THE EFFECTS OF EXTERNAL TEMPERATURE ON THE ENERGY CONSUMPTION OF HOUSEHOLD REFRIGERATOR-

FREEZERS AND FREEZERS

A Thesis

by

TIFFANY SUE BURGESS

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Michael Pate Committee Members, Harry Hogan Pavel Tsvetkov Head of Department, Andreas Polycarpou

August 2015

Major Subject: Mechanical Engineering

© Copyright 2015 Tiffany Burgess

ABSTRACT

Refrigerating units are a major end use of electricity across the residential sector. Specifically in the United States, many households utilize a second refrigerator or freezer in unconditioned spaces, such as a garage or basement. With efforts to improve efficiency and reduce consumption, it is important to understand how a unit behaves outside the design conditions. The forecasted annual energy consumption as published on the EnergyGuide sticker is determined by testing the unit at a specified external temperature that simulates the loads of an indoor kitchen and does not accurately reflect the consumption at either thermal extremes. During this project, dorm-size refrigerators, standard-size refrigerators, and chest freezers were tested at various external temperatures ranging from 33°F to 110°F to determine the trend of the annual energy consumption and related cost.

The results of these tests were that, in general, the consumption increases with increasing external temperature. There was interesting behavior at the lower temperatures that requires further research, but the defining trend followed a cubic regression, rather than linear. Housing a unit in a cooler environment will result in a lower energy consumption, but it is recommended that consumers do not store their refrigerators or freezers in areas that will experience temperatures above 90°F or below 55°F.

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Michael Pate, and my committee members, Dr. Harry Hogan and Dr. Pavel Tsvetkov, for their guidance and support throughout the course of this research.

Many thanks are owed to Mr. James Sweeney, Mrs. Kathy Wadle, and the other graduate students at the Riverside Energy Efficiency Lab for assisting me in my project.

I want to extend my gratitude to Mr. Ken Jang with Electrolux Major Appliance for his guidance and generous donation to my research.

Thanks also go to my friends, colleagues, and the department faculty and staff for making my time at Texas A&M University a great experience.

I give all glory to my God for blessing me with this opportunity.

Finally, thanks to my mother and father for their encouragement and to my fiancé for his patience and love.

NOMENCLATURE

А	Amperage (amperes)
С	Annual Energy Cost (\$/yr)
СТ	Time of Complete Defrost Cycle (hr)
EP	Energy Use in Test Period (kWh)
ET	Energy Use per Day (kWh/day)
EY	Energy Use per Year (kWh/yr)
ft	Length (feet)
hr	Time (hour)
Hz	Frequency (hertz)
Ι	Current (amperes)
k	Correction Factor
kWh	Energy (kilowatt-hour)
m	Slope
min	Time (minute)
PF	Power Factor
S	Time (seconds)
Т	Test Period Time (min)
T _{actual}	Actual Temperature (°F)
T _{measured}	Thermocouple Measurement (°F)

U	Uncertainty
V	Voltage (volts)
yr	Time (year)

Symbols

\$	Currency (US Dollar)
Δ	Change in
د	Length (foot)
"	Length (inch)
/	Per
%	Percent
°F	Temperature (degrees Fahrenheit)

TABLE OF CONTENTS

ABSTRAG	CT	ii
ACKNOW	VLEDGEMENTS	iii
NOMENC	CLATURE	iv
LIST OF F	FIGURES	ix
LIST OF 7	TABLES	xvi
1. INTRO	DUCTION	1
2. REVIEV	W OF LITERATURE	3
2.1 2.2 2.3	Review of Technical Reports DOE/ENERGY STAR® AHAM HRF-1-2008	5
3. BACKC	GROUND	7
3.1 3.2	Underlying TheoryCalculations from Empirical Data3.2.1Non-Automatic Units3.2.2Long-Time Automatic Defrost Units	9 10
4. METHO	ODOLOGY	13
4.1 4.2	Test Unit SpecificationsInstrumentation4.2.1Temperature4.2.2Power	14 15
4.3	 Uncertainty 4.3.1 Uncertainty of Temperature Measurements 4.3.2 Uncertainty of Power Measurements 4.3.3 Uncertainty of Energy and Cost Calculations 	17 19

5. TEST SET-UP
5.1 Temperature Measurements 25 5.1.1 Dorm-Size Units 26 5.1.2 Standard-Size Units 29 5.1.3 Chest Freezer Units 31 5.2 Power Measurements 34
5.3 Psychometric Chamber
6. RESULTS FOR DORM-SIZE UNITS
6.1Temperature406.2Energy Consumption476.3Comparisons50
7. RESULTS FOR STANDARD-SIZE UNITS
7.1Temperature567.2Energy Consumption667.3Comparisons72
8. RESULTS FOR CHEST FREEZERS
8.1Temperature
9. CONCLUSIONS
10. FUTURE WORK
REFERENCES
APPENDIX A: COMPARISON WITH COMMERCIALLY AVAILABLE UNITS 100
APPENDIX B: THERMOCOUPLE CALIBRATION COEFFICIENTS
APPENDIX C: TEMPERATURE AND POWER PLOTS FOR DORM-SIZE
UNITS

APPENDIX D: TEMPERATURE AND POWER PLOTS FOR STANDARD-SIZE	
UNITS	.118
APPENDIX E: TEMPERATURE AND POWER PLOTS FOR CHEST FREEZER	
UNITS	.157
APPENDIX F: SAMPLES OF DATA	178

LIST OF FIGURES

Figure 1. Energy versus time graph for long-time automatic defrost unit11
Figure 2. Photo of support platform
Figure 3. Photo of the NI thermocouple modules and compact DAQ for temperature measurements
Figure 4. LabVIEW block diagram for thermocouple data collection and recording26
Figure 5. Schematic of thermocouple placement for dorm-size units (front)27
Figure 6. Schematic of thermocouple placement for dorm-size units (back)
Figure 7. Photo of instrumented dorm-size test unit
Figure 8. Schematic of thermocouple placement for standard-size units (front)30
Figure 9. Schematic of thermocouple placement for standard-size units (back)
Figure 10. Photo of instrumented standard-size test unit
Figure 11. Schematic of thermocouple placement for chest freezers (front)32
Figure 12. Schematic of thermocouple placement for chest freezers (left side)
Figure 13. Photo of instrumented chest freezer test unit
Figure 14. Schematic of wiring for power measurements
Figure 15. Photo of electrical components and wiring for power measurements
Figure 16. Sample of Elkor Technologies software interface for power measurements and recording
Figure 17. Sample of psychometric room interface for temperature control

Figure 18. Internal temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A	.40
Figure 19. Internal temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B	.41
Figure 20. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A	.41
Figure 21. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B	.42
Figure 22. Individual refrigerator temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A	.42
Figure 23. Individual refrigerator temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B	.43
Figure 24. Unconditioned space temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A	.44
Figure 25. Unconditioned space temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B	.44
Figure 26. Wall temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A	.45
Figure 27. Wall temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B	.45
Figure 28. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A	.46
Figure 29. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B	.46
Figure 30. Power versus time during the test period at 90°Fand median thermostat setting for dorm-size Unit A	.47
Figure 31. Power versus time during the test period at 90°Fand median thermostat setting for dorm-size Unit B	.48
Figure 32. Average annual energy use versus unconditioned space temperature for dorm-size units	.50

Figure 33. Average annual cost versus unconditioned space temperature for dorm- size units
Figure 34. Average annual cost at median setting and predicted annual cost at coldest thermostat setting versus unconditioned space temperature for dorm-size units52
Figure 35. Linear regression for average annual cost versus unconditioned space temperature at median thermostat setting for dorm-size units
Figure 36. Quadratic regression for average annual cost versus unconditioned space temperature at median thermostat setting for dorm-size units
Figure 37. Cubic regression for average annual cost versus unconditioned space temperature at median thermostat setting for dorm-size units
Figure 38. Internal temperature versus unconditioned space temperature at the median and coldest thermostat settings for dorm-size units
Figure 39. Internal temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A
Figure 40. Internal temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B
Figure 41. Internal temperatures versus time during regular compressor cycling at 90°F and median thermostat setting for standard-size Unit A
Figure 42. Internal temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit A
Figure 43. Internal temperatures versus time during regular compressor cycling at 90°F and median thermostat setting for standard-size Unit B
Figure 44. Internal temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit B
Figure 45. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A
Figure 46. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B

Figure 47. Individual freezer temperatures versus time during the regular compressor cycling at 90°F and median thermostat setting for standard-size Unit A61
Figure 48. Individual freezer temperatures versus time during the regular compressor cycling at 90°F and median thermostat setting for standard-size Unit B
Figure 49. Individual freezer temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit A
Figure 50. Individual freezer temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit B
Figure 51. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A
Figure 52. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B
Figure 53. Wall temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A
Figure 54. Wall temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B
Figure 55. Component temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A
Figure 56. Component temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B
Figure 57. Power versus time during the total test at 90°Fand median thermostat setting for standard-size Unit A
Figure 58. Power versus time during the total test at 90°Fand median thermostat setting for standard-size Unit B
Figure 59. Power versus time during the regular compressor cycling at 90°Fand median thermostat setting for standard-size Unit A
Figure 60. Power versus time during the regular compressor cycling at 90°Fand median thermostat setting for standard-size Unit B

Figure 61. Power versus time during the defrost cycle at 90°Fand median thermostat setting for standard-size Unit A
Figure 62. Power versus time during the defrost cycle at 90°Fand median thermostat setting for standard-size Unit B
Figure 63. Average annual energy use versus unconditioned space temperature for standard-size units
Figure 64. Average annual cost versus unconditioned space temperature for standard-size units
Figure 65. Linear regression for average annual cost versus unconditioned space temperature at median thermostat setting for standard-size units
Figure 66. Quadratic regression for average annual cost versus unconditioned space temperature at median thermostat setting for standard-size units
Figure 67. Cubic regression for average annual cost versus unconditioned space temperature at median thermostat setting for standard-size units
Figure 68. Linear regression for average annual cost versus unconditioned space temperature 55°F and above at median thermostat setting for standard-size units76
Figure 69. Quadratic regression for average annual cost versus unconditioned space temperature 55°F and below at median thermostat setting for standard-size units
Figure 70. Internal temperature versus unconditioned space temperature at the median and coldest thermostat settings for standard-size units
Figure 71. Internal temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A
Figure 72. Internal temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit B
Figure 73. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A
Figure 74. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit B

Figure 75. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A
Figure 76. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B
Figure 77. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A
Figure 78. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A
Figure 79. Wall temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A
Figure 80. Wall temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B
Figure 81. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A
Figure 82. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B
Figure 83. Power versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A
Figure 84. Power versus time during the total test at 90°F and median thermostat setting for chest freezer Unit B
Figure 85. Power versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A
Figure 86. Power versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B
Figure 87. Average annual energy use versus unconditioned space temperature for chest freezer units
Figure 88. Average annual cost versus unconditioned space temperature for chest freezer units

Figure 89. Average annual cost at median setting and predicted annual cost at coldest thermostat setting versus unconditioned space temperature for chest freezer units	
Figure 90. Linear regression for average annual cost versus unconditioned space temperature at median thermostat setting for chest freezer units	.91
Figure 91. Quadratic regression for average annual cost versus unconditioned space temperature at median thermostat setting for chest freezer units	.92
Figure 92. Cubic regression for average annual cost versus unconditioned space temperature at median thermostat setting for chest freezer units	.92
Figure 93. Internal temperature versus unconditioned space temperature at the median and coldest thermostat settings for chest freezer units	.93

LIST OF TABLES

Table 1. Specifications for each test unit type 14
Table 2. Manufacturer-specified accuracy for WattsOn® Power Transducers 19
Table 3. Annual energy consumption and cost uncertainty values for the worst case scenario of each type of unit
Table 4. Energy consumption and annual cost at 90°F and median thermostat setting for dorm-size units
Table 5. Energy consumption and annual cost at 90°F and coldest thermostat setting for dorm-size units
Table 6. Energy consumption and annual cost at 90°F and median thermostat setting for standard-size units 70
Table 7. Energy consumption and annual cost at 90°F and coldest thermostat setting for standard-size units 71
Table 8. Energy consumption and annual cost at 90°F and median thermostat setting for dorm-size units
Table 9. Energy consumption and annual cost at 90°F and coldest thermostat setting for dorm-size units

1. INTRODUCTION

Reducing energy consumption is not a new concept, but novel methods to achieve higher efficiencies and prevent waste are increasingly sought after. One end use of electricity that has potential for a significant improvement is refrigeration. Specifically in the United States' residential sector, refrigeration uses nearly 10% of the electricity generated, which amounts to approximately 200 billion kWh [1]. According to a 2005 Department of Energy survey, 99.9% of U.S. households have refrigerators, and over 20% have more than one unit [2]. In the last 20 years, household refrigerators have become nearly twice as thermodynamically efficient in terms of energy consumed versus cooling provided [3]. However, investigating factors that influence the "ideal case" can provide insight into reducing the energy requirements even further.

Under the United States' Energy Labeling Rule, refrigerator companies, among other household appliance manufacturers, are required to disclose estimated annual energy consumption and usage costs to consumers. This information is made available by means of a bright yellow "EnergyGuide" label posted on the appliance. The forecasted energy usage is determined through experimental tests that follow the Department of Energy's (DOE) procedure, a derivative of the Association of Home Appliance Manufactures' (AHAM) standard HRF-1-2008: Energy and Internal Volume of Refrigerating Appliances.

1

A key parameter affecting the energy consumption of a household refrigeration unit is the design exterior temperature. For example, a unit kept in a kitchen will be exposed to moderate temperatures around 70°F while a unit in an unconditioned space, such as a garage, may experience both high and low temperature extremes depending on the season and geographic location. HRF-1-2008 specifies an ambient testing temperature of 90° F with no door openings to simulate load conditions synonymous to a 70° F room temperature with door openings. No other ambient testing temperatures are given, so the relationship between temperature and energy consumption is not considered in the EnergyGuide forecast.

With many American households utilizing a secondary refrigerator-freezer (also referred to as just "refrigerator") or freezer stored in an unconditioned space (e.g. garage, basement, vacation home, etc.), understanding the impact of extreme environmental conditions on energy performance is of significant value. Therefore, the objective of this project was to determine the effects of external temperatures, ranging from 33°F to 110° F, on the energy consumption of a miniature/dorm-size refrigerator, a standard-size refrigerator, and a chest freezer.

2. REVIEW OF LITERATURE

The performance of household refrigerators and freezers in unconditioned environments is not a heavily researched area. There exists a general consensus among consumers with the support of refrigerator and freezer manufacturers that it is better to keep the unit within a controlled environment, but real data on the behavior of a unit in an unconditioned space is minimal.

2.1 Review of Technical Reports

A paper published in 1995 by Alan Meier who was working in the Energy and Environment Division at Lawrence Berkeley National Laboratory (LBNL) briefly addresses the discrepancy of the energy use of a refrigerator under controlled lab tests versus in the home [4]. In general, this LBNL paper was written to show that refrigerators actually use slightly less energy than the published values when inside a home. It does not address the consumption in extreme, unconditioned spaces. Meier goes into detail about three standards for testing refrigerators: the Department of Energy (DOE), the International Standards Organization (ISO), and the Japanese Industrial Standards (JIS). The paper mentions that the DOE appears to have the most conservative approach, overestimating by about 10% [5].

In Section 7 of the paper, a bar chart is given that shows the published (laboratory) and measured (in field) annual energy consumption values versus the number of units within a certain energy use range [6]. The chart is useful to see that more units are labeled at higher consumption values while more units have measured lower consumption values. However, the chart does not compare the laboratory results and field results of the same unit. Additionally, it is originally from a 1991 report (by Meier), which makes it significantly outdated given the improvements to refrigerators just in the last decade.

P.K. Bansal, an American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) member at the University of Auckland in New Zealand, wrote a paper in 2003 for the International Journal of Refrigeration [7]. Bansal's paper also looks into the various testing standards and proposes new methods for improving such energy tests. To start, Bansal points out that the ambient testing temperature of all the standards does not accurately reflect the temperature in a kitchen [8]. For example, the DOE testing procedure is at 90°F, whereas a kitchen is typically around 70-75°F.

Two plots are given showing the effect of ambient temperature on the annual energy consumption from experiments performed by the author at approximately 55°F, 80°F, and 90°F. The trend of all units is very similar and fairly linear, but data was only taken at those three temperatures [9].

A report over a metering study conducted in 2003-2004 shed a lot of light on the number of refrigerating units kept in unconditioned spaces [10]. The study was conducted on 160 older refrigerators and 30 new/replacement refrigerators in consumer homes, and a major finding was that 80% of older units and 83% of new/replacement units were actually located in the kitchen. They also determined that all older units used

more than the published annual energy while the new/replacement models used less [11]. However, the study did not look at units specifically outside the kitchen.

2.2 DOE/ENERGY STAR®

The DOE has set forth a standard for determining and reporting the estimated annual energy consumption of household appliances, including refrigerators and freezers. Their standard is actually a derivative from the Association of Home Appliance Manufacturers (AHAM) standard for testing that will be detailed in the following section [12].

The requirements for ENERGY STAR® certification are in conjunction with DOE standards and test method. To be eligible, refrigerators "must be 20% more efficient than required by the minimum federal standard," and freezers of capacity 7.75 ft³ or greater must be 10% more efficient [13]. The minimum federal requirement is determined by applying an equation based on the unit type and capacity [14].

2.3 AHAM HRF-1-2008

AHAM's standard gives a very detailed outline as to how one may collect data to produce an annual energy consumption estimate based upon the type of unit and defrost settings [15]. In the energy section of the standard, test conditions are outlined, and it does not call for testing at temperatures aside from 90°F with no door openings, which is estimated to mimic the behavior at 70° F with door openings [16].

According to the standard, the test setup consists of strategically fixing weighted temperature-measuring devices, such as thermocouples, within the refrigerator and

freezer compartments. Additional thermocouples are placed outside the unit for ambient temperature verification. The energy data is to be collected by watt-hour meters, voltmeters, micrometers, or their equivalents [17]. Specific settings for various aspects of the test unit are given, such as crispers and ice makers.

Steady state within the compartments is determined by performing two 2-hour tests with a 3-hour intermittence. If the average internal temperatures do not change at a rate more than 0.042 °F per hour, steady state is said to be achieved. It is only after this that the actual energy consumption test may be performed [18]. For non-automatic defrost units, the test period should be at least three hours long and contain at least two compressor cycles. For units with automatic defrost, two test periods must be evaluated: regular compressor cycling (like the non-automatic units) and a defrost cycle. Finally, formulas for computing the energy consumption per day are given, which can easily converted to per year [19].

3. BACKGROUND

The main focus of this project was the evaluation of experimental data. Nevertheless, understanding the foundational theory from thermodynamics and heat transfer was of importance. Furthermore, AHAM HRF-1-2008 provides several equations for extrapolating the test data to determine the annual energy consumption.

3.1 Underlying Theory

A refrigeration unit uses a simple, closed vapor-compression cycle with a lowboiling refrigerant, such as R-134a, to provide a cooling effect within a thermally insulated cabinet.

With known thermal resistance values for the walls, a theoretical, conductive heat gain into the cabinet could be calculated using Fourier's law. By assuming only conductive heat transfer and using the First Law of Thermodynamics, this heat gain would be equivalent to the heat absorbed by the evaporator coil. If the unit's coefficient of performance (COP) is also known, the minimum required power input to the compressor can be established using the following equation:

$$COP = \frac{\dot{Q}_L}{\dot{W}_{comp,in}} \tag{1}$$

where \dot{Q}_L is the heat absorbed by the evaporator and $\dot{W}_{comp,in}$ is the compressor power [20].

If, however, the COP is unknown and cannot be obtained, determining the work input requires a more thorough analysis. Two important variables are the maximum and minimum operating pressures, which are typically published in the unit's specifications. Assuming the ideal case of an isentropic compressor and isenthalpic expansion device, the enthalpies before and after the evaporator coil can be established with thermodynamic tables. (This also requires some assumptions regarding the liquid/vapor quality of the fluid.) The following equation shows the relationship between these enthalpies and the minimum compressor power.

$$W_{comp,in} = \dot{m}(h_{after} - h_{before}) \tag{2}$$

Again, $\dot{W}_{comp,in}$ refers to the input power, h_{after} is the enthalpy just after the evaporator coil, h_{before} is the enthalpy just before the evaporator coil, and \dot{m} is the mass flow rate of the refrigerant [20]. The mass flow rate is not commonly published, so the manufacturer would have to be contacted.

Either mathematical method would result in a minimum power input under many idealistic assumptions, including a simple vapor-compression cycle without additional ventilation fans or thermostat control modules. Thus, the models would not give accurate energy requirements, rather a baseline estimate. Additionally, neither model would be capable of accurately reflecting the effects of external temperature since the COP in Equation (1) would have come from the design conditions and temperature is not even included in Equation (2).

3.2 Calculations from Empirical Data

Once the data from experimental tests has been collected, HRF-1-2008 specifies how to calculate the daily energy consumption. The equations vary between the types of refrigeration units and defrost settings and can be used to further generate the annual consumption and associated cost. The price of electricity utilized by EnergyGuide (a 2007 national average) at 10.65 ¢/kWh was used for this project for the dorm-size and standard-size units [21]. Since the chest freezers purchased were newer models, their EnergyGuide label used an electric rate of 12 ¢/kWh, so this was used for calculations associated with those units [22].

