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ABSTRACT 

This dissertation analyzes the yield, economic and societal implications of decadal 

climate variability (DCV) information in the Missouri River basin and policy regulations 

on the Chesapeake Bay blue crab fishery. The analysis is conducted within three main 

essays. The first essay investigates the effects of DCV on crop yields of 8 major crops in 

the Missouri River Basin (MRB). The study uses hierarchical models within a Bayesian 

framework to examine heterogeneity in DCV effects across counties, which prevents 

extreme estimates for counties with a small number of observations. The results show 

that DCV does alter crop yields on a geographically specific basis and suggest that 

adaptation is possible by altering crop mix. 

The second essay evaluates economic value and management adaptations associated 

with DCV information again in the Missouri River Basin. Three types of information 

cases are investigated: perfect, conditional, and naïve information. The study employs a 

stochastic programming model applied across all the counties in the MRB region. That 

model simulates crop mix, market activity, and welfare changes under different DCV 

information. The results show that the conditional DCV information generates a net 

benefit of $28.83 million annually, while the perfect information results in a gain of 

$82.29 million. We also find adaptations in terms of crop mix and irrigation extent that 

vary across DCV information. 

In the third essay, an integrated bioeconomic model is built to evaluate alternative 

fishery policies for the Chesapeake Bay blue crab fishery. This model combines an 
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economic demand model with a biological individual-based simulation model and a 

biological stock assessment model. The model is used to investigate the marginal 

impacts of crab harvest size, sex, and season regulations in a Monte Carlo setting. We 

then summarize the results using regression methods, yielding estimates of the marginal 

effect of alterations in regulation features. The results indicate that a short and 

temporarily closed female fishing season and a long male fishing season increase 

sustainable yield and revenue. For size limits, we find increases in minimum limits for 

males, females, peelers and soft-shell crabs increase sustainable catch and revenue, 

while imposing a larger maximum limit on mature female crabs increases sustainable 

revenue. 
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1 INTRODUCTION 

In a broad sense, ecosystem production is affected by environmental and natural 

resource conditions plus policy and information. For instance, ecosystem support of crop 

growth is greatly influenced by climate conditions and is vulnerable to climate 

variability, which in turn impacts societal welfare through agricultural market 

fluctuations (Mendelsohn, Nordhaus, and Shaw 1994; Chen and McCarl 2000; 

Schlenker, Hanemann, and Fisher 2006). For ecosystem support of fish harvest, fisheries 

throughout the world have experienced overexploitation for decades (Botsford, Castilla, 

and Peterson 1997; Jackson et al. 2001; FAO 2009), mainly due to ambiguous property 

rights (Gordon 1954; Scott 1955; Clark 1973). Given vulnerability and scarcity, society 

can improve the general ecosystem production through the distribution of climate 

information related to crop growing or through means such as direct fishery regulations. 

The broad objective of dissertation is to investigate the economic implications of 

societal policies regarding climate information provision to the agricultural sector and 

fishery harvest. This is done within three essays addressing two specific settings: 

cropping under information on decadal climate variability (DCV) in the Missouri River 

Basin and the Chesapeake Bay blue crab fishery under regulations. 

The first two essays address the effects of DCV information on agriculture. DCV is 

a title for a set of natural sea surface temperature anomalies that alter continental climate 

patterns for an extended time period (Mehta 1998; Mantua and Hare 2002; Wang and 

Mehta 2008; McCabe et al. 2008). These DCV phenomena have been found to affect 
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agricultural productivity in crop simulation studies (Mehta, Rosenberg, and Mendoza 

2012). The first essay herein reports on a statistical study of the crop yield effects of 

DCV phase combinations in the Missouri River Basin (MRB) using observed crop yield 

and climate data. Furthermore, given knowledge of future DCV phases and the 

associated crop yield effects, farmers may react by changing crop mix and irrigation 

patterns, which could enhance their income and production. The second essay in Section 

3 reports on a study of the economic value of informing farmers about DCV phases and 

corresponding yield effects plus examines management adaptations associated with 

different DCV information. 

The third essay in Section 4 examines policy regulations within the Chesapeake Bay 

blue crab fishery. The stocks of blue crab in the Chesapeake Bay have declined in recent 

decades, to a large extent, due to overexploitation (Lipcius and Stockhausen 2002; 

Aguilar et al. 2008; Miller et al. 2011). To reverse the decline, management agencies 

have implemented numerous regulations since 2001, including season closures and size 

limits. This essay examines the biological and economic outcomes associated with 

alternative regulations. The results summarize the marginal effects of altering such 

regulations. 
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2 ESTIMATING DECADAL CLIMATE VARIABILITY IMPACTS ON CROP 

YIELDS: A HIERARCHICAL BAYESIAN APPROACH 

2.1 Introduction 

Crop growth relies heavily on climate and many empirical studies have found 

significant climate effects on crop yields (Mendelsohn, Nordhaus, and Shaw 1994; Chen 

and McCarl 2000; Chen, McCarl, and Schimmelpfennig 2004; Schlenker, Hanemann, 

and Fisher 2006; McCarl, Villavicencio, and Wu 2008; Schlenker and Roberts 2009; Yu 

and Babcock 2010; Tack, Harri, and Coble 2012). These studies have addressed both 

climate change and the effects of short term ocean phenomena such as El Niño Southern 

Oscillation (ENSO). This essay studies the crop yield effects of decadal climate 

variability (DCV), which is a set of long term ocean phenomena. 

Ocean-related climate variability involves natural phenomena occurring in various 

ocean regions that results in systematic alterations in climate patterns over land. The 

climate impacts of such phenomena include temperature, precipitation, drought, and 

other extreme events. The ENSO and the North Atlantic Oscillation (NAO) are well-

known ocean phenomena, and their climatic and societal impacts have been widely 

studied (Adams et al. 1995; Solow et al. 1998; Torrence and Webster 1999; Chen et al. 

2005; Kim and McCarl 2005). 

In addition to the ENSO and NAO, another category of ocean-related climate 

variability is called decadal climate variability, which lasts a longer period of time 

(Mehta, Rosenberg, and Mendoza 2011). More and more evidence shows that climate 
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anomalies and variations are associated with such DCV phenomena (McCabe, Palecki, 

and Betancourt 2004; McCabe et al. 2008; Mehta, Rosenberg, and Mendoza 2011). 

Several DCV phenomena have been the subject of climate studies: the Pacific Decadal 

Oscillation (PDO) (Mantua et al. 1997; Mantua and Hare 2002), the Tropical Atlantic 

Gradient (TAG) (Mehta 1998; Rajagopalan, Kushnir, and Tourre 1998), and the West 

Pacific Warm Pool (WPWP) (Wang and Mehta 2008). 

Since the DCV phenomena impact climate conditions, they may also impact 

agricultural productivity. Mehta, Rosenberg, and Mendoza (2011) reveal that the three 

DCV phenomena, PDO, TAG, and WPWP, significantly influence water yields in the 

Missouri River Basin (MRB). Their follow-up simulation study (2012) further suggests 

that crop yields in this area are widely impacted mainly due to precipitation variations; 

with the effects varying across locations. 

In this section, we examine the effects of DCV phenomena on crop yields on a 

regionally specific basis using observed crop yield and climate data in county level. The 

DCV effects in this study are decomposed into two parts: indirect and direct effects. The 

former depicts the DCV effects on climate and in turn on crop yields. The later part 

describes the indirect effects that are unobserved or effects exerted on crops directly. 

Although unobserved indirect effects are incorporated in the later part, we use the term 

“direct effects” as they are directly estimated from the crop yield equation in our model. 

The essential questions addressed in this section are: “Can we observe the effect of 

DCV phenomena on crop yields using historical data?” and “How does this effect vary 

across locations?” To do this, we will use the hierarchical linear mixed effects model 
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introduced by Laird and Ware (1982). Although DCV is a set of global ocean-related 

phenomena, their effects on climate and crop yields may display spatial heterogeneity. 

Under a specific state of DCV phase combination, climate conditions across locations 

may respond differently due to varying longitude, latitude, altitude, and topography; 

crop yields in turn may show disparity owing to location-varying climate conditions as 

well as capacity managing climate. Hence, the estimation model should capture 

heterogeneous DCV effects across locations. 

A key assumption in the hierarchical linear mixed effects model involves the form 

of the probability distributions that are assumed to represent variation. Here, we will 

assume a flexible distribution that allows skewness to be estimated in the crop yield 

equation, since many studies show crop yield distributions can be asymmetric (Ramirez, 

Misra, and Field 2003; Sherrick et al. 2004; Hennessy 2009; Tack, Harri, and Coble 

2012). In particular, we employ a skew-normal distribution as proposed by Sahu, Dey, 

and Branco (2003). 

To estimate the model, we will use a Bayesian approach for the following reasons 

(Layton and Levine 2003; Leon-Gonzalez and Scarpa 2008; Balcombe, Chalak, and 

Fraser 2009; Balcombe, Burton, and Rigby 2011). First, the Bayesian approach allows 

us to obtain parameters that vary by county. Second, the Bayesian approach can yield 

good estimation results with small number of data observations. Third, Bayesian 

methods provide more information to make inferences. Finally, Bayesian estimates 

asymptotically converge to maximum likelihood estimates. 
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2.2 Background on DCV Phenomena and Phase Combinations 

There are multiple ocean-related DCV phenomena that occur in various ocean 

locations. Those examined in this dissertation include: the Pacific Decadal Oscillation 

(PDO), the Tropical Atlantic Gradient (TAG), and the West Pacific Warm Pool 

(WPWP). Each phenomenon is classified as exhibiting either a positive (+) or a negative 

(−) phase as determined by sea surface temperatures (SST). Hence, there are 8 total 

possible combinations of the positive and negative phases across the three phenomena. 

Each DCV phenomenon will be discussed below. 

2.2.1 Pacific Decadal Oscillation 

The PDO is a pattern of climate variability defined by SST conditions in the North 

Pacific (Mantua et al. 1997; Mantua and Hare 2002). The duration of a PDO phrase 

could be as long as 20 to 30 years (Deser, Phillips, and Hurrell 2004; Lee, Yamashita, 

and Mishima 2012). Although the mechanisms causing PDO remain unknown, there is 

evidence that PDO variation has had substantial impacts on climate in North America 

and the Pacific Rim, coinciding with periods of prolonged dryness and wetness (Miller 

and Schneider 2000; Mantua and Hare 2002). This in turn can result in significant 

impacts on agricultural productivity. 

2.2.2 Tropical Atlantic Gradient 

The TAG is a phenomenon with a time scale of up to 12 or 13 years that is 

characterized by SST conditions in the tropical areas of the Atlantic Ocean 
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(Rajagopalan, Kushnir, and Tourre 1998). In addition to SST conditions, the spatial 

gradients of SST variability are also important in determining TAG climate effects 

(Knutson and Manabe 1995). TAG conditions have been found to be associated with 

significant anomalies in atmospheric conditions and surface climate, such as winds in the 

lower troposphere, intense hurricanes, severe drought in the Sahel in Africa, and 

abundant rainfall in a wide area of the U.S. (Good, Lowe, and Rowell 2009; Murphy et 

al. 2010). Evidence shows that climate fluctuations due to TAG exert major impacts on 

agricultural production in northeast Brazil, the Sahel, and some other regions (Rowell et 

al. 1995; Sutton and Hodson 2005). 

2.2.3 West Pacific Warm Pool 

The WPWP refers to ocean conditions in the region located in the western tropical 

Pacific, an area that contains some of the warmest water in the open oceans (Webster 

and Lukas 1992; Picaut et al. 1996). The water in this area has a SST consistently higher 

than 28°C, approximately two to five degrees warmer than that of other equatorial 

waters (Yan et al. 1992; Wang and Mehta 2008). The WPWP conditions alter water 

salinity and ocean-atmosphere heat flux (Lukas and Lindstrom 1991; Huang and Mehta 

2004). Some studies have revealed interactions between the WPWP and other climate 

variability phenomena, such as the PDO, and the Atlantic Multidecadal Oscillation 

(AMO) (Clarke, Wang, and Van Gorder 2000; Solomon and Jin 2005). The WPWP 

influences atmospheric circulation globally and affects atmospheric freshwater (Picaut et 

al. 1996). Wang and Mehta (2008) indicate that there is close relationship between the 
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WPWP variability and persistent rainfall anomalies in the U.S., which impacts U.S. 

water resources and agriculture. 

2.2.4 DCV Phase Combinations 

The three DCV phenomena, each with two phases, together constitute 8 mutually 

exclusive joint phase combinations. In this fashion, each year is characterized by a DCV 

phase combination. For example, in 1977, the positive PDO, the negative TAG, and the 

negative WPWP make the year fit in the phase combination category: PDO+ TAG− 

WPWP−. Mehta, Rosenberg, and Mendoza (2011) stress that climate variations such as 

drought or flood events are jointly caused by combinations of multiple DCV phenomena 

instead of a single one. 

The DCV phase combinations for the years from 1950 to 2010 are shown in Table 

2-1. Considering the frequency of each DCV phase combination occurring in those 

years, we construct a frequency-based probability distribution. The results are also 

presented in Table 2-1. These probabilities will be used to calculate expected crop 

yields. 

2.3 Background on the Missouri River Basin 

The study area for the empirical work is the Missouri River Basin. The MRB is the 

largest river basin in the U.S., partially or fully covering the states of Colorado, Iowa, 

Kansas, Minnesota, Missouri, Montana, Nebraska, North Dakota, South Dakota, and 

Wyoming. The MRB is also one of the major crop and livestock producing regions in  
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Table 2-1: The years from 1950 to 2010 associated the DCV phase combinations and the 

frequency-based probability distribution 

PDO TAG WPWP Year Probability 

+ − − 1977, 1984, 1985, 1986, 1993 0.082 

− + − 1955, 1966, 1967, 2001 0.049 

− − + 1959, 1963, 1968, 1973, 1999, 2000, 2009 0.115 

+ + − 1976, 1978, 1979, 1980, 1982, 1983, 1987, 1992, 1997, 2006 0.164 

+ − + 1988, 1995, 1996, 2002, 2003 0.082 

− + + 
1950, 1951, 1952, 1953, 1954, 1956, 1961, 1962, 1964, 2007, 

1969, 1970, 1990, 2010 
0.246 

+ + + 1957, 1958, 1960, 1981, 1998, 2004, 2005 0.115 

− − − 1965, 1971, 1972, 1974, 1975, 1989, 1991, 1994, 2008 0.148 

Source: Fernandez (2013).  

 

the U.S., producing approximately 46% of the U.S. total wheat, 22% of the grain corn, 

and 34% of the cattle (Mehta, Rosenberg, and Mendoza 2012). 

Agriculture in the MRB region is vulnerable to climate variation, since almost 90% 

of the crops are planted under dryland practices. The decadal SST variability in the 

Pacific and the Atlantic is associated with major droughts in the Great Plains (McCabe, 

Palecki, and Betancourt 2004; Nigam, Guan, and Ruiz‐Barradas 2011). Specifically in 

the MRB, precipitation and surface air temperature variability have been found to be 

highly correlated with the PDO, TAG, and WPWP phases (Cayan et al. 1998; Mehta, 

Rosenberg, and Mendoza 2011). Hence, given the importance of agriculture and its 

vulnerability to DCV, it is worth attention to studying the physical impacts of DCV on 

major crops in the MRB region. 
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2.4 Model Specification and Implementation 

The empirical goal of this paper is to estimate the effect of the DCV phenomena on 

agricultural crop yields in the MRB. We estimate the DCV effect on yield by county, 

which consists of both direct and indirect impacts. As we develop in the next sections, 

there are several sets of parameters in different equations that need to be estimated. 

2.4.1 The Conceptual Model 

First, the DCV phenomena have an impact on regional climate such as precipitation 

and temperature, which in turn affect crop yields. We categorize these effects as indirect 

effects. Moreover, DCV may impact or influence crop yields via other factors that are 

unobserved. For example, in addition to precipitation and temperature variability, DCV 

is correlated with winds, storm incidence, air circulation, and pest distributions. 

However, it is difficult to explicitly include data that represent many possible climate 

effects in the model herein. Thus, we will estimate such yield impacts with direct DCV 

variables to reflect many omitted climate and other effects and will call this the “direct 

effects”, since they are directly estimated in a crop yield equation. 

In particular, we will look at yields of the 8 major dryland crops grown in the MRB: 

barley, corn, alfalfa hay, oats, sorghum, soybeans, spring wheat, and winter wheat. We 

will use climate variables of monthly mean temperature, total precipitation, count of 

number of days with maximum temperature greater than or equal to 90°F, count of 

number of days with precipitation greater than or equal to one inch in the summer 
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growing season, and number of days with minimum temperature less than or equal to 

0°F over the winter growing season. 

The standard approach for modeling both direct and indirect effects involves two 

levels of equations (Baron and Kenny 1986). We adapt that approach and apply it to 

studying direct and indirect DCV effects on crop yields. First, we will estimate the 

effects of DCV on several climate conditions (equation (2.1) below). Second, we will 

estimate the effects of DCV on crop yields both including direct DCV effects and the 

indirect effects factoring in the climate conditions (equation (2.2) below). 

The general forms of the estimating equations are: 

(2.1)  ; ,    1, , , ,kk

k kg k K  w TD θ  

(2.2)  , ;, ,Y Yf Ty D W θ  

where kw  is the k th
 climate variable in W  such that  1, , kW w w , 1, ,k K . kg  

is the function describing the mean of the k th
 climate variable, in which D  represents 

dummy variables identifying the DCV phase combinations and T  is a time trend 

variable. f  depicts the mean of crop yield, y , which is a function of the DCV variables 

D , the full set of climate variables W , and the time trend variable T . D  appears in both 

the climate equation (2.1) and the crop yield equation (2.2), implying that the DCV 

phase combinations affect both climate and crop yields. k  and Y  are the error terms in 

the two sets of equations. 
kθ  and 

Y
θ  are the parameters estimated in the models, 

respectively. The above system of equations is applied to different crops individually. 
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In the above yield equation (2.2), we assume the explanatory variables are 

exogenous such that D , W , and T  are uncorrelated with the error term Y . This 

assumption implies that farmers do not make cropping decisions (i.e., fertilizer use, crop 

mix, and pesticide use) that affect crop yields in response to DCV phases and associated 

climate conditions. This assumption is appropriate, to some extent, since DCV 

phenomena and their impacts on crops were not widely distributed to farmers during the 

period covered in the data set we use, and even nowadays the information regarding 

DCV impacts on crop yields is still limited. 

We also assume that the error terms and parameters in the system of equations are 

pairwise uncorrelated, which is exploitable in solving a recursive system of simultaneous 

equations (Wooldridge 2010). This assumption allows the system to be estimated 

equation by equation. In the next sections, we describe the specific forms for the above 

equations (2.1) and (2.2), and the Bayesian procedures employed to each equation. 

2.4.2 Climate Equation with Continuous Dependent Variables 

2.4.2.1 Equation with Varying Coefficients 

Suppose there are 1, ,j m  counties, and for each county, there is a sequence of 

jn  observations.
1

 The dependent variable for climate kw  may take continuous or 

discrete values.
2
 Thus, different functional forms are needed to represent the continuous 

and discrete climate variables. 

