputs were presented. The number of spikes for (0,1) and (1,0) was expected to

be more than that for the other cases. The results shown in Figure 3.8 validates that

the system was successfully conditioned to learn the XOR function. The dynamics

of the rewards delivered to the network, which is a measure of the total number of

expected spikes, is displayed in Figure 3.9.
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Figure 3.8: Output spike rates for the XOR task
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Figure 3.9: Reward profile for the XOR task

28



4. LEARNING LIMITATIONS

The dopamine-modulated STDP learning rules introduced in the previous chapter

were validated to lead to network behaviors that resembled instrumental condition-

ing. However, the experiments involved in the said validations were simple, involving

a small network with just one output neuron. In this chapter, we scale the complex-

ity of the network to a small extent, to further study the efficacy of the DA-STDP

techniques.

4.1 XOR Task Revisited

In this section, the XOR task discussed in the previous chapter to validate the

Florian eligibility trace [26] is revisited. The network was upgraded to have two

output neurons, with all the other parameters kept the same. The network decision

was decoded as a 1 if the rate of spikes at output O1 was greater than the O2, and

0 if otherwise. Florian and Izhikevich’s learning rules were separately applied for

this task, with different network architectures, to validate the efficacy of the learning

rules in this task. This task is interesting because of the need for spatial selectivity

in potentiations. For each input cases, only one output neuron is expected to have a

stronger response, and that means that the synapses contributing to spikes only at

one output neuron must be reinforced.

4.1.1 Florian’s Learning Rules

The feedforward network, used for the validation in the previous chapter, was

upgraded to have two outputs (Figure 4.1), with all the other parameters kept the

same. If the rate at output O1 was greater than the O2 the response was 1, and 0

if otherwise. The network was simulated in a time resolution of δ(t) =1ms, and the
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learning rate γ was set to 0.01.

Figure 4.1: Upgraded network design for the XOR task

The rewards were instantaneous. For cases (0,1) and (1,0), for each spike at O1 a

reward of +1 was delivered to the network, and for each spike at O2, a reward of -1

was delivered, with the goal of strengthening the response at O1, which represents

an output value of 1. For cases (0,0) and (1,1), spikes at O2 were rewarded, while

those at O1 were punished. The synaptic strengths were modulated based on the

Florian learning rules (Equations 3.6-3.9).

The simulation was run for 200 epochs, with each epoch lasting for 500ms. The

resulting spike rates at outputs O1 and O2 for each of the input cases are shown in

Figure. 4.3.
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Figure 4.3: Output spike rates for XOR task with 2 outputs

From Figure 4.2 we see that the reward profile keeps oscillating, indicating that

the network struggles to learn contradicting responses for spatially separated neurons

in the case of instantaneous rewards. Figure 4.3 shows that the network learning gets

biased over time, leaning towards one specific response. Since the reward is global, a
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neuron behaving incorrectly can be rewarded because most of its neighbors behaved

correctly, and vice versa.

4.1.2 Izhikevich’s Learning Rules

In another similar experiment with Izhikevich’s learning rules [25], a network

of 1000 Izhikevich neurons were used to implement the XOR task. The network

consisted of 80% excitatory neurons and 20% inhibitory neurons. Each neuron was

connected to another with a probability of 0.1 (100 synapses per neuron on average).

The synaptic weights were limited between 0 to 4mV. For spike-timing dependent

plasticity, A+ and A− were set to 1 and -1.5 respecively. The neurons received

random input currents between 0 and 30 mA at each timestep of 1 ms.

Four groups, S1, S2, A and B, of 50 neurons each were selected from the net-

work. These groups represented the stimulus X, stimulus Y response 0 and response

1 respectively. Each epoch involved a presentation of stimulus, a superthreshold

current, to the groups S1 and S2, for one of the four input cases. The number of

spikes in groups A and B were counted during a 20 ms window, and were used to

decide on the response from the network. The network response was marked 0 if the

number of spikes in group A was twice more than that in group B (|A| > 2|B|).

Similarly, the response was marked 1 if the number of spikes in group B was twice

more than that in group A (|B| > 2|A|). Rewards, delayed by 1-3s, were delivered

according to the expected outcomes [(0,0)⇒0, (0,1)⇒1, (1,0)⇒1, (1,1)⇒0]. A pos-

itive reinforcement of 0.05 uM was delivered for the correct response, and a negative

reward of 0.05 uM for the wrong response. The network was trained for 250 seconds

with each epoch starting every 10 seconds.
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Figure 4.4: Learning performance

The percentage of correct responses for each set of four cases is plotted in Figure.

4.4. Quite similar to the Florian experiment, this network also failed to learn the

mappings, and it continually oscillated between learning contradictory responses.

4.2 Spatial Selectivity in Potentiation

Input specificity is the property of a neural network by which it stores knowledge

via synaptic transmissions that are driven just by input-specific changes [28]. This

makes it possible for the network to have a high storage capacity, given that there are

a large number of neurons (1011 in the brain) and synapses per neuron (> 104) in

the network. In reinforcement learning, such effective storage of patterns is largely

dependent on the changes in input patterns and rewards affecting only a subset

of synapses that actually contribute to an action or storage of a memory pattern.

