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ABSTRACT 

 

Equations of state (EoS) have proved to be a reliable tool in chemical engineering 

thermodynamics for modeling the physical properties of complex systems. Various types of 

EoS have been developed based on different theories. For various reasons, some have become 

more popular for use in industry and academia. Of the popular EoS, two were chosen for 

investigation in this thesis. The first one was the Perturbed Chain- Statistical Associating Fluid 

Theory (PC-SAFT), an equation derived based on statistical mechanics and the second was the 

Peng-Robinson (PR) EoS, a cubic EoS commonly used in industry.  

In this work, the prediction capabilities of these two EoS were compared for several 

properties. The analysis began with an evaluation of their use in the prediction of the saturation 

properties of pure components and derivative properties from ambient conditions to the 

supercritical range. The particular derivative properties studied include the isochoric and 

isobaric heat capacities, the speed of sound, and the isothermal compressibility. In general, it 

was concluded that PC-SAFT outperforms PR in all cases. Next, the same primary and 

derivative properties of several binary and a select ternary mixture were studied. To improve 

agreement with experimental data, a binary interaction parameter was introduced and fitted to 

binary mixture vapor – liquid equilibria (VLE) data. This procedure drastically improved the 

accuracy of the models compared to the case where no binary interaction parameter used for 

the case of VLE predictions. However, for the case of the derivative properties, the use of the 

binary interaction parameter to ensure a more accurate representation of the interactions 

between molecules had only a marginal effect on the prediction of these properties. 
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Finally, phase equilibria of hydrates were studied. As EoS for fluids are not designed 

to predict the properties of solid phases, the van der Waals-Platteeuw model was incorporated 

to allow for the prediction of three-phase equilibrium conditions of various hydrate formers. 

Specifically, this work focused on the equilibrium of a water-rich liquid phase, a hydrate phase 

and a vapor phase rich in a hydrate former. In all cases, calculations of the solid hydrate phase 

properties are based on the Kihara potential. This potential requires three parameters to be 

defined; initial values for which were found through a review of the literature. The accuracy 

of the predictions of the three-phase equilibrium is highly dependent on the reliability of these 

parameters. Thus, one of the parameters, the so-called ε parameter, was fitted to hydrate 

equilibrium data and resulted in a significant improvement in the accuracy of predictions of 

both PC-SAFT and PR EoS. The new set of parameters was then used to predict the three-

phase equilibrium of several binary, ternary and quaternary mixtures of hydrate forming 

agents. Several conclusions are drawn from this work, including the observation that the 

accuracy of the models is reduced when the number of components increases. 
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NOMENCLATURE 

Latin Letters 

a Kihara potential hard core radius [Å] 

a Helmholtz free energy 

Cp Isobaric Heat Capacity [J/mol.K] 

Cv Isochoric Heat Capacity [J/mol.K] 

𝑓𝑖
𝑛 Fugacity of component i in phase n 

k Boltzmann constant 

K K-factor 

kij Binary interaction parameter 

m Number of segments in a molecule 

MM Molar Mass [g/mol] 

P Pressure [MPa] 

Pc Critical Pressure [MPa] 

R Universal Gas Constant [J/mol.K] 

T Temperature [K] 

Tc 

v 

Critical temperature [K] 

Molar volume [cm3/mol] 

x Liquid mole fraction 

X Arbitrary property designation 

y Vapor mole fraction 

z Inlet mole fraction 
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Greek Letters 

β Empty hydrate lattice 

ε Potential well depth 

φ Fugacity coefficient 

σ Potential collision diameter 

ω Acentric factor 

μ Chemical potential 

Subscripts 

w Water 

i, j Component identifications 

g Hydrate guest 

Superscripts 

assoc Association 

disp Dispersion 

hc Hard core 

hs Hard sphere 

ideal Ideal 

res Residual 

sat Saturation 
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List of Abbreviations 

#DP Number of data points 

AAD Average absolute deviation 

CCS Carbon Capture and Sequestration 

D Diverges 

EoS Equation of State 

HVL Hydrate vapor liquid equilibrium 

N/A Not available 

P&P Parrish and Prausnitz Kihara Parameters 

PC-SAFT Perturbed Chain- Statistical Associating Fluid Theory 

PR Peng- Robinson 

Q1 Liquid water, hydrate, vapor, ice equilibrium point 

Q2 Liquid water, hydrate, vapor, liquid guest equilibrium point 

r. P&P Regressed Parrish and Prausnitz Kihara Parameters 

r. S&K Regressed Sloan and Koh Kihara Parameters 

S&K Sloan and Koh Kihara Parameters 

VLE Vapor liquid equilibrium 
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1. INTRODUCTION 

 

The change of Earth’s climate has been a global concern since the 1950s. In the years 

since then, evidence of global warming such as changes in the surface temperature, sea level, 

and glacier volume have been attributed to the release of greenhouse gases (GHGs).1 The 

GHGs trap infrared radiation in the atmosphere leading to increasing levels of thermal energy 

that have unfavorable side effects on the climate. The GHGs in the atmosphere responsible for 

climate change are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), ozone (O3), 

water (H2O) and chlorofluorocarbons (CFCs). Of these the most abundent and harmful are CO2 

and CH4. Fluctuations in the global concentrations of these gases are the results of both 

anthropogenic and natural processes.2  

The Intergovernmental Panel on Climate Change (IPCC) has shown that industry is 

responsible for 60% of global CO2 emissions and 75% of anthropogenic CO2 emissions, a large 

portion of which is the result of the burning of fossil fuels. The IPCC has estimated that 

approximately 24,000 metric tons of CO2 is released into the atmosphere as a result of fossil 

fuel combustion per annum.3 Reducing the concentration of CO2 in the atmosphere is of vital 

interest to various factions including policy makers, industry, research groups, societies and 

individuals. In order to achieve this aim, different mitigation methods have been suggested that 

include improving the efficiency of converting fossil fuels to energy and switching to 

renewable energy, nuclear power or low carbon fuels such as natural gas instead of coal or oil 

to control CO2 levels in the atmosphere.3 Of those commercially available, the most favored 

method is the storage of the excess CO2 in geological reservoirs. Carbon Capture and Storage 

(CCS) is the most popular large-scale process for mitigating concentrations of CO2 used in 
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industry.2 CCS is a process that is carried out in three disparate stages: capture, transportation 

and sequestration. Currently, the cost of implementation of CCS technology in a natural gas 

production plant is 38-91 US$ per ton of CO2 sequestered which increases the cost of electricity 

by up to 85%.3 In order to optimize this process and reduce cost, the ability to accurately know 

the thermodynamic properties of these systems over large ranges of conditions is essential.  

On the other hand, while CO2 is the most abundant GHG, CH4 is more harmful on a 

per mass basis. The Global Warming Potential (GWP) is a measure of the ability of a GHG to 

trap thermal radiation in the atmosphere relative to CO2. CH4 has a GWP of 21. CH4 can be 

found in large quantities in natural reserves of hydrates in the arctic permafrost and on the 

oceanic seabed.4  Slight changes in the conditions of these hydrates might cause them to 

dissociate, releasing the stored CH4 into the atmosphere. These releases can sustain arctic 

warming causing further melting of the hydrate phase. The overall result is an exacerbated 

effect on climate change. In addition, gas hydrates are also an area of concern within the oil 

and gas industry where natural gas mixtures are piped from offshore at conditions that are ideal 

for hydrate formation. The obstruction of the pipelines costs companies millions of dollars in 

production loss and equipment damages. In order to avoid hydrate phase melting in the arctic 

permafrost and hydrate phase formation in natural gas production pipelines, the ability to 

accurately know the thermodynamic equilibrium of these systems over large ranges of 

conditions is necessary. 

CO2 and CH4 do not typically exist as pure fluids and so it is important to study them 

in mixtures with various other components. The composition of the mixtures depends on the 

source of the natural gas and the technology used to extract and treat it. In turn, the composition 

of the mixtures affects the phase equilibria. Thus, a full understanding of these concepts and 
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the optimization of each process relies on the ability to accurately model systems containing 

these species alone, in multicomponent mixtures and in different phases over a range of 

temperatures, pressures and compositions. In this project, two thermodynamic equations of 

state (EoS), one cubic and the other a higher order equation rooted in statistical mechanics, are 

used to model equilibrium and thermodynamic properties. This work will include an 

assessment of the accuracy of these models and evaluate methods to improve the performance 

of these models across a wide range of conditions. A more comprehensive list of objectives is 

available in Section 0. 

 This thesis is divided into three main sections: literature review, methodology, and 

results and discussion. The Literature Review (Section 2) section covers an analysis of 

previous work done in the field in two parts: Section 2.1 is based on the CCS and Section 2.2 

is based on hydrate phase equilibrium. The Models and Computational Methodology (Section 

3) introduces the procedures used to calculate the different properties of interest. The Results 

and Discussion (Section 4) is split into three different sections. Section 4.1 shows the accuracy 

of the EoS for the prediction of phase equilibria and derivative properties of pure components. 

Section 4.2 studies the complexities that arise when more components are added to the mixture. 

Finally, Section 0 explores the effect of the formation of a hydrate phase on the prediction of 

the three-phase equilibrium of the hydrate, liquid and vapor phases. 
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1.1 Objectives of Study 

The purpose of this thesis is to study: 

1. The accuracy of thermodynamic EoS to predict the phase equilibria and derivative 

thermodynamic properties, including speed of sound, isothermal compressibility and 

isochoric and isobaric heat capacities, of pure components. The focus lies on the 

components usually found in CCS processes which in addition to CO2 also includes CH4, 

CO, Ar, N2, and O2. 

2. The use of thermodynamic EoS to predict the vapor-liquid phase equilibria and derivative 

properties of multicomponent mixtures containing CO2. 

3. The ability of a thermodynamic EoS in conjunction with the van der Waals-Platteeuw to 

model the equilibrium pressure of hydrates systems for a wide range of components and 

conditions. The focus of these calculations lies in the prediction of liquid-vapor-hydrate 

equilibrium for the components mentioned previously and also for ethane (C2H6), propane 

(C3H8), isobutane (iC4H10) and hydrogen sulfide (H2S). 

4. The effect of using the statistical mechanics-based EoS, Perturbed Chain-Statistical 

Associating Fluid Theory (PC-SAFT), compared to a simple cubic EoS, Peng-Robinson 

(PR) in modeling the complex systems described above. 

5. The effect of varying different parameters, including the binary interaction parameter and 

interaction potential parameters, for the systems under consideration for the studied range 

of conditions and optimizing the parameters to improve predictions. 
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2. LITERATURE REVIEW 

 

2.1 Carbon Capture and Sequestration 

The renewed interest in carbon capture technologies is primarily a result of global 

regulations, such as the Clean Development Mechanism of the Kyoto Protocol, which 

committed to reduce concentrations of greenhouse gases, chiefly CO2, released to the 

atmosphere in the period of 2008-2012. The energy sector has recognized that the most 

favorable strategy for reduction of GHG concentrations is the recovery of CO2 at the source of 

emission. To achieve this, various separation technologies are being developed and optimized, 

as discussed by Mondal et al.5 After capture, the concentrated CO2 stream is either transported 

to storage sites, deep in the seabed or in depleted oil reservoirs, or alternatively repurposed and 

utilized.6 Optimization of these processes requires accurate understanding of the properties of 

the components commonly found in these systems and models that can accurately reproduce 

their behaviors under various conditions. 

All three stages of the CCS process (capture, transportation and storage) are rich in CO2 

and contain impurities like argon (Ar), nitrogen (N2), methane (CH4), water (H2O), oxygen 

(O2), sulfur dioxide (SO2), hydrogen sulfide (H2S) and many others. The presence and 

concentration of the contaminants depend on the source and method used to capture CO2.
7 

There are three common industrial processes used to capture CO2 from processes streams: pre-

combustion, post-combustion, and oxyfuel combustion.  

In a post-combustion process, CO2 is separated at a stage after the fossil fuel is used to 

produce energy and results in streams containing N2, O2, CO, SO2 and H2O. In a pre-

combustion process, the fuel is purified of CO2 prior to combustion stage resulting in streams 
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free of O2 and SO2 but containing Ar, CH4, H2 and H2S. Finally, oxy-fuel combustions result 

in concentrated CO2 streams similar to that of pre-combustion with the addition of Ar. The 

concentration of these impurities ranges from the order of 10 ppm up to 10 to 15% by mole of 

the composition of the stream.8,9 

The three stages of CCS have varied operating conditions typically ranging from 0 to 

50 MPa in pressure and temperatures above 218.15 K.10 Capture of CO2 via one of the 

previously discussed technologies occurs at pressures less than 10 MPa. Transportation of CO2 

streams in the liquid or dense fluid phase, at pressures above 9.6 MPa, is favored as it reduces 

the cost by avoiding two-phase fluid flow and lessens the burden of further compression for 

storage. After transportation, CO2 is stored at pressures up to 50 MPa.3 Due to the large range 

of operating conditions for these processes and the different phases that occur the use of 

thermodynamic models for precise property evaluation becomes crucial.  