EnergyGuide labels report the energy consumption of a unit at average refrigerator and freezer temperatures of 39°F and 0°F, respectively. To accomplish such a specific setting, the standard requires that two energy tests be performed: the first at the median temperature control setting and the second at the highest or lowest control setting, whichever will bound the design temperatures. For example, if the median setting yielded an internal temperature of 45°F, the second test would be performed at the coldest setting. A weighted average of the energy use based on the internal temperatures would then be performed. For the purpose of this project and related time

and budget considerations, experimental tests were performed primarily at the median temperature control setting only.

3.2.1 Non-Automatic Units

The tested dorm-size models and chest freezers fall under the category of nonautomatic units because they do not have a built in defrost heater but must be manually defrosted. Per section 5.8.2.1.1 of the standard, the daily energy use in kWh/day can be determined by Equation (3).

$$ET = \frac{EP * 1440 * K}{T} \tag{3}$$

ET is the test cycle energy (kWh/day), *EP* is the test period energy (kWh), 1440 is a conversion factor (min/day), *K* is a correction factor related to unit type (0.7 for chest freezers, 0.85 for wine chillers and upright freezers, and 1 for all other units), and *T* is the time of the test period (min).

To manipulate the test cycle energy into an annual consumption and annual cost, the following equations can be used:

$$EY = ET * 365 \tag{4}$$

$$C = EY * 0.1065$$
 (5)

where *EY* is the annual energy use (kWh/year), 365 is a conversion factor (days/year), *C* is the yearly operating cost (\$/year), and 0.1065 is a conversion factor (\$/kWh). The conversion used in the chest freezer cost analyses was 0.12 (\$/kWh).

3.2.2 Long-Time Automatic Defrost Units

The tested standard-size models fall under the category of long-time automatic defrost, and such units can be classified by viewing an energy versus time plot. The regular compressor cycles, a defrost heater cycle, and a compressor recovery cycle can be seen, as depicted in Figure 1.

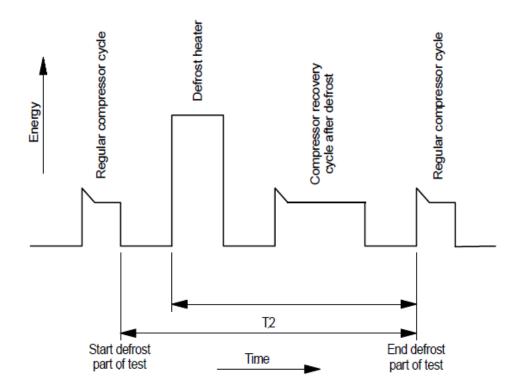


Figure 1. Energy versus time graph for long-time automatic defrost unit [23]

For the energy calculations, the test cycle is composed of two parts: the regular compressor cycles (referred to as part 1) and the complete defrost cycle (referred to as part 2). Equation (6) is the formula for computing daily use for such units.

,

$$ET = \left(1440 * K * \frac{EP1}{T1}\right) + \left(\left(EP2 - \left(EP1 * \frac{T2}{T1}\right)\right) * K * \frac{12}{CT}\right)$$
(6)

The synonymous symbols that are used in Equations (3)-(5) represent the same quantities in Equation (6). In addition, EP1 is the test period energy for part 1 (kWh), EP2 is the test period energy for part 2 (kWh), T1 is the time of part 1's test period (min), T2 is the time of part 2's test period (min), 12 is a conversion factor to account for a 50% compressor run time (hr/day), and CT is the time required to complete a defrost cycle (hr). EP1 and EP2 are calculated by summing the energy use in the respective test period. Finally, Equations (4) and (5) are still applicable for calculating the annual energy use and cost of long-time automatic defrost units.

The test period requirements set forth by the standard were discussed in greater detail in the Review of Literature, but it is important to note that if the long-time automatic defrost units do not experience a defrost cycle in the test period during a certain test, the energy and cost calculations are performed as if they are non-automatic defrost units.

4. METHODOLOGY

Experimental tests were conducted on refrigerating units of three different classifications: miniature/dorm-size refrigerator-freezers, standard-size refrigerator-freezers, and chest freezers. These were chosen as a representative of the most commonly used household refrigerating appliances, and two identical units of each classification were tested at the same time to provide a means of internal comparison. The test conditions and set-up were guided by HRF-1-2008, but complete compliance with the standard was not a necessity given the nature of research.

During the experimental tests, the data needed for the calculations presented in the previous chapter was collected. Additionally, data pertaining to areas of interest outside the scope of HRF-1-2008 was collected for analysis.

4.1 Test Unit Specifications

The specifications and other information for each unit tested are detailed in Table 1.

Unit Type	Published Energy Use (kWh/yr)	Published Cost (\$/yr)	Total Capacity (ft ³)
Dorm-Size	420	45	3.3
Standard-Size	404	43	18
Chest Freezer	222	27	9.1

The published values of annual energy use and cost provided a basis to compare with the results of the tests performed at the conditions specified by HRF-1-2008. Scatter plots showing typical, commercially available units of each category and the chosen test units is available in the appendix.

4.2 Instrumentation

The standard provided a general guideline for selecting the instrumentation based on measurement type and uncertainty constraints. While the temperature measurements did not directly affect the energy consumption calculations, they were necessary to determine if steady-state had been accomplished, the bounds for interpolating to find the energy requirements at the desired internal temperatures (for tests at different internal temperature settings), and the ambient temperature. Additionally, measuring the energy consumption directly can be problematic given the nature of AC circuits with apparent power, reactive power, and true power, so special consideration had to be given in selecting the equipment.

4.2.1 Temperature

The temperature-measuring devices of choice for the internal compartments, mechanical components, and ambient temperatures near the unit were T-type thermocouples because of their accuracy ($\pm 1^{\circ}$ C or $\pm 1.8^{\circ}$ F), low cost, and easy maintenance.

Per the standard, cylindrical brass weights of 1.125" nominal height and diameter were used on the thermocouples suspended within the refrigerator compartments of the standard and dorm-size units and the freezer compartments of the standard units and chest freezers. A thermally conductive epoxy was used for fixing the thermocouples to the brass weights and other mechanical components, e.g. the compressor outlet.

For the dorm-size units, however, the brass weights were not used for the freezer compartment. Instead, frozen bags of a water and sawdust mixture were used as the thermal storage as defined in the standard. While the sawdust packages were also supposed to be used with the chest freezers, they were not utilized due to the required quantity (75% internal volume). Instead, silica beads were placed in the bottom of the freezers to serve as a desiccant and remove the water vapor that could potentially freeze and increase the need for a defrost cycle. Thus, the weighted thermocouples were used for thermal stability.

Before testing, the thermocouples were calibrated in house by comparing the measured values to an absolute which was determined by using a professionally

15

calibrated, 4 wire RTD. Three references temperatures (nominally 32°F, 75°F, and 120°F) were accomplished with the use of an ice bath and a dry furnace. The instantaneous readings from each thermocouple and the RTD were compared such that linear coefficients were established and implemented into the data reduction process. These coefficients were also key parameters for the individual thermocouple uncertainty values.

Dry bulb and wet bulb temperatures were measured with 3-wire RTDs at a common location within the psychometric chamber. These RTDs were connected to the computer that controls the temperature within the chamber and did not go into any calculations or appear in any plots.

4.2.2 Power

The power measurements were the lifeblood of the entire project. Two WattsOn® Universal Power Transducers coupled with an ETnet (Ethernet gateway) from Elkor Technologies allowed for the digital collection of single-phase current, voltage, and power factor sampled at a rate of 0.1 Hz, or 1 sample every 10 seconds.

HRF-1-2008 specifies a power supply of 115 ± 1 V at 60 Hz. To step down the supply from a standard outlet at a nominal 120 V, a variable voltage transducer was incorporated into the wiring. Unfortunately, the power quality coming from the local power plant fluctuates beyond the ± 1 V, but this deviation from the standard was considered acceptable as residential homes would receive similar fluctuations.

Because the power transducers were purchased new specifically for this project, additional calibration was not necessary, as the manufacturer specifications were sufficient.

4.3 Uncertainty

There are two main factors to consider in quantifying the uncertainty of a single measurement: the bias error and the precision error. The bias error is most closely related to the accuracy given by the manufacturer but can also incorporate errors associated with converting a signal from analog to digital, transmitting the signals, and performing a regression. The precision error is a means of quantifying the statistical repeatability of a measurement.

4.3.1 Uncertainty of Temperature Measurements

Since the temperature measurements during the test periods were not at the same, uniform temperature at all times (as would be the case in an ice bath), the precision error was not considered given that the statistical approach on a fluctuating temperature would result in unrealistically high errors. The uncertainty of the thermocouples, thus, was simply the bias error, or uncertainty from the calibration. This value can also incorporate the mediums between the measurement and the recording device, such as the thermocouple modules and DAQ. However, since the measurements were not taken at temperatures close to the limits of the range and were not necessary for energy consumption calculations, these extra sources of error were considered insignificant. As mentioned, a linear regression was performed during the calibration of the thermocouples, and corrective coefficients were established. The regressions followed the formula given in the following:

$$T_{actual} = m * T_{measured} + b \tag{7}$$

 T_{actual} is the corrected temperature, *m* is the slope of the linear regression, $T_{measured}$ is the temperature as read by the thermocouple, and *b* is the y-intercept of the linear regression. Using the Kline-McClintock method for the propagation of uncertainty (Equations (8) and (9)), the resulting uncertainty of each temperature measurement came out to be the slope of the linear regression times the manufacturer specified accuracy, as given in Equation (10).

$$U_{measurement} = \sqrt{\left(\frac{\partial(T_{actual})}{\partial(T_{measured})}U_{thermocouple}\right)^2}$$
(8)

$$\frac{\partial(T_{actual})}{\partial(T_{measured})} = m \tag{9}$$

$$U_{measurement} = m * U_{thermocouple}$$
(10)

In the previous equations, $U_{measurement}$ is the uncertainty of the temperature measurement and $U_{thermocouple}$ is the manufacturer-specified uncertainty of the thermocouple. From this point forward, all symbols with a capital U and a subscript represent the uncertainty of the variable in the subscript.

The worst case of all the thermocouples, both for Unit A and Unit B had an uncertainty of $\pm 1.9^{\circ}$ F, and this particular thermocouple was used to measure the temperature of a mechanical component. The worst case of the thermocouples used in the freezer or refrigerator compartments was $\pm 1.8^{\circ}$ F. The coefficients and resulting uncertainty for each thermocouple used can be found in the appendix.

4.3.2 Uncertainty of Power Measurements

The power measurement uncertainty was similar to that of the thermocouples. The precision error was ignored since the power was continuously cycling, and the errors from extra equipment were not considered. The bias error was not a result from calibration, but it was taken from the manufacturer's accuracy values given in Table 2.

Parameter	Accuracy
Voltage	0.5%
Current	0.2%
Power Factor	0.5%

 Table 2. Manufacturer-specified accuracy for WattsOn® Power Transducers [24]

To consider the worst case scenario, the highest voltage reading during all tests was 118.8 V, and the uncertainty was then ± 0.594 V. The highest current was 3.609 A,

with the resulting uncertainty of ± 0.007 A. Finally the maximum power factor was 1, giving an uncertainty of ± 0.005 . The propagation of these uncertainties in the power calculations was considered during the energy and cost calculations in the following subsection.

4.3.3 Uncertainty of Energy and Cost Calculations

To determine the uncertainty of the annual energy consumption and annual operating cost, the relationship between voltage (V), current (I), power factor (PF), and time had to be known, and it is given by Equation (11).

$$E = V * I * PF * \Delta t \tag{11}$$

The Δt in Equation (11) is the small increment of time between measurements, which was 10 s, and *E* was the energy consumed during that time period. The summation of these individual energy values (in kWh) is the energy consumption during the test period, or *EP*, from Equation (3).

Using Kline-McClintock again, the uncertainty of a single energy calculation was determined by the following set of equations, assuming there is no uncertainty in the time measurement.

$$U_E = \sqrt{\left(\frac{\partial(E)}{\partial(V)}U_V\right)^2 + \left(\frac{\partial(E)}{\partial(I)}U_I\right)^2 + \left(\frac{\partial(E)}{\partial(PF)}U_{PF}\right)^2}$$
(12)

$$\frac{\partial(E)}{\partial(V)} = I * PF * \Delta t \tag{13}$$

$$\frac{\partial(E)}{\partial(I)} = V * PF * \Delta t \tag{14}$$

$$\frac{\partial(E)}{\partial(PF)} = V * I * \Delta t \tag{15}$$

$$U_E = \sqrt{((I * PF * \Delta t)U_V)^2 + ((V * PF * \Delta t)U_I)^2 + ((V * I * \Delta t)U_{PF})^2}$$
(16)

Because the accuracy of the voltage, current, and power factor readings are given as percentages, the uncertainty of the energy consumed varied at each data point. The propagation of the energy uncertainty into the annual energy use and cost analysis depended on the type of unit. The dorm-size units and chest freezers were analyzed differently from the standard-size units since they did not experience defrost cycles. The equations used in this calculation come from the relationships given by Equations (3)-(5) and are detailed in the following:

$$EP = \sum_{test \ period} E \tag{17}$$

$$U_{EP} = \sqrt{\sum_{test \ period} (U_E)^2} \tag{18}$$

$$U_{ET} = \sqrt{\left(\frac{\partial(ET)}{\partial(EP)}U_{EP}\right)^2}$$
(19)

$$\frac{\partial(ET)}{\partial(EP)} = \frac{1440 * K}{T}$$
(20)

$$U_{ET} = \frac{1440 * K}{T} U_{EP}$$
(21)

$$U_{EY} = \sqrt{\left(\frac{\partial(EY)}{\partial(ET)}U_{ET}\right)^2}$$
(22)

$$\frac{\partial(EY)}{\partial(ET)} = 365$$
⁽²³⁾

$$U_{EY} = \sqrt{(365 * U_{ET})^2}$$
(24)

$$U_{C} = \sqrt{\left(\frac{\partial(C)}{\partial(EY)}U_{EY}\right)^{2}}$$
(25)

$$\frac{\partial(C)}{\partial(EY)} = 0.1065 \tag{26}$$

$$U_C = \sqrt{(.\,1065 * U_{EY})^2} \tag{27}$$

The analysis of the standard-size units was the same except for Equations (19) through (21). The following set of equations was used for these units when a defrost cycle occurred.

$$U_{ET} = \sqrt{\left(\frac{\partial(ET)}{\partial(EP1)}U_{EP1}\right)^2 + \left(\frac{\partial(ET)}{\partial(EP2)}U_{EP2}\right)^2}$$
(28)
$$\frac{\partial(ET)}{\partial(EP1)} = \frac{1440 * K}{T_1} - \frac{12 * T_2 * K}{T_1 * CT}$$
(29)

$$\frac{\partial(ET)}{\partial(EP2)} = \frac{12 * K}{CT}$$
(30)

$$U_{ET} = \sqrt{\left(\left(\frac{1440 * K}{T_1} - \frac{12 * T_2 * K}{T_1 * CT}\right) U_{EP1}\right)^2 + \left(\left(\frac{12 * K}{CT}\right) U_{EP2}\right)^2}$$
(31)

However, the worst cases for each type of unit are given in Table 3.

Table 3. Annual energy consumption and cost uncertainty values for the worst case scenario of eachtype of unit

Unit Type	Energy Uncertainty (kWh/yr)	Cost Uncertainty (\$/yr)		
Dorm-Size	± 1.38	± 0.15		
Standard-Size	± 0.15	± 0.02		
Chest Freezer	± 0.13	± 0.02		

5. TEST SET-UP

The test set-up generally followed the requirements of HRF-1-2008. Though certain aspects of the set-up were different for each type of unit, there were also several similarities. For example, the standard calls for the use of a support platform if the temperature of the floor of the chamber is not within 3°F of the desired ambient temperature. Given that the floor of the psychometric chamber is composed of uninsulated concrete, it was assumed that floor temperature would not meet the temperature constraints, and two platforms of wood were constructed such that each unit would have at least 12" of clearance on the sides and front. Figure 2 is a picture of one platform.

Figure 2. Photo of support platform

5.1 Temperature Measurements

Figures 5-1 and 5-2 (pages 17-19) of the standard show the general locations for thermocouple placement within the insulated compartments. In addition to these, four thermocouples were fixed to the geometric center of the top, left, and right walls at an orthogonal distance of 12" (top) or 10" (sides), based on the standard's requirements. The remaining thermocouples were strategically placed on areas of interest, such as the compressor inlet and outlet. These extraneous measurements varied slightly by unit type and will be detailed in following subsections.

For data collection, two National Instruments thermocouple modules (NI 9213) were connected to a compact DAQ (NI cDAQ 9174) that was connected to a computer. A simple LabVIEW program was developed to record the temperature measurements and write them to a text file that could later be opened in Microsoft Excel for reduction. Figure 3 and Figure 4 show the NI modules and DAQ and LabView block diagram, respectively.

Figure 3. Photo of the NI thermocouple modules and compact DAQ for temperature measurements

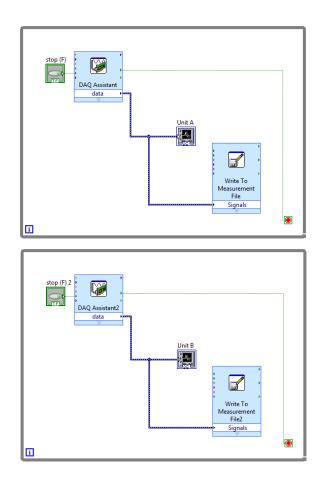


Figure 4. LabVIEW block diagram for thermocouple data collection and recording

5.1.1 Dorm-Size Units

The dorm-size units had two separate cabinets for the freezer and refrigerator. Therefore, it was necessary to measure the temperatures within both cabinets, whereas if the freezer had just been a small (<0.5 ft³) compartment within the refrigerating cabinet, freezer temperature measurements would not have been needed. As mentioned in Section 4.2.1, thermal storage within the freezer was accomplished by means of frozen water and sawdust mixture bags. The bags were plastic, zipper-lock storage bags, and the mixture weight was between 8.16 and 10.88 oz. The bags were stacked within the main compartment in a wire frame for stability and in the door shelves. The total number of bags was 26. Three thermocouples were inserted into the geometric center of three different bags and stacked such that they were in the locations given by Figure 5.

In the refrigerator cabinet, three brass-weighted thermocouples were hung at various heights along the centerline for the width and depth. The other thermocouples were installed at the compressor surface, compressor inlet, compressor outlet, touching an inside wall, touching the adjacent outside wall, and 1' away from the wall, as shown in Figure 5 and Figure 6.

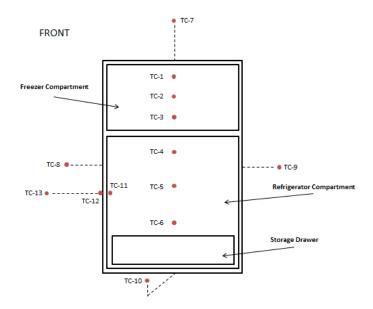


Figure 5. Schematic of thermocouple placement for dorm-size units (front)

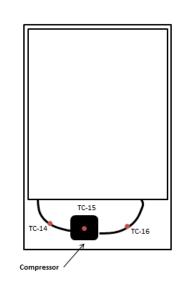


Figure 6. Schematic of thermocouple placement for dorm-size units (back)

A photo of an actual unit is given in Figure 7.

BACK

Figure 7. Photo of instrumented dorm-size test unit

5.1.2 Standard-Size Units

The standard-size units had top-mounted freezer compartments with a width of 30". Being automatic defrost, all thermocouples within the freezer and refrigerator were weighted. The locations of the thermocouples in the freezer varied slightly from that given in the standard. These units were donated and already contained instrumentation (which was later replaced with the same thermocouples used for the other tests), so those previously designated locations were kept. The only deviation was the instead of all three being located at various heights along the vertical in the geometric center, the top and bottom were offset approximately 3" from the back and front walls, respectively.

The remaining thermocouples not in use for the ambient measurements were placed on the compressor inlet, compressor outlet, evaporative inlet, evaporator outlet, condenser outlet, and touching an external wall. These are shown in Figure 8 and Figure 9.

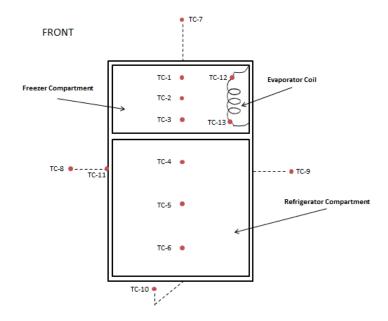


Figure 8. Schematic of thermocouple placement for standard-size units (front)

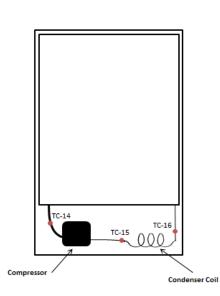


Figure 9. Schematic of thermocouple placement for standard-size units (back)

Figure 10 is a photo of an actual test unit.

