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ABSTRACT 

Due to the increasing complexity of VLSI circuits, power grid simulation has become 

more and more time-consuming. Hence, there is a need for fast and accurate power grid 

simulator. In order to perform power grid simulation in a timely manner, parallel 

algorithms have been developed to accelerate the simulation. In this dissertation, we 

present parallel algorithms and software for power grid simulation on CPU-GPU 

platforms. The power grid is divided into disjoint partitions. The partitions are enlarged 

using Breath First Search (BFS) method. In the partition enlarging process, a portion of 

edges are ignored to make the matrix factorization light-weight. Solving the enlarged 

partitions using a direct solver serves as a preconditioner for the Preconditioned 

Conjugate Gradient (PCG) method that is used to solve the power grid. This work 

combines the advantages of direct solvers and iterative solvers to obtain an efficient 

hybrid parallel solver. Two-tier parallelism is harnessed using MPI for partitions and 

CUDA within each partition. The experiments conducted on supercomputing clusters 

demonstrate significant speed improvements over a state-of-the-art direct solver in both 

static and transient analysis. 
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CHAPTER I  

INTRODUCTION  

 

I.1 Background 

In modern industry, VLSI circuits have become more and more complicated in structure. 

The VLSI chip design flow consists of several steps, such as architectural and logic 

design, circuit and layout design, and fabrication [1]. Each step needs verification and 

testing to guarantee the functionality of the chips. In order to ensure chips run 

functionally, simulation techniques are widely adopted. Circuit simulation was 

introduced to industry in 1950s [2]. Circuit simulation and verification, including power 

grid (a.k.a. power delivery network) simulation, play a critical role in VLSI design. The 

functionality of a circuit design can be verified by using computer simulation without 

fabricating real chips. Therefore, simulation provides an inexpensive and efficient way 

in the VLSI circuit design process.  

 Power grid simulation is part of circuit simulation in VLSI design. The power 

grid consists of metal layers that provide power to active devices in the VLSI circuit. In 

each metal layer, power networks are modeled as vertical and horizontal wires. Different 

layers are connected through vias. In the widely used flip-chip package [3], Controlled 

Collapse Chip Connections (C4) bumps provide connections between the external power 

supply and the power grid. In the power grid simulation, the voltage drop, a.k.a. IR drop, 

is estimated through simulation to check the functionality of a power grid. Even though 

the wires in the power grid are made of metal, a small resistance can lead to non-
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ignorable IR drop. If the IR drop exceeds a threshold (typically 10% of    ), the chip 

could become defective. Therefore, detecting over-threshold IR drop is a key process in 

power grid design. Another factor that needs to be estimated is electromigration [4]. 

Electromigration is generated by the movement of electrons in metal interconnects. It 

can result in connection disruptions derived from heating and diffusive displacement. 

One way to simulate electromigration is to calculate branch currents and guarantee that 

the branch currents do not exceed a specific threshold. The branch currents can be 

obtained using the value of node voltages and the value of the resistance between two 

nodes.    

 At the present time, the size of the power grid is increasing quickly due to a rapid 

increase in the size and complexity of VLSI circuits. The number of nodes in a VLSI 

power grid can easily reach hundreds of millions. As a consequence, solving a VLSI 

power grid is extremely time-consuming. Furthermore, the industry is focused on low 

power design, which introduces additional challenges for power grid design [5]. Voltage 

can easily drop below safe thresholds in low power chips, resulting in a  the chip that 

fails to operate functionally [6].  

 Power grid simulation can be categorized as static analysis and transient analysis. 

Static analysis is conducted by ignoring all the capacitors and inductors. The static 

power grid simulation is the basis of transient analysis. Transient analysis can be 

conducted by implementing static analysis at different time steps by using the 

companion model for capacitors and inductors.  
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In static analysis, power grid can be modeled as a sparse linear system. Consider 

a linear system 

                                                                 (1) 

where       ,           , N is an integer representing the size of the system.  

The matrix A is a sparse matrix, where there are a lot of zero entries in the matrix 

and a small portion of the entries are non-zeros.  Sparse linear matrices are often stored 

in different formats [7]. Compressed Row Storage (CRS) and Compressed Column 

Storage (CCS) are widely used in linear system solvers since they are friendly to matrix 

and vector operations. Coordinate format (COO) is another sparse matrix storage format. 

It is easy for maintenance (e.g., delete, add, modify, etc). However, COO is not suitable 

for linear system solver operations. List of lists (LIL) is another sparse matrix storage 

format. The entries are often sorted by column index. This feature makes LIL faster for 

look up and good for incremental matrix construction.  

Equation (1) can be solved using either a direct solver or an iterative solver. The 

most famous direct solver is Gaussian Elimination, which is also considered as LU 

solver. The matrix is factored as a lower triangle matrix L and an upper triangle matrix 

U. Then a backward or forward substitution is applied to solve the linear system. The 

complexity of LU factorization is      , and the backward and forward substitutions 

cost      each, where n is the size of the system. With regard to sparse linear systems, 

the complexity of LU factorization can be reduced to        . From the complexity, the 

factorization dominates the solution process. Thus if the factorization can be 

parallelized, the direct solver would achieve much higher performance.  
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The advantage of direct solvers is that the solution is accurate and the cost is low. 

In current academia and industry, the state-of-the –art direct solver named CHOLMOD 

[8] is widely used. CHOLMOD is an excellent direct solver designed by Dr. Tim Davis. 

It utilizes graph theory to optimize the computation in Cholesky decomposition in direct 

solver.  The disadvantage of direct solvers is huge memory usage and difficulty of 

parallelization. Direct solvers need to store the factors in memory which could cost 

      space for a sparse matrix unless special techniques are used. Techniques such as 

nested dissection ordering [9] can lower the storage requirement to         . 

Parallelization of direct solvers is limited since the factorization and substitution solve 

need to wait for results from previous row or column [10].  

The sparse linear system can be solved using iterative solvers. The most well-

known iterative solvers include Jacobi method, Gauss-Seidel method, Conjugate 

Gradient method (CG) and Generalized Minimum-Residual method (GMRES). 

Typically, an iterative solver needs      memory storage. The advantage of iterative 

solvers includes potential for parallelism and a low memory footprint. Iterative solvers 

are friendly to parallelization since the whole process only includes matrix vector 

operations. The vectors are reused so that the memory usage is low.  

However, the solution accuracy is an issue for iterative solvers. Thus a 

reasonable tolerance of solution error is needed to guarantee the solution accuracy. 

Furthermore, iterative solvers are prone to suffer from slow convergence. Krylov 

subspace method is a technique to accelerate convergence of iterations. The Krylov 

method is based on Krylov space projection and different choice of Krylov subspace 
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leads to different iterative methods [11, 12]. Further acceleration can be achieved by 

using preconditioners. Preconditioners are often used to accelerate convergence of 

iterative solvers. A good preconditioner can make the iterative solver even fast than a 

direct solver. However, finding a good preconditioner is challenging. Also, different 

linear systems perform differently using different preconditioners. Thus, a particular 

preconditioner needs to be constructed for each linear system.  Given a linear system (1), 

if the condition number      is large, the system is ill-conditioned [13]. Ill-conditioned 

linear system could bring uncertainty to the solution. Preconditioning can reduce the 

condition number of a linear system, such that more reliable solution can be obtained. 

Power grid simulation can be categorized as static analysis and transient analysis. 

Static analysis is to simulate the behavior of DC status. In static analysis, all the 

capacitors and inductors are ignored by opening the capacitors and shorting the 

inductors. The resulting power grid is a resistance network and can be modeled as a 

linear system as (1). Solving the power grid is to obtain the voltage value of each node. 

Then the branch current can be calculated using the voltages of the two end nodes. 

Therefore, the behavior of the power grid can be estimated from the voltage at each 

node. Transient analysis is to simulate the time-varying behavior of power grid. In 

transient analysis, the power grid is a RCL consisting of resistance, conductance and 

inductance. The noise in the power grid consists of IR-drop and         ,. In order to 

simulate the transient behavior, static analysis is conducted at multiple time instances. 

The solution process at a specific moment is a process of DC analysis. One must note 

that, in transient analysis with constant time-step, the conductance matrix remains the 
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same during the transient analysis and only the right-hand-side vector changes by 

applying the solution of previous time step. Thus, direct solver always performs better 

than iterative solver in transient analysis since the matrix factor can be reused during the 

transient simulation. 

Solving a real power grid is challenging due to the size and complexity of the 

power grid. The following issues need to be considered for a power grid solver: 

 Memory usage: 

A real power grid can easily have hundreds of millions of nodes. The memory 

usage for storing the linear system and solving the linear system is quite huge. As 

we know, iterative solvers use less memory than direct solvers. However, the 

memory storage for an iterative solver can reach hundreds of Giga Bytes. This 

huge memory requirement makes the computation difficult to conduct since the 

modern computers are not equipped with large sized memory. Therefore, solving 

a real power grid often needs special computers with hundreds of Giga-byte 

memory installed. In order to solve the memory problem, distributed computing 

techniques can be used to distribute the burden onto multiple machines. Each 

machine does not need to have huge memory but the overall memory size is large 

enough for solving the power grid. Although distributed computing gives power 

grid solver a solution to meet the huge memory requirement, the management of 

distributed memory and optimization of data transfer between memories are very 

challenging. 
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 Time cost: 

As VLSI circuit size increases, the time to solve a power grid increases 

drastically. The low efficiency of power grid solver makes the power grid design 

process quite time-consuming. Every time a problem is found in the power grid 

design after simulation, the power grid needs to be modified to fix the design 

problem. Then another power grid simulation is conducted on the new design. If 

multiple such design problems are encountered in the design loop, the costly 

power grid simulation needs to be done several times until the design has no 

flaw. This design process suffers due to inefficient power grid solver. Therefore, 

acceleration of power grid simulation is desired in current IC industry. 

 Solution Accuracy: 

Solution accuracy is required in power grid simulation. If the couputed solution 

is not accurate enough, the fabricated chip could malfunction.  This solution 

inaccuracy could result in huge time and financial loss in reality. As we know, 

direct solvers always have high solution accuracy, whereas iterative solvers may 

suffer from low solution accuracy. Iterative solvers are widely used since they 

require less memory storage and they can beat direct solvers in speed with an 

effective preconditioner. The solution accuracy becomes an issue for iterative 

solvers, since iterative solvers often suffer from slow convergence derived from 

small error tolerance. If an effective and efficient preconditioner can be 

constructed to accelerate the convergence of iterative solvers, the power grid 

simulation would benefit from the acceleration.   
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 Scalability: 

Scalability is an important factor in power grid simulation since the size of power 

grids varies. A good power grid solver should be scalable and have consistent 

performance over different sized power grids. Parallel algorithms developed on 

distributed systems are ideal to meet scalability demands since the time cost and 

memory usage can be assigned to multiple machines to obtain good performance 

on runtime and memory storage. 