During neural activity, several synapses across the network become active. While a

subset of them contribute strongly leading to rewardable or punishable behavior, the

other synapses do not affect the decisions of the network. These synapses (Figure.
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Figure 4.5: Spatial selectivity in potentiation

4.5 in black) ideally should not be potentiated or depressed because of the decisions

of the network as a whole. Only the synapses that contribute to the network decision

(Figure. 4.5 in blue) must be made to face the consequences of those decisions. This

idea forms the core of the problem that is discussed in the following section.

The experiments discussed illustrate the logical network partitioning challenge for

credit assignment, which remains to be solved. A bad neuron cannot be rewarded just

because its neighbors are correct, and vice versa. This is the spatial credit assignment

problem, dealing with making credit assignments precisely and selectively, and it is

currently an important direction of research in reinforcement learning.

4.3 Response Numbness Problem

Exploration offers the only chance for a learning agent to discover rewards before

exploiting knowledge. Response numbness is a phenomenon in reinforcement learning

systems, in which due to inactivity or continuous supression of a response, neurons

belonging to that particular action group are never allowed to explore enough to get

rewarded. They remain supressed. The underlying reason is that the strength of

synapses between these neurons saturate at their lower limit from learning. Spike
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variability is thus prevented, thereby creating a hurdle for exploration and learning.

In an interactive task, this also happens when some states are observed by the system

very rarely, when compared to several other states.
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Figure 4.6: Response numbness

A network of 1000 neurons was used to perform an instrumental conditioning

experiment. The network consisted of 80% excitatory neurons and 20% inhibitory

neurons. Each neuron was connected to another with a probability of 0.1 (100

synapses per neuron on average). The synaptic weights were limited to 0 to 4mV.

For spike-timing dependent plasticity, A+ and A− were set to 1 and -1.5 respecively.

The neurons received random input currents between 0 and 30 mA at each timestep

of 1 ms.

Three groups, S, A and B, of 50 neurons each were selected from the network.

These groups represent the stimulus, response A and response B respectively. Each

epoch involved a presentation of stimulus, a superthreshold current, to the group
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S. The number of spikes in groups A and B were counted during a 20 ms window,

and were used to decide on the response from the network. The network response

is marked A if the number of spikes in group A is twice more than that in group

B (|A| > 2|B|). Similarly, the response is marked B if the number of spikes in

group B is twice more than that in group A (|B| > 2|A|). Until 180 seconds,

the network was rewarded dopamine (with a delay between 1-3s) for response A,

and after 180 seconds it was rewarded for response B. By the time this reverse

reinforcement started, the network had already learnt response A very strongly, that

it became difficult for it to exhibit diversity after 180 seconds to explore and learn

the other response (B) (Figure. 4.6). The network will never be rewarded as long as

its response was very strong for A. This illustrates the response numbness problem.

The challenge here, therefore, is to find a mechanism to stop the agent from

learning once an acceptable strength of desired behavior is reached during learning.

This would prevent complete supression of responses during other observations.
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5. ENHANCED DA-STDP WITH ATTENTIONAL FEEDBACK

Several enhancements made to the DA-STDP technique to handle the limitations

discussed in the previous chapter are introduced here. The network design and

learning methodologies that are part of this proposal are detailed in the following

sections. The next section describes the type of neuron models and the network

structure used. The section that follows it details the input encoding method, which

is followed by an explanation of features developed to deal with some of the other

problems with modulated-STDP scheme that were explained in the previous chapter.

5.1 Network Architecture

A feedforward network, with three or more layers, is proposed to be employed to

model the learning agent. Feedforward networks are simpler than recurrent networks

in terms of simulation complexity, and in terms of applying the proposed reinforce-

ment learning rules. The learning strategies are not affected by the type of spiking

neuron model, and therefore both LIF and the Izhikevich models could be used.

A comparison of performances with these models is reported in Appendix A. The

structure and arrangement of neurons in the input layer are discussed in the next

section. The input layer (Ni neurons) and the first hidden layer (Nh neurons) are

fully connected, whereas the last hidden layer and the output layers (No neurons)

are sparsely connected to handle the spatial credit assignment problem. This is dis-

cussed later in this chapter. Each output neuron is connected to a neuron in the

hidden layer with a probability of 1/No, where No is the number of output neurons

(Figure. 5.1).

For complex tasks, there could be several hidden layers in the network modeling

the agent. In these cases, between the hidden layers, the sparsity is set to 0.5. This
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means that a neuron in one hidden layer is connected to a neuron in the next hidden

layer with a probability of 0.5. For tasks that require a winner-takes-all strategy at

the output layer, for evaluating a single response, lateral inhibition is set up at the

output layer. Inhibition is implemented using inhibitory synapses (negative weights)

between pairs of output neuron groups. A certain percentage of neurons in one group

are randomly connected to the other group in the pair through inhibitory synapses.

In tasks which require inclusion of the previous response of the agent in the eval-

uation of the next response (an example is provided in Chapter 5), partial recurrence

is implemented by feeding the decision from the output layer to the input layer.