BACK

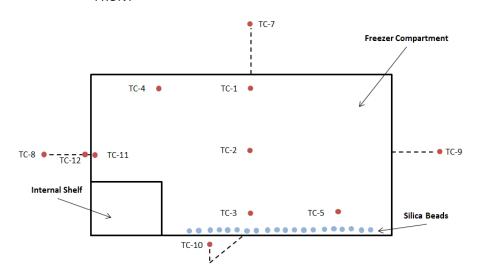


Figure 10. Photo of instrumented standard-size test unit

5.1.3 Chest Freezer Units

The chest freezers were composed of a single cabinet and required 5 internal freezer measurements. As mentioned previously, the standard called for the use of thermal storage packages. However, weighted thermocouples were used in conjunction with dehumidifying silica beads. Three of the thermocouples were placed at various heights along the vertical in the geometric center. Another was fixed equidistantly between the left side and center at a depth of $1\frac{1}{4}$, while the remaining thermocouple was fixed equidistantly between the center and the right side at a depth of $30\frac{1}{4}$.

The remaining thermocouples, aside from those designated for ambient conditions, were fixed to the internal wall, adjacent external wall, compressor inlet, and compressor outlet. All of these can be seen in the following schematics (Figure 11and Figure 12):

FRONT

Figure 11. Schematic of thermocouple placement for chest freezers (front)

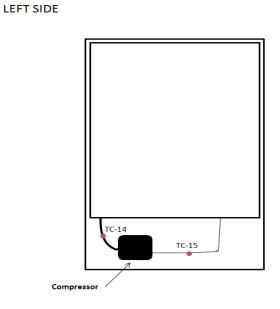


Figure 12. Schematic of thermocouple placement for chest freezers (left side)

Figure 13 is a photo of an actual test unit.

Figure 13. Photo of instrumented chest freezer test unit

5.2 Power Measurements

All three types of units and both test units were connected to the same grid for the power measurements. The schematic in Figure 14 shows the components and wiring to make the automatic data collection possible. While only one WattsOn® transducer is depicted, the second was connected synonymously from the same DC voltage supply. A real photo of the wiring is in Figure 15.

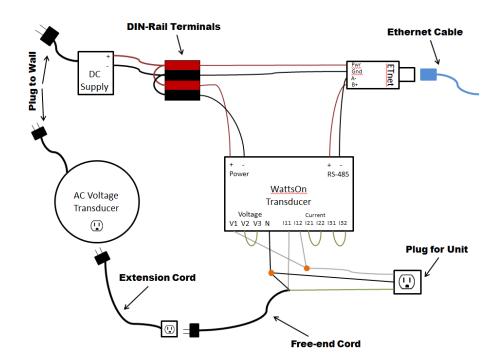


Figure 14. Schematic of wiring for power measurements

Figure 15. Photo of electrical components and wiring for power measurements

The Ethernet cable was connected to the computer with the Elkor Technologies data software. A sample of the interface is shown in Figure 16. Though many quantities were available, only the voltage, current, and power factor were recorded.

	Va	 Vab	 Ia	 Freq	
	Vb	 Vbc	 Ib	 Demand	
	Vc	 Vac	 Ic	 Version	
	V LN Avg	 V LL Avg	 I Avg		
	kWa	 kVAa	 kVARa	 PF a	
	kWb	 kVAb	 kVARb	 PF b	
	kWc	 kVAc	 kVARc	 PF c	
	TTL kW	 TTL kVA	 TTL kVAR	 PF ttl	
	kWh+ a	 kVAh+ a	 kVARh+ a	 kWh a	
	kWh+ b	 kVAh+ b	 kVARh+ b	 kWh b	
	kWh+ c	 kVAh+ c	 kVARh+ c	 kWh c	
	kWh+ ttl	 kVAh+ ttl	 kVARh+ ttl	 kWh ttl	
	kWh- a		kVARh- a	 kVARh a	
Name:	kWh- b		kVARh- b	 kVARh b	
	kWh- c		kVARh- c	 kVARh c	
Modbus ID:	kWh- ttl		kVARh- ttl	 kVARh ttl	
	_				

Figure 16. Sample of Elkor Technologies software interface for power measurements and recording

5.3 Psychometric Chamber

The psychometric chamber is a complex system in and of itself. For simplicity and brevity, in-depth details of the control system's computer code, PID controller constants, and specifications will not be given as the program was in use before the beginning of this project. In general, the program receives dry-bulb and wet-bulb temperature readings from the RTDs and sends voltage signals to the heaters or cooling water valve to bring the chamber to the desired temperature. Should the humidity need to be regulated as well, other valves can be controlled to introduce water vapor into the chamber. The user defines a blower speed and pump speed (if cooling). The cooling water, a mix of water and ethylene glycol, comes from an external chiller and flows through a cooling coil to absorb heat from the circulating air. A sample of the interface is given in Figure 17.

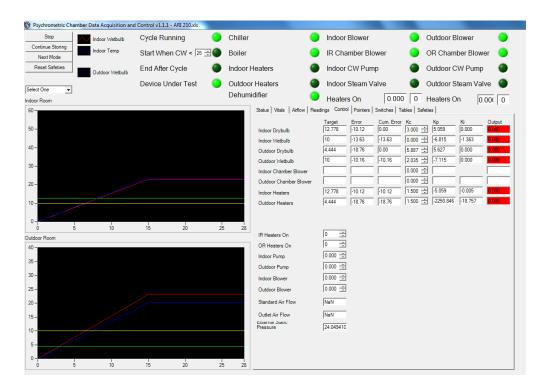


Figure 17. Sample of psychometric room interface for temperature control

During the tests above 70°F, the heaters were initiated. Typically three of the four heaters were used, and the supplied voltage was higher for the warmer tests. The blower was kept at 80% full speed to prevent the heaters from overheating and provide a means of thermal distribution. The units were shielded from the blower's jet stream by a solid, impingement board at the duct outlet. The units were also not in the direct radiation area of the heaters.

For the tests 70°F and under, the heaters were disengaged, and the chiller was used. Again, the blower was kept around 80%, and so was the cooling water pump. A bypass valve provided the means of temperature control such that when more cooling

was needed, the valve was closed to allow the cooling water to flow through the cooling coil. When less cooling was needed, the valve was opened to allow the flow to bypass the cooling coil.

6. RESULTS FOR DORM-SIZE UNITS

The general trend of all three types of units was that energy consumption increases with unconditioned space temperature, and the dorm-size units exhibited a quadratic or cubic trend. The subsequent sections detail the results for the temperature profiles and energy consumption during the test with an unconditioned space temperature of 90°F and a comparison with the other temperature settings. The complete collection of generated graphs and raw data can be found in the appendices.

Because of the large size of the psychometric chamber, thermal uniformity at finite locations is not easily achieved and was not perfectly exhibited in the experimental tests. Additionally, the standard calls for no more than $\pm 1^{\circ}$ F deviations from the nominal unconditioned space temperature. However, the control system of the psychometric chamber does not employ such strict bounds. Thus, the unconditioned space temperatures may have varied more from the nominal value. However, since a general trend was the ultimate objective and the two test units could be compared for reasonableness, these temperature excursions were deemed acceptable for the sake of research. Additionally, the standard requires that the test period covers at least two compressor cycles. However, the compressor was not as active at the lower external temperatures, and some tests did not, in fact, have two cycles. The dorm-size units appeared to be the most sensitive to the external environment. Because of their relatively low cost, this was expected since the insulation and control system may not be as sophisticated as that of a larger unit.

6.1 Temperature

Though the standard calls for a particularly time consuming determination of steady state, a visual inspection of the internal temperatures shows that the units were in fact steady, and though the unconditioned space temperatures fluctuated, the effects on the internal were not immediately obvious. The internal refrigerator and freezer temperatures of the units were higher than the recommended temperatures of 39°F and 0°F, respectively. There were also minor differences in the freezer temperatures between the two test units. Figure 18 and Figure 19 show the internal temperatures during the test period of Unit A and Unit B.

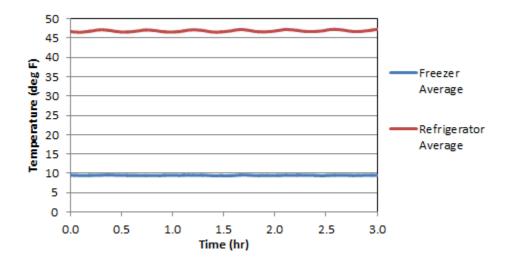


Figure 18. Internal temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A

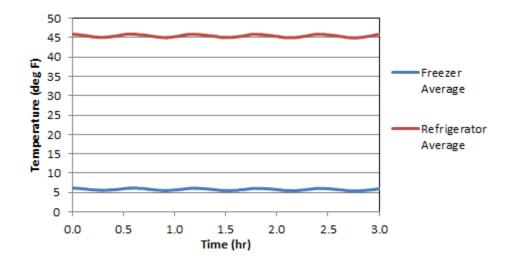


Figure 19. Internal temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B

In addition to the average refrigerator and freezer temperatures, plots (Figure 20-Figure 23) showing the individual readings were generated. These can provide more insight into how thermally uniform the respective chamber is.

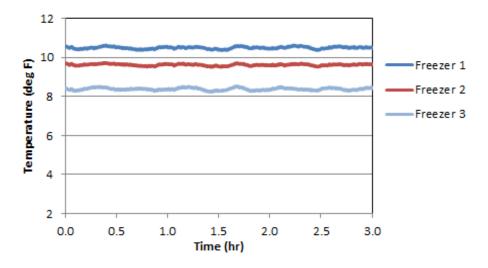


Figure 20. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A

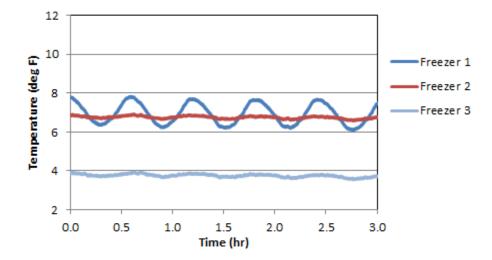


Figure 21. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B

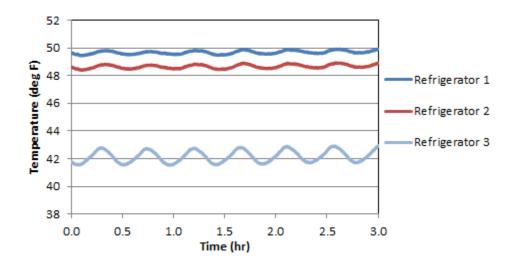


Figure 22. Individual refrigerator temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A

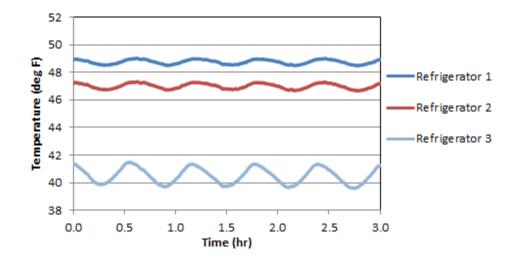


Figure 23. Individual refrigerator temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B

The subtle discrepancies between the differing internal temperatures may have been derived from the differences in the unconditioned space temperature. As mentioned, the psychometric chamber is significantly large, and thermal uniformity was not achieved. The cost and energy consumption comparisons will validate the insignificance of the discrepancy. The next two figures (Figure 24 and Figure 25) depict the unconditioned space temperatures for these units.

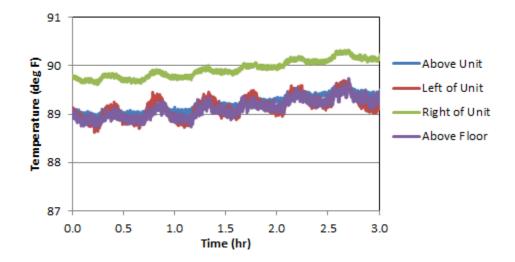


Figure 24. Unconditioned space temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A

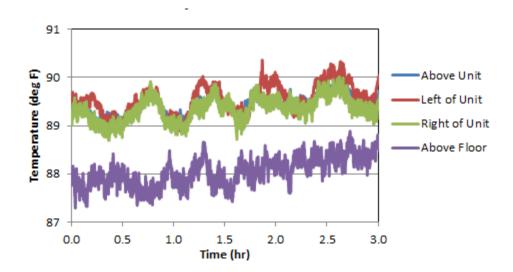


Figure 25. Unconditioned space temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B

Data was also collected on an internal wall, the adjacent location on the external wall, and 1' away from the unit over the same area. It is interesting that the external wall

(touching) temperature cycles with the compressor, and it can reach significantly high temperatures. These results are given in Figure 26 and Figure 27.

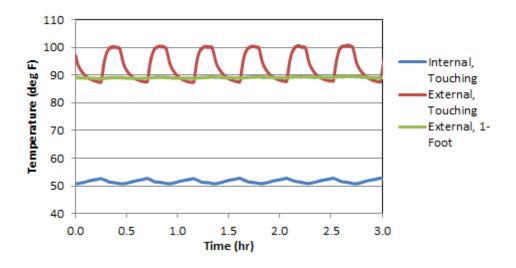


Figure 26. Wall temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A

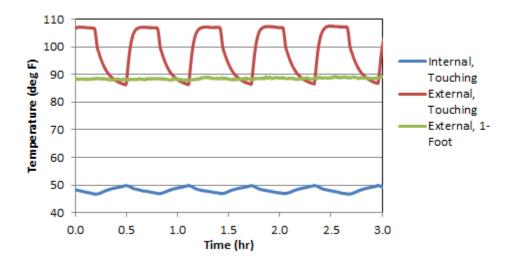


Figure 27. Wall temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B

Finally, the temperatures of the reachable mechanical equipment (only the compressor for the dorm-size units) are given in Figure 28 and Figure 29.

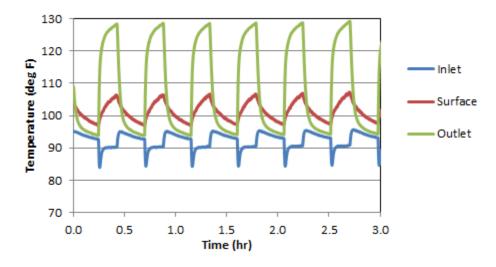


Figure 28. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit A

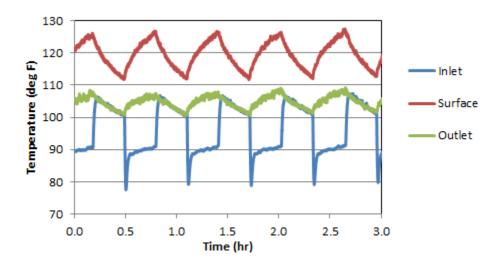


Figure 29. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for dorm-size Unit B

6.2 Energy Consumption

Graphs of the power use over of the test period were generated. The standard called for at least 2 compressor cycles in the test period of no less than 3 hours. A sample of the plots is given in the following two figures (Figure 30 and Figure 31).

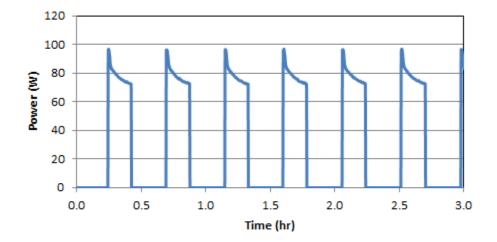


Figure 30. Power versus time during the test period at 90°Fand median thermostat setting for dorm-size Unit A

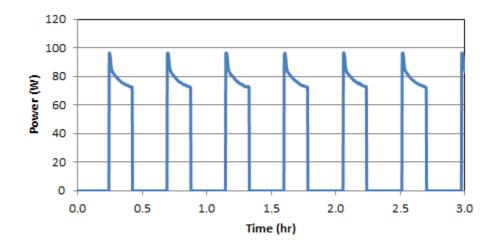


Figure 31. Power versus time during the test period at 90°Fand median thermostat setting for dorm-size Unit B

While the above plots are helpful to see the compressor cycles and verify that the units behave similarly, they do not provide any inherently useful information. A more useful quantity is how much energy is consumed annually and the associated cost. These values for the dorm-size units at 90°F and the median thermostat are given in Table 4. Again, the cost was determined by assuming an electricity rate of \$0.1065/kWh.

 Table 4. Energy consumption and annual cost at 90°F and median thermostat setting for dorm-size units

<u>Unit A</u>				<u>Unit B</u>	
EP	0.093	kwh	EP	0.094	kwh
т	184	min	т	184	min
к	1		к	1	
ET	0.731	kWh/day	ET	0.736	kWh/day
EY	266.8	kWh/yr	EY	268.5	kWh/yr
Cost	\$ 28.41		Cost	\$ 28.59	

Comparing Unit A to Unit B, the results were within 1% of each other. The other means of determining if the data was valid was comparing the experimental energy consumption and annual cost to the published values. For a better comparison, a test was performed at the *coldest* thermostat setting (still at 90°F externally). The results of that test are in Table 5.

 Table 5. Energy consumption and annual cost at 90°F and coldest thermostat setting for dorm-size units

<u>Unit A</u>				<u>Unit B</u>		
EP	0.198	kwh	I r	EP	0.195	kwh
т	185	min		т	185	min
к	1			к	1	
ET	1.548	kWh/day		ET	1.521	kWh/day
EY	565.2	kWh/yr		EY	555.2	kWh/yr
Cost	\$ 60.19)		Cost	\$ 59.13	

After linear interpolation (or averaging) between the median and coldest settings, the experimental costs for Unit A and B came out to \$44.30 and \$43.86, respectively.

The annual kWh/yr were 416 and 412. The manufacturer publishes values of \$45 and 420 kWh/yr, so the experimental data was within a reasonable margin for comparison.

6.3 Comparisons

The previous plots and values were specifically for the dorm-size unit at 90°F. Figure 32 and Figure 33 show the values at the other experimental temperatures for easy comparison and to determine the trend.

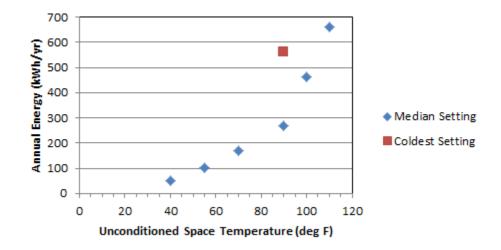


Figure 32. Average annual energy use versus unconditioned space temperature for dorm-size units

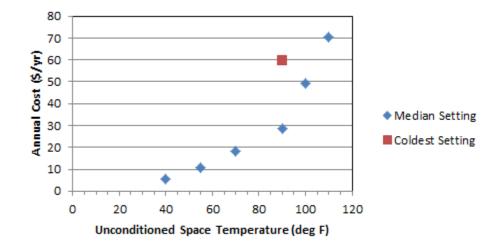


Figure 33. Average annual cost versus unconditioned space temperature for dorm-size units

It can be seen that the annual energy use and cost plots have the exact same trend, just a different scale and unit. It is interesting to see the difference in energy consumption and cost from the median thermostat setting to the coldest. While some households may choose the median, others may choose the coldest to ensure their food does not prematurely spoil. If it is assumed that the difference in cost from the median to coldest setting at 90°F (about \$31) is the same for all unconditioned space temperatures, the following plot (Figure 34) can be used to predict costs at the coldest setting.

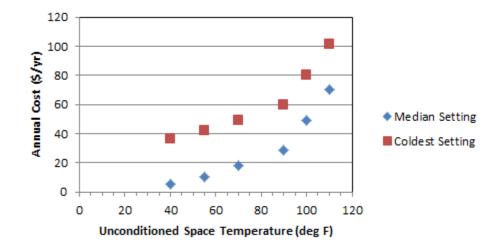


Figure 34. Average annual cost at median setting and predicted annual cost at coldest thermostat setting versus unconditioned space temperature for dorm-size units

Additionally, the unconditioned space temperature may extend beyond the range tested. For example, a refrigerator in a garage in the Middle East could see temperatures higher than 110° F and a refrigerator in a garage in Canada could see temperatures lower than 40° F. To predict the behavior outside the tested range, a regression was applied to the data taken at the median thermostat setting. Three regressions were performed in Microsoft Excel: linear, quadratic, and cubic. The metric used for comparison is the R² value which is a measure of goodness-of-fit (the closer to 1 the better). The following three plots (Figure 35-Figure 37) show the trend lines and equations.

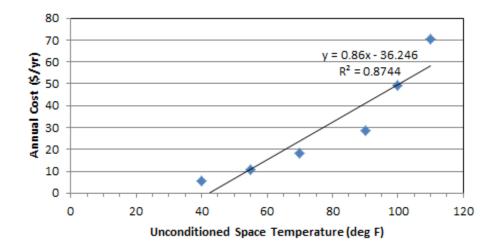


Figure 35. Linear regression for average annual cost versus unconditioned space temperature at median thermostat setting for dorm-size units

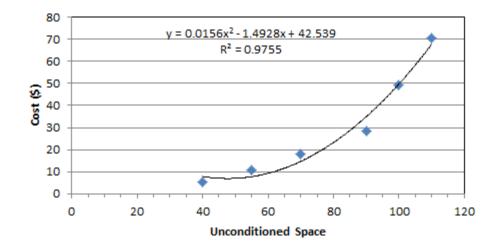


Figure 36. Quadratic regression for average annual cost versus unconditioned space temperature at median thermostat setting for dorm-size units

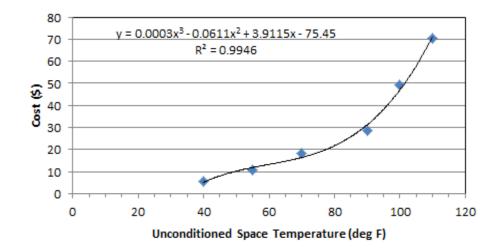


Figure 37. Cubic regression for average annual cost versus unconditioned space temperature at median thermostat setting for dorm-size units

It is obvious that the cubic regression is the best fit since the R^2 value is closest to 1 at 0.9946. However, more data points at intermediate points would be necessary to properly rule out a quadratic fit. The linear fit is not nearly as strong as the other two.