 

I.2 Survey of power grid simulation 

General circuit can be simulated using SPICE [14]. SPICE is not a perfect power grid 

solver since the characteristic of power grids is not fully addressed. Therefore, 

simulators developed for power grids are desired. Power grid simulation has been 

investigated using different techniques. The power grid problem for the static case can 

be modeled as an s.p.d (symmetric positive definite) linear system. In [15], a 

Preconditioned Conjugate Gradient (PCG) method with sub-circuit based preconditioner 

is presented. Good performance is reported when using a mutable preconditioner at each 

iteration. Multigrid methods are widely-used in power grid analysis. A multigrid based 

grid reduction mechanism results in less work-load [16]. More recently, an algebraic 

multigrid approach was presented in [17] that achieves good performance in both 

runtime and memory usage. A preconditioned Krylov-subspace iterative method for 

solving large-scale power grid problems was proposed in [18], where the authors 

implemented a PCG method to accelerate the rate of convergence. The random walk 
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approach introduced in [19, 20]  helps in incremental analysis where the conductance 

matrix is changed to simulate the change of resistance network (length and width change 

of the wires). [21] presents a support graph based iterative solver. The effective 

preconditioner reduces the number of iterations to within an acceptable range. In [22], a 

relaxation iterative method is discussed. This work was presented as node-by-node 

traversals and row-by-row traversals and achieves good performance.  

Transient analysis is an important topic in IC circuit simulation. Different time 

step strategies affect the performance of transient solvers. [23] presents a power grid 

solver for transient analysis. This work adopts a grid reduction strategy to obtain much 

better results compared to SPICE. In [24], a telescopic projective numerical integration 

method is presented. An adaptively controlled integration method is discussed in [25]. 

The time step is adjusted during the transient analysis and the implementation achieves 

automatic load balancing. The parallel implementation on multi-core machines shows 

encouraging results. Various transient analysis methods for power grids are presented in 

[26-28]. [28] presents a transient power grid solver that applies symmetric formulation 

and uses fast Cholesky factorizations. Model order reduction (MOR) technique is 

utilized in [27] to reduce the data dimensionality. In this work, a direct solver and 

multimode moment matching techniques are used to achieve good performance. [26] 

presents a transient solver based on waveform relaxation techniques. A combination of 

partitioning and convergence acceleration is used to achieve good performance. The 

method is highly parallelizable and scalable on power grids with different sizes. In [29], 

a transmission-line-modeling-alternating-direction method is proposed. This work first 
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models the power grid as a structure of transmission line meshes. Then alternating-

direction-implicit method is adopted to conduct transient analysis with high stability. 

[30] introduces an efficient transient power grid solver.  The authors developed an 

efficient algorithm to reduce the complexity of the power grid using regularities. An 

efficient solver for transient analysis of the power grid is discussed in [31]. A smart 

mapping approach is developed in this work to obtain accurate solutions. The 

performance is improved by utilizing a memorized supernode technique. [32] introduces 

a transient analysis method that uses a hierarchical relaxed approach. The relaxation 

technique help obtain significant speedups over PCG and SPICE3.   

In order to solve realistic problems in a reasonable amount of time, it is necessary 

to develop parallel algorithms for power grid analysis. Parallel algorithms for power grid 

simulation need to be implemented on parallel computers to obtain the solution faster. 

The current widely used parallel computing technoogies include Message Passing 

Interface (MPI), OpenMP and GPU. MPI is a message passing library for parallel 

computing. The MPI standard was first introduced in 1994. MPI provides an interface 

for users to create multiple jobs as separate processes and run the jobs concurrently. 

Different processes communicate with each other using messages [33]. OpenMP is a 

shared memory based parallel computing interface. OpenMP utilizes threads to run 

multiple jobs concurrently [34]. As the modern computing clusters and multi-core 

techniques develop, MPI and OpenMP help gain better performance while retaining 

portability. In contrast, the GPU is a hardware platform developed for processing 3D 

graphics and visual effect [35]. Currently, researchers found GPUs have the ability of 
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accelerating more general computation, especially matrix computations [36], based on 

its many-core characteristic. Consequently, General-Purpose Computing on Graphics 

Processing units (GPGPU) was introduced in 2003 SIGGRAPH conference. CPU-GPU 

hybrid parallelization is a way to gain better performance. [37] presents a CPU-GPU 

hybrid approach applied in multifrontal method. Power grid simulation can benefit from 

those parallel computing techniques. GPGPU technology has been used in Electronic 

Design Automation (EDA) for years. In [38], the authors successfully accelerated two 

costly computations, Sparse-Matrix Vector Product (SMVP) and graph traversal in EDA 

using GPU. [39] introduced GPU a programming scheme for EDA using OpenCL.  

In parallel power grid analysis, the biggest challenge is partitioning the grid into 

sub-grids such that the solution can be obtained quickly by solving sub-problems 

concurrently. A parallel direct solver was presented in [40], where a parallel matrix 

inversion algorithm was shown to achieve good time and memory performance. 

Partitioning based parallel solvers are presented in [41-43] and [44]. Domain 

decomposition method is adopted in [41] to solve power grid. However, this method 

suffers from costly processing of the overlapping area. [43] presents a non-overlapping 

domain decomposition approach. In this work, too much time is spent on forming the 

Schur complements. Locality driven parallel analysis was introduced in [42], where the 

authors divide the grid into coupled sections and use locality property to compensate the 

boundary effect and decouple the sections. This method could exhibit low performance 

if the C4 bumps are distributed sparsely throughout the power grid. The reason is that 

sparse distribution of C4 bumps can lead to huge window size, in which solving the 
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windows is expensive. [45] presents a parallel forward and back substitution method. 

This method computes independent variables in parallel and develops a node ordering to 

eliminate the data dependency. Random walk has been reported to be applied in solving 

power grids [46-48]. Through statistical estimation, the node voltages can be obtained in 

a certain number of walks. However, if the    destination is too far from the 'home', this 

method can suffer from large number of walks. In [26], the authors propose a waveform-

relaxation based transient power grid simulator. The performance of the method may 

degrade when the initial guess is not reasonable. Macro-modeling method is presented in 

[49, 50]. In this work, a divide and conquer strategy is adopted over geometry 

partitioned power grids. The power grid is divided into small sub-partitions, and ports 

and interfaces are constructed by applying matrix substitution on different sub-partitions. 

The drawback of this method is that it suffers from dense matrix operations derived from 

ports. Another pattern based iterative solver is presented in [51]. In this work, pattern 

structure help to achieve performance improvement on both time and memory. GPU is 

adopted in Poisson optimized solver in [52]. The GPU implementation of Poisson solver 

benefits from multi-threaded GPU acceleration. Although the approach performs well, 

lack of parallelization make these method not ideal to large scale power grids.  A 

transform-based iterative solver using GPUs is proposed in [53, 54]. The solver performs 

well for 3-D multiple-layer power grids. A GPU-based multigrid PCG solver is 

presented in [55]. The authors adopted a multigrid preconditioned CG method and 

successfully accelerate the solver on GPU platform.  
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Power grid simulation is a step in power grid design [56]. The behavior of a 

power grid needs to be simulated multiple times to obtain a design for fabrication. The 

power grid design is a discussed in the following literatures. A parallel design method of 

power grid is presented in [57]. In this work, a macro-modeling strategy is adopted to 

implement partition based optimization. [58] discusses the use of linear programming to 

improve power grid wire size optimization.  

 

I.3 Proposed work 

In this work, we adopt a divide-and-conquer strategy and propose an enlarged partition 

based parallel iterative solver for large-scale flip-chip power grid simulation. This 

approach divides the power grid into multiple partitions. In order to obtain an 

approximate solution for each partition, an enlarged partition is generated to enclose the 

original partition. Two partition enlarging methods are discussed in this dissertation. One 

is a naïve approach, in which a large area is specified to include all the nodes and edges 

as extension. The idea of this approach is simple. However, this naïve approach could 

have the following drawbacks. First, isolated nodes may be generated since the boundary 

of the new enlarged partition does not rely on the connection between two nodes. 

Isolated node may result in singular linear system that cannot be solved. Second, the 

naïve approach includes all the nodes and edges into the enlarged partition which may 

not be useful to obtain more accurate solutions. This makes the solving process of 

enlarged partition over-burdened and downgrades the parallel performance. Third, in a 

real chip, the whole power grid could consist of disconnected sub-grids. The naïve 



 

14 

 

approach could bring nodes and edges that do not belong to the partition. In this case, the 

solution accuracy is lowered and computation on unnecessary nodes affects the parallel 

performance. In order to overcome these drawbacks, a Breadth First Search (BFS) based 

partition enlarging algorithm is proposed. The enlarged partition first includes all the 

edges and nodes in the original partition. Then starting from the boundary nodes, a BFS 

method is applied to include more nodes and edges. When a new node is encountered, 

the edge with the largest conductance value is retained. All the other edges from this 

new node are ignored. This strategy trims most of the edges that have low influence on 

the solution and only retains the edges that are more useful to the solution. In order to 

control the solution accuracy, all the edges are retained up to a certain level. This step is 

necessary in our approach since the solution error is large if no such edges are retained 

outside the original partition. By solving the enlarged partitions one by one, an 

approximate solution for each partition is obtained. An approximation to the global 

solution is constructed from partition solutions. Since the global error is large, one can 

use PCG to reduce the error below the specified threshold. The enlarged-partition solver 

acts as a preconditioner for PCG.  

The solver can be parallelized using MPI on a multi-processor supercomputer. 

Each enlarged partition is factored and solved by an MPI process. Besides, other 

computations within the PCG algorithm are assigned to different MPI processes to 

obtain good runtime performance. Between MPI processes on different cores/machines, 

data transfer rate play an important role in the time performance. MPI_Allgather and 

MPI_Reduction are two routine used in data transmission. The parallelization of EPPCG 
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can be separated into two parts: factorization and matrix-vector operations. Factorization 

is parallelized by assigning each partition matrix to a computing node/core. Data 

transmission between nodes/cores is not necessary since the factorization is conducted 

on each enlarged partition itself. Other computations include matrix-vector 

multiplication, vector-vector inner produce, vector summation, etc. Matrix vector 

multiplication is computed on the enlarged partition since at least one more layer outside 

the original partitions is needed to obtain the correct results. Other vector related 

computations are implemented on partitions since no additional data is needed outside 

the original partition. The GPU is adopted to accelerate the factorization within the 

direct solver CHOLMOD. A two-tier parallelization is used to obtain the best 

performance.  

The experiments are conducted on IBM P/G benchmarks and artificial large-

scale benchmarks. Both static and transient analysis is implemented. In static analysis, 

all the capacitors and inductors are ignored and the power grid is simplified as a resistant 

network. Only a sparse linear system is solved in static analysis. Our experimental 

results show that the enlarged partition based preconditioner is effective. The fully 

parallelizable preconditioner is computed and stored on different machines, such that the 

time and space cost are distributed onto different machines. The parallelization of our 

implementation is efficient. The best results obtained on the largest benchmark 

demonstrate a speedup improvement of 130X over the state-of-the-art direct solver 

CHOLMOD when using 16 cores. The effective preconditioner and efficient 

parallelization makes our approach much faster than CHOLMOD. In transient analysis, 
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the same enlarged partition based preconditioner is used. Static analysis is conducted 

multiple times at different time instances. In general, a direct solver is ideal for transient 

analysis, since the most time-consuming process of factorization only needs to be 

conducted once in fixed time-step scenario. In constant time-step transient analysis, our 

approach is slower than direct solver due to the costly PCG solving process. In variable 

time-step scenario, our approach performs better than direct solver since the 

factorization needs to be computed at each time step.   