Figure 5.1: Proposed network architecture

5.2 Balanced-Pair Binary State Encoding

Since the applications of the proposed reinforcement learning rules are focused

around game playing and control tasks, and not continuous-value precision problems,

the input states are encoded using a binary spike-rate based encoding. Each variable
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Figure 5.2: Balanced-pair binary rate encoding

or bit in the binary representation of the state or input to the network is assigned

two neuron groups (Figure. 5.2) consisting of Ng neurons each. 50 percent of the

neurons in a group are inhibitory, while the rest are excitatory. This is inspired from

the arrangement of sensory neurons in the retina of the human eye [29]. All the

synapses elsewhere are excitatory.

If a bit in the input representation of a state is turned on (value = 1), one of the

neuron groups is fed a poisson current at F Hz (represented by A in Figure. 5.2),

and the other is set to 0 Hz (no input spikes; represented by Ã). If the variable is

turned off (value = 0), the groups are assigned frequencies the opposite way.

An example of the encoding scheme for an XOR task is illustrated in Table. 5.1.

A and B refer to the two input variables in the XOR function, and with F = 50,

for each input case it is seen that the total number of spikes per second remains

constant (= 100). This arrangement is utilized to normalize the rate of the spikes

fed into the network across all the observations or states experienced by the agent.

The number of spikes that are fed into the network via the input layer for each
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Table 5.1: Encoding inputs for XOR with the balanced binary state encoding

Case A Ã B B̃ Total

(0,0) 0 50 0 50 100
(0,1) 0 50 50 0 100
(1,0) 50 0 0 50 100
(1,1) 50 0 50 0 100

state remains constant this way, aiding in confident decoding based on firing rate

at the output. This is because, across all the states, if the spike rates are constant

at the input layer, then the spike rates at the output neurons do not tend to vary

very much. Otherwise, if for different states there are different rates of spikes at the

input, deciding on a threshold to decode a response at the output becomes difficult.

5.3 Attentional Feedback

From the upgraded XOR task experiment that was discussed in the previous

chapter, it became evident that the DA-STDP method lacks a way to filter out

the synapses at the early layers of the network that contributed significantly to the

observation-action mapping, for potentiation. This was termed the spatial credit as-

signment problem. To handle this problem, we introduce feedback synapses (Figure.

5.3) in the network from each post-synaptic neuron to its pre-synaptic neurons. Ev-

idence for such feedback is biologically validated between motor and sensory layers

of the cortex, especially in the visual areas of the cortex [30]. These synapses aid in

selective potentiation [31], as explained here in this section.

As illustrated in Figure. 5.3, each post-synaptic neuron has a feedback synapse to

each of its pre-synaptic neurons. Feedback synapses are not plastic; their strengths

are set to a constant value of 1. These synapses do not carry the spikes that are

carried by the feedforward synapses. Instead, they form a separate channel in the
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Figure 5.3: A feedback synapse

network, that carry only the feedback signal which are binary-valued in nature.

The primary objective of using this feedback is to let the network identify synapses

that have structurally causal relationship to the output neuron whose activity was

responsible for any decision decoded from the network. Figure. 5.4 illustrates this

concept. Only the blue synapses, which structurally lead to the winning neuron

at the output through their connectivity, could have influenced the activity of that

neuron. Since the activity of this neuron was primarily responsible for the decoded

decision, only the blue synapses should be reinforced. Thus, the feedback signal from

the winning neuron to the earlier layers, that carry this causality information, could

be used to modulate the already-modulated STDP potentiations (Equation 5.1)

dw

dt
= γR(t)Z(t)Θ(t) (5.1)

Θ(t) =


Ok(t), for output-hidden synapses∑No

k=1wkjOk(t), for hidden-input synapses

The feedback signal is from the response-selection stage O to all of the previous

layers in the network. Potentiations for synapses follow equation 5.1. Θ(t) represents
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Figure 5.4: Attentional feedback

the feedback signal. i, j, k represent input, hidden and output neurons respectively.

Ok is a binary value that represents the response of the network. For instantaneous

rewards, Ok(t) = 1 means that output neuron k spiked at that instant. This

ensures that the potentiations due to rewards for this output neuron’s decisions are

only effective on the synapses that form a path from input layer to this output neuron

(Figure 5.4). The other synapses that contributed to the spikes of the other output

neurons are not potentiated at this point. For the synapses between hidden layer

and input layer, the sum of ouput responses is used instead. wkj is the strength of

the feedback synapse, and it is set to 1 for all connected neurons, otherwise 0.

The functioning of this feedback signal is inspired from error backpropagation

mechanisms in non-spiking neural networks as well [31]. This enhancement solves

the spatial credit assignment problem to a good extent, and makes a lot of sense in

spiking neural networks. The mechanism is validated in the following section.
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5.3.1 XOR Task with Attentional Feedback

The XOR task with two output neurons is revisited. The network is composed of

three layers of LIF neurons. Attentional feedback synapses are implemented between

each connected pair of neurons in the network, and the two input variables are

encoded with the BPBS scheme (with F = 40) discussed in the previous section

(Table. 5.1). Rewards during the episodes were instantaneously delivered to the

synapses. This means that for cases (0, 0) and (1, 1), for each spike at neuron O1,

a reward of +1 was delivered to the network, and for each spike at O2, a reward of

−1 was delivered. The sign of the rewards was reversed for cases (0, 1) and (1, 0).