Another interesting phenomenon to consider is the effect the unconditioned space temperature has on the internal temperature. While it may be intuitive to think the hotter it is externally, the hotter the internal temperature will be, the opposite behavior within the freezer cabinet is actually shown by the data, presented in Figure 38. The refrigerator temperature, however, does increase with the increasing unconditioned space temperature.

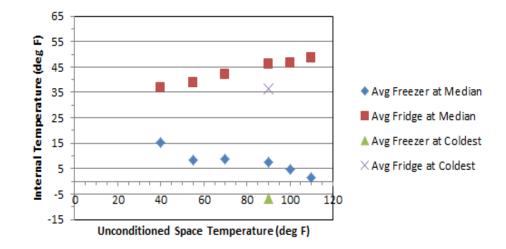


Figure 38. Internal temperature versus unconditioned space temperature at the median and coldest thermostat settings for dorm-size units

7. RESULTS FOR STANDARD-SIZE UNITS

The standard-size units' internal control system was more sophisticated than that of the dorm-size units, and they exhibited long-time automatic defrost cycles. In order to capture such defrost cycles in addition to regular compressor cycling, data was collected for a longer period of time, typically between 15 and 25 hours. Thus, in the subsequent sections, plots of the total test will contain solid and dashed black lines to distinguish what time frames were considered in the energy consumption and cost analysis. Interesting behavior occurred at the lower temperatures and further research is needed to more accurately determine the behavior in this region.

Unless otherwise mentioned, the sample of data presented comes from the 90°F test at the median thermostat setting. The other tests have similarly formatted tables and graphs in Appendix D.

7.1 Temperature

The temperature measurements over the total test served as the most obvious way to verify steady-state, both internally and externally, during the two test periods. While no manual calculation was performed, steady state was verified by visual inspection.

As with the dorm-size units, temperature excursions beyond HRF-1-2008's requirements existed. Because these units have additional fans for the condenser coil and compressor, they have about a 3" gap between the floor and the bottom of the actual refrigerator chamber for ventilation. This gap is covered by a plastic grill in the front,

and the thermocouple just above the floor experienced higher temperatures from the exhaust. There were also minor differences in the internal temperatures between the two test units. Figure 39 and Figure 40 show the internal temperatures during the total test of Unit A and Unit B.

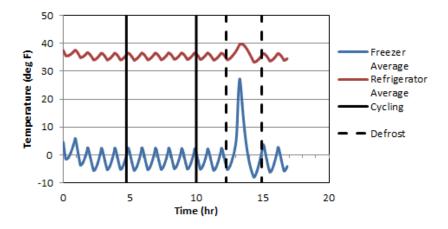


Figure 39. Internal temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A

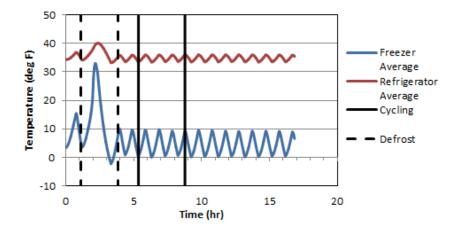


Figure 40. Internal temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B

For a better understanding of how the temperature behaved during the defrost cycle and regular cycles, the following four plots (Figure 41-Figure 44) were generated as a "zoomed in" view of such.

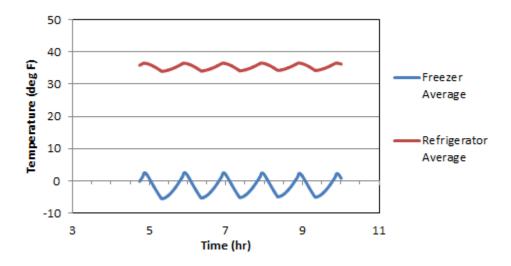


Figure 41. Internal temperatures versus time during regular compressor cycling at 90°F and median thermostat setting for standard-size Unit A

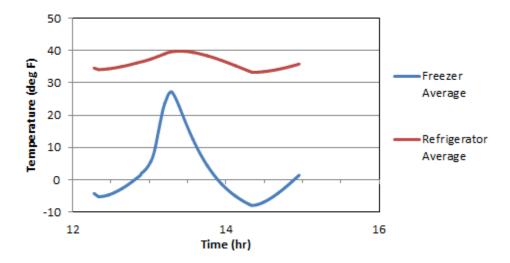


Figure 42. Internal temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit A

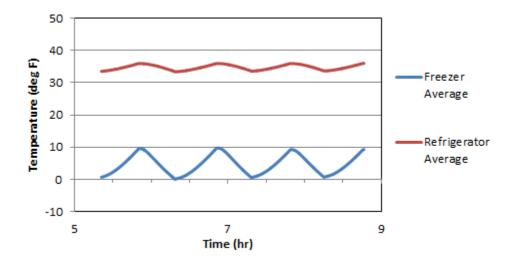


Figure 43. Internal temperatures versus time during regular compressor cycling at 90°F and median thermostat setting for standard-size Unit B

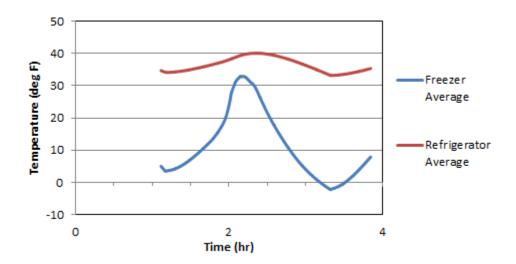


Figure 44. Internal temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit B

The individual temperature readings (not the average) for both the refrigerator and freezer compartments were also plotted over the total test, regular compressor cycles, and defrost cycle. Figure 45 through Figure 50 depict these measurements.

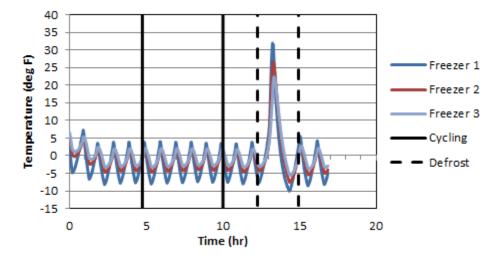


Figure 45. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A

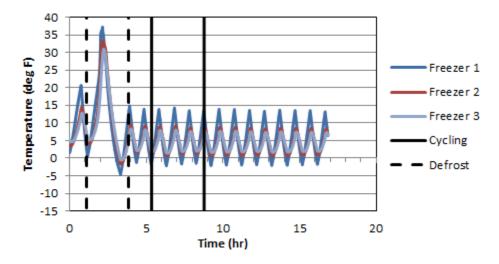


Figure 46. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B

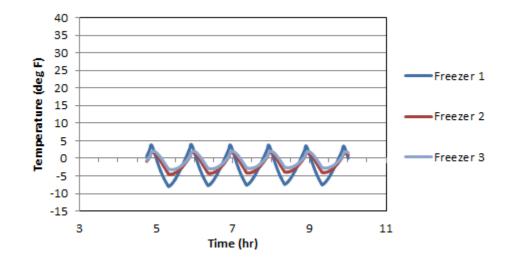


Figure 47. Individual freezer temperatures versus time during the regular compressor cycling at 90°F and median thermostat setting for standard-size Unit A

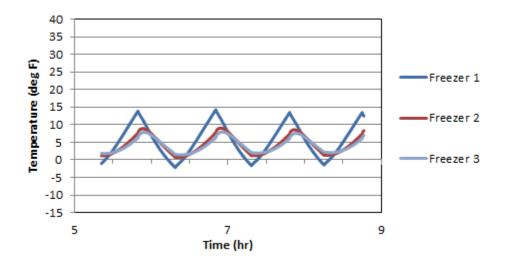


Figure 48. Individual freezer temperatures versus time during the regular compressor cycling at 90°F and median thermostat setting for standard-size Unit B

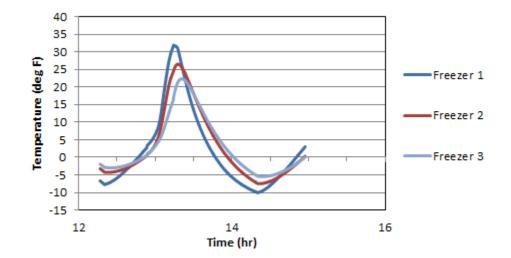


Figure 49. Individual freezer temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit A

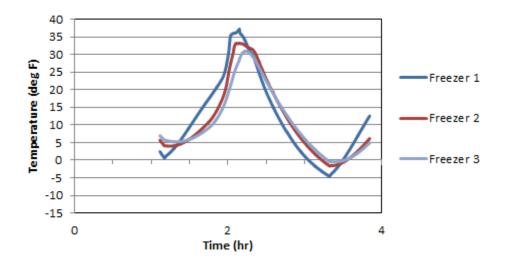


Figure 50. Individual freezer temperatures versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit B

As with the dorm-size units, the subtle discrepancy between the internal temperatures may have been a result of the slight differences in the unconditioned space temperature or even the slight differences in the thermostat settings since the knobs did not have the median as a preset locked position. The next two plots (Figure 51 and Figure 52) depict the unconditioned space temperatures over the total test for these units.

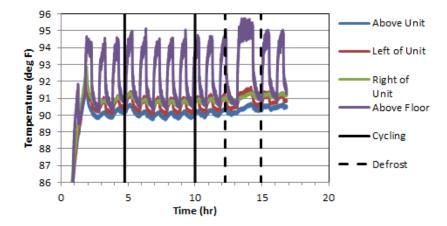


Figure 51. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A

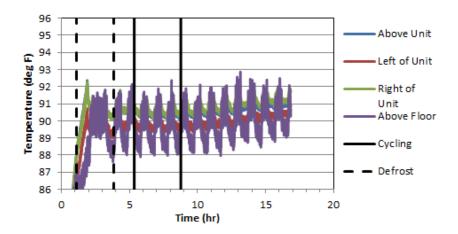


Figure 52. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B

While it was not very obvious in Figure 40, it can be seen in Figure 52 that the unconditioned space temperature was not steady during the defrost cycle. This will be addressed in later sections. As mentioned, the temperature just above the floor in front of

the unit experienced the greatest range in sync with the cycling of the compressor, and Unit A appeared to be more affected than Unit B.

Since more mechanical components were available for analysis, data was not collected at the same wall locations as with the dorm-size units. Instead, only the external wall temperature was taken since it exhibited the most interesting behavior in the dorm-size test. These results are given in Figure 26 and Figure 54.

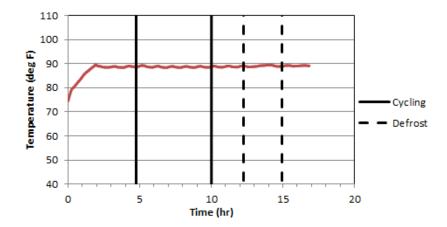


Figure 53. Wall temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A

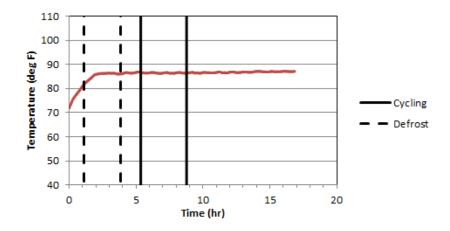


Figure 54. Wall temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B

Finally, the temperatures of the mechanical components are given in the Figure 55 and Figure 56. The locations included the evaporator inlet, evaporator outlet,

compressor inlet, compressor outlet, and condenser outlet.

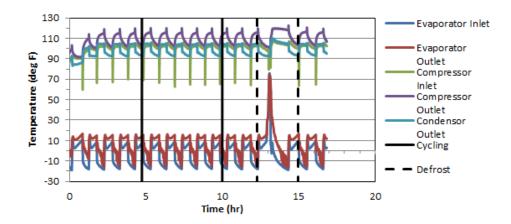


Figure 55. Component temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit A

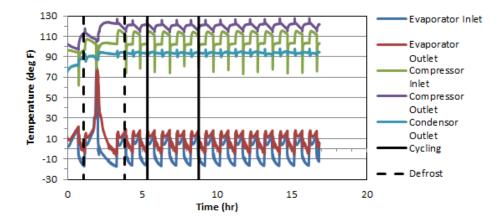


Figure 56. Component temperatures versus time during the total test at 90°F and median thermostat setting for standard-size Unit B

7.2 Energy Consumption

Graphs of the power use over of the total test, regular cycles, and defrost cycle were generated. The long-time automatic defrost cycles, as originally depicted in Figure 1, can easily be seen in Figure 57 and Figure 58. Solid and dashed black lines, again, distinguish the two sections of the final test period. Figure 59-Figure 62 plot the "zoomed-in" view of the energy use for the two types of cycles.

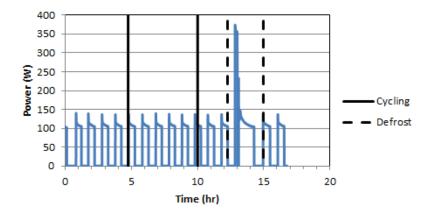


Figure 57. Power versus time during the total test at 90°Fand median thermostat setting for standard-size Unit A

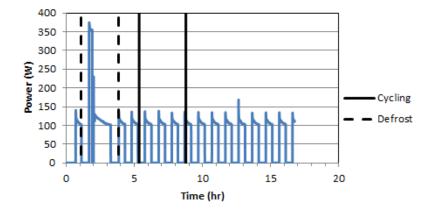


Figure 58. Power versus time during the total test at 90°Fand median thermostat setting for standard-size Unit B

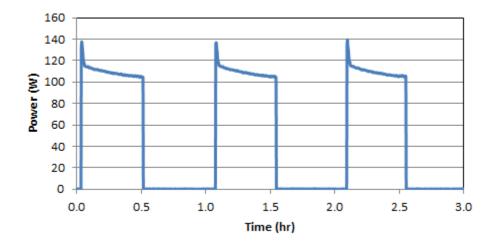


Figure 59. Power versus time during the regular compressor cycling at 90°Fand median thermostat setting for standard-size Unit A

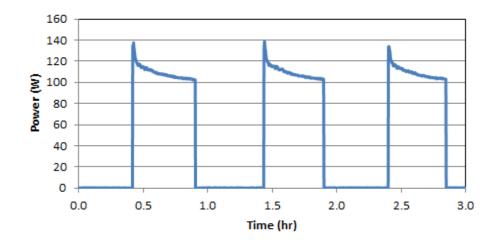


Figure 60. Power versus time during the regular compressor cycling at 90°Fand median thermostat setting for standard-size Unit B

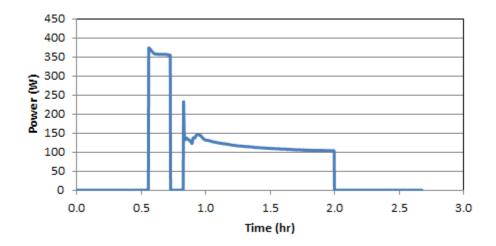


Figure 61. Power versus time during the defrost cycle at 90°F and median thermostat setting for standard-size Unit A

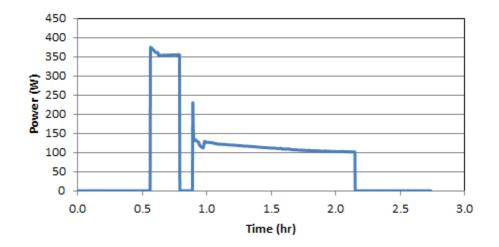


Figure 62. Power versus time during the defrost cycle at 90°Fand median thermostat setting for standard-size Unit B

Again, these plots are helpful to see the compressor cycles and verify that the units behave similarly; they do not provide any inherently useful information. The annual energy consumption and cost for the standard-size units at 90°F and the median thermostat are given in Table 6 (electric rate of \$0.1065/kWh).

 Table 6. Energy consumption and annual cost at 90°F and median thermostat setting for standardsize units

Unit **B**

Unit A

	Unit A	<u>-</u>			Unit D	
EP1	0.278	kwh		EP1	0.163	kwh
T1	316	min		T1	206	min
EP2	0.197	kwh		EP2	0.224	kwh
T2	161	min		T2	164	min
К	1			К	1	
СТ	2.7	hours		СТ	2.7	hours
ET	1.517	kWh/day		ET	1.560	kWh/day
EY	553.6	kWh/year		EY	569.3	kWh/year
Cost	\$ 58.96			Cost	\$ 60.63	

Comparing Unit A to Unit B, the results were within 3% of each other. These values, specifically EP2, show that the unsteady unconditioned space temperature during the defrost cycle of Unit B had little effect on the overall energy consumption. To compare the results to the manufacturer's published information, a test was performed at the *coldest* thermostat setting (still at 90°F externally).

Interestingly, Unit B did not experience a defrost cycle during the nearly 18-hour long test. As detailed in the Methodology section, when one unit experienced a defrost cycle and the other did not, the unit without the defrost cycle was treated as a nonautomatic defrost unit for energy and cost calculations. However, this led to a significant discrepancy in energy consumption and cost between Unit A and Unit B. To reconcile this discrepancy, the defrost values from Unit A were "borrowed" to compute additional energy and cost values for Unit B. For additional comparison, the average cost between the two units, as is, was computed. Table 7 contains these results.

 Table 7. Energy consumption and annual cost at 90°F and coldest thermostat setting for standard-size units

Unit A

EP1	0.477	kwh
T1	444	min
EP2	0.282	kwh
T2	253	min
K	1	
СТ	4.2	hours
ET	1.575	kWh/day
EY	574.8	kWh/year
Cost	\$ 61.21	

<u>Unit B</u>

(As Is, No Defrost)

(Borrowed Defrost)

(Averaged)

EP1	0.523	kwh	
T1	480	min	
EP2	-	kwh	
T2	-	min	
к	1		
СТ	-	hours	
ET	1.570	kWh/day	
EY	572.9	kWh/year	
Cost	\$ 61.01		

EP1	0.523	kwh
T1	480	min
EP2	0.282	kwh
T2	253	min
K	1	
СТ	4.2	hours
ET	1.585	kWh/day
EY	578.7	kWh/year
Cost	\$ 61.63	

EY A Cost A	574.8 \$61.21	kWh/year
EY B Cost B	572.9 \$61.01	kWh/year
Avg EY Avg Cost	573.85 \$ 61.11	kWh/year

It can be seen that all of the results in Table 7 are within 1% of each other, regardless of the method. Thus, the comparison of the experimental data and published data was possible. After averaging between the median and coldest thermostat settings (the borrowed defrost was used for Unit B), the experimental costs for Unit A and B came out to \$60.09 and \$61.13, respectively. The annual kWh/yr were 564 and 574. The manufacturer publishes values of \$43 and 404 kWh/yr, which is significantly lower than the experimental values.

One possible explanation for such a large difference is that the average internal temperatures for Unit A at the median thermostat setting were actually slightly lower than the required, so the second test should have been performed at the warmest thermostat setting. However, the average freezer temperatures for Unit B were higher than 0°F, and that test had to be performed at the coldest setting. Even so, it is not likely that performing a test at the warmest setting would impact the result that greatly since there is only a \$0.40 difference between the median and coldest settings. The other potential reason is that the manufacturer's testing methods for this particular model number were insufficient. These units were donated by the manufacturer and are not commercially available. Nevertheless, the general trend (and overall object of this project) should still be valid.

7.3 Comparisons

From the three methods of handling the data from tests in which one unit defrosts and the other does not, it was necessary to choose a method that best represents the physical system. A comparison of the tests in which both units experienced a defrost cycle was performed. It was found that the greatest percentage difference between the defrost cycle energy (EP2) and time (T2) for both test units was 18%. While this percentage seems high, the two values that had the greatest influence were 0.148 and 0.178 kWh, which is a difference of just 0.03 kWh. Therefore, it was decided that the method of "borrowing a defrost cycle" from the other unit was most effective in predicting the behavior under given conditions. This method was employed for the tests at unconditioned space temperatures of $33^{\circ}F$, $90^{\circ}F$ (coldest setting), and $100^{\circ}F$.

Synonymously to the dorm-size units, the previous plots and values were specifically for the standard-size units at 90°F. The following plots show the values at the other experimental temperatures. Again, it is important to note that the energy and cost values in these plots reflect "borrowed defrost cycles" where needed, but plots of the "as tested" and averaged values can be found in the appendices.