The main contributions of this work can be summarized as follows: 

 The proposed enlarged-partition based preconditioner is effective. It reduces the 

number of iterations significantly compared to classical preconditoners. As a 

consequence, the proposed EPPCG method converges in fewer iterations.  

 Our proposed enlarged-partition based preconditioner is fully parallelized on 

enlarged partitions. The experimental results show the parallelization of 

preconditioner achieves super-linear speedups in some cases.  

 In order to reduce the size of the linear system derived from the enlarged 

partitions, Breadth-First Search method is adopted when enlarging the partition. 

This strategy makes the enlarged partitions lightweight and eliminates the 

potential for isolated nodes. 

 A two-tier parallelism is adopted on CPU-GPU hybrid platforms. MPI 

implementation on CPU is much faster than CHOLMOD. Using GPU 

acceleration, matrix factorization is further accelerated over dense matrix 

operations in CHOLMOD. Although GPU results in several times speedup, the 
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combination with efficient MPI implementation makes the speedup significantly 

improved. The efficient implementation of MPI-GPU help the proposed 

approach run 130X faster over the state-of-the-art direct solver on large 

benchmarks. 

 Previous partition based power grid solvers suffer from costly processing of 

boundary areas. In [42] and [43], the conductance matrix associated with the 

boundary area can be either a dense matrix of the graph network or of huge size. 

Our proposed partition enlarging method extends the partition through edges and 

ignores edges that have relatively less information. The method makes the 

generated conductance lightweight for computations. 

 Transient analysis is conducted using EPPCG method. Direct solvers are hard to 

beat in runtime due to the reuse of factorization. Our approach combines the 

advantages of direct solver and iterative solver. The factorization in EPPCG can 

also be reused in transient analysis. In fixed time-step scenario, we observed 

comparable time with CHOLMOD. In variable time-step scenario, our approach 

performs better than CHOLMOD.
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CHAPTER II 

ENLARGED-PARTITION BASED PARALLEL SOLVER FOR POWER GRID
*

II.1 Modeling and mathematical background

II.1.1 Modeling the power grid

Power grid plays an important role by providing power to active devices in electronic 

chips. IR drop would be significant if only single or multiple wires are used for power 

delivery. Power grids are designed to minimize the IR drop and guarantee the 

functionality of chips. 

Power grid simulation is part of VLSI circuit simulation, and consists of 

simulating the behavior of the power network. Power grid simulation is a necessary step 

before fabricating actual chips to examine faults in the design. The low-cost and easy-to-

change properties make the power grid simulation a necessary step in power grid design.  

A power grid can be modeled as an RCL network consisting of metal wires. In 

our work, we conduct both static analysis and transient analysis. Transient analysis can 

be implemented as static analysis on multiple time points. Therefore, the proposed 

algorithm for solving power grids is described over static analysis. The strategy for 

transient analysis will be discussed based on static analysis approach. The power grid is 

modeled as a resistance network by ignoring the capacitors and inductors. The structure 

*
Part of this chapter is reprinted with permission from "An enlarged-partition based 

preconditioned iterative solver for parallel power grid simulation" by L. Zhang and V. 

Sarin, in Quality Electronic Design, 15th International Symposium on, pp. 715-722, 

2014, Copyright[2014] IEEE. [44] 
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of the power grid can be irregular, in which the nodes in the power grid are not well-

connected. The static power grid is a resistance network, which can be described as a 

weighted graph where nodes are connected to each other through edges with weight 

(resistance value). In the following discussion, we call the resistance between two nodes 

'edge'. Typically, a power grid contains multiple layers including vertical and horizontal 

layers, and consists of      and GND networks. Figure 1 shows a     power network. 

The red circles represent C4 bump connections, where the external power supply (   ) 

is connected to the power grid. Active devices that pull current from the power grid are 

modeled as current drains. Different layers are connected through vias. The power grid 

can be considered as a 3D structure that is more difficult to solve than a 2D structure 

 

Figure 1. Modeling of a power grid 
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[59]. GND network is similar to     network except the C4 bumps are connected to 

GND and the direction of current drains is opposite.  

 In power grid simulation, the voltage of each node is unknown. Solving a power 

grid is a process to obtain the values of those node voltages. Moreover, branch currents 

can be calculated using the obtained node voltages. Nowadays, power grid simulation is 

very costly in both time and space due to the huge size of VLSI circuits. Therefore, fast 

power grid solver is in great need. 

Based on Kirchhoff's current law, the current flowing out of a node equals that 

flowing into a node. Figure 2 shows a simple example of power grid. Taking node 3 as 

example, we have 

                                                                 (2) 

 A more general equation for an arbitrary node x is 

∑            ∑                                                         (3) 

 

Figure 2. A simple example of power grid 
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where node i denotes a neighbor of node x,     denotes the conductance between node i 

and node x, and     denotes one of the current drains on node x. 

In matrix form, based on Modified Nodal Analysis (MNA) [60], the overall 

power grid system can be modeled as a linear system. 

                                                                  (4) 

 Assume there are   nodes and   C4 bumps in the power grid,   is an       

    ) matrix which represents a conductance matrix with information about    ,   is 

an (       vector which represents the unknown node voltages, and   is an (  

     vector which represents the current load of active devices and    values. Now 

that     is connected between GND and the power grid, the linear system can be 

reduced by eliminating   rows/columns as illustrated below. 

Since     is a known constant, the size of the matrix can be reduced by 

eliminating columns and rows that correspond to     nodes. The revised linear system 

can be described as  

(

                   

                
                

                

,(

  

  

  

  

,  (

     

 
  
 

,          (5) 

 Based on the discussion above, the power grid system is modeled as an improved 

linear system 

                                                                 (6) 

 Assume there are   nodes in the power grid, Here,    is an     matrix which 

represents the conductance matrix,    is an     vector which represented the unknown 
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node voltages,    is an     vector which stands for the current load of active devices 

and        for C4 bumps.    is a symmetric positive-definite system. 

 The sparse linear system (6) can be solved using many methods consisting of 

direct solvers and iterative solvers. The direct solver usually first factorizes the matrix of 

the linear system, then backward/forward substitution is adopted to obtain the solutions. 

When solving a sparse linear system, the factorization costs the most of the runtime 

compared to backward/forward substitution. The benefit of direct solver is that  direct 

solver can solve the linear system more accurately than iterative solver. The most widely 

used direct solver is LU factorization and backward substitution. Usually, factorization 

such as LU factorization and Cholesky factorization are used to store the factors for 

reuse. Iterative methods, including GMRES and Conjugate Gradient methods, solve the 

linear system in an iterative way to reduce the error step by step. Generally, direct solver 

is faster but requires more space storage. Iterative solvers use less memory but depend 

on a good preconditioner to achieve fast convergence.  Our algorithm described in next 

section is a combination of direct solver and iterative solver that combines the advantage 

of both solvers. 

 

II.1.2 Preconditioned conjugate gradient (PCG) method 

Conjugate Gradient (CG) method is a widely used iterative method for solving s.p.d. 

linear system       [61]. An advantage of the CG method is that it requires much less 

memory compared to direct methods. Although convergence of CG is guaranteed for 
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s.p.d systems, it may still need large number of iterations to converge. Most of the time, 

in order to reduce the number of iterations, preconditioning method is used.  

Preconditioning is an approach to reduce the computational time when solving a 

linear system     . A preconditioner, say  , is a matrix such that the condition 

number of      is small. Typically, the preconditioner   is applied to the linear 

system equation as           . If the preconditioner   is close enough to A 

(           ), the linear system will become much easier to solve. Each iteration of 

PCG requires a preconditioning step. The preconditioning step involves computing 

     .  

 

Figure 3. Partitioning of a power grid into     subgrids. 

Red circles represent C4 bumps; blue triangles represent current drains 
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A good preconditioner is key to accelerating the rate of convergence of the PCG 

method. If the preconditioner is easy to set up, but the condition number of      is 

large, the number of iteration will not drop and the time required to solve the system can 

be high. On the other hand, if the condition number of      is small, but the cost of 

computing and applying the preconditioner is large, solving the system will still be 

costly. Setting up a preconditioner often requires a lot of computation time. If the 

process of setting up a preconditioner can be parallelized, the total run time will be 

significantly reduced. 

 

 

II.2 Parallel iterative solver based on enlarged partitions 

Parallelization of power grid simulation is challenging, because it is hard to separate the 

power grid into decoupled sub-grids. In this section, an enlarged-partition based 

preconditioned power grid solver is proposed. 

 

II.2.1Power grid partitioning 

In order to solve the power grid in parallel, the basic idea is to separate the power grid 

into multiple disjoint partitions. Figure 3 shows a power grid divided into     

partitions. Our partitioning strategy is to divide the power grid into equal-sized partitions 

in geometry. The edges that are across the partition boundaries are neglected and all the 

nodes are retained. Approximate solutions within each partition can be obtained by 

solving those sub-grids/partitions. However, the error of the approximate solution is far 

beyond our tolerance due to the inaccurate solution on the boundaries. Inspired by the 
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'spatial locality' property of power grid [62], the partitions are enlarged to achieve more 

accurate solutions.  

 Spatial locality demonstrates that C4 bumps modeled in a power grid have a 

limited spatial range of influence on the node voltages.  In other words, if a node is close 

to a C4 bump, the IR drop from the C4 bump at that node is subtle; if a node is far from 

a C4 bump, the IR drop from the C4 bump at that node is significant. If we solve a larger 

area which enclose the original partition and retain the solutions within the partition, we 

can obtain more accurate solutions within the partition including the boundary. Based on 

the discussion above, we enlarge the partitions to include more nodes and edges such 

that the solution errors can be reduced. 

 

 

 

Figure 4. Constructing the enlarged partition 
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II.2.2 Naive partition-enlarging approach 

Since the power grid is separated into partitions geometrically, a straightforward 

way to enlarge the partition is to move the border of the partition outwards to a certain 

distance (Figure 4).  After enlarging the partition, the nodes and edges in the original 

partition are retained and more nodes and edges are included. Note that the edges across 

the new boundary are omitted. 

 Suppose the power grid is divided into   partitions. For each partition, we have a 

linear system 

   
    

     
  ,                                                        (7) 

where    
  is the conductance matrix for enlarged partition       

  is the node voltage 

vector; and     
  is the vector representing current drains. After solving (7), we obtain    

  

which denotes the solution of an enlarged partitions. In    
 , only the voltage solutions at 

the nodes that belongs to the original partition are retained and other voltage solutions 

are ignored. Therefore, solving all the enlarged partitions provides voltage solutions on 

each original partition. The voltage solution derived from the enlarged partition is more 

accurate compared to the linear system from the original partition because the influence 

of external C4 bumps near the boundary of the partition is captured. 

 The straightforward enlarging method is effective and easy to implement. 

However, it may introduce difficulties for the solution process. It has the following 

drawbacks. First, the irregular power grid can consist of disjoint sub-grids. The 

straightforward partitioning method could include disconnected nodes and edges from 

other sub-grids. Second, in a real power grid, a node is not always connected to all its 
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neighbors. If such a node happens to lie next to the boundary and all its edges are across 

the boundary, this node will be an isolated node that is not connected to any other nodes. 