The episode lasted for 200 epochs, which represents 50 sets (each epoch includes 4

cases of inputs) of input presentations.
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Figure 5.5: Output spike rates (40 Hz poisson input)
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Figure 5.6: Output spike rates (100 Hz poisson input)

Spike rates at the output neurons for the four cases are shown in Figure. 5.5

which corresponds to F = 40 Hz poisson input, and in Figure. 5.6 for F = 100 Hz

input. Also, the reward profiles for the task over 200 epochs with 40 Hz and 100 Hz

input are compared in Figure. 5.7. The higher reward profile for the 100 Hz input

is expected because it provides more opportunity for exploration since the spike rate

is higher. The results validate the notion of attentional feedback in resolving the

spatial credit assignment problem.
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Figure 5.7: Reward profile for the XOR task with attentional feedback

5.4 Temporally Attenuated Rewards

Attenuating rewards over time is a way to deal with the response numbness

problem. We do not always learn at the same rate for the same rewards from the

environment, and the excitement or the level of pleasure fades away with time due

to several reasons. From another perspective, there is no need to learn something

which has already been learned enough. So the internal perception of pleasure could

be diminished slowly over time, so that after a behavior is learnt sufficiently well,

the rewards for the same behavior do not affect as much as it used to. This is the

idea behind attenuated reward profiles introduced here. This approach reduces the

amount of reward actually delivered to the synapses as the strength of an observation-

action mapping becomes stronger. This works for tasks involving a finite set of

states. For generic tasks, a biological mechanism and its simulation counterpart that

remember this profile are yet to be discovered.

For each state S observed by the system, an expected reward factor ES(t) is
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associated with the network. These are global factors, not local or synapse-specific.

This state-specific factor is to ensure attention to each state or task that the system is

involved with, so that performance and rewards for each input state could be tracked

separately. ES(t) is initially set to 0, and updates to this factor follow equation 5.2.

R(t) represents the actual reward from the environment and τS determines the speed

of decay or saturation (Figure. 5.8).

ES(t) = ES(t) +
R(t)− ES(t)

τS
(5.2)

Figure 5.8: Temporally-attenuated reward profile

The reinforcement signal delivered to the system is the difference between the

expected reward ES(t) and the received reward R(t). With an attenuated reward

system, the learning rule in equation 5.1 modifies to equation 5.3.

dwjk

dt
= γ(R(t)− ES(t))Zjk(t)Θ(t) (5.3)

46



For specific choices of τS this mechanism prevents complete supression of re-

sponses that prevent exploration, because the system is never forced to learn or

unlearn any mapping completely. Also, for rewards that span multiple levels for

various degrees of reinforcements, this keeps the output rates stable. These are

demonstrated in the later chapters.

5.4.1 XOR Task with Attenuated Rewards

A feedforward network with two output neurons, 80 hidden neurons and 80 input

neurons was used in this experiment to model the learning agent (Figure. 3.7).

The balanced-pair binary encoding explained previously was used to encode the

input states (with F = 100). The epochs were 2000ms long, and the rewards were

attenuated with a time constant of 10ms. The reward profile and average output

spike rates are shown in Figures 5.10 and 5.9.
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Figure 5.10: Reward profile for the XOR task with attenuated rewards

It could be seen that the network has handled the spatial credit assignment

problem very well, and that the response rates are now more stable than before,

because the attenuation of the rewards prevent changing the strengths of the synapses

once they have learnt a particular mapping well.

5.5 Fitness Proportionate Response Selection

This concerns the response selection part of the network model. The rate of firing

of the output neurons of the network represents the strength of the response. For

tasks with multiple, equally probable response expectations from which one has to be

picked, fitness proportionate selection or the Roulette Wheel selection [32] was used

to select a response in tasks where only one action was required to be selected. The

softmax function (Equation 5.4) was used to normalize the output rates before the

selection. If Ok(t) represents the number of spikes at the output neuron k during

an epoch, then the softmax normalization happens according to equation 5.4. The

normalized rate of all the output neurons ˙Ok(t) is then used with the Roulette Wheel
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selection to pick one winning neuron, based on the the fitness value represented by

˙Ok(t). This approach improves exploration in the network because there is a finite

probability that every action in the set of actions applicable to the input case will

be selected.

˙Ok(t) =
eOk(t)∑
eOk(t)

(5.4)

For simpler cases, where only one action is expected to be reinforced very strongly,

the output neuron with the maximum number of spikes during an epoch could be

selected as shown in equation 5.5. Here Ok(t) represents the array of Ok(t) for

k = 1..No.

winning neuron = argmax(O(t)) (5.5)

Fitness proportionate selection works here too, but is computationally a bit more

expensive. Also, if one action is always reinforced stronger, then the probability of

the other actions being selected becomes zero here, thus leading to less exploration.