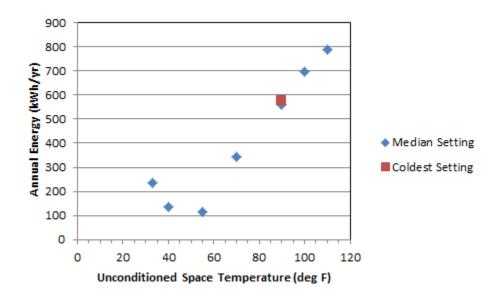


Figure 63. Average annual energy use versus unconditioned space temperature for standard-size units

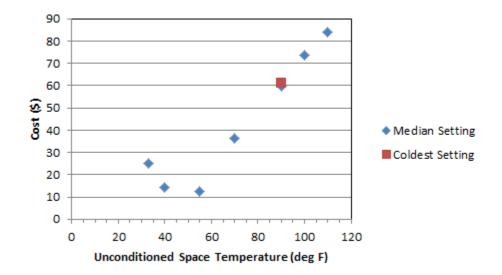


Figure 64. Average annual cost versus unconditioned space temperature for standard-size units

The first thing to take away from Figure 63 and Figure 64 is that the difference in energy consumption and cost from the median thermostat setting to the coldest is not very large, which was quantified in Section 7.2. In fact, it is almost insignificant given the uncertainty margins. Therefore, a prediction of costs at the other temperatures would not provide much new information.

Additionally, the trend appears to be primarily linear at temperatures above 55° F, and becomes more nonlinear at the lower temperatures. Linear, quadratic, and cubic regressions were applied to the entire data set taken at the median thermostat setting. The following three plots (Figure 65-Figure 67) show the trend lines, equations, and R² values.

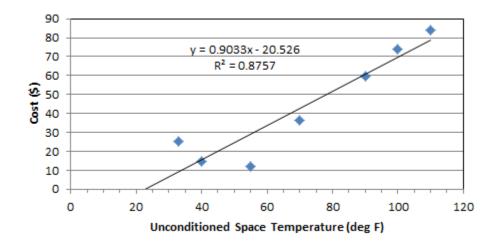


Figure 65. Linear regression for average annual cost versus unconditioned space temperature at median thermostat setting for standard-size units

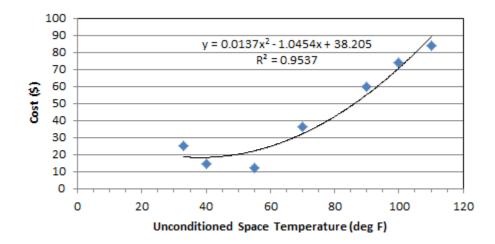


Figure 66. Quadratic regression for average annual cost versus unconditioned space temperature at median thermostat setting for standard-size units

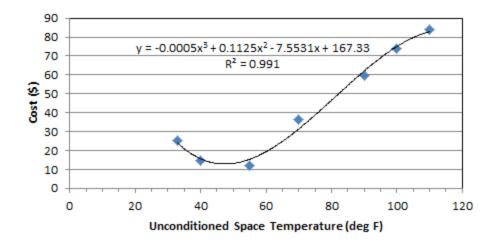


Figure 67. Cubic regression for average annual cost versus unconditioned space temperature at median thermostat setting for standard-size units

An analysis was also conducted for the higher temperatures and lower temperatures separately. As mentioned, the higher temperatures, by visual inspection, were linear, and thus, that regression was applied. A quadratic regression was applied to the lower temperatures. These are given in Figure 68 and Figure 69.

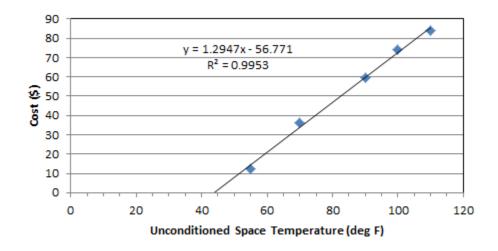


Figure 68. Linear regression for average annual cost versus unconditioned space temperature 55°F and above at median thermostat setting for standard-size units

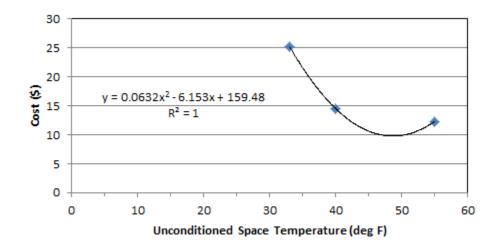


Figure 69. Quadratic regression for average annual cost versus unconditioned space temperature 55°F and below at median thermostat setting for standard-size units

Again, the cubic regression seems to be the best fit when looking at all of the data points together. However, if the data points are split into the two sections (55+ and 55-), a linear regression for the upper end is even stronger than the cubic regression. The quadratic regression on the lower end may be deceptively as strong ($R^2=1$) since there are only three data points which is the minimum requirement for a quadratic fit. More tests are necessary to validate this regression.

While the dorm-size units showed consistently warmer refrigerator temperatures with increasing unconditioned space temperatures, the standard-size units exhibited more unpredictable behavior. Figure 70 contains the internal temperatures over the test temperature range.

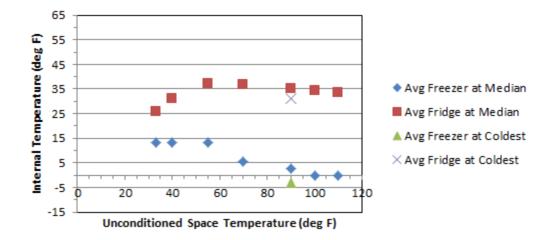


Figure 70. Internal temperature versus unconditioned space temperature at the median and coldest thermostat settings for standard-size units

8. RESULTS FOR CHEST FREEZERS

As with the other units, the overall trend observed with the chest freezers was that energy consumption increases with unconditioned space temperature. The chest freezers fell under the category of non-automatic defrost units, and therefore, the test period and data reduction process was much more simplistic than that of the standard-size units. The results for the temperature profiles and energy consumption during the total test time and test period at an unconditioned space temperature of 90°F are given in the following subsections, and a comparison with the other temperature settings will be given. Again, the complete collection of generated graphs and raw data can be found in the appendices.

8.1 Temperature

Visual inspection of the internal temperatures shows that the units were in fact steady, and though the unconditioned space temperatures fluctuated, the effects on the internal were not immediately obvious. At the median thermostat setting, the internal freezer temperatures of the units were higher than the recommended temperature of 0°F. Minor differences in freezer temperatures existed between the two test units. Figure 71 and Figure 72 show the average internal temperature during the total test of Unit A and Unit B.

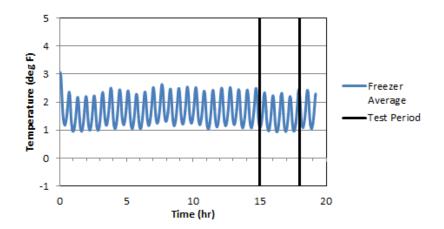


Figure 71. Internal temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A

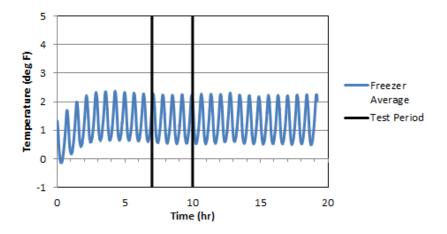


Figure 72. Internal temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit B

In addition to the average freezer temperatures, plots showing the individual readings were generated for the total test and test period. These are given in the following (Figure 73 through Figure 76):

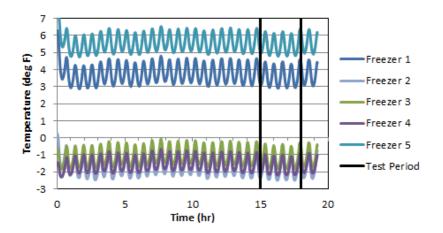


Figure 73. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A

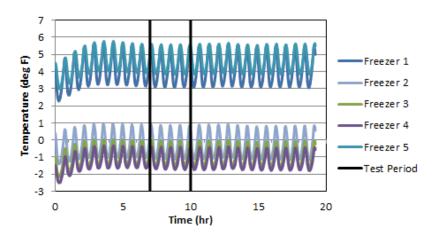


Figure 74. Individual freezer temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit B

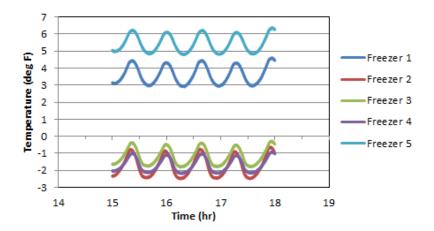


Figure 75. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A

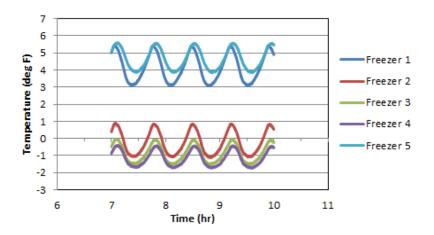


Figure 76. Individual freezer temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B

The differences in internal temperature between Unit A and Unit B were even small than the differences seen in the dorm-size and standard-size units. While part of the reason could be slight differences in thermostat setting or physical system differences, it could partly be due to the varying external temperature from Unit A to Unit B. Figure 77 and Figure 78 depict the unconditioned space temperatures for these units for the entire test time.

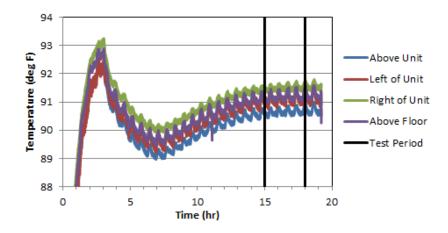


Figure 77. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A

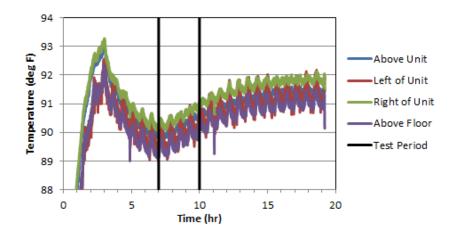


Figure 78. Unconditioned space temperatures versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A

Similar to the dorm-size units, temperature data was collected on an internal wall and touching the adjacent, external location. These results are given in Figure 79 and Figure 80. Interestingly, both the internal and external wall temperatures appear to cycle with the compressor.

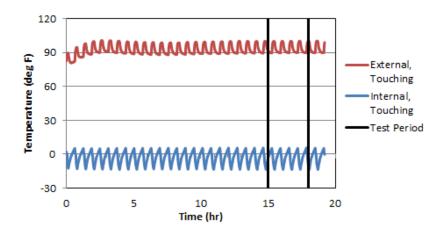


Figure 79. Wall temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A

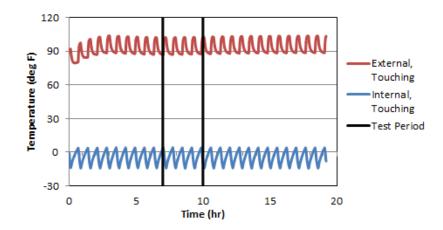


Figure 80. Wall temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B

Finally, the temperatures of the reachable mechanical equipment (only the compressor for these units) are given in Figure 81 and Figure 82.

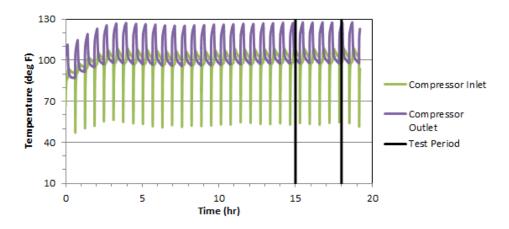


Figure 81. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A

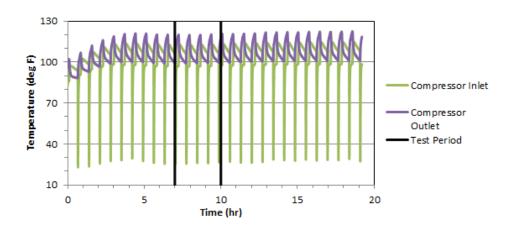


Figure 82. Compressor temperatures versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B

8.2 Energy Consumption

Graphs of the power use over the total test and test period were generated. These are given in Figure 83 through Figure 86.

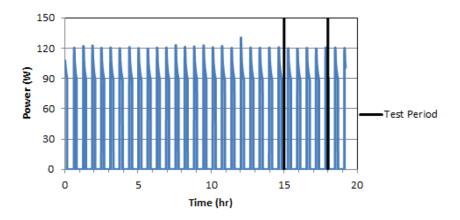


Figure 83. Power versus time during the total test at 90°F and median thermostat setting for chest freezer Unit A

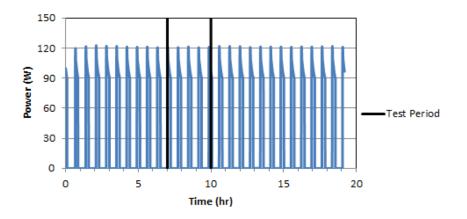


Figure 84. Power versus time during the total test at 90°F and median thermostat setting for chest freezer Unit B

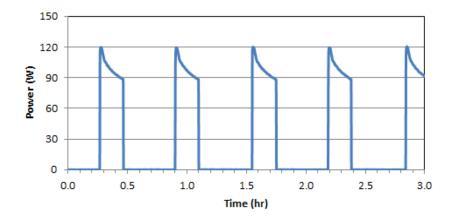


Figure 85. Power versus time during the test period at 90°F and median thermostat setting for chest freezer Unit A

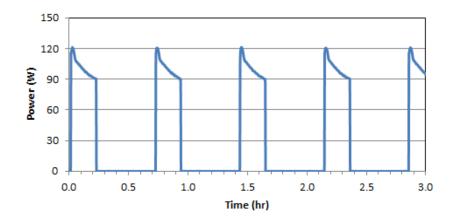


Figure 86. Power versus time during the test period at 90°F and median thermostat setting for chest freezer Unit B

The annual energy consumption and associated costs were tabulated and given in Table 8. Again, it should be mentioned that the cost was determined by assuming an electricity rate of \$0.12/kWh, instead of \$0.1065/kWh as with the other units. This electricity cost was used since it is what the published annual cost was based upon.

 Table 8. Energy consumption and annual cost at 90°F and median thermostat setting for dorm-size units

	Unit A		τ	Unit B	
EP	0.095	kwh	EP	0.101	kwh
т	180	min	т	180	min
к	0.7		к	0.7	
ET	0.533	kWh/day	ET	0.568	kWh/day
EY	194.46	kWh/yr	EY	207.44	kWh/yr
Cost	\$ 23.34		Cost	5 24.89	

Comparing Unit A to Unit B, the results were within 6.6% of each other. This percentage is higher than the dorm-size units, but the monetary difference is only \$1.55. For comparing the experimental energy consumption and annual cost to the published values, a test was performed at the *coldest* thermostat setting (still at 90°F externally). The results of that test are in Table 9.

 Table 9. Energy consumption and annual cost at 90°F and coldest thermostat setting for dorm-size units

Unit A				Unit B		
EP	0.109	kwh	Γ	EP	0.106	kwh
т	180	min		т	180	min
к	0.7			к	0.7	
ET	0.612	kWh/day		ET	0.593	kWh/day
EY	223.31	kWh/yr		EY	216.59	kWh/yr
Cost	\$ 26.80)		Cost	\$ 25.99	

After linear interpolation (or averaging) between the median and coldest settings, the experimental costs for Unit A and B came out to \$25.07 and \$25.44, respectively.

The annual kWh/yr were 209 and 212. The manufacturer publishes values of \$27 and 222 kWh/yr, so the experimental data was within a reasonable margin for comparison.

8.3 Comparisons

The previous plots and values were specifically for the chest freezer units at 90°F. The following plots (Figure 87 and Figure 88) show the energy and cost values at the other experimental temperatures for easy comparison and to determine the trend.

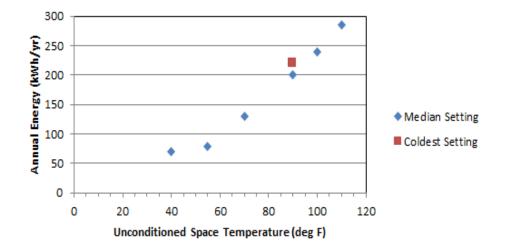


Figure 87. Average annual energy use versus unconditioned space temperature for chest freezer units

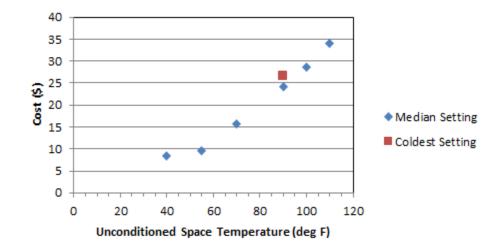


Figure 88. Average annual cost versus unconditioned space temperature for chest freezer units

The difference in energy consumption and cost from the median thermostat setting to the coldest is small, only about a \$2.50 difference. If it is assumed that the difference in cost from the median to coldest setting at 90°F is the same for all unconditioned space temperatures, the following plot (Figure 89) can be used to predict costs at the coldest setting.

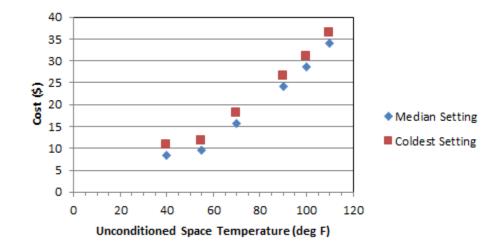


Figure 89. Average annual cost at median setting and predicted annual cost at coldest thermostat setting versus unconditioned space temperature for chest freezer units

To predict the behavior outside the tested range, a regression analysis was performed on the data taken at the median thermostat setting. Three regressions were generated in Microsoft Excel: linear, quadratic, and cubic. The following three plots (Figure 90-Figure 92) show the trend lines and equations.

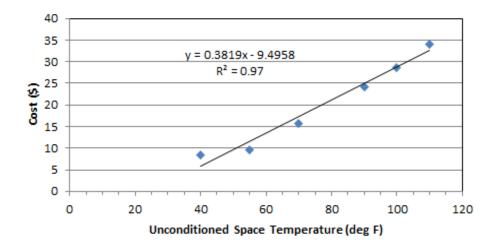


Figure 90. Linear regression for average annual cost versus unconditioned space temperature at median thermostat setting for chest freezer units

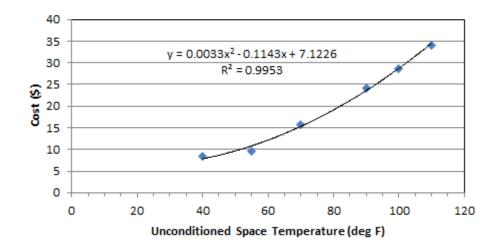


Figure 91. Quadratic regression for average annual cost versus unconditioned space temperature at median thermostat setting for chest freezer units

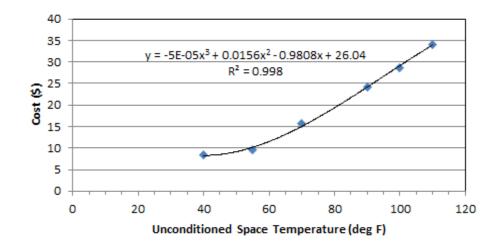


Figure 92. Cubic regression for average annual cost versus unconditioned space temperature at median thermostat setting for chest freezer units

The quadratic and cubic regressions are very close in goodness of fit measures. Even so, it does appear that the cubic regression is superior for predicting costs at both unconditioned space temperature extremes. The effect of the unconditioned space temperature on the internal temperature was of interest. These units followed the most expected trend of the colder the external temperature was, the colder the internal temperature was, but this was only the case at and below 70°F. Above the 70°F threshold, the internal temperature actually decreased as the external temperature increased (see Figure 93).

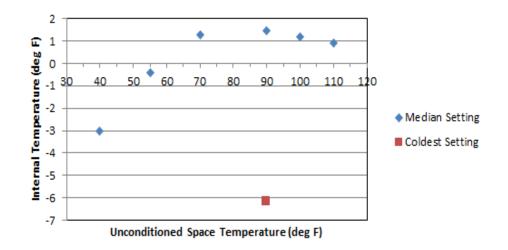


Figure 93. Internal temperature versus unconditioned space temperature at the median and coldest thermostat settings for chest freezer units

9. CONCLUSIONS

From the plots presented in the Results sections and given in the appendices, it is clear that the energy consumption of the test refrigerators and freezers generally increases with the external temperature. Particularly with units located in garages in warm or hot climates, this can lead to significantly higher electric bills with nearly a doubled energy use by the refrigerator or freezer. Additionally, since the compressor is running more frequently due to the elevated external temperatures, the lifecycle of the unit will likely be reduced compared to a unit kept in a conditioned space.

For units kept in unconditioned spaces colder than a standard kitchen, the energy use appears to be lower until the threshold of the design internal temperature is met in which case there are some unsteady fluctuations likely due to confusion experienced by the controller system. There is possibly an optimal external temperature that reduces the energy consumption without adverse effects on the compressor.

It is recommended that units are not kept in areas that will see temperatures greater than 90°F as this was the design temperature and basis for the annual energy use. It would also be wise to not store units in areas that will experienced external temperatures lower than 55°F since that is the temperature that the standard-size units started to see lapses in the control system and where the chest freezers appear to plateau or level off.

10. FUTURE WORK

The scope of this project was not all-inclusive of the needed research in the area of refrigerator and freezer energy consumption, and there is still more work to be done. In particular, more tests at the lower temperatures are needed to verify the behavior, specifically with the standard-size units. Tests should be performed at smaller temperature increments, such as 5° increments. Communication with the manufacturer should be established to determine what the design conditions are for the compressor to determine if storing units in colder environments will have a negative impact on the mechanical components.

