
PARALLEL SIMULATION FOR VLSI POWER GRID

A Dissertation

by

LE ZHANG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Vivek Sarin

Committee Members, Duncan Walker

Rabi Mahapatra

Peng Li

Head of Department, Dilma Da Silva

August 2015

Major Subject: Computer Engineering

Copyright 2015 Le Zhang

ii

ABSTRACT

Due to the increasing complexity of VLSI circuits, power grid simulation has become

more and more time-consuming. Hence, there is a need for fast and accurate power grid

simulator. In order to perform power grid simulation in a timely manner, parallel

algorithms have been developed to accelerate the simulation. In this dissertation, we

present parallel algorithms and software for power grid simulation on CPU-GPU

platforms. The power grid is divided into disjoint partitions. The partitions are enlarged

using Breath First Search (BFS) method. In the partition enlarging process, a portion of

edges are ignored to make the matrix factorization light-weight. Solving the enlarged

partitions using a direct solver serves as a preconditioner for the Preconditioned

Conjugate Gradient (PCG) method that is used to solve the power grid. This work

combines the advantages of direct solvers and iterative solvers to obtain an efficient

hybrid parallel solver. Two-tier parallelism is harnessed using MPI for partitions and

CUDA within each partition. The experiments conducted on supercomputing clusters

demonstrate significant speed improvements over a state-of-the-art direct solver in both

static and transient analysis.

iii

DEDICATION

I dedicate this dissertation to my parents, my wife and my son.

iv

ACKNOWLEDGEMENTS

First, I would like to thank my Ph.D advisor and committee chair Dr. Vivek Sarin. The

work I have done during my Ph.D career would not be accomplished without his support

and guidance. His insight in my research topic helped me solve a lot of problems. Every

time when I encountered a tough problem, he always gave me useful suggestions at the

first moment.

I am also grateful to my committee members, Dr. Duncan Walker, Dr. Rabi

Mahapatra, and Dr. Peng Li, for their guidance in their courses and valuable suggestions

for the dissertation. I appreciate their time to serve on my committee.

My gratitude also goes to the Department of Computer Science and Engineering

at Texas A&M University for supporting me with teaching assistantship. I also want to

extend my gratitude to Dr. Joseph Hurley, Dr. Andreas Klappenecker, Dr. Hyunyoung

Lee and Dr. Teresa Leyk for their help when I worked as teaching assistant in their

courses.

I thank my friends Yue Liu and Yuqing Zhang for their encouragement and

friendship during my life at Texas A&M University.

Finally, I would like to thank my wife and my parents for their support and love.

v

TABLE OF CONTENTS

ABSTRACT .. ii

DEDICATION ..iii

ACKKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES .. viii

CHAPTER I INTRODUCTION ... 1

I.1 Background ... 1
I.2 Survey of power grid simulation... 8
I.3 Proposed work .. 13

CHAPTER II ENLARGED-PARTITION BASED PARALLEL SOLVER FOR

POWER GRID ... 18

II.1 Modeling and mathematical background .. 18

II.1.1 Modeling the power grid .. 18

II.1.2 Preconditioned conjugate gradient (PCG) method ... 22

II.2 Parallel iterative solver based on enlarged partitions .. 24

II.2.1Power grid partitioning .. 24

II.2.2 Naive partition-enlarging approach .. 26

II.2.3 Improved partition-enlarging approach using breadth-first search 27

II.2.4 Error reduction using preconditioned conjugate gradient method 34

II.3 Computational complexity and performance modeling .. 38

II.3.1 Complexity analysis .. 38

II.3.2 Performance modeling .. 40

II.4 Parallelism ... 42

CHAPTER III STATIC ANALYSIS OF POWER GRIDS ... 46

III.1 Static analysis of power grid problem .. 46

III.2 Experimental results ... 47

III.2.1 Comparison with state-of-the-art direct solver .. 48

III.2.2 Comparison with other iterative solvers .. 52

III.2.3 MPI-based parallel performance ... 53

III.2.4 GPU-accelerated parallel performance ... 55

vi

III.2.5 Impact of partitioning .. 56
III.2.6 Impact of parameters ... 58
III.2.7 Performance on different machines ... 59
III.2.8 Different parallel implementation ... 61

III.2.9 Scalability .. 63

CHAPTER IV PARALLEL TRANSIENT ANALYSIS OF POWER GRID 64

IV.1 Transient analysis problem .. 64
IV.2 Applying EPPCG in transient analysis .. 69

IV.2.1 Fixed time step vs. variable time step ... 71

IV.2.2 Step size control for EPPCG ... 72

IV.3 Experimental results ... 75

IV.3.1 Comparison with CHOLMOD with fixed time step 75
IV.3.2 Comparison of EPPCG with variable time step and CHOLMOD with

fixed time step .. 77
IV.3.3 Comparison of EPPCG with fixed time step and EPPCG with variable

time step ... 79
IV.3.4 MPI-based parallel performance ... 81

IV.3.5 Impact of partitioning .. 82

CHAPTER V CONCLUSION ... 83

REFERENCES ... 85

vii

LIST OF FIGURES

Figure 1. Modeling of a power grid ... 19

Figure 2. A simple example of power grid ... 20

Figure 3. Partitioning of a power grid into subgrids. ... 23

Figure 4. Constructing the enlarged partition ... 25

Figure 5. Including inner nodes and edges ... 27

Figure 6. Extending a partition ... 29

Figure 7. Parallelization scheme .. 43

Figure 8. Local and global vector projection ... 44

Figure 9. MPI parallel efficiency for different benchmarks ... 53

Figure 10. Overall parallel performance (time in seconds) .. 56

Figure 11. Parallel performance with different number of partitions 58

Figure 12. Modeling power grid in transient analysis .. 64

Figure 13. Flow of transient analysis with a fixed time step .. 65

Figure 14. Companion model for C and L ... 66

Figure 15. Companion model of power grid .. 68

Figure 16. Flow of variable time step analysis ... 73

Figure 17. Performance comparison among CHOLMOD, EPPCG(fixed step) and

EPPCG(variable step) ... 79

Figure 18. Transient performance with different partitioning scheme 82

file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915416
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915417
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915418
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915419
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915420
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915421
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915422
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915423
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915424
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915425
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915426
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915427
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915428
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915429
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915430
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915431
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915432
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915432
file:///F:/Dropbox/research/dissertation/dissertation_v13.docx%23_Toc421915433

viii

LIST OF TABLES

Table I. Solution errors of enlarged partitions with different EP-size 33

Table II. Specification of experimental power grids .. 49

Table III. Speed improvement over direct solver ... 50

Table IV. Speed comparison between iterative solvers and serial EP-PCG solver 51

Table V. MPI parallel performance .. 52

Table VI. Enhancing parallel performance with GPUs .. 54

Table VII. MPI-GPU-EPPCG performance with different number of partitions 57

Table VIII. Parallel performance with varying parameters .. 59

Table IX. Comparison of EPPCG performance between machines 60

Table X. Comparison between MPI and OpenMP performance...................................... 61

Table XI. EPPCG performance on different benchmarks .. 62

Table XII. Specification of power grids for transient analysis... 74

Table XIII. Parallel EPPCG vs CHOLMOD with constant time step 76

Table XIV. EPPCG with variable time step vs CHOLMOD with fixed time step 77

Table XV. EPPCG performance with different time step strategies 78

Table XVI. MPI parallelization performance .. 80

Table XVII. EPPCG performance with different number of partitions 81

file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270511
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270512
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270513
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270514
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270515
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270516
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270517
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270518
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270519
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270520
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270521
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270522
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270523
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270524
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270525
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270526
file:///F:/Dropbox/research/dissertation/dissertation_v15.docx%23_Toc422270527

1

CHAPTER I

INTRODUCTION

I.1 Background

In modern industry, VLSI circuits have become more and more complicated in structure.

The VLSI chip design flow consists of several steps, such as architectural and logic

design, circuit and layout design, and fabrication [1]. Each step needs verification and

testing to guarantee the functionality of the chips. In order to ensure chips run

functionally, simulation techniques are widely adopted. Circuit simulation was

introduced to industry in 1950s [2]. Circuit simulation and verification, including power

grid (a.k.a. power delivery network) simulation, play a critical role in VLSI design. The

functionality of a circuit design can be verified by using computer simulation without

fabricating real chips. Therefore, simulation provides an inexpensive and efficient way

in the VLSI circuit design process.

 Power grid simulation is part of circuit simulation in VLSI design. The power

grid consists of metal layers that provide power to active devices in the VLSI circuit. In

each metal layer, power networks are modeled as vertical and horizontal wires. Different

layers are connected through vias. In the widely used flip-chip package [3], Controlled

Collapse Chip Connections (C4) bumps provide connections between the external power

supply and the power grid. In the power grid simulation, the voltage drop, a.k.a. IR drop,

is estimated through simulation to check the functionality of a power grid. Even though

the wires in the power grid are made of metal, a small resistance can lead to non-

2

ignorable IR drop. If the IR drop exceeds a threshold (typically 10% of), the chip

could become defective. Therefore, detecting over-threshold IR drop is a key process in

power grid design. Another factor that needs to be estimated is electromigration [4].

Electromigration is generated by the movement of electrons in metal interconnects. It

can result in connection disruptions derived from heating and diffusive displacement.

One way to simulate electromigration is to calculate branch currents and guarantee that

the branch currents do not exceed a specific threshold. The branch currents can be

obtained using the value of node voltages and the value of the resistance between two

nodes.

 At the present time, the size of the power grid is increasing quickly due to a rapid

increase in the size and complexity of VLSI circuits. The number of nodes in a VLSI

power grid can easily reach hundreds of millions. As a consequence, solving a VLSI

power grid is extremely time-consuming. Furthermore, the industry is focused on low

power design, which introduces additional challenges for power grid design [5]. Voltage

can easily drop below safe thresholds in low power chips, resulting in a the chip that

fails to operate functionally [6].

 Power grid simulation can be categorized as static analysis and transient analysis.

Static analysis is conducted by ignoring all the capacitors and inductors. The static

power grid simulation is the basis of transient analysis. Transient analysis can be

conducted by implementing static analysis at different time steps by using the

companion model for capacitors and inductors.

3

In static analysis, power grid can be modeled as a sparse linear system. Consider

a linear system

 (1)

where , , N is an integer representing the size of the system.

The matrix A is a sparse matrix, where there are a lot of zero entries in the matrix

and a small portion of the entries are non-zeros. Sparse linear matrices are often stored

in different formats [7]. Compressed Row Storage (CRS) and Compressed Column

Storage (CCS) are widely used in linear system solvers since they are friendly to matrix

and vector operations. Coordinate format (COO) is another sparse matrix storage format.

It is easy for maintenance (e.g., delete, add, modify, etc). However, COO is not suitable

for linear system solver operations. List of lists (LIL) is another sparse matrix storage

format. The entries are often sorted by column index. This feature makes LIL faster for

look up and good for incremental matrix construction.

Equation (1) can be solved using either a direct solver or an iterative solver. The

most famous direct solver is Gaussian Elimination, which is also considered as LU

solver. The matrix is factored as a lower triangle matrix L and an upper triangle matrix

U. Then a backward or forward substitution is applied to solve the linear system. The

complexity of LU factorization is , and the backward and forward substitutions

cost each, where n is the size of the system. With regard to sparse linear systems,

the complexity of LU factorization can be reduced to . From the complexity, the

factorization dominates the solution process. Thus if the factorization can be

parallelized, the direct solver would achieve much higher performance.

4

The advantage of direct solvers is that the solution is accurate and the cost is low.

In current academia and industry, the state-of-the –art direct solver named CHOLMOD

[8] is widely used. CHOLMOD is an excellent direct solver designed by Dr. Tim Davis.

It utilizes graph theory to optimize the computation in Cholesky decomposition in direct

solver. The disadvantage of direct solvers is huge memory usage and difficulty of

parallelization. Direct solvers need to store the factors in memory which could cost

 space for a sparse matrix unless special techniques are used. Techniques such as

nested dissection ordering [9] can lower the storage requirement to .

Parallelization of direct solvers is limited since the factorization and substitution solve

need to wait for results from previous row or column [10].

The sparse linear system can be solved using iterative solvers. The most well-

known iterative solvers include Jacobi method, Gauss-Seidel method, Conjugate

Gradient method (CG) and Generalized Minimum-Residual method (GMRES).

Typically, an iterative solver needs memory storage. The advantage of iterative

solvers includes potential for parallelism and a low memory footprint. Iterative solvers

are friendly to parallelization since the whole process only includes matrix vector

operations. The vectors are reused so that the memory usage is low.

However, the solution accuracy is an issue for iterative solvers. Thus a

reasonable tolerance of solution error is needed to guarantee the solution accuracy.