                                                 
1
 The sample size of each county is allowed to differ. 

2
 The specific climate variables selected in this model are listed in the Data section. 
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For a continuous climate variable 
C

w  in (2.1), where the variable index k  is 

suppressed, we use a linear functional form to capture the effects of DCV on climate for 

each county j : 

(2.3) ,    1, , ,C W C C

j j j j m  w X θ  

where WX  is a 
jn q  matrix of explanatory variables such that  ,W X D T , including 

DCV phase combination dummies D , and a time trend and its squared term T .
3
 In the 

climate equation, which only includes the DCV dummies and time, the explanatory 

variables WX  are constant across counties. 

There are some caveats associated with the coefficients in the model that is 

estimated over multiple locations. If WX  can fully explain the variation of dependent 

variables among the subjects, the estimated parameters 
C

jθ  in (2.3) are constant across 

counties such that 
C

j

C θ θ  for all j , implying that explanatory variables have the same 

mean effects across all locations. In this case, we can pool the data across locations, and 

then estimate the equation with the pooled data. If the model specifications are proper, it 

results in consistent estimates with large degrees of freedom. 

The model with pooled data, although a good starting point, is not suitable for this 

application, since the coefficients in the model are not allowed to vary across counties. 

In fact, there are likely to be numerous unobserved factors that might make the marginal 

effects of DCV on climate vary across counties. In this sense, it may be unreasonable to 

                                                 
3
 To avoid singularity problem, we select the phase combination PDO− TAG+ WPWP+ as the base case 

that is not included in the equation. 
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assume identical coefficients across all locations. Hence, pooling the data would 

generate uninformative results. This concern results in our use of the model (2.3) that 

allows the parameters 
C

jθ  to vary across counties. 

A common but simple method is to estimate (2.3) county by county. The individual 

estimation assumes that the coefficients are completely independent across counties, 

implying that the information in other counties does not contribute to the estimation in 

county j . This assumption also may be inappropriate for data with multiple counties 

used in the model because neighboring counties would be expected to have similar 

geographic characteristics and climate patterns. Thus, DCV effects may not be 

completely independent among counties. In addition, it is probable for counties with 

small sample size that unrepresentative data are sampled and extreme estimates are 

generated. 

The pooled and individual estimations represent the two extreme cases for data with 

multiple subjects. The former assumes that information is completely transferable among 

subjects, while the later assumes that information is only valid within the subject. This is 

why we choose the hierarchal model. The hierarchical model following Laird and Ware 

(1982) describes within-county variation of observations in the first level and then 

allows between-county heterogeneity using a sampling model in the second level. This 

model is able to accommodate cross-county heterogeneity, while allowing data 

information to share across counties. The hierarchical model is implemented in a 

Bayesian framework such that the coefficients are estimated to be county-specific. 
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In a hierarchical model setting, the within-county variation is expressed in (2.3), 

where the error terms 
C

j  are assumed to be independently drawn from a multivariate 

normal distribution: 

(2.4)  ~ ind. Multi-Normal , ,
j

C C C

j j n jΨ 0 Ψ  

where 
C

jΨ  is a 
j jn n  covariance matrix. For the remainder of Section 2, we assume 

C

jΨ  

takes the form 
2

jC n I , indicating that the standard error matrices are the same across 

counties but with different dimensions. This is a common assumption in studies with 

longitudinal data (Arellano-Valle, Bolfarine, and Lachos 2007). 

Along with the linear functional form (2.3), the within-county variation can be 

expressed with a form such that the left hand side variables are independent with 

multivariate normal distribution: 

(2.5)  2 2~ ind. Multi-Norma, l , .,
j j

C C W W C

j j C n j C n w θ X X θ I  

The heterogeneity among coefficients 
1 , ,C C

mθ θ  is described with a between-county 

sampling model. The coefficients are modeled as being independently and identically 

sampled from some distribution, which represents the sampling variability across 

counties. In the continuous climate equation, the sampling distribution for coefficients 

C

jθ  is assumed to be multivariate normal: 

(2.6)  , ~ i.i.d. Multi-Normal , ,C C C C C

j qθ β Σ β Σ  
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where the 1q  mean vector 
Cβ  and the q q  covariance matrix CΣ  are unknown 

parameters to be estimated in the following Bayesian approach.
4
 

2.4.2.2 Estimation with Bayesian Approach 

Equations (2.3), (2.5), and (2.6) together form a typical hierarchical model for 

continuous dependent variables, which is then estimated with a Bayesian procedure. In 

Bayesian approaches, a prior distribution is assumed for each unknown parameter, which 

is then updated to yield a posterior distribution after observing the data. In general, 

Bayesian approaches approximate the joint posterior distribution for all unknown 

parameters in a model, for example, 2

1 , , , , ,C C C C

m Cθ θ β Σ  in the previous specified 

normal hierarchical model. The following briefly discusses the Bayesian procedure for 

the normal hierarchical model, while the detailed procedure is discussed in Appendix 

A.1. 

An essential part of Bayesian analysis is to assign prior distributions to all unknown 

parameters. The priors represent a researcher’s initial beliefs about the problem. In most 

cases, however, we do not have enough information to assign “precise” priors to a large 

number of parameters, and then they should be selected to be as non-informative as 

possible, which will generate more objective results (Hoff 2009). We follow proper 

                                                 
4
 The conditional distribution for ,

C C C

j
θ β Σ  in (2.6) represents sampling variability across counties. Hoff 

(2009) states that this distribution should be referred as a sampling distribution instead of a prior 

distribution, although it has a posterior distribution dependent on observed data. The sampling distribution 

is conceptually distinct from prior distributions such as 
C
β  and 

C
Σ  that are fixed but unknown quantities. 

The resulting posterior distribution for 
C

j
θ  is county-specific, although the sampling distribution in (2.6) is 

the same for all counties. We use the same argument for the following hierarchical models with varying 

coefficients. 
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studies using both diffuse priors and the unit information prior (Zhang and Davidian 

2001; Arellano-Valle, Bolfarine, and Lachos 2007; Jara, Quintana, and San Martín 

2008). A diffuse prior assigns approximately equal probability to large areas of the 

parameter space by selecting specific parameters in the prior distributions. A unit 

information prior uses the small amount of information from the data such as taking 

ordinary least square (OLS) estimates for the distribution parameters (Kass and 

Wasserman 1995). In order to obtain proper posterior distributions with standard forms 

for calculation convenience, conjugate priors are selected such that the corresponding 

posterior distributions have the same forms with the priors.
5
 

Although the joint posterior distribution for all unknown parameters is of interest, it 

is quite difficult to obtain the marginal posterior distribution for each parameter. As an 

alternative, the full conditional distributions for unknown parameters can be 

straightforwardly derived from the joint posterior distribution. The full conditional 

distributions consist of a distribution for each parameter conditional on all other 

parameters. Then, these full conditional distributions are sampled using the Gibbs 

sampler, a Markov Chain Monte Carlo (MCMC) algorithm, which iteratively generates a 

sequence of samples for all relevant parameters (Hoff 2009). Hence, the joint and 

marginal posterior distributions can be approximated with the MCMC samples. 

We make inference for parameters by obtaining confidence intervals based on 

posterior samples. For example, a 95% quantile-based confidence interval is constructed 

                                                 
5
 The specific choices for the prior parameters in the normal hierarchical model are discussed in Appendix 

A.1.2. 
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from the 0.025 and 0.975 quantiles of the posterior MCMC samples. The confidence 

level is equal to the posterior probability that the “correct” parameter is contained in the 

confidence interval. As the selected confidence level goes up, the interval increases. 

2.4.3 Climate Equation with Discrete Dependent Variables 

In equation (2.1), some climate dependent variables take on discrete values, and the 

model presented in (2.3) is not suitable for such situations. The Poisson regression model 

is an appropriate choice for within-county variation if the dependent variable is 

countable (Hoff 2009). In this approach, we take the log-mean of the discrete variable 

D

jw  as the dependent variable in a regression setting, where the subscript k  associated 

with the variable is suppressed: 

(2.7)   l ,    o E , ,1,g D W W D

j j mj  w X X θ  

where 
D

jθ  are the 1q  estimated parameters in the discrete climate equation for all j ; 

WX  is the explanatory variables as defined for the continuous climate equation, 

including both DCV variables and time trend variables. Equation (2.7) is equivalent to: 

(2.8)    E exp ,D W W D

j jw X X θ  

denoting the expected mean of the discrete dependent variable. By assuming the Poisson 

distribution for 
D

ijw  for the i th
 observation in county j , the within-county variation can 

be displayed in the following form: 
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(2.9)    , ~ ind. Poisson exp .
T

D W D D W

ij i j j iw x θ θ x  

Again, the between-county heterogeneity is modeled by assuming that 
D

jθ  is 

sampled from a multivariate normal distribution: 

(2.10)  , ~ i.i.d. Multi-Normal , ,D D

j q

D D D
θ β Σ β Σ  

where 
D
β  and D

Σ  are parameters associated with the multivariate normal distribution. 

The equations (2.7), (2.9), and (2.10) constitute the generalized hierarchical model for 

discrete dependent variables. 

The parameters for this model are also estimated with a Bayesian approach, in 

which the joint posterior distribution for all unknown parameters 
1 , , , ,D D D D

mθ θ β Σ  is 

produced. The posterior distributions for coefficients 
1 , ,D D

mθ θ  are different across 

counties, since they are conditional on the county-specific data. The priors for unknown 

parameters ,C C
β Σ  are specified as non-informative in the same manner as for the 

normal hierarchical model. However, for the discrete case, the MCMC sampling 

algorithm is different. The Gibbs sampler is not practical in this case, since the full 

conditional distributions for 
1 , ,D D

mθ θ  are not in standard forms. We use the Metropolis-

Hastings algorithm to approximate the posterior distribution for such parameters (Hoff 

2009). It is a general MCMC method, sampling a sequence of values using a proposal 

distribution and an acceptance criterion. The parameter is sampled from the proposal 

distribution; whether it is accepted is based on the selected acceptance ratio. The details 

of implementing the Bayesian algorithm for the generalized hierarchical model for 

discrete dependent variables are discussed in Appendix A.2. 
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2.4.4 Crop Yield Equation 

For the crop yield equation (2.2), we use a linear regression of the form: 

(2.11)  1, , ,,   Y Y Y

j j j j j m   y X θ  

where 
jy  is a 1jn   vector of crop yield observations for county j ; 

Y

jX  is a group-

specific 
jn p  matrix corresponding to p  explanatory variables for county j , where 

 , ,Y

j jX D W T . As above, D  represents DCV phase combination dummies, and T  

includes a time trend and its squared term to capture technology development associated 

with crop yields. 
jW  includes county-specific climate variables that were modeled in the 

climate equations and their squared terms. The quadratic terms for the climate variables 

are included, because the effects of climate on crop yields have been found to be 

nonlinear (Mendelsohn, Nordhaus, and Shaw 1994; Schlenker and Roberts 2009). 
Y

j  is 

a 1jn   vector of standard errors and 
Y

jθ  is a 1p  vector of estimated parameters. 

The yield equation is modeled to capture spatial heterogeneity and with common 

effects across counties. Previous studies have shown that climate and DCV have effects 

on crop yields that vary across counties (Izaurralde et al. 2003; Mehta, Rosenberg, and 

Mendoza 2012). On the other hand, the DCV effects in different counties should not be 

treated as completely independent since neighboring counties often have similar climate 

conditions and physical characteristics. 

The within-county variation over time is also expressed in a fashion that the error 

term 
Y

j  is assumed to be sampled from a distribution. In most studies, the multivariate 

normal assumption is used. To some extent, however, the standard multivariate normal 
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distribution lacks robustness against deviations from the normality assumption (Verbeke 

and Lesaffre 1997; Zhang and Davidian 2001; Rosa, Padovani, and Gianola 2003; 

Ghidey, Lesaffre, and Eilers 2004; Jara, Quintana, and San Martín 2008; Lachos, Dey, 

and Cancho 2009). Hence, the normality assumption may not be a good fit for the crop 

yield equation here, because crop yields usually display skewness in their distributions. 

The skew-normal distribution is a flexible parametric family, which is able to 

accommodate the situation that the true distribution deviates from a normal one 

(Arellano-Valle, Bolfarine, and Lachos 2007). In this study, we assume the error term 
Y

j  

in (2.11) as sampled from a skew-normal distribution: 

(2.12)  , ind. Skew-Norm~ al , , ,
jn

Y Y Y

j j j j jΨ 0 ΨΔ Δ  

where 
Y

jΨ  is a 
j jn n  covariance matrix, and 

jΔ  is a 
j jn n  diagonal skewness matrix. 

The probability density function of a skew-normal distribution and its linkage with a 

normal distribution are discussed in Appendix A.3. For the remainder of this section, we 

assume 
2

j

Y

j Y nΨ I  and 
jj nΔ I . The within-county variation can be expressed with a 

form such that crop yields are sampled from the following skew-normal distribution: 

(2.13)  2 2, , , ind. Skew-N~ ormal , , .
j jjj n

Y Y Y Y

j j Y j j NY n  X θ X IIθy  

The between-county heterogeneity is modeled by allowing the parameters 
Y

jθ  in 

(2.11) to be sampled from a skew-normal distribution as well: 

(2.14)  ~ i.i.d. Skew-Normal, , , , ,Y Y Y Y Y

j pθ β Σ Π β Σ Π  
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where 
Yβ  is a 1p  estimated mean vector; YΣ  is a p p  estimated covariance matrix; 

Π  is a p p  estimated diagonal skewness matrix such that  diagΠ π , where 

 1, , p  π . Equations (2.11), (2.13), and (2.14) constitute a skew normal 

hierarchical model. Although estimated parameters 
1 , ,Y Y

mθ θ  are assumed to be sampled 

from a distribution as in (2.14), the posterior distributions for those are different across 

counties, which are conditional on county-specific data. 

Again, the skew normal hierarchical model is estimated using a Bayesian 

framework. The procedure is similar to the normal hierarchical model but with more 

steps approximating the skewness parameters in the distribution. The priors are specified 

as non-informative, and the posterior distributions are approximated using Gibbs 

sampler. The details of implementing the Bayesian algorithm for the skew normal 

hierarchical model are presented in Appendix A.4. 

2.5 Deriving and Simulating Results 

2.5.1 Marginal Total Effects of DCV 

As described above, we can calculate the county-specific marginal effects of DCV 

on crop yields using the estimated coefficients from the system of equations (2.3), (2.7), 

and (2.11). The county-specific marginal total effect (MTE) of DCV on crop yields is 

divided into two parts: the marginal direct effect (MDE) and the marginal indirect effect 

(MIE). Based on the general form of equations (2.1) and (2.2), the MDE for the l
th

 DCV 
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phase combination is then calculated by taking difference of the crop yield equation with 

respect to the l
th

 DCV variable: 

(2.15) 
 Δ , ,

MDE
Δ

;
,l

Y

l

f

D


D W θT
 

and the MIE is described as: 

(2.16) 
   

1

; ;Δ , , ,
MIE .

Δ

k Y

k
K

l

k l k

f

D

g









T TD θ D W θ

w
 

Since there are quadratic terms in the equations, the marginal effects are evaluated 

at the means of the explanatory variables. In practice, we exclude insignificant mean 

estimates at the 95% confidence level through making inferences with quantile-based 

intervals. 

The marginal effects in equations (2.15) and (2.16) only represent relative numbers 

compared to the base DCV phase combination that we choose for the model. It is of 

interest to display the MTE for the whole set of DCV phase combinations. We change 

the baseline and make the MTE compare to the predicted mean yields. The adjusted 

MTE are calculated using the following steps, for each county , ,1j m  : 

1. Calculate the MTE based on the estimated parameters according to (2.15) and 

(2.16). 

2. Predict climate variables along with the mean of the MCMC samples for 
C

jθ  and 

D

jθ  under each DCV phase combination. 
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3. Incorporate the predicted DCV-specific climate values into (2.11), in conjunction 

with the estimated parameters 
Y

jθ , to predict crop yield under each DCV phase 

combination. 

4. Calculate the mean predicted yield as the weighted average of the predicted 

yields under different DCV phase combinations given the historical probabilities 

of DCV phase combinations presented in Table 2-1. 

5. Calculate the difference between the yield in the base phase combination and the 

mean predicted yield calculated from the Step 4. 

6. Adjust MTE estimates from Step 1 to a new baseline based on the results from 

Step 5. 

2.5.2 Simulated Crop Yield Distribution 

Results estimated from Section 2.5.1 provide insights into the county-specific mean 

effects of DCV phase combinations on crop yields. It is of interest to investigate how 

crop yield is distributed under the different DCV phase combinations. We use the system 

of hierarchical models to simulate crop yields under each DCV phase combination. The 

posterior distributions for coefficients 
C

jθ , 
D

jθ , and 
Y

jθ  are applied to the simulation 

procedure. For each DCV phase combination, the simulation procedure involves the 

following steps: 

1. For each county , ,1j m  , randomly draw parameters 
C

jθ  and 
C

jθ  from the 

corresponding posterior distributions; 
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2. Predict all climate variables conditional on the DCV phase combination, the 

parameters drawn in Step 1, and the predetermined time trend variable;
6
 

3. For each county , ,1j m  , randomly draw a vector of parameters 
Y

jθ  from their 

posterior distributions; 

4. Using the state of DCV phase combination, time trend, and the drawn 

parameters, calculate the crop yield for each county. 

We calculate the mean crop yields across county of each run to look at the predicted 

mean crop yield distribution.
7
 Steps 1-4 are repeated for a large number of times, 

generating a sequence of crop yields. These simulated crop yields approximate the yield 

distribution under each DCV phase combination. 

The steps for simulating expected crop yield distribution across DCV phase 

combinations is similar to the previous steps 1-4 but adding an additional step before 

Step 1 by randomly drawing a DCV phase combination from the historical probabilities 

as presented in Table 2-1. Then, the procedure is repeated for a large number of times to 

approximate the expected crop yield distribution. 

2.6 Data 

The data used in this section were obtained from multiple sources. The county-

specific yield data were obtained from the U.S. Department of Agriculture Quickstats. 

                                                 
6
 In the climate and crop yield equations, the time trend variable is set to the level of 2015 for prediction. 

7
 We can explore county-specific crop yield distribution without taking mean across counties for each run. 

For presentation simplicity, we present the mean crop yield distribution under each DCV phase 

combination in Section 2.7. 
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The yield data are longitudinal such that each county that has planted area of a specific 

crop has a sequence of annual observations. In general, the time span of the data is from 

1950 to 2010. The climate data were obtained from the National Climatic Data Center, 

National Oceanic and Atmospheric Administration (NOAA). The climate data were 

selected as growing season observations which depended in timing on the crop. In 

particular, the 8 crops examined in this section were divided into two groups. The first 

group grows from April to September, including barley, corn, alfalfa hay, oats, sorghum, 

soybeans, and spring wheat. The corresponding climate variables for those crops are: 

monthly mean temperature, total precipitation, number of days with maximum 

temperature greater than or equal to 90°F, and number of days with precipitation greater 

than or equal to one inch in the growing season. The second group grows from October 

to March and only includes winter wheat. The associated climate variables for winter 

wheat are monthly mean temperature, total precipitation, number of days with 

precipitation greater than or equal to one inch, and number of days with minimum 

temperature less than or equal to 0°F over the growing season. As for the DCV phase 

specification data by year, they were obtained from Fernandez (2013), and are presented 

in Table 2-1. These data are yearly dummies and constant across counties in a year. 