In addition, tests should be performed on a larger variety of units. Since standardsize units are the most commonly used in residential homes, tests should be done on side-by-side, French door, and bottom-mounted freezer units.

Finally, it would be interesting to see how the newest refrigerant (HFO-1234ze) compares to R-134a in the same units at the same conditions. Perhaps this refrigerant would perform better at the higher external temperatures, but additional research is necessary to establish such claims.

REFERENCES

- [1] "Refrigeration," ACEEE, [Online]. Available: http://aceee.org/topics/refrigeration. [Accessed February 2015].
- J. Koncius, "A Consumer's Guide to Refrigerators," Washington Post, 11 March 2011. [Online]. Available: http://www.washingtonpost.com/lifestyle/home_garden/a-consumers-guide-to-refrigerators/2011/03/25/AFy8TW4B_story.html. [Accessed February 2015].
- [3] "Refrigerators," Efficiency Vermont, [Online]. Available: https://www.efficiencyvermont.com/For-My-Home/ways-to-save-and-rebates/Appliances/Refrigerators/General-Info/Overview. [Accessed February 2015].
- [4] A. Meier, "Refrigerator Use in the Laboratory and in the Field," *Energy and Buildings*, vol. 22, pp. 233-243, 1995.
- [5] A. Meier, "Refrigerator Energy Use in the Laboratory and in the Field," *Energy and Buildings*, vol. 22, p. 234, 1995.
- [6] A. Meier, "Refrigerator Energy Use in the Laboratory and in the Field," *Energy and Buildings*, vol. 22, p. 237, 1995.
- [7] P. K. Bansal, "Developing New Test Procedures for Domestic Refrigerators: Harmonisation Issues and Future R&D Needs- A Review," *International Journal*

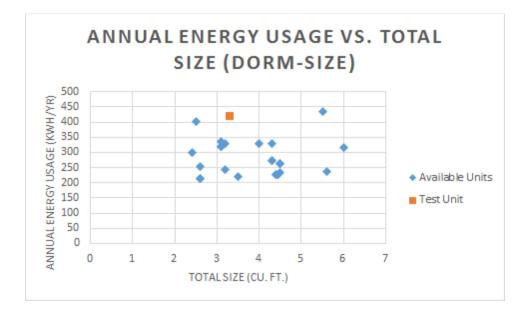
of Refrigeration, vol. 26, pp. 735-748, 2003.

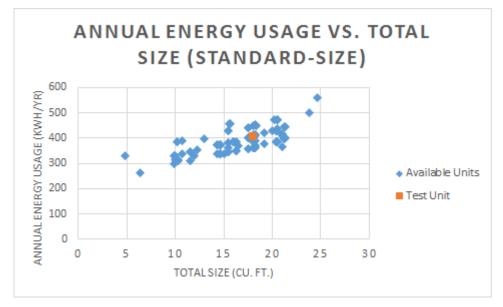
- [8] P. K. Bansal, "Developing New Test Procedures for Domestic Refrigerators: Harmonisation Issues and Future R&D Needs—A Review," *International Journal of Refrigeration*, vol. 26, p. 740, 2003.
- P. K. Bansal, "Developing New Test Procedures for Domestic Refrigerators: Harmonisation Issues and Future R&D Needs—A Review," *International Journal of Refrigeration*, vol. 26, pp. 740-741, 2003.
- [10] M. Blasnik, "Measurement & Verification of Residential Refrigerator Energy Use," 2004. [Online]. Available: http://www.waptac.org/data/files/website_docs/training/standardized_curricula/c urricula_resources/blasnik_measurement%20and%20verification%20of%20resid ential%20refrigerator.pdf. [Accessed February 2015].
- [11] M. Blasnik, "Measurement & Verification of Residential Refrigerator Energy Use," 2004. [Online]. Available: http://www.waptac.org/data/files/website_docs/training/standardized_curricula/c urricula_resources/blasnik_measurement%20and%20verification%20of%20resid
- [12] DOE, Appendix A to Subpart B of Part 430 Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric Refrigerator Freezers, Department of Energy, 2011, pp. 249-262.

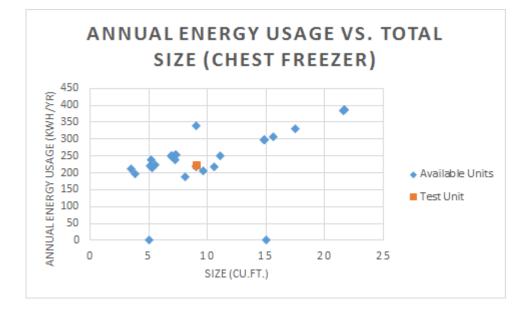
ential%20refrigerator.pdf. [Accessed February 2015].

[13] "ENERGY STAR(R) Program Requirements for Residential Refrigerators

and/or Freezers," 2007. [Online]. Available:


http://www.energystar.gov/ia/partners/product_specs/program_reqs/refrig_prog_ req.pdf. [Accessed February 2015].


- [14] "ENERGY STAR(R) Program Requirements for Residential Refrigerators and/or Freezers," 2007. [Online]. Available: http://www.energystar.gov/ia/partners/product_specs/program_reqs/refrig_prog_ req.pdf. [Accessed February 2015].
- [15] Association of Home Appliance Manufacturers, *Energy and Internal Volume of Refrigerating Appliances*, Washington, DC, 2008.
- [16] Association of Home Appliance Manufacturers, *Energy and Internal Volume of Refrigerating Appliances*, Washington, DC, 2008, p. 1.
- [17] Association of Home Appliance Manufacturers, *Energy and Internal Volume of Refrigerating Appliances*, Washington, DC, 2008, p. 12.
- [18] Association of Home Appliance Manufacturers, *Energy and Internal Volume of Refrigerating Appliances*, Washington, DC, 2008, pp. 6-7.
- [19] Association of Home Appliance Manufacturers, *Energy and Internal Volume of Refrigerating Appliances*, Washington, DC, 2008, pp. 24-29.
- [20] Y. Cengel and M. Boles, Thermodynamics: An Engineering Approach, 7th ed., New York City, New York: McGraw-Hill, 2010.
- [21] *EnergyGuide*, Federal Trade Commission.
- [22] *EnergyGuide*, Federal Trade Commission.


- [23] Association of Home Appliance Manufacturers, *Energy and Internal Volume fo Refrigerating Appliances*, Washington, DC, 2008, p. 23.
- [24] Elkor Technologies, WattsOn Universal Power Transducer User Manual, 2013,p. 7.

APPENDIX A: COMPARISON WITH COMMERCIALLY

AVAILABLE UNITS

APPENDIX B: THERMOCOUPLE CALIBRATION

COEFFICIENTS

A-1 77.3164 77.6 b 0.143 A-2 77.2517 77.6 b 0.009 A-2 77.2517 77.6 b 0.0551 A-3 77.1343 77.6 b 0.039 A-3 77.1343 77.6 b 0.039 A-3 77.1343 77.6 b 0.039 A-4 77.055 77.6 b 0.001 A-4 77.055 77.6 b 0.013 A-4 7.0555 77.6 b 0.039 A-5 76.9882 77.6 b 0.039 A-5 76.9882 77.6 b 0.039 A-6 76.8839 77.6 b 0.039 A-7 76.863 77.6 b 0.0083 A-7 76.863 77.6 b 0.0270 A-1 119.0509 119.8 U 1.8 A-1 76.863 77.6 b 0.02270 A-18 76.7558 77.6 b 0.02270	Label	Measured Value	Actual Value		
119.357119.8U1.8A-277.61M1.0051119.2673119.8U1.8A-377.134377.6M1.0059118.6166119.8U1.8A-377.134377.6M1.0059118.6166119.8U1.81.8A-477.055577.6M1.001119.1321119.8U1.81.8A-576.698277.6M0.013119.0325119.8U1.81.8A-576.698277.6M0.0831119.0325119.8U1.81.8A-676.835977.6M0.0833A-777.66.6377.6M0.0833A-777.66.6377.6M0.0833A-876.795877.6M0.0768119.0609119.8U1.81.8A-876.795877.6M0.0768118.9234119.8U1.81.8A-976.663277.6M0.0512118.776118.77832.3M0.0124A-1076.663277.6M0.0512118.784119.8U1.81.8A-1176.7566M0.0512118.784119.8U1.8A-1276.659777.6M0.0514118.784119.8U1.81.8A-1476		32.2971	32.3	M	1.0051
119.357119.8U1.8A-277.61M1.0051119.2673119.8U1.8A-377.134377.6M1.0059118.6166119.8U1.8A-377.134377.6M1.0059118.6166119.8U1.81.8A-477.055577.6M1.001119.1321119.8U1.81.8A-576.698277.6M0.013119.0325119.8U1.81.8A-576.698277.6M0.0831119.0325119.8U1.81.8A-676.835977.6M0.0833A-777.66.6377.6M0.0833A-777.66.6377.6M0.0833A-876.795877.6M0.0768119.0609119.8U1.81.8A-876.795877.6M0.0768118.9234119.8U1.81.8A-976.663277.6M0.0512118.776118.77832.3M0.0124A-1076.663277.6M0.0512118.784119.8U1.81.8A-1176.7566M0.0512118.784119.8U1.8A-1276.659777.6M0.0514118.784119.8U1.81.8A-1476	A-1	77,3164	77.6	b	-0.1437
A-2 77.2517 77.6 b -0.561 A3 119.2673 119.8 U 1.38 A3 77.1343 77.6 b 0.39 A4 77.055 77.6 b 0.39 A4 77.055 77.6 b 0.39 A4 77.055 77.6 b 0.03 A4 77.0555 77.6 b 0.03 A5 76.9882 77.6 b 0.032 A5 76.9882 77.6 b 0.0221 A5 76.8855 77.6 b 0.0231 A6 76.8359 77.6 b 0.0231 A7 76.863 77.6 b 0.0231 A7 76.863 77.6 b 0.033 A8 76.7958 77.6 b 0.032 A9 76.633 119.8 U 1.88 A11 76.7566 77.6 b 0.5222 <td></td> <td>119.357</td> <td>119.8</td> <td>U</td> <td>1.81</td>		119.357	119.8	U	1.81
A-2 77.2517 77.6 b -0.561 A3 119.2673 119.8 U 1.38 A3 77.1343 77.6 b 0.39 A4 77.055 77.6 b 0.39 A4 77.055 77.6 b 0.39 A4 77.055 77.6 b 0.03 A4 77.0555 77.6 b 0.03 A5 76.9882 77.6 b 0.032 A5 76.9882 77.6 b 0.0221 A5 76.8855 77.6 b 0.0231 A6 76.8359 77.6 b 0.0231 A7 76.863 77.6 b 0.0231 A7 76.863 77.6 b 0.033 A8 76.7958 77.6 b 0.032 A9 76.633 119.8 U 1.88 A11 76.7566 77.6 b 0.5222 <td></td> <td></td> <td></td> <td>M</td> <td></td>				M	
1192673119.8U1.8A-331.580632.3M1.0059A-377,134377,6U0.399118.6166119.8U1.8A-477,055577,6D0119.1321119.8U1.8A-576,988277,6D0.999119.0325119.8U1.8A-676,685977,6D0.821119.0325119.8U1.8A-676,685977,6D0.0083119.018119.08U1.81.8A-776,66377,6D0.2270119.0509119.8U1.81.000A-776,66377,6D0.2270118.0609118.234119.8U1.8A-876,755877,6D0.932A-976,844277,6D0.932A-976,844277,6D0.932A-1076,603277,6D0.932A-1176,675777,6D0.2270118,784119.8U1.8A-1476,657777,6D118,62913.3M1.003A-1476,657777,6D118,62913.3M1.038A-1476,657777,6D118,62913.832.3MA-1376,657777,6D118,62913.3U1	Δ-2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~ <u>2</u>				
A-3 77.1343 77.6 b 0.39 A-4 118.6166 119.8 U 1.8 A-4 77.0555 77.6 b 0.012 A-4 77.0555 77.6 b 0.39 A-5 76.9882 77.6 b 0.322 A-5 76.9882 77.6 b 0.023 A-5 76.68359 77.6 b 0.032 A-6 76.68359 77.6 b 0.032 A-7 76.6835 77.6 b 0.032 A-7 76.6835 77.6 b 0.032 A-8 76.7958 77.6 b 0.032 A-8 76.7958 77.6 b 0.032 A-8 76.7958 77.6 b 0.032 A-9 76.842 77.6 b 0.032 A-9 76.842 77.6 b 0.032 A-10 76.642 77.6 b 0.032 A-10 76.6577 77.6 b 0.022					
118.6166 119.8 U 1.8 A-4 32.0425 32.3 M 1.004 A-4 77.0555 77.6 b 0.013 A-5 76.982 77.6 b 0.821 A-5 76.982 77.6 b 0.821 A-6 76.8359 77.6 b 0.821 A-6 76.8359 77.6 b 0.023 A-7 76.863 77.6 b 0.023 A-7 76.863 77.6 b 0.2270 119.0609 119.8 U 1.83 M 1.002 A-7 76.863 77.6 b 0.768 A-8 76.7958 77.6 b 0.932 A-9 76.6442 77.6 b 0.932 A-10 76.6032 77.6 b 0.522 A-10 76.6032 77.6 b 0.522 A-11 76.6766 77.6 b					
A-4 32.0425 32.3 M 1.0044 119.1321 119.8 U 1.8 A-5 76.9882 77.6 D 0.821 A-5 76.9882 77.6 D 0.821 A-6 76.8359 77.6 D 0.821 A-6 76.8359 77.6 D 0.083 A-7 76.863 77.6 D 0.083 A-8 76.7958 77.6 D 0.768 A-8 76.7958 77.6 D 0.922 A-9 76.842 77.6 D 0.932 A-10 76.6527 77.6 D 0.922 A-10 76.6577 77.6 D 0.412	A-3				
A-4 77.0555 77.6 b 0.13 A-5 31.4483 32.3 M 0.99 A-5 76.9882 77.6 b 0.821 119.0325 119.8 U 1.8 A-6 76.8359 77.6 b 0.0821 A-6 76.8359 77.6 b 0.0832 A-7 76.6835 77.6 b 0.0833 A-7 76.6835 77.6 b 0.0833 A-7 76.683 77.6 b 0.0833 A-8 76.758 77.6 b 0.0833 A-8 76.758 77.6 b 0.783 A-8 76.758 77.6 b 0.783 A-9 76.6442 77.6 b 0.9321 A-10 76.6032 77.6 b 0.9921 A-10 76.6032 77.6 b 0.9921 A-10 76.656 77.6 b 0.431 A-11 76.756 77.6 b 0.431 A-11 </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td>				-	-
119.1321 119.8 U 1.8 A-5 76.982 7.6 M 0.991 A-5 76.982 7.6 U 1.8 A-6 76.835 77.6 U 1.8 A-6 76.853 77.6 U 0.833 A-7 76.863 77.6 U 1.8 A-8 76.7958 77.6 D 0.7684 118.9234 119.8 U 1.8 A-9 76.6442 77.6 D 0.9322 A-10 76.6242 77.6 D 0.9324 A-10 76.6342 77.6 D 0.9324 A-10 76.6342 77.6 D 0.9324 A-10 76.6343 77.6 D 0.9324 A-10					
A-5 31.4483 32.3 M 0.999 A-5 76.9882 77.6 b 0.821 $A-6$ 76.8359 77.6 b 0.821 $A-6$ 76.8359 77.6 b 0.0833 $A-7$ 76.8359 77.6 b 0.2270 $A.7$ 76.863 77.6 b 0.270 $A.7$ 76.863 77.6 b 0.270 $A.8$ 76.958 77.6 b 0.270 $A.8$ 76.958 77.6 b 0.270 $A.9$ 76.8442 77.6 b 0.932 $A.9$ 76.8442 77.6 b 0.932 $A.10$ 76.6032 77.6 b 0.932 $A.11$ 76.6777 77.6 b 0.272 $A.11$ 76.6577 77.6 b 0.432 $A.11$ 76.6577 77.6 b <	A-4				
A-5 76.9882 77.6 b 0.821 119.0325 119.8 U 1.8 $A-6$ 76.8359 77.6 b 0.0821 $A-6$ 76.8339 77.6 D 0.0821 $A-7$ 76.663 77.6 D 0.0823 $A-7$ 76.663 77.6 D 0.2821 $A-7$ 76.663 77.6 D 0.2821 $A-8$ 76.7958 77.6 D 0.22170 $A-8$ 76.7958 77.6 D 0.0003 $A-8$ 76.7958 77.6 D 0.9322 $A-9$ 76.8442 77.6 D 0.9322 $A-10$ 76.6032 77.6 D 0.9322 $A-10$ 76.6032 77.6 D 0.9322 $A-10$ 76.603 71.9 U 1.8 $A-11$ 76.663 77.6 D 0.9322 $A-11$ 76.6677 77.6 D 0.413 $A-11$ 76.6677 T.6 D 0.832 </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
119.0325119.8U1.88A-676.85977.6b-0.083A-776.86377.6b-0.270119.008119.8U1.88A-776.86377.6b-2.270119.009119.8U1.88A-876.795877.6b0.768118.9234119.8U1.88A-876.795877.6b0.7687.9577.6b0.7680.768118.9234119.8U1.860.768A-976.64277.6b0.932A-976.63277.6b0.932A-1076.63277.6b0.932A-1076.63277.6b0.932A-1176.756677.6b0.932A-1276.677777.6b0.922A-1376.656777.6b0.1270118.73832.3M1.001A-1276.677777.6bA-1376.659777.6bA-1476.659777.6bA-1576.70277.6bA-1676.70277.6bA-1773.32.3M1.003A-1873.128932.3MA-1974.77777.6bA-1476.659777.6bA-1576.70277.6bA-1676.70777.6bA-16 <t< td=""><td></td><td>31.4483</td><td>32.3</td><td>M</td><td>0.999</td></t<>		31.4483	32.3	M	0.999
32.2247 32.3 M 1.008 A-6 76.8359 77.6 b 0.0833 A-7 76.863 77.6 b 0.0833 A-7 76.863 77.6 b 0.2270 119.0609 119.8 U 1.8 A-8 76.7958 77.6 b 0.7683 A-8 76.7958 77.6 b 0.7683 A-8 76.7958 77.6 b 0.322 A-9 76.8442 77.6 b 0.322 A-9 76.633 119.8 U 1.8 A-10 76.6032 77.6 b 0.0322 A-11 76.5637 7.6 b 1.009 A-11 76.5657 7.6 b 1.270 A-11 76.5597 77.6 b 0.413 A-12 76.6777 77.6 b 0.8607 A-13 76.5597 77.6 b 0.8807 A	A-5	76.9882	77.6		0.8211
A-6 76.8359 77.6 b -0.0833 A-7 33.9938 32.3 M 1.028 A-7 76.863 77.6 b 2.270 119.060 119.8 U 1.8 A-7 76.863 77.6 b 0.2270 119.060 119.8 U 1.8 A-8 76.7958 77.6 b 0.768 118.9234 119.8 U 1.8 A-9 76.8442 77.6 b 0.9322 A-10 76.6342 77.6 b 0.9322 A-10 76.6322 77.6 b 0.9322 A-10 76.6052 77.6 b 0.104 A-11 76.7566 77.6 b 0.1270 A-11 76.6777 77.6 b 0.413 A-12 76.6777 77.6 b 0.413 A-13 76.6597 77.6 b 0.8860 118.784 <td></td> <td>119.0325</td> <td>119.8</td> <td>U</td> <td>1.80</td>		119.0325	119.8	U	1.80
119.018 119.8 U 1.83 A-7 76.863 77.6 b -2.270 119.069 119.8 U 1.83 A-8 76.758 77.6 b 0.2270 A-8 76.7958 77.6 b 0.7683 A-8 76.7958 77.6 b 0.7683 A-9 76.842 77.6 b 0.9324 A-9 76.642 77.6 b 0.9324 A-10 76.6032 77.6 b 0.9324 A-10 76.6032 77.6 b 0.9324 A-11 76.6757 119.8 U 1.83 A-11 76.6732 77.6 b 1.270 A-11 76.6777 77.6 b 0.413 A-12 76.6777 77.6 b 0.413 A-13 76.6597 77.6 b 0.433 A-14 76.6597 77.6 b 0.889 A		32.2247	32.3	M	1.0082
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A-6	76.8359	77.6	b	-0.0839
A-7 76.863 77.6 b -2.270 119.0609 119.8 U 1.83 A-8 76.7658 77.6 b 0.768 A-8 76.7578 77.6 b 0.768 A-8 76.7578 77.6 b 0.768 A-9 76.8442 77.6 b 0.9322 A-9 76.8442 77.6 b 0.9322 A-10 76.6032 77.6 b 0.9322 A-10 76.6032 77.6 b 0.997 A-11 76.7566 77.6 b 0.997 A-11 76.7566 77.6 b 0.270 A-11 76.6777 77.6 b 0.413 A-12 76.6777 77.6 b 0.433 A-13 76.6597 77.6 b 0.8607 A-13 76.6597 77.6 b 0.8607 A-14 76.6597 77.6 b 0.86		119.018	119.8	U	1.81
A-7 76.863 77.6 b -2.270 119.0609 119.8 U 1.83 A-8 76.7658 77.6 b 0.768 A-8 76.7578 77.6 b 0.768 A-8 76.7578 77.6 b 0.768 A-9 76.8442 77.6 b 0.9322 A-9 76.8442 77.6 b 0.9322 A-10 76.6032 77.6 b 0.9322 A-10 76.6032 77.6 b 0.997 A-11 76.7566 77.6 b 0.997 A-11 76.7566 77.6 b 0.270 A-11 76.6777 77.6 b 0.413 A-12 76.6777 77.6 b 0.433 A-13 76.6597 77.6 b 0.8607 A-13 76.6597 77.6 b 0.8607 A-14 76.6597 77.6 b 0.86		33.9938	32.3	м	1.0287
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A-7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.85
A-8 76.7958 77.6 b 0.7683 118.9234 119.8 U 1.8 A-9 76.6442 77.6 b 0.9324 A-9 76.6422 77.6 b 0.9324 A-10 76.6032 77.6 b 0.9324 A-10 76.6032 77.6 b 0.9324 A-10 76.6032 77.6 b 0.9324 A-11 76.6632 77.6 b 0.9324 A-11 76.6532 77.6 b 0.9324 A-11 76.6575 77.6 b 0.9374 A-11 76.6577 77.6 b 0.413 A-12 76.6777 77.6 b 0.413 A-12 76.6597 77.6 b 0.413 A-13 76.6597 77.6 b 0.8689 A-14 76.6597 77.6 b 0.8689 A-14 76.6597 77.6 b <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Δ-8				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~ 0				
A-9 76.8442 77.6 b 0.932 118.7633 119.8 U 1.8 A-10 76.6032 77.6 b 0.522 118.7796 119.8 U 1.8 A-10 76.6032 77.6 b 0.522 118.7796 119.8 U 1.8 A-11 76.7566 77.6 b 1.270 A-11 76.7576 77.6 b 0.973 A-12 76.6777 77.6 b 0.013 A-12 76.677 77.6 b 0.041 A-13 76.6597 77.6 b 0.041 A-13 76.6597 77.6 b 0.888 A-14 76.6054 77.6 b 0.888 A-14 76.6054 77.6 b 0.860 A-14 76.6077 77.6 b 0.860 A-14 76.6076 77.6 b 0.860 A-14				-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A-9				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				J	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-10				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-11				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{ c c c c c c } \hline & 118.7921 & 119.8 & & & & & & & & & & & & & & & & & & &$		31.7588			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A-12	76.6777	77.6		0.415
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		118.7921	119.8	U	1.81
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		31.3188	32.3	М	1.0018
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-13	76.6597	77.6	b	0.885
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		118.6584	119.8	U	1.80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		31.2689	32.3	M	1.0034
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-14	76.6054	77.6	b	0.8607
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.81
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-15				
31.4757 32.3 M 1.0049 A-16 76.6976 77.6 b 0.6219 118.5422 119.8 U 1.8 A-1* 72.3599 72.3 b 2.2859 111.9318 110.15 U 1.7 A-2* 72.2832 72.3 b 2.6285 111.5263 110.15 U 1.7 A-3* 72.2557 72.3 b 2.2855			-		1.82
A-16 76.6976 77.6 b 0.6215 118.5422 119.8 U 1.8				-	-
M M 0.9644 A-1* 72.3599 72.3 b 2.2859 111.9318 110.15 U 1.74 A-2* 72.2832 72.3 b 2.2859 111.5263 110.15 U 1.74 A-2* 72.2832 72.3 b 2.1629 111.5263 110.15 U 1.77 A-3* 72.2557 72.3 b 2.3850	A-16				
31.2234 32.3 M 0.9644 A-1* 72.3599 72.3 b 2.2859 111.9318 110.15 U 1.7 A-2* 72.2832 72.3 b 2.1629 111.5253 110.15 U 1.7 A-2* 72.2832 72.3 b 2.1629 111.5253 110.15 U 1.7 A-3* 72.2557 72.3 b 2.1629	H-10				
A-1* 72.3599 72.3 b 2.2853 111.9318 110.15 U 1.74 A-2* 72.2832 72.3 b 2.1623 111.5263 110.15 U 1.74 A-2* 72.2832 72.3 b 2.1623 111.5263 110.15 U 1.74 A-3* 72.2557 72.3 b 2.3850		110.3422	119.8	U	1.61
A-1* 72.3599 72.3 b 2.2853 111.9318 110.15 U 1.74 A-2* 72.2832 72.3 b 2.1623 111.5263 110.15 U 1.74 A-2* 72.2832 72.3 b 2.1623 111.5263 110.15 U 1.74 A-3* 72.2557 72.3 b 2.3850				I	0.000
111.9318 110.15 U 1.74 31.1644 32.3 M 0.9688 A-2* 72.2832 72.3 b 2.1622 111.5263 110.15 U 1.74 A-3* 72.2557 72.3 b 2.3557					
A-2* 31.1644 32.3 M 0.9688 111.5263 72.3 b 2.1629 111.5263 110.15 U 1.74 A-3* 72.2557 72.3 M 0.9688	A-1*				
A-2* 72.2832 72.3 b 2.1629 111.5263 110.15 U 1.74 31.0928 32.3 M 0.969 A-3* 72.2557 72.3 b 2.3850				-	
111.5263 110.15 U 1.74 31.0928 32.3 M 0.968 A-3* 72.2557 72.3 b 2.3856			32.3	M	0.9688
A-3* 72.2557 72.3 M 0.966	A-2*	72.2832	72.3		2.1629
A-3* 72.2557 72.3 b 2.3850		111.5263	110.15	U	1.74
		31.0928	32.3	М	0.965
111.7681 110.15 U 1.74	A-3*	72.2557	72.3	b	2.3856
		111.7681	110.15	U	1.74