The concentration of impurities significantly impacts the conditions at which the 

process operates, the pipeline integrity and flow assurance.11 The operating conditions are 

influenced by the density and the phase of the stream, making the accurate prediction of these 

properties important for the design of pipelines. Furthermore, the integrity of pipelines may be 

affected by impurities with corrosive properties, as is the case with H2O and CO2, making 

selection of the material a critical factor in the design stage.3 If the concentration of water vapor 

in the process stream is high enough, the flow of the process stream may be interrupted by the 

formation of carbon dioxide hydrates.12 

Properties of the pure gas species related to CCS have been studied extensively in the 

literature. The NIST database13 has archived large quantities of experimental data on pure 

component vapor pressures, saturation densities, and primary and derivative properties on a 



 

7 

 

variety of components including those relevant to the CCS process. Others have also studied 

the density, speed of sound and isothermal compressibility of pure CO2. A review of the 

literature has shown vast interest in the effect of impurities on these properties, and various 

authors have performed experiments to determine the effect of concentration of the impurity 

over different conditions.  

Experimental vapor-liquid equilibrium (VLE) and density data on binary mixtures of 

CO2 with impurities such as Ar14,15, SO2
16,17, CH4

18–22, N2
18,23–25, CO26,27 and O2

28,29 are widely 

available in the literature.30 However, multicomponent CO2 mixtures with more components 

are less common. Experimental data on multicomponent mixtures is useful for the validation 

of models fitted to pure component properties.  

Li et al.10,11 comprehensively reviewed available binary and ternary vapor-liquid 

equilibrium (VLE) data containing CO2 for mixtures relevant to CCS. They noted a scarcity of 

experimental data in the ranges of conditions under which these mixtures have been studied 

and inconsistencies in the available data, especially close to the critical point of the binary 

mixtures.  

Muirbrook et al.31 and Zenner and Dana32 studied the mixture of CO2 with N2 and O2 

over temperatures ranging from 218.15 to 273.15 K and 1.3 to 15 MPa. Experimental VLE of 

CO2 with N2 and CH4 has been studied at temperatures ranging from 220-273 K.33,34 Later, 

Seitz et al.35 experimentally studied the volumetric properties of the same mixture. Creton et 

al.30 measured the densities of several binary mixtures and two CO2 rich quaternary mixtures 

CO2-N2-Ar-O2 and CO2-N2-Ar-O2-SO2 at ranges from low to high density. 



 

8 

 

The availability of experimental data is essential for model validation. There are 

various types of EoS used to predict thermodynamic properties, the most commonly studied 

are cubic EoS such as Peng-Robinson, those EoS based on statistical mechanics such as the 

Statistical Associating Fluid Theory (SAFT) family of EoS and non-analytical, multi-

parameter approaches such as the GERG (European Gas Research Group) model. 

Much work has been done on the prediction of VLE for pure CO2 and binary mixtures 

containing impurities using cubic EoS such as Peng Robinson36 (PR) and Soave-Redlich-

Kwong37 (SRK). Li and Yan38 fitted different binary interaction parameters to each of the 

liquid and vapor phases. They also noted the inaccuracy in the ability of PR to properly predict 

volumetric properties of the different phases.  

Al-Sahhaf34 compared the ability of PR and Patel-Teja EoS in predicting the VLE of 

the ternary system N2-CO2-CH4 at 230 K and 250 K and found them to be comparable. Thiery 

et al.39 studied the same ternary mixture with the Soave-Redlich-Kwong (SRK) EoS. Vrabec 

et al.40 reviewed the use of several EoS for the prediction of N2-O2-CO2 at low temperatures. 

Of the cubic EoS, PR was found to perform best across a range of conditions. 

Xu et al.41 used the modified PR EoS42 to predict VLE of CO2 with N2 and CH4 at high 

pressure and concluded that improved bubble point pressure and compositions predictions are 

based on the use of temperature independent binary interaction coefficients. Many more studies 

have been conducted using cubic and virial EoS.12,43,44 

Recently, more studies have been conducted on the use of statistical mechanics based 

EoS, such as SAFT and Perturbed Chain-SAFT (PC-SAFT) for these applications. Belkadi et 

al.45 predicted the VLE curves of CO2 with nitrogen dioxide (NO2) and dinitrogen tetraoxide 
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(N2O4) using soft-SAFT. Sanchez et al.46 studied the performance of PC-SAFT in the 

prediction of vapor-liquid equilibrium of binary mixtures of N2 and various hydrocarbons 

including, CH4, C2H6, C3H8 and i-C4H10. The predictions were in good agreement with 

experimental data, with errors in the order of 1-10% in the equilibrium pressure for binary 

mixtures containing shorter hydrocarbons. For the binary mixtures containing longer 

hydrocarbons, it was seen that the error increased. More importantly, they studied a ternary 

system containing CO2 in a mixture with CH4 and N2. Through fitted binary interaction 

parameters, they were able to predict the VLE boundaries accurately at 230 K and 8.62 MPa.  

Second order derivative properties such as isochoric and isobaric heat capacities, 

isothermal compressibility, and Joule-Thompson coefficients are important in the design of 

industrial processes. For example, speed of sound is a useful property for the detection of leaks 

in pipelines and for flow assurance.47 Isothermal compressibility factors are used in the design 

of high-pressure equipment.48 

Al-Siyabi8 measured experimental data for the speed of sound and isothermal 

compressibility of several binary mixtures containing CO2 and N2, CH4, H2, O2, Ar, CO. In 

addition, he reported the derivative properties of the ternary mixture CO2-Ar-CO and the 

quaternary mixture CO2-N2-CH4-H2. Kachanov et al.49 measured speed of sound for the binary 

CO2-N2 mixture in the high-pressure region ranging from 50 to 400 MPa.  There are still only 

a limited number of available experimental data for derivative properties in the relevant ranges 

of conditions.50 Diamantonis et al.51 suggested that for CO2 rich multicomponent mixtures 

representative of the compositions and conditions of actual pipeline systems, derivative 

properties such as speed of sound, Joule-Thomson coefficients, isothermal compressibility and 

heat capacities should be measured. 
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Diamantonis et al.52 reported on the efficiency of the PC-SAFT EoS for the prediction 

of the isothermal compressibility for the same quaternary system. Liang et al.53 conducted an 

in-depth study on the prediction of the speed of sound of pure alkanes using various EoS 

including soft-PC-SAFT, Cubic Plus Association (CPA) and others. They determined that PC-

SAFT could most accurately predicted the speed of sound over pressure ranges up to 50 MPa 

most accurately. Lafitte et al.54 used SAFT to predict second-order derivative properties and 

suggested that the fitting of SAFT pure component parameters to both vapor pressure and 

speed of sound would improve accuracy. However, Llovell et al.55 argue that this detracts from 

the predictive power of the EoS.  

2.2 Gas Hydrates 

One important class of solid structures that are known to occur in a number of industrial 

applications including CCS processes and the oil and gas industry are gas hydrates. Gas 

hydrates have become important in flow assurance in pipelines where even low-level water 

content can cause hydrate formation in pipelines used to transport CO2 or CH4 rich streams. 

Recently, gas hydrates have been considered as an alternative storage method for CO2 due to 

their potential to store large volumes of gases in relatively small volumes.56  Hydrates are also 

a promising technology for the capture of CO2 in CCS processes.57 Naturally occurring 

methane hydrates are plentiful in the arctic permafrost and have been considered an alternative 

energy source to natural gas reservoirs.58  

Gas hydrates occur when water forms 3-dimensional networks through hydrogen 

bonding and arranges in crystalline structures with cavities. As empty cages, these hydrate 

cavities are unstable and require the presence of guest molecules to stabilize them. However, 

hydrates are nonstoichiometric and do not require full occupancy for stabilization of the 
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structure. Many gases in a range of sizes from Ar to cyclo-octane have been documented to 

form hydrates under conditions of low temperatures and moderate to high pressures.58,59 The 

intermolecular interactions between the guest molecules and the water molecules influence the 

size and shape of the structure.  

 Hydrates are known to form in many structures though the most common formations 

occur in either cubic structure I (sI), cubic structure II (sII) or hexagonal structure (sH) 

depending on the size of the guest. sI structures are typically formed by small molecules 

diameters less than 5Å, sII accommodates slightly larger atoms with molecular diameters 

between 5 and 7 Å and sH is formed by even larger molecules with smaller molecules 

stabilizing the smaller cages in the lattice. An exception occurs when the structure formed by 

the guest molecules is dependent on the pressure conditions of the system. For example, at 

pressures below 280 MPa argon forms an sII structure and as the pressure rises above this limit 

the structure reforms to an sI type. Under even higher pressure, the hydrate will restructure into 

sH.59 For the pressure ranges seen in gas production and processing units, the structures of 

hydrates for the gas hydrate formers studied in this work are presented in Table 1. 

Table 1. Hydrate forming structures for common gas hydrates60 

Guest Molecule Hydrate Structure 

Methane sI 

Ethane  sI 

Propane sII 

Iso-butane sII 

Carbon Dioxide sI 

Nitrogen sI 

Hydrogen Sulfide sI 

Argon sII/sI/sH 

Oxygen sI 
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The difference in the geometry of each structure effects the thermodynamic properties 

of the hydrate phase. A single sI structure cell consists of two pentagonal dodecahedrons, a 12 

sided cage of pentagons (512), and six tetrakaidecahedron, a 14 sided cavity of 12 pentagonal 

and 2 hexagonal sides (51262).  Similarly, a sII unit cell consists of sixteen pentagonal 

dodecahedrons and eight hexakaidecahedron, a 16 sided cavity of 12 pentagonal and 4 

hexagonal sides (51264). Finally, an sH hydrate configuration consists of three differently sized 

cages: three pentagonal dodecahedrons, two irregular dodecahedron, a 12 sided cavity with 3 

square, 6 pentagonal and 3 hexagonal sides, and a single icosahedron, a 20 sided cavity 

consisting of 12 pentagonal and 8 hexagonal sides.  A visualization of all three hydrate 

structures are presented in Figure 1. It should be noted that the structures presented in the figure 

below are partial representations of each cell unit. 

 
Figure 1. Geometry of cavities and unit cells in each of the sI, sII and sH hydrate structures.58 
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Other properties of the structure, summarized in Table 2, include the number of water 

molecules that each unit cell is composed of, the average cavity radius and the coordination 

number of the encaged guest molecule in each cavity space.  

Table 2. Hydrate lattice structure properties 58,59,61 

Hydrate Structure sI sII sH 

Cavity Small Large Small Large Small Medium Large 

Description 512 51262 512 51264 512 435663 51268 

Number of Cavities per unit cell 2 6 16 8 3 2 1 

Average Cavity Radius (Å) 3.975 4.30 3.91 4.73 3.94 4.04 5.79 

Coordination Number 20 24 20 28 20 20 36 

Number of water molecules per unit 

cell 
46 136 34 

 

Experimental studies of gas hydrates with both pure guest and guest mixtures are 

common in literature and have been reviewed in detail by Sloan and Koh59 and archived by 

NIST62. Holder et al.60 have empirical correlations that describe available experimental data 

for several pure guest hydrate systems at temperatures below 300 K. 

Fluid-hydrate phase equilibrium has been studied theoretically, on both macroscopic 

and microscopic scales. At the macroscopic scale, the development of a theoretical EoS is 

needed for accurate prediction of properties and phase equilibria calculations.59,63,64 At the 

molecular level, Molecular Dynamics (MD) and Metropolis Monte Carlo (MC) 

simulations65,66 are used for the elucidation of microscopic structures67–69 and the prediction of 

the equilibrium conditions70–74. However, due to the time-consuming nature of these 

simulations, developing an EoS can provide a simple tool for the prediction of  hydrate 

properties. 

EoS for fluids, such as PC-SAFT and PR, do not have the intrinsic ability to describe 

the thermodynamic properties of the hydrate phase. As such, in order to model fluid-hydrate 
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equilibrium, EoS are used in conjunction with models able to describe hydrate phase 

properties. The van der Waals-Platteeuw (vdW-P) model is one such model that is widely used 

to generate predictions of the chemical potential of the hydrate phase at specified conditions. 

In this way, calculation of the chemical potential of water in the different phases can be made 

to predict the fluid-hydrate equilibrium conditions.   