However, for simpler tasks involving 2-3 actions, this method is simpler and viable.

5.6 Summary

The learning rules with all the proposed enhancements are summarized here. If

wij is the strength of the synapse between a post-synaptic neuron i and the pre-

synaptic neuron j, then local synaptic plasticity happens according to the rules in

equations 5.6-5.10.

49



dwij

dt
= γ(R(t)− ES(t))Zij(t)Θ(t) (5.6)

τz
dZij(t)

dt
= −Zij(t) + P+

ij (t)fi(t) + P−ij (t)fj(t) (5.7)

P+
ij (t) = P+

ij (t− δt)e−δt/τ+ +A+fj(t) (5.8)

P−ij (t) = P−ij (t− δt)e−δt/τ− +A−fi(t) (5.9)

ES(t) = ES(t) +
R(t)− ES(t)

τS
(5.10)

Θ(t) =


Ok(t), :for output-hidden synapses∑No

k=1wkjOk(t), :for hidden-input synapses

R(t) is the reward signal, and Es(t) is the actual attenuated reward correspond-

ing to state S, that is delivered to the network. τs is the decay time constant for the

rewards. This is usually set to 500 ms for instantaneous rewarding schemes. Zij(t)

is the eligibility trace computed by tracking the occurrences of post and pre-synaptic

spikes. f(t) = 1 represents a spiking event, it is 0 for no spike during time t.

τ+ = τ− = 20 ms is the decay constant for these tracking signals. τz is the time

constant for the eligibility trace, which is set to 20 ms.

Θ(t) is the feedback signal that is propagated from the response selection stage

(output layer) to the input layer, through the hidden layers. This signal is computed

as given in the equations, where Ok represents the number of spikes at the output

neuron k during an epoch and wkj denotes the synaptic strength of the non-plastic

feedback synapse between output neuron k and the hidden neuron j. The time step

δ(t) of simulation is usually set to 1 ms.
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6. EXPERIMENTAL TASKS AND RESULTS

The effectiveness of the proposed methodology was studied using several exper-

iments, involving both a single learning agent and multiple agents in a cooperative

environment. The experiments involved both instantaneous and delayed rewarding

schemes for reinforcements. The tasks, except for the XOR task, were picked to

be game-playing or control problems involving interactions with the environment

and/or other agents. These problems, as mentioned before, are better suited for

reinforcement learning, since they involve a lot of interaction, and there are no easily

programmable solutions to these tasks.

6.1 Bot Walking Task

The objective of this task is to apply the enhanced DA-STDP technique, as a

control algorithm, to make a two-legged bot (Figure. 6.1a) always move forward.

This is a single-agent task. Earlier implementations have involved Q-learning in

a non-spiking environment [33] to accomplish this. The task involves creating a

suitable network and a reward strategy for the agent to learn to walk forward. To

make the task simple, balance and other dynamics are ignored. Only the two legs of

the agent are the motor areas that will be controlled by the network. There are four

possible motor actions for each leg - [back-up, back-down, front-up and front-down].

Since each leg can be controlled independently, there are a total of 16 possible states

that the agent can be in. Actions 0,1,2 and 3 toggle the state of one control each, as

given in Table. 6.1b. For example, if the right leg of the bot is up, action 0 toggles

this state and brings the leg down.
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(a) A two-legged agent

Action Control

0 Right leg up/down

1 Right leg back/forward

2 Left leg up/down

3 Left leg back/forward

(b) Action space

Figure 6.1: The walking task: Agent model and action space

6.1.1 Task and Network Design

A network of LIF neurons, composed of three layers, was used to model the bot.

There were 160 neurons in the hidden layer, 160 neurons in the input layer (16 input

groups) and 4 output neurons to select one of the four actions per state. Each con-

figuration of the bot was assigned a number, which represents the value of the state

corresponding to that configuration. The state transition matrix, which determines

the next state of the agent, given the current state and the performed action is pro-

vided in Table. 6.2a. A reward matrix (Table. 6.2b) was created from the actual

movie sequence that corresponds to the bot walking forward. Rewards are set for a

next state that immediately follows the current state in the movie sequence. Back-

ward state transitions are manually given a negative reward to negatively reinforce

those transitions.
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St A0 A1 A2 A3