Label	Measured Value	Actual Value		
	31.8484	32.4	М	1.001
B-1	76.7025	77.2	b	0.4879
	120.1605	120.8	U	1.80
	31.2486	32.4	м	0.9959
B-2	76.5987	77.2	 b	1.1593
	120.0059	120.8	U	1.79
	31.225	32.4	 м	0.9953
B-3	76.5194	77.2	b	1.2313
	120.0427	120.8	U	1.79
	31.3312	32.4	м	0.9993
B-4	76.4556	77.2	 b	0.9922
	119.7848	120.8	U	1.80
	31.485	32.4	 м	0.9988
B-5	76.4772	77.2	 b	0.9068
	119.9888	120.8	 U	1.80
	31.7175	32.4	 М	1.0067
B-6	76.3636	77.2	 b	0.4241
	119.5313	120.8	U	1.81
	31.816	32.4	 M	1.0055
B-7	76.298	77.2	 b	0.4315
	119.7297	120.8	 U	1.81
	31.648	32.4	 M	1.0152
B-8	76.3038 118.7179	77.2 120.8	 b U	0.0972
			-	
B-9	31.7518 76.2056	32.4 77.2	 M	1.0161
B-9	118.7429	120.8	 U	1.83
	31.2021	32.4	M	
B-10	76.2047	32.4 77.2	 b	1.0036 0.9644
B-10	119.277	120.8	 U	1.81
	32.0142	32.4	M	1.0091
B-11	76.0969	77.2	 b	0.1975
D-11	119.6149	120.8	 U	1.82
	32.1843	32.4	M	1.0082
B-12	76.1094	77.2	 b	0.1221
0 12	119.8641	120.8	Ű	1.81
	33.2795	32.4	M	1.0228
B-13	76.0787	77.2	b	-1.2964
	119.6991	120.8	Ŭ	1.84
	34.1875	32.4	M	1.0329
B-14	76.0676	77.2	b	-2.3905
	119.7519	120.8	U	1.86
	33.6868	32.4	м	1.0373
B-15	76.074	77.2	b	-2.2643
	118.9066	120.8	U	1.87
	36.0575	32.4	м	1.053
B-16	76.1459	77.2	b	-4.6792
	119.94	120.8	U	1.90
	31.7222	32.3	М	0.9698
B-1*	72.5259	72.3	b	1.677
	112.0013	110.15	U	1.75
	31.3421	32.3	м	0.9657
B-2*	72.4535	72.3	b	2.133
	111.9647	110.15	U	1.74
	31.6729	32.3	м	0.9706
B-3*	72.5254	72.3	b	1.6711
	111.8819	110.15	U	1.75

APPENDIX C: TEMPERATURE AND POWER PLOTS FOR

DORM-SIZE UNITS

Unconditioned Space Temperature: 40°F (median thermostat)

Unit A

Unit B

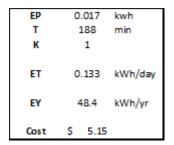
EP

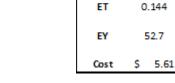
т

К

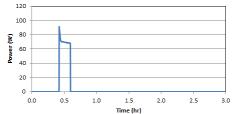
0.019

188

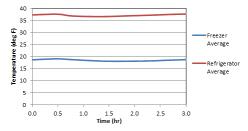

1

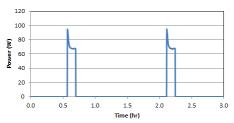

kwh

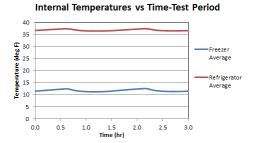
min

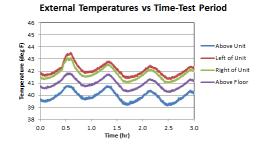

kWh/day

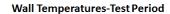
kWh/yr

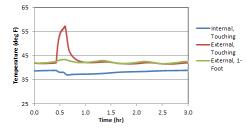


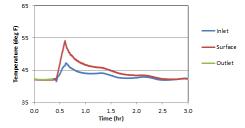

Power vs Time-Test Period

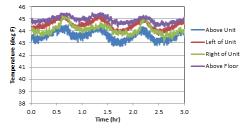


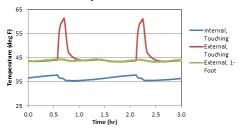

Internal Temperatures vs Time-Test Period

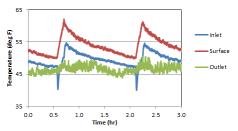











External Temperatures vs Time-Test Period

Wall Temperatures-Test Period

Unconditioned Space Temperature: 55°F (median thermostat)

Unit B

EP

т

К

ET

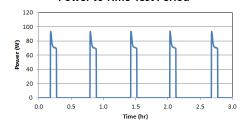
EY

Cost

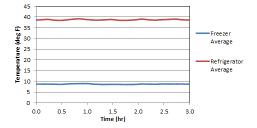
0.038

192

1

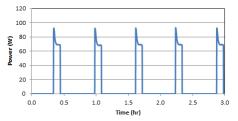

0.285

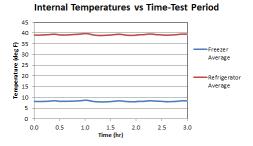
104.1


\$ 11.09

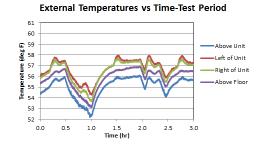
EP T K	0.036 192 1	kwh min
ET	0.269	kWh/day
EY	98.3	kWh/yr
Cost	\$ 10.47	

Internal Temperatures vs Time-Test Period

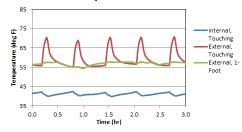

Power vs Time-Test Period

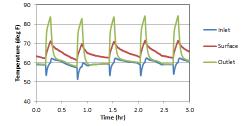

kwh

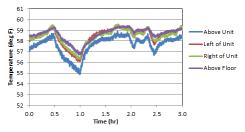
min

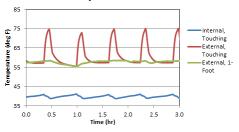

kWh/day

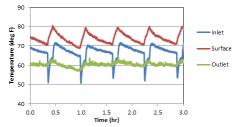
kWh/yr




(55°F median)




Compressor Temperatures-Test Period


External Temperatures vs Time-Test Period

Wall Temperatures-Test Period

Unconditioned Space Temperature: 70°F (median thermostat)

Unit B

EP

т

К

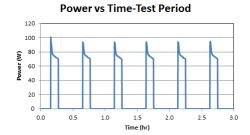
ET

EY

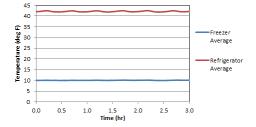
Cost

0.066

199


1

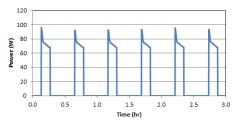
0.476

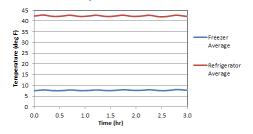

173.9

\$ 18.52

EP T K	0.063 199 1	kwh min
ET	0.458	kWh/day
EY	167.2	kWh/yr
Cost	\$ 17.81	

Internal Temperatures vs Time-Test Period

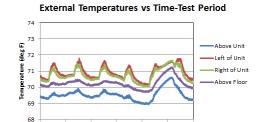

Power vs Time-Test Period


kwh

min

kWh/day

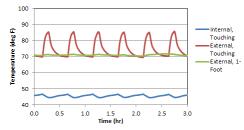
kWh/yr



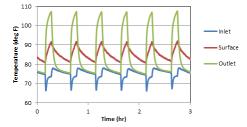
Internal Temperatures vs Time-Test Period

(70°F median)

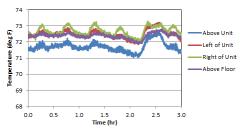
0.0 0.5

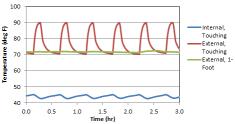

2.0

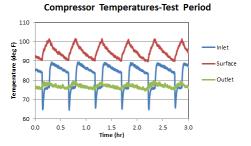
2.5


3.0

1.5 Time (hr)


1.0





External Temperatures vs Time-Test Period

Unconditioned Space Temperature: 90°F (median thermostat)

Unit B

EP

т

К

ET

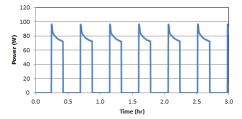
EY

Cost

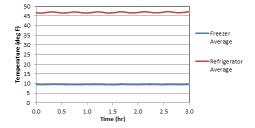
0.094

184

1


0.736

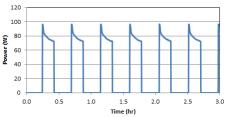
268.5

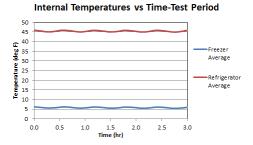

\$ 28.59

EP T K	0.093 184 1	kwh min
ET	0.731	kWh/day
EY	266.8	kWh/yr
Cost	\$ 28.41	

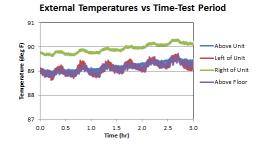
Power vs Time-Test Period

Internal Temperatures vs Time-Test Period

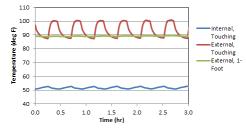

Power vs Time-Test Period

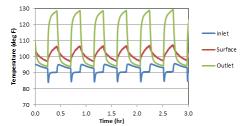

kwh

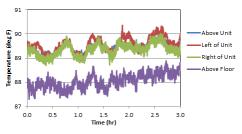
min

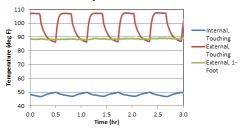

kWh/day

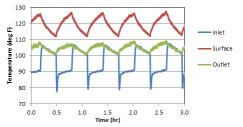
kWh/yr




(90°F median)


Wall Temperatures-Test Period




External Temperatures vs Time-Test Period

Wall Temperatures-Test Period

Unconditioned Space Temperature: 90°F (coldest thermostat)

Unit A

Unit B

EP

т

К

ET

EY

Cost

0.195

185

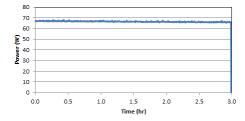
1

1.521

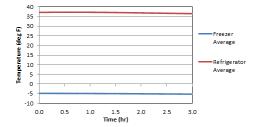
555.2

\$ 59.13

kwh

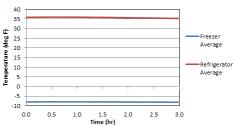

min

kWh/day


kWh/yr

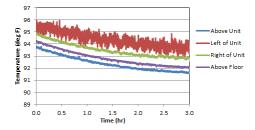
EP	0.198	kwh
т	185	min
к	1	
ET	1.548	kWh/day
EY	565.2	kWh/yr
		_
Cost	\$ 60.1	9

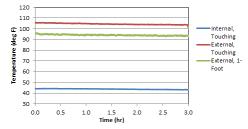
Power vs Time-Test Period



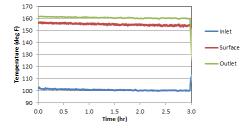
Internal Temperatures vs Time-Test Period

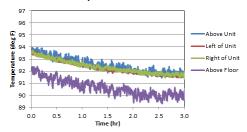
Power vs Time-Test Period

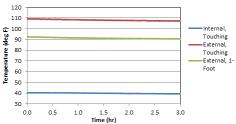


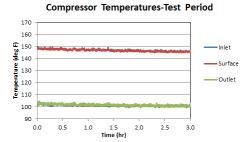


(90°F coldest)


External Temperatures vs Time-Test Period

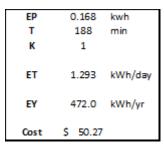


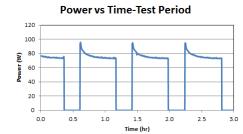


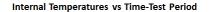

External Temperatures vs Time-Test Period

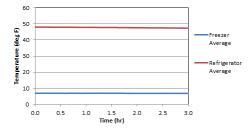
1.0

Wall Temperatures-Test Period

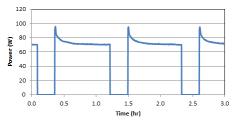


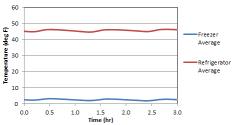

Unconditioned Space Temperature: 100°F (median thermostat)

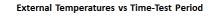

Unit A

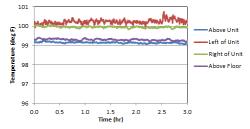

Unit B

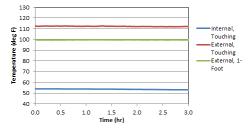
EP	0.161	kwh
т	188	min
к	1	
ET	1.238	kWh/day
EY	451.8	kWh/yr
Cost	\$ 48.12	



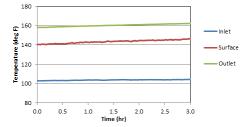


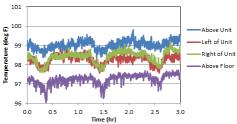

Power vs Time-Test Period

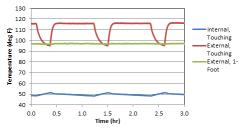


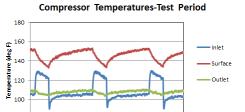

Internal Temperatures vs Time-Test Period

(100°F median)









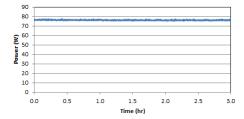
External Temperatures vs Time-Test Period

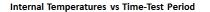
Wall Temperatures-Test Period

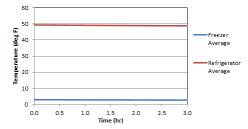
80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 Time (hr)

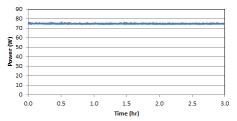
Unconditioned Space Temperature: 110°F (median thermostat)

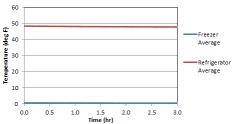

011111


Unit B

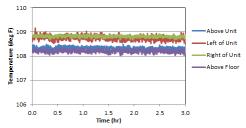

EP	0.237	kwh
т	187	min
к	1	
ET	1.830	kWh/day
EY	667.8	kWh/yr
Cost	\$ 71.12	

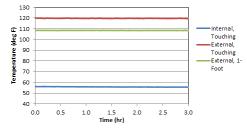
EP T	0.233 187	kwh min
к et	1 1.794	kWh/day
EY	654.8	
Cost	\$ 69.73	


Power vs Time-Test Period

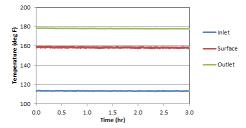


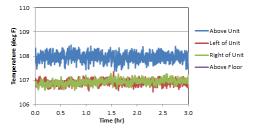
Power vs Time-Test Period

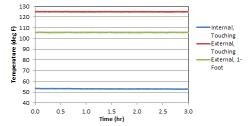


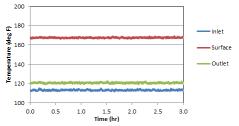

Internal Temperatures vs Time-Test Period

(110°F median)

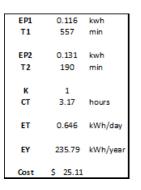







External Temperatures vs Time-Test Period

Wall Temperatures-Test Period

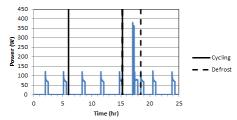

APPENDIX D: TEMPERATURE AND POWER PLOTS FOR

STANDARD-SIZE UNITS

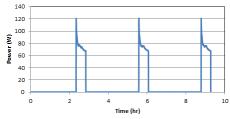
Unconditioned Space Temperature: 33°F (median thermostat)