Van der Waals and Platteeuw75 derived an expression to model the hydrate phase 

relative to a theoretical metastable empty hydrate lattice. This model assumes that the hydrates 

form spherical cavities that contain a single guest and that the guests in different cages do not 

interact. It also makes the assumption that the guest molecules do not cause distortion in the 

lattice structure. This assumption allows for the contributions to the Helmholtz free energy to 

be simplified to the sum of the energy of the guest molecule and that of the empty lattice.76 In 

addition, a secondary result of this assumption is that the reference chemical potential of the 

empty hydrate lattice is the same for different guest molecules.77 Finally, it assumes that 

Boltzmann statistics is applicable which allows for the canonical partition function to be 

simplified to a one-dimensional integral Lennard-Jones Devonshire approximation of a smooth 

cell potential function.66 

Chen and Guo78,79 noted that the vdW-P theory neglects a full physical description of 

the hydrate phase as it does not account for the local stability of the hydrate and the kinetic 

mechanism. They define the local hydrate stability based on the local occupancy of the hydrate 

cages. Karakatsani and Kontogeorgis63 have shown that neglecting cage distortion may not be 

valid for larger hydrocarbon gases such as propane. On average, the radius of the hydrate cage 

is dependent on temperature, pressure and the composition of the guest molecules.59  
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An alternative method to the vdW-P model was developed by Klauda and Sandler77 

and is based on adjusting the reference chemical potential and enthalpy to depend on the guest 

molecule introduced into the system. This dependency was accomplished through fitting the 

vapor pressure, 𝑃𝑤
𝑠𝑎𝑡,𝛽

(𝑇), of the empty lattice in Equation [1] to experimental hydrate 

equilibrium data to allow for the subsequent calculation of the fugacity, 𝑓𝑤
𝛽

(𝑇). This approach 

showed promising results and was later extended to mixtures of guest molecules.80 
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where 𝜑𝑤
𝑠𝑎𝑡,𝛽

 is the fugacity coefficient of water phase at saturation conditions, 𝑉𝑤
𝛽(𝑇, 𝑃) is the 

molar volume of water at the temperature, T, and pressure, P, of the system and R is the gas 

constant. 

Various studies have investigated the EoS used to model the fluid phase. Sun and 

Chen81 studied pure CO2 and H2S by adjusting the Patel-Teja cubic EoS to account for 

electrostatic contributions. The addition of this term accounts for the solubility and dissolution 

of CO2 and H2S in water and resulted in significant improvements when compared to the 

predictions generated by the Chen-Guo model. Delavar and Haghtalab82 studied pure and 

binary gas systems using Soave-Redlich-Kwong (SRK) EoS for the fluid phase in combination 

with the UNIQUAC model to account for the activity coefficient of water in the liquid phase. 

They recorded an improvement in results when compared to results generated with the typical 

assumption of the activity coefficient being unity. Li et al.83 used SAFT with vdW-P to model 

binary combinations of CO2, H2, H2S, N2 and hydrocarbon from CH4 to C4H10 with good 
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accuracy. However, they evaluate hydrates at relatively low pressures where good accuracy 

can be expected from SAFT-type EoS.  
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3. MODELS AND COMPUTATIONAL METHODOLOGY 

 

3.1 Cubic Equations of State 

In this work, the Peng-Robinson36 (PR) cubic EoS was used. It is a model that is 

commonly used both in industry and research as it is relatively accurate for the prediction of 

vapor pressure and density of non-polar and slightly polar fluids; however, it is not as precise 

for predicting properties of associating compounds such as water.  The equation is a pressure 

explicit expression formulated as follows:  

 
 

   

a TRT
P

b v v b b v b
 

   
  [2] 

where 𝑇 is the temperature of the system, 𝑅 is the gas constant, 𝑣 is the molar volume, and 𝑎 

and 𝑏 are constants specific to each component. For a fluid, 𝑏 is proportional to the size of the 

molecule or the molecular volume and is calculated based only on the critical temperature, 𝑇𝑐, 

and the critical pressure, 𝑃𝑐, in accordance with Equation [3].  

 0.07780 c

c

RT
b

P
   [3] 

The term 𝑎(𝑇) is an expression that characterizes the intermolecular attractive 

interactions as a product of a temperature dependent term, 𝛼(𝑇), and a constant, 𝑎(𝑇𝑐) as 

indicated by Equation [4]. A dimensional analysis of the units of this terms shows that 𝑎(𝑇) is 

proportional to the product of the molar energy and the molar volume. 

      ,ca T a T T   [4] 



 

18 

 

where each of these terms are expressed by Equations [5] to [7] and depend on an additional 

parameter, 𝜔, the acentric factor which represents the deviations of the intermolecular potential 

from that of a perfectly spherical molecule.84 
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 20.37464 1.54226 0.26992       [7] 

From this formulation, in order for a system to be fully defined the critical temperature, 

critical pressure, and the acentric factor for each component are required. In Table 3 these 

properties are given for the various components examined here. 

Table 3. Molar mass, critical properties and acentric factor of pure component species84 

Chemical 

Species 
𝑀𝑀 [g/mol] 𝑇𝑐 [K] 𝑃𝑐 [MPa] 𝜔 

O2 32.00 154.6 5.04 0.025 

Ar 39.95 150.8 4.87 0.001 

N2 28.00 126.2 3.39 0.039 

CO 28.01 132.9 3.50 0.066 

CO2 44.01 304.1 7.38 0.239 

CH4 16.04 190.4 4.60 0.011 

C2H6 30.07 305.3 4.87 0.099 

C3H8 44.1 369.8 4.25 0.153 

i-C4H10 58.12 408.2 3.65 0.183 

H2O 18.01 647.3 22.12 0.344 

H2S 34.08 373.2 8.94 0.081 

 

The PR EoS is extended to mixtures using appropriate mixing rules. The most common 

mixing rules are the one-fluid van der Waals mixing rules:  
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 i j ij

i j

a x x a   [8] 

where 𝑎𝑖𝑗 is the cross interaction parameter and is mathematically defined using Equation [9]. 

  1ij i j ija a a k    [9] 

 i i

i

b x b   [10] 

In Equation [9], kij is the temperature independent binary interaction parameter, an 

adjustable parameter that is fitted to binary vapor-liquid equilibrium experimental data; 

typically, through the minimization of the objective function. This function is defined as the 

absolute average deviation (AAD) between the EoS’s prediction of the bubble pressure and its 

experimental value. 
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 In this thesis, when calculations assume a value of 0 for the binary interaction 

parameter, the calculations are referred to as predictions. On the other hand, when calculations 

include a non-zero kij value, they are referred to as correlations. 
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3.2 Perturbed Chain- Statistical Associating Fluid Theory 

Unlike cubic EoS, which are based on the van der Waals EoS, the SAFT family of EoS 

are based on statistical mechanics principles. The development of these molecular-based 

theories has become popular in the recent years due to their improved accuracy compared to 

more classical methods. Chapman developed the original SAFT85,86 EoS based on Wertheim’s 

first order thermodynamic perturbation theory that defined a relationship between the 

Helmholtz energy and the association interactions of a molecule.87–90 In particular, this theory 

models the behavior of real fluids by describing different interactions as a series of 

perturbations to a reference fluid. SAFT is based on a reference fluid composed of hard spheres 

where the attractive and repulsive interaction are based on the modified square well potential 

model suggested by Chen and Kreglewski91. 

After the development of the original SAFT, many other versions of the EoS were 

derived and vary from the original in the type of reference fluid or potential model used. SAFT-

VR92,93 implemented the use of a variable range square well intermolecular potential; however, 

soft-SAFT94,95 used a Lennard-Jones reference fluid while PC-SAFT is based on a hard-chain 

reference fluid. There are many other variations of the SAFT EoS, and several comprehensive 

reviews96,97 have covered their differences in detail. 

The formulation of the PC-SAFT EoS is based on the calculation of the residual 

Helmholtz energy, 𝑎𝑟𝑒𝑠, in terms of the summation the Helmholtz contributions of different 

intermolecular interactions, according to the expression: 

 

res ideal hc disp assoca a a a a a

RT RT RT RT RT RT
       [12] 
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The reference fluid is composed of a hard-chain fluid, where its segments are freely 

jointed and defined exclusively by their hard-core repulsive interactions. The Helmholtz 

energy contribution of the reference fluid, 𝑎ℎ𝑐, is a mathematical combination of the Helmholtz 

free energy of a hard sphere reference fluid used in the SAFT EoS (the Carnahan-Starling 

expression98) and the energy of chain formation. The explicit description of this term is 

provided in the Appendix (Section 7.1.1) 

 The addition of the dispersion perturbation, 𝑎𝑑𝑖𝑠𝑝, to the reference fluid is used to 

calculate attractive interactions in the fluid. This potential model is described by the chain 

segment diameter, 𝜎, and the energy of dispersion interactions between segments, 𝜀. For 

simple non-associating molecules, PC-SAFT utilizes an additional parameter, the number of 

segments in the non-spherical molecule, 𝑚, for a full description of the molecular shape and 

size. The full mathematical description of dispersion terms are provided in the Appendix 

(Section 7.1.2).   

Dispersion interactions in PC-SAFT are modeled using a two-term perturbation 

expansion. Both terms in the expansion are dependent on the integral of the radial distribution 

function. Gross and Sadowski99 simplified these integrals to a density power series (Equations 

[56] and [58] in Appendix I, Section 7.1.2)  by neglecting to account for the temperature 

dependence of the hard-chain radial distribution function. After this simplification, these power 

series depend only on constant coefficients fitted to pure alkane data and the number of 

segments. 

Within this work, the final perturbation to a system that was considered is the 

associating interactions of a molecule, such as the ability of water to form hydrogen bonds. 
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The contribution of the association interactions to the Helmholtz energy, 𝑎𝑎𝑠𝑠𝑜𝑐, have been 

derived based on the Wertheim’s perturbation theory. The central conclusion of Wertheim’s 

work was the derivation of the fraction associating sites of a component, X. Chapman et al. 

later extended this theory and introduced the strength of association between unlike sites, Δ𝐴𝐵 . 

To be able to calculate this quantity, two additional parameters are used: the association energy 

between sites A and B of molecule i, 𝜀𝐴𝑖𝐵𝑖, and the volume of associating interactions, 𝜅𝐴𝑖𝐵𝑖 . 

The full mathematical description of the association term is provided in the Appendix (Section 

7.1.3).  

In their work on PC-SAFT, Gross and Sadowski99,100 have calculated all necessary 

parameters for a variety of non-associating and associating components.  

All five parameters described here were fitted to pure component saturation data from 

temperatures near the triple point to slightly below the critical point. These parameters were 

fitted by minimizing the difference between the equilibrium pressures and saturated liquid 

density calculated using the EoS and the experimental values. The fundamental basis of the 

EoS remains unchanged when multicomponent mixtures are studied by fitting the parameters 

this way. 

A number of other intermediate and long range intermolecular forces such as 

polarization effects and ionic interactions can be accounted for by the inclusion of additional 

terms to the expression. Such forces are not accounted for explicitly in this work. 

In order to extend PC-SAFT to the prediction for mixtures, the mixing rules in 

Equations [13] and [14], derived based on the van der Waals mixing rules, are used to describe 

the dispersion interactions between different molecules99:  
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In these equations, the binary cross interaction parameters, 𝜎𝑖𝑗 and 𝜀𝑖𝑗, are calculated 

using the classical Lorentz-Berthelot combining rules:  

  1
2ij i j      [15] 

  1ij i j ijk      [16] 
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3.3 Derivative Properties 

Derivative properties can be calculated directly from the EoS using Equations [17] 

through [21] in terms of the state variables temperature, pressure and density, ρ.101,102 These 

equations represent single phase properties and can be used for both pure components and 

mixtures.               

Isothermal compressibility:                         1

T

T

P
 
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Thermal expansion coefficient:                   T
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Isochoric heat capacity:                               
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Isobaric heat capacity:                                 
2
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T
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Speed of sound:                                           
p
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The accuracy of the calculation of these properties depends on the ability of the EoS to 

predict the phase equilibrium. For this reason, it can be expected that a binary interaction 

parameter fitted to experimental phase equilibrium data will improve the accuracy of the 

calculations. 
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3.4 Vapor-Liquid Equilibrium Algorithms 

According to Gibbs, the conditions for equilibrium of an arbitrary number of phases is 

the simultaneous equality of the pressure, P (mechanical equilibrium), temperature, T (thermal 

equilibrium) and chemical potential, μ (chemical equilibrium) of every component in each 

phase.84 Equivalently, chemical equilibrium can be described by the equality of the fugacity of 

different phases. The fugacity of component i in phase n, 𝑓𝑖
𝑛, can be calculated using an EoS, 

based on the following expression:   

 
n n n

i i if x P   [22] 

where 𝜙𝑖
𝑛 is the fugacity coefficient of component i in phase n and is calculated from the EoS 

based on the following expression84: 
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Equilibrium properties may be calculated through bubble point or dew point 

calculations, flash calculations or a stability analysis. In bubble point calculations, the 

temperature and the composition of the liquid phase are fixed, and through the calculation of 

the fugacity coefficients using the EoS, the pressure of the system and the composition of the 

vapor phase are calculated. On the other hand, dew point calculations require foreknowledge 

of the vapor phase composition in order to calculate the compositions of the components in the 

liquid phase. Finally, the stability analysis is based on the minimization of Gibbs free energy. 