0 1 3 4 12

1 0 2 5 13

2 3 1 6 14

3 2 0 7 15

4 5 7 0 8

5 4 6 1 9

6 7 5 2 10

7 6 4 3 11

8 9 11 12 4

9 8 10 13 5

10 11 9 14 6

11 10 8 15 7

12 13 15 8 0

13 12 14 9 1

14 15 13 10 2

15 14 12 11 3

(a) State transition matrix for

the walking task

St A0 A1 A2 A3

0 0 -1 0 -1

1 0 0 -1 -1

2 0 0 -1 -1

3 0 -1 0 -1

4 -1 -1 0 0

5 0 -1 0 -1

6 0 -1 0 -1

7 -1 2 0 0

8 -1 -1 0 0

9 0 -1 0 -1

10 0 -1 0 -1

11 -1 2 0 0

12 0 -1 0 -1

13 0 0 -1 2

14 0 0 -1 2

15 0 -1 0 -1

(b) Reward matrix for the walk-

ing task

Figure 6.2: State transition and reward lookup for the walking task

The initial state was picked at random, and the state values were encoded in

binary. These binary values were converted to spikes via the balanced pair encoding

scheme that was discussed, with the Poisson spiking rate set to 100 Hz. For every
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action chosen by the agent, the reward and the next state was chosen by the en-

vironment according to the state transition matrix (agent-internal) and the reward

lookup (environment) matrices. These are explicit models in this task. Rewarding

was instantaneous; for every spike at the output corresponding to a rewarded action,

the network was rewarded, otherwise punished according to the reward matrix. Each

state was assigned an attenuation time constant of 500ms, and the rewards for these

states were attenuated accordingly. The learning episode lasted for 20 epochs, with

each epoch lasting for 500ms.

6.1.2 Results

Rewards earned by the agent for making actions when its current state was 2

is shown, for instance, in Figure. 6.3. The final sequence of states resulting from

the learning is shown in Figure. 6.4. This sequence, when animated, corresponds

to the forward walking of the agent, which validates the learning effectiveness of

the proposed method a moderately simple task. The agent was able to always walk

forward while avoiding backward steps in less than 20 epochs.
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Figure 6.3: Reward profile for state 2
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Figure 6.4: Converged state sequence

6.2 The Iterated Prisoners’ Dilemma

The iterated prisoners’ dilemma (IPD) is a symmetric, general-sum game between

two agents. The reward structure (Table. 6.1) is such that both the agents will

have to play greedy and for the team’s benefit at the same time. This contradictory

behavior requirement, demonstrating cooperative intelligence of a multi-agent system

makes this interaction interesting to study [34].

Table 6.1: Reward payoff structure

Action Cooperate(C) Defect(D)

Cooperate(C) (4,4) (-3,5)

Defect(D) (5,-3) (-2,-2)

The premise is that two prisoners commit a crime together, and are questioned

separately. Each of these prisoners can choose to either cooperate (C) or defect (D)

at each timestep. The reward structure (Table. 6.1) clearly shows that from an
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individual agent’s perspective, irrespective of the other agent’s decision, defecting

maximizes its reward. However, during the interplay of exploration and exploitation

the agents learn that mutual cooperation maximizes the reward of the system as

a whole. No prisoner can improve his chances of getting rewarded by changing his

strategy, and mutual cooperation is the only Nash equilibrium of this game [35]. The

iterated version of this interaction involves making the agents play multiple times.

During these iterations the agents learn the what actions make the game’s outcome

rewardable, and how their independent actions affect the system.

6.2.1 Task and Network Design

A partially recurrent network is implemented to model the system with two play-

ers or agents (Figure 6.5). Each agent was modeled using a 3-layered network of

LIF neurons. The common input layer consisted of 4 groups of neurons with 20

neurons in each. The inputs to this layer encode the decisions of the two agents

in the previous iteration. The hidden layer in each agent consists of 80 neurons,

and is fully-connected to the input layer. That is, each neuron in the input layer is

connected to all neurons in the hidden layer. The output layer in each agent consists

of two neurons, one for each decision (C,D) which are fed back to the input layer.

The hidden and the output layers are sparsely connected. Between any neuron in

the output layer and any neuron in the hidden layer, the probability of connection

is 0.5. The reward policy shown in Table. 6.1 models the interaction between the

agents and the environment, and the output feedback represents the agent-agent in-

teraction. This task involved delayed rewards, as the rewards and punishments are

delivered to the agents after the end of each epoch, whose length was 500 ms.

The initial input responses fed to the network were random. After the end of

an epoch, if say, the response of agent 1 was C and that of agent 2 was D, then a
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Figure 6.5: Network design for the IPD task

reward of -3 was delivered to agent 1, and a reward of +5 was delivered to agent 2

throughout the next epoch. The cooperative system of twp agents was trained for

100 epochs.

6.2.2 Results

The system converged in about 40 epochs. Both the agents chose mutual cooper-

ation (C,C) consistently which is the nash equilibrium state required for the system

to maximize its reward. The average reward and strength profiles for 100 iterations

are shown in Figures 6.6 and 6.7. Response strength is the difference between the

number of spikes at the deciding output neuron and the other output neuron, at the

end of an epoch.
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Figure 6.6: Response strength profile for the IPD task
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Figure 6.7: Accumulated reward profile for the IPD task

The strength-weighted reward profile (Eqn. 6.1) of both the agents are plotted

in Figure. 6.8. This is computed by weighing the rewards and the punishments of

the output neurons by the strength of their responses (number of spikes at the end
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of the epoch).