Furthermore, iterative solvers are prone to suffer from slow convergence. Krylov

subspace method is a technique to accelerate convergence of iterations. The Krylov

method is based on Krylov space projection and different choice of Krylov subspace

5

leads to different iterative methods [11, 12]. Further acceleration can be achieved by

using preconditioners. Preconditioners are often used to accelerate convergence of

iterative solvers. A good preconditioner can make the iterative solver even fast than a

direct solver. However, finding a good preconditioner is challenging. Also, different

linear systems perform differently using different preconditioners. Thus, a particular

preconditioner needs to be constructed for each linear system. Given a linear system (1),

if the condition number is large, the system is ill-conditioned [13]. Ill-conditioned

linear system could bring uncertainty to the solution. Preconditioning can reduce the

condition number of a linear system, such that more reliable solution can be obtained.

Power grid simulation can be categorized as static analysis and transient analysis.

Static analysis is to simulate the behavior of DC status. In static analysis, all the

capacitors and inductors are ignored by opening the capacitors and shorting the

inductors. The resulting power grid is a resistance network and can be modeled as a

linear system as (1). Solving the power grid is to obtain the voltage value of each node.

Then the branch current can be calculated using the voltages of the two end nodes.

Therefore, the behavior of the power grid can be estimated from the voltage at each

node. Transient analysis is to simulate the time-varying behavior of power grid. In

transient analysis, the power grid is a RCL consisting of resistance, conductance and

inductance. The noise in the power grid consists of IR-drop and ,. In order to

simulate the transient behavior, static analysis is conducted at multiple time instances.

The solution process at a specific moment is a process of DC analysis. One must note

that, in transient analysis with constant time-step, the conductance matrix remains the

6

same during the transient analysis and only the right-hand-side vector changes by

applying the solution of previous time step. Thus, direct solver always performs better

than iterative solver in transient analysis since the matrix factor can be reused during the

transient simulation.

Solving a real power grid is challenging due to the size and complexity of the

power grid. The following issues need to be considered for a power grid solver:

 Memory usage:

A real power grid can easily have hundreds of millions of nodes. The memory

usage for storing the linear system and solving the linear system is quite huge. As

we know, iterative solvers use less memory than direct solvers. However, the

memory storage for an iterative solver can reach hundreds of Giga Bytes. This

huge memory requirement makes the computation difficult to conduct since the

modern computers are not equipped with large sized memory. Therefore, solving

a real power grid often needs special computers with hundreds of Giga-byte

memory installed. In order to solve the memory problem, distributed computing

techniques can be used to distribute the burden onto multiple machines. Each

machine does not need to have huge memory but the overall memory size is large

enough for solving the power grid. Although distributed computing gives power

grid solver a solution to meet the huge memory requirement, the management of

distributed memory and optimization of data transfer between memories are very

challenging.

7

 Time cost:

As VLSI circuit size increases, the time to solve a power grid increases

drastically. The low efficiency of power grid solver makes the power grid design

process quite time-consuming. Every time a problem is found in the power grid

design after simulation, the power grid needs to be modified to fix the design

problem. Then another power grid simulation is conducted on the new design. If

multiple such design problems are encountered in the design loop, the costly

power grid simulation needs to be done several times until the design has no

flaw. This design process suffers due to inefficient power grid solver. Therefore,

acceleration of power grid simulation is desired in current IC industry.

 Solution Accuracy:

Solution accuracy is required in power grid simulation. If the couputed solution

is not accurate enough, the fabricated chip could malfunction. This solution

inaccuracy could result in huge time and financial loss in reality. As we know,

direct solvers always have high solution accuracy, whereas iterative solvers may

suffer from low solution accuracy. Iterative solvers are widely used since they

require less memory storage and they can beat direct solvers in speed with an

effective preconditioner. The solution accuracy becomes an issue for iterative

solvers, since iterative solvers often suffer from slow convergence derived from

small error tolerance. If an effective and efficient preconditioner can be

constructed to accelerate the convergence of iterative solvers, the power grid

simulation would benefit from the acceleration.

8

 Scalability:

Scalability is an important factor in power grid simulation since the size of power

grids varies. A good power grid solver should be scalable and have consistent

performance over different sized power grids. Parallel algorithms developed on

distributed systems are ideal to meet scalability demands since the time cost and

memory usage can be assigned to multiple machines to obtain good performance

on runtime and memory storage.

I.2 Survey of power grid simulation

General circuit can be simulated using SPICE [14]. SPICE is not a perfect power grid

solver since the characteristic of power grids is not fully addressed. Therefore,

simulators developed for power grids are desired. Power grid simulation has been

investigated using different techniques. The power grid problem for the static case can

be modeled as an s.p.d (symmetric positive definite) linear system. In [15], a

Preconditioned Conjugate Gradient (PCG) method with sub-circuit based preconditioner

is presented. Good performance is reported when using a mutable preconditioner at each

iteration. Multigrid methods are widely-used in power grid analysis. A multigrid based

grid reduction mechanism results in less work-load [16]. More recently, an algebraic

multigrid approach was presented in [17] that achieves good performance in both

runtime and memory usage. A preconditioned Krylov-subspace iterative method for

solving large-scale power grid problems was proposed in [18], where the authors

implemented a PCG method to accelerate the rate of convergence. The random walk

9

approach introduced in [19, 20] helps in incremental analysis where the conductance

matrix is changed to simulate the change of resistance network (length and width change

of the wires). [21] presents a support graph based iterative solver. The effective

preconditioner reduces the number of iterations to within an acceptable range. In [22], a

relaxation iterative method is discussed. This work was presented as node-by-node

traversals and row-by-row traversals and achieves good performance.

Transient analysis is an important topic in IC circuit simulation. Different time

step strategies affect the performance of transient solvers. [23] presents a power grid

solver for transient analysis. This work adopts a grid reduction strategy to obtain much

better results compared to SPICE. In [24], a telescopic projective numerical integration

method is presented. An adaptively controlled integration method is discussed in [25].

The time step is adjusted during the transient analysis and the implementation achieves

automatic load balancing. The parallel implementation on multi-core machines shows

encouraging results. Various transient analysis methods for power grids are presented in

[26-28]. [28] presents a transient power grid solver that applies symmetric formulation

and uses fast Cholesky factorizations. Model order reduction (MOR) technique is

utilized in [27] to reduce the data dimensionality. In this work, a direct solver and

multimode moment matching techniques are used to achieve good performance. [26]

presents a transient solver based on waveform relaxation techniques. A combination of

partitioning and convergence acceleration is used to achieve good performance. The

method is highly parallelizable and scalable on power grids with different sizes. In [29],

a transmission-line-modeling-alternating-direction method is proposed. This work first

10

models the power grid as a structure of transmission line meshes. Then alternating-

direction-implicit method is adopted to conduct transient analysis with high stability.

[30] introduces an efficient transient power grid solver. The authors developed an

efficient algorithm to reduce the complexity of the power grid using regularities. An

efficient solver for transient analysis of the power grid is discussed in [31]. A smart

mapping approach is developed in this work to obtain accurate solutions. The

performance is improved by utilizing a memorized supernode technique. [32] introduces

a transient analysis method that uses a hierarchical relaxed approach. The relaxation

technique help obtain significant speedups over PCG and SPICE3.

In order to solve realistic problems in a reasonable amount of time, it is necessary

to develop parallel algorithms for power grid analysis. Parallel algorithms for power grid

simulation need to be implemented on parallel computers to obtain the solution faster.

The current widely used parallel computing technoogies include Message Passing

Interface (MPI), OpenMP and GPU. MPI is a message passing library for parallel

computing. The MPI standard was first introduced in 1994. MPI provides an interface

for users to create multiple jobs as separate processes and run the jobs concurrently.

Different processes communicate with each other using messages [33]. OpenMP is a

shared memory based parallel computing interface. OpenMP utilizes threads to run

multiple jobs concurrently [34]. As the modern computing clusters and multi-core

techniques develop, MPI and OpenMP help gain better performance while retaining

portability. In contrast, the GPU is a hardware platform developed for processing 3D

graphics and visual effect [35]. Currently, researchers found GPUs have the ability of

11

accelerating more general computation, especially matrix computations [36], based on

its many-core characteristic. Consequently, General-Purpose Computing on Graphics

Processing units (GPGPU) was introduced in 2003 SIGGRAPH conference. CPU-GPU

hybrid parallelization is a way to gain better performance. [37] presents a CPU-GPU

hybrid approach applied in multifrontal method. Power grid simulation can benefit from

those parallel computing techniques. GPGPU technology has been used in Electronic

Design Automation (EDA) for years. In [38], the authors successfully accelerated two

costly computations, Sparse-Matrix Vector Product (SMVP) and graph traversal in EDA

using GPU. [39] introduced GPU a programming scheme for EDA using OpenCL.

In parallel power grid analysis, the biggest challenge is partitioning the grid into

sub-grids such that the solution can be obtained quickly by solving sub-problems

concurrently. A parallel direct solver was presented in [40], where a parallel matrix

inversion algorithm was shown to achieve good time and memory performance.

Partitioning based parallel solvers are presented in [41-43] and [44]. Domain

decomposition method is adopted in [41] to solve power grid. However, this method

suffers from costly processing of the overlapping area. [43] presents a non-overlapping

domain decomposition approach. In this work, too much time is spent on forming the

Schur complements. Locality driven parallel analysis was introduced in [42], where the

authors divide the grid into coupled sections and use locality property to compensate the

boundary effect and decouple the sections. This method could exhibit low performance

if the C4 bumps are distributed sparsely throughout the power grid. The reason is that

sparse distribution of C4 bumps can lead to huge window size, in which solving the

12

windows is expensive. [45] presents a parallel forward and back substitution method.

This method computes independent variables in parallel and develops a node ordering to

eliminate the data dependency. Random walk has been reported to be applied in solving

power grids [46-48]. Through statistical estimation, the node voltages can be obtained in

a certain number of walks. However, if the destination is too far from the 'home', this

method can suffer from large number of walks. In [26], the authors propose a waveform-

relaxation based transient power grid simulator. The performance of the method may

degrade when the initial guess is not reasonable. Macro-modeling method is presented in

[49, 50]. In this work, a divide and conquer strategy is adopted over geometry

partitioned power grids. The power grid is divided into small sub-partitions, and ports

and interfaces are constructed by applying matrix substitution on different sub-partitions.

The drawback of this method is that it suffers from dense matrix operations derived from

ports. Another pattern based iterative solver is presented in [51]. In this work, pattern

structure help to achieve performance improvement on both time and memory. GPU is

adopted in Poisson optimized solver in [52]. The GPU implementation of Poisson solver

benefits from multi-threaded GPU acceleration. Although the approach performs well,

lack of parallelization make these method not ideal to large scale power grids. A

transform-based iterative solver using GPUs is proposed in [53, 54]. The solver performs

well for 3-D multiple-layer power grids. A GPU-based multigrid PCG solver is

presented in [55]. The authors adopted a multigrid preconditioned CG method and

successfully accelerate the solver on GPU platform.

13

Power grid simulation is a step in power grid design [56]. The behavior of a

power grid needs to be simulated multiple times to obtain a design for fabrication. The

power grid design is a discussed in the following literatures. A parallel design method of

power grid is presented in [57]. In this work, a macro-modeling strategy is adopted to

implement partition based optimization. [58] discusses the use of linear programming to

improve power grid wire size optimization.

I.3 Proposed work

In this work, we adopt a divide-and-conquer strategy and propose an enlarged partition

based parallel iterative solver for large-scale flip-chip power grid simulation. This

approach divides the power grid into multiple partitions. In order to obtain an

approximate solution for each partition, an enlarged partition is generated to enclose the

original partition. Two partition enlarging methods are discussed in this dissertation. One

is a naïve approach, in which a large area is specified to include all the nodes and edges

as extension. The idea of this approach is simple. However, this naïve approach could

have the following drawbacks. First, isolated nodes may be generated since the boundary

of the new enlarged partition does not rely on the connection between two nodes.

Isolated node may result in singular linear system that cannot be solved. Second, the

naïve approach includes all the nodes and edges into the enlarged partition which may

not be useful to obtain more accurate solutions. This makes the solving process of

enlarged partition over-burdened and downgrades the parallel performance. Third, in a

real chip, the whole power grid could consist of disconnected sub-grids. The naïve

14

approach could bring nodes and edges that do not belong to the partition. In this case, the

solution accuracy is lowered and computation on unnecessary nodes affects the parallel

performance. In order to overcome these drawbacks, a Breadth First Search (BFS) based

partition enlarging algorithm is proposed. The enlarged partition first includes all the

edges and nodes in the original partition. Then starting from the boundary nodes, a BFS

method is applied to include more nodes and edges. When a new node is encountered,

the edge with the largest conductance value is retained. All the other edges from this

new node are ignored. This strategy trims most of the edges that have low influence on

the solution and only retains the edges that are more useful to the solution. In order to

control the solution accuracy, all the edges are retained up to a certain level. This step is

necessary in our approach since the solution error is large if no such edges are retained

outside the original partition. By solving the enlarged partitions one by one, an

approximate solution for each partition is obtained. An approximation to the global

solution is constructed from partition solutions. Since the global error is large, one can

use PCG to reduce the error below the specified threshold. The enlarged-partition solver

acts as a preconditioner for PCG.

The solver can be parallelized using MPI on a multi-processor supercomputer.