 

27 

 

2.7 Results and Discussions 

2.7.1 Model Justification 

Before implementing the Bayesian procedures to estimate the model, we first carry 

out a preliminary examination of the data that we use for estimation. Figure 2-1 shows 

the levels of the corn yield and summer mean temperature in different counties over 

time. Figure 2-1(a) suggests an increasing trend for corn yield over time in most 

counties, but with evident between-county variation. Figure 2-1(b) also shows between-

county variation in the climate variable. Figure 2-1 indicates that the between-county 

heterogeneity needs to be considered in both climate and crop yield equations.
8
 

 

Figure 2-1: Crop yield and climate data in every 10 years. (a) Corn yields for counties 

that have planted such crop (black), with trajectories (gray) for 5 randomly selected 

counties. (b) A continuous climate variable (black), mean temperature in growing 

season, and trajectories (gray) for five random counties 

                                                 
8
 We have generated the same type of figures for other crop yields and climate variables. They all have the 

same pattern displaying between-county variation. 
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The distributions for crop yield and parameters in (2.11) are assumed to be skew-

normal. Figure 2-2 presents data regarding the applicability of this assumption. Figure 

2-2(a) presents a plot of the county-specific skewness index for crop yield data. The gray 

dots indicate that most skewness indices indicate skewed yield distributions. We also 

calculate skewness indices for pooled crop yield data across counties and find positive 

skewness for all crops as shown in black dots. 

 

Figure 2-2: Skewness index of crop yields and OLS estimates, with zero representing no 

skewness. (a) County-specific skewness indices of yields for 8 crops (gray) and 

skewness index for each crop calculated from pooled yield data (black). (b) Skewness 

indices for estimated parameters in 8 yield equations from the individual OLS fits 
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To investigate potential skewness for the parameters in the yield equation, we fit a 

simple OLS regression model for each county individually, and pool the county-specific 

parameters to calculate the skewness indices. The results for parameters in 8 crops are 

plotted in Figure 2-2(b). This suggests that estimated parameters in most crop yield 

equations have significant skewness indices. 

2.7.2 Bayesian Estimates 

A type of MCMC algorithm has been implemented for each equation in the model 

system. The Gibbs sampler with normal distributions is applied to the continuous climate 

equations as discussed in Appendix A.1. The integrated Gibbs and Metropolis-Hastings 

algorithm is implemented for the discrete climate equations as elaborated in Appendix 

A.2. The Gibbs sampler with skew-normal distributions discussed in Appendix A.4 is 

used for the crop yield equation. 

Each MCMC sampler ran 100,000 scans and saved every 100th scan to avoid 

autocorrelation in the samples. Hence, each equation produces a sequence of 1,000 

values for each unknown parameter in the model. We then use the samples to make 

Bayesian inference. The resulting parameter estimates are the posterior means of the 

MCMC samples. 

A good feature of the Bayesian method is that it shrinks extreme estimates for 

groups with small sample size towards the population mean, while keeping 

heterogeneity across groups. Figure 2-3 represents a graph of estimates associated with 

DCV variables in the corn yield equation under the OLS and Bayesian hierarchical 
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approaches.
9
 The individual OLS results exhibit considerable disparity, as shown in the 

gray dots. The Bayesian point estimates are shown as the black dots, indicating less 

disparity across counties. 

 

Figure 2-3: The comparison of estimates associated with DCV variables in the corn yield 

equation between results from the individual OLS fits (gray) and from the Bayesian 

approach (black) 

2.7.3 County-specific Marginal Total Effects of DCV 

The marginal total effects for each crop under 8 DCV phase combinations are 

calculated according to the procedures discussed in Section 2.5.1. Below we discuss the 

MTE results for 8 major crops in the MRB region. 

                                                 
9
 We have generated the same graphs for rest of the crops. They all display the same pattern. 
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2.7.3.1 Barley 

The county-specific DCV impacts on barley yields are presented in Figure 2-4. We 

see substantial heterogeneity across DCV phase combinations and counties. Overall, the 

phase combination PDO+ TAG+ WPWP+ has the most positive effects as shown in the 

panel (g), while the phase combination PDO+ TAG− WPWP+ has the most negative 

effects as displayed in the panel (e). Figure 2-4(a) suggests that under the phase 

combination PDO+ TAG− WPWP−, barley yields in most counties of Montana, 

Colorado, and Nebraska decrease by up to 25% from the predicted mean yields; while in 

most counties of North Dakota and South Dakota, barley yields increase by up to more 

than 10%. Barley yield changes under the DCV phase combinations (b) PDO− TAG+ 

WPWP−, (c) PDO− TAG− WPWP+, and (f) PDO− TAG+ WPWP+ have similar spatial 

patterns but with different magnitudes of variation. Figure 2-4(d) implies that the phase 

combination PDO+ TAG+ WPWP− has small impacts on most counties in northern 

MRB, but slight negative effects with less than 10% yield loss on counties in the middle 

part of MRB. It is interesting to note that in response to the DCV phase combination (e) 

PDO+ TAG− WPWP+, barley yields decrease up to 30% in almost all counties in the 

MRB. The negative effects of this combination of DCV phenomena are greater in 

northern counties than in southern counties. Under the phase combination (g) PDO+ 

TAG+ WPWP+, barley yields in most counties of Montana, Wyoming, Colorado, and 

North Dakota increase by 10-30%. The phase combination (h) PDO− TAG− WPWP− 

has positive effects on northern counties by more than 5% but negative effects on some 

southern counties by 10%. 
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Figure 2-4: County-specific total DCV effects on barley yields (bushel/acre). (a)-(h) 

represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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2.7.3.2 Corn 

The DCV impacts on corn yields are presented in Figure 2-5. In the western MRB, 

there are no effects showing due to very small corn planting in the area. In general, 

Figure 2-5 illustrates that most phase combinations have positive effects on corn yields 

except for the phase combination (e) PDO+ TAG− WPWP+ and (h) PDO− TAG− 

WPWP−. Particularly for the phase combination (e) PDO+ TAG− WPWP+, the corn 

yields decrease by 25% in some counties. Figure 2-5(a) and (d) have similar spatial 

effects but with different magnitudes, where corn yield decreases appear in the eastern 

part of the MRB, while corn yield increases occur in the middle part of the MRB. This 

spatial pattern is opposite in the phase combination (g) PDO+ TAG+ WPWP+, where 

corn yield reductions mainly result in the southwestern part of the MRB. In the phase 

combination (b) PDO− TAG+ WPWP−, there are negative changes in corn yields, and 

most severe corn yield losses appear in South Dakota. The phase combinations (c) 

PDO− TAG− WPWP+ and (f) PDO− TAG+ WPWP+ suggest that corn yields increase 

in most MRB counties by 4% except for a few decreases. 

2.7.3.3 Alfalfa Hay 

Figure 2-6 shows yield changes of alfalfa hay under different DCV phase 

combinations. The DCV phenomena have more significant effects on alfalfa hay yields 

in the western MRB compared to the southeastern part. In response to the DCV phase 

combination (a) PDO+ TAG- WPWP−, alfalfa hay yields decrease by 10-30% in most  
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Figure 2-5: County-specific total DCV effects on corn yields (bushel/acre). (a)-(h) 

represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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Figure 2-6: County-specific total DCV effects on alfalfa hay yields (tons/acre). (a)-(h) 

represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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counties of Montana and Wyoming. This combination of DCV phenomena has the most 

significant and widespread negative effects on alfalfa hay yields. In contrast to the phase 

combination (a), there are yield increases in Montana and Wyoming under the phase 

combinations (b) PDO− TAG+ WPWP−, (d) PDO+ TAG+ WPWP−, and (f) PDO− 

TAG+ WPWP+. It is interesting to note that the impacts of the phase combination (g) 

PDO+ TAG+ WPWP+ are positive in most counties, but negative in a few counties. 

There are both positive and negative effects distributing in Montana, Wyoming, and 

Colorado under (c) PDO− TAG− WPWP+, (e) PDO+ TAG− WPWP+, and (h) PDO− 

TAG− WPWP−. 

2.7.3.4 Oats 

Figure 2-7 shows that the oats yield data were available for most MRB counties. 

The DCV effects exhibit substantial variation both across counties and DCV phase 

combinations. In the phase combination (a) PDO+ TAG− WPWP−, the positive effects 

concentrate on the northern part of MRB, while the negative effects appear in the 

southern MRB. The phase combinations (b) PDO− TAG+ WPWP− and (e) PDO+ 

TAG− WPWP+ have broad negative impacts on oat yields in the MRB with small 

positive effects located in a few counties. Figure 2-7 also suggests that positive DCV 

effects cluster in North Dakota and South Dakota in the phase combinations (a) PDO+ 

TAG− WPWP−, (c) PDO− TAG− WPWP+, (f) PDO− TAG+ WPWP+, (g) PDO+ 

TAG+ WPWP+, and (h) PDO− TAG− WPWP−. 



 

37 

 

 

Figure 2-7: County-specific total DCV effects on oat yields (bushel/acre). (a)-(h) 

represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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2.7.3.5 Sorghum 

Figure 2-8 presents the sorghum yield changes under various DCV phase 

combinations. In the phase combination (a) PDO+ TAG− WPWP−, the positive effects 

appear in western South Dakota and some counties of Nebraska and Colorado; the 

negative effects concentrate on eastern South Dakota, most areas of Nebraska and 

Missouri. The phase combination (b) PDO− TAG+ WPWP−, (c) PDO− TAG− WPWP+, 

and (f) PDO− TAG+ WPWP+ have widespread positive effects on counties that planted 

sorghum. In contrast, under the other three phase combinations (e) PDO+ TAG− 

WPWP+, (g) PDO+ TAG+ WPWP+, and (h) PDO− TAG− WPWP−, the sorghum yields 

decrease by 10-20% in most counties. Figure 2-8(d) suggests that the DCV phase 

combination PDO+ TAG+ WPWP− has positive effects in the central part while 

negative effects in the southeastern part of MRB. 

2.7.3.6 Soybeans 

The areas where soybean yield data were available are similar to the case of corn, 

which concentrate on the southern and eastern parts of MRB, as shown in Figure 2-9. 

The yield effects of DCV phenomena on soybeans are mild compared to other crops 

except for the phase combination (e) PDO+ TAG− WPWP+ that causes the soybean 

yields decrease by 10-20% in most MRB counties. In the phase combinations (c) PDO− 

TAG− WPWP+, (f) PDO− TAG+ WPWP+, and (g) PDO+ TAG+ WPWP+, there are 

soybean yield increases in most counties. For the other DCV phase combinations (a) 

PDO+ TAG− WPWP−, (b) PDO− TAG+ WPWP−, (d) PDO+ TAG+ WPWP−, and (h) 



 

39 

 

 

Figure 2-8: County-specific total DCV effects on sorghum yields (bushel/acre). (a)-(h) 

represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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Figure 2-9: County-specific total DCV effects on soybean yields (bushel/acre). (a)-(h) 

represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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PDO− TAG− WPWP−, both positive and negative effects scatter in the area planting 

soybeans. 

2.7.3.7 Spring Wheat 

The impacts of DCV phenomena on spring wheat yields in the MRB are displayed 

in Figure 2-10. In phase combination (a) PDO+ TAG− WPWP−, the negative effects 

decrease spring wheat yields up to 20% in Montana, Wyoming, and Colorado; the 

positive effects scatter in Montana, North Dakota, and South Dakota. Figure 2-10(b) 

suggests that under the phase combination PDO− TAG+ WPWP−, the significant 

negative effects widely distribute in Montana, which decrease yields by 20-30% 

compared to expected mean yields, while the spring wheat increases concentrate in 

North Dakota and South Dakota. The phase combination (c) PDO− TAG− WPWP+ has 

a similar pattern with the phase combination (f) PDO− TAG+ WPWP+, in which the 

spring wheat yields decrease by 5-10% in most MRB counties except for some counties 

in North Dakota and South Dakota. Under the phase combination (d) PDO+ TAG+ 

WPWP−, the DCV phenomena combination makes the yields increase by 10-20% in 

western counties of Montana. It is interesting to note that the phase combination (e) 

PDO+ TAG− WPWP+ has negative effects on crop yields in all counties that planted 

spring wheat. In contrast, in the phase combination (g) PDO+ TAG+ WPWP+, yields 

increase in most counties. 
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Figure 2-10: County-specific total DCV effects on spring wheat yields (bushel/acre). (a)-

(h) represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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2.7.3.8 Winter Wheat 

Figure 2-11 represents the estimated DCV effects on winter wheat in the MRB. 

Winter wheat yields decrease in most counties except for those in the northeastern MRB 

under the phase combination (a) PDO+ TAG− WPWP−. Figure 2-11(b) shows that 

under the phase combination PDO− TAG+ WPWP−, the positive effects distribute in the 

eastern side of MRB, while the positive effects appear in the western and middle MRB. 

There are also clear clustering DCV effects in the phase combination (c) PDO− TAG− 

WPWP+, in which positive effects locate in the middle MRB and negative effects 

concentrate on the southern MRB. In the phase combinations (d) PDO+ TAG+ WPWP−, 

(f) PDO− TAG+ WPWP+, and (h) PDO− TAG− WPWP−, the negative effects are more 

wide and significant. As noted in previous crop parts, the phase combination (e) PDO+ 

TAG− WPWP+ has the most negative effects on winter wheat yields up to 25% 

decreases. In phase combination (g) PDO+ TAG+ WPWP+, the negative effects locate 

in the middle MRB, while most negative effects locate along the eastern MRB. 

2.7.4 Simulated Yield Distributions 

The yield distributions for the 8 crops under specific and uncertain DCV phase 

combinations are simulated based on the procedures discussed in Section 2.5.2. The 

results are presented in Figure 2-12. 

There are several results from the simulation operations worth highlighting. The 

distributions associated with the phase combination (e) PDO+ TAG− WPWP+ have the 

lowest mean for all crops even with the right tail far less than yields under other phase 
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Figure 2-11: County-specific total DCV effects on winter wheat yields (bushel/acre). (a)-

(h) represent comparisons between crop yields in 8 DCV phase combinations and the 

predicted mean yields 
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Figure 2-12: The simulated yield distributions under 8 DCV phase combinations (colors) 

and the expected yield distribution (black) for 8 crops. The DCV phase combinations 

are: (a) PDO+ TAG− WPWP−, (b) PDO− TAG+ WPWP−, (c) PDO− TAG− WPWP+, 

(d) PDO+ TAG+ WPWP−, (e) PDO+ TAG− WPWP+, (f) PDO− TAG+ WPWP+, (g) 

PDO+ TAG+ WPWP+, and (h) PDO− TAG− WPWP− 
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combinations. This suggests that this phase combination causes lower yields for all 8 

crops. Especially for barley, corn, soybeans, and spring wheat, the distributions under 

the phase combination (e) are completely separated from the ones under other phase 

combinations. In contrast, the phase combination (g) PDO+ TAG+ WPWP+ results in 

highest mean yields for all crops but for corn and sorghum. 

In addition to mean effects, some combinations generate greater predicted variance 

for some crops than other DCV phase combinations. For example, for barley, hay, and 

oats, the variance under the phase combination (b) PDO− TAG+ WPWP− is larger than 

the variance under other phase combinations. The DCV phase combination (g) PDO+ 

TAG+ WPWP+ also generates larger variance for the oats yield than other crops. 

The yield distributions associated with some DCV phase combinations are 

overlapped such as the phase combinations (a) and (h), and the phase combinations (b), 

(f), and (g) for sorghum. Somewhat surprisingly, all simulated distributions presented in 

Figure 2-12 do not display evident skewness. This may be due to the large sample size 

that shifts from a skew distribution to a non-skew distribution. The simulated expected 

yield distributions are presented in black curves. They are located in the middle of each 

graph, indicating they are the mean combination of distributions under specific DCV 

phase combinations. 

2.7.5 A Glance at Adaptation 

The results presented in Section 2.7.3 indicate that DCV impacts show spatial and 

crop heterogeneity. The yield across crops in a region may respond differently to a 
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realized DCV phase combination. Thus, given the yield effect information, farmers can 

adjust their crop mix to adapt to certain DCV phase combinations. Based on the results 

displayed through Figure 2-4 and Figure 2-11, here we briefly discuss adaptation 

possibilities under some DCV phase combinations in terms of crop yield effect. 

Under the DCV phase combination PDO+ TAG− WPWP−, in most counties located 

in Montana, the yield effect on barley (Figure 2-4(a)), alfalfa hay (Figure 2-6(a)), and 

winter wheat (Figure 2-11(a)) is negative, while the effect on oats (Figure 2-7(a)) and 

spring wheat (Figure 2-10(a)) is positive. This implies that adaptation can decrease the 

area of planting negatively affected crops and increase that of positively affected crops. 

Again, under the phase combination PDO+ TAG− WPWP+, crop yield effect in most 

MRB counties is negative for all crops except for alfalfa hay, allowing more hay to be 

planted as a way of adaptation. 

2.8 Conclusions 

This section examines the effects of three decadal climate variability phenomena on 

crop yields in the Missouri River Basin. The DCV phenomena exert impacts on crop 

yields through both changes in regional climate conditions and changes in other 

unobserved factors. In this section, these are labeled as indirect and direct effects, 

respectively. In the model, both the climate equations and yield equations are integrated 

to form an estimate of the total DCV effects on the crop yields of 8 major crops in the 

MRB. 
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Previous studies indicate that DCV effects vary across locations. Thus, regional 

heterogeneity is permitted in the models, in which a Bayesian framework is used. The 

results of the estimation show that DCV effects are spatial heterogeneous across counties 

and vary with phase combinations. DCV phase combinations have positive effects in 

some counties, but negative effects in other parts of the MRB. 

The estimated posterior distributions for parameters are used to form yield 

distributions under different DCV phase combinations. These could be useful 

information for farmers, policy makers, and insurance companies in the area. The results 

indicate how the distribution of crop yields would be altered when we face a specific 

DCV phase combination. We also could gain some insights of DCV effects on crop 

yields from the predicted yield distributions. For example, the phase combination PDO+ 

TAG− WPWP+ leads to the lowest mean for all crops compared to other phase 

combinations, while most crops except for corn and sorghum perform better under the 

phase combination PDO+ TAG+ WPWP+ than under other DCV phase combinations. 
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3 THE INFORMATION VALUE OF DECADAL CLIMATE VARIABILITY AND 

ADAPTATION: A CASE IN THE MISSOURI RIVER BASIN 

3.1 Introduction 

Decadal climate variability (DCV) refers to a number of long term ocean-related 

phenomena that cause climate fluctuations (Rajagopalan, Kushnir, and Tourre 1998; 

McCabe, Palecki, and Betancourt 2004; Wang and Mehta 2008). There are multiple 

DCV phenomena that have been widely studied (Mantua et al. 1997; Mehta 1998; 

Mantua and Hare 2002; Deser, Phillips, and Hurrell 2004; Sutton and Hodson 2005). In 

this section, we study the economic value of information (VOI) about three DCV 

phenomena: the Pacific Decadal Oscillation (PDO), the Tropical Atlantic Gradient 

(TAG), and the West Pacific Warm Pool (WPWP). Each phenomenon is classified as 

exhibiting either a positive (+) or a negative (−) phase based on sea surface temperature 

observations. Collectively, there are 8 total possible combinations of the positive and 

negative phases across the three DCV phenomena. This analysis will examine the value 

of information regarding such DCV phenomenon combinations and crop yield effects of 

these items. 