This is the concept on which flash calculations are based. In these calculations, the 

compositions of both phases are unknown, and the temperature and pressure are fixed.  
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More specifically, in this work, the most commonly considered equilibrium is between 

a vapor and a liquid phase; the conditions of which are calculated primarily by either bubble 

point or flash calculations. The bubble point calculations require an initial guess of the pressure 

and the vapor composition. With these initial estimates, the fugacity coefficients of both phases 

can be calculated from the EoS. In turn, the vapor compositions of each component are 

calculated. The function, g, in Equation [24], only equates to 1 when the correct pressure is 

calculated.  

 i i i

i i

g y x K     [24] 

where 𝐾𝑖 is the K-factor defined as the ratio of the mole fraction of component i in the vapor 

phase to the mole fraction of component i in the liquid phase as expressed in Equation [25].  
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For the next iteration, the pressure of the system can be calculated according to the 

Newton-Raphson iteration scheme using Equation [26]. g′ is the derivative of the function with 

respect to pressure and is the expression presented in Equation [27].  
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On the other hand, flash calculations are based on the Rachford-Rice equation, for 

which an initial guess of the K-factor is required. The initial estimate of the K-factor is based 

on the Wilson correlation103 and the subsequent calculation of the fraction of each phase, β.  
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   [28] 

Knowing the phase fraction and mass balance, it is possible to calculate the 

composition of each phase using Equations [25] and [29]. The quantification of these variables 

allows for the calculation of the fugacity coefficient of each phase from the EoS and the 

calculation of the next iteration of the K-factor. The correct vapor and liquid compositions are 

achieved when their sums are unity, according to the expression in Equation [30]. 
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 1i i

i i

x y     [30] 

The algorithms used to converge to the equilibrium conditions using bubble point and 

flash point calculations are shown in Figure 2. 
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Figure 2. Numerical algorithms for bubble pressure (left) and flash calculations (right) 

 

3.5 Fluid-Hydrate Equilibrium Methodology and Algorithms 

Fluid-hydrate equilibrium is modeled based on the equality of the chemical potentials 

of every component in each of the phases in equilibrium. One such approach is based on the 

classical van der Waals-Platteeuw (vdW-P) model developed in 1959.75 The general 

methodology for the calculation of the equilibrium conditions has been developed in detail by 

various authors59–61,75 and is used here to calculate the equilibrium pressure at constant 

temperature and composition.  

The expression developed by van der Waals and Platteeuw for the chemical potential 

of the hydrate phase, Equation [31], relative to the empty hydrate lattice is defined on the basis 

of both the fractional occupancy, θij, and the number of cavities of type i per water molecule,νi, 
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in the hydrate lattice. νi is a constant which is dependent on the hydrate lattice structure and is 

defined as the inverse of the number of water molecules per unit cell, the values for each 

structure type are provided in Table 2. 

  
2

1

ln 1H i ij

i

RT  


       [31] 

This vdW-P theory is based on the adsorption-like quality of hydrates and uses a 

multicomponent Langmuir isotherm paired with the Kihara potential to allow for the 

calculation of the fractional occupancy which is defined as the number of cavities of type i 

occupied by guest molecule of type j based on the fugacity, 𝑓𝑗 , in the vapor phase. 
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  [32] 

The calculation of the fractional occupancy also requires the calculation of the 

Langmuir constant, Cij, which is based on the calculation of the configurational integral. The 

Devonshire approximation is used to simplify the integral to the one dimensional from 

according to Equation [33]. 
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   
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 
   [33] 

where 𝑊𝑖(𝑟) is the smooth cell potentials that account for the intermolecular interactions over 

the first, second and third shells and are derived based on the Kihara potential. 

The classical depiction of the Kihara interaction potential uses three adjustable 

parameters where a is the radius of the spherical molecular core,  is the depth of the energy 
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well and  is the collision diameter to describe the interaction between a single guest molecule 

and a single water molecule.84 This classical description is presented mathematically in 

Equations [34] and [35] and graphically in Figure 3. 

   , 2r r a     [34] 
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  [35] 

 
Figure 3. Kihara potential with three adjustable parameters ε, σ, and a 

 

In order to account for the interaction of the guest molecule within the empty hydrate 

cage and the outer water lattice shells these equations need to be rewritten in the form of a 

smooth cell potential, 𝑊(𝑟), of the form: 
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The smooth cell potential is written in terms of the coordination number, Z, the radius 

of the cell, R, and the distance between the gas molecule and the center of the cavity, r, where 

n  is: 
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   [37] 

The Kihara parameters, a, ε, and σ are characteristic of the guest molecule within the 

hydrate lattice and can be adjusted to provide a better fit of the model to experimental data. 

The Langmuir constant, as calculated using the Kihara potential, is disadvantaged in that it can 

only accurately calculate the hydrate equilibrium conditions of small spherical molecules such 

as argon, krypton, and methane. In order to be able to account for this deficiency in larger 

molecules, these parameters can be optimized by fitting them to experimental data of pure 

hydrate equilibrium as per the algorithm discussed later. However, they do not quantitatively 

agree with those obtained from the second virial coefficient. 

`  
Figure 4. General hydrate-fluid phase equilibrium figure60 
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To satisfy the equilibrium conditions, the chemical potential of water in the hydrate 

phase is equated to that of water in the coexisting liquid, vapor or ice phase. The focus of this 

thesis lies in the calculation of the equilibrium between a vapor phase rich in hydrate former, 

a water-rich liquid phase and the hydrate phase (denoted as L1HV in Figure 4 or alternatively 

referred to as LwHV). To calculate equilibrium between the liquid water and the hydrate phase, 

the chemical potential of liquid water is needed. An alternative chemical potential formula is 

required for temperatures less than 273.15 K or calculations of Ice-Hydrate-Vapor (IHV) 

equilibrium. 

  2
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       [38] 

The first term is the reference chemical potential that is defined to be the chemical 

potential of water at 273.15 K and 0 MPa, and is an experimentally determined value. In order 

to calculate the chemical potential of the real fluid, the reference potential is corrected to the 

temperature, pressure and composition of the system. The enthalpy difference is incorporated 

using the integral of the isobaric heat capacities between the reference temperature and the 

temperature of the system using Equations [39] and [40].  
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h h C dT        [39] 

  p pC C b T T       [40] 

The various thermodynamic reference property values for hydrate structures I and II 

are given in Table 4. The final term accounts for the solubility of gas of the type i in water, 𝑥𝑤, 

and is calculated using the flash calculation routine. This is the condition that ensures that the 

hydrate phase is in equilibrium with both the liquid and vapor phases and the activity 
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coefficient, 𝛾𝑤, modifies the calculated equilibrium pressure when hydrates are formed in the 

presence of inhibitors. However, for the purpose of this work, the activity coefficient has been 

set to unity. 

Table 4. Thermodynamic properties defined relative to an empty hydrate lattice61 

Reference 
property 

Unit Structure I Structure II 

 Δ𝜇𝑤
∘  J/mol 1263.568 882.824 

Δℎ𝑤
′  J/mol 1150.6 807.512 

Δ𝑉𝑤
′  cm3/mol 3.0 3.4 

Δ𝐶𝑝
∘ J/mol.K   38.14 0.0141 T T    

 

In order for the equilibrium pressure to be attained the chemical potentials should be 

equal, so an iteration scheme is needed to converge to the equilibrium pressure. The algorithm 

in Figure 5 allows for the implementation of the vdW-P model together with an EoS for the 

calculation of the hydrate equilibrium pressure in the LwHV and IHV ranges for both pure gas 

hydrates and hydrate mixtures. In this work, the use of PC-SAFT and PR EoS for the 

calculation of hydrate mixture phase equilibria is evaluated. 

The calculation of the LwHV equilibrium in the manner explained in this methodology 

relies on accurate Kihara parameters. These parameters are fitted to three-phase equilibrium 

experimental data according to the algorithm in Figure 5. The initial guess of the Kihara 

parameters are values obtained from the literature, following which they are used to calculate 

the equilibrium pressure of all data points according the previously explained methodology. 

The function, g, in the Newton-Raphson scheme is defined based on the average error produced 

by the current iterations of the Kihara parameters.  

  g E x   [41] 
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The function’s derivative is calculated using the finite difference method: 

 
   

2

E x x E x x
g

x

  
 


  [42] 

where ∆𝑥 is the spacing to the Kihara parameter being fitted and is set to 1.0 × 10−6. 

 
Figure 5. Numerical algorithm for hydrate equilibrium calculations (left) and Kihara parameter 

regression (right) 

 

3.6 Results Analysis 

Within this work, a quantitative comparison of all points calculated using EoS or any 

alternative modeling method to experimental data is evaluated using an average absolute 

deviation defined by the formula: 

 calc exp

1 exp

1
% 100%

N

i

X X
AAD

N X


    [43] 
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where, N refers to the number of data points in the data set that is being calculated, X refers to 

the property under consideration such as pressure, heat capacity, speed of sound or isothermal 

compressibility for either the calculated point (calc) or the experimental data point (exp). This 

method normalizes the error and is used for analysis as it allows for equivalent comparison 

between various different properties.  

In addition to the quantitative comparison of the prediction capabilities of the PR and 

PC-SAFT EoS, a qualitative analysis of the figures is also presented in the next chapter.  
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4. RESULTS AND DISCUSSION 

 

4.1 Single Component Primary and Derivative Properties 

4.1.1 Vapor-Liquid Equilibrium 

To calculate thermodynamic properties of fluids in different phases, the pure 

component PC-SAFT parameters m, σ, ε, AB and AB need to be fitted to vapor pressure and 

saturated liquid density data. In this work, experimental data from the National Institute of 

Standards and Technology13 (NIST) database was used for this purpose.  All molecules studied 

within this work are modeled as non-associating molecules with the exception of water, which 

is modeled as a molecule with two associating sites. The optimization of these parameters is 

achieved through the minimization of the deviation of the EoS prediction of both the saturation 

pressure and liquid density of the components from the experimental value. The parameters 

for all of the components studied in this work are displayed in Table 5. These parameters have 

been refitted for this work and are consistent with the parameters previously published by the 

research group at Texas A&M university at Qatar.104,105  

The accuracy of these parameters is ensured by the subsequent calculation of the 

saturation pressure, 𝑃𝑠𝑎𝑡, and the liquid and vapor densities, 𝜌𝑙𝑖𝑞  and 𝜌𝑣𝑎𝑝, respectively. Table 

6 provides a summary of the %AAD for each property, the number and range of conditions of 

the data used to fit the PC-SAFT parameters. The saturation curves, presented in both Figure 

6 and Figure 7, are those of select pure components and provide an indicative sample of the 

qualitative value of the fitted parameters.  
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Table 5. PC-SAFT pure component parameters 

Component MM [g/mol] m Å   

CO2 44.01 2.6037 2.555 151.04  

CH4 16.04 1.0000 3.704 150.03 

O2 32.00 1.1217 3.210 114.96 

Ar 39.95 0.9285 3.478 122.23 

N2 28.00 1.2053 3.313 90.96 

CO 28.01 1.3195 3.231 91.41 

H2O  18.02 1.9599 2.362 279.42 2059.28 0.1750 

H2S  34.08 1.7129 3.053  224.01  

C2H6 30.07 1.6040 3.532 191.47 

C3H8 44.10 2.0011 3.630 207.90 

i-C4H10 58.12 2.2599 3.774 216.25 

 

On average, PC-SAFT systematically predicts the saturated liquid and vapor densities 

of all components more accurately than the PR EoS for temperatures slightly above the triple 

point to almost critical conditions. For SAFT type EoS, %AAD less than 2% are expected 

which is in accordance with the results obtained for PC-SAFT.99,106 Higher errors are expected 

from the PR EoS, especially when the liquid density is considered. For this reason, the 

implementation of the Peneloux density correction for improvement of the liquid phase density 

prediction is usually preferred.  