Each enlarged partition is factored and solved by an MPI process. Besides, other

computations within the PCG algorithm are assigned to different MPI processes to

obtain good runtime performance. Between MPI processes on different cores/machines,

data transfer rate play an important role in the time performance. MPI_Allgather and

MPI_Reduction are two routine used in data transmission. The parallelization of EPPCG

15

can be separated into two parts: factorization and matrix-vector operations. Factorization

is parallelized by assigning each partition matrix to a computing node/core. Data

transmission between nodes/cores is not necessary since the factorization is conducted

on each enlarged partition itself. Other computations include matrix-vector

multiplication, vector-vector inner produce, vector summation, etc. Matrix vector

multiplication is computed on the enlarged partition since at least one more layer outside

the original partitions is needed to obtain the correct results. Other vector related

computations are implemented on partitions since no additional data is needed outside

the original partition. The GPU is adopted to accelerate the factorization within the

direct solver CHOLMOD. A two-tier parallelization is used to obtain the best

performance.

The experiments are conducted on IBM P/G benchmarks and artificial large-

scale benchmarks. Both static and transient analysis is implemented. In static analysis,

all the capacitors and inductors are ignored and the power grid is simplified as a resistant

network. Only a sparse linear system is solved in static analysis. Our experimental

results show that the enlarged partition based preconditioner is effective. The fully

parallelizable preconditioner is computed and stored on different machines, such that the

time and space cost are distributed onto different machines. The parallelization of our

implementation is efficient. The best results obtained on the largest benchmark

demonstrate a speedup improvement of 130X over the state-of-the-art direct solver

CHOLMOD when using 16 cores. The effective preconditioner and efficient

parallelization makes our approach much faster than CHOLMOD. In transient analysis,

16

the same enlarged partition based preconditioner is used. Static analysis is conducted

multiple times at different time instances. In general, a direct solver is ideal for transient

analysis, since the most time-consuming process of factorization only needs to be

conducted once in fixed time-step scenario. In constant time-step transient analysis, our

approach is slower than direct solver due to the costly PCG solving process. In variable

time-step scenario, our approach performs better than direct solver since the

factorization needs to be computed at each time step.

The main contributions of this work can be summarized as follows:

 The proposed enlarged-partition based preconditioner is effective. It reduces the

number of iterations significantly compared to classical preconditoners. As a

consequence, the proposed EPPCG method converges in fewer iterations.

 Our proposed enlarged-partition based preconditioner is fully parallelized on

enlarged partitions. The experimental results show the parallelization of

preconditioner achieves super-linear speedups in some cases.

 In order to reduce the size of the linear system derived from the enlarged

partitions, Breadth-First Search method is adopted when enlarging the partition.

This strategy makes the enlarged partitions lightweight and eliminates the

potential for isolated nodes.

 A two-tier parallelism is adopted on CPU-GPU hybrid platforms. MPI

implementation on CPU is much faster than CHOLMOD. Using GPU

acceleration, matrix factorization is further accelerated over dense matrix

operations in CHOLMOD. Although GPU results in several times speedup, the

17

combination with efficient MPI implementation makes the speedup significantly

improved. The efficient implementation of MPI-GPU help the proposed

approach run 130X faster over the state-of-the-art direct solver on large

benchmarks.

 Previous partition based power grid solvers suffer from costly processing of

boundary areas. In [42] and [43], the conductance matrix associated with the

boundary area can be either a dense matrix of the graph network or of huge size.

Our proposed partition enlarging method extends the partition through edges and

ignores edges that have relatively less information. The method makes the

generated conductance lightweight for computations.

 Transient analysis is conducted using EPPCG method. Direct solvers are hard to

beat in runtime due to the reuse of factorization. Our approach combines the

advantages of direct solver and iterative solver. The factorization in EPPCG can

also be reused in transient analysis. In fixed time-step scenario, we observed

comparable time with CHOLMOD. In variable time-step scenario, our approach

performs better than CHOLMOD.

18

CHAPTER II

ENLARGED-PARTITION BASED PARALLEL SOLVER FOR POWER GRID
*

II.1 Modeling and mathematical background

II.1.1 Modeling the power grid

Power grid plays an important role by providing power to active devices in electronic

chips. IR drop would be significant if only single or multiple wires are used for power

delivery. Power grids are designed to minimize the IR drop and guarantee the

functionality of chips.

Power grid simulation is part of VLSI circuit simulation, and consists of

simulating the behavior of the power network. Power grid simulation is a necessary step

before fabricating actual chips to examine faults in the design. The low-cost and easy-to-

change properties make the power grid simulation a necessary step in power grid design.

A power grid can be modeled as an RCL network consisting of metal wires. In

our work, we conduct both static analysis and transient analysis. Transient analysis can

be implemented as static analysis on multiple time points. Therefore, the proposed

algorithm for solving power grids is described over static analysis. The strategy for

transient analysis will be discussed based on static analysis approach. The power grid is

modeled as a resistance network by ignoring the capacitors and inductors. The structure

*
Part of this chapter is reprinted with permission from "An enlarged-partition based

preconditioned iterative solver for parallel power grid simulation" by L. Zhang and V.

Sarin, in Quality Electronic Design, 15th International Symposium on, pp. 715-722,

2014, Copyright[2014] IEEE. [44]

19

of the power grid can be irregular, in which the nodes in the power grid are not well-

connected. The static power grid is a resistance network, which can be described as a

weighted graph where nodes are connected to each other through edges with weight

(resistance value). In the following discussion, we call the resistance between two nodes

'edge'. Typically, a power grid contains multiple layers including vertical and horizontal

layers, and consists of and GND networks. Figure 1 shows a power network.

The red circles represent C4 bump connections, where the external power supply ()

is connected to the power grid. Active devices that pull current from the power grid are

modeled as current drains. Different layers are connected through vias. The power grid

can be considered as a 3D structure that is more difficult to solve than a 2D structure

Figure 1. Modeling of a power grid

20

[59]. GND network is similar to network except the C4 bumps are connected to

GND and the direction of current drains is opposite.

 In power grid simulation, the voltage of each node is unknown. Solving a power

grid is a process to obtain the values of those node voltages. Moreover, branch currents

can be calculated using the obtained node voltages. Nowadays, power grid simulation is

very costly in both time and space due to the huge size of VLSI circuits. Therefore, fast

power grid solver is in great need.

Based on Kirchhoff's current law, the current flowing out of a node equals that

flowing into a node. Figure 2 shows a simple example of power grid. Taking node 3 as

example, we have

 (2)

 A more general equation for an arbitrary node x is

∑ ∑ (3)

Figure 2. A simple example of power grid

21

where node i denotes a neighbor of node x, denotes the conductance between node i

and node x, and denotes one of the current drains on node x.

In matrix form, based on Modified Nodal Analysis (MNA) [60], the overall

power grid system can be modeled as a linear system.

 (4)

 Assume there are nodes and C4 bumps in the power grid, is an

) matrix which represents a conductance matrix with information about , is

an (vector which represents the unknown node voltages, and is an (

 vector which represents the current load of active devices and values. Now

that is connected between GND and the power grid, the linear system can be

reduced by eliminating rows/columns as illustrated below.

Since is a known constant, the size of the matrix can be reduced by

eliminating columns and rows that correspond to nodes. The revised linear system

can be described as

(

,(

, (

, (5)

 Based on the discussion above, the power grid system is modeled as an improved

linear system

 (6)

 Assume there are nodes in the power grid, Here, is an matrix which

represents the conductance matrix, is an vector which represented the unknown

22

node voltages, is an vector which stands for the current load of active devices

and for C4 bumps. is a symmetric positive-definite system.

 The sparse linear system (6) can be solved using many methods consisting of

direct solvers and iterative solvers. The direct solver usually first factorizes the matrix of

the linear system, then backward/forward substitution is adopted to obtain the solutions.

When solving a sparse linear system, the factorization costs the most of the runtime

compared to backward/forward substitution. The benefit of direct solver is that direct

solver can solve the linear system more accurately than iterative solver. The most widely

used direct solver is LU factorization and backward substitution. Usually, factorization

such as LU factorization and Cholesky factorization are used to store the factors for

reuse. Iterative methods, including GMRES and Conjugate Gradient methods, solve the

linear system in an iterative way to reduce the error step by step. Generally, direct solver

is faster but requires more space storage. Iterative solvers use less memory but depend

on a good preconditioner to achieve fast convergence. Our algorithm described in next

section is a combination of direct solver and iterative solver that combines the advantage

of both solvers.

II.1.2 Preconditioned conjugate gradient (PCG) method

Conjugate Gradient (CG) method is a widely used iterative method for solving s.p.d.

linear system [61]. An advantage of the CG method is that it requires much less

memory compared to direct methods. Although convergence of CG is guaranteed for

23

s.p.d systems, it may still need large number of iterations to converge. Most of the time,

in order to reduce the number of iterations, preconditioning method is used.

Preconditioning is an approach to reduce the computational time when solving a

linear system . A preconditioner, say , is a matrix such that the condition

number of is small. Typically, the preconditioner is applied to the linear

system equation as . If the preconditioner is close enough to A

(), the linear system will become much easier to solve. Each iteration of

PCG requires a preconditioning step. The preconditioning step involves computing

 .

Figure 3. Partitioning of a power grid into subgrids.

Red circles represent C4 bumps; blue triangles represent current drains

24

A good preconditioner is key to accelerating the rate of convergence of the PCG

method. If the preconditioner is easy to set up, but the condition number of is

large, the number of iteration will not drop and the time required to solve the system can

be high. On the other hand, if the condition number of is small, but the cost of

computing and applying the preconditioner is large, solving the system will still be

costly. Setting up a preconditioner often requires a lot of computation time. If the

process of setting up a preconditioner can be parallelized, the total run time will be

significantly reduced.

II.2 Parallel iterative solver based on enlarged partitions

Parallelization of power grid simulation is challenging, because it is hard to separate the

power grid into decoupled sub-grids. In this section, an enlarged-partition based

preconditioned power grid solver is proposed.

II.2.1Power grid partitioning

In order to solve the power grid in parallel, the basic idea is to separate the power grid

into multiple disjoint partitions. Figure 3 shows a power grid divided into

partitions. Our partitioning strategy is to divide the power grid into equal-sized partitions

in geometry. The edges that are across the partition boundaries are neglected and all the

nodes are retained. Approximate solutions within each partition can be obtained by

solving those sub-grids/partitions. However, the error of the approximate solution is far

beyond our tolerance due to the inaccurate solution on the boundaries. Inspired by the

25

'spatial locality' property of power grid [62], the partitions are enlarged to achieve more

accurate solutions.

 Spatial locality demonstrates that C4 bumps modeled in a power grid have a

limited spatial range of influence on the node voltages. In other words, if a node is close

to a C4 bump, the IR drop from the C4 bump at that node is subtle; if a node is far from

a C4 bump, the IR drop from the C4 bump at that node is significant. If we solve a larger

area which enclose the original partition and retain the solutions within the partition, we

can obtain more accurate solutions within the partition including the boundary. Based on

the discussion above, we enlarge the partitions to include more nodes and edges such

that the solution errors can be reduced.

Figure 4. Constructing the enlarged partition

26

II.2.2 Naive partition-enlarging approach

Since the power grid is separated into partitions geometrically, a straightforward

way to enlarge the partition is to move the border of the partition outwards to a certain

distance (Figure 4). After enlarging the partition, the nodes and edges in the original

partition are retained and more nodes and edges are included. Note that the edges across

the new boundary are omitted.

 Suppose the power grid is divided into partitions. For each partition, we have a

linear system

 , (7)

where
 is the conductance matrix for enlarged partition

 is the node voltage

vector; and
 is the vector representing current drains. After solving (7), we obtain

which denotes the solution of an enlarged partitions. In
 , only the voltage solutions at

the nodes that belongs to the original partition are retained and other voltage solutions

are ignored. Therefore, solving all the enlarged partitions provides voltage solutions on

each original partition. The voltage solution derived from the enlarged partition is more

accurate compared to the linear system from the original partition because the influence

of external C4 bumps near the boundary of the partition is captured.

 The straightforward enlarging method is effective and easy to implement.

However, it may introduce difficulties for the solution process. It has the following

drawbacks. First, the irregular power grid can consist of disjoint sub-grids. The

straightforward partitioning method could include disconnected nodes and edges from

other sub-grids. Second, in a real power grid, a node is not always connected to all its

27

neighbors. If such a node happens to lie next to the boundary and all its edges are across

the boundary, this node will be an isolated node that is not connected to any other nodes.

Isolated nodes cause the power grid matrix to become singular. In order to overcome

these drawbacks and make the solving process more efficient, we propose an improved

partitioning method based on Breadth-First Search (BFS) algorithm.

II.2.3 Improved partition-enlarging approach using breadth-first search

The approach described in II.2.2 is too expensive, since unrelated nodes and edges are

also included in the enlarged partition. If we consider the area outside the partition as

layers, we can extend the partition up to a certain layer and we can select edges to be

included in the enlarged partitions. In this way, the number of nodes and number of

Figure 5. Including inner nodes and edges

28

edges are fewer than those of the naive approach. As a consequence, the size of the

generated linear system matrix and the number of non-zeros will be reduced. This size

reduction helps improve the efficiency of the solver.