Human activities dependent on climate conditions can be substantially affected by 

DCV phenomena (McCabe et al. 2008; Mehta, Rosenberg, and Mendoza 2012). The 

essay in Section 2 found regionally specific physical impacts of DCV on crop yields. 

This section addresses the value of DCV information due to crop yield fluctuation plus 
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examines the crop mix and management adaptation strategies given such DCV 

information. 

The basic logic that the DCV information may have value arises from the following: 

DCV phenomena have systematic effects on regional crop yields that vary across crops 

and given such information on systematic yield alterations, farmers might modify their 

possible crop choice, which in turn alters crop supplies, prices, and farm income. The 

increased value due to adaptation actions in terms of crop mix and management 

adjustment would be the value of DCV information (Challinor 2009; Fernandez 2013). 

In this section, a conceptual stylized model is first specified to illustrate three types 

of DCV information: the uninformed case based on historical DCV incidences; the 

conditional information illustrated by a Markov Chain transition matrix; the perfect 

information knowing the exact DCV phase combination in a year. Each information type 

is represented by a specific form of probability distribution in the model. Based on the 

stylized framework, a stochastic mathematical programming model is used to simulate 

the value of DCV phase information and agricultural adaptation. 

The mathematical programming model in this section is based on the model 

developed by Fernandez (2013), which simulates crop production, water flows, water 

diversions, agricultural adaptation, and social welfare in the Missouri River Basin 

(MRB) region. We extend the original model by using more crop yield data impacted by 

DCV in the MRB region, which were estimated in Section 2; we also alter the modeling 

methods of crop mix adaptation. The results provide insight into the value of various 
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types of DCV information plus possible adaptation strategies in terms of switching crop 

mix and irrigation use. 

3.2 Literature Review 

A literature review regarding ocean-related climate variability phenomena and their 

associated impacts on crop yields is discussed in Section 2. This section focuses on 

literature in the value of climate information and empirical economic studies of certain 

climate variability phenomena. 

Early theoretical frameworks for modeling the economic value of climate 

information were developed by Nelson and Winter (1964) and Hilton (1981). Many 

subsequent studies have used that framework (Mjelde and Hill 1999; Chen, McCarl, and 

Hill 2002; Letson et al. 2005; Meza, Hansen, and Osgood 2008). The evaluation of 

climate information assumes that agents are rational and making decisions based on 

available information but that they initially do not have access to improved climate 

information. This decision making process is ex-ante, that is, the agents make input 

decisions before they know the climate outcome (Meza, Hansen, and Osgood 2008), but 

assumes that climate forecasts may influence the expectations about ex-post results and 

thus might alter ex-ante decisions. 

Several studies have addressed economic values obtained from forecasting El Niño-

Southern Oscillation (ENSO) phenomenon, a shorter ocean-related climate variability 

than DCV (Adams et al. 1995; Mjelde et al. 1997; Solow et al. 1998; Hill et al. 2000; 

Chen and McCarl 2000; Chen, McCarl, and Hill 2002; Adams et al. 2003; Hill et al. 
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2004). In a number of these studies, the value of ENSO information is estimated from 

aggregate, sector-wide models that are able to investigate market movements and 

societal welfare changes (Meza, Hansen, and Osgood 2008). The value of climate 

information is then interpreted as the difference in welfare between cases where farmers 

make their decisions with and without knowing the climate information in priori. In 

general, the value of such ENSO information has been found to be positive with the 

modeled farmers adjusting their cropping decisions based on the climate information to 

avoid adverse effects or exploit opportunities. 

Solow et al. (1998) conduct an interdisciplinary study integrating models from 

meteorology, plant science, and economics to examine the economic value of ENSO to 

agriculture in the U.S. A similar study by Chen and McCarl (2000) measure the value of 

ENSO phase knowledge from the agriculture sector using a mathematical programming 

model, in which the full distribution of ENSO phase strength effects are considered 

rather than average strength effects. Chen, McCal, and Hill (2002) examine the value 

associated with the release of five ENSO phase information, which allows agricultural 

producers to adapt their cropping practices and in turn bring about welfare gains in the 

agricultural sector. The results from their simulation model suggest that more detailed 

ENSO phase definition almost doubles the value of information. 

In addition to measuring the value of climate information, many studies have 

explored general economic impacts of the short-period climate variability. For example, 

Brunner (2002) indicates that the ENSO cycle has significant effects on world prices and 

economic activity. Specifically, ENSO appears to contribute to almost 20% of world 
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commodity price inflation for the past years. Berry and Okulicz-Kozaryn (2008) find 

that locally specific effects of ENSO may vanish into the noise surrounding 

macroeconomic trends, although many studies have addressed the influence of ENSO on 

particular sectors and regions. 

Although the ENSO information has been broadly explored in economic literature, 

studies of examining DCV information are still rare. Fernandez (2013) assesses crop 

production and water consumption given DCV impacts on crop yields. The model 

evaluates welfare changes and cropping adaptations in the Missouri River Basin. The 

author concludes that a perfect forecast of DCV produces values worth 0.65 billion 

dollars and a conditional forecast leads to 4.75 billion. The simulated results also 

indicate that adaptation in the form of land use shifts between crops can be made under 

different DCV phase combinations. However, the data of DCV impacts on crop yields in 

the model were limited for both crops and counties and the crop mix adjustment upon 

reflection had some technical issues in its modeling. 

Ding (2014) investigates the economic value of DCV information in another area in 

the U.S., the Edwards Aquifer region of Texas. The model covers water usage in 

multiple sectors, cropping and grazing land allocation, and welfare changes under 

various DCV phase information. The author finds that a perfect DCV forecast leads to 

40.25 million dollars in the area and a conditional forecast results in 1.01 million dollars. 
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3.3 Model Specification 

3.3.1 Value of DCV Information 

Here we present a conceptual framework to illustrate the economic value of DCV 

information and adaptation following Katz and Murphy (1997) and Meza, Hansen, and 

Osgood (2008). In general, we assume that a farmer selects the optimal level of inputs to 

maximize his/her annual expected utility given obtainable DCV information regarding 

likely climate outcomes. 

Specifically, we consider 8 possible DCV phase combinations with certain 

probabilities in a discrete setting. Although the exact climate outcomes may be still 

uncertain under a realized DCV phase combination, due to data limitations and for the 

sake of simplicity, we assume that the only stochastic component in this model setting is 

the DCV phase combination and all other components deterministically take mean 

values. Hence, if the DCV phase combination is known, we assume that the farmer can 

make choices with no uncertainty. 

3.3.1.1 Uninformed DCV Case 

We consider three possible information settings. First, without any DCV 

information, the uninformed case, expectations regarding the likelihood of different 

DCV phase combinations would be based on the frequency-based probability 

distribution of historical events. A farmer would in this case maximize his/her expected 

utility in a stochastic problem taking into account the distribution of historic DCV 

events, i.e., 
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(3.1)   
1
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 
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where the optimal level of the objective function is denoted as 
0W . ip  indicates the 

frequency-based probability for the DCV phase combination i  ( 1, ,i s , where 8s  ) 

and   represents the random variable associated with DCV phase combinations. Profit 

iY  is a function of decision variables x  and the random variable  . The optimal solution 

in this problem is denoted as *x , which is a set of decision variables that are not 

contingent on DCV phase combinations. 

3.3.1.2 Conditional DCV Information Case 

The decision setting under the uninformed case may be improved by providing 

better information, knowing the specific DCV phase combination in the current year. 

This, to some extent, reduces climate and yield uncertainty faced by decision makers, 

since DCV information conditional on the current year narrows down the possible DCV 

phase combinations in the following year. 

One way of portraying the conditional DCV information involves the use of a 

Markov chain transition probability matrix. The dimension of the matrix is s s  with 

entries 
ij  ( 1, ,i s  and 1, ,j s ), which represent the probability of transitioning 

from this year’s state i  to the following year’s state j . These probabilities are defined 

as: 

(3.2)  1Pr ,ij t tDCV j DCV i     
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such that 1ijj
   for each i . The probability 

ij  is interpreted as the probability of 

the phase combination j  in time 1t   given the DCV phase combination i  in time t . 

Given the conditional DCV information, a farmer is assumed to make input 

decisions for the next year, which solves the following expected utility problem for each 

possible DCV phase combination i  in the current year: 

(3.3)   1

1

max , ,  ,,
i

s

j j

j

i iiW U Y w i 

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x

x  

where the optimal expected utility is expressed as 1

iW  for each phase combination i  in 

the current year. The decision variable ix  is specific for each i . The optimal decision is 

denoted as **

ix  in this problem setting. Then the total expected utility in the long-run is 

expressed as: 

(3.4) 
1

1

1 ,
s

i

i iW pW


  

where ip  is the long-term probability of DCV phase combination i  in the current year, 

which is based on historical frequency. 

3.3.1.3 Perfect DCV Information Case 

If the DCV phase combination for the next year can be perfectly predicted, farmers 

may choose a management strategy under certainty that maximizes the utility associated 

with this upcoming DCV phase combination. Again, in this problem setting, we assume 

all other components except for the DCV phase combination are deterministic once the 
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DCV phase combination is known. Thus, the utility maximization problem with 

certainty associated with the perfect DCV information is represented as: 

(3.5)   2 ma ,x , ,   
i

i i iW U Y w i 
x

x  

where the corresponding optimal utility level is denoted as 2

iW  and we denote the 

optimal level of decision variable as ***

ix , which is specific to phase combination i . Then 

the long-run expected utility is calculated as: 

(3.6) 
2 2

1

.
s

i

i

iW pW


  

3.3.1.4 Value of DCV Information and Adaptation 

The value of DCV information can be computed for the two information cases 

discussed above. Under the conditional information case, the value of information is: 

(3.7) 1 0

1VOI ,W W   

while the value of perfect DCV information is calculated as: 

(3.8) 2 0

2VOI .W W   

The amount of crop mix or management adaptation associated with climate 

information can be assessed by computing the amount of percentage change in the 

optimal decision variables in the expected utility maximization problems. We use the 
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uninformed DCV case as the base. The adaptation under the conditional information 

compared to the base is: 

(3.9) 
 
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the adaptation under perfect information is: 

(3.10) 
 
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x x
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3.3.2 A Mathematical Programming Model 

To implement the above framework, we use a mathematical programming model, 

which simulates consumers’ and producers’ surplus. A mathematical programming 

model will be used to simulate consumers’ and producers’ surplus and then to 

investigate VOI and adaptation. The model is stochastic, which simulates perfectly 

competitive market equilibrium and the associated land allocation under a given 

probability distribution for DCV phase combinations plus data on the way they affect 

crop yields. The basic assumption is that a representative risk-neutral “producer” selects 

the level of inputs that maximizes expected net benefits subject to a set of resource 

constraints. According to 2
nd

 welfare theorem in economics, the input allocation that 

clears the market is efficient for the society under certain assumptions. Specifically, the 

model covers agricultural production for 10 major crops (alfalfa hay, barley, canola, 
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corn, durum wheat, oats, sorghum, soybeans, spring wheat, and winter wheat) in 427 

counties in the MRB region. 

In brief, the objective function maximizes consumers’ and producers’ surplus 

(McCarl and Spreen 1980). The general form for the objective function is: 

(3.11)
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where items typed in lower case represent parameters, while those typed in upper case 

are variables that are solved in the model. In this specification, the probability 

distribution iprob  represents the probability of DCV phase combination i , which is 

altered given the three settings for DCV information. icP  in (3.11) is the inverse demand 

function by crop c  and DCV phase combination i  such that price is a function of the 

quantity demanded icAGQ . Since the inverse demand curve is non-linear, the integration 

process is approximated into different linear steps following Adams et al. (1996) for the 

sake of calculation simplicity. The second part in the parenthesis of (3.11) represents the 

total production cost. Note that the production cost differs by DCV phase combination i . 

In particular, tunitcost  is the unit cost per acre that is required to produce crops for each 

input item t . clrtinputq  is the baseline quantity of input use for each crop c  under a 

practice l  (  ,l dryland irrigated ) in a county r  using management strategy input t . 

t  is the input-quantity elasticity for each input t  that illustrates the quantity of input 

change in response to crop yield change. icrdcvimpact  indicates yield variation for crops 

c  in counties r  corresponding to each DCV phase combination i . clrACRE  is the crop 
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acreage variable by crop c , practice l , and county r . The rationale of this supply part is 

that DCV affects crop yields, which in turn alters production costs and ultimately shifts 

crop mixes and the resultant supply. 

A set of constraints is needed to make the problem setting feasible. First, the 

constraint specifying the market clearing condition such that the market demand equals 

the supply is presented as: 

(3.12) ,,  ,ic clr i r

rl

clAGQ ACRE yiel i cd   

where iclryield  is the crop yield contingent on DCV phase combinations i  for each crop 

c , practice l , and county r . In each probability setting, the decision variable clrACRE  is 

not contingent on DCV phase combinations i .
10

 However, the solved clrACRE  could 

vary across DCV phase combinations under the conditional or perfect information, since 

the probability settings in the model change. 

Since crop land is a limited resource, land constraints are needed to restrain the 

expected utility maximization problem. The following constraint limits the total dryland 

and irrigated crop acres plus the acres converted from irrigated land to dryland as a way 

of adaptation. The irrigated land balance is given as: 

(3.13) 
, ,  ,cr irrigated r

c

rACRE availirr IRRTODRY r    

                                                 
10

 This setup is an alteration from Fernandez (2013), in which the decision variable is dependent on DCV 

phase combinations in three information cases. 
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where ravailirr  is irrigated land availability by county r ; rIRRTODRY  is the acres of 

irrigated land converted to dryland in each county r . Similarly, the dryland balance is 

specified as: 

(3.14) 
, ,  ,cr dryland r

c

rACRE availdry IRRTODRY r    

where ravaildry  is the dryland availability in each county r . For land conversion, the 

total land converted from irrigated cannot be greater than the irrigated land availability. 

Thus, we need another constraint, that is, 

(3.15) ,  .r rIRRTODRY availirr r  

To avoid extreme crop acre solutions, we follow the method in McCarl (1982) to 

specify the crop mix constraint such that the crop acre is a convex combination of the 

historical crop data. This approach guarantees that the aggregate level model is able to 

generate realistic results without knowing details of resource at the farm level (McCarl 

1982). The crop mix constraint is represented as: 

(3.16) , , ,,  clr clry lry

y

ACRE mixdata CROP l rM X cI    

where 
clrymixdata  represents crop mix data by crop c , practice l , county r , and year y ; 

lryCROPMIX  is the crop mix variable for each practice l , county r , and year y , which 

is interpreted as the contribution factor from historical harvests. 

Hence, (3.11)-(3.16) constitute the stochastic programming model for the 

agricultural market in the MRB, in which the form of probability distribution iprob  



 

62 

 

represents farmers’ belief about future DCV phase combinations when they make 

cropping decisions. 

3.3.3 Model Implementation 

The model is run 17 times under different probability settings to generate 

consumers’ and producers’ surplus estimates and crop land allocations that can be used 

to assess the value of DCV information and the corresponding adaptations. First, under 

the uninformed DCV case, the model is run once and generates a set of decision 

variables and the expected consumers’ and producers’ surplus. This yields 
0W  from 

equation (3.1). 

In the conditional DCV information case, the model is run 8 times to simulate 

agricultural production for the following year with the transition probabilities 

conditional on the DCV phase combination in the current year. This yields 1

iW  from 

(3.5) for 1, ,8i  . Subsequently, the value of information is calculated as the expected 

value over the 8 realized objective values minus the surplus level under the uninformed 

case, as shown in (3.7). 

Under the perfect DCV information case, the model is solved 8 times with 

probability one for each perfectly forecasted DCV phase combination and zeros for the 

rest. This yields 2

iW  from (3.5) for 1, ,8i  . The value of information in this case is 

also the expected value of the 8 objective values minus the surplus level under the 

uninformed case, as shown in (3.8). 
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3.4 Data 

The data used in the model were obtained from multiple sources. Data associated 

with input cost and demand integration in (3.11) were adapted from the latest version of 

the Forestry and Agriculture Sector Model (FASOM) (Beach et al. 2010). The DCV 

impact data on crop yields were obtained from Soil and Water Assessment Tool 

(SWAT) model simulations.
11

 The crop yield data in (3.12), crop acreage data such as 

dryland and irrigated land availability in (3.13)-(3.15), and crop mix data in (3.16) were 

collected from USDA Quickstats.
12

 The historical data of DCV phases for constructing 

frequency-based and Markov chain transition probabilities were attained from Fernandez 

(2013). 

3.5 Results and Discussions 

3.5.1 Markov Chain Transition Probability Matrix 

The Markov chain transition probability matrix depicting the likelihood of 

movements between phase combinations is estimated using maximum likelihood 

                                                 
11

 I thank Katherin Mendoza who works on SWAT model for providing the DCV impact data on crop 

yields. 
12

 For those counties having crop mix data but not DCV impact data, we use averages of DCV impacts at 

the agricultural reporting district level. Also, the number of dryland crops in the model is greater than the 

number of crops studied for DCV impacts in in the SWAT model. Then we use crop proxy method to 

match crops with similar growing patterns. Particularly, we use the DCV impact data of spring wheat for 

durum wheat and corn for canola. 
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estimation over historical DCV phase data. The probability transitioning from phase 

combination i  to j  is estimated as: 

(3.17) 

1

,ˆ i

s

j

j

ij

ij

n

n







 

where 
ijn  is the number of observations for DCV phase combination transitioning from 

i  to j . 

The estimated Markov chain transition matrix is displayed in Table 3-1. Each row 

indicates the probability distribution of alternative DCV phase combinations in the next 

year given this year’s specific DCV state. For example, if the DCV phase combination in 

this year is PDO+ TAG− WPWP−, then the probability of DCV phase combination in 

the next year is 0.400 for PDO+ TAG− WPWP−, 0.400 for PDO− TAG+ WPWP−, and 

0.200 for PDO− TAG− WPWP+, as indicated by the first row of Table 3-1. The 

summation of each row should equal one. 

Table 3-1: Markov chain transition probability matrix for DCV phase combinations 

 

PDO+ 
TAG− 

WPWP− 

PDO− 
TAG+ 

WPWP− 

PDO− 
TAG− 

WPWP+ 

PDO+ 
TAG+ 

WPWP− 

PDO+ 
TAG− 

WPWP+ 

PDO− 
TAG+ 

WPWP+ 

PDO+ 
TAG+ 

WPWP+ 

PDO− 
TAG− 

WPWP− 

PDO+ TAG− WPWP− 0.400 0.000 0.000 0.400 0.000 0.000 0.000 0.200 

PDO− TAG+ WPWP− 0.000 0.333 0.333 0.000 0.000 0.333 0.000 0.000 

PDO− TAG− WPWP+ 0.000 0.000 0.143 0.000 0.000 0.571 0.143 0.143 

PDO+ TAG+ WPWP− 0.300 0.000 0.000 0.300 0.100 0.100 0.200 0.000 

PDO+ TAG− WPWP+ 0.000 0.000 0.000 0.200 0.400 0.000 0.200 0.200 

PDO− TAG+ WPWP+ 0.000 0.067 0.067 0.000 0.067 0.400 0.067 0.333 

PDO+ TAG+ WPWP+ 0.000 0.000 0.286 0.286 0.000 0.143 0.286 0.000 

PDO− TAG− WPWP− 0.000 0.091 0.182 0.182 0.091 0.182 0.000 0.273 

Note: The rows represent the DCV phase combinations in the current period, while the columns represent those in the following 

period. 
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3.5.2 Model Results 

3.5.2.1 Value of DCV Information 

The stochastic programming model was used to make runs under each of the three 

information cases. This involves modifying the probability settings iprob  in (3.11). The 

difference between the uninformed case, the conditional case, and the perfect 

information case is the value of DCV information. These values are calculated according 

to (3.7) and (3.8), and the results are presented in Table 3-2. Note that the values 

presented in the table are annual terms. 