Isolated nodes cause the power grid matrix to become singular. In order to overcome 

these drawbacks and make the solving process more efficient, we propose an improved 

partitioning method based on Breadth-First Search (BFS) algorithm.  

 

II.2.3 Improved partition-enlarging approach using breadth-first search 

The approach described in II.2.2 is too expensive, since unrelated nodes and edges are 

also included in the enlarged partition. If we consider the area outside the partition as 

layers, we can extend the partition up to a certain layer and we can select edges to be 

included in the enlarged partitions. In this way, the number of nodes and number of 

 

 

 

Figure 5. Including inner nodes and edges 
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edges are fewer than those of the naive approach. As a consequence, the size of the 

generated linear system matrix and the number of non-zeros will be reduced. This size 

reduction helps improve the efficiency of the solver. 

 Since the partition is enlarged layer by layer, we adopt a BFS method to extend 

the original partition. The resulting enlarged partition is a tree-like structure outside the 

original partition. Note that we do not include all the edges in the BFS tree, but select the 

edge with the largest conductance that connects to a node. 

 To enlarge a partition using BFS our approach consists of the following steps: 

1. Retain all the nodes and edges in partitions. All the boundary edges across the 

partition borders as well as the nodes connected by the edges are retained. The nodes 

that lie outside the partitions and are connected by boundary edges are called level-0 

nodes (Figure 5). 

2. Starting with those level-0 nodes, apply breadth first search algorithm to 

extend the partitions. The level of an extended node is the shortest distance from level 0. 

The level of an unvisited node is set to -1. If a node is encountered during BFS, the 

largest edge (defined as the largest conductance) from its parent in the preceding level is 

retained in the BFS tree (Figure 6). The enlarged partition size (EP-Size) is defined as 

the number of levels extended out of the original partitions. 

3. In order to have better control of the solution accuracy, additional edges are 

added to the BFS tree. The number of levels for which all edges will be included is 

defined as retained-level size (RL-Size). For example, if RL-Size is  , then all edges 

incident on nodes at levels 0 through   are retained. RL-Size is an adjustable parameter 
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to make the partition solution more accurate. Experiments suggest that RL-Size is a 

necessary parameter to control the solution accuracy and ensure convergence to the 

solution. 

4.  Return resulting enlarged partition. 

 The overall algorithm for enlarging a partition is described in Algorithm 1. 

 

Figure 6. Extending a partition 
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ALGORITHM 1. Enlarging a Partition 

Input: An partition with node and edge information; boundary information of the 

partition; EP-size; RL-size 

Output: An enlarged partition with node and edge information. 

1: Mark all the internal nodes and edges as 'retained', set the level of those nodes = 0. 

2: Mark all the boundary edges and the nodes connected by boundary edges as 'retained'. 

3: Mark all the nodes in Step 1 and 2 as 'visited'. 

4: Create a queue-BFSQueue and push the nodes connected by boundary edges into 

BFSQueue, and set the level of those nodes = 1;  

5: while(BFSQueue not empty) 

6:   CurrentNode=BFSQueue.pop(); 

7:  if(node.level>EP_size) then   

8:  return; 

9:  end if 

10: for(each neighbor node-NeiNode of  CurrentNode) 

11:  if(NeiNode not visited) 

12:   BFSQueue.push(NeiNode) 

13:    mark NeiNode as 'visited' and set NeiNode's level to 

CurrentNode.level+1 

14:    if(NeiNode.level<=RL_size) then 

15:     retain all the edges connecting NeiNode and 'visited' 

nodes 
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16:    end if 

17:    check NeiNode's edges connecting to nodes one level lower, retain 

the edges that holds the largest conductance value and ignore the other edges. 

18:    end if 

19:   end for 

20: end while 

 

One must note that each enlarged partition must have at least one C4 bump. 

Otherwise, based on the discussion in II.1, the matrix of the generated linear system will 

be singular. A singular matrix makes the linear system unsolvable. Thus, in our 

approach, if there are no C4 bumps in the resulting enlarged partition, the enlarged 

partition is further extended to enclose at least one C4 bump. 

Compared to the naive enlarging strategy, the BFS-based partition enlarging 

approach overcomes a number of drawbacks and reduces the size of the enlarged 

partition. 

1. In a real chip, the power grid can consist of several disjoint sub-grids. During 

the enlarging process, the naive approach does not consider this situation but extends the 

border outwards. In this case, it is possible that the enlarged partition includes nodes and 

edges from other unrelated sub-grids that do not improve the accuracy of the solution on 

the primary partition. The BFS-based approach does not include these nodes and edges 

in the enlarged partition, making the partition lightweight and efficient for computations. 
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2. The naive approach retains all the edges in the enlarged partition. In contrast, 

the BFS-based partition enlarging method only includes the edges that have the most 

useful information (largest conductance) and neglect other edges. This strategy reduces 

the time to solve the enlarged partition system since the conductance matrices have 

fewer non-zeros due to the inclusion of fewer edges. 

3. In a power grid, there exist nodes that are not connected to every neighbor. 

The naive approach to extending the partitions ends up including some nodes that may 

not be connected to any other nodes inside the enlarged partition. These resulting 

isolated nodes make the conductance matrix singular since they have no incident edges. 

In the BFS-based approach, since each included node is visited from its neighbor and at 

least one edge from this node is retained, there does not exist any isolated nodes. The 

BFS-based approach make the enlarged partition friendly to linear system solvers. 

 After constructing the enlarged partitions using BFS, we have linear systems for 

enlarged partitions as 

   
     

     
                                                          (8) 

where    
   is the conductance matrix for enlarged partition        

  denotes the associated 

node voltage vector; and       represents the current source vector. After (8) is solved, the 

solutions belonging to the original partitions are extracted. The solutions are more 

accurate than the ones obtained from the original partition. 
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 To verify that the enlarged partitions lead to more accurate solutions, we 

compare the average error and maximum error in Table I. The results are obtained on the 

benchmark ckt3 (introduced in III.2) with     partitions. As described before, after 

solving the enlarged partition, only the solutions on the nodes that belong to the original 

partition are retained. Max error denotes the maximum relative error in node voltage by 

solving the enlarged partitions; Average error denotes the relative average error. The 

solution was obtained using a direct solver to guarantee computational accuracy. RL-size 

is set to be 0 to better demonstrate the comparison. The trend of error changes illustrates 

that the larger the enlarged partition is, the more accurate the solution we obtain. Two 

 

Table I. Solution errors of enlarged partitions with different EP-size 

 

EP-size Max error Average error 

0 153.2% 7.9% 

5 42.8% 4.3% 

15 10.9% 1.2% 

200 0.0% 0.0% 
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extreme cases are that EP-size equals 0 and EP-size is large enough to make the enlarged 

partition cover the whole power grid. As for the first case, the error is huge as seen in the 

first row of Table I. In the second case, the whole power grid is solved and only the 

solutions within the original partition are retained. The error is 0 because the exact 

solutions are obtained. 

 

II.2.4 Error reduction using preconditioned conjugate gradient method 

As presented in II.2.3, larger enlarged partitions lead to more accurate solutions. 

However, larger enlarged partitions are more costly to solve. Using modest size of 

enlarged partitions, we obtain solution errors that are still larger than our tolerance. In 

order to reduce the solution error in an efficient way, we adopt PCG method to conduct 

the error reduction. 

 Next, we first briefly review the CG method and preconditioning technique. 

Then, the proposed Enlarged-Partition based Preconditioned Conjugate Gradient 

(EPPCG) method is presented. 

 CG is an iterative Krylov subspace method for solving s.p.d linear systems [12]. 

Compared to direct solvers, CG requires less memory storage and is friendly to 

extremely large sparse linear systems. CG method is often enhanced by applying a 

preconditioner  to achieve fast convergence.  

Preconditioning is a method to accelerate the solution of linear systems. Suppose 

we have a linear system     . Preconditioning is to apply a matrix   to the linear 

system as           , such that the condition number of      is less than that of 
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 . By applying an effective preconditioner to a linear system, the linear system becomes 

easier to solve. One extreme case is where    , then the left-hand side of the linear 

system becomes  . As a result, the linear system has been solved by applying such a 

preconditioner. Usually, a preconditioner is used in iterative solver to accelerate the 

convergence. In PCG, a preconditioner   is used in each iteration involving computing a 

matrix-vector product       . Note that   can be computed by solving an equivalent 

linear system     . The preconditioner   can be explicit or implicit. In PCG, an 

explicit preconditioner is applied by computing the matrix-vector product as       . 

An implicit preconditioner does not have an explicit expression. It outputs a vector   

using a given input vector   after a process of computations. This process refers to a 

preconditioning process. 

A good preconditioner is key to the performance of the PCG method. Ideally, a 

preconditioner is inexpensive to construct and effective for reducing the number of 

iterations. In our proposed EPPCG method, we apply the implicit preconditioner by 

solving the enlarged partitions and extracting the solutions belonging to the original 

partitions as described in Algorithm 2. In other words, given an input vector  , we 

approximate the solution of the linear system      by solving the enlarged partitions. 

The proposed preconditioner has the following advantages. 

The preconditioner is parallelizable. The preconditioner is conducted by solving 

the enlarged partitions. Solving the enlarged partitions can be done in parallel. In 

EPPCG, preconditioning costs most of the runtime. A parallelizable preconditioner can 

help reduce the runtime drastically. 
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Our experimental results discussed in Chapter III indicate that the enlareged-

partition based preconditioner is effective for achieving fast convergence in EPPCG. The 

proposed preconditioner reduces the number of iterations significantly.  

 

 

ALGORITHM 2.  Enlarged Partition Based Preconditioner 

Input:    vector  , enlarged partition information containing retained node IDs and 

edges. 

Output: Preconditioned     vector   

1:  Separate   into    
  based on enlarged partition information 

2: for(each enlarged partition)  

3:      solve    
    

     
  using a direct solver; 

4:  end for 

5: for(each original partition) 

6:      extract    of original partitions from    
 ; 

7:  end for 

8: combine    into the global vector    

9: return   
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ALGORITHM 3.  EPPCG 

Define:     is the error tolerance;     is the maximum number of iterations; 

Input: The global conductance matrix  ; the global current drain vector  ; the error 

tolerance    ; the maximum number of iterations      

Output: The node voltage vector  . 

1: Factorize the conductance matrix    
  for each enlarged partition 

2: Obtain an initial solution    by applying EP preconditioner on vector   . 

3:          //matrix-vector multiplication is conducted on enlarged partitions 

4: Obtain the preconditioned vector   by applying EP preconditioner on   . 

5:       

6: while (       ) 

7: do    
        

           
 

8:               

9:                //matrix-vector multiplication is conducted on 

enlarged partitions 

10: If   ‖ ‖      ) return      

11: Obtain     by applying EP perconditioner on      

12:     
            

          
 

13:                  
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14:       

15: end while 

 

 The overall EPPCG algorithm is described as Algorithm 3.  The enlarged 

partitions are solved using a state-of-the-art direct solver, CHOLMOD [8, 63]. 