 Since the partition is enlarged layer by layer, we adopt a BFS method to extend

the original partition. The resulting enlarged partition is a tree-like structure outside the

original partition. Note that we do not include all the edges in the BFS tree, but select the

edge with the largest conductance that connects to a node.

 To enlarge a partition using BFS our approach consists of the following steps:

1. Retain all the nodes and edges in partitions. All the boundary edges across the

partition borders as well as the nodes connected by the edges are retained. The nodes

that lie outside the partitions and are connected by boundary edges are called level-0

nodes (Figure 5).

2. Starting with those level-0 nodes, apply breadth first search algorithm to

extend the partitions. The level of an extended node is the shortest distance from level 0.

The level of an unvisited node is set to -1. If a node is encountered during BFS, the

largest edge (defined as the largest conductance) from its parent in the preceding level is

retained in the BFS tree (Figure 6). The enlarged partition size (EP-Size) is defined as

the number of levels extended out of the original partitions.

3. In order to have better control of the solution accuracy, additional edges are

added to the BFS tree. The number of levels for which all edges will be included is

defined as retained-level size (RL-Size). For example, if RL-Size is , then all edges

incident on nodes at levels 0 through are retained. RL-Size is an adjustable parameter

29

to make the partition solution more accurate. Experiments suggest that RL-Size is a

necessary parameter to control the solution accuracy and ensure convergence to the

solution.

4. Return resulting enlarged partition.

 The overall algorithm for enlarging a partition is described in Algorithm 1.

Figure 6. Extending a partition

30

ALGORITHM 1. Enlarging a Partition

Input: An partition with node and edge information; boundary information of the

partition; EP-size; RL-size

Output: An enlarged partition with node and edge information.

1: Mark all the internal nodes and edges as 'retained', set the level of those nodes = 0.

2: Mark all the boundary edges and the nodes connected by boundary edges as 'retained'.

3: Mark all the nodes in Step 1 and 2 as 'visited'.

4: Create a queue-BFSQueue and push the nodes connected by boundary edges into

BFSQueue, and set the level of those nodes = 1;

5: while(BFSQueue not empty)

6: CurrentNode=BFSQueue.pop();

7: if(node.level>EP_size) then

8: return;

9: end if

10: for(each neighbor node-NeiNode of CurrentNode)

11: if(NeiNode not visited)

12: BFSQueue.push(NeiNode)

13: mark NeiNode as 'visited' and set NeiNode's level to

CurrentNode.level+1

14: if(NeiNode.level<=RL_size) then

15: retain all the edges connecting NeiNode and 'visited'

nodes

31

16: end if

17: check NeiNode's edges connecting to nodes one level lower, retain

the edges that holds the largest conductance value and ignore the other edges.

18: end if

19: end for

20: end while

One must note that each enlarged partition must have at least one C4 bump.

Otherwise, based on the discussion in II.1, the matrix of the generated linear system will

be singular. A singular matrix makes the linear system unsolvable. Thus, in our

approach, if there are no C4 bumps in the resulting enlarged partition, the enlarged

partition is further extended to enclose at least one C4 bump.

Compared to the naive enlarging strategy, the BFS-based partition enlarging

approach overcomes a number of drawbacks and reduces the size of the enlarged

partition.

1. In a real chip, the power grid can consist of several disjoint sub-grids. During

the enlarging process, the naive approach does not consider this situation but extends the

border outwards. In this case, it is possible that the enlarged partition includes nodes and

edges from other unrelated sub-grids that do not improve the accuracy of the solution on

the primary partition. The BFS-based approach does not include these nodes and edges

in the enlarged partition, making the partition lightweight and efficient for computations.

32

2. The naive approach retains all the edges in the enlarged partition. In contrast,

the BFS-based partition enlarging method only includes the edges that have the most

useful information (largest conductance) and neglect other edges. This strategy reduces

the time to solve the enlarged partition system since the conductance matrices have

fewer non-zeros due to the inclusion of fewer edges.

3. In a power grid, there exist nodes that are not connected to every neighbor.

The naive approach to extending the partitions ends up including some nodes that may

not be connected to any other nodes inside the enlarged partition. These resulting

isolated nodes make the conductance matrix singular since they have no incident edges.

In the BFS-based approach, since each included node is visited from its neighbor and at

least one edge from this node is retained, there does not exist any isolated nodes. The

BFS-based approach make the enlarged partition friendly to linear system solvers.

 After constructing the enlarged partitions using BFS, we have linear systems for

enlarged partitions as

 (8)

where
 is the conductance matrix for enlarged partition

 denotes the associated

node voltage vector; and represents the current source vector. After (8) is solved, the

solutions belonging to the original partitions are extracted. The solutions are more

accurate than the ones obtained from the original partition.

33

 To verify that the enlarged partitions lead to more accurate solutions, we

compare the average error and maximum error in Table I. The results are obtained on the

benchmark ckt3 (introduced in III.2) with partitions. As described before, after

solving the enlarged partition, only the solutions on the nodes that belong to the original

partition are retained. Max error denotes the maximum relative error in node voltage by

solving the enlarged partitions; Average error denotes the relative average error. The

solution was obtained using a direct solver to guarantee computational accuracy. RL-size

is set to be 0 to better demonstrate the comparison. The trend of error changes illustrates

that the larger the enlarged partition is, the more accurate the solution we obtain. Two

Table I. Solution errors of enlarged partitions with different EP-size

EP-size Max error Average error

0 153.2% 7.9%

5 42.8% 4.3%

15 10.9% 1.2%

200 0.0% 0.0%

34

extreme cases are that EP-size equals 0 and EP-size is large enough to make the enlarged

partition cover the whole power grid. As for the first case, the error is huge as seen in the

first row of Table I. In the second case, the whole power grid is solved and only the

solutions within the original partition are retained. The error is 0 because the exact

solutions are obtained.

II.2.4 Error reduction using preconditioned conjugate gradient method

As presented in II.2.3, larger enlarged partitions lead to more accurate solutions.

However, larger enlarged partitions are more costly to solve. Using modest size of

enlarged partitions, we obtain solution errors that are still larger than our tolerance. In

order to reduce the solution error in an efficient way, we adopt PCG method to conduct

the error reduction.

 Next, we first briefly review the CG method and preconditioning technique.

Then, the proposed Enlarged-Partition based Preconditioned Conjugate Gradient

(EPPCG) method is presented.

 CG is an iterative Krylov subspace method for solving s.p.d linear systems [12].

Compared to direct solvers, CG requires less memory storage and is friendly to

extremely large sparse linear systems. CG method is often enhanced by applying a

preconditioner to achieve fast convergence.

Preconditioning is a method to accelerate the solution of linear systems. Suppose

we have a linear system . Preconditioning is to apply a matrix to the linear

system as , such that the condition number of is less than that of

35

 . By applying an effective preconditioner to a linear system, the linear system becomes

easier to solve. One extreme case is where , then the left-hand side of the linear

system becomes . As a result, the linear system has been solved by applying such a

preconditioner. Usually, a preconditioner is used in iterative solver to accelerate the

convergence. In PCG, a preconditioner is used in each iteration involving computing a

matrix-vector product . Note that can be computed by solving an equivalent

linear system . The preconditioner can be explicit or implicit. In PCG, an

explicit preconditioner is applied by computing the matrix-vector product as .

An implicit preconditioner does not have an explicit expression. It outputs a vector

using a given input vector after a process of computations. This process refers to a

preconditioning process.

A good preconditioner is key to the performance of the PCG method. Ideally, a

preconditioner is inexpensive to construct and effective for reducing the number of

iterations. In our proposed EPPCG method, we apply the implicit preconditioner by

solving the enlarged partitions and extracting the solutions belonging to the original

partitions as described in Algorithm 2. In other words, given an input vector , we

approximate the solution of the linear system by solving the enlarged partitions.

The proposed preconditioner has the following advantages.

The preconditioner is parallelizable. The preconditioner is conducted by solving

the enlarged partitions. Solving the enlarged partitions can be done in parallel. In

EPPCG, preconditioning costs most of the runtime. A parallelizable preconditioner can

help reduce the runtime drastically.

36

Our experimental results discussed in Chapter III indicate that the enlareged-

partition based preconditioner is effective for achieving fast convergence in EPPCG. The

proposed preconditioner reduces the number of iterations significantly.

ALGORITHM 2. Enlarged Partition Based Preconditioner

Input: vector , enlarged partition information containing retained node IDs and

edges.

Output: Preconditioned vector

1: Separate into
 based on enlarged partition information

2: for(each enlarged partition)

3: solve

 using a direct solver;

4: end for

5: for(each original partition)

6: extract of original partitions from
 ;

7: end for

8: combine into the global vector

9: return

37

ALGORITHM 3. EPPCG

Define: is the error tolerance; is the maximum number of iterations;

Input: The global conductance matrix ; the global current drain vector ; the error

tolerance ; the maximum number of iterations

Output: The node voltage vector .

1: Factorize the conductance matrix
 for each enlarged partition

2: Obtain an initial solution by applying EP preconditioner on vector .

3: //matrix-vector multiplication is conducted on enlarged partitions

4: Obtain the preconditioned vector by applying EP preconditioner on .

5:

6: while ()

7: do

8:

9: //matrix-vector multiplication is conducted on

enlarged partitions

10: If ‖ ‖) return

11: Obtain by applying EP perconditioner on

12:

13:

38

14:

15: end while

 The overall EPPCG algorithm is described as Algorithm 3. The enlarged

partitions are solved using a state-of-the-art direct solver, CHOLMOD [8, 63].

CHOLMOD consists of matrix factorization and triangular solve. The runtime of matrix

factorization dominates the whole process. The conductance matrices of enlarged

partitions do not change in EPPCG. Thus, we factor the matrix before entering the PCG

loop, so that the factors are re-used in each iteration. This strategy helps improve

performance by eliminating unnecessary repeated factorization.

II.3 Computational complexity and performance modeling

II.3.1 Complexity analysis

As described in Algorithm 3, the EPPCG method consists of two main computational

parts. One is the factorization and triangular solve of the conductance matrices for

enlarged partitions. The other one consists of remaining computations in PCG method

such as matrix-vector multiplications, vector inner-products and other vector operations.

 Suppose the power grid is divided into partitions, enlarging the partitions

results in enlarged partitions. The number of nodes in the partitions are .

For enlarged partition i, suppose the factorization of conductance matrix for enlarged

partition costs and applying the precondtioner costs . The runtime of

matrix-vector multiplication is defined as and the runtime of vector inner-

39

product is defined as . Each of the vector operations, such as vector additions,

scalar-vector multiplications, is defined as , since they have the same complexity.

The overall sequential runtime of EPPCG can be described as

 ∑

 ∑

 ∑

 ∑

 (∑

 ∑

 ∑

+

where T denotes the overall runtime and m denotes the number of iterations. Based on

our experiments, m is in the range of [2-6]. Note that includes triangular solve

and vector extraction operations as illustrated in Algorithm 2. For each enlarged

partitions with nodes, (
) , , and

[9]. To estimate , we consider the structure of the power grid. In a power grid, a

node is connected to up to four neighbor nodes. As a result, there are at most 4 non-zeros

at each row/column in the conductance matrix. For a power grid with nodes, a matrix-

vector multiplication runs at most operations. Thus, .

 More interesting analysis is the parallel complexity estimation. Assume the

number of processors is identical to the number of partitions. Each item in (9) is

determined by the slowest process. The overall parallel runtime can be approximated as

an equation

 (

)

40

where denotes the overall runtime of parallel EPPCG. Since power grid is divided

into partitions with equal size and the partitions are enlarged to the same level, the

resulting enlarged partitions are of similar size. This work load balance helps the parallel

implementation achieve significant speedup. Let ̃ denote the number of nodes of the

largest enlarged partition. Based on the estimate of each item discussed above,

 ̃ ̃ ̃ In the complexity estimation, the factorization of conductance

matrices dominates the whole algorithm for extremely large power grids. The

parallelization of factorization step helps reduce the runtime drastically.

II.3.2 Performance modeling

EP-size and RL-size are two parameters to control the speed of convergence of EPPCG.

On one hand, if EP-size and RL-size are too large, the factorization time increase due to

the expansion of conductance matrices. On the other hand, if EP-size and RL-size are

too small, the convergence becomes slow due to the inaccuracy of the solutions to the

enlarged partitions. Therefore, finding optimal EP-size and RL-size helps maximize the

efficiency of EPPCG. RL-size is found to be 0.75×EP-size approximately in our

experiments. Thus, in the following discussion, we are focused on finding the optimal

EP-size.

The parallel runtime is approximated in (10). We divide the power grid into

equal-sized partitions and the enlarged partitions are formed by extending the partition to

the same level. Therefore, the work load of each enlarged partition is similar. We can

obtain the following equation derived from (10).

41

 ̅ ̅ ̅ ̅ (̅ ̅ ̅)

where ̅ denotes the average number of nodes in an enlarged partition.

Based on our discussion on time complexity in II.3.1, ̅ , ̅ , and ̅

can be approximated as follows.