Table 3-2: Expected benefits and value of DCV information 

DCV information 
Expected CS+PS 

(billion $) 

Improvement over 

uninformed case (%) 
VOI (million $) 

Uninformed case 35.41 − − 

Conditional case 35.43 0.05 28.83 

Perfect case 35.48 0.20 82.29 
Note: CS+PS stands for consumers’ surplus and producers’ surplus. 

 

Table 3-2 shows the total expected consumers’ and producers’ surplus do not vary 

substantially, as indicated in the second column. The percentage changes of expected net 

benefits in the three cases are relatively small (0.05% and 0.20% respectively) compared 

to the magnitude of the expected values, as shown in the third and fourth column. The 

results imply that different DCV information slightly changes consumers’ and 

producers’ surplus. 

Regarding the value of DCV information, we estimate that compared to the 

uninformed case, the conditional DCV information would be worth $28.83 million 

annually, while the perfect DCV information would yield $82.29 million. The perfect 
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information case generates value of information almost three times higher than the 

conditional information case, although the magnitude of increment is much less than the 

level of expected welfare measures. 

3.5.2.2 Crop Acreage Shifts 

Farmers can adjust land allocations of different crops to adapt to upcoming climate 

conditions based on different DCV information. The crop acreage results from the model 

provide insight into the potential adaptation strategies in terms of crop adjustment. The 

total acreage for 10 major crops in the MRB under the historical frequency probability 

case is presented in Table 3-3. By only knowing the probability distribution for 8 DCV 

phase combinations, farmers choose a crop mix that maximizes expected net benefit. 

This part of results serves as a base for investigating crop acreage shifts under the 

improved DCV information scenarios. As illustrated in Table 3-3, corn, soybeans, and 

wheat are the most planted crops in the MRB regions. 

Table 3-3: Total crop acreage allocations under the uninformed DCV case 

Crop Acreage (acre) 

Alfalfa hay 4,926,819 

Barley 377,169 

Canola 356,059 

Corn 25,830,785 

Durum wheat 1,072,096 

Oats 340,645 

Sorghum 229,113 

Soybeans 15,948,820 

Spring wheat 5,419,238 

Winter wheat 4,493,661 
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Table 3-4 reports the percentage changes of crop acreage under the conditional 

information case compared to the uninformed case crop mix in Table 3-3. The results 

show possible adaptations for the next year that could occur under the knowledge of 

climate and yield consequences given the specific DCV phase combination realized in 

the current year. For example, if farmers know that the DCV phase combination in the 

current year is PDO+ TAG− WPWP−, the crop acreage mix would change in a way 

indicated in the second column of Table 3-4 compared to the uniformed case. The results 

in Table 3-4 suggest that alfalfa hay, barley, and oats have greater magnitude of 

percentage changes in most DCV phase combinations than other crops. For example, 

under the PDO+ TAG− WPWP−, the crop acreage of barley increases by 14.24%. When 

the DCV phase combination in the current year is PDO+ TAG+ WPWP+, the possible 

acreage adjustment as adaptation is relatively small for all crops in the next year. 

Table 3-4: The percentage changes of crop acreage under the conditional information 

case compared to the uninformed case 

Crop 
PDO+ 
TAG− 

WPWP− 

PDO− 
TAG+ 

WPWP− 

PDO− 
TAG− 

WPWP+ 

PDO+ 
TAG+ 

WPWP− 

PDO+ 
TAG− 

WPWP+ 

PDO− 
TAG+ 

WPWP+ 

PDO+ 
TAG+ 

WPWP+ 

PDO− 
TAG− 

WPWP− 

Alfalfa hay -6.96 8.93 5.23 -4.84 -4.82 2.34 2.38 1.54 

Barley 14.24 -1.10 -2.35 13.55 13.01 -2.19 -0.69 -0.91 

Canola -2.52 2.21 -0.45 -1.50 -1.25 0.35 0.24 0.10 

Corn 0.90 -2.80 -2.30 0.61 0.86 -1.95 -0.26 -1.26 

Durum wheat 0.93 -2.12 -1.68 1.12 1.03 -1.40 -0.47 -1.45 

Oats 9.28 -12.23 -9.83 10.06 8.47 -11.31 -4.77 -7.44 

Sorghum -1.89 -5.18 -4.04 -2.24 -2.44 -1.25 -1.36 0.31 

Soybeans -0.77 0.92 0.54 -0.27 -0.63 0.26 0.29 -0.13 

Spring wheat 0.11 -0.55 -0.64 0.37 0.39 -0.30 -0.08 0.02 

Winter wheat 0.37 -0.94 -0.76 0.64 0.63 -0.82 -0.77 -0.87 
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When the DCV phase combinations are perfectly forecasted, the crop acreage is 

able to be optimally adjusted to suit the forthcoming climate event. The percentage 

changes of crop acreage under the perfect information case compared to the uninformed 

case are reported in Table 3-5. Furthermore, compared to the conditional information 

case in Table 3-4, the results show that the acreage changes for most crops are greater 

under the perfect information case. The results suggest that barley has the largest acreage 

change up to 16.29% under the DCV phase combination PDO+ TAG− WPWP−. Under 

the perfect DCV information, alfalfa hay, barley, canola, and oats have greater acreage 

shifts than other crops similar to the conditional information case. The results also show 

that the combination PDO− TAG− WPWP+ has relatively large impacts on crops under 

the perfect information case. 

Table 3-5: The percentage changes of crop acreage under the perfect information case 

compared to the uninformed case 

Crop 
PDO+ 
TAG− 

WPWP− 

PDO− 
TAG+ 

WPWP− 

PDO− 
TAG− 

WPWP+ 

PDO+ 
TAG+ 

WPWP− 

PDO+ 
TAG− 

WPWP+ 

PDO− 
TAG+ 

WPWP+ 

PDO+ 
TAG+ 

WPWP+ 

PDO− 
TAG− 

WPWP− 

Alfalfa hay -8.56 4.00 12.09 -7.91 -2.94 6.54 -3.23 -8.73 

Barley 16.29 -0.64 -1.63 16.09 15.15 -1.31 13.20 -0.34 

Canola -2.56 1.06 5.16 -2.98 -1.58 3.75 -1.19 -1.64 

Corn 1.04 -1.23 -2.63 0.62 -0.22 -3.52 0.59 -1.27 

Durum wheat 1.55 -1.62 -2.36 1.36 1.08 -3.15 0.89 -1.54 

Oats 12.22 -9.71 -14.43 10.66 8.34 -15.23 8.17 -5.34 

Sorghum -0.75 0.86 -10.87 -0.09 -0.32 -3.33 -0.71 -6.54 

Soybeans -1.24 1.04 0.37 -0.53 -1.04 1.65 -0.25 -0.46 

Spring wheat 0.40 -0.24 -0.09 0.28 0.43 -1.02 0.39 -0.39 

Winter wheat 0.84 -0.73 -1.12 0.81 0.73 -1.04 0.71 -1.19 
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3.5.2.3 Conversion to Dryland Agriculture 

The model also allows the amount of irrigated land to be converted to dryland as a 

way of adaptation.
13

 Since DCV affects crop yields, which in turn impacts the marginal 

return of dryland and irrigated land, thus a priori DCV information may help farmers 

decide whether to switch irrigated land. 

The acres of converted irrigated land under both the conditional and perfect 

information cases for 8 DCV phase combinations are displayed in Figure 3-1. The 

horizontal line in Figure 3-1 indicates that with only knowing the historical frequency of 

DCV phases, the amount of irrigated land converted to dryland is around five million 

acres compared to the model baseline. Under the conditional information case, less 

irrigated land is converted to dryland under the DCV phase combinations PDO+ TAG− 

WPWP−, PDO− TAG+ WPWP−, PDO− TAG− WPWP+, and PDO− TAG− WPWP−, 

compared to the uninformed case. If the perfect DCV information is obtainable, more 

irrigated land is converted in the DCV phase combinations PDO+ TAG+ WPWP− and 

PDO− TAG+ WPWP+ than the land conversion under the conditional information case. 

3.5.3 A Closer Look at the Marias Basin 

Section 3.5.2 presents model results for the whole MRB region. In this section, we 

focus on the Marias basin as a case study to examine the effects of DCV information in a 

sub-region of MRB. The Marias basin is an upper sub-basin of the whole MRB, which is 

                                                 
13

 In the model, we do not include the possibility of switching from dryland to irrigate land. In the MRB 

area, the water right is usually predetermined. Switching from dryland to irrigate land requires surface or 

underground water, which is usually unobtainable due to lack of water rights. 
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Figure 3-1: Irrigated land converted to dryland under the conditional and perfect 

information cases 

located in the central north Montana. The sub-basin is a major agricultural production 

area in Montana.
14

 The main crops grown in this area are: alfalfa hay, canola, spring 

wheat, and winter wheat, which are impacted by DCV. 

Table 3-6 reports crop acres for four major crops in the Marias basin under the 

uninformed DCV case. It shows that winter wheat has the largest number of acres, 

followed by spring wheat and alfalfa hay. It is interesting to note that when the DCV 

information is improved to the conditional case, crop acreage does not change across all 

DCV phase combinations. This may be due to the conditional DCV information is still 

too uncertain for the decision maker to make acreage adjustments. 

                                                 
14

 There are 14 counties in Montana entirely or partially located in the Marias river basin: Broadwater, 

Cascade, Chouteau, Gallatin, Glacier, Hill, Jefferson, Judith Basin, Lewis and Clark, Liberty, Meagher, 

Pondera, Teton, and Toole. 
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Table 3-6: Total crop acreage allocations for the Marias basin under the uninformed case 

Crop Acreage (acre) 

Alfalfa hay 52,041 

Canola 11,779 

Spring wheat 225,827 

Winter wheat 1,369,966 

 

Under the perfect DCV information, the percentage changes of crop acreage 

compared to the uninformed case for major crops are presented in Table 3-7. Most crops 

do not change under some phase combinations. However, the acreage of alfalfa hay is 

reduced by 61% when the DCV phase combination is perfectly predicted to be PDO+ 

TAG− WPWP−. The acreage of spring wheat and winter wheat slightly changes under 

the PDO− TAG+ WPWP+. In all, the Marias basin seems insensitive to DCV phase 

information in terms of crop acreage shift, even if crop yields are impacted by DCV. 

Table 3-7: The percentage changes of crop acreage in the Marias basin under the perfect 

information case compared to the uninformed case 

Crop 
PDO+ 
TAG− 

WPWP− 

PDO− 
TAG+ 

WPWP− 

PDO− 
TAG− 

WPWP+ 

PDO+ 
TAG+ 

WPWP− 

PDO+ 
TAG− 

WPWP+ 

PDO− 
TAG+ 

WPWP+ 

PDO+ 
TAG+ 

WPWP+ 

PDO− 
TAG− 

WPWP− 

Alfalfa hay -0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Canola 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Spring wheat 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 

Winter wheat 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

3.6 Conclusions 

The essay in this section reports on an investigation of the economic value of DCV 

information and corresponding adaptive decisions, given that crop supplies are affected 

by DCV phase combinations. This is done by specifying a conceptual decision-making 
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framework that evaluates the value of DCV climate and yield information. A 

mathematical programming model is used to evaluate potential changes in welfare and in 

turn the value of DCV information as well as the crop mix and management adaptations 

in the Missouri River Basin area. 

We find that more accurate DCV information slightly improves welfare compared 

to the magnitude of the welfare measure. This indicates that DCV information has little 

impact on welfare. Specifically, conditional DCV information, knowing the status of 

DCV in the current year, generates an annual value of $28.83 million more than the case 

of only knowing the historical frequency of DCV phase combinations. The perfect 

information results in an annual value of $82.29 million more than the uninformed DCV 

case. 

In terms of crop acreage adaptation, with the conditional DCV information, alfalfa 

hay, barley, and oats have greater percentage acreage changes in most DCV phase 

combinations than other crops. Specifically, under the DCV phase combination PDO+ 

TAG− WPWP−, the acreage for barley increases by 14.24% compared to the 

uninformed case.  The perfect information leads to greater acreage changes than the 

conditional DCV information. Also, irrigated land can be converted to dryland as a 

method of adaptation. The results show that the number of irrigated acres converted to 

dryland varies across DCV phase combinations under different DCV information cases. 
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4 MANAGEMENT EVALUATION FOR THE CHESAPEAKE BAY BLUE CRAB 

FISHERY: AN INTEGRATED BIOECONOMIC APPROACH
*
 

4.1 Introduction 

The essay in this section develops and applies a framework to evaluate management 

regulations within the Chesapeake Bay blue crab fishery. The blue crab fishery has 

experienced overexploitation for decades (Bunnell and Miller 2005; Miller et al. 2011). 

In response, management bodies in this region have implemented many management 

policies to jointly regulate the fishery. In general, many fishery management approaches 

involve a set of components like maximum total allowable catch, gear restrictions, 

limited seasons, selective season closures, fish size limits, and spatial closures (Smith, 

Zhang, and Coleman 2008; Anderson and Seijo 2010; Smith 2012). Historical evidence 

shows that some policy tools that intend to reduce fishing effort have resulted in a 

recovery in blue crab population (Pala 2010), and many have altered economic outcomes 

in other fisheries (Smith and Wilen 2003; Smith, Zhang, and Coleman 2008). 

The framework developed in this section is designed to simulate sustainable revenue 

and yield given a management scenario. In turn, we simulate a large number of cases for 

fishery policies on allowable crab harvest in terms of sex, size limit and season length. 

                                                 
*
 Reprinted with permission from “Management Evaluation for the Chesapeake Bay Blue Crab Fishery: 

An Integrated Bioeconomic Approach” by P. Huang, R. T. Woodward, M. J. Wilberg, and D. Tomberlin. 

2015. North American Journal of Fisheries Management 35(2):216-228, Copyright [2015] by Taylor & 

Francis. 
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We then use regression to summarize the marginal impacts of the policy settings on 

sustainable yield and revenue, respectively. 

To do this, a model with three components is used. The first component simulates 

growth, mortality, fecundity, and harvest for a fixed number of crabs by using the life 

history individual-based model, as developed by Bunnell and Miller (2005) and Bunnell, 

Lipton, and Miller. (2010). Therein, the fate of population is tracked over time by age, 

size, and sex instead of being treated as a uniform biomass (Tahvonen 2009; Smith 

2012). The individual-based model can be easily used to evaluate potential joint 

outcomes associated with a set of management policy components and this allows us to 

assess the effects of each policy component. 

The second component simulates the long-term sustainable stock of blue crabs 

given a management scenario. This uses equations from the Chesapeake Bay blue crab 

stock assessment model developed by Miller et al. (2011). This model is a statistically-

fitted population dynamics model that estimates the crab abundance and sustainable 

harvest levels of Chesapeake Bay blue crabs based on harvest and abundance survey 

data. 

The third part is an economic inverse demand model that relates Chesapeake Bay 

blue crab harvest to market prices and then calculates fishery revenue. This is 

specifically estimated for this study and differs from previous studies such as Bunnell, 

Lipton, and Miller (2010), as it incorporates cross commodity effects and allows us to 

investigate market relationships between crab categories in terms of size, sex, and shell 

status. 
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The model that integrates the three components is used to simulate long-term 

sustainable outcomes from a wide range of alternative fishery regulations involving 

season length, size limit, and sex limit. This work will extend the previous literature in 

several ways. First, Bunnell, Lipton, and Miller (2010) developed a similar model and 

applied it to the Chesapeake Bay blue crab fishery. We benefit from adopting the 

biological part in their model but extend the stock recruitment and economic 

components plus employ a Monte Carlo approach to investigate a wider variety of policy 

settings. In particular, we integrate the Miller et al. (2011) stock assessment model 

instead of using a fixed number of recruits. Also, we develop a multi-commodity 

demand model that captures between-category seasonal effects where the previous 

studies only looked at the commodities separately. Finally, we use regression to 

summarize the results then investigate the marginal effects of changes in each policy 

component. 

4.2 Literature Review 

When fisheries managers consider alternative policies, they often want projections 

of their outcomes. A variety of frameworks have been built to make such projections, 

including life history modeling (see Deacon 1989; Heppell et al. 2006; Smith, Zhang, 

and Coleman 2008; Tahvonen 2009; Tahvonen 2009; Diekert et al. 2010; Macher and 

Boncoeur 2010) and management strategy evaluation approaches (Dichmont et al. 2008; 

Needle 2008; Bastardie, Nielsen, and Kraus 2010; Jardim, Cerviño, and Azevedo 2010; 

Ives, Scandol, and Greenville 2013). Most studies of fishery policies focus on a specific 
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fishery and policy component, such as size limits for the California abalone fishery 

(Deacon 1989), season closure for the Gulf of Mexico gag fishery (Smith, Zhang, and 

Coleman 2008), and gear restrictions for the Bay of Biscay Nephrops fishery (Macher 

and Boncoeur 2010). 

Fisheries models simulate individual cohorts and long-term populations. The 

individual-based cohort modes are standard tools for fisheries management (Smith, 

Zhang, and Coleman 2008). They are types of life history model that simulate the fate of 

individual fish with a sequence of probabilistic procedures. The individuals are treated as 

heterogeneous groups in terms of size, sex, and shell status. This feature is consistent 

with the recent fisheries economics literature that uses age-structured models (Tahvonen 

2009; Smith 2012). 

There have been numerous stock assessments for the Chesapeake Bay blue crab 

fishery (Rugolo et al. 1997; Miller and Houde 1999; Miller 2001; Fogarty and Miller 

2004; Miller et al. 2005; Miller et al. 2011). To inform actual fisheries management, a 

fishery model should be based on the specific biological system (Diekert et al. 2010). 

Hence, strong bioeconomic models require a solid biological base (Smith, Zhang, and 

Coleman 2008). A stock assessment model that determines maximum sustainable yield 

based reference points can provide this foundation (Maravelias et al. 2010; Ives, 

Scandol, and Greenville 2013). 

In addition to analyses of the biological characteristics of the fishery, there is rich 

literature on examining the economic consequences of fishery regulations. Smith and 

Wilen (2003) and Smith, Zhang, and Coleman (2008) argue that isolating economic 
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incentives from fisheries policy making may lead to inadequate and poorly performing 

policies. Smith, Zhang, and Coleman (2008) conclude that fishers’ behavioral response 

to seasonal closures undermines the effects of biological controls. Homans and Wilen 

(2005) study the rent dissipation problem associated with fisheries regulations and find 

that rents are dissipated due to substantial inputs raise costs as well as inferior product 

types that reduce revenues. 

4.3 Background on the Chesapeake Bay Blue Crab Fishery 

Blue crab is an iconic species in the Chesapeake Bay and the greater Mid-Atlantic 

region. The harvest for this species in the Chesapeake Bay is the source of 50% of the 

nation’s blue crab harvest (Miller et al. 2011). Economically, the blue crab fishery in the 

Chesapeake Bay generates $46-103 million annually, being one of the most profitable 

regional commercial fisheries (Bunnell, Lipton, and Miller 2010). 