CHOLMOD consists of matrix factorization and triangular solve. The runtime of matrix 

factorization dominates the whole process. The conductance matrices of enlarged 

partitions do not change in EPPCG. Thus, we factor the matrix before entering the PCG 

loop, so that the factors are re-used in each iteration. This strategy helps improve 

performance by eliminating unnecessary repeated factorization. 

 

II.3 Computational complexity and performance modeling 

II.3.1 Complexity analysis  

As described in Algorithm 3, the EPPCG method consists of two main computational 

parts. One is the factorization and triangular solve of the conductance matrices for 

enlarged partitions. The other one consists of remaining computations in PCG method 

such as matrix-vector multiplications, vector inner-products and other vector operations. 

 Suppose the power grid is divided into   partitions, enlarging the   partitions 

results in   enlarged partitions. The number of nodes in the partitions are           . 

For enlarged partition i, suppose the factorization of conductance matrix for enlarged 

partition costs        and applying the precondtioner costs       . The runtime of 

matrix-vector multiplication is defined as          and the runtime of vector inner-
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product is defined as        . Each of the vector operations, such as vector additions, 

scalar-vector multiplications, is defined as       , since they have the same complexity. 

The overall sequential runtime of EPPCG can be described as 

   ∑      

 

   

  ∑      

 

   

 ∑       

 

   

 ∑      

 

   

                         

  (∑      

 

   

 ∑       

 

   

  ∑      

 

   

+                                          

where T denotes the overall runtime and m denotes the number of iterations. Based on 

our experiments, m is in the range of [2-6]. Note that         includes triangular solve 

and vector extraction operations as illustrated in Algorithm 2.   For each enlarged 

partitions with    nodes,         (  
   ) ,                  , and              

[9].  To estimate        , we consider the structure of the power grid. In a power grid, a 

node is connected to up to four neighbor nodes. As a result, there are at most 4 non-zeros 

at each row/column in the conductance matrix. For a power grid with   nodes, a matrix-

vector multiplication runs at most    operations. Thus,              . 

 More interesting analysis is the parallel complexity estimation. Assume the 

number of processors is identical to the number of partitions. Each item in (9) is 

determined by the slowest process. The overall parallel runtime can be approximated as 

an equation 
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where   denotes the overall runtime of parallel EPPCG.  Since power grid is divided 

into partitions with equal size and the partitions are enlarged to the same level, the 

resulting enlarged partitions are of similar size. This work load balance helps the parallel 

implementation achieve significant speedup. Let  ̃ denote the number of nodes of the 

largest enlarged partition. Based on the estimate of each item discussed above,   

   ̃      ̃    ̃   In the complexity estimation, the factorization of conductance 

matrices dominates the whole algorithm for extremely large power grids. The 

parallelization of factorization step helps reduce the runtime drastically.   

 

II.3.2 Performance modeling 

EP-size and RL-size are two parameters to control the speed of convergence of EPPCG. 

On one hand, if EP-size and RL-size are too large, the factorization time increase due to 

the expansion of conductance matrices. On the other hand, if EP-size and RL-size are 

too small, the convergence becomes slow due to the inaccuracy of the solutions to the 

enlarged partitions. Therefore, finding optimal EP-size and RL-size helps maximize the 

efficiency of EPPCG. RL-size is found to be 0.75×EP-size approximately in our 

experiments. Thus, in the following discussion, we are focused on finding the optimal 

EP-size. 

The parallel runtime is approximated in (10). We divide the power grid into 

equal-sized partitions and the enlarged partitions are formed by extending the partition to 

the same level. Therefore, the work load of each enlarged partition is similar. We can 

obtain the following equation derived from (10). 
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        ̅       ̅        ̅      ̅   (    ̅        ̅      ̅ )               

where  ̅ denotes the average number of nodes in an enlarged partition.  

Based on our discussion on time complexity in II.3.1,     ̅ ,     ̅ , and       ̅  

can be approximated as follows. 

    ̅     ̅
                                                                (12) 

      ̅     ̅                                                                (13) 

    ̅      ̅    ̅                                                          (14) 

where   ,   ,   ,   ,   , and    are constants. 

Suppose there are n nodes and p partitions, the average number of nodes in a 

partition is n/p. If we consider the partition as a square, each side of the square contains 

√    nodes. Since the original partition is large and the number of levels of extension is 

not significant, we can ignore the difference of number of nodes between levels. Note 

that the partition is extended on all the four sides of the square. Therefore, the number of 

nodes added by extending the partition can be approximated as     √   , where Ep 

denotes EP-size. The total number of nodes   ̅  in an enlarged partition can be 

approximated as follows. 

 ̅       √
 

 
 

 

 
                                                       (15) 

Based on our experimental observation,      ̅  and      ̅  dominates the overall 

runtime, and the typical value of m is 3. Therefore,   can be approximated using the 

following equation. 
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*                        (16) 

The unknown constants    and    can be obtained using linear regression and 

observation data in the experiments. Using the data in the table on Page 51, we get the 

values as             and             in our experiment setup.    and    are 

not necessary for computing the optimal EP-size, as discussed as follows. 

In order to find the optimal Ep (EP-size), we take derivatives in (16) and solve 

the following equation. 
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*                     (17) 

 
II.4 Parallelism 

The EPPCG algorithm is designed to parallelize both the preconditioning process and 

other computation steps (e.g., vector inner products, matrix-vector multiplications, etc.) 

in a straightforward way. 

In this dissertation, we employ a two-tier parallelization scheme as shown in 

Figure 7. The power grid is divided into overlapping sub-grids (enlarged partitions). 

Correspondingly, sub-grid linear systems are generated. Each of the enlarged partition is 

mapped to an MPI process. The first tier MPI parallelization can be described as two 

parts. 

Factorization: In EPPCG method, the conductance matrices of enlarged partitions 

are factored concurrently by MPI processes that own the partition.  
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Vector-related computations: The remaining computations of EPPCG, including 

matrix-vector multiplications, vector inner products, and vector additions, are also 

computed at the partition level by respective MPI processes. These computations may 

involve data exchanges and synchronizations among MPI processes. A gather-scatter 

strategy is adopted for vector operations. An index vector is constructed for vectors of 

each partition and enlarged partition (Figure 8). The index vector denotes the position of 

elements in the global vector. Matrix-vector multiplication is computed using the 

enlarged partitions since it needs at least one more level outside of the original partition 

to obtain the correct results. Vector inner products and other vector operations are done 

on original partitions. The MPI routine MPI_Allreduce is used when calculating the 

residual. MPI_Allgatherv routine is used to combine the local vectors into a global 

 

 

 

Figure 7. Parallelization scheme 
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vector. Vectors of enlarged partitions can be extracted from this global vector. 

GPUs are used to accelerate sub-grid matrix factorizations and triangular solves. 

CHOLMOD  is adopted as the direct solver for the sub-grid linear systems. CHOLMOD 

uses a supernodal method to obtain smaller dense matrices in the process of factoring a 

sparse linear system. The task of factoring these dense matrices is passed on to the GPU, 

which uses the highly optimized cudablas library to deliver high parallel performance. 

The overall performance of CHOLMOD on GPU varies depending on the structure of 

matrices and the amount of data transferred between the CPU and GPU. 

In the parallel implementation of EPPCG, the number of partitions is always 

identical to the number of MPI processes. To obtain the best parallel performance, one 

 

Figure 8. Local and global vector projection 
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should use the maximum number of GPUs available. For instance, a parallel 

implementation with 6 partitions/processes can use up to 6 GPUs.  Each MPI process is 

assigned to a GPU card. When the number of MPI processes in an implementation 

exceeds the number of available GPU cards, multiple MPI processes share a GPU. For 

instance, 2 MPI processes are mapped to 1 GPU in the scenario where 12 MPI processes 

are created. 
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CHAPTER III 

STATIC ANALYSIS OF POWER GRIDS 

 

III.1 Static analysis of power grid problem 

 

In static analysis of power grids, all the capacitors are open and all the inductors are 

short. A linear system      is constructed based on the power grid structure. EPPCG 

can be applied to static analysis directly. Some factors that need to be considered in 

static analysis using EPPCG are as below: 

 EP-size and RL-size are two parameters to control the convergence of EPPCG. If 

these parameters are too large, the whole process suffers from heavy computation 

of matrix factorization since the matrices are larger. If the two parameters are too 

small, more iterations are expected such that the performance degrades due to 

slow convergence of the iterative solver.   

 The number of partitions is a factor that affects the performance of EPPCG. Too 

many partitions make the solution of the enlarged partition inaccurate. This 

makes the convergence of EPPCG slow. If too few partitions are constructed, the 

parallel performance will not be significant due to insufficient coarse level 

parallelism, although the efficiency of the parallel implementation could be high. 
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III.2 Experimental results 

 

To investigate the performance of EPPCG algorithm on static analysis, we conducted 

experiments on the supercomputer cluster Eos and Ada at Texas A&M Supercomputer 

center. The hardware specification of  Eos and Ada are presented as below: 

Eos supercomputing cluster: 

 Number of nodes: 372 

 Number of cores per node: 8 

 CPU: 2.8GHz Nehalem 

 Memory: 24GB DDR3 DRAM 

 Operating system: 64-bit RedHat Linux 

 GPU card per node:  two computing nodes are equipped with two Nvidia M2050 

GPU cards per node and two nodes are equipped with one Nvidia M2050 GPU 

card per node. 

 GPU speed: 575 MHz 

 GPU cores: 14 cores of GF100 architecture 

Ada supercomputing cluster: 

 Number of nodes: 845 

 Number of cores per node: 8 

 CPU: 2.5GHz IveBridge 

 Memory: 64GB DDR3 DRAM 

 Operating system: 64-bit CentOS 6.5 Linux 
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 GPU card per node:  2 Nvidia K20 GPUs 

 GPU speed: 706 MHz 

 GPU cores: 13 cores of GK110 architecture 

The implementation of the proposed method is written in C++ and the algorithm 

is parallelized using MPI and CUDA. A tolerance of      was specified on the relative 

norm of residual error for EPPCG implementations. 

We conducted experiments on IBM P/G benchmarks [64] and several artificial 

benchmark circuits. The format of the benchmarks is described in [65]. The 

specifications of the benchmarks vary as shown in Table II. The number of nodes 

(Num_node), number of resistance edges (Num_edge), number of C4 bumps (Num_C4) 

and number of current sources (Num_I) of each benchmark circuit are listed. Num_layer 

denotes the number of layers. Different layers are connected through vias.  The 

experimental results will show the comparison of EPPCG and CHOLMOD, the 

comparison of EPPCG and other iterative solvers, the MPI-based parallel performance, 

the GPU-accelerated parallel performance, the impact of partitioning, the impact of 

varying parameters, the performance on different clusters, the performance of different 

parallel implementations, and the scalability.  