 ̅ ̅
 (12)

 ̅ ̅ (13)

 ̅ ̅ ̅ (14)

where , , , , , and are constants.

Suppose there are n nodes and p partitions, the average number of nodes in a

partition is n/p. If we consider the partition as a square, each side of the square contains

√ nodes. Since the original partition is large and the number of levels of extension is

not significant, we can ignore the difference of number of nodes between levels. Note

that the partition is extended on all the four sides of the square. Therefore, the number of

nodes added by extending the partition can be approximated as √ , where Ep

denotes EP-size. The total number of nodes ̅ in an enlarged partition can be

approximated as follows.

 ̅ √

 (15)

Based on our experimental observation, ̅ and ̅ dominates the overall

runtime, and the typical value of m is 3. Therefore, can be approximated using the

following equation.

42

 (√

*

 (√

* (16)

The unknown constants and can be obtained using linear regression and

observation data in the experiments. Using the data in the table on Page 51, we get the

values as and in our experiment setup. and are

not necessary for computing the optimal EP-size, as discussed as follows.

In order to find the optimal Ep (EP-size), we take derivatives in (16) and solve

the following equation.

 (√

*

(√

* (√

* (17)

II.4 Parallelism

The EPPCG algorithm is designed to parallelize both the preconditioning process and

other computation steps (e.g., vector inner products, matrix-vector multiplications, etc.)

in a straightforward way.

In this dissertation, we employ a two-tier parallelization scheme as shown in

Figure 7. The power grid is divided into overlapping sub-grids (enlarged partitions).

Correspondingly, sub-grid linear systems are generated. Each of the enlarged partition is

mapped to an MPI process. The first tier MPI parallelization can be described as two

parts.

Factorization: In EPPCG method, the conductance matrices of enlarged partitions

are factored concurrently by MPI processes that own the partition.

43

Vector-related computations: The remaining computations of EPPCG, including

matrix-vector multiplications, vector inner products, and vector additions, are also

computed at the partition level by respective MPI processes. These computations may

involve data exchanges and synchronizations among MPI processes. A gather-scatter

strategy is adopted for vector operations. An index vector is constructed for vectors of

each partition and enlarged partition (Figure 8). The index vector denotes the position of

elements in the global vector. Matrix-vector multiplication is computed using the

enlarged partitions since it needs at least one more level outside of the original partition

to obtain the correct results. Vector inner products and other vector operations are done

on original partitions. The MPI routine MPI_Allreduce is used when calculating the

residual. MPI_Allgatherv routine is used to combine the local vectors into a global

Figure 7. Parallelization scheme

44

vector. Vectors of enlarged partitions can be extracted from this global vector.

GPUs are used to accelerate sub-grid matrix factorizations and triangular solves.

CHOLMOD is adopted as the direct solver for the sub-grid linear systems. CHOLMOD

uses a supernodal method to obtain smaller dense matrices in the process of factoring a

sparse linear system. The task of factoring these dense matrices is passed on to the GPU,

which uses the highly optimized cudablas library to deliver high parallel performance.

The overall performance of CHOLMOD on GPU varies depending on the structure of

matrices and the amount of data transferred between the CPU and GPU.

In the parallel implementation of EPPCG, the number of partitions is always

identical to the number of MPI processes. To obtain the best parallel performance, one

Figure 8. Local and global vector projection

45

should use the maximum number of GPUs available. For instance, a parallel

implementation with 6 partitions/processes can use up to 6 GPUs. Each MPI process is

assigned to a GPU card. When the number of MPI processes in an implementation

exceeds the number of available GPU cards, multiple MPI processes share a GPU. For

instance, 2 MPI processes are mapped to 1 GPU in the scenario where 12 MPI processes

are created.

46

CHAPTER III

STATIC ANALYSIS OF POWER GRIDS

III.1 Static analysis of power grid problem

In static analysis of power grids, all the capacitors are open and all the inductors are

short. A linear system is constructed based on the power grid structure. EPPCG

can be applied to static analysis directly. Some factors that need to be considered in

static analysis using EPPCG are as below:

 EP-size and RL-size are two parameters to control the convergence of EPPCG. If

these parameters are too large, the whole process suffers from heavy computation

of matrix factorization since the matrices are larger. If the two parameters are too

small, more iterations are expected such that the performance degrades due to

slow convergence of the iterative solver.

 The number of partitions is a factor that affects the performance of EPPCG. Too

many partitions make the solution of the enlarged partition inaccurate. This

makes the convergence of EPPCG slow. If too few partitions are constructed, the

parallel performance will not be significant due to insufficient coarse level

parallelism, although the efficiency of the parallel implementation could be high.

47

III.2 Experimental results

To investigate the performance of EPPCG algorithm on static analysis, we conducted

experiments on the supercomputer cluster Eos and Ada at Texas A&M Supercomputer

center. The hardware specification of Eos and Ada are presented as below:

Eos supercomputing cluster:

 Number of nodes: 372

 Number of cores per node: 8

 CPU: 2.8GHz Nehalem

 Memory: 24GB DDR3 DRAM

 Operating system: 64-bit RedHat Linux

 GPU card per node: two computing nodes are equipped with two Nvidia M2050

GPU cards per node and two nodes are equipped with one Nvidia M2050 GPU

card per node.

 GPU speed: 575 MHz

 GPU cores: 14 cores of GF100 architecture

Ada supercomputing cluster:

 Number of nodes: 845

 Number of cores per node: 8

 CPU: 2.5GHz IveBridge

 Memory: 64GB DDR3 DRAM

 Operating system: 64-bit CentOS 6.5 Linux

48

 GPU card per node: 2 Nvidia K20 GPUs

 GPU speed: 706 MHz

 GPU cores: 13 cores of GK110 architecture

The implementation of the proposed method is written in C++ and the algorithm

is parallelized using MPI and CUDA. A tolerance of was specified on the relative

norm of residual error for EPPCG implementations.

We conducted experiments on IBM P/G benchmarks [64] and several artificial

benchmark circuits. The format of the benchmarks is described in [65]. The

specifications of the benchmarks vary as shown in Table II. The number of nodes

(Num_node), number of resistance edges (Num_edge), number of C4 bumps (Num_C4)

and number of current sources (Num_I) of each benchmark circuit are listed. Num_layer

denotes the number of layers. Different layers are connected through vias. The

experimental results will show the comparison of EPPCG and CHOLMOD, the

comparison of EPPCG and other iterative solvers, the MPI-based parallel performance,

the GPU-accelerated parallel performance, the impact of partitioning, the impact of

varying parameters, the performance on different clusters, the performance of different

parallel implementations, and the scalability.

III.2.1 Comparison with state-of-the-art direct solver

A direct solver is widely used in power grid simulation in the industry. In our

experience, CHOLMOD is among the fastest public domain single-processor direct

solvers. We compare our EPPCG method parallelized using MPI and GPU (MPI-GPU-

49

Table II. Specification of experimental power grids

Circuit Num_node Num_edge Num_C4 Num_I Num_layer

ibmpg3 851,584 1400353 955 201,054 5

ibmpg4 953,583 1550719 962 276,976 6

ibmpg5 1,079,310 1615381 539,087 540,800 3

ibmpg6 1,670,494 2484098 836,239 761,484 3

ibmpgnew1 1,461,036 2351136 955 357,930 6

ibmpgnew2 1,461,039 2351136 930,216 357,930 6

ckt1 3,006,003 5,007,002 1,600 1,508,320 4

ckt2 4,327,203 7,208,402 2,304 1,609,834 4

ckt3 6,759,003 11,260,502 3,600 2,154,654 6

ckt4 5,077,803 8,459,102 27,040 1,465,455 6

ckt5 6,132,002 9,194,501 4,900 2,335,540 4

50

EPPCG) with CHOLMOD in Table III. T denotes the overall runtime, Max_error

denotes the maximum solution error and Aver_error denotes the average solution error.

MPI-GPU-EPPCG method solves the power grids much faster than the state-of-the-art

direct solver CHOLMOD without losing much accuracy.

The accuracy of the solution is determined by the residual norm’s tolerance for

the CG iterations. Desired accuracy can be achieved by choosing an appropriate value

for the tolerance. A smaller value of tolerance requires additional iterations of the CG

Table III. Speed improvement over direct solver

Circuit

CHOLMOD MPI-GPU-EPPCG (16 processors)

Spd-

Imp

T(s)
Mem

(GB)

EP-

size

RL-

size
T(s)

Mem

(GB)

max-

error(V)

aver-

error(V)

ckt1 282.35 7.9 45 35 4.65 8.0 2.67E-05 1.19E-05 61X

ckt2 406.83 12.0 30 22 5.73 12.6 2.87E-04 7.69E-05 71X

ckt3 1375.52 20.0 40 35 9.69 20.0 6.32E-05 2.83E-05 142X

ckt4 819.53 14.1 40 30 7.45 15.0 1.37E-05 3.98E-06 110X

ckt5 451.6 13.8 40 35 7.12 14.1 2.49E-04 7.35E-05 63X

51

method, which increases the cost. However, the increase in cost is relatively small when

compared to the one-time cost of factoring the partitions at the start of the algorithm. A

change in the number of iterations does not impact parallel efficiency of the CG method

itself.

The memory usage of EPPCG is comparable to CHOLMOD. The speed

improvement (Spd-Imp) of parallel EPPCG over CHOLMOD ranges from 61X to 142X.

Table IV. Speed comparison between iterative solvers and serial EP-PCG solver

Benchmark

CG Jacobi PCG Serial EP-PCG

Iter Runtime Iter T(s) EP-size RL-size Iter T(s)

ckt1 1808 635.0 784 243.9 40 35 5 68.6

ckt2 1995 966.0 774 378.6 30 22 2 85.1

ckt3 1783 1514.0 761 630.9 40 35 4 230.3

ckt4 2391 1243.0 770 456.0 40 30 5 132.7

ckt5 1406 1006.0 606 430.1 40 35 3 128.7

52

III.2.2 Comparison with other iterative solvers

Table IV shows the performance comparison among classic CG method, Jacobi PCG

method and serial EP-PCG method with partitions. Classic CG performs the

worst among all the methods since it requires a large number of iterations to converge.

Jacobi PCG reduces runtime by applying a diagonal preconditioner. The proposed EP-

Table V. MPI parallel performance

Circuit EP-size RL-size Ite

Serial EPPCG

(sec)

MPI- EPPCG

(sec)

Speedup

(serial EPPCG vs

MPI-EPPCG)

factor pcg overall factor pcg overall factor pcg overall

ckt1 40 35 5 58.3 10.2 68.6 3.6 1.2 4.9 16.1X 8.3X 14X

ckt2 30 22 2 75.9 9.2 85.1 5.0 0.8 5.8 15.2X 11.3X 15X

ckt3 40 35 4 210.7 19.6 230.3 14.1 2.9 17.0 15.0X 6.8X 14X

ckt4 40 30 5 113.9 18.8 132.7 6.9 2.2 9.0 16.6X 8.8X 15X

ckt5 40 35 3 116.3 12.4 128.7 7.4 1.7 9.1 15.8X 7.2X 14X

53

PCG method is able to reduce the number of iterations significantly due to the

effectiveness of the EP-preconditioner. The effective EP-preconditioner makes the serial

EP-PCG fastest among all the iterative solvers.

III.2.3 MPI-based parallel performance

The parallel performance of MPI-based EPPCG method (MPI-EPPCG) is investigated

with partitions using 16 MPI processes in Table V and Figure 9. Iterative solvers

suffer from slow convergence rate easily, however, EPPCG achieves fast convergence

by employing an effective enlarged-partition based preconditioner. The number of

iterations (Ite) is in a single-digit range for all the benchmarks.

Figure 9. MPI parallel efficiency for different benchmarks

101
95 94

104
99

52

71

43

55

45

88 91
85

92 89

0

20

40

60

80

100

120

ckt1 ckt2 ckt3 ckt4 ckt5

Ef
fi

ci
e

n
cy

 (
%

)

Benchmark circuits

Factorization PCG Overall

54

In Table V, “factor” denotes the runtime of matrix factorization for enlarged

partition conductance matrices using CHOLMOD, “pcg” denotes the accumulated

runtime other than factorization step in EPPCG, and “overall” denotes the total runtime

of EPPCG. As seen in Table V, the factorization dominates the overall runtime. Thus,

Table VI. Enhancing parallel performance with GPUs

Circuit EP-size RL-size Ite

MPI- EPPCG

(sec)

MPI-GPU-

EPPCG (sec)
GPU Speedup

factor pcg overall factor pcg overall factor pcg overall

ckt1 45 35 3 9.0 1.1 10.1 6.3 1.1 7.5 1.4X 1.0X 1.4X

ckt2 30 25 3 11.9 1.6 13.5 7.8 1.5 9.3 1.5X 1.1X 1.4X

ckt3 30 25 3 36.4 4.7 41.1 13.3 3.8 17.2 2.7X 1.2X 2.4X

ckt4 50 45 3 18.5 1.9 20.4 9.1 2.0 11.1 2.0X 0.9X 1.8X

ckt5 45 40 2 21.8 1.5 23.3 9.9 1.6 11.5 2.2X 1.0X 2.0X

55

the overall parallel performance is mainly determined by the factorization process. Our

parallel implementation achieves significant speedup on factorization and reasonable

speedup on remaining PCG computations. MPI parallelization efficiency is defined as

the ratio of speedup and number of processes. Figure 9 illustrates the parallel efficiency

of MPI-EPPCG. Superlinear speedup occurs in the factorization process on ckt1 and

ckt4 due to the effective utilization of cache.