The Chesapeake Bay Blue crab stocks have declined in recent decades, to a large 

extent, due to overexploitation (Lipcius and Stockhausen 2002; Aguilar et al. 2008; 

Miller et al. 2011). To cope with this overfishing problem, Maryland, Virginia, and the 

Potomac River Fisheries Commission implemented a set of management policies since 

2001 (Miller 2001). The policy components used include a closed winter season to 

protect crab recruitment, minimum size limits, and a sex-specific fishing season length. 

In recent years, the management strategy has leaned towards protecting mature female 

crabs by temporarily closing female fishing activities within a fishing season (Bunnell, 

Lipton, and Miller 2010). 



 

78 

 

The blue crab market in Chesapeake Bay has prices for crabs in five categories: #1 

males, #2 males, females, mixed, and soft and peeler crabs (SP hereafter). The #1 males 

are larger than #2 males. Females are not graded by size; usually they are smaller than 

#1 males but are similar in size to #2 males. Blue crabs that are less marketable and 

gender unclassified are reported as “mixed” in Maryland, but “unclassified” in Virginia. 

Crabs in the “mixed” market category are similar in size to females. Soft shell and 

peelers category is the most valuable category in the market. 

4.4 The Integrated Bioeconomic Model 

Figure 4-1 displays the overall modeling framework. We treat the Chesapeake Bay 

blue crab as independent from other populations with harvested crabs only sold in the 

Chesapeake Bay region. There are three model components. The first is an individual-  

 

Figure 4-1: Flowchart depicting the key components and paths of the integrated model 
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based model that simulates the life history of blue crabs and the corresponding annual 

fishing mortality rate given a set of policies. The second component is a stock 

assessment model that estimates the long-term sustainable yield given the fishing 

mortality rate realized in the individual-based model. The third and last component is an 

economic demand model that predicts commodity prices as well as revenue associated 

with the resulting sustainable yield. In the next sections, we provide details on each 

model component and how they are integrated. 

4.4.1 Individual-based Model 

The first component of the integrated model is an individual-based model developed 

by Bunnell and Miller (2005) and Bunnell, Lipton, and Miller (2010). The model is a 

sex-specific, per-recruit model that numerically simulates growth, maturity, natural 

mortality, and harvest of blue crabs on a daily basis over two years. For each 

management scenario, the model simulates the fate of a cohort of individuals from 

January 1
st
 of the first year and ends at December 31

st
 of the second year. Each 

individual represents a large number of blue crabs. Whether an individual matures and 

how much it grows are stochastically determined to reflect the life history of such 

individual. Once blue crabs reach a specific length threshold, they are ready to be 

harvested. 

For each day, the number of blue crabs harvested or that die in a cohort by sex is 

determined by fishery effort which is influenced by restrictions, crab size, the natural 

mortality rate, and the nominal fishing mortality rate. The model simulates each 
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management scenario with a fixed number of recruitment and we assume there is no 

behavioral response to fishery policies by fishers. Hence, we select a constant nominal 

fishing catch rate for all management scenarios.
15

 This nominal fishing catch rate is the 

same regardless of management scenarios but realized mortality varies based on the 

allowable removals under the fishery policies on age, size, sex, and season length. 

We run the individual-based model multiple times, altering fishery policies in each 

run. At the end of each run, realized age- and sex-specific fishing mortality rates are 

calculated, for later use in the stock assessment model. The rates are calculated using 

Baranov’s catch equation as is done in Quinn II and Deriso (1999) and Bunnell and 

Miller (2005): 

(4.1) 
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where stC  equals the total number of crabs harvested for each sex s ,  ,s m f , and 

each age t ,  0,1t . Blue crabs in the first year represent the age-0 class, while crabs in 

the second year represent the age-1 class. 0

stN  represents the number of sex-specific blue 

crabs alive at the beginning of each fishing season; T

stN  indicates the number of blue 

crabs alive at the end of each year. The realized fishing mortality rate stF  is the key 

                                                 
15

 We select a value 2.9 for the nominal fishing mortality, which was also used in Bunnell, Lipton, and 

Miller (2010). A subsequent sensitivity analysis is conducted for different choices of such nominal fishing 

mortality rate. We find that the effect of different policies on sustainable revenue is quite robust. However, 

sustainable yield is more sensitive to specific value of fishing mortality rate, which is generally difficult to 

know in advance. 
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parameter out of the individual-based model and is fed into the later stock assessment 

model. 

4.4.2 Stock Assessment Model 

The second phase feeds the results from the first step into equations we adapt from 

the blue crab stock assessment model developed by Miller et al. (2011). Miller et al. 

(2011) fit a statistically-fitted population dynamics model that estimates the recruitment, 

total abundance, total fishing mortality rates, and sustainable harvest levels of the 

Chesapeake Bay blue crabs based on real harvest data and independent stock surveys 

conducted annually in the Chesapeake Bay. The model predicts the level of equilibrium 

sustainable harvest given the realized sex- and age- specific fishing mortality rate. 

In our framework, we take the parameters estimated from the stock assessment 

model, together with the realized fishing mortality rates from the individual-based 

model, to estimate sustainable yield associated with each management scenario. The 

formulae for calculating sustainable yield are adapted from Miller et al. (2011): 

(4.2) 
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where sSPR  is sex-specific spawners per recruit: 
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In the above two equations, the fishing mortality rates are the realized parameters 

from the first individual-based model component for both sexes and ages, denoted as 

0sF  and 1sF , where  ,s m f . Other parameters are directly drawn from Miller et al. 

(2011). The values and descriptions of the key parameters in (4.2) are presented in Table 

4-1. 

Table 4-1: Values of key parameters from the blue crab stock assessment model 

Parameter Description Value 

Predetermined   

s
x  Sex ratio (female/male) at recruitment 0.520 

  Proportion of mortality before spawning 0.370 

M  Natural mortality rate 0.900 

Estimated   
  Stock-recruitment parameter 26.673 

  Stock-recruitment parameter 0.052 

R
  Standard deviation for recruitment 0.339 

Source: Miller et al. (2011). 

4.4.3 Inverse Demand Model 

To add an economic element to our analysis, an inverse demand model that predicts 

prices for different catch levels is included (Huang 2015). Barten and Bettendorf (1989) 

indicates that inverse demand systems are appropriate for products that have highly 

inelastic supply in the short term, such as fish. Hence, we choose the Inverse Almost 

Ideal Demand (IAIDS) model developed by Eales and Unnevehr (1994) as our demand 

model.
16

 The IAIDS model is derived from economic theory and empirically suitable for 

exploring the structure of a market that consists of multiple commodities. 

                                                 
16

 The IAIDS is a good fit for our problem for two reasons. First, the IADS model retains most of the 

desirable theoretical properties held by the AIDS model (Deaton and Muellbauer 1980; Eales and 
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This demand model, therefore, differs from Bunnell, Lipton, and Miller (2010), 

which is also an inverse demand model for the Chesapeake Bay blue crab fishery that 

regresses market prices for four market categories on quantities, seasonal dummies, and 

disposable income. However, their demand model is constructed with constant slopes 

and lacks cross-price effects that allow us to investigate market relationships between 

categories. 

Demand for fish usually exhibits seasonality due to variation in consumption and 

the effects of the species’ biological characteristics on supply. Our demand analysis 

modifies the IAIDS model to include seasonal effects. The estimated system of 

equations is: 

(4.3) ln ln ,i i im ij jm

m

i

j

w D q Q         

where iw  is the expenditure share for commodity i ;
17

 ln jq  denotes the logarithm of 

quantity for the j
th

 commodity; mD  is the seasonal dummy for the season m ; and the 

translog term ln Q  is represented as the following equation: 
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Unnevehr 1994). Second, the nonlinear structure provides a way of studying seasonal behavior in the fish 

market. 
17

 Expenditure share for commodity i  is calculated as: 
1i i i j j

n

j
w p q p q


  , where 

i
p  is price and 

i
q  is 

quantity. 
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Equation (4.3) and (4.4) together form a nonlinear system of equations.
18

 Following 

Eales and Unnevehr (1994), the estimated parameters ( , , ,    ) are used to calculate 

the scale and price flexibilities, the percentage change in price in response to a 

percentage change in quantity. We extend their results by allowing the flexibilities to 

differ by season: 

(4.5) 
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where 
ij  is the Kronecker delta ( 1ij   if i j ; otherwise 0ij  ); 

ijmf  denotes 

seasonally price flexibility, while imf  denotes seasonal scale flexibility. Note that the 

flexibilities are dependent on the levels of expenditure share imw  and quantity ln kmq . 

Here, we take seasonal averages of imw  and ln kmq  from the sample data as 

approximations. These estimated flexibilities are used to predict price changes in 

response to quantity changes resulting from fishery policy alterations.
19

 

                                                 
18

 Accounting and economic restrictions can be imposed and tested in terms of estimated parameters. 

These restrictions are expressed as: 1
ii

  , 0
iji

  , 0
ii

  , 0
imi

   (adding-up); 0
ijj

   

(homogeneity); ,  
ij ji

i j     (symmetry). In addition, there is difficulty in estimating the parameter 
0

  

in the nonlinear model (Deaton and Muellbauer 1980; Moschini, Moro, and Green 1994) . We set 
0

  to 

zero following Moschini, Moro, and Green (1994). 
19

 The price of a good is affected by not only own quantity changes but also quantity changes of other 

commodities in the same market. We assume that the effects of all commodities on the price of a good are 

multiplicative. In addition, to rule out extreme cases with very large simulated quantities, we also assume 
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4.4.4 Model Implementation 

The integrated model investigates the sustainable revenue and yield outcomes for a 

large number of size, sex and season length regulations that are randomly generated by 

the Monte Carlo method. We first generate a large number of management scenarios by 

randomly varying each policy component within a reasonable range. The sampled 

management scenarios are evaluated in the integrated model sequentially. 

For each management scenario, the integrated model generates the same set of 

random numbers that are used in the stochastic process for simulating the life history of 

blue crabs.
20

 Thus, the sustainable outcomes out of the integrated model are comparable 

in levels. The following describes the detail on how we implement the model. 

For a single management scenario, the individual-based model simulates the life 

history of all individual crabs over two years. At the end of simulation, the model 

predicts age- and sex-specific blue crabs harvests. According to the realized harvest 

outcomes, we calculate fishing mortality rates for both sexes and ages according to (4.1). 

Given the estimated parameters from the stock assessment model and the realized 

fishing mortality rates from the individual-based model, we estimate the annual 

sustainable yield according to (4.2). In this step, we decompose the annual sustainable 

yield into monthly sustainable yield over two years for each category based on the 

proportion of category harvests from the individual-based model. The final monthly 

                                                                                                                                                

that the prices are predicted within reasonable bounds that are set as 50% up and down of the maximum 

and minimum monthly prices from the fishery data. 
20

 The sensitivity analysis is conducted by using different random seeds in the process of generating 

random numbers. The results are essentially the same for a specific management scenario. 
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sustainable yield is the summation of sustainable yield in the same month of first year 

(age-0 crabs) and second year (age-1 crabs). 

The monthly prices for all market categories are predicted by the demand model, 

given the realized sustainable yield. Since we use the estimated flexibilities to explore 

how price changes in response to quantity changes, we need to specify a base scenario 

with prices and quantities. We choose monthly prices in 2007 from the market data as 

our base prices. For base quantities, we choose a specific simulated scenario that 

generates monthly sustainable yield. Because the predicted prices are compared to the 

base, the sustainable revenues are presented in relative terms. 

4.4.5 Performance Measures 

Two measures are chosen to evaluate the relative performance of different fishery 

policy components: sustainable yield and sustainable revenue. Sustainable yield is 

selected because it assesses biological equilibrium outcomes of different fishery 

management scenarios. Sustainable revenue measures the ability of policy components 

to achieve economic outcomes while maintaining yield at sustainable levels. 

Note that these two measures are not ideal performance measures. First, these 

measures do not account for dynamic features due to the model structure and a lack of 

discount rate. Second, sustainable net revenue would be a better criterion for measuring 

economic outcomes compared to sustainable revenue, since costs to the industry are 

likely to vary significantly across different policies. For instance, vessel fuel 

consumption varies across fishing season closures. Unfortunately, we do not have a 
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suitable dataset to estimate costs associated with the blue crab policies and thus assume 

costs are constant. This could be a future study if a dataset was available. Finally, for the 

current analysis, we only focus on the suppliers’ side of the benefits evaluation without 

considering differences in consumers’ surplus. 

The simulated policies and sustainable yields and revenues are then evaluated with 

regression methods. The sustainable yield and revenue are separately regressed on a set 

of policy variables. The performance of each policy component is represented by the 

resulting coefficients. 

4.5 Results and Discussion 

4.5.1 Estimation Results from the Demand Component 

We estimate the demand for five market categories of blue crab with the nonlinear 

seemingly unrelated regression method.
21

 The demand estimation uses monthly data on 

harvest from 1994 to 2007. That harvest data obtained from the Maryland Department of 

                                                 
21

 To avoid singularity problem, an equation has to be dropped for estimation. The coefficients of this 

equation are recovered from the adding-up constraint. The system estimates are not invariant to the deleted 

equation in the presence of serial correlation when dealing with time series data. To test for serial 

correlations, the Durbin-Watson (DW) statistics are calculated for four estimated equations. The test 

statistics range from 1.656 to 2.091, which are all higher than the lower critical value, 1.539, at the 5% 

significance level. It indicates that there is little evidence showing severe serial correlation in the residuals 

for our demand model. Moreover, the theoretical restrictions, homogeneity and symmetry are tested by 

likelihood ratio (LR) test. The LR test results reject both the homogeneity (
2

24.61  ) and symmetry (
2

33.74  ). Hence, our subsequent flexibilities are calculated based on the results without economic 

restrictions. 
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Natural Resources (MDNR) are recorded fishers log books. Monthly price data are 

obtained from the results of the MDNR monthly survey of seafood dealers.
22

 

Since it is not straightforward to interpret parameters directly estimated from (4.3) 

and (4.4), the coefficient estimates are presented in Table B-1 in Appendix E. The 

season-varying flexibilities according to (4.5) and (4.6). The flexibility estimates are 

presented in Table 4-2. 

The scale flexibility is interpreted as the percentage change in a normalized price 

(i.e., price divided by expenditure) due to a scale expansion for all commodities (Park 

and Thurman 1999). A commodity is classified as a necessity good if its scale flexibility 

is less than -1, or defined as a luxury good if greater than -1, following Eales and 

Unnevehr (1994). Blue crabs in the Chesapeake Bay appear to be necessities for all 

categories, except for soft and peelers. 

Demand for a commodity is said to be flexible if the own-price flexibility is 

negative and greater than one in absolute value (Eales and Unnevehr 1994). The results 

show that most own-price flexibilities in three seasons are less than one in absolute value 

and have expected signs, indicating inflexible demand for these market categories. This 

means that a 1% increase in blue crab quantities results in less than 1% decline in 

corresponding prices. However, there are some unexpected results for own-price

                                                 
22

 Since there is no category-specific data for Virginia, we assume the demand structure of blue crab in 

Maryland is representative for Chesapeake Bay, as in Bunnell, Lipton, and Miller (2010). In the dataset, 

the prices are converted to the real prices by the consumer price index (CPI) with the base CPI = 100 in 

1982. The monthly quantity and price data range from April to November for each year. To account for 

seasonality, we group April and May as Spring, June to August as Summer, and September to November 

as Fall. 
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Table 4-2: Seasonal flexibilities for five categories in the Chesapeake Bay blue crab market 

Quantity 

Change 

#1 Male Price Change #2 Male Price Change Female Price Change SP Price Change Mixed Price Change 

Spring Summer Fall Spring Summer Fall Spring Summer Fall Spring Summer Fall Spring Summer Fall 

#1 Male -0.624*** -0.705*** -0.655*** -1.017*** -0.524*** -0.780*** -0.443*** -0.579*** -0.194*** -1.185*** -0.170 -0.614 -0.571** -0.451** -0.537** 

 (0.085) (0.070) (0.082) (0.233) (0.109) (0.158) (0.135) (0.160) (0.051) (0.313) (0.185) (0.723) (0.246) (0.188) (0.223) 

#2 Male -0.006 -0.014 -0.016 0.147 -0.448*** -0.448*** -0.127* -0.166** -0.054** -0.058 -0.048 -0.218 0.035 0.027 0.033 

 (0.034) (0.028) (0.033) (0.108) (0.052) (0.052) (0.067) (0.082) (0.027) (0.054) (0.070) (0.258) (0.117) (0.092) (0.110) 

Female -0.167*** -0.155*** -0.227*** -0.067 -0.042 -0.107 -0.041 0.168* -0.626*** -0.236*** -0.305*** -0.701* -0.158 -0.125 -0.149 

 (0.041) (0.033) (0.039) (0.125) (0.061) (0.090) (0.076) (0.095) (0.032) (0.071) (0.095) (0.364) (0.132) (0.104) (0.126) 

SP -0.199*** -0.135*** -0.135*** -0.308*** -0.117*** -0.143*** -0.224*** -0.234*** -0.070*** -0.481*** -0.390*** 1.224*** -0.009 -0.006 -0.006 

 (0.033) (0.027) (0.031) (0.093) (0.038) (0.050) (0.055) (0.056) (0.016) (0.062) (0.092) (0.386) (0.094) (0.059) (0.061) 

Mixed -0.049 -0.042 -0.045 0.092 0.045 0.072 -0.123* -0.151* -0.048* 0.061 0.088 0.301 -0.372*** -0.505*** -0.410*** 

 (0.037) (0.030) (0.035) (0.118) (0.057) (0.083) (0.072) (0.089) (0.029) (0.059) (0.076) (0.280) (0.126) (0.099) (0.118) 

Scale -1.136*** -1.118*** -1.141*** -1.216*** -1.105*** -1.155*** -1.104*** -1.128*** -1.042*** -0.674*** -0.521*** 1.046*** -1.004*** -1.003*** -1.003*** 

 (0.015) (0.013) (0.016) (0.056) (0.027) (0.040) (0.035) (0.044) (0.014) (0.018) (0.027) (0.113) (0.062) (0.049) (0.058) 

Note: *** denotes 1% significance; ** denotes 5% significance; * denotes 10% significance. Standard errors are presented in parentheses. 
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flexibilities that are greater than zero, such as females in summer (0.168), and soft and 

peelers in fall (1.224). 

For cross-price flexibility, a negative number indicates goods are substitutes, while 

a positive number denotes complements. The cross-price flexibilities show relationships 

between products. All significant cross-price flexibilities are negative, which indicates 

that the five blue crab market categories are substitutes over all three seasons. 

4.5.2 Simulation Results from the Integrated Model 

For our analysis, we wish to see the effects of alternative settings of the policy limits 

and wish to run the modeling system across a wide variety of these. This is done by 

simulating a large number of cases then fitting a summary equation with which we can 

investigate the effects of policy variations. We do this by running the simulation under a 

range of random cases for the policy limits on male and female crab size, season start 

and end dates, a possible mid-season closure for females. The ranges for the random 

items are reported in Table 4-3 and we used a uniform distribution across the range for 

each. For example, the fishing start date for males is randomly generated between March 

14 and April 14, as shown in the first row of Table 4-3. 

The simulated characteristics of the female crab season differ from those for males. 