 

III.2.1 Comparison with state-of-the-art direct solver 

A direct solver is widely used in power grid simulation in the industry. In our 

experience, CHOLMOD is among the fastest public domain single-processor direct 

solvers. We compare our EPPCG method parallelized using MPI and GPU (MPI-GPU-
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Table II. Specification of experimental power grids 

 

Circuit Num_node Num_edge Num_C4 Num_I Num_layer 

ibmpg3 851,584 1400353 955 201,054 5 

ibmpg4 953,583 1550719 962 276,976 6 

ibmpg5 1,079,310 1615381 539,087 540,800 3 

ibmpg6 1,670,494 2484098 836,239 761,484 3 

ibmpgnew1 1,461,036 2351136 955 357,930 6 

ibmpgnew2 1,461,039 2351136 930,216 357,930 6 

ckt1 3,006,003 5,007,002 1,600 1,508,320 4 

ckt2 4,327,203 7,208,402 2,304 1,609,834 4 

ckt3 6,759,003 11,260,502 3,600 2,154,654 6 

ckt4 5,077,803 8,459,102 27,040 1,465,455 6 

ckt5 6,132,002 9,194,501 4,900 2,335,540 4 
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EPPCG) with CHOLMOD in Table III. T denotes the overall runtime, Max_error 

denotes the maximum solution error and Aver_error denotes the average solution error. 

MPI-GPU-EPPCG method solves the power grids much faster than the state-of-the-art 

direct solver CHOLMOD without losing much accuracy.  

The accuracy of the solution is determined by the residual norm’s tolerance for 

the CG iterations. Desired accuracy can be achieved by choosing an appropriate value 

for the tolerance. A smaller value of tolerance requires additional iterations of the CG 

Table III. Speed improvement over direct solver 

 

Circuit 

CHOLMOD MPI-GPU-EPPCG (16 processors) 

Spd- 

Imp 

T(s) 
Mem 

(GB) 

EP- 

size 

RL- 

size 
T(s) 

Mem 

(GB) 

max- 

error(V) 

aver- 

error(V) 

ckt1 282.35 7.9 45 35 4.65 8.0 2.67E-05 1.19E-05 61X 

ckt2 406.83 12.0 30 22 5.73 12.6 2.87E-04 7.69E-05 71X 

ckt3 1375.52 20.0 40 35 9.69 20.0 6.32E-05 2.83E-05 142X 

ckt4 819.53 14.1 40 30 7.45 15.0 1.37E-05 3.98E-06 110X 

ckt5 451.6 13.8 40 35 7.12 14.1 2.49E-04 7.35E-05 63X 
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method, which increases the cost. However, the increase in cost is relatively small when 

compared to the one-time cost of factoring the partitions at the start of the algorithm. A 

change in the number of iterations does not impact parallel efficiency of the CG method 

itself.  

The memory usage of EPPCG is comparable to CHOLMOD. The speed 

improvement (Spd-Imp) of parallel EPPCG over CHOLMOD ranges from 61X to 142X. 

Table IV. Speed comparison between iterative solvers and serial EP-PCG solver 

 

Benchmark 

CG Jacobi PCG Serial EP-PCG 

Iter Runtime Iter T(s) EP-size RL-size Iter T(s) 

ckt1 1808 635.0 784 243.9 40 35 5 68.6 

ckt2 1995 966.0 774 378.6 30 22 2 85.1 

ckt3 1783 1514.0 761 630.9 40 35 4 230.3 

ckt4 2391 1243.0 770 456.0 40 30 5 132.7 

ckt5 1406 1006.0 606 430.1 40 35 3 128.7 
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III.2.2 Comparison with other iterative solvers 

Table IV shows the performance comparison among classic CG method, Jacobi PCG 

method and serial EP-PCG method with      partitions. Classic CG performs the 

worst among all the methods since it requires a large number of iterations to converge. 

Jacobi PCG reduces runtime by applying a diagonal preconditioner. The proposed EP-

Table V. MPI parallel performance 

 

Circuit EP-size RL-size Ite 

Serial EPPCG 

(sec) 

MPI- EPPCG 

(sec) 

Speedup 

(serial EPPCG vs 

MPI-EPPCG) 

factor pcg overall factor pcg overall factor pcg overall 

ckt1 40 35 5 58.3 10.2 68.6 3.6 1.2 4.9 16.1X 8.3X 14X 

ckt2 30 22 2 75.9 9.2 85.1 5.0 0.8 5.8 15.2X 11.3X 15X 

ckt3 40 35 4 210.7 19.6 230.3 14.1 2.9 17.0 15.0X 6.8X 14X 

ckt4 40 30 5 113.9 18.8 132.7 6.9 2.2 9.0 16.6X 8.8X 15X 

ckt5 40 35 3 116.3 12.4 128.7 7.4 1.7 9.1 15.8X 7.2X 14X 
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PCG method is able to reduce the number of iterations significantly due to the 

effectiveness of the EP-preconditioner. The effective EP-preconditioner makes the serial 

EP-PCG fastest among all the iterative solvers.  

 

III.2.3 MPI-based parallel performance 

The parallel performance of MPI-based EPPCG method (MPI-EPPCG) is investigated 

with     partitions using 16 MPI processes in Table V and Figure 9. Iterative solvers 

suffer from slow convergence rate easily, however, EPPCG achieves fast convergence 

by employing an effective enlarged-partition based preconditioner. The number of 

iterations (Ite) is in a single-digit range for all the benchmarks.  

 

 

Figure 9. MPI parallel efficiency for different benchmarks 
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In Table V, “factor” denotes the runtime of matrix factorization for enlarged 

partition conductance matrices using CHOLMOD, “pcg” denotes the accumulated 

runtime other than factorization step in EPPCG, and “overall” denotes the total runtime 

of EPPCG. As seen in Table V, the factorization dominates the overall runtime. Thus, 

Table VI. Enhancing parallel performance with GPUs 

 

Circuit EP-size RL-size Ite 

MPI- EPPCG 

(sec) 

MPI-GPU- 

EPPCG (sec) 
GPU Speedup 

factor pcg overall factor pcg overall factor pcg overall 

ckt1 45 35 3 9.0 1.1 10.1 6.3 1.1 7.5 1.4X 1.0X 1.4X 

ckt2 30 25 3 11.9 1.6 13.5 7.8 1.5 9.3 1.5X 1.1X 1.4X 

ckt3 30 25 3 36.4 4.7 41.1 13.3 3.8 17.2 2.7X 1.2X 2.4X 

ckt4 50 45 3 18.5 1.9 20.4 9.1 2.0 11.1 2.0X 0.9X 1.8X 

ckt5 45 40 2 21.8 1.5 23.3 9.9 1.6 11.5 2.2X 1.0X 2.0X 
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the overall parallel performance is mainly determined by the factorization process. Our 

parallel implementation achieves significant speedup on factorization and reasonable 

speedup on remaining PCG computations. MPI parallelization efficiency is defined as 

the ratio of speedup and number of processes. Figure 9 illustrates the parallel efficiency 

of MPI-EPPCG. Superlinear speedup occurs in the factorization process on ckt1 and 

ckt4 due to the effective utilization of cache. 

 

III.2.4 GPU-accelerated parallel performance 

In order to study the effect of GPU on parallel performance, we compare MPI-EPPCG 

with GPU-MPI-EPPCG. Table VI shows the comparison with     partitions using 9 

MPI processes and 6 GPUs. 3 GPUs are shared by 6 MPI processes and the other 3 

GPUs are assigned to 3 MPI processes. The factorization speedup of MPI-GPU-EPPCG 

over MPI-EPPCG ranges from 1.4X to 2.7X. As expected, the GPU performs better for 

heavy-weight work load computations (e.g. ckt3) than light-weight work load. In terms 

of pcg process, the GPU performance degrades for some benchmarks because of 

overheads in CUDA parallelization.  

The overall parallel performance for each implementation is shown in Figure 10. 

All the benchmark circuits are divided into     partitions. It can be seen that with 

efficient parallelization, MPI-GPU-EPPCG reduces the runtime further.   
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III.2.5 Impact of partitioning 

The EPPCG method divides the power grid into partitions. The results for different 

number of partitions are shown in Table VII. For each benchmark circuit, the two 

parameters EP-size and RL-size are identical for different number of partitions. 

Parallelization efficiency is defined as the ratio of speedup and the number of processes. 

 

Figure 10. Overall parallel performance (time in seconds) 

 
 

 

282.4 

406.8 

1375.5 

819.5 

451.6 

87.5 

157.9 

290.9 

164.1 174.3 

9.5 
13.0 28.8 14.5 15.7 

6.9 7.7 13.7 9.9 8.5 
0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

ckt1 ckt2 ckt3 ckt4 ckt5

R
u

n
ti

m
e

 (
S)

 

Benchmark circuits 

CHOLMOD serial EPPCG

parallel MPI-EPPCG parallel MPI-GPU-EPPCG



 

57 

 

Note that using too many partitions may downgrade the performance due to the 

overheads of MPI processes and GPU threads. If the work load is light-weight, those 

overheads will dominate the processing and lower the parallel performance. If the 

problem size is large enough, it is expected that many more partitions can be created to 

obtain higher speed improvement. One must note that selecting a large number of 

smaller sized partitions has a negative impact on the quality of the preconditioner, which 

may increase the number of iterations resulting in a higher solution time. The results are 

shown in Figure 11. 

 

Table VII. MPI-GPU-EPPCG performance with different number of partitions 

 

No. of 

Process 

ckt3 ckt4 ckt5 

#Iter T(S) 
Speed 

up 

Efficien

cy 
#Iter T(S) 

Speed 

up 

Efficien

cy 
#Iter T(S) 

Speed 

up 

Efficienc

y 

9 4 17.0 7.9 87.8% 6 13.5 9.1 101.3% 3 10.9 8.9 98.4% 

12 3 12.8 11.6 96.7% 4 9.5 12.1 100.7% 3 8.0 12.0 100.3% 

16 4 9.7 13.8 86.3% 5 7.5 14.7 91.9% 3 7.1 14.4 90.0% 

25 5 9.6 19.5 77.9% 6 8.7 18.3 73.0% 5 8.6 19.1 76.5% 
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III.2.6 Impact of parameters 

The effect of varying parameters EP-size and RL-size was also investigated. Table VIII 

shows the runtime results for ckt1 with     partitions.   

Different EP-size and RL-size lead to different performance. A smaller value of 

EP-Size reduces factorization time and PCG time by lowering the cost of factorization 

provided the number of iterations needed to converge to the solution do not grow; a 

larger value of RL-Size reduces the number of iterations but makes the factorization 

more expensive. Thus EP-Size and RL-Size need to be chosen carefully to obtain the 

best performance. 

 

 

Figure 11. Parallel performance with different number of partitions 
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III.2.7 Performance on different machines 

In order to demonstrate the consistency of EPPCG on different machines, experiments 

were conducted on both EOS and ADA. ADA is an IBM NeXtScale super computing 

cluster with 845 nodes. Each node is equipped with 20-core 2.5 GHz IvyBridge CPU. 30 

of the nodes have 2 Nvidia K20 GPUs installed. The memory size of each node is 64 GB 

and Linux (CentOS 6.5) is running on all the nodes. The power grids are divided into 9 

partitions. 9 MPI processes and 6 GPU cards are used on both EOS and ADA. The 

Table VIII. Parallel performance with varying parameters 

 

Ckt1 

  

EP-size 

  

RL-size 

  

Ite 

serial  

EPPCG 

paralllel  

MPI-EPPCG 

parallel  

MPI-GPU-EPPCG 

factor pcg total factor pcg total factor pcg total 

37 28 8 74.21 13.86 88.07 7.52 1.96 9.48 4.93 2.08 7.01 

40 30 5 77.89 9.61 87.50 8.19 1.26 9.45 5.27 1.59 6.86 

40 35 3 85.96 6.61 92.57 6.80 0.93 7.73 4.83 0.89 5.72 

45 35 3 86.00 6.69 92.69 6.80 1.01 7.81 4.82 0.95 5.77 

50 45 2 92.00 5.87 97.87 7.33 0.76 8.09 5.23 0.71 5.94 
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experimental results are shown in Table IX. From the results we observe the two clusters 

give us similar results. The speedup of MPI-GPU-EPPCG over CHOLMOD on EOS 

ranges from 38X to 80X, and on ADA the range is from 32X to 77X. These results 

demonstrate the consistency of EPPCG method on different machines.  