III.2.4 GPU-accelerated parallel performance

In order to study the effect of GPU on parallel performance, we compare MPI-EPPCG

with GPU-MPI-EPPCG. Table VI shows the comparison with partitions using 9

MPI processes and 6 GPUs. 3 GPUs are shared by 6 MPI processes and the other 3

GPUs are assigned to 3 MPI processes. The factorization speedup of MPI-GPU-EPPCG

over MPI-EPPCG ranges from 1.4X to 2.7X. As expected, the GPU performs better for

heavy-weight work load computations (e.g. ckt3) than light-weight work load. In terms

of pcg process, the GPU performance degrades for some benchmarks because of

overheads in CUDA parallelization.

The overall parallel performance for each implementation is shown in Figure 10.

All the benchmark circuits are divided into partitions. It can be seen that with

efficient parallelization, MPI-GPU-EPPCG reduces the runtime further.

56

III.2.5 Impact of partitioning

The EPPCG method divides the power grid into partitions. The results for different

number of partitions are shown in Table VII. For each benchmark circuit, the two

parameters EP-size and RL-size are identical for different number of partitions.

Parallelization efficiency is defined as the ratio of speedup and the number of processes.

Figure 10. Overall parallel performance (time in seconds)

282.4

406.8

1375.5

819.5

451.6

87.5

157.9

290.9

164.1 174.3

9.5
13.0 28.8 14.5 15.7

6.9 7.7 13.7 9.9 8.5
0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

ckt1 ckt2 ckt3 ckt4 ckt5

R
u

n
ti

m
e

 (
S)

Benchmark circuits

CHOLMOD serial EPPCG

parallel MPI-EPPCG parallel MPI-GPU-EPPCG

57

Note that using too many partitions may downgrade the performance due to the

overheads of MPI processes and GPU threads. If the work load is light-weight, those

overheads will dominate the processing and lower the parallel performance. If the

problem size is large enough, it is expected that many more partitions can be created to

obtain higher speed improvement. One must note that selecting a large number of

smaller sized partitions has a negative impact on the quality of the preconditioner, which

may increase the number of iterations resulting in a higher solution time. The results are

shown in Figure 11.

Table VII. MPI-GPU-EPPCG performance with different number of partitions

No. of

Process

ckt3 ckt4 ckt5

#Iter T(S)
Speed

up

Efficien

cy
#Iter T(S)

Speed

up

Efficien

cy
#Iter T(S)

Speed

up

Efficienc

y

9 4 17.0 7.9 87.8% 6 13.5 9.1 101.3% 3 10.9 8.9 98.4%

12 3 12.8 11.6 96.7% 4 9.5 12.1 100.7% 3 8.0 12.0 100.3%

16 4 9.7 13.8 86.3% 5 7.5 14.7 91.9% 3 7.1 14.4 90.0%

25 5 9.6 19.5 77.9% 6 8.7 18.3 73.0% 5 8.6 19.1 76.5%

58

III.2.6 Impact of parameters

The effect of varying parameters EP-size and RL-size was also investigated. Table VIII

shows the runtime results for ckt1 with partitions.

Different EP-size and RL-size lead to different performance. A smaller value of

EP-Size reduces factorization time and PCG time by lowering the cost of factorization

provided the number of iterations needed to converge to the solution do not grow; a

larger value of RL-Size reduces the number of iterations but makes the factorization

more expensive. Thus EP-Size and RL-Size need to be chosen carefully to obtain the

best performance.

Figure 11. Parallel performance with different number of partitions

7

9

11

13

15

17

19

21

23

25

7 12 17 22

Sp
e

e
d

u
p

Number of partitions/processes

ckt3

ckt4

ckt5

59

III.2.7 Performance on different machines

In order to demonstrate the consistency of EPPCG on different machines, experiments

were conducted on both EOS and ADA. ADA is an IBM NeXtScale super computing

cluster with 845 nodes. Each node is equipped with 20-core 2.5 GHz IvyBridge CPU. 30

of the nodes have 2 Nvidia K20 GPUs installed. The memory size of each node is 64 GB

and Linux (CentOS 6.5) is running on all the nodes. The power grids are divided into 9

partitions. 9 MPI processes and 6 GPU cards are used on both EOS and ADA. The

Table VIII. Parallel performance with varying parameters

Ckt1

EP-size

RL-size

Ite

serial

EPPCG

paralllel

MPI-EPPCG

parallel

MPI-GPU-EPPCG

factor pcg total factor pcg total factor pcg total

37 28 8 74.21 13.86 88.07 7.52 1.96 9.48 4.93 2.08 7.01

40 30 5 77.89 9.61 87.50 8.19 1.26 9.45 5.27 1.59 6.86

40 35 3 85.96 6.61 92.57 6.80 0.93 7.73 4.83 0.89 5.72

45 35 3 86.00 6.69 92.69 6.80 1.01 7.81 4.82 0.95 5.77

50 45 2 92.00 5.87 97.87 7.33 0.76 8.09 5.23 0.71 5.94

60

experimental results are shown in Table IX. From the results we observe the two clusters

give us similar results. The speedup of MPI-GPU-EPPCG over CHOLMOD on EOS

ranges from 38X to 80X, and on ADA the range is from 32X to 77X. These results

demonstrate the consistency of EPPCG method on different machines.

Table IX. Comparison of EPPCG performance between machines

Circuit EP-size RL-size Ite

MPI-GPU-

EPPCG(EOS)

MPI-GPU-

EPPCG(ADA)

T Spd-Imp T Spd-Imp

ckt1 45 35 3 7.5 38X 9.2 32X

ckt2 30 25 3 9.3 44X 11.7 49X

ckt3 30 25 3 17.2 80X 18.4 77X

ckt4 50 45 3 11.1 74X 12.7 70X

ckt5 45 40 2 11.5 39X 11.4 45X

61

III.2.8 Different parallel implementation

In EPPCG, the factorization dominates the whole process. The parallelization of

factorization is the key factor that influences the overall parallel performance. In the

parallelization of factorization, there is no data transfer between processes. Compared to

MPI, OpenMP performs better when there is much communications between sub-

Table X. Comparison between MPI and OpenMP performance

Circuit
EP-

size

RL-

size
Ite

serial 16-process MPI
16-thread

OpenMP

T(s) T(s) Speedup T(s) Speedup

ckt1 40.00 35.00 5.00 68.58 4.85 14.14 6.90 9.94

ckt2 30.00 22.00 2.00 85.11 5.81 14.65 10.50 8.11

ckt3 40.00 35.00 4.00 230.31 16.98 13.56 25.60 9.00

ckt4 40.00 30.00 5.00 132.71 9.00 14.75 13.20 10.05

ckt5 40.00 35.00 3.00 128.68 9.09 14.16 15.10 8.52

62

Table XI. EPPCG performance on different benchmarks

Circuit

CHOLMOD MPI-GPU-EPPCG
Spd-

Imp
T(s) EP-size RL-size T(s)

ibmpg3 28.27 33 15 1.31 22X

ibmpg4 47.75 20 12 1.39 34X

ibmpg5 19.95 35 25 1.18 17X

ibmpg6 26.16 75 50 1.88 14X

ibmpgnew1 62.07 25 20 2.22 28X

ibmpgnew2 56.81 25 20 2.18 26X

ckt1 282.35 45 35 4.65 61X

ckt2 406.83 30 22 5.73 71X

ckt3 1375.52 40 35 9.69 142X

ckt4 819.53 40 30 7.45 110X

ckt5 451.6 40 35 7.12 63X

63

problems. However, since OpenMP runs on shared memory environment, the

performance of OpenMP could downgrade on a distributed cluster due to the less-

developed memory sharing mechanism. MPI and OpenMP implementations are

compared in Table X. MPI performs better than OpenMP on all the benchmarks. The

parallelization efficiency of MPI is much better than that of OpenMP. This observation

can be explained by the latency of memory data sharing on distributed machines.

III.2.9 Scalability

In order to investigate the scalability of EPPCG, we ran experiments on all the available

benchmarks and obtained the results in Table XI. The size of the benchmarks varies as

shown in Table XI. In Table XI, we compared the performance of EPPCG on CPU-GPU

hybrid platform with CHOLMOD. From the results, it is observed that the speedup

achieved varies on different benchmarks. The best speedup is 140X on ckt3. The reasons

for this observation can be described as the following. First, ckt3 is extremely large in

size. A more complicated circuit with more nodes makes the parallel implementation of

EPPCG more efficient since the overhead of MPI is much less than the actual

computation cost. Second, the direct solver CHOLMOD suffers on benchmarks with

more layers. In other words, direct solver does not perform as well on 3D circuits. More

layers means larger portion of nodes has more neighbors than 2D circuits. CHOLMOD

does not perform well on these linear systems.

64

CHAPTER IV

 PARALLEL TRANSIENT ANALYSIS OF POWER GRID

IV.1 Transient analysis problem

In transient analysis, the power grid can be modeled as a RCL network as shown in

Figure 12. Transient analysis is conducted over a certain amount of time. To simulate the

transient response on computers, the period of time is discretized into time points. The

interval between two time points is defined as time step. The time step size can be fixed

or varying in the transient analysis. The process for transient power grid simulation with

Figure 12. Modeling power grid in transient analysis

65

a fixed time step is described in Figure 13. A power grid circuit contains only linear

components, such as resistors, linear capacitors, linear inductors, voltages sources and

current sources. The value of each component is stamped in the resulting linear system.

Stamping each component is discussed below.

Resistors are stamped in the G matrix. If the value of the resistor is R and the

indices of the two terminals are k and j, the resistor stamps a 1/R at row j and k on the

Figure 13. Flow of transient analysis with a fixed time step

66

diagonal and -1/R at (k, j) and (j, k) in the conductance matrix. In static and transient

analysis, resistors give the same stamping results.

In transient analysis, voltages sources are stamped in both G matrix and I vector.

Basically, for a voltage source V across node k and l, an equation is added

to the linear system. Each time a voltage source is encountered, a row and column need

to be created in G matrix. The new row or column has 1 and -1 stamped in G, depending

Figure 14. Companion model for C and L

67

on the index of the two terminal nodes. In the vector I, the value of the voltage source V

is added at the new added row.

Current drains are easier to handle. The only step is to add the value of the

current source at each terminal node’s row. The positive or negative sign needs to be

added depending the on flowing direction of flow of the current. In transient analysis,

the current drain is often time varying. Therefore, we need to re-stamp current drains

which require updating the right hand side of the linear system at each time step.

Capacitors are considered open and inductors are considered short in static

analysis. In transient analysis, a companion model is often used for each of the two

components. To construct the companion model, multiple methods can be used. Forward

Euler, Backward Euler and Trapezoidal methods are single-step methods to obtain the

companion model. Trapezoidal method is the most stable method among the three. In

power grid simulation, Norton equivalent circuit is often used to replace the capacitors

and inductors [60]. Figure 14 shows the Norton trapezoidal companion model for

capacitors and inductors.

In Figure 14, the values of equivalent current source and conductance for

capacitors are computed using the following equation.

 (18)

 (19)

where is the time step,
 is the value of equivalent current source for the

capacitor at time ,
 is the value of equivalent current source for the

68

capacitor at time ,
 is the value of the equivalent conductance, is the value of the

capacitor, and is the voltage across the capacitor at time .

The values of equivalent current source and conductance for inductors are

computed using the following equation.

 (20)

 (21)

Figure 15. Companion model of power grid

69

where is the time step,
 is the value of equivalent current source for the

inductor at time ,
 is the value of equivalent current source for the inductor

at time ,
 is the value of the equivalent conductance, is the value of the capacitor,

 is the voltage across the inductor at time .

Figure 15 shows an equivalent circuit of power grid for transient analysis. For

both capacitors and inductors, varies at each time point of the transient analysis.

Therefore, needs to be re-calculated and re-stamped at each time point. is a

function of time step . As a consequence, if the time step is fixed, the conductance

matrix remains the same during the transient analysis; if the time step varies, the

conductance matrix needs to be re-constructed.

IV.2 Applying EPPCG in transient analysis

Although EPPCG is designed for one-step solve of a power grid, it extends naturally to

transient case. Transient analysis requires many-step solves on different time points.

When applying EPPCG in transient power grid analysis, there are several issues that

need to be addressed in the implementation.

 The node at which the inductor and resistor are interconnected must be

included in the enlarged partition. Otherwise, the resulting enlarged partition may

lose important information from the such that the solution accuracy cannot

be guaranteed.

70

 The solution at each time point must be accurate enough. If the error of the

solution at each time point is large, the accumulated error would be too large to

obtain accurate solution in the simulation.