Both PC-SAFT and PR EoS are mean-field models and they are inaccurate at near 

critical conditions.  Figure 6 provides an overview of the accuracy of PC-SAFT for CO2 at 

conditions away from the critical point (both sub- and supercritical conditions) and the relative 

inaccuracy at near critical conditions.  
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Table 6. Pure component densities calculated by PC-SAFT 

Species 

Number 

of Data 
Points 

Temperature 

Range [K] 

PC-SAFT PR 

𝑃𝑠𝑎𝑡 
[MPa] 

%AAD 

𝜌𝑙𝑖𝑞 

%AAD 

𝜌𝑣𝑎𝑝 

%AAD 

𝜌𝑙𝑖𝑞 

%AAD 

𝜌𝑣𝑎𝑝 

CO2 88 217 -304  0.37 0.86 3.56 4.38 0.57 

CH4 99 92-190  0.27 0.77 0.90 9.47 0.62 

O2 99 56-154  1.48 0.98 0.38 9.79 0.70 

Ar 66 85-150  0.37 1.06 0.80 9.14 1.17 

N2 63 64-126 0.26 2.16 0.76 9.36 1.08 

CO 64 69-132 0.34 1.73 0.45 9.68 1.31 

H2O 187 274-646 1.20 4.11 6.36 19.04 2.87 

H2S 93 188-372 0.30 4.77 0.82 6.11 0.65 

C2H6 108 91-305 4.05 0.49 1.27 6.91 0.37 

C3H8 142 150- 368 0.33 1.19 1.22 10.60 0.30 

i-C4H10 147 114-406 1.04 1.26 1.33 7.68 0.32 

Averages 0.91 1.71 1.79 8.74 0.93 

 

  
Figure 6. Density of CO2 at four isotherms ranging from below to above Tc, experimental data (points) 

and PC-SAFT model predictions (lines) 

 

The density curves in Figure 7 reiterate this point qualitatively for several other 

components showing that all EoS perform equally well for the vapor phase but not for the 

liquid phase. 
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CO2 CO 

  
H2O H2S 

  

CH4 C2H6 

Figure 7. Phase equilibrium density diagrams for select pure component species examined in this thesis 

 

4.1.2 Derivative Properties of Single Component Systems 

Derivative properties, such as isothermal compressibility and speed of sound, are 

directly related to the isobaric, 𝐶𝑝, and isochoric, 𝐶𝑣, heat capacities. Thus, a proper 
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understanding of the abilities of both EoS to predict 𝐶𝑝 and 𝐶𝑣 is essential. Overall, both PC-

SAFT and PR can predict these properties with relatively good accuracy, with, on average, 

errors less than 4.5%. The individual %AAD for each component are listed in Table 7; these 

are averages taken over a range of temperatures that include the critical temperature of the 

component and six isobars ranging from 2-12 MPa. 

Table 7. Percentage average absolute deviations in EoS predictions of pure component isochoric and 

isobaric heat capacities and the corresponding residual properties 

Components 
Temperature 
Range [K] 

PC-SAFT PR 

Cp Cp
res Cv Cv

res Cp Cp
res Cv Cv

res 

CO2 220-500 3.83 10.28 4.80 39.33 3.90 12.14 3.05 24.35 

CH4 100-300 3.27 7.06 3.02 21.32 3.27 7.17 3.34 30.42 

O2  70-200 5.07 9.80 4.99 25.28 4.81 9.52 3.82 25.32 

Ar  90-200 5.92 9.94 5.18 20.88 5.12 8.81 5.80 29.02 

CO 80-200 3.73 6.69 3.54 16.31 3.61 6.95 2.89 16.56 

N2  75-200 3.79 7.07 4.06 21.92 3.58 6.94 3.05 21.06 

Averages 4.27 8.47 4.26 24.17 4.05 8.59 3.66 24.46 

 

However, these deviations may be a little misleading as they include the ideal 

contribution to the EoS. Once this contribution is eliminated, the residual property is 

calculated. 

      , , ,res idealX T P X T P X T P    [44] 

where 𝑋 refers to any arbitrary property under consideration, in this case, 𝑋 = 𝐶𝑝 or 𝐶𝑣.  

The substantial increase in error in both residual 𝐶𝑝 and 𝐶𝑣 indicate that the prediction 

capabilities of both EoS are relatively poor. For 𝐶𝑝, the error increases as a result of the 

asymptotic behavior of the property at the critical point. This behavior is exhibited by the 

experimental data measured in the critical region and is mimicked by both EoS. This 

phenomenon can be seen in Figure 8 which is representative of the behavior of 𝐶𝑝 around the 

file:///C:/Users/sally.el_meragawi/Dropbox/Master's%20Degree/Research/Master's%20Thesis/Excel%20Files/Pure%20Component%20Heat%20Capacities.xlsx%23'CO2'!A1
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critical point for all the components studied. The figures for the other components have been 

compiled in the Appendix (Section 7.2.1). 𝐶𝑝 calculations for all components exhibit the same 

behavior, where both EoS are accurate in regions away from the critical point but deteriorate 

in the critical region. This is due to the fact that both EoS are mean-field theories and as such 

do not account for critical fluctuation. 

 
Figure 8. Isobaric heat capacity (𝑪𝒑) of CO2, experimental data (points) and model predictions (lines) 

 

Similarly, the significant increase in the error in residual 𝐶𝑣 is also due to the approach 

to the critical point. However, unlike 𝐶𝑝 the EoS entirely lose their predictive capabilities. 

Outside the critical region, the behavior is more consistent. For example, at temperatures above 

400 K, each isobar is in the supercritical phase. Deviations are to be expected at lower 

temperatures as the critical region, phase transitions, and low temperatures exhibit highly non-

ideal behavior. 
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Figure 9. Isochoric heat capacity (𝑪𝒗) of CO2, experimental data (points) and model predictions (lines) 

 

 
Figure 10. Isochoric heat capacity (𝑪𝒗) of CH4, experimental data (points) and model predictions (lines) 

 

The speed of sound and the isothermal compressibility of pure carbon dioxide are 

studied in the high-pressure liquid region indicated by Figure 11. Specifically, six isotherms 

ranging in temperature from 268.15 to 301.15 K and in pressure from approximately 3 to 42 

MPa.  
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Figure 11. Temperature and pressure region of experimental data points of derivative properties 

compared to the saturation curve of CO2 

 

This range of conditions is typical of a CCS process stream. In this range, the common 

impurities found in CCS streams are typically supercritical. As the impurities are supercritical 

in the temperature and pressure regions under consideration, a different behavior of the single 

phase properties for these components should be expected.  

The %AAD for each of the pure component speed of sound calculations are in Table 8 

for both the PC-SAFT and PR EoS. The phase of the impurities makes their derivative 

properties easier to predict relative to the prediction of properties of pure liquid CO2. This 

results in an appreciably lower %AAD of the components in the supercritical phase compared 

to CO2. This behavior is true of both EoS, although PC-SAFT does so with more precision. On 

average, PC-SAFT is able to predict the speed of sound in the supercritical phase with a %AAD 

of 1.2%, PR with a %AAD of 4.5%. These percentages account for almost a third of the error 

for prediction of the same property in the liquid phase as documented in Table 8. The error for 
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the isothermal compressibility of pure liquid CO2 is higher with %AAD for 4.18% with PC-

SAFT and 39.23% with PR.  

Table 8. Deviations in pure component speed of sound by both EoS for the component in the indicated 

phase for temperatures ranging from 268.15 K to 301.15 K and pressures ranging from 3.63 MPa to 

41.64 MPa 

Component 
Phase %AAD 

PC-SAFT 

% AAD 

 PR 

CO2 Liquid 3.86 15.56 

CH4 Supercritical 1.73 5.68 

O2 Supercritical 0.76 3.45 

Ar Supercritical 0.88 3.74 

CO Supercritical 1.05 4.56 

N2 Supercritical 1.63 4.83 

 

While PC-SAFT accurately predicts the trends of both isothermal compressibility and 

speed of sound over broad conditions, it can also follow the data patterns of both properties. 

Overall, PC-SAFT tends to over-predict the properties under consideration. This can be seen 

explicitly in Figure 12 in the low pressure region.  

 
Figure 12. Speed of sound of CO2, experimental data (points) and model predictions (lines) 
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As the critical point is crossed and the speed of sound of a supercritical fluid is 

calculated in the high pressure spectrum, PC-SAFT begins to slightly under predict the 

property. This can be seen qualitatively in Figure 13. 

 
Figure 13. Supercritical speed of sound of Ar, experimental data (points) and model predictions (lines) 

 

On the other hand, in both of the previously presented figures PR consistently under-

predicts the speed of sound. Both EoS lose their accuracy in the low-pressure region as 

saturation conditions are reached and variations in temperature have a much smaller effect on 

the speed of sound of supercritical species compared to those in subcritical conditions. 

For isothermal compressibility, PC-SAFT remains consistent in its trends as seen in 

Figure 14. It over predicts the property at low pressures and becomes more accurate at high 

pressures in the liquid phase calculations. Similarly, PR also over predicts the isothermal 

compressibility, this is contrary to its behavior in the prediction of speed of sound. 
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Figure 14. Isothermal compressibility of CO2, experimental data (points) and model predictions (lines) 

 

The figures presented in this section are of select pure components and provide an 

illustration of the qualitative behavior of both properties. Additional figures of the properties 

of the remaining components have been placed in Appendix II (Section 7.2.4). The conclusions 

that can be drawn from the figures presented in the Appendix are indentical to the conclusions 

discussed here. 

 

4.2 Binary and Select Ternary Mixtures Relevant to CCS 

4.2.1 Vapor-Liquid Equilibrium of Binary Mixtures 

Pure component VLE calculations are relatively easy to perform, and the algorithms 

are robust. Increasing the number of components in the system increases the complexity of the 

calculations. More specifically, this section focuses on the study of the degree of improvement 

observed in VLE calculations with the implantation of a binary interaction parameter, kij. The 

binary interaction parameters are independent of temperature meaning that to be able to use 
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them with confidence for the prediction of other properties, they should be fitted to as wide a 

temperature range as possible.  

Figure 15 display the ability of PC-SAFT to predict the VLE region for the binary 

mixture of CO2-CH4. The results of four cases of calculations, a set of prediction and 

correlation calculations using both the PC-SAFT and PR EoS are presented. It can be 

concluded qualitatively that both EoS become more accurate after the implementation of the 

binary interaction parameter.   

 
Figure 15. VLE for the binary mixture CO2-CH4 mixture, experimental data (points) and model 

predictions (lines) 

 

The VLE diagrams for the remaining five systems studied in this work are summarized 

in Appendix II (Section 7.2.3). The results presented there are consistent with those presented 

in the following section. The binary interaction parameter was fitted for all six mixtures over 

as wide a range of temperatures as possible. The kij parameters for both EoS are summarized 

in Table 9. These parameters have been refitted specifically for this work, but they do not differ 

significantly from those fitted previously.105  
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Table 9. Average deviations of VLE pressures and binary interaction parameters (kij) for mixtures 

relating to CCS 

 PC-SAFT kij=0 kij≠0 PR kij=0 kij≠0 

System #DP 
T Range 

[K] 
kij 

%AAD 
Pressure 

%AAD 
Pressure 

kij 
%AAD 
Pressure 

%AAD 
Pressure 

CO2-CH4
19 36 230-270 0.0561 14.52 3.71 0.1000 14.87 2.48 

CO2-O2
28 71 223-283 0.0488 18.50 5.07 0.1050 22.87 5.14 

CO2-Ar14 62 233-299 0.0439 10.99 3.73 0.1200 23.93 8.58 

CO2-CO107 38 223-283 -0.0161 9.62 6.51 -0.0200 13.30 8.16 

CO2-N2
18 14 223-273 -0.0105 6.73 5.40 -0.0177 6.90 3.90 

CO-Ar108 15 123-137 -0.0012 0.66 0.64 0.0010 0.75 0.68 

Average 10.17 4.18  13.77 5.23 

 

Based on the results summarized in Table 9, PC-SAFT is able to predict the VLE 

pressure for a binary mixture with an average accuracy of 10.17%; however, when the kij is 

fitted to these data the average deviation between experimental data and model calculations 

for the pressure decreases to 4.18%. The prediction ability of the PR EoS shows similar 

improvement with %AAD decreasing from 13.77% to 5.23% upon fitting of the kij. These 

errors are still large compared to the predictions of pure componenet vapor pressure. Both EoS 

algorithms show a loss of accuracy as the critical point of the mixture is approached; a 

phenomenon that can also be seen in the pure component saturation curves in Figure 7. With 

the fitting of the kij, a more accurate calculation of VLE curve in the region around the critical 

point is possible.  