 

 

Table IX. Comparison of EPPCG performance between machines 

 

Circuit EP-size RL-size Ite 

MPI-GPU- 

EPPCG(EOS) 

MPI-GPU- 

EPPCG(ADA) 

T Spd-Imp T Spd-Imp 

ckt1 45 35 3 7.5 38X 9.2 32X 

ckt2 30 25 3 9.3 44X 11.7 49X 

ckt3 30 25 3 17.2 80X 18.4 77X 

ckt4 50 45 3 11.1 74X 12.7 70X 

ckt5 45 40 2 11.5 39X 11.4 45X 

 



 

61 

 

 

III.2.8 Different parallel implementation 

In EPPCG, the factorization dominates the whole process. The parallelization of 

factorization is the key factor that influences the overall parallel performance. In the 

parallelization of factorization, there is no data transfer between processes. Compared to 

MPI, OpenMP performs better when there is much communications between sub-

Table X. Comparison between MPI and OpenMP performance 

 

Circuit 
EP-

size 

RL-

size 
Ite 

serial 16-process MPI 
16-thread 

OpenMP 

T(s) T(s) Speedup T(s) Speedup 

ckt1 40.00 35.00 5.00 68.58 4.85 14.14 6.90 9.94 

ckt2 30.00 22.00 2.00 85.11 5.81 14.65 10.50 8.11 

ckt3 40.00 35.00 4.00 230.31 16.98 13.56 25.60 9.00 

ckt4 40.00 30.00 5.00 132.71 9.00 14.75 13.20 10.05 

ckt5 40.00 35.00 3.00 128.68 9.09 14.16 15.10 8.52 
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Table XI. EPPCG performance on different benchmarks 

 

Circuit 

CHOLMOD MPI-GPU-EPPCG  
Spd-

Imp 
T(s) EP-size RL-size T(s) 

ibmpg3 28.27 33 15 1.31 22X 

ibmpg4 47.75 20 12 1.39 34X 

ibmpg5 19.95 35 25 1.18 17X 

ibmpg6 26.16 75 50 1.88 14X 

ibmpgnew1 62.07 25 20 2.22 28X 

ibmpgnew2 56.81 25 20 2.18 26X 

ckt1 282.35 45 35 4.65 61X 

ckt2 406.83 30 22 5.73 71X 

ckt3 1375.52 40 35 9.69 142X 

ckt4 819.53 40 30 7.45 110X 

ckt5 451.6 40 35 7.12 63X 
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problems. However, since OpenMP runs on shared memory environment, the 

performance of OpenMP could downgrade on a distributed cluster due to the less-

developed memory sharing mechanism. MPI and OpenMP implementations are 

compared in Table X. MPI performs better than OpenMP on all the benchmarks. The 

parallelization efficiency of MPI is much better than that of OpenMP. This observation 

can be explained by the latency of memory data sharing on distributed machines. 

 

III.2.9 Scalability 

In order to investigate the scalability of EPPCG, we ran experiments on all the available 

benchmarks and obtained the results in Table XI. The size of the benchmarks varies as 

shown in Table XI. In Table XI, we compared the performance of EPPCG on CPU-GPU 

hybrid platform with CHOLMOD. From the results, it is observed that the speedup 

achieved varies on different benchmarks. The best speedup is 140X on ckt3. The reasons 

for this observation can be described as the following. First, ckt3 is extremely large in 

size. A more complicated circuit with more nodes makes the parallel implementation of 

EPPCG more efficient since the overhead of MPI is much less than the actual 

computation cost. Second, the direct solver CHOLMOD suffers on benchmarks with 

more layers. In other words, direct solver does not perform as well on 3D circuits. More 

layers means larger portion of nodes has more neighbors than 2D circuits. CHOLMOD 

does not perform well on these linear systems. 
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CHAPTER IV 

 PARALLEL TRANSIENT ANALYSIS OF POWER GRID 

 

IV.1 Transient analysis problem 

In transient analysis, the power grid can be modeled as a RCL network as shown in 

Figure 12. Transient analysis is conducted over a certain amount of time. To simulate the 

transient response on computers, the period of time is discretized into time points. The 

interval between two time points is defined as time step. The time step size can be fixed 

or varying in the transient analysis. The process for transient power grid simulation with 

 

Figure 12. Modeling power grid in transient analysis 
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a fixed time step is described in Figure 13. A power grid circuit contains only linear 

components, such as resistors, linear capacitors, linear inductors, voltages sources and 

current sources. The value of each component is stamped in the resulting linear system. 

Stamping each component is discussed below. 

Resistors are stamped in the G matrix. If the value of the resistor is R and the 

indices of the two terminals are k and j, the resistor stamps a 1/R at row j and k on the 

 

Figure 13. Flow of transient analysis with a fixed time step 
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diagonal and -1/R at (k, j) and (j, k) in the conductance matrix. In static and transient 

analysis, resistors give the same stamping results. 

In transient analysis, voltages sources are stamped in both G matrix and I vector. 

Basically, for a voltage source V across node k and l, an equation         is added 

to the linear system. Each time a voltage source is encountered, a row and column need 

to be created in G matrix. The new row or column has 1 and -1 stamped in G, depending 

 

 

Figure 14. Companion model for C and L 
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on the index of the two terminal nodes. In the vector I, the value of the voltage source V 

is added at the new added row.  

Current drains are easier to handle. The only step is to add the value of the 

current source at each terminal node’s row. The positive or negative sign needs to be 

added depending the on flowing direction of flow of the current. In transient analysis, 

the current drain is often time varying. Therefore, we need to re-stamp current drains 

which require updating the right hand side of the linear system at each time step.  

Capacitors are considered open and inductors are considered short in static 

analysis. In transient analysis, a companion model is often used for each of the two 

components. To construct the companion model, multiple methods can be used. Forward 

Euler, Backward Euler and Trapezoidal methods are single-step methods to obtain the 

companion model. Trapezoidal method is the most stable method among the three. In 

power grid simulation, Norton equivalent circuit is often used to replace the capacitors 

and inductors [60]. Figure 14 shows the Norton trapezoidal companion model for 

capacitors and inductors.  

In Figure 14, the values of equivalent current source and conductance for 

capacitors are computed using the following equation.  

   
         

  

  
              

     
                                (18) 

   
  

  

  
                                                        (19) 

where    is the time step,     
       is the value of equivalent current source for the 

capacitor at time     ,     
     is the value of equivalent current source for the 
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capacitor at time  ,    
  is the value of the equivalent conductance,   is the value of the 

capacitor, and       is the voltage across the capacitor at time  . 

The values of equivalent current source and conductance for inductors are 

computed using the following equation.  

   
         

  

  
              

     
                               (20) 

   
  

  

  
                                                             (21) 

 

Figure 15. Companion model of power grid 
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where    is the time step,     
       is the value of equivalent current source for the 

inductor at time     ,     
     is the value of equivalent current source for the inductor 

at time  ,    
  is the value of the equivalent conductance,    is the value of the capacitor, 

      is the voltage across the inductor at time  . 

Figure  15 shows an equivalent circuit of power grid for transient analysis. For 

both capacitors and inductors,      varies at each time point of the transient analysis. 

Therefore,    needs to be re-calculated and re-stamped at each time point.     is a 

function of time step   . As a consequence, if the time step    is fixed, the conductance 

matrix remains the same during the transient analysis; if the time step    varies, the 

conductance matrix needs to be re-constructed. 

 

IV.2 Applying EPPCG in transient analysis 

Although EPPCG is designed for one-step solve of a power grid, it extends naturally to 

transient case. Transient analysis requires many-step solves on different time points. 

When applying EPPCG in transient power grid analysis, there are several issues that 

need to be addressed in the implementation. 

 The node at which the inductor and    resistor are interconnected must be 

included in the enlarged partition. Otherwise, the resulting enlarged partition may 

lose important information from the     such that the solution accuracy cannot 

be guaranteed.
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 The solution at each time point must be accurate enough. If the error of the 

solution at each time point is large, the accumulated error would be too large to 

obtain accurate solution in the simulation.



 

ALGORITHM 4.  Transient analysis with variable time step 

1: while(t<t_end) 

2:  perform a static analysis at time t using timestep to obtain solution    

3:  compute Local Truncation Error(LTE) and timestep_upperbound 

4:  if(timestep_upperbound < 0.9 timestep)  

5:   reject    and let timestep = timestep_upperbound 

6:  recomputed solution    

7:  else 

8:   accept    

9:     update timestep = min(timestep_upperbound, 2  timestep) and 

update t=t+timestep 

10:       end if 

11:end while   
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IV.2.1 Fixed time step vs. variable time step 

The time step size is constant in fixed time step analysis of the transient case, whereas 

the time step size changes in variable time step analysis. Fixed time step analysis is easy 

to implement. However, fixed time step analysis could be slow if the chosen time step is 

too small. Furthermore, fixed time step schemes can be unstable if the time step is not 

sufficiently small. Variable time step analysis needs more effort on the implementation 

but it guarantees stability and accuracy of the solution without compromising speed. The 

time step is maximized at each time point without degradation of solution accuracy and 

stability.  

 In fixed time step analysis, the conductance matrix remains unchanged. Direct 

solvers usually perform better than iterative solvers. Since the expensive step of matrix 

factorization is computed only once and the factor is reused at the remaining time points. 

On the other hand, the whole solving process of an iterative solver needs to be conducted 

at each time point. This “pre-processing” feature is a significant advantage that makes 

the direct solver faster than the iterative solver in fixed time step analysis. 

In variable time step analysis, direct solver loses the advantage over iterative 

solvers. Since the conductance matrix changes at each time step, it needs to be re-

factored. Thus, the whole solving process including factorization and triangle solve need 

to be conducted at each time point. The total time cost of the direct solver is a 

summation of time cost at each time point. As a consequence, the performance 

comparison of direct solvers and iterative solvers depends on the runtime of a single 

solve at each time point independent of the number of time steps. 
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For a linear circuit such as a power grid, a direct solver with fixed time step is 

usually adopted. The matrix factorization that dominates the solving process only needs 

to be conducted once and the triangle solving process whose cost is negligible is 

conducted at each time point. This makes direct solver with a fixed time step a good 

choice in transient power grid simulation. 