ALGORITHM 4. Transient analysis with variable time step

1: while(t<t_end)

2: perform a static analysis at time t using timestep to obtain solution

3: compute Local Truncation Error(LTE) and timestep_upperbound

4: if(timestep_upperbound < 0.9 timestep)

5: reject and let timestep = timestep_upperbound

6: recomputed solution

7: else

8: accept

9: update timestep = min(timestep_upperbound, 2 timestep) and

update t=t+timestep

10: end if

11:end while

71

IV.2.1 Fixed time step vs. variable time step

The time step size is constant in fixed time step analysis of the transient case, whereas

the time step size changes in variable time step analysis. Fixed time step analysis is easy

to implement. However, fixed time step analysis could be slow if the chosen time step is

too small. Furthermore, fixed time step schemes can be unstable if the time step is not

sufficiently small. Variable time step analysis needs more effort on the implementation

but it guarantees stability and accuracy of the solution without compromising speed. The

time step is maximized at each time point without degradation of solution accuracy and

stability.

 In fixed time step analysis, the conductance matrix remains unchanged. Direct

solvers usually perform better than iterative solvers. Since the expensive step of matrix

factorization is computed only once and the factor is reused at the remaining time points.

On the other hand, the whole solving process of an iterative solver needs to be conducted

at each time point. This “pre-processing” feature is a significant advantage that makes

the direct solver faster than the iterative solver in fixed time step analysis.

In variable time step analysis, direct solver loses the advantage over iterative

solvers. Since the conductance matrix changes at each time step, it needs to be re-

factored. Thus, the whole solving process including factorization and triangle solve need

to be conducted at each time point. The total time cost of the direct solver is a

summation of time cost at each time point. As a consequence, the performance

comparison of direct solvers and iterative solvers depends on the runtime of a single

solve at each time point independent of the number of time steps.

72

For a linear circuit such as a power grid, a direct solver with fixed time step is

usually adopted. The matrix factorization that dominates the solving process only needs

to be conducted once and the triangle solving process whose cost is negligible is

conducted at each time point. This makes direct solver with a fixed time step a good

choice in transient power grid simulation.

IV.2.2 Step size control for EPPCG

The EPPCG method is a combination of direct solver and iterative solver. It consists of

factorization process and iterative solve process. In order to exploit the advantage of

EPPCG method in transient analysis, we developed a time step control algorithm using

variable time steps. The time step control algorithm is based on the strategy used in

SPICE [66]. The aim of this algorithm is to reduce the number of time points, such that

the number of solves can be reduced. The idea of the algorithm is to reduce the step size

when the solution error is larger than a threshold but to maximize the step size at each

time point. The step control algorithm is presented in Algorithm 4. The solution error is

estimated using Local Truncation Error (LTE). LTE is the error estimated by assuming

the solution at the previous time point is accurate. In the Trapezoidal model, LTE can be

estimated using the following formula.[67]

 (22)

where is the step size at time point n, is the divided difference

at time point . can be calculated using the following formulas.

 (23)

73

Figure 16. Flow of variable time step analysis

74

 (24)

 (25)

where is the time step size at step , is the time step size at step and

 is the time step size at step .

In Algorithm 4, the timestep_upperbound can be calculated as below.

 ̅ (

)

 (26)

where ErrorBound is the LTE error bound that can be entered by the user.

Table XII. Specification of power grids for transient analysis

Circuit Num_node Num_edge Num_C4 Num_I Num_layer

ibmpg3t 1,039,624 1,589,351 955 201,054 5

ibmpg4t 1,210,440 1,808,541 962 265,944 6

ibmpg5t 1,552,230 2,088,581 277 473,200 4

ibmpg6t 2,366,420 3,180,408 381 761,484 4

75

The overall flow of variable time step analysis is shown in Figure. 16. In this

variable time step algorithm, EPPCG only factorizes the conductance matrix once with

the initial time step size. The factor is reused in the remaining time points. The reduction

of number of time points make EPPCG performs better than the state-of-the-art direct

solver.

IV.3 Experimental results

The experiments of transient analysis were conducted on IBM benchmarks. The

specification of benchmark circuits is shown in Table XII. We used fixed time stepping

scheme and variable time stepping schemes to obtain the solutions. The experiments

were conducted on supercomputer cluster Ada. The detailed specification of Ada is

described in III.2. The implementation is in C++ and the algorithm is parallelized using

MPI. A tolerance of was specified as the LTE error bound in the variable time step

analysis.

IV.3.1 Comparison with CHOLMOD with fixed time step

Table XIII shows the performance comparison between EPPCG and CHOLMOD with

fixed time step. The power grid is divided into 3*3 partitions. CHOLMOD is faster than

EPPCG on most of benchmarks since the solving process of CHOLMOD is faster than

that of EPPCG. In fixed time step analysis, the conductance matrix remains the same

and the factorization of both CHOLMOD and EPPCG only needs to be conducted once.

The right-hand-side vector I is changed using the solution of previous time point. The

76

aggregate time for the solve process and vector I update is much larger than the

factorization time. Therefore, factorization does not dominate in the whole process of

transient analysis. The solve time of CHOLMOD is less than that of EPPCG. This

makes CHOLMOD faster than EPPCG in fixed time step case. The parallelized right-

hand-side change in EPPCG helps to gain acceleration in this process. Thus the

difference of overall time cost of EPPCG and CHOLMOD is not very large.

Table XIII. Parallel EPPCG vs CHOLMOD with constant time step

Circuit

TimeSteps

CHOLMOD EPPCG

factor solve overall factor solve overall

ibmpg3t 1000 14.2 341.3 355.5 0.9 375.4 376.3

ibmpg4t 1000 26.0 552.6 578.6 1.8 635.5 637.3

ibmpg5t 1000 18.2 420.3 438.5 1.1 363.8 364.9

ibmpg6t 1000 19.0 735.8 754.8 1.2 753.2 754.4

77

IV.3.2 Comparison of EPPCG with variable time step and CHOLMOD with fixed time

step

As mentioned in IV.2, transient analysis of power grids is often manipulated using direct

solvers with fixed time step. In order to show demonstrate the strength of EPPCG, we

developed variable time step control strategy in IV.2.2. Table XIV shows the

performance comparison between EPPCG with variable time step and CHOLMOD with

fixed time step. The power grid is divided into 3*3 partitions. In the table, EPPCG

performs better than CHOLMOD. There are two factors that make EPPCG faster than

Table XIV. EPPCG with variable time step vs CHOLMOD with fixed time step

Circuit

CHOLMOD with constant time step EPPCG with variable time step

Sp-
imp

Time

Steps
factor solve overall

#Time

steps

EP-

size

RL-

size
factor solve overall

ibmpg3t 1000 14.2 341.3 355.5 358 30 25 0.9 138.2 139.1 2.6

ibmpg4t 1000 26 552.6 578.6 274 30 25 1.8 177.6 179.4 3.2

ibmpg5t 1000 18.2 420.3 438.5 370 30 25 1.0 138.5 139.5 3.1

ibmpg6t 1000 19 735.8 754.8 363 75 60 1.2 301.7 302.9 2.5

78

CHOLMOD. First, the variable time step strategy reduces the number of time points.

Second, the factorization of the EPPCG matrix is only computed once and the matrix

factor is reused at each time point during the whole process. In the PCG process, solving

the enlarged partition acts as a preconditioner which is a good approximation of the

conductance matrix. The factorization of the preconditioner is conducted at the initial

time step and stored for reuse. In the transient analysis, the factor does not need to be

computed at each time point although the conductance matrix changes. This makes

Table XV. EPPCG performance with different time step strategies

Circuit
EP-

size

RL-

size

EPPCG(fixed time

step)

EPPCG(variable

time step)

Sp-imp #Timesteps T #Timesteps T

ibmpg3t 30 25 1000 376.3 358 139.1 2.7

ibmpg4t 30 25 1000 637.3 274 179.4 3.6

ibmpg5t 30 25 1000 364.9 370 139.5 2.6

ibmpg6t 75 60 1000 754.4 363 302.9 2.5

79

EPPCG perform well since the factorization is the most expensive process at each

transient iteration.

IV.3.3 Comparison of EPPCG with fixed time step and EPPCG with variable time step

In order to investigate the performance of EPPCG in constant step analysis and variable

step analysis, we present the results in Table XV and Figure 17. The EPPCG with

variable time step benefits from reduced number of time points and reuse of matrix

Figure 17. Performance comparison among CHOLMOD, EPPCG(fixed step) and

EPPCG(variable step)

0

100

200

300

400

500

600

700

800

ibmpg3t ibmpg4t ibmpg5t ibmpg6t

cholmod
(fixed time step)

EPPCG
(fixed time step)

EPPCG
(variable time step)

80

factors. The overall speed improvement obtained over fixed time step analysis ranges

from 2.5X to 3.6X.

The comparison among CHOLMOD, EPPCG with fixed time step and EPPCG

with variable time step is presented in Figure 17. From the figure, it can be seen that

EPPCG with variable time step is the fastest.

Table XVI. MPI parallelization performance

Circuit
EP-

size

RL-

size
#steps

EPPCG(serial) EPPCG(parallel)

speedup

T T

ibmpg3t 30 25 358 987.6 139.1 7.1

ibmpg4t 30 25 274 1309.6 179.4 7.3

ibmpg5t 30 25 370 1046.3 139.5 7.5

ibmpg6t 75 60 363 2090.0 302.9 6.9

81

IV.3.4 MPI-based parallel performance

In Table XVI, the MPI parallel performance is shown. The power grid is divided into

3*3 partitions and 9 MPI processes are created. The comparison between serial and

parallel runtime with variable time step is presented. In our variable time step scheme,

the matrix factors are reused at each time point. As a result, the solving process is much

more costly than the matrix factorization. Therefore, the parallelization of solving

process determines the performance of MPI implementation. In our experiments, the

speedup obtained ranges from 6.9X-7.5X.

Table XVII. EPPCG performance with different number of partitions

Circuit EP-size RL-size 3*3 (S) 4*4 (S) 5*5 (S)

ibmpg3t 30 25 139.1 121.5 151.3

ibmpg4t 30 25 179.4 147.6 181.4

ibmpg5t 30 25 139.5 119.8 142.6

ibmpg6t 75 60 302.9 279.5 276.3

82

IV.3.5 Impact of partitioning

In order to demonstrate the influence of different partitioning methods, Table XVII and

Figure 18 are constructed. In table XVII, all the partitioning methods share the same EP-

size and RL-size. The experiments were conducted using variable time step strategy.

From the table, more partitions do not always imply higher speed. This is caused by MPI

more expensive communication overheads when more partitions are created.

Figure 18. Transient performance with different partitioning scheme

0

50

100

150

200

250

300

350

3*3 (S) 4*4 (S) 5*5 (S)

ibmpg3t

ibmpg4t

ibmpg5t

ibmpg6t

83

CHAPTER V

CONCLUSION

In this dissertation, a preconditioned iterative solver for large power grid simulation on

multicore CPU-GPU platforms is presented. The algorithm divides the power grid into

partitions and extends the partitions to obtain more accurate voltage solution. Breadth

first search is employed to extend the partition. In order to further reduce the boundary

solution error, Preconditioned Conjugate Gradient (PCG) method is adopted. Solving the

enlarged partitions acts as an implicit preconditioner for PCG. We outlined a two-tier

parallel scheme that utilizes MPI-GPU hybrid approach. In static analysis, the

experimental results show that the implementation achieves high parallel efficiency

using MPI on multicore-CPUs. GPU helps in accelerating the parallel implementation by

an additional factor in the range of 1.4X-2.4X. The results also indicate that higher GPU

speedup can be achieved by using larger benchmarks. The combination of an effective

preconditioner and efficient parallelization allows the EPPCG to achieve speed

improvements in the range of [61X-142X] over a state-of-the-art direct solver in static

analysis and [2.5X-3.2X] in transient analysis. The main contribution of this work can be

summarized as follows. Firstly, an efficient preconditioner is constructed such that the

iterative solver converges very fast. Secondly, the preconditioning process that

dominates the solver runtime can be fully parallelized. Thirdly, a breadth-first search

method to enlarge the partitions is adopted to ensure the enlarged-partition used for

preconditioning is light-weight.

84

In future research, the improvement of preconditioner can be considered. A

potential improvement would utilize the positions of the C4 bumps. In detail, C4 bumps

influence the nodes that are close to them more than the nodes that are far away. First,

when growing the BFS tree, the paths that contain at least one C4 bump would be

retained; the paths that contain no C4 bumps would be omitted. Second, the growth of

BFS tree can stop when encountering a C4 bump for a path. This method will guarantee

each path has only one C4 bump. For both methods above, the size of the conductance

can be reduced significantly. In this case, the runtime of the factorization will be

reduced. For transient analysis, a strategy can be designed to better exploit the advantage

of EPPCG method. For fixed time-step settings, EPPCG does not have significant

advantage over CHOLMOD. In varying time-step settings, CHOLMOD suffers from

costly factorization at each time point. Multi-step methods can be used on EPPCG to

obtain more accurate and faster implementations.

85

REFERENCES

[1] R. J. Baker, CMOS Circuit Design, Layout, and Simulation: Wiley-IEEE Press,

2010.