 

4.2.2 Derivative Properties of Mixtures 

Accurate calculation of second order derivative properties are a well-known challenge 

for any EoS.55 Assuming that the binary interaction parameter would also work as well for 

improving calculations of the speed of sound and isothermal compressibility as it has for VLE 

calculations. Calculations of properties with and without the parameter are presented. The 

file:///C:/Users/sally.el_meragawi/Dropbox/Master's%20Degree/Research/Master's%20Thesis/Excel%20Files/Multicomponent%20VLE%20+%20Binary%20Interaction%20Parameter%20Regression.xlsx%23'CO2-CH4'!A1
file:///C:/Users/sally.el_meragawi/Dropbox/Master's%20Degree/Research/Master's%20Thesis/Excel%20Files/Multicomponent%20VLE%20+%20Binary%20Interaction%20Parameter%20Regression.xlsx%23'CO2-O2'!A1
file:///C:/Users/sally.el_meragawi/Dropbox/Master's%20Degree/Research/Master's%20Thesis/Excel%20Files/Multicomponent%20VLE%20+%20Binary%20Interaction%20Parameter%20Regression.xlsx%23'CO2-Ar'!A1
file:///C:/Users/sally.el_meragawi/Dropbox/Master's%20Degree/Research/Master's%20Thesis/Excel%20Files/Multicomponent%20VLE%20+%20Binary%20Interaction%20Parameter%20Regression.xlsx%23'CO2-CO'!A1
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following analysis describes the effect of the binary interaction parameters of derivative 

property predictions for the five binary and single ternary mixtures, the compositions for which 

are noted in Table 10.  

Table 10. Composition of mixtures for which second order derivative properties are studied 

 CO2+N2 CO2+CH4 CO2+O2 CO2+Ar CO2+CO CO2+Ar+CO 

CO2 0.9556 0.9539 0.9348 0.9554 0.9569 0.9884 

N2 0.0444      

CH4  0.0461     

O2   0.0652    

Ar    0.0446  0.0116 

CO     0.0431 0.0229 

 

Based on the results summarized in Table 11, the use of the binary interaction 

parameter only slightly improves both predictions of speed of sound and isothermal 

compressibility with PC-SAFT. However, the same conclusion cannot be reached for PR, as 

the %AAD increases with the implementation of the binary interaction parameter, which is 

unexpected. 

Table 11. Average deviation (%AAD) in speed of sound and isothermal compressibility predictions using 

PC-SAFT and PR 

Mixtures #DP 

Predictions (kij=0) Correlations (kij ≠ 0) 

Speed of Sound Isothermal Comp Speed of Sound 
Isothermal 

Comp 

PC-

SAFT 
PR 

PC-

SAFT 
PR 

PC-

SAFT 
PR 

PC-

SAFT 
PR 

CO2+CH4 61 6.53 13.30 7.81 31.40 5.41 14.10 5.70 35.89 

CO2+O2 62 4.98 13.42 4.42 28.35 4.08 14.26 4.06 32.53 

CO2+Ar 59 4.40 14.31 6.15 28.67 3.83 14.96 5.52 31.94 

CO2+CO 61 5.84 13.24 6.82 28.11 6.07 13.15 7.38 27.63 

CO2+N2 60 2.99 15.74 3.81 36.77 3.09 15.73 3.52 36.72 

CO2+Ar+CO 58 7.62 13.51 11.53 27.72 7.48 13.62 11.19 28.24 

Average 5.39 13.92 6.76 30.17 4.99 14.30 6.23 32.16 

 

An analysis of the Figure 16 indicates that PC-SAFT over-predicts the speed of sound 

while PR under-predicts the property. The use of the binary interaction parameter has the net 
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effect of reducing the speed of sound of the system. This shift the PC-SAFT correlation closer 

to the experimental value but shifts the PR correlation away from the datasets. Thus, reducing 

the %AAD of the PC-SAFT prediction and increasing that of the PR. 

 
Figure 16. Speed of sound of the CO2 -CH4 mixture, experimental data (points) and model predictions 

(lines) 

 

 On the other hand, PR always overestimates isothermal compressibility. Here again, 

the use of the binary interaction parameter increases both EoS predictions of the property. This 

leads to the further deviation of the PR EoS prediction from the experimental data. However, 

this does not lead to increasing %AAD for PC-SAFT as the EoS tends to only over predict the 

property at high temperatures. Thus, introducing the binary interaction parameter only furthers 

deviations in the PC-SAFT prediction of isothermal compressibility at temperatures above 301 

K.  
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Figure 17. Isothermal compressibility of the CO2 -CH4 mixture, experimental data (points) and model 

predictions (lines) 

 

Overall, it may be concluded that the implementation of the binary interaction 

parameter in the prediction of derivative properties has a negligible effect on the accuracy of 

the EoS. A similar analysis may be concluded from the remainder of the binary mixtures, the 

figures for which are provided in Appendix II (Section 7.2.5). More importantly, the analysis 

remains the same for the results of the ternary mixture of CO2-Ar-CO that was studied. The 

results for this ternary mixture are displayed in Figure 18 and Figure 19. Three kij values were 

used each of which were fitted to binary VLE data, in a manner consistent with the binary 

mixtures studied in this section. Based on the results summarized both in the figures below and 

in Table 11, the use of the kij parameter has even smaller effect on the prediction of the 

properties compared to its effect on the properties of the binary system. 
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Figure 18. Speed of sound of the CO2 –Ar – CO mixture, experimental data (points) and model 

predictions (lines) 

 

 
Figure 19. Isothermal compressibility of the CO2 –Ar – CO mixture, experimental data (points) and 

model predictions (lines) 
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4.3 Fluid-Hydrate Equilibrium 

4.3.1 Pure Hydrate Formers 

The primary focus of this section lies in the prediction of the equilibrium pressure of 

the hydrate phase with a liquid and a vapor phase. The liquid is primarily composed of water, 

and the vapor phase is rich in the guest molecule used to stabilize the hydrate phase. For 

example, in the case of methane, the system under study would consist of the hydrate phase 

with guest methane molecules, a liquid water phase with a low concentration of dissolved 

methane molecules, and a methane-rich vapor phase. The correct compositions of the vapor 

and liquid phases are determined using the 2-phase flash algorithm outlined in Section 3.4. The 

composition is then used in Equation [38] to ensure simultaneous equilibrium with the hydrate 

phase. 

In order to describe the hydrate phase properties with the model formulated in Section 

3.5, two cases of Kihara potential parameters (𝑎, 𝜀 and 𝜎) provided in the literature are studied. 

The first set of parameters were proposed by Parish and Prausnit61,109 (P&P) and the second 

are those presented by Sloan and Koh59 (S&K). The relevant parameters are summarized in 

Table 12. For the case of S&K there are no parameters available for Ar or O2. For Ar, an 

alternative set was obtained from literature while those of O2 have been designated “N/A” as 

no secondary set of parameters was found.  

Using these parameters, calculations of the equilibrium pressure were performed for 

the systems and under the ranges of conditions summarized in Table 13.  Calculations were 

performed between the lower and upper quadruple points. The quadruple points are conditions 

under which LwHV  phases are in equilibrium with a fourth phase. The first quadruple (Q1) 
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point has these phases in equilibrium with an ice phase (I) whereas the second quadruple point 

(Q2) occurs when LwHV is equilibrium with a second guest-rich liquid phase (Lg). 

Table 12. Kihara potential parameters from P&P and S&K. Sources of parameters are those listed in 

column headings unless cited otherwise. 

Guest 
Molecule 

Parrish and Prausnitz61,109 Sloan and Koh59  

a [Å] ε/k (K) σ (Å) a [Å] ε/k (K) σ (Å) 

CH4 0.300 153.17 3.2398 0.3834 155.59 3.1439 

C2H6 0.400 174.97 3.2941 0.5651 188.18 3.2469 

C3H8 0.680 200.94 3.3030 0.6502 192.86 3.4167 

iC4H10 0.800 220.52 3.1244 0.8706 198.33 3.4169 

CO2 0.3600 169.09 2.9681 0.6805 175.41 2.9764 

O2 0.3600 166.37 2.7673 N/A 

N2 0.3500 127.95 3.2199 0.3526 127.43 3.1351 

Ar 0.184 170.50 2.9434 0.4520 110 155.30 110 2.829 110 

H2S 0.3600 205.85 3.1558 0.3600 212.05 3.1000 

 

Table 13. Conditions of pure guest hydrate formation in LwHV region 

Guest 

Species 

Experimental Data 

Sources 
#DP 

Temperature 

Range [K] 

Pressure 

Range [MPa] 

LwHVLg Point [Q2] 

T [K] P [MPa] 

CH4 
Deaton and Frost111 and 

Marshall et al.112 
33 273.70-320.10 2.77-397.00 -- 

C2H6 Holder et al.60 24 273.15-284.65 0.47-2.10 287.35 3.303 

C3H8 Holder et al.60 21 273.15-278.15 0.18-0.54 278.40 0.560 

iC4H10 Rouher and Barduhn113 21 273.15-274.80 0.12-0.16 275.03 0.167 

CO2 Holder et al.60 21 273.15-283.15 1.12-4.43 283.10 4.502 

O2 Van Cleeff et al.114 42 269.15-291.05 10.94-95.85 -- 

N2 Holder et al.60 25 273.15-298.15 15.09-166.06 -- 

Ar Marshall et al.112 13 274.32-299.98 10.65-207.84 -- 

H2S Holder et al.60 12 273.65-295.65 0.10-0.96 302.70 2.239 

 

The deviations in the ability of both EoS to predict the equilibrium pressure of LwHV 

phases are summarized in Table 14.  
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Table 14. Average deviation in EoS prediction of equilibrium pressure of pure gas hydrates 

Guest Species 
PC-SAFT PR 

CSMGem 
P&P S&K P&P S&K 

CH4 Figure 24 11.12 11.04 6.86 7.41 1.94 

C2H6 Figure 57 19.97 (1) 20.05 (1) 2.40 

C3H8 Figure 56 4.97 22.04 4.90 22.00 10.85 

iC4H10 Figure 23 1.04 51.19 1.17 51.18 4.06 

CO2 Figure 22 (1) 48.60 (1) 50.57 3.78 

O2 Figure 55 57.68 N/A 64.25 N/A N/A 

N2 Figure 54 2.24 26.46 6.61 41.36 7.12 

Ar Figure 25 (1) 52.74 (1) 52.92 N/A 

H2S Figure 58 3.46 4.58 5.49 2.86 5.67 

Averages 14.35 30.95 15.63 32.61 5.12 

(1) These calculations did not converge. 

Of the parameters studied, three cases denoted with (1) did not converge. This 

instability is most likely due to an insufficient or inaccurate description of the collision 

diameter, well depth or soft-core radius. An immediate comparison of the values provided in 

Table 12 indicates that the divergence in C2H6 and Ar is caused by the given values of the 

radius, a, while the divergence in CO2 calculations may be caused by the combination of ε and 

σ. From these preliminary calculations, it is apparent that the P&P parameters are better 

optimized compared to those of S&K. However, both sets of parameters perform poorly 

compared to the predictions of CSMGem, also shown in Table 14. CSMGem a commercialized 

software that calculates equilibrium conditions using a routine based on the minimization of 

Gibbs free energy.115 

In order to improve the accuracy of these predictions, the Kihara potential well depth, 

ε, was fitted to experimental LwHV equilibrium data using the iteration scheme described in 

Section 3.5. For all of the cases examined, the adjusted ε parameters are presented in Table 15.  
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Table 15. Fitted Kihara epsilon parameter for all cases and average deviation in EoS prediction of 

equilibrium pressure 

Guest 

Species 

PC-SAFT PR 

CSMGem r. P&P r. S&K r. P&P r. S&K 

 %AAD  %AAD  %AAD  %AAD 

CH4 153.17 11.12 155.59 11.04 153.77 6.21 156.45 5.87 1.94 

C2H6 171.35 9.89 (1) 172.24 7.40 (1) 2.40 

C3H8 199.98 3.25 189.82 3.25 200.35 0.46 190.17 0.42 10.85 

iC4H10 220.55 0.91 190.93 1.09 220.61 0.72 (1) 4.06 

CO2 (1) 165.92 9.26 188.07 7.53 166.47 5.80 3.78 

O2 170.95 16.46 N/A 174.02 13.88 N/A N/A 

N2 128.08 2.24 131.05 2.56 128.52 6.61 131.59 4.67 7.12 

Ar (1) 143.86 8.99 (1) 145.17 8.23 N/A 

H2S 204.49 3.46 211.34 9.81 205.01 2.02 211.89 2.53 5.67 

Averages 6.76 6.57 5.59 4.87 5.12 

 

For the cases of CH4, N2, and H2S, the values of 𝜀 regressed by the routine described 

in Section 3.5 are the same as those originally proposed in Table 12. To evaluate the sensitivity 

of the Kihara parameter values in the phase equilibrium calculations, the error in hydrate-fluid 

equilibrium pressure produced by varying each of the Kihara parameters is presented. For the 

case of CH4, %AAD are calculated and plotted against the Kihara 𝜀 and Kihara 𝜎 in Figure 20 

and Figure 21, respectively. 