 

IV.2.2 Step size control for EPPCG 

The EPPCG method is a combination of direct solver and iterative solver. It consists of 

factorization process and iterative solve process. In order to exploit the advantage of 

EPPCG method in transient analysis, we developed a time step control algorithm using 

variable time steps. The time step control algorithm is based on the strategy used in 

SPICE [66]. The aim of this algorithm is to reduce the number of time points, such that 

the number of solves can be reduced. The idea of the algorithm is to reduce the step size 

when the solution error is larger than a threshold but to maximize the step size at each 

time point. The step control algorithm is presented in Algorithm 4. The solution error is 

estimated using Local Truncation Error (LTE). LTE is the error estimated by assuming 

the solution at the previous time point is accurate. In the Trapezoidal model, LTE can be 

estimated using the following formula.[67] 

      
 

  
  
                                                     (22) 

where            is the step size at time point n,         is the divided difference 

at time point   .         can be calculated using the following formulas. 

        
       

  
                                                 (23) 
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Figure 16. Flow of variable time step analysis 
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                                          (24) 

        
                 

             
                                           (25) 

where    is the time step size at step  ,      is the time step size at step     and 

     is the time step size at step    . 

 

In Algorithm 4, the timestep_upperbound can be calculated as below. 

 ̅  (
          

 
 

  
       

)

 

 

                                                 (26) 

where ErrorBound is the LTE error bound that can be entered by the user. 

 

Table XII. Specification of power grids for transient analysis 

 

Circuit Num_node Num_edge Num_C4 Num_I Num_layer 

ibmpg3t 1,039,624 1,589,351 955 201,054 5 

ibmpg4t 1,210,440 1,808,541 962 265,944 6 

ibmpg5t 1,552,230 2,088,581 277 473,200 4 

ibmpg6t 2,366,420 3,180,408 381 761,484 4 
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The overall flow of variable time step analysis is shown in Figure. 16. In this 

variable time step algorithm, EPPCG only factorizes the conductance matrix once with 

the initial time step size. The factor is reused in the remaining time points. The reduction 

of number of time points make EPPCG performs better than the state-of-the-art direct 

solver.  

 

IV.3 Experimental results 

The experiments of transient analysis were conducted on IBM benchmarks. The 

specification of benchmark circuits is shown in Table XII. We used fixed time stepping 

scheme and variable time stepping schemes to obtain the solutions. The experiments 

were conducted on supercomputer cluster Ada. The detailed specification of Ada is 

described in III.2. The implementation is in C++ and the algorithm is parallelized using 

MPI. A tolerance of      was specified as the LTE error bound in the variable time step 

analysis. 

 

IV.3.1 Comparison with CHOLMOD with fixed time step 

Table XIII shows the performance comparison between EPPCG and CHOLMOD with 

fixed time step. The power grid is divided into 3*3 partitions. CHOLMOD is faster than 

EPPCG on most of benchmarks since the solving process of CHOLMOD is faster than 

that of EPPCG.  In fixed time step analysis, the conductance matrix remains the same 

and the factorization of both CHOLMOD and EPPCG only needs to be conducted once. 

The right-hand-side vector I is changed using the solution of previous time point. The 
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aggregate time for the solve process and vector I update is much larger than the 

factorization time. Therefore, factorization does not dominate in the whole process of 

transient analysis.  The solve time of CHOLMOD is less than that of EPPCG. This 

makes CHOLMOD faster than EPPCG in fixed time step case. The parallelized right-

hand-side change in EPPCG helps to gain acceleration in this process. Thus the 

difference of overall time cost of EPPCG and CHOLMOD is not very large. 

 

 

Table XIII. Parallel EPPCG vs CHOLMOD with constant time step 

 

Circuit 

# 

TimeSteps 

CHOLMOD EPPCG 

factor solve overall factor solve overall 

ibmpg3t 1000 14.2 341.3 355.5 0.9 375.4 376.3 

ibmpg4t 1000 26.0 552.6 578.6 1.8 635.5 637.3 

ibmpg5t 1000 18.2 420.3 438.5 1.1 363.8 364.9 

ibmpg6t 1000 19.0 735.8 754.8 1.2 753.2 754.4 
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IV.3.2 Comparison of EPPCG with variable time step and CHOLMOD with fixed time 

step 

As mentioned in IV.2, transient analysis of power grids is often manipulated using direct 

solvers with fixed time step. In order to show demonstrate the strength of EPPCG, we 

developed variable time step control strategy in IV.2.2. Table XIV shows the 

performance comparison between EPPCG with variable time step and CHOLMOD with 

fixed time step. The power grid is divided into 3*3 partitions. In the table, EPPCG 

performs better than CHOLMOD. There are two factors that make EPPCG faster than 

Table XIV. EPPCG with variable time step vs CHOLMOD with fixed time step 

 

Circuit 

CHOLMOD with constant time step EPPCG with variable time step 

Sp- 
imp 

# Time 

Steps 
factor solve overall 

#Time 

steps 

EP- 

size 

RL- 

size 
factor solve overall 

ibmpg3t 1000 14.2 341.3 355.5 358 30 25 0.9 138.2 139.1 2.6 

ibmpg4t 1000 26 552.6 578.6 274 30 25 1.8 177.6 179.4 3.2 

ibmpg5t 1000 18.2 420.3 438.5 370 30 25 1.0 138.5 139.5 3.1 

ibmpg6t 1000 19 735.8 754.8 363 75 60 1.2 301.7 302.9 2.5 
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CHOLMOD. First, the variable time step strategy reduces the number of time points. 

Second, the factorization of the EPPCG matrix is only computed once and the matrix 

factor is reused at each time point during the whole process. In the PCG process, solving 

the enlarged partition acts as a preconditioner which is a good approximation of the 

conductance matrix. The factorization of the preconditioner is conducted at the initial 

time step and stored for reuse. In the transient analysis, the factor does not need to be 

computed at each time point although the conductance matrix changes. This makes 

Table XV. EPPCG performance with different time step strategies 

 

Circuit 
EP-

size 

RL-

size 

EPPCG(fixed time 

step) 

EPPCG(variable 

time step) 

Sp-imp #Timesteps T #Timesteps T 

ibmpg3t 30 25 1000 376.3 358 139.1 2.7 

ibmpg4t 30 25 1000 637.3 274 179.4 3.6 

ibmpg5t 30 25 1000 364.9 370 139.5 2.6 

ibmpg6t 75 60 1000 754.4 363 302.9 2.5 
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EPPCG perform well since the factorization is the most expensive process at each 

transient iteration. 

 

IV.3.3 Comparison of EPPCG with fixed time step and EPPCG with variable time step  

In order to investigate the performance of EPPCG in constant step analysis and variable 

step analysis, we present the results in Table XV and Figure 17. The EPPCG with 

variable time step benefits from reduced number of time points and reuse of matrix 

 

Figure 17. Performance comparison among CHOLMOD, EPPCG(fixed step) and 

EPPCG(variable step) 
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factors. The overall speed improvement obtained over fixed time step analysis ranges 

from 2.5X to 3.6X. 

The comparison among CHOLMOD, EPPCG with fixed time step and EPPCG 

with variable time step is presented in Figure 17. From the figure, it can be seen that 

EPPCG with variable time step is the fastest. 

 

 

 

Table XVI. MPI parallelization performance 

 

Circuit 
EP-

size 

RL-

size 
#steps 

EPPCG(serial) EPPCG(parallel) 

speedup 

T T 

ibmpg3t 30 25 358 987.6 139.1 7.1 

ibmpg4t 30 25 274 1309.6 179.4 7.3 

ibmpg5t 30 25 370 1046.3 139.5 7.5 

ibmpg6t 75 60 363 2090.0 302.9 6.9 
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IV.3.4 MPI-based parallel performance 

In Table XVI, the MPI parallel performance is shown. The power grid is divided into 

3*3 partitions and 9 MPI processes are created. The comparison between serial and 

parallel runtime with variable time step is presented. In our variable time step scheme, 

the matrix factors are reused at each time point. As a result, the solving process is much 

more costly than the matrix factorization. Therefore, the parallelization of solving 

process determines the performance of MPI implementation. In our experiments, the 

speedup obtained ranges from 6.9X-7.5X.  

 

 

Table XVII. EPPCG performance with different number of partitions 

 

Circuit EP-size RL-size 3*3 (S) 4*4 (S) 5*5 (S) 

ibmpg3t 30 25 139.1 121.5 151.3 

ibmpg4t 30 25 179.4 147.6 181.4 

ibmpg5t 30 25 139.5 119.8 142.6 

ibmpg6t 75 60 302.9 279.5 276.3 
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IV.3.5 Impact of partitioning 

In order to demonstrate the influence of different partitioning methods, Table XVII and 

Figure 18 are constructed. In table XVII, all the partitioning methods share the same EP-

size and RL-size. The experiments were conducted using variable time step strategy. 

From the table, more partitions do not always imply higher speed. This is caused by MPI 

more expensive communication overheads when more partitions are created. 

 

  

 

Figure 18. Transient performance with different partitioning scheme  
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CHAPTER V 

CONCLUSION 

 

In this dissertation, a preconditioned iterative solver for large power grid simulation on 

multicore CPU-GPU platforms is presented. The algorithm divides the power grid into 

partitions and extends the partitions to obtain more accurate voltage solution. Breadth 

first search is employed to extend the partition. In order to further reduce the boundary 

solution error, Preconditioned Conjugate Gradient (PCG) method is adopted. Solving the 

enlarged partitions acts as an implicit preconditioner for PCG. We outlined a two-tier 

parallel scheme that utilizes MPI-GPU hybrid approach. In static analysis, the 

experimental results show that the implementation achieves high parallel efficiency 

using MPI on multicore-CPUs. GPU helps in accelerating the parallel implementation by 

an additional factor in the range of 1.4X-2.4X. The results also indicate that higher GPU 

speedup can be achieved by using larger benchmarks. The combination of an effective 

preconditioner and efficient parallelization allows the EPPCG to achieve speed 

improvements in the range of [61X-142X] over a state-of-the-art direct solver in static 

analysis and [2.5X-3.2X] in transient analysis. The main contribution of this work can be 

summarized as follows. Firstly, an efficient preconditioner is constructed such that the 

iterative solver converges very fast. Secondly, the preconditioning process that 

dominates the solver runtime can be fully parallelized. Thirdly, a breadth-first search 

method to enlarge the partitions is adopted to ensure the enlarged-partition used for 

preconditioning is light-weight. 
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In future research, the improvement of preconditioner can be considered. A 

potential improvement would utilize the positions of the C4 bumps. In detail, C4 bumps 

influence the nodes that are close to them more than the nodes that are far away. First, 

when growing the BFS tree, the paths that contain at least one C4 bump would be 

retained; the paths that contain no C4 bumps would be omitted. Second, the growth of 

BFS tree can stop when encountering a C4 bump for a path. This method will guarantee 

each path has only one C4 bump. For both methods above, the size of the conductance 

can be reduced significantly. In this case, the runtime of the factorization will be 

reduced. For transient analysis, a strategy can be designed to better exploit the advantage 

of EPPCG method. For fixed time-step settings, EPPCG does not have significant 

advantage over CHOLMOD. In varying time-step settings, CHOLMOD suffers from 

costly factorization at each time point. Multi-step methods can be used on EPPCG to 

obtain more accurate and faster implementations. 
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