[2] F. Najm, Circuit Simulation: Wiley-IEEE Press, 2010.

[3] J. Darnauer, D. Chengson, B. Schmidt, E. Priest, D. A. Hanson, and W. G.

Petefish, "Electrical evaluation of flip-chip package alternatives for next

generation microprocessors," Advanced Packaging, IEEE Transactions on, vol.

22, pp. 407-415, 1999.

[4] Q. K. Zhu, Power Distribution Network Design for VLSI: Wiley-Interscience

Press, 2004.

[5] S. Borkar, "Low power design challenges for the decade," in Design Automation

Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific,

pp. 293-296, 2001.

[6] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, "Reducing

power in high-performance microprocessors," in Design Automation Conference,

1998. Proceedings, pp. 732-737, 1998.

[7] Y. Saad, "SPARSKIT: a basic tool kit for sparse matrix computations,"

University of Illinois, Urbana, IL, 1994.

[8] T. A. Davis and W. W. Hager, "Dynamic Supernodes in Sparse Cholesky

Update/Downdate and Triangular Solves," ACM Trans. Math. Softw., vol. 35, pp.

1-23, 2009.

86

[9] A. George, "Nested Dissection of a Regular Finite Element Mesh," SIAM Journal

on Numerical Analysis, vol. 10, pp. 345-363, 1973.

[10] M. T. Heath, E. Ng, and B. W. Peyton, "Parallel Algorithms for Sparse Linear

Systems," SIAM Review, vol. 33, pp. 420-460, 1991.

[11] H. A. van der Vorst, "Efficient and reliable iterative methods for linear systems,"

Journal of Computational and Applied Mathematics, vol. 149, pp. 251-265,

2002.

[12] Y. Saad, Iterative Methods for Sparse Linear Systems: Society for Industrial and

Applied Mathematics, 2003.

[13] J. Demmel, Applied Numerical Linear Algebra: Society for Industrial and

Applied Mathematics, 1997.

[14] The Spice Page. Available:

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

[15] C. Chung-Han, T. Nien-Yu, Y. Hao, L. Che-Rung, S. Yiyu, and C. Shih-Chieh,

"On the preconditioner of conjugate gradient method: A power grid simulation

perspective," in Computer-Aided Design (ICCAD), 2011 IEEE/ACM

International Conference on, pp. 494-497, 2011.

[16] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, "A multigrid-like technique for

power grid analysis," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 21, pp. 1148-1160, 2002.

87

[17] Y. Jianlei, L. Zuowei, C. Yici, and Z. Qiang, "PowerRush: A linear simulator for

power grid," in Computer-Aided Design (ICCAD), 2011 IEEE/ACM

International Conference on, pp. 482-487, 2011.

[18] C. Tsung-Hao and C. C. Chen, "Efficient large-scale power grid analysis based

on preconditioned Krylov-subspace iterative methods," in Design Automation

Conference, 2001. Proceedings, pp. 559-562, 2001.

[19] B. T. Boghrati and S. S. Sapatnekar, "Incremental power network analysis using

backward random walks," in Design Automation Conference (ASP-DAC), 2012

17th Asia and South Pacific, pp. 41-46, 2012.

[20] B. T. Boghrati and S. Sapatnekar, "Incremental solution of power grids using

random walks," in Design Automation Conference (ASP-DAC), 2010 15th Asia

and South Pacific, pp. 757-762, 2010.

[21] Z. Xueqian, W. Jia, F. Zhuo, and H. Shiyan, "Power grid analysis with

hierarchical support graphs," in Computer-Aided Design (ICCAD), 2011

IEEE/ACM International Conference on, pp. 543-547, 2011.

[22] Z. Yu and M. D. F. Wong, "Fast algorithms for IR drop analysis in large power

grid," in Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International

Conference on, pp. 351-357, 2005.

[23] S. R. Nassif and J. N. Kozhaya, "Fast power grid simulation," in Design

Automation Conference, 2000. Proceedings 2000, pp. 156-161, 2000.

88

[24] D. Wei and L. Peng, "Parallelizable stable explicit numerical integration for

efficient circuit simulation," in Design Automation Conference, 2009. DAC '09.

46th ACM/IEEE, pp. 382-385, 2009.

[25] W. Dong and P. Li, "Parallel circuit simulation with adaptively controlled

projective integration," ACM Trans. Des. Autom. Electron. Syst., vol. 16, pp. 1-

24, 2011.

[26] R. Achar, M. S. Nakhla, H. S. Dhindsa, A. R. Sridhar, D. Paul, and N. M.

Nakhla, "Parallel and Scalable Transient Simulator for Power Grids via

Waveform Relaxation (PTS-PWR)," Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 19, pp. 319-332, 2011.

[27] W. Jia and X. Xuanxing, "Scalable power grid transient analysis via MOR-

assisted time-domain simulations," in Computer-Aided Design (ICCAD), 2013

IEEE/ACM International Conference on, pp. 548-552, 2013.

[28] Y. Jianlei, L. Zuowei, C. Yici, and Z. Qiang, "PowerRush : Efficient transient

simulation for power grid analysis," in Computer-Aided Design (ICCAD), 2012

IEEE/ACM International Conference on, pp. 653-659, 2012.

[29] L. Yu-Min and C. C. P. Chem, "Power grid transient simulation in linear time

based on transmission-line-modeling alternating-direction-implicit method," in

Computer Aided Design, 2001. ICCAD 2001. IEEE/ACM International

Conference on, pp. 75-80, 2001.

[30] Z. Pan, C. Yici, S. X. Tan, L. Zuying, and H. Xianlong, "Transient analysis of

on-chip power distribution networks using equivalent circuit modeling," in

89

Quality Electronic Design, 2004. Proceedings. 5th International Symposium on,

pp. 63-68, 2004.

[31] Y. Ting and M. D. F. Wong, "PGT_SOLVER: An efficient solver for power grid

transient analysis," in Computer-Aided Design (ICCAD), 2012 IEEE/ACM

International Conference on, pp. 647-652, 2012.

[32] Y. Cai, J. Shi, Z. Pan, X. Hong, and S. X. D. Tan, "Large scale P/G grid transient

simulation using hierarchical relaxed approach," Integration, the VLSI Journal,

vol. 41, pp. 153-160, 2008.

[33] B. Barney. MPI tutorial. Available: https://computing.llnl.gov/tutorials/mpi/

[34] The OpenMP API. Available: http://openmp.org/wp/

[35] W. Enhua and L. Youquan, "Emerging technology about GPGPU," in Circuits

and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, pp. 618-

622, 2008.

[36] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury, "Multifrontal

Factorization of Sparse SPD Matrices on GPUs," in Parallel & Distributed

Processing Symposium (IPDPS), 2011 IEEE International, pp. 372-383, 2011.

[37] C. D. Yu, W. Wang, and D. l. Pierce, "A CPU-GPU hybrid approach for the

unsymmetric multifrontal method," Parallel Comput., vol. 37, pp. 759-770,

2011.

[38] D. Yangdong, B. D. Wang, and M. Shuai, "Taming irregular EDA applications

on GPUs," in Computer-Aided Design - Digest of Technical Papers, 2009.

ICCAD 2009. IEEE/ACM International Conference on, pp. 539-546, 2009.

90

[39] R. O. Topaloglu and B. Gaster, "GPU programming for EDA with OpenCL," in

Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference

on, pp. 63-66, 2011.

[40] S. Cauley, V. Balakrishnan, and K. Cheng-Kok, "A Parallel Direct Solver for the

Simulation of Large-Scale Power/Ground Networks," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 29, pp. 636-641,

2010.

[41] Z. Yu and M. D. F. Wong, "Fast block-iterative domain decomposition algorithm

for IR drop analysis in large power grid," in Quality Electronic Design (ISQED),

2010 11th International Symposium on, pp. 277-283, 2010.

[42] Z. Zeng, Z. Feng, P. Li, and V. Sarin, "Locality-Driven Parallel Static Analysis

for Power Delivery Networks," ACM Trans. Des. Autom. Electron. Syst., vol. 16,

pp. 1-17, 2011.

[43] S. Kai, Z. Quming, K. Mohanram, and D. C. Sorensen, "Parallel domain

decomposition for simulation of large-scale power grids," in Computer-Aided

Design, 2007. ICCAD 2007. IEEE/ACM International Conference on, pp. 54-59,

2007.

[44] L. Zhang and V. Sarin, "An enlarged-partition based preconditioned iterative

solver for parallel power grid simulation," in Quality Electronic Design (ISQED),

2014 15th International Symposium on, pp. 715-722, 2014.

91

[45] X. Xuanxing and W. Jia, "Parallel forward and back substitution for efficient

power grid simulation," in Computer-Aided Design (ICCAD), 2012 IEEE/ACM

International Conference on, pp. 660-663, 2012.

[46] Q. Haifeng, S. R. Nassif, and S. S. Sapatnekar, "Power grid analysis using

random walks," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 24, pp. 1204-1224, 2005.

[47] B. T. Boghrati and S. Sapatnekar, "A scaled random walk solver for fast power

grid analysis," in Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2011, pp. 1-6, 2011.

[48] S. T. Weikun Guo, Zuying Luo, Xialong Hong, "Partial random walks for

transient analysis of large power distribution networks," IEICE transactions on

fundamentals of electronics, communications and computer science, vol. 87, p. 8,

2004.

[49] Z. Min, R. V. Panda, S. S. Sapatnekar, T. Edwards, R. Chaudhry, and D. Blaauw,

"Hierarchical analysis of power distribution networks," in Design Automation

Conference, 2000. Proceedings 2000, pp. 150-155, 2000.

[50] Z. Min, R. V. Panda, S. S. Sapatnekar, and D. Blaauw, "Hierarchical analysis of

power distribution networks," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 21, pp. 159-168, 2002.

[51] S. Jin, C. Yici, S. X. D. Tan, J. Fan, and H. Xianlong, "Pattern-Based Iterative

Method for Extreme Large Power/Ground Analysis," Computer-Aided Design of

92

Integrated Circuits and Systems, IEEE Transactions on, vol. 26, pp. 680-692,

2007.

[52] S. Jin, C. Yici, H. Wenting, M. Liwei, S. X. Tan, H. Pei-Hsin, et al., "GPU

friendly Fast Poisson Solver for structured power grid network analysis," in

Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE, pp. 178-183,

2009.

[53] K. Daloukas, N. Evmorfopoulos, P. Tsompanopoulou, and G. I. Stamoulis, "A 3-

D Fast Transform-based preconditioner for large-scale power grid analysis on

massively parallel architectures," in Quality Electronic Design (ISQED), 2014

15th International Symposium on, pp. 723-730, 2014.

[54] K. Daloukas, N. Evmorfopoulos, G. Drasidis, M. Tsiampas, P. Tsompanopoulou,

and G. I. Stamoulis, "Fast Transform-based preconditioners for large-scale power

grid analysis on massively parallel architectures," in Computer-Aided Design

(ICCAD), 2012 IEEE/ACM International Conference on, pp. 384-391, 2012.

[55] Z. Zhiyu, X. Tong, F. Zhuo, and L. Peng, "Fast static analysis of power grids:

Algorithms and implementations," in Computer-Aided Design (ICCAD), 2011

IEEE/ACM International Conference on, pp. 488-493, 2011.

[56] A. Dalal, L. Lev, and S. Mitra, "Design of an efficient power distribution

network for the UltraSPARC-I microprocessor," in Computer Design: VLSI in

Computers and Processors, 1995. ICCD '95. Proceedings., 1995 IEEE

International Conference on, pp. 118-123, 1995.

93

[57] J. Singh and S. S. Sapatnekar, "Partition-based algorithm for power grid design

using locality," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 25, pp. 664-677, 2006.

[58] S. X. D. Tan, C. J. R. Shi, and L. Jyh-Chwen, "Reliability-constrained area

optimization of VLSI power/ground networks via sequence of linear

programmings," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 22, pp. 1678-1684, 2003.

[59] Z. Cheng, V. F. Pavlidis, and G. De Micheli, "Voltage propagation method for 3-

D power grid analysis," in Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2012, pp. 844-847, 2012.

[60] L. Pillage, Electronic Circuit and System Simulation Methods (SRE): McGraw-

Hill, Inc., 1999.

[61] D. F. Richard Burden, Numerical Analysis, Fourth Edition: PWS-KENT, 1988.

[62] E. Chiprout, "Fast flip-chip power grid analysis via locality and grid shells," in

Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International

Conference on, pp. 485-488, 2004.

[63] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, "Algorithm 887:

CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate,"

ACM Trans. Math. Softw., vol. 35, pp. 1-14, 2008.

[64] IBM P/G benchmarks. Available: http://dropzone.tamu.edu/~pli/PGBench/

[65] S. R. Nassif, "Power grid analysis benchmarks," in Design Automation

Conference, 2008. ASPDAC 2008. Asia and South Pacific, pp. 376-381, 2008.

94

[66] A. Vladimirescu, The Spice Book: John Wiley and Sons, Inc., 1994.

[67] T. Quarles, "The SPICE3 implementation guide," EECS Department, University

of California, Berkeley, Berkeley, California, 1989.