From Figure 20, it may be concluded that the original value of the Kihara ε results in 

the global error minimum when paired with the PC-SAFT EoS. However, when the same 

parameters are used to describe the hydrate phase in conjunction with the PR EoS a different 

value of ε produces a global error minimum. This behavior indicates that the optimum value 

of ε is EoS dependent; the same conclusion was reached by Diamantonis et al.64 In addition, 

by varying σ (solid to dashed lines) by 3% no notable improvement or loss of accuracy in the 

prediction capabilities of either EoS is seen. This analysis is also evident in a similar 

investigation of N2 and H2S hydrates. 
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Figure 20. %AAD of CH4 hydrate-fluid equilibrium with change in Kihara ε 

 

 
Figure 21. %AAD of CH4 hydrate-fluid equilibrium with change in Kihara σ 

 

Furthermore, an analysis of Figure 20 and Figure 21 provides information on the 

sensitivity of %AAD to small changes in σ and ε. PR EoS is more sensitive to changes in both 

Kihara parameters than PC-SAFT, and the algorithm is unable to converge outside of the 

ranges presented in both figures. This instability occurs with parameter changes of less than 
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5% from the values given in Table 12, indicating that only small changes in either parameter 

can cause convergence issues. While both parameters are sensitive to change, σ is more so as 

indicated by the sharp cutoff in Figure 21. An additional complexity arises with the appearance 

of a local minimum in the %AAD of PR with the S&K Kihara ε that may prevent convergence 

on a value of sigma that provides a global minimum in the %AAD. As a result of these 

conclusions, only ε has been fitted to experimental data and has shown significant 

improvement in prediction of the equilibrium pressure. 

A fair comparison of the abilities of each EoS to predict the LwHV phase equilibria 

conditions can only be done by excluding the components, Ar and O2, which CSMGem cannot 

predict. Table 16 shows that PR is the most accurate while PC-SAFT and CSMGem perform 

comparably. 

Table 16. Direct comparison of the prediction capabilities of PC-SAFT, PR, and CSMGem 

Guest 
Species 

PC-SAFT PR CSMGem 

CH4 11.04 5.87 1.94 

C2H6 7.81 6.97 2.40 

C3H8 3.25 0.42 10.85 

iC4H10 0.91 0.72 4.06 

CO2 9.26 5.8 3.78 

N2 2.24 6.04 7.12 

H2S 2.72 2.34 5.67 

Average 5.32 4.02 5.12 

 

Based on these results, it is concluded that overall PR is better than PC-SAFT. 

However, PC-SAFT has the added advantage of being able to predict the phase equilibrium 

line closer to the upper quadruple point. This phenomenon that can be seen explicitly in Figure 

22 and Figure 23. However, the consistency to which the algorithm is able to converge upon a 

solution near Q2 varies.  
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Figure 22. LwHV phase equilibrium of CO2, experimental data (points) and model predictions (lines)  

 

 

Figure 23. LwHV phase equilibrium of iC4H10, experimental data (points) and model predictions (lines) 

 

The accuracy of the EoS falls at higher pressures, a phenomenon that can be seen in 

Figure 24.  
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Figure 24. LwHV phase equilibrium of CH4, experimental data (points) and model predictions (lines) 

 

In an effort to improve the results of the PC-SAFT EoS in the higher temperature 

region, an adjustment was made to temperature correction term in Equation [38]. This was 

based on the assumption that these deviations result from the reference potential of the empty 

hydrate lattice. Specifically, Equation [45] was used in place of Equation [40] 

    
1.5

37.89 0.195 0.006P o oC T T T T        [45] 

 However, this change resulted in insignificant changes in the predictions at high 

temperatures and as such was not implemented in the algorithm.  

Finally, Figure 25 shows that fitting only the Kihara ε not only improves the accuracy 

of the prediction but also the temperature range over which the algorithms are able to converge.  
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Figure 25. LwHV phase equilibrium of Ar, experimental data (points) and model predictions (lines) 

 

4.3.2 Mixtures of Hydrate Formers 

Introducing a second hydrate former to the system, adds additional complications due 

to the expected change in hydrate structure with changes in the composition of the mixture. 

Here mixtures containing two, three and four components are studied. A review of available 

experimental data in the literature was conducted, and it became apparent that there remain 

many more mixtures and conditions that have yet to be studied. In an attempt to cover as wide 

a range of mixtures as possible, a scan of all the binary combinations of the pure hydrate 

formers has been done. The binary mixtures available in the literature are summarized in Table 

17, and it can be seen that no experimental data sets exist for binary mixtures containing H2S, 

Ar and O2.  

 

 

 



 

62 

 

Table 17. Binary mixtures of guests considered for hydrate-fluid equilibrium calculations 

Species CH4   

C2H6 x  C2H6   

C3H8 x x C3H8   

iC4H10 x    iC4H10   

CO2 x  x x x  CO2   

O2      O2   

N2 x   x  x  N2   

Ar        Ar  

H2S x                H2S 

 

A similar scan of combinations was done for both ternary and quaternary mixtures of 

hydrate formers, and it was found that for mixtures with more components there are even fewer 

data sets available. In general, the most popular mixtures are those containing CH4 and CO2. 

Table 18. %AAD in EoS prediction of equilibrium pressure of binary gas mixture hydrates 

Binary Guest Mixtures 
PC-SAFT PR 

CSMGEM 
r. P&P r. S&K r. P&P r. S&K 

CH4 

C2H6 20.37 (1) 17.02 (1) 2.54 

C3H8 4.54 9.69 3.46 13.40 4.61 

iC4H10 21.52 7.88 22.25 (3) 8.74 

CO2 (2) 4.64 6.23 3.75 1.91 

N2 9.80 11.10 8.76 8.61 20.42 

CO2 

C2H6 (2) (1) 11.97 (1) 50.09 

C3H8 (2) 20.17 18.86 11.97 17.44 

iC4H10 (2) 39.03 (2) (3) 17.17 

N2 (2) 10.14 14.67 14.37 14.20 

C3H8 
C2H6 11.73 (1) 8.28 (1) 12.83 

N2 42.09 13.96 34.41 15.55 7.85 

Average 18.34 14.58 14.59 11.28 14.35 
(1) Lack of convergence due to C2H6 Kihara parameters (2) Lack of convergence due to CO2  

 Kihara parameters (3) Lack of convergence due to iC4H10 Kihara parameters 

For the systems with mixtures of hydrate formers, only the fitted Kihara potential 

parameters are used to predict the equilibrium pressure due to their better accuracy in the 

prediction of the pure gas hydrate systems. However, as some combinations of parameters do 

not converge, a phenomenon noted in the previous section, it is not always possible to predict 

the equilibrium pressure of each of the previously defined cases. The convergence of the binary 

cases indicates that the sensitivity of the parameters fitted to the pure gas hydrate formers 
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remains in the analysis of the multicomponent hydrate formers. For this reason, where only 

one set of parameters for a component was available for the ternary and quaternary cases, the 

available parameter set was used for both r. P&P and r. S&K cases. 

Based on the deviations between EoS predictions and experimental data tabulated in 

both Table 18 and Table 19, it can be concluded that the r. S&K parameters allow for more 

accurate predictions in the multicomponent mixtures. r. S&K parameters produce results 4-6% 

more accurate than those predicted using the r. P&P. This improvement in equilibrium pressure 

prediction by both EoS is consistent with the pure hydrate system calculations although with 

larger error margins. In addition, prediction of the LwHV equilibrium of mixtures containing 

alkanes is less accurate. 

Table 19. %AAD in EoS prediction of equilibrium pressure of ternary and quaternary gas mixture 

hydrates 

Guest Mixtures 
PC-SAFT PR 

r. P&P r. S&K r. P&P r. S&K 

Ternary mixture of hydrate former 

CH4-CO2-N2 0.83 1.52 13.20 3.82 

CH4-CO2-H2S 27.96 26.03 15.30 14.85 

CH4-C2H6-C3H8 42.96 13.62 26.16 6.46 

CH4-C2H6-N2 20.34 21.85 20.77 15.39 

CH4-C3H8-iC4H10 8.61 7.21 8.08 7.97 

Average 20.14 14.05 16.70 9.70 

Quaternary mixture of hydrate former 

CH4-CO2-N2-C2H6 17.38 18.48 8.28 11.44 

CH4-CO2-N2-C3H8 22.17 0.45 27.02 4.45 

CO2-N2-O2-Ar 44.95 52.76 50.03 56.30 

Average 28.17 23.90 28.44 24.06 

 

More information can be obtained from the qualitative analysis of the hydrate fluid 

equilibrium predictions. Based on the representation of the results in Figure 26, the effect of 

hydrate structure on equilibrium pressure can be seen. 
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Figure 26. Prediction of LwHV equilibrium for a binary mixture of CO2 with C3H8 over a range of 

compositions, experimental data (points) and model predictions (lines) 

 

 Pure CO2 hydrates exist as sI structured hydrates while C3H8 exists in sII hydrate 

structures. Thus, at some intermediate concentration, there is a transition between structures. 

For this specific mixture, this transition appears in the form of the sudden pressure drop that 

occurs at a mole fraction of CO2 slightly above 0.95. This conclusion can be confirmed by 

studying those mixtures where both pure hydrate form in the sI structure, such as the binary 

CO2 with N2 where the hydrate equilibrium do not exhibit this peak in pressure, indicating that 

the phenomenon can be attributed to the change in structure. Both EoS have the ability to 

predict this change in equilibrium pressure that results from the changing structure at the 

correct concentration.  

It is worth noting that the quadruple point of pure C3H8 occurs at 0.56 MPa. Therefore, 

in Figure 26, for the 280.4 K and the 282.0 K isotherms, at some concentration of CO2 less 

than 30%, the three-phase equilibrium shifts to liquid CO2, Hydrate and liquid water 

equilibrium and the methodology used to calculated that equilibrium differs from that 
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implemented in this work. In addition to the two-phase flash calculation of the liquid-liquid 

equilibrium (LLE) to find the mole fraction of CO2 in the liquid water phase, the 

implementation of a non-unity activity coefficient to further account for the impurities in the 

liquid water phase (in Equation [38]) should be considered to improve the calculations further. 

The error in EoS prediction tends to increase at high temperatures, which is consistent 

with the trends seen in the pure hydrate systems and can be seen explicitly in Figure 27. 

 
Figure 27. Prediction of LwHV equilibrium for a binary mixture of CO2 with iC4H10 over a range of 

temperatures, experimental data (points) and model predictions (lines) 

 

 Generally, predictions become less accurate with the addition of impurities to the 

mixture. This feature of the calculation is exhibited clearly in almost all binary, ternary and 

quaternary hydrate equilibrium mixtures. The apparent exception being in Figure 59 with the 

mixture of CO2 and N2 where higher deviations occur at relatively small concentrations of 

CO2. 

Alkanes tend to be hydrate promoters, where small quantities of the alkane can vastly 

reduce the equilibrium pressure. As seen in Figure 27, the addition of less than 3% of isobutane 
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to methane hydrate reduces the equilibrium pressure by approximately half of its original 

value. Thus promoting hydrate growth over a much wider range of conditions compared to the 

pure hydrate former. In addition, both PC-SAFT and PR tend to over-predict the equilibrium 

pressure, especially at high temperatures, indicating that they do not fully capture the effect of 

the alkanes in the mixture. This analysis leads to the conclusion that the addition of alkanes to 

the hydrate former mixture raises the %AAD. The same phenomenon is exhibited by ternary 

mixtures of hydrate formers such as CH4-C2H6-C3H8 in Figure 28. 

 
Figure 28. HVLw equilibrium for the ternary system of CH4, C2H6 and C3H8, experimental data (points) 

and model predictions (lines) 
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5. CONCLUSIONS 

 

In an effort to better understand the range of conditions, number of phases and the 

components that macroscopic theories are best suited for, this thesis has studied a variety of 

complex systems. A comprehensive review of the literature revealed two EoS to be prime 

candidates for a detailed study of several multicomponent, multiphase systems. In addition to 

being known to perform well over a wide range of conditions, these EoS are popularly used in 

both research and industrial pursuits. The two EoS used are PC-SAFT, an equation derived 

based on statistical mechanical theories and PR a cubic equation commonly used in industry. 

The prediction capabilities of these two EoS were compared over a wide range of conditions, 

and various conclusions were drawn.  