Rs(t) = R(t)Nt +Rc(t)N c
t (6.1)

R(t) is the reward signal, Nt is number of spikes at the expected output neuron,

Rc(t) is punishment for the wrong output neuron and N c
t is number of spikes at the

wrong output neuron. The profiles show that the system of two agents cooperated

while maximizing the reward delivered to the combined system as a whole.
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Figure 6.8: Strength-weighted reward for the IPD task

6.3 Multi-agent Distributed Sensor Network

This task is one of the NIPS 2005 multi-agent reinforcement learning benchmarks

[36]. It is a sequential decision making variant of the distributed constraint optimiza-

tion problem described in [37]. A sensor network composed of two arrays of sensors

parallel to each other enclosing cells within them is shown in Figure. 6.9. Every cell

is enclosed by exactly 4 sensors. There are N targets within the network, only one of
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which can occupy a cell at any instant. The targets move randomly to a neighboring

cell or remain in their current cell with equal probability.

Figure 6.9: A sensor network configuration with 8 sensors

Each sensor can perform three actions - track a target in its left cell (action 1),

track a target in its right cell (action 2) or do not track (action 3). Every tracking

action is associated with a cost. There is no cost for performing action 3 (no tracking).

Every target t has an initial energy Eti = 3. When a target is tracked by 3 or more

sensors at a time, then it is said to have been hit, which leads to a decrease of the

said target’s energy level by 1. A target is captured by the system when its energy

level becomes 0, at which point the target vanishes from the system. The goal of

this distributed system is to capture all the targets as soon as possible. The ideal

(quickest) number of steps to capturing all the targets is 3.

6.3.1 Task Complexity and Network Design

The details of this task, its complexity and state space are listed in Table. 6.2.

The task involved a configuration of the sensor network with 8 sensors and N = 2

targets. Each of the eight sensors was modeled as an independent agent with 12 input
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Figure 6.10: Interaction relationship graph for the sensors

neuron groups of 30 neurons each (LIF), 3 output neurons and 30 hidden neurons.

Thus, in total, the system had 360 output neurons, 720 hidden neurons and 24 output

neurons. The state of the system, which represented the position and energy of the

targets, was encoded as a vector of energy values Et. For example, the state [3,2,0]

represented a target with energy 3 at cell 1, and another target with energy 2 at cell

2. The encoding of the state was done over the 12 inputs. Each cell was assigned 4

input neurons, and the energy level i was assigned the ith position in the 4-input ar-

ray. For example, state [3,2,0] was encoded as [0,0,0,100][0,0,100,0][100,0,0,0], where

100 represented the firing rate of that neuron. At the output, fitness-proportionate

selection was used to decode the action response based on the number of spikes at

each output neuron, at the end of each epoch.

Rewards to the sensors could be instantaneous or delayed. In the case of instan-

taneous rewarding, for each tracking action, the network was negatively rewarded

(reward = -1). And, for each cooperative action that led to a hit of a target (result-

ing from 3 or more sensors tracking it), each of the participating sensors was given

a reward of +5. In the case of delayed rewarding, the hit reward and tracking costs

were delivered to the networks in the following epoch (with a delay of 500ms).

The sensors could either explicitly interact with the other neighboring sensors as
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Table 6.2: DSN task complexity for 8 sensors and 2 targets

States space cardinality 37
Combined action space cardinality 6561
Initial states [3,3,0],[3,0,3] or [0,3,3]
Terminal State [0,0,0]
Tracking cost -1
Hit reward (for each responsible sensor) +5

shown in the graph in Figure. 6.10, or implicitly only with the environment. The

explicit interaction graph in Figure. 6.10 shows that each sensor could interact with

5 of its neighbors, which influence the hit of the targets in the cells enclosed by them.

However, this configuration makes the system much more complex than the one with

implicit interaction. Thus, this task was modeled to have interactions only between

an individual agent and the environment.

6.3.2 Results

The system converged in about 15 epochs. The ideal number of iterations for the

network to reach the terminal state is 3. The multi-agent network that learned to

lock the targets using the proposed reinforcement scheme was able to converge to 6

and 4 steps to the terminal state for the instantaneous and delayed reward policies

respectively. The profile of the number of steps required to reach the terminal state,

over the epochs, is shown in Figure. 6.11. This result is comparable to the results

from the non-spiking implementation of the distributed sensor network discussed in

[38], which converged to nearly 7 steps for reaching episode termination where all

the targets disappear from the network cells.
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7. CONCLUSIONS

This thesis aimed to provide an overview of reinforcement learning in spiking

neural networks, enumerate and explain theoretical challenges in existing techniques,

provide solutions to handle those challenges, and evaluate them in psuedo-realistic

interactive environments.

7.1 Summary of Contributions

A reinforcement learning mechanism that includes various improvements over

the existing Dopamine-modulated STDP (DA-STDP) techniques [25][26], to handle

the spatial credit assignment problem and response numbness problem is presented.

These improvements are inspired from biological elements as well as existing tech-

niques in non-spiking neural networks. Attentional feedback from the output layer to

the earlier layers in the network is seen to improve the spatial credit assignment dur-

ing learning, by gating the synaptic updates of those synapses that are not involved

in the decisive actions at the output. This makes learning attentive or goal-oriented.