Female fishing is allowed to be closed temporarily during a season. This type of policy 

was implemented by Maryland regulators in 2009. In our simulated scenarios, we allow 

the female fishing season to be closed never, once, or twice. The Monte Carlo procedure 
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Table 4-3: The range for randomly generated policies from the Monte Carlo method 

Policy Upper bound Lower bound Chance 

Start-Date – M March 14 April 14 – 

End-Date – M September 29 December 15 – 

Start-Date – F March 14 April 14 – 

End-Date – F October 26 December 15 – 

No female season closure – – 50% 

One female season closure – – 20% 

Two female season closure – – 30% 

First female season closure days (day) 20 60 – 

Second female season closure days (day) 10 30 – 

Change male and female min size limit (%) – – 50% 

Initial Min Size Limit – M & F0 (mm) 120 130 – 

Changed Min Size Limit – M & F0 (mm) 130 140 – 

Change peeler min size limit (%) – – 50% 

Initial Min Size Limit – Peeler (mm) 75 85 – 

Changed Min Size Limit – Peeler (mm) 85 95 – 

Min Size Limit – Soft (mm) 80 95 – 

Max Size Lim – F1 (mm) 140 160 – 

Min Size Lim – F1 (mm) 150 170 – 

 

first decides whether and how many times the fishing season is closed, and then 

randomly generates the length of closures. 

For the minimum size limit for males and immature females, it can be either the 

traditional range - 120mm and 130mm or a larger range 130mm and 140mm after July 

15. Peeler crabs minimum limits have the similarly setting. The minimum and maximum 

size limits for mature females are separately generated within their own ranges. 

We consequently generate 4,000 sets of simulation results and in turn estimate a 

regression that allows us to develop estimates of the marginal importance of each policy 

component of the management scenario set. Plots of the revenue and sustainable yield 

from these runs appear in Figure 4-2. It shows that the management scenarios with 

varying policies generate a wide range of sustainable yield and revenue combinations. 
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Figure 4-2: Sustainable yield and revenue for 4,000 simulated scenarios 

 

Figure 4-3: Clustered simulated scenarios based on the policy component of mature 

female size limit 
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Figure 4-2 clearly shows that the simulated scenarios results fall into two groups. 

And what divides the two groups basically is whether there is effective minimum size 

limit for mature females, as presented in Figure 4-3. The scenarios with minimum size 

limits, i.e., sizes of harvestable female crabs must be greater than the limit, lead to lower 

levels of sustainable yield, as shown with green dots. The scenarios with maximum size 

limits, i.e., sizes of harvestable female crabs must be less than the limit, result in higher 

sustainable revenues on average compared to scenarios without size limits. 

The other results are not so apparent. Herein, we summarize them using regression 

with the dependent variables being sustainable yield and sustainable revenue and the 

independent variables being the settings of the policy components considered in our 

model. The regression results are presented in Table 4-4. The estimated coefficients can 

be interpreted as marginal effects of an alteration in the policy components from the base 

levels on the outcomes. Since sustainable yield and revenues are relative numbers; the 

absolute magnitudes of coefficients do not represent real values. The interpretation of 

Table 4-4 by policy is discussed below. 

4.5.2.1 Fishing Season Length 

Regulations on fishing season length are widely used for fisheries management. 

This is implemented in the Chesapeake Bay, where fishing is prohibited during winter. 

Usually, the fishing season starts around April 1, and ends around December 15. In our 

model, we take male and female fishing season start-date and fishing season length as 

fishing season variables. 
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Table 4-4: Regression results from the simulated management scenarios 

Policy Components Sustainable Revenue Sustainable Yield 

Start-Date – M (day) 0.506*** 1.089*** 

 (0.013) (0.020) 

Season Length – M (day) 0.743*** 1.418*** 

 (0.005) (0.008) 

Start-Date – F (day) -0.175*** -0.041* 

 (0.014) (0.022) 

Season Length – F (day) -0.317*** -0.248*** 

 (0.007) (0.012) 

1 Season Closure – F (0 or 1) 0.919 2.339** 

 (0.694) (1.099) 

2 Season Closures – F (0 or 1) 2.116*** 0.981 

 (0.680) (1.078) 

Closure Days – F (day) -0.204*** -0.012 

 (0.018) (0.028) 

Initial Min Size Lim – M & F0 (mm) -0.050 -1.641*** 

 (0.044) (0.070) 

Δ Min Size Lim – M & F0 (mm) -0.003 -1.312*** 

 (0.044) (0.069) 

Δ Min Size Lim – M & F0 (0 or 1) 0.491 0.248 

 (0.505) (0.800) 

Initial Min Size Lim – Peeler  (mm) -1.514*** -0.660*** 

 (0.047) (0.074) 

Δ Min Size Lim – Peeler (mm) -1.220*** -0.515*** 

 (0.043) (0.068) 

Δ Min Size Lim – Peeler (0 or 1) -0.852* -1.062 

 (0.495) (0.784) 

Min Size Lim – Soft (mm) -0.532*** -0.252*** 

 (0.025) (0.039) 

Max Size Lim – F1 (mm) -0.847*** -0.731*** 

 (0.037) (0.059) 

Min Size Lim – F1 (mm) -0.794*** -2.465*** 

 (0.037) (0.058) 

Constant 528.815*** 683.887*** 

 (11.244) (17.816) 

R-square 0.917 0.969 

Note: The contents in the parenthesis associated with policy Instruments are units for the explanatory 

variables. *** denotes 1% significance; ** denotes 5% significance; * denotes 10% significance. 

 

Both the coefficients associated with the male fishing season length are positive, 

indicating that making the male fishing season longer can result in higher sustainable 

revenue and sustainable yield, maybe because longer male fishing season allows more 

males with better quality to be harvested. For breeding purposes, fewer males are needed 
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for mature females. In addition, positive coefficients associated with male fishing start-

date imply that postponing start-date can increase both sustainable revenue and 

sustainable yield. 

Interestingly, the results for the female season are exactly the opposite of those for 

males. The estimated coefficients associated with female start-date and fishing season 

length are all negative, indicating a shorter female season would result in greater 

sustainable yield and revenue. These results likely arise because a shorter female fishing 

season is more effective in preserving the female stock, which is important for stock 

recruitment. Further, starting the female season earlier would increase sustainable 

revenue. 

The regression also includes dummy variables indicating whether a closure of the 

female fishery is used. All of the estimated coefficients are positive and two are 

significant. This implies that intermittent season closure would be a favorable policy for 

the Chesapeake Bay blue crab fishery. In addition, the effect of the number of closure 

days is also examined. The coefficient of this term in the sustainable revenue equation is 

negative and significant, which indicates that longer intermittent closure can result in 

lower sustainable revenue. 

4.5.2.2 Minimum Size Limits 

Minimum size limit for males and females has been implemented for the 

Chesapeake Bay blue crab fishery. This policy seeks to protect juvenile crabs. Usually, 

the size limits are the same for both males and females. We follow this rule in our policy 

simulations. For some management scenarios, the minimum size limit is allowed to 
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change after July 15 during the fishing season. For example, the regulatory agency in 

Maryland sets the minimum size limit at 127 mm through July 15 since fishing season 

starts, and 133 mm thereafter. However, in Virginia, the minimum size limit remains the 

same throughout the fishing season. In our simulations, the minimum size limit at the 

beginning of the fishing season is first randomly selected. Then, after July 15, the limit 

either remains the same, or increases to a higher level. 

The coefficients on the minimum size limit are insignificant for sustainable revenue, 

but negative and significant for sustainable yield except for the dummy variables on 

whether the minimum size limit is increased during a fishing season. The results indicate 

that increasing the minimum size limit at the beginning of a fishing season, i.e., making 

the policy more restrictive leads to lower sustainable yield. Increasing the minimum size 

limit in the middle of a season appears to bring about a similar effect on sustainable 

yield. The results suggest that the minimum size limit may be effective on protecting 

juvenile crabs, but decreases the number of harvested crabs since small crabs are not 

allowed to be caught. The fishery managers may wish to reconsider this specific policy. 

4.5.2.3 Peeler Minimum Size Limits 

There is also a minimum size restriction for peelers. The regulations implemented 

by Maryland in 2007 include the 82.5 mm size limit for peelers before July 15, and 89 

mm thereafter (Bunnell, Lipton, and Miller 2010). In the simulated results, first a 

minimum size limit for peelers is randomly selected. Then the simulation algorithm 

randomly chooses to upgrade the limit or not on July 15 and, if so, randomly chooses a 

new size limit. The regression results show that increasing the minimum size limit either 
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before or during the fishing season tends to decrease both sustainable revenue and 

sustainable yield. These results are similar to those of minimum size limit for males and 

immature females. The minimum size limit prevents a number of small peeler crabs 

being harvested, which have high market prices and thus decreases fishery value. 

4.5.2.4 Soft-shell Crabs Minimum Size Limits 

A minimum size limit for soft-shell crabs is usually set constant over the season. In 

2007 Maryland regulations, for example, the minimum size limit for soft-shell crabs is 

89 mm or the entire season (Bunnell, Lipton, and Miller 2010). In our simulations, all 

simulated scenarios include randomly selected soft-shell minimum size limits. However, 

the estimated coefficients for sustainable revenue and yield are both negative and 

significant, suggesting that this policy is of little benefit to the blue crab fishery, since 

soft crabs generate high market values. 

4.5.2.5 Female Size Limits 

In actual management scenarios, there are no size restrictions for mature females. 

To examine the potential effects of this policy tool, some of our simulated scenarios 

include maximum or minimum size limit for mature females following Bunnell, Lipton, 

and Miller (2010). The purpose of this policy is to protect adult female crabs that are 

crucial for spawning. 

There are three different scenarios in terms of mature female size limit. A simulated 

management scenario is determined to impose maximum size limit, minimum size limit, 

or no size limit. The estimated coefficients are all negative and significant for the size 
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limit variables, but they have different implications. The use of more restrictive 

maximum size limit will lead to higher sustainable revenue and yield. It appears that the 

more restrictive maximum size limit protects adult females from being harvested, 

yielding benefits in terms of harvests and revenue. In contrast to maximum size limit, 

increasing the limit reduces sustainable revenue and sustainable yield, suggesting that 

the minimum size limit should be set at a low level, similar to minimum size limits on 

males, immature females, and peelers. It should be noted that the magnitude for the 

coefficient associated with minimum size limit in the sustainable yield equation is much 

larger than others in absolute value (-2.465). This indicates that increasing minimum size 

limit will substantially reduce sustainable yield. This result is also shown in Figure 4-3. 

4.5.3 Comparison with Previous Studies 

Bunnell, Lipton, and Miller (2010) evaluated a similar set of policies, although not 

with the random variations in the policy settings rather using discrete values. To 

compare results, we evaluated these 15 management scenarios in our integrated model 

and compared their results to ours plus the consistency of their conclusions to ours. 

Descriptions of their scenarios are presented in Table B-2 in Appendix B. The results are 

combined with ours and graphed as the black dots in Figure 4-4. 

The rankings for the 15 management scenarios are different from the Bunnell, 

Lipton, and Miller (2010) and our model in terms of both yield and revenue, likely due 

to their lack of the use of the stock assessment and cross commodity demand 

components. In particular, they conclude that the 165_MaxFemCW results in the highest 
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revenue, followed by 152_MaxFemCW and 10/1-12/15_FEM. However, we find that 

10/1-12/15_FEM generates the highest sustainable revenue. For the specific season 

closure policy for females, we examine the effects of the length of within-season closure, 

which was not studied in Bunnell, Lipton, and Miller (2010). 

 

Figure 4-4: Sustainable yield and revenue for fifteen management scenarios (black) in 

Bunnell, Lipton, and Miller (2010) and 4,000 hypothetical scenarios (gray) 

Although there are differences from their result due to model differences, the 

simulation results from the two models have some similarity. They found that 

management scenarios with earlier end-date and within-season closures for female crabs 

lead to higher revenue than those without such policies, which arises in our model as 

well. In our analysis, the maximum size limit for mature female results in higher 
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sustainable revenue and yield. Bunnell, Lipton, and Miller (2010) find the same thing 

but point out that this policy should be viewed with caution because the spawning 

contributions of different sizes of females are unknown and the life cycle individual-

based model may not be doing this accurately.  

4.6 Conclusions 

The essay in this section examines the blue crab policies in the Chesapeake Bay 

using an integrated model. Conclusions can be drawn on the potential policies and on the 

modeling approach. The analysis provides simulation-based information on effects of 

different fishery policy components for the blue crab fishery. First, the results indicate 

that sustainable harvest and revenue could be increased if the female crab fishing season 

is shortened and intermittently closed to protect spawning females plus if maxim female 

size limits are imposed. We also find minimum size limits for males, immature females, 

and peelers appear to be ineffective and actually reducing of sustainable revenue and 

yield. For soft-shell crabs, a minimum size limit appears to be unwise, since they are the 

most valuable crabs in the market. Whether we should implement both minimum and 

maximum size limit for mature females is an open question. 

In terms of the model, we extend the previous work that largely relied only on 

individual-based simulation models by connecting one with a stock assessment model 

and an improved economic demand model. This allows us to better examine the long-run 

stock implications of policies plus the price effects of interdependency of consumption 

of different crab types across size, sex, and shell status. We feel that the resulting model 



 

101 

 

offers potentially valuable insights for blue crab managers and a possible methodology 

that could be used in other fisheries settings. 

The integrated bioeconomic model has some overlap with the model in Bunnell, 

Lipton, and Miller (2010), but differs in that a large set of management regulations are 

explored and the results are reported in sustainable levels. In addition, our random 

simulation and summary function approach make it much easier to explicitly identify the 

effects of manipulating individual policy components. 
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5 CONCLUSIONS 

This dissertation conducts economic analysis of societal implications in agricultural 

cropping and fishery harvest within two settings: cropping under decadal climate 

variability in the Missouri River Basin and Chesapeake Bay blue crab fishery regulation. 

Specifically, the dissertation contains three main essays. 

The first essay in Section 2 examines the physical impacts of decadal climate 

variability phenomena on crop yields for 8 major crops in the Missouri River Basin. The 

DCV effects are examined in terms of their indirect and direct effects on crop yields. 

This is investigated using a Bayesian hierarchical model to capture spatial heterogeneity 

with a moderate sample size. The model contains both equations for DCV effects on 

climate and those on yields considering the climate effects. Jointly, these equations 

allow us to recover an estimate of the total DCV effects on crop yields. The results show 

that DCV phases alter crop yields on a geographically specific basis and suggest 

adaptation is possible by altering crop mix. 

Following up on the first essay, the second essay in Section 3 investigates the 

economic value of informing farmers about future DCV phases and their yield 

implications. Simultaneously, it also examines the possible management adaptations. 

The study employs a stochastic programming model that simulates crop mix, irrigation 

use, crop production, prices, and welfare under different DCV information settings of 

perfect, conditional, and naïve information. The results show that relative to the naïve 

case, the conditional DCV information generates net benefits of $28.83 million annually 
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to the region, while the perfect DCV information results in an annual gain of $82.29 

million. The results also indicate that adaptations in terms of crop acreage and irrigation 

use changes are possible given different DCV information. 

The third essay in Section 4 turns attention to fisheries policy in the context of the 

Chesapeake Bay fishery. An analysis tool is built in the form of a bioeconomic 

simulation model, which integrates two biological models and an economic demand 

model. The resultant model simulates the long-term outcomes from the imposition of 

harvest regulations involving sex-specific season length and size limits. The model is run 

under a wide variety of possible regulation settings and a summary regression function is 

estimated. The summary results indicate that sustainable harvest and revenue could be 

increased if the female crab fishing season were shortened and intermittently closed. We 

also find that minimum size limits appear to be actually reducing sustainable revenue 

and yield. In addition, increasing the maximum size limit for mature females increases 

revenue. 

Although the dissertation develops environment- and policy-relevant information, 

each essay has limitations and could be improved for future research. In the first essay, 

the estimation in the Bayesian framework does not account for spatial correlation among 

counties, and in particular does not include spatial smoothness parameters for connecting 

nearby counties. In the future, it would be desirable to introduce such spatial correlation 

using spatially varying coefficient processes such as those in Gelfand et al. (2003). 

For the second essay, the study focused on agricultural cropping in the MRB region 

and neglected livestock production. In the future, the model could be extended to include 
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livestock production, which would produce more complete economic value estimate 

relative to the provision of DCV information. In addition, the study could be extended to 

study the welfare difference between the value of El Niño Southern Oscillation 

information and DCV information. ENSO is a well-known climate phenomenon, while 

DCV is a set of phenomena that have not been as widely considered. It would be of 

interest to investigate the economic value change associated with information 

improvement from ENSO to DCV. 

In Section 4, the regulation analysis results are based on the validity of the model 

components – the individual-based model that produces crab mortality and catch plus the 

stock assessment model that predicts long-term populations. Clearly, if those items have 

incorrect assumptions, they certainly carry into the unifying bioeconomic model. In this 

case, the bioeconomic model components could be checked with fisheries scientists. 

Second, future research could be done on extending the current work to welfare 

evaluation of blue crab policies including the effects on the consumer side due to altered 

prices. Third, the model could be extended to include costs, providing that satisfactory 

data can be found. Fourth, the model only examines long-run static equilibria without 

considering fishers’ behavior alterations in response to fishery policies and extensions 

could be done to include fisher behavior and their dynamic aspects. 
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APPENDIX A 

APPENDIX FOR SECTION 2 

A.1. Bayesian Algorithm for the Normal Hierarchical Model 

This appendix section presents the details, via which the Bayesian algorithm is used 

in estimating the normal hierarchical model, as shown in equations (2.3), (2.5), and (2.6) 

in the text. The whole procedure describes the steps of deriving and sampling posterior 

distributions for all unknown parameters in the model. 

A.1.1. Joint Posterior Distribution 

It is often of interest to examine the joint posterior distribution for all unknown 

parameters that arise from a Bayesian analysis. The joint posterior distribution for the 

normal hierarchical model can be derived according to the Bayes’ rule, which is 

proportional to the multiplication of the sampling distributions and prior distributions. 

The general form of the joint posterior distribution is represented as: 

(A.1) 
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In (A.1), components associated with 
C

jw  and 
C

jθ  for all j  are specified by their 

sampling distributions (2.5) and (2.6), respectively. We plug in the sampling 



 

124 

 

distributions and the prior distributions for 
Cβ , 2

C , and CΣ , which will be discussed in 

Section A.1.2 to generate the specific form of the joint posterior distribution. 

A.1.2. Prior Distributions 

The unknown parameters in equation (A.1) that require pre-specified priors are 
Cβ , 

2

C , and CΣ . We assume that the priors are independent in the model such that the joint 

prior distribution in (A.1) can be expressed as: 

        2 2, , .C C C C

C Cp p p p β Σ β Σ  

As discussed in Section 2.4.2, conjugate prior distributions are used in order to 

guarantee a proper closed form posterior distribution (Arellano-Valle, Bolfarine, and 

Lachos 2007), which are: 
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We need to assign values for a large set of parameters in the prior distributions. As 

noted before, if we do not have correct information regarding the priors, it is appropriate 

to use non-informative priors that lead to objective results. This prior choice represents 

that how much information we gain after we observe the data if we do not have 

information in priori. 
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The prior for 
Cβ  is selected to be a multivariate normal distribution. The parameters 

in the prior are specified following the general approach in Kass and Wasserman (1995). 