Both EoS were used saturation properties of pure components and derivative properties 

from the liquid to the supercritical range. Overall, PC-SAFT outperformed PR in all cases. The 

isochoric and isobaric heat capacities were studied in a range of conditions that covered the 

critical point of each component under review. Both EoS were able to predict the isobaric heat 

capacity relatively well. However, both were unable to adequately predict the trends exhibited 

by the isochoric heat capacity near critical conditions. In addition, PC-SAFT and PR can 

predict the speed of sound and isothermal compressibility of the pure components fairly 

accurately.  

The VLE, speed of sound and isothermal compressibility of several binary and a ternary 

mixture were studied. The prediction capabilities of both EoS were relatively poor. Thus, the 

binary interaction parameter was introduced and fitted to binary mixture VLE. This procedure 
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drastically improved the quality of the bubble pressure calculations. However, only had a 

moderate influence on the derivative properties. 

The introduction of a hydrate phase further complicates the calculations. Due to the 

inability of these particular EoS to predict properties of hydrates, they were used in conjunction 

with the van der Waals-Platteeuw model.  It was concluded that the accuracy of the predictions 

of the three-phase equilibrium is highly dependent on the reliability of the Kihara parameters, 

one of which was fitted to equilibrium data and resulted in a significant improvement in the 

accuracy of both EoS predictions. An analysis of the results lead to various conclusions about 

the performance ability of both EoS. Mainly, that PR systematically outperformed PC-SAFT 

for LwHV equilibrium calculations. The set of fitted Kihara parameters were used to predict the 

same three-phase equilibrium of several binary, ternary and quaternary mixtures of hydrate 

forming agents. Again the performance of both equations remain consistent; on average, PR 

performed better than PC-SAFT. 

Several suggestions for further improvements of the calculations completed in this 

work can be made. The first relies on further optimization of the parameters for the pure 

methane hydrate calculations. Currently, the equilibrium pressure prediction for methane is 

almost twice the average of the remaining species. This above average deviation is due to the 

high deviation of prediction in the high-temperature range. In addition, improvements in 

predictions of both EoS could be made with the implementation of the binary interaction 

parameter to improve prediction of the solubility in the estimation of the chemical potential of 

the liquid water phase.  
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APPENDIX  

 

7.1 Appendix I: Mathematical Formulation of PC-SAFT 

The following appendix specifics the mathematical description of each Helmholtz free 

energy term in the PC-SAFT EoS.99,100,116 

 

res ideal hc disp assoca a a a a a

RT RT RT RT RT RT
       [46] 

The ideal Helmholtz free energy: 

ln 1
ideala

RT
     [47] 

 

7.1.1 Hard-Chain Reference Fluid 

This section explains the terms needed to calculate the Helmholtz free energy of hard-

chain reference fluid, 𝑎ℎ𝑐: 

   1 ln
hc hs

hs

i i ii ii

i

a a
m x m g d

RT RT
     [48] 

The only input parameters that are directly required by Equation [48] are 𝑚, the number 

of segments in the non-spherical molecule, and, 𝑥𝑖, the mole fraction of component 𝑖. 𝑚̅ is 

defined as the average number of segments: 

i i

i

m x m    [49] 
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This equations also requires the Helmholtz energy of hard-spheres that constitute the 

chain, 𝑎ℎ𝑠: 

   
 

3 3

1 2 2 2
0 32 2

0 3 33 3

31
ln 1

1 1

hsa

RT

   
 

   

  
           

  [50] 

The final parameter in Equation [48] is the hard-sphere radial distribution function, 

𝑔𝑖𝑗
ℎ𝑠: 

     

2
2

2 2

2 3

3 3 3

3 31

1 1 1

i j i jhs

ij

i j i j

d d d d
g

d d d d

 

  

   
              

  [51] 

Both the radial distribution function and the Helmholtz free energy of the hard sphere 

reference fluid require the partial volume fraction: 

 0,1,2,3
6

n

n i i i

i

x m d n


     [52] 

The number density of the fluid is defined as the partial volume fraction at 𝑛 = 3. The 

number density can then be converted to the density of the fluid. 

3     [53] 

In Equation [52], 𝑑 is the segment diameter that is a function of temperature and two 

required inputs; the chain segment diameter, 𝜎𝑖, and the energy of dispersion, 𝜀𝑖: 

1 0.12exp 3 i
i id

kT




  
    

  
  [54] 
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7.1.2 Dispersion Interactions 

The dispersion contribution to the residual Helmholtz free energy is based on the 

second order perturbation theory which models 𝑎𝑑𝑖𝑠𝑝  as a function of two terms: 

   2 3 2 2 3

1 1 22 , ,
dispa

I m m mC I m m
RT

           [55] 

𝐼1 and 𝐼2 are power series that represent simplified integrals of the radial distribution 

function of the hard-chain that depend only on the average number of segments and the number 

density. 

   
6

1

0

, i

i

i

I m a m 


    [56] 

  0 1 2

1 1 2
i i i i

m m m
a m a a a

m m m

  
     [57] 

   
6

2

0

, i

i

i

I m b m 


    [58] 

  0 1 2

1 1 2
i i i i

m m m
b m b b b

m m m

  
     [59] 

The parameters, 𝑎0𝑖 to 𝑎2𝑖 and 𝑏0𝑖  to 𝑏2𝑖 , are constants presented in the original paper 

by Gross and Sadowski.99 In Equation [55], 𝐶1 represents an abbreviation of the following 

term:  

 
 

 

2 2 3 4

1 4 2
2

8 2 20 27 12 2
1 1

1 2 3
C m m

     

  

   
   

  
  [60] 
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These equations are extended to mixtures using the van der Waal’s mining rules shown 

previously in Section 3.2: 

2 3 3ij

i j i j ij

i j

m x x m m
kT


 

 
  

 
    [61] 

2

2 2 3 3ij

i j i j ijm x x m m
kT


  

 
  

 
    [62] 

The cross interaction parameters are defined by the Lorentz-Berthelot parameters in 

Equations [63] and [64]: 

 
1

2
ij i j       [63] 

 1ij i j ijk       [64] 

 

7.1.3 Association Interactions 

The association contribution to Helmholtz free energy is defined as follows: 

ln
2 2

i

i

i

Aassoc
A i

i

i A

Ma X
x X

RT

  
    

  
    [65] 

where X is the fraction of associating sites in a fluid: 

1

1 j i ji

j

B A BA

j

j B

X X



 
   
  
    [66] 

The strength of association between unlike sites, Δ𝐴𝐵 , is: 
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 3 exp 1
i j

i j i j

A B
segA B A B

ij ij ijd g d
kT




  
     

   

  [67] 

where, 

 
1

2
ij i jd d d     [68] 

 

7.2 Appendix II: Supplementary Figures 

7.2.1 Isobaric Heat Capacity of Pure Fluids 

 

Figure 29. Isobaric heat capacity (𝑪𝒑) of CH4, experimental data (points) and model predictions lines) 
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Figure 30. Isobaric heat capacity (Cp) of Ar, experimental data (points) and model predictions  

(lines) 

 

 
Figure 31. Isobaric heat capacity (Cp) of CO, experimental data (points) and model predictions (lines) 
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Figure 32. Isobaric heat capacity (Cp) of N2, experimental data (points) and model predictions (lines) 

 

 
Figure 33. Isobaric heat capacity (Cp) of O2, experimental data (points) and model predictions (lines) 
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7.2.2 Isochoric Heat Capacity of Pure Fluids 

 
Figure 34. Isochoric heat capacity (Cv) of Ar, experimental data (points) and model predictions (lines) 

 

 
Figure 35. Isochoric heat capacity (Cv) of CO, experimental data (points) and model predictions (lines) 
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Figure 36. Isochoric heat capacity (Cv) of N2, experimental data (points) and model predictions (lines) 

 

 
Figure 37. Isochoric heat capacity (Cv) of O2, experimental data (points) and model predictions (lines) 
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7.2.3 Vapor-Liquid Equilibrium  

 
Figure 38. VLE for the binary mixture CO2-CO, experimental data (points) and model predictions (lines) 

 

 
Figure 39. VLE for the binary mixture CO2-N2, experimental data (points) and model predictions (lines) 
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Figure 40. VLE for the binary mixture of CO-Ar, experimental data (points) and model predictions 

(lines) 

 

 
Figure 41. VLE for the binary mixture CO2-O2 mixture, experimental data (points) and model 

predictions (lines) 
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7.2.4 Speed of Sound of Pure Fluids 

 
Figure 42. Speed of sound of CH4, experimental data (points) and model predictions (lines) 

 

 
Figure 43. Speed of sound of CO, experimental data (points) and model predictions (lines) 
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Figure 44. Speed of sound of O2, experimental data (points) and model predictions (lines) 

 

 
Figure 45. Speed of sound of N2, experimental data (points) and model predictions (lines) 
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7.2.5 Speed of Sound of Mixtures 

 
Figure 46. Speed of sound of CO2-Ar, experimental data (points) and model predictions (lines) 

 

 
Figure 47. Speed of sound of CO2-CO, experimental data (points) and model predictions (lines) 
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Figure 48. Speed of sound of CO2-N2, experimental data (points) and model predictions (lines) 

 

 
Figure 49. Speed of sound of the CO2 –O2 mixture, experimental data (points) and model predictions 

(lines) 
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7.2.6 Isothermal Compressibility of Mixtures 

 
Figure 50. Isothermal compressibility of CO2-Ar, experimental data (points) and model predictions 

(lines) 

 

 
Figure 51. Isothermal compressibility of CO2-CO, experimental data (points) and model predictions 

(lines) 
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Figure 52. Isothermal compressibility of CO2-N2, experimental data (points) and model predictions (lines) 

 

 
Figure 53. Isothermal compressibility of the CO2 –O2 mixture, experimental data (points) and model 

predictions (lines) 
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7.2.7 Liquid Water-Hydrate-Vapor Equilibrium 

7.2.7.1 Pure Guest Hydrates 

 
Figure 54. LwHV phase equilibrium of N2, experimental data (points) and model predictions (lines) 

 

 

Figure 55. LwHV phase equilibrium of O2, experimental data (points) and model predictions (lines) 
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Figure 56. LwHV phase equilibrium of C3H8, experimental data (points) and model predictions (lines) 

 

 
Figure 57. LwHV phase equilibrium of C2H6, experimental data (points) and model predictions (lines) 
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Figure 58. LwHV phase equilibrium of H2S, experimental data (points) and model predictions (lines) 

 

7.2.7.2 Binary Mixtures of Hydrate Formers 

 
Figure 59. Prediction of LwHV equilibrium for a binary mixture of CO2-N2 over a range of compositions, 

experimental data (points) and model predictions (lines) 
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Figure 60. Prediction of LwHV equilibrium for a binary mixture of CH4-N2 over a range of temperatures, 

experimental data (points) and model predictions (lines) 

 

 
Figure 61. Prediction of LwHV equilibrium for a binary mixture of CH4-C2H6 over a range of 

temperatures, experimental data (points) and model predictions (lines) 
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Figure 62. Prediction of LwHV equilibrium for a binary mixture of CH4-C3H8 over a range of 

temperatures, experimental data (points) and model predictions (lines) 

 

 
Figure 63. Prediction of LwHV equilibrium for a binary mixture of CH4-CO2 over a range of 

temperatures, experimental data (points) and model predictions (lines) 
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Figure 64. Prediction of LwHV equilibrium for a binary mixture of C3H8-N2 over a range of temperatures, 

experimental data (points) and model predictions (lines) 

 

 
Figure 65. Prediction of LwHV equilibrium for a binary mixture of CO2-C2H6 over a range of 

compositions, experimental data (points) and model predictions (lines) 
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Figure 66. Prediction of LwHV equilibrium for a binary mixture of CO2-iC4H10 over a range of 

compositions, experimental data (points) and model predictions (lines) 

 

7.2.7.3 Ternary Mixtures of Hydrate Formers 

 
Figure 67. Prediction of LwHV equilibrium for the ternary mixture of CH4-C2H6-N2, experimental data 

(points) and model predictions (lines) 
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Figure 68. Prediction of LwHV equilibrium for the ternary mixture of CH4-CO2-N2, experimental data 

(points) and model predictions (lines) 

 

7.2.7.4 Quaternary Mixtures of Hydrate Formers 

 
Figure 69. Prediction of LwHV equilibrium for the quaternary mixture of CH4-C3H8-CO2-N2, 

experimental data (points) and model predictions (lines) 
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Figure 70. Prediction of LwHV equilibrium for the quaternary mixture of CH4-CO2-C2H6-N2, 

experimental data (points) and model predictions (lines) 

 

 
Figure 71. Prediction of LwHV equilibrium for the quaternary mixture of CO2-O2-Ar-N2, experimental 

data (points) and model predictions (lines) 

 