Attenuated rewards that decay with time help improve the chances of exploration of

the learning agent, and also solve the response atrophy problem. The balanced-pair

binary encoding scheme, and the techniques involved in response selection are also

part of the proposals in this work.

The proposed improvements have been evaluated for single-agent learning tasks

like the Exclusive OR function reproduction and the walking task, and multi-agent

cooperative learning tasks like the iterated prisoner’s dilemma and the distributed

Sensor-Network task. These involved different configurations like instantaneous re-

ward and delayed reward polcies, cooperative and independent action based learning

etc. These experiments and their results validate the improvements proposed with
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the techniques discussed in this work.

7.2 Future Directions and Perspectives

A basic reinforcement learning framework with features that make it applicable

for pseudo-realistic tasks has been developed. Additional studies are needed to opti-

mize the implementations for tasks, and also to maximize efficiency and performance.

7.2.1 Network Size Optimization

In this study, the network size for the XOR task was referred from the experiments

in [26]. This has not proven to be optimal, or minimal. However, considering the

XOR network to be a fundamental computational unit, the network was scaled for

other tasks depending on the complexity. For example, the number of neurons in

the input layer of the XOR network was 20 per input variable. So if a task requires

N input variables, then the network was scaled to have 20N neurons at the input

layer. The number of neurons in the hidden layer is kept the same as in the input

layer. If M different outputs can be expected from the network, the network had

M output neurons, one for each response.

Studies have to be conducted to optimize the size of the layers, depending on the

task. Though, the more complex a network is, the more complex patterns it could

store, the network has to still be optimized to avoid computational complexity and

processing delay. Several directions could be taken to handle this.

1. Dynamic scaling - The network could be initialized with a minimal size, and

be scaled by adding layers or neurons to the layers during training. Algorithms

like Cascade Correlation allow this type of dynamic network scaling [39]. A

suitable algorithm to scale the network based on the amount of punishments

that the learning agent receives over time, could be created to achieve this.
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2. Experimental evaluation - This method involves making several experi-

ments on a basic task like the XOR function reproduction, and identifying the

number of layers and neurons that optimize the performance of the network,

in terms of the maximum reward acheived and the strength of the response.

This could be used as a unit network, and be scaled for more complex tasks,

depending on the number of inputs and outputs.

3. Analytical approach - The learning rules could be analyzed mathematically,

and the network size that would theroretically maximize performance could be

computed. A similar approach has been made in [40] to determine an optimal

size for the backpropagation learning.

7.2.2 Reward Attenuation

The reward attenuation mechanism in this study involved attenuating them based

on the difference between the actual and the expected reward. A suitable time

constant has to be hand-picked before the experiment, by estimating the time that

the agent would take to sufficiently learn the task. This mechanism is to ensure that

the weights of the synapses do not get saturated, during learning, due to continued

supression from negative rewards. By decreasing the rewards during an epoch or

episode, the weights could be prevented from saturation. However, this approach

does not guarantee that the saturation would not happen.

The learning rules could be altered to keep the balance between exploration and

exploitation a constant, thereby making the network always explore to some extent.

This would guarantee that there is always room for exploration, which means that any

single response could not be supressed forever. The fitness-proportionate response

selection mechanism is one example of realizing this, because it selects response

based on firing rate probabilistically. Since the probability of zero spikes happening
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at any neuron consistently is very less, this approach definitely improves exploration.

Otherwise, random noise could be fed to the network, that is different from the input

spikes, which would keep this probability of zero spikes at the output neurons even

less.
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APPENDIX A

IZHIKEVICH MODEL VS LIF MODEL

An experiment to evaluate and compare the performances of Izhikevich neurons

and LIF neurons in the context of the proposed methodologies was performed. The

task was to functionally reproduce the Exclusive OR behavior. The network em-

ployed consisted of 80 neurons in the hidden layer, and 80 neurons in the input layer.

100 Hz poisson spike inputs were fed into the network using the balanced-pair binary

rate encoding. The simulation was run for 200 epochs runtime (simulation time: 100

seconds at 500ms per epoch). The run-times of the simulation are listed in Table.

A.1. Details of simulation environment are provided by Table. A.2.

Table A.1: Run times: Izhikevich vs LIF

Model Simulation runtime

Izhikevich (a=0.02/ms, b=0.2/ms) 23.975 minutes
LIF (τ = 20ms) 17.476 minutes

Table A.2: Simulation environment

Processor Intel XEON 3.2GHz 2MB L2/L3 Cache
Cores 8
Operating System Ubuntu 14.04.2 LTS
Language Python 2.7
Framework Brian 1.0 (Spiking Neural Network Library)
Multi/Parallel Processing No
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Figure A.1: Reward profile comparison
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Figure A.2: Response strength profile comparison

The reward profiles with LIF and Izhikeivch neurons are compared in Figure.

A.1, and the strength of response exhibited by the networks is compared in Figure.

A.2. According to the results, the leaky integrate-and-fire neurons exhibit better
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response and performance while being computationally less intensive as well, though

not by much compared to Izhikevich, which makes both the models suitable for

implementation with the proposed reinforcement learning methodology.
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