We take 
0

C
μ , the prior expectation of 

Cβ , to be equal to the average of the OLS 

estimates of (2.3) over counties and 
0

C
Λ  to be the sample covariance of these estimates. 

Such a choice of prior for 
Cβ  represents unbiased but weak information (Hoff 2009). 

In the inverse Gamma prior distribution for 2

C , we choose 2

0C  to be equal to the 

average of residual sum of squares (RSS) from the OLS estimations of (2.3) across 

counties and we set 
0

C  be one, which guarantees that the inverse Gamma distribution is 

diffuse and is non-informative. 

The prior distribution for CΣ  is an inverse Wishart distribution. The parameter 0CS  

is equal to the covariance of the OLS estimates, similar to 
0

C
Λ . The degree of freedom 

parameter 
0

C  is set to be 2q  , where q  is the number of covariates in the regression 

equation, so that the prior distribution for CΣ  is somewhat diffuse as well. 

A.1.3. Full Conditional Distributions 

Since it is quite difficult to directly sample from the joint posterior distribution, we 

need to derive the full conditional distributions for all unknown parameters, and sample 

from those. Following Hoff (2009), the full conditional distributions for the normal 

hierarchical model are: 
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(A.2) 
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(A.3) 
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(A.4) 
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(A.5) 
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A.1.4. Gibbs Sampler 

Once we obtain the full conditional distributions, we can construct a Gibbs sampler 

to approximate the joint posterior distribution. The Gibbs sampler is a type of MCMC 

algorithm that iteratively samples each parameter from its full conditional distribution 
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given the most current state of other parameters. The order of generating a new set of 

parameters does not affect the approximation. 

Given current values of all parameters 
            2

1 ,, , , ,
C s C s C s

m

C s s C s

C Θ θ θ β Σ  at 

scan s , new values are generated at scan 1s   using the following steps: 

1. For each , ,1j m  , sample of values for         1 2
~ , ,

C s C s s C sC

Cjj p 


θ θ β Σ  

according to the posterior distributions in (A.2). 

2. Generate a sample for 
        1 1 1

1 ,~ , ,
C s C s C s C sC

mp
  

β β θ θ Σ  according to the 

posterior distribution shown in (A.3). 

3. Generate a sample for 
      2 1 1 12

1 ,~ ,
s C s C s

C C mp 
  

θ θ  according to the posterior 

distribution represented in (A.4). 

4. Generate a sample for 
        1 1 1 1

1 ,~ , ,
C s C s C s C sC

mp
   

Σ Σ θ θ β  based on the 

distribution in (A.5). 

Through the above steps, a new scan of the parameters is generated. Repeating the 

steps multiple times produces a sample for the elements of the parameter set. As s  , 

the sampling distribution of 
C

Θ  converges to the target joint posterior distribution, and 

the sampling distribution for each component in the parameter set 
C

Θ  converge to its 

marginal posterior distribution. We then can make inferences for the parameters based 

on the sampling distributions. 

A.2. Bayesian Algorithm for the Generalized Normal Hierarchical Model 

This appendix section presents the procedures used in implementing the Bayesian 

algorithm for the generalized normal hierarchical model, as shown in (2.7), (2.9), and 
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(2.10) in the text. In Section A.1, procedures were discussed that generated full 

conditional distributions for each parameter in standard form. In turn, a Gibbs sampling 

algorithm can be implemented to sample parameters from the full conditional 

distributions. However, for the generalized normal hierarchical model (2.7), Hoff (2009) 

indicates that standard full conditional distributions only exist for 
D
β  and D

Σ . For other 

parameters such as 
D

jθ , a Metropolis-Hastings algorithm can be used for sampling. 

The full conditional distributions for 
D
β  and D

Σ  have the same form as that given 

in (A.3) and (A.5), respectively. The prior distributions for 
D
β  and D

Σ  are specified as 

non-informative with same strategy as for 
Cβ  and CΣ  discussed in Section A.1. 

The update of 
D

jθ  can be formed with a Metropolis-Hastings algorithm (Hoff 2009). 

A new value 
D

j


θ  is sampled from a proposal distribution 

  D sD

j jJ 
θ θ  nearby the 

current value 
 D s

jθ , and then it is accepted or rejected based on an acceptance criterion. 

A common choice of the proposal distribution for 
D

jθ  would be a multivariate normal 

distribution such that the mean equals the current value 
 D s

jθ  and the covariance matrix 

is set to be equal to 
 D s

rΣ , where r  is a scale parameter and 
 D s

Σ  is the current value 

of D
Σ  updated from the Gibbs sampling steps. Here, we set 0.4r  , which generates a 

well-mixing Markov chain that moves around the parameter space. 

Following Hoff (2009), we use an integrated algorithm including both the Gibbs and 

Metropolis-Hastings samplers to approximate the joint posterior distribution. Given 

current values of parameters at scan s , 
          1 , , , ,

D s D s D s D s D s

mΘ θ θ β Σ , the new 

values are generated as follows: 
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1. Generate a sample  1D s
β  from its full conditional distribution that has the same 

structure with the Error! Reference source not found., that is, 

        1

1 , , ,~
D s D s D s D sD

mp


β β θ θ Σ . 

2. Generate a sample 
 1D s

Σ  from its full conditional distribution that is similar to 

Error! Reference source not found., i.e.,         1 1

1 , , ,~
D s D s D s D sD

Mp
 

Σ Σ θ θ β . 

3. For each , ,1j m  , 

a. Propose a new value 
    1

~ Multi-Norm l ,a
D s D sD

j j r


θ Σθ ; 

b. Compute the acceptance ratio by comparing the posterior probability 

densities between the proposed value 
D

j


θ  and the current value 

 D s

jθ : 
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where  *,D W

j j

Dp w θ X  and 
  ,

D s W

j j

Dp w θ X  are the Poisson density 

functions evaluated at 
D

j


θ  and

 D s

jθ , respectively, while 

    1* 1
,

D sD sD

jp
 

θ β Σ  and 
      1 1

,
D s D ss

j

D
p

 
θ β Σ  are the multivariate 

normal density functions; 

c. Generate a sample a value  ~ uniform 0,1u . Update 
 1D s

j


θ  to 

*D

jθ  if

u  , and keep 
 1D s

j


θ  to 

 D s

jθ  if u  . 

The above steps generate a new set of parameters. Repeating the procedures 

multiple times produces a sequence of parameters. As s  , the sampling distribution 

of the generated parameters converges to the target joint posterior distribution. 
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A.3. Multivariate Skew-normal Distribution 

This appendix section presents background material on multivariate skew-normal 

distribution probability density function and the associated stochastic form. Details on 

how the distribution is incorporated in the Bayesian analysis appear in Section A.4. 

Arellano-Valle, Bolfarine, and Lachos (2007) show that the density function for a 

random vector y  that has a multivariate skew-normal distribution is: 

           1 1
1, , 2 , , ,n T T T T

n np 
 

     y μ Σ Δ y μ Σ ΔΔ Δ Σ ΔΔ y μ 0 I Δ Σ Δ  

where n  and n  are the probability density function and the cumulative density 

function of a multivariate normal distribution with dimension n ; μ  is a 1n  location 

vector; Σ  is a n n  positive definite scale matrix; Δ  is a n n  diagonal skewness matrix 

with elements  1, , n  δ . We denote the skew-normal distribution for a random 

vector by  , , ~ Skew-Normal , ,nΔy μ Σ μ Σ Δ . Compared to the normal distribution, the 

skew-normal has one more component of parameters, the skewness matrix. It can be 

shown that the multivariate skew-normal distribution becomes a multivariate normal 

distribution when Δ 0 . 

Following Proposition 1 in Arellano-Valle, Bolfarine, and Lachos (2007), the 

multivariate skew-normal distribution for y  can be represented by a stochastic form: 

 1 2 , y Δ U U  

where   11 ~ Trunc-Norm ,aln n U 0 I u 0 , which is a truncated normal distribution 

with positive values 1u ;  2 ~ Multi-Normal ,nU μ Σ . The skew-normal random variable 
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is the combination of two random variables with different normal distributions. The 

stochastic form of the skew-normal distribution is convenient for Bayesian analysis. 

A.4. Bayesian Algorithm for the Skew-normal Hierarchical Model 

This appendix section covers the steps followed in the Bayesian estimation with the 

skew-normal distribution assumption, as displayed in (2.11), (2.13), and (2.14) in the 

text. First, the skew-normal sampling distributions of (2.13) and (2.14) in the text are 

decomposed into two distributions, respectively, as discussed in Section A.3. Then, the 

joint posterior distribution for all unknown parameters is derived based on Bayes’ rule. 

The assumptions used for the prior distributions and the derived full conditional 

distributions are presented. Then, the method for employing the Gibbs sampler that 

approximates the joint posterior distribution is discussed. 

A.4.1. Decomposed Skew-normal Sampling Models 

Since a skew-normal distribution can be represented in a stochastic form, as shown 

in Section A.3, the sampling distribution for 
jy  in (2.13) can be decomposed into two 

parts following Arellano-Valle, Bolfarine, and Lachos (2007): 

(A.6) 
 

   

2 2, , , , ind. Multi-Normal , ,

i.i.d.

~

~ Trunc Normal - , ,

j j

j j

j Y j n

Y Y Y Y

j j j j Y n

j n

j

n j

   



y X θ z X θ z I

Z 0 I 1 z 0
 

and the sampling distribution for 
Y

jθ  in (2.14) is similarly represented as: 
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(A.7) 
 

   

, , , i.i.d. Multi-Normal , ,~

~ Tri.i.d. - , ,unc Normal

j p j

j p p j

Y Y Y Y Y

j 



β Π Πvθ Σ v β Σ

V 0 I 1 v 0
 

where 
jZ  and 

jV  are latent parameters that illustrate the skewness of a distribution. 

A.4.2. Joint Posterior Distribution 

The joint posterior distribution for all unknown parameters in the skew-normal 

hierarchical model is derived according to the Bayes’ rule: 

(A.8) 
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θ θ β Σ z z v v y y X X

y y θ θ z z X X

θ θ β

π
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 

 
1

2
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  , , , , . Priors

ng

Y

m

Y

Y

p

p  

 

 

v v

β Σ π

 

In (A.8), components associated with 
jy , 

jz , 
Y

jθ , and 
jv  for all j  are specified by 

their sampling distributions (A.6) and (A.7). The priors for 
Yβ , 2

Y , YΣ ,  , and π  are 

discussed in Section A.4.3. 

A.4.3. Prior Distributions 

Similar to the normal hierarchical model, we use non-informative conjugate priors 

for the skew-normal hierarchical model, and assume that the priors are independent such 

that 

            2 2, , , , .Y Y Y Y

Y Yp p p p p p   β Σ β Σπ π  
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Following Arellano-Valle, Bolfarine, and Lachos (2007), the functional forms of the 

conjugate priors are: 

 

 

 

 
 

0 0

0 0

2

0

2

0 0

0 0

2 0

1

0

Multi-Normal , ,

Inv-Gamma , ,
2 2

Inv-Wishart , ,

, ,

Multi-Normal

~

~

~

,

~ Norma

~ .

l

Y Y Y

Y Y

Y

p

Y
Y

Y

Y

p

  




 



 
 
 

β μ Λ

Σ S

ξ Γπ

 

The prior distributions plus the sampling distributions together generate the specific 

form for the joint posterior distribution (A.8). 

We need to specify the parameters in the prior distributions, which guarantees that 

the priors are weakly informative. For the prior of 
Yβ , we set 

0

Y
μ  to be equal to the 

average of the individual OLS estimates across counties and 
0

Y
Λ  to be the sample 

covariance of the OLS estimates. For the prior for 2

Y , we take 
0 1Y   and 2

0Y  to be the 

average of RSS from the OLS estimations, which guarantees that the prior distribution is 

somewhat diffuse. We set 
0 2Y p    and 0YS  to be equal to the covariance of the OLS 

estimates. In this setting, the prior distribution for YΣ  is quite diffuse but has an 

expectation equal to 0YS . Finally, for the skewness parameters,   and π , the priors are 

assumed to be both normal distribution. We set 0 0  , 2

0 100  , 0 ξ 0 , and 

 0 diag 100Γ . Both prior distributions have large variances such that they are diffuse. 
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A.4.4. Full Conditional Distributions 

The full conditional distributions consist of the distribution of each parameter 

conditional on all other parameters. Following the Proposition 2 in Arellano-Valle, 

Bolfarine, and Lachos (2007), we derive the full posterior conditional distributions for 

the skew-normal hierarchical model: 

(A.9) 
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(A.10) 
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(A.11) 
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(A.12) 
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(A.13) 
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(A.14) 
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(A.15) 
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(A.16) 
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A.4.5. Gibbs Sampler 

Since the full conditional distributions are obtainable, we can implement Gibbs 

sampling algorithm to approximate the joint posterior distribution. The algorithm is 

similar to the one in Section A.1 but with more steps. 

Given current values of the set of all parameters 
 Y s

Θ  at scan s , new values are 

iteratively generated through the following steps: 

1. For each , ,1j m  , sample 
                1 2

~ , , , , , ,
Y s Y s s Y s s s s

j

sY

j Y j jp  


πθ θ β Σ z v  

according to the posterior distributions in (A.9). 

2. Sample 
              1 1 1

1 1, , , , ,~ ,
Y s Y s Y sY s Y s s s

m mp
  

πβ β θ θ Σ v v  according to the 

posterior distribution in (A.10). 

3. Generate a sample 
            2 1 1 12

1 1, , , , , ,~
s Y s Y s s s s

Y Y m jp  
  

θ θ z z  according to 

(A.11). 

4. Generate a sample 
              1 1 1 1

1 1, , , ,~ , ,
Y s Y s Y s sY Y s s s

M mp
   

πΣ Σ θ θ β v v  based 

on the posterior distribution (A.12). 

5. Generate a sample 
            1 1 1 2 1

1 1, , , , ,~ ,
s Y s Y s s s s

m Y mp  
   

θ θ z z  in 

accordance with (A.13). 

6. Generate a sample 
              1 1

1

1 1 1

1, , , , ,~ ,
Y s Y s Y s Y s s s

m m

s
p

   
π θ θπ β Σ v v  based 

on the distribution shown in (A.14). 

7. For each , ,1j m  , sample 
          1 1 1 2 1 1

1 , ,~ , ,
s Y s Y s s s

j j m Yp  
    

Z Z θ θ  based 

on the posterior distributions in (A.15). 

8. For each , ,1j m  , sample 
            1 1 1 1 1

1

1
, , , ,~ ,

s Y s Y s Y s Y s

j j

s

mp
    

V V θ Σ πθ β  

according to (A.16). 
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Iterating the previous steps for a large number generates a sequence of parameters 

that approximates the joint posterior distribution and marginal posterior distributions for 

all parameters. Inference of the parameters can be made based on the sampling values. 
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APPENDIX B 

APPENDIX FOR SECTION 4 

Table B-1: The estimated parameters from the IAIDS model 

Parameters #1 male #2 male Female SP Mixed 

1i (#1 male) 0.233*** -0.029*** -0.059** -0.124*** -0.022** 

 (0.036) (0.008) (0.025) (0.032) (0.010) 

2i  (#2 male) 0.005 0.039*** -0.018* -0.027* 0.001 

 (0.017) (0.004) (0.011) (0.016) (0.004) 

3i  (Female) -0.083*** -0.002 0.155*** -0.064*** -0.006 

 (0.021) (0.004) (0.012) (0.020) (0.005) 

4i  (Soft and peelers) -0.090*** -0.010*** -0.034*** 0.134*** -0.000 

 (0.012) (0.003) (0.008) (0.009) (0.003) 

5i  (Mixed) -0.019 0.004 -0.019 0.010 
0.024**

* 

 (0.019) (0.004) (0.012) (0.017) (0.005) 

i  (Translog) -0.066*** -0.007*** -0.017*** 0.090*** -0.000 

 (0.007) (0.002) (0.006) (0.005) (0.002) 

1i  (Spring) -0.060 -0.001 -0.014 0.083** -0.008 

 (0.044) (0.009) (0.026) (0.040) (0.011) 

2i  (Summer) 0.043 0.013** -0.021 -0.033 -0.002 

 (0.029) (0.006) (0.017) (0.027) (0.007) 

i  (Intercept) 0.601** 0.171*** 0.033 0.073 0.122** 

 (0.238) (0.049) (0.143) (0.218) (0.059) 

R-square 0.987 0.948 0.980 0.947 - 
Note: *** denotes 1% significance; ** denotes 5% significance; * denotes 10% significance. Standard errors are 

presented in parentheses. 
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Table B-2: Management scenarios implemented by regulators or hypothetically proposed 

Scenario 

Male 

fishing 

season 

Female 

fishing 

season 

Min size limit for 

males & 

immature females 

(mm) 

Min size limit for 

peelers (mm) 
Size limit 

for soft-

shell crabs 

(mm) 

Size limit 

for mature 

females 

(mm) 

Before 

7/15 

After 

7/15 

Before 

7/15 

After 

7/15 
Min Max 

2007VARegs 
17 Mar – 
30 Nov 

17 Mar – 30 
Nov 

>127 >127 >76 >76 >89 - - 

2008VARegs 
17 Mar – 

30 Nov 

17 Mar – 26 

Oct 
>127 >127 >82.5 >89 >89 - - 

2009VARegs 
17 Mar – 

30 Nov 

17 Mar – 20 

Nov 
>127 >127 >82.5 >89 >89 - - 

2007MDRegs 
1 Apr – 
15 Dec 

1 Apr – 15 
Dec 

>127 >133 >82.5 >89 >89 - - 

2008MDRegs 
1 Apr – 

15 Dec 

1 Apr – 23 

Oct 
>127 >133 >82.5 >89 >89 - - 

2009MDRegs 
1 Apr – 

15 Dec 

1 Apr – 31 

May, 16 Jun 

– 25 Sep, 5 
Oct – 10 Nov 

>127 >133 >82.5 >89 >89 - - 

5/15-7/15_FEM 
1 Apr – 

15 Dec 

1 Apr – 14 

May, 16 Jul 
– 15 Dec 

>127 >133 >82.5 >89 >89 - - 

10/1-12/15_FEM 
1 Apr – 

15 Dec 

1 Apr – 30 

Sep 
>127 >133 >82.5 >89 >89 - - 

11/16-

12/15_FEM 

1 Apr – 

15 Dec 

1 Apr – 15 

Nov 
>127 >133 >82.5 >89 >89 - - 

10/1-12/15_ALL 
1 Apr – 

30 Sep 

1Apr – 30 

Sep 
>127 >133 >82.5 >89 >89 - - 

11/16-

12/15_ALL 

1 Apr – 

15 Nov 

1 Apr – 15 

Nov 
>127 >133 >82.5 >89 >89 - - 

152_MinFemCw 
1 Apr – 

15 Dec 

1 Apr – 15 

Dec 
>127 >133 >82.5 >89 >89 >152 - 

152_MaxFemCW 
1 Apr – 

15 Dec 

1 Apr – 15 

Dec 
>127 >133 >82.5 >89 >89 - <152 

165_MaxFemCW 
1 Apr – 
15 Dec 

1 Apr – 15 
Dec 

>127 >133 >82.5 >89 >89 - <165 

No_Peeler 
1 Apr – 

15 Dec 

1 Apr – 15 

Dec 
>127 >133 Forbidden Forbidden >89 - - 

Note: this table is adapted from the Table 1 in Bunnell, Lipton, and Miller (2010). 

 