Unit A

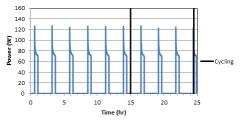
Unit B

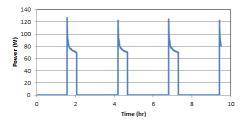


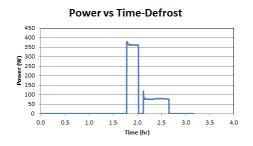
(As Is)

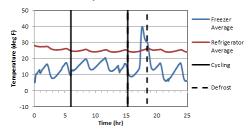

(Borrowed Defrost)

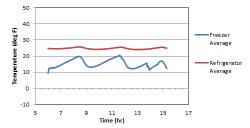
EP1	0.125	kwh	EP1	0.125	kwh
T1	570	min	T1	570	min
EP2	-	kwh	EP2	0.131	kwh
T2	-	min	T2	190	min
к	1		ĸ	1	
СТ	-	hours	СТ	3.17	hours
ET	0.317	kWh/day	ET	0.655	kWh/day
EY	115.65	kWh/year	EY	238.93	kWh/year
Cost	\$ 12.32		Cost	\$ 25.45	
ust	ə 12.52		COST	⇒ 25.45	

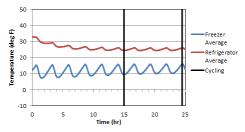

Power vs Time-Total Test

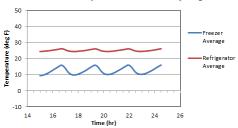


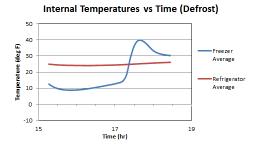

Power vs Time-Total Test

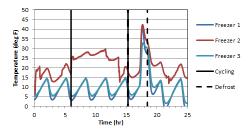

Power vs Time-Cycling


(33°F median)

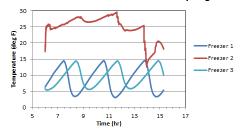

Internal Temperatures vs Time-Total Test

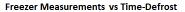


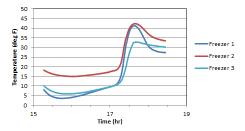

Internal Temperatures vs Time-Total Test

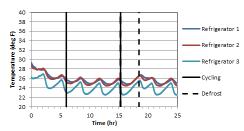


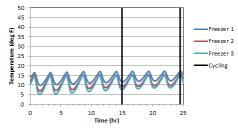
(33°F median)

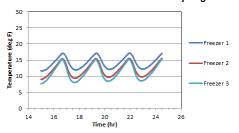


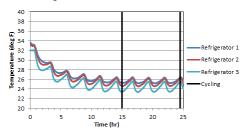

(33°F median)


Freezer Measurements vs Time-Total Test

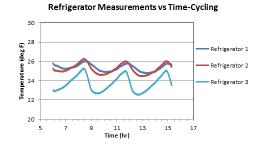




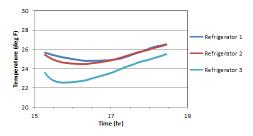

Refrigerator Measurements vs Time-Total Test

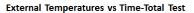

Freezer Measurements vs Time-Total Test

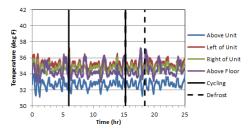
Freezer Measurements vs Time-Cycling

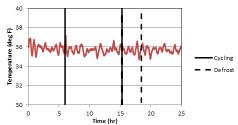


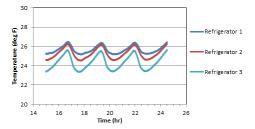
Refrigerator Measurements vs Time-Total Test

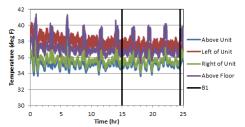


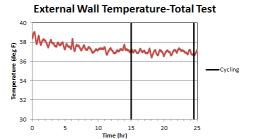

121


(33°F median)

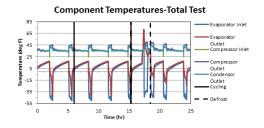


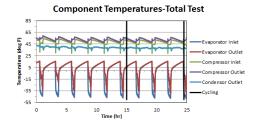




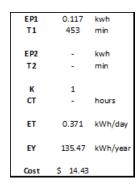


Refrigerator Measurements vs Time-Cycling

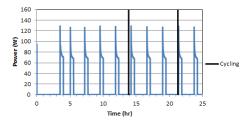



External Temperatures vs Time-Total Test

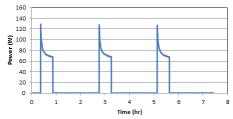
(33°F median)

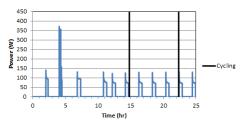


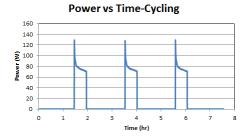
Unconditioned Space Temperature: 40°F (median thermostat)

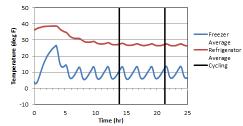

Unit A

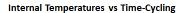
Unit B

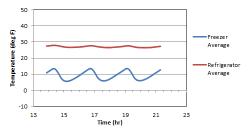

EP1	0.116	kwh
T1	446	min
EP2	-	kwh
T2	-	min
к	1	
СТ	-	hours
ET	0.376	kWh/day
EY	137.11	kWh/year
Cost	\$ 14.60	
	÷ 11.00	

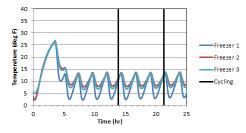

Power vs Time-Total Test

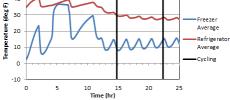


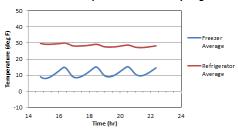


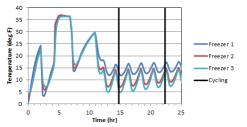


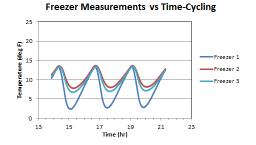



Internal Temperatures vs Time-Total Test

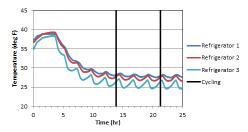



Freezer Measurements vs Time-Total Test

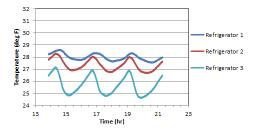

Internal Temperatures vs Time-Total Test

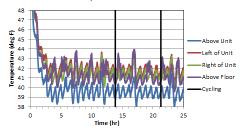


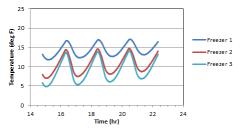
Internal Temperatures vs Time-Cycling

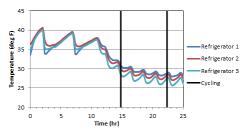


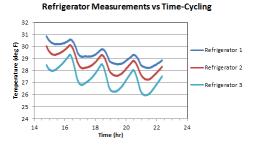
Freezer Measurements vs Time-Total Test



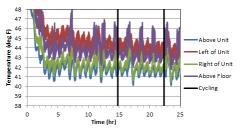



Refrigerator Measurements vs Time-Cycling

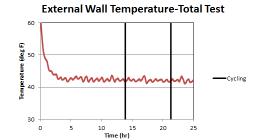

External Temperatures vs Time-Total Test

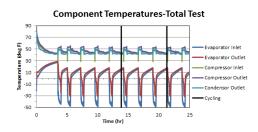


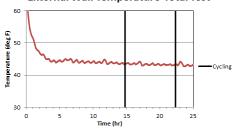
Freezer Measurements vs Time-Cycling

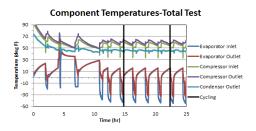


Refrigerator Measurements vs Time-Total Test

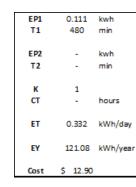




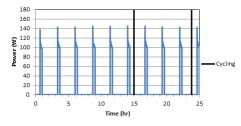



126

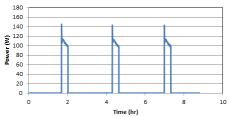
External Wall Temperature-Total Test

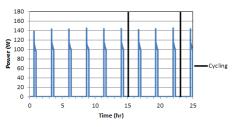


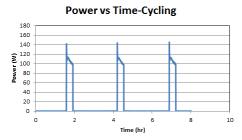
Unconditioned Space Temperature: 55°F (median thermostat)

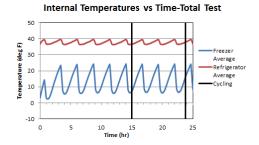

Unit A

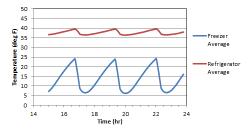

Unit B

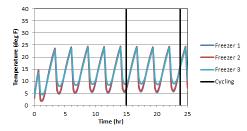

EP1	0.111	kwh
T1	528	min
EP2	-	kwh
T2	-	min
к	1	
СТ	-	hours
ET	0.302	kWh/day
EY	110.07	kWh/year
Cost	\$ 11.72	

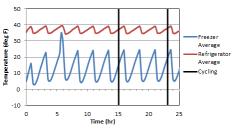

Power vs Time-Total Test

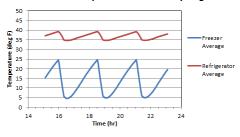


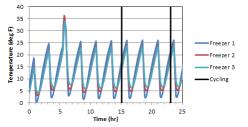


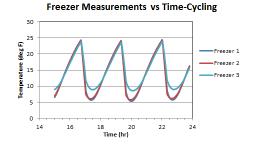

Power vs Time-Total Test

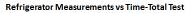


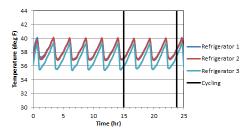



Freezer Measurements vs Time-Total Test

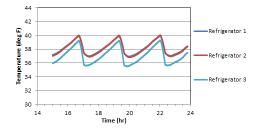

Internal Temperatures vs Time-Total Test

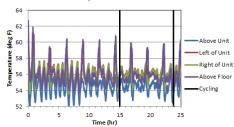


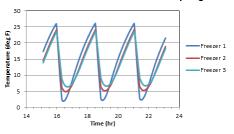

Internal Temperatures vs Time-Cycling

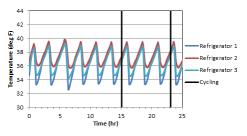


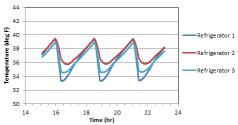
Freezer Measurements vs Time-Total Test

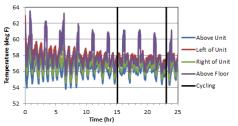


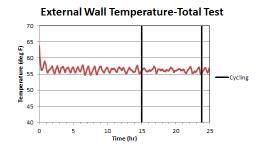


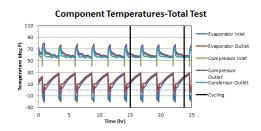

Refrigerator Measurements vs Time-Cycling

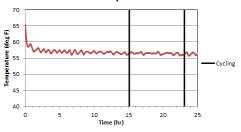


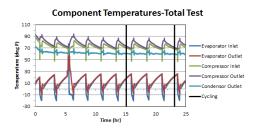

Freezer Measurements vs Time-Cycling

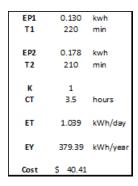

Refrigerator Measurements vs Time-Total Test



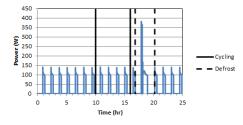




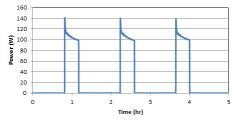


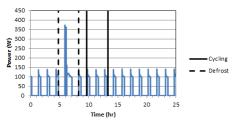


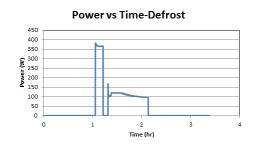
Unconditioned Space Temperature: 70°F (median thermostat)

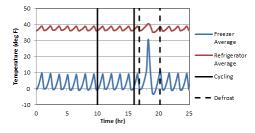

Unit A

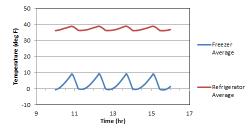
Unit B

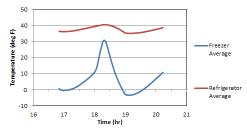

EP1	0.156	kwh
T1	360 min	
EP2	0.148	kwh
T2	203	min
к	1	
СТ	3.4	hours
ET	0.836	kWh/day
EY	305.03	kWh/year
Cost	\$ 32.49	

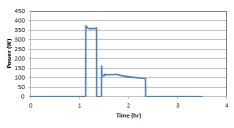

Power vs Time-Total Test

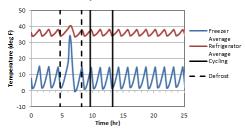


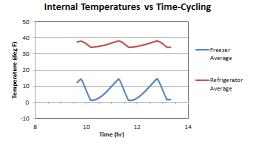



(70°F median)

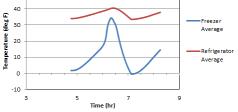

Internal Temperatures vs Time-Total Test



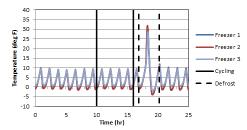


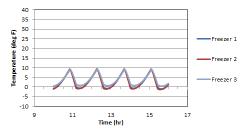


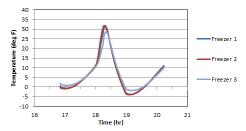
Power vs Time-Defrost

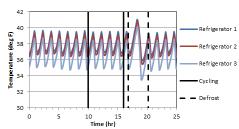


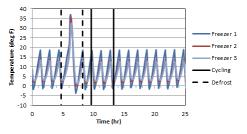
Internal Temperatures vs Time-Total Test

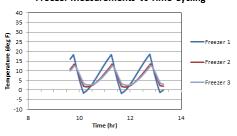


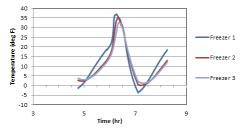


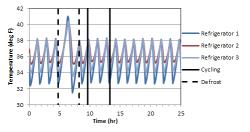

Freezer Measurements vs Time-Total Test

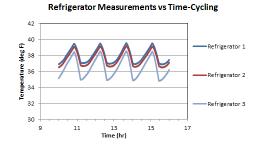


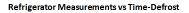


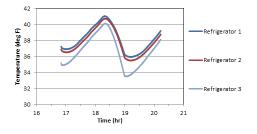


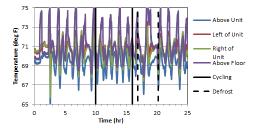

Freezer Measurements vs Time-Total Test

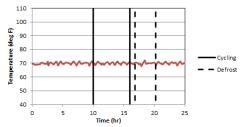

Freezer Measurements vs Time-Cycling

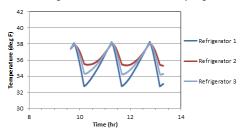


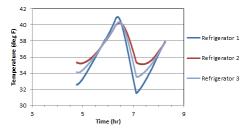

Freezer Measurements vs Time-Defrost

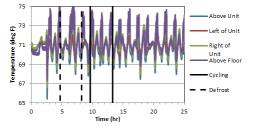


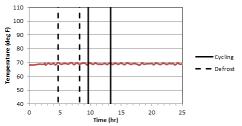


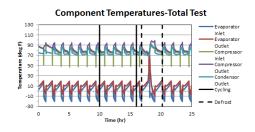


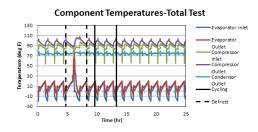


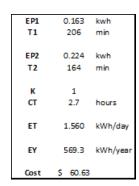



Refrigerator Measurements vs Time-Cycling

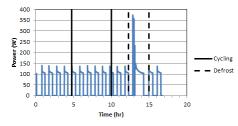

Refrigerator Measurements vs Time-Cycling

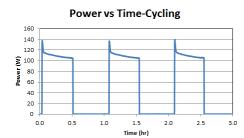



External Temperatures vs Time-Total Test

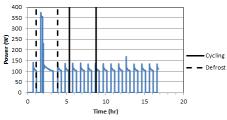


Unconditioned Space Temperature: 90°F (median thermostat)

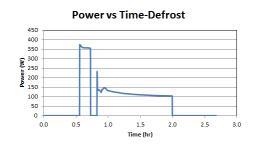

Unit A

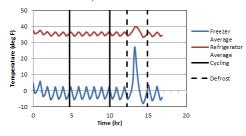

Unit B

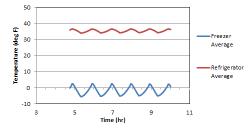
EP1	0.278	kwh
T1	316	min
EP2	0.197	kwh
T2	161	min
К	1	
СТ	2.7	hours
ET	1.517	kWh/day
EY	553.6	kWh/year
Cost	\$ 58.96	

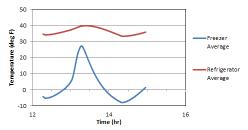


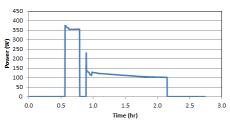
Power vs Time-Total Test

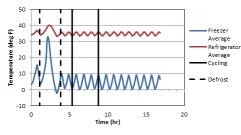


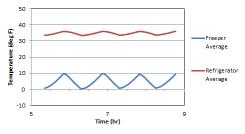


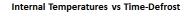

(90°F median)

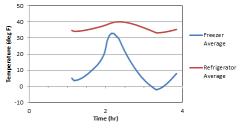


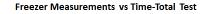


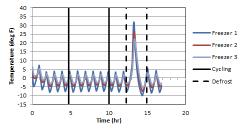


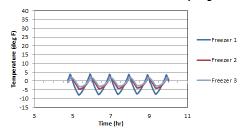

Power vs Time-Defrost

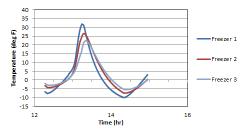


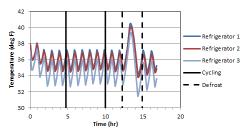


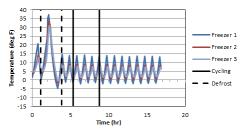


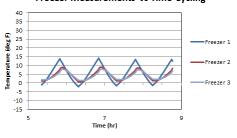


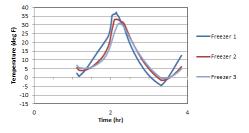


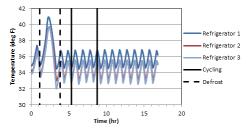


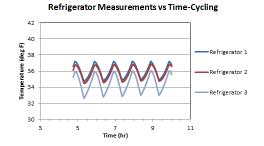



Freezer Measurements vs Time-Defrost

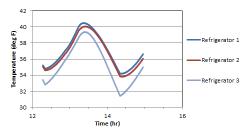

Refrigerator Measurements vs Time-Total Test

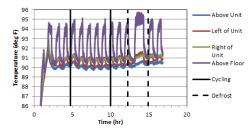

Freezer Measurements vs Time-Total Test

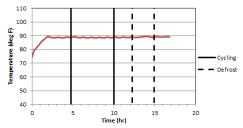

Freezer Measurements vs Time-Cycling

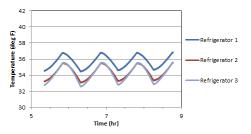

Freezer Measurements vs Time-Defrost

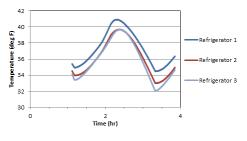


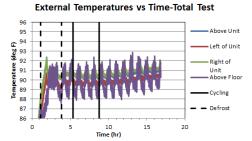



(90°F median)

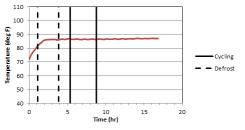



External Temperatures vs Time-Total Test

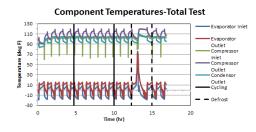


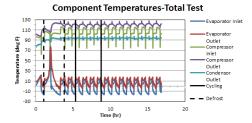


Refrigerator Measurements vs Time-Cycling

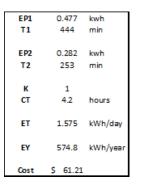


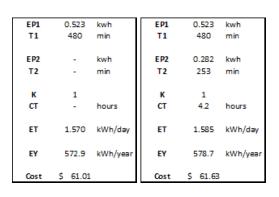
Refrigerator Measurements vs Time-Defrost

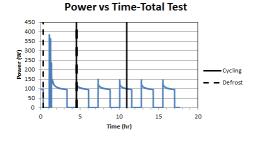


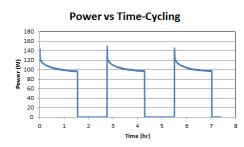


(90°F median)

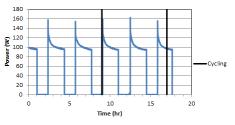

Unconditioned Space Temperature: 90°F (coldest thermostat)

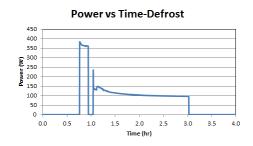

Unit A


Unit B

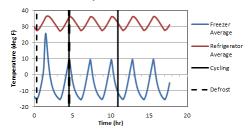

(As Is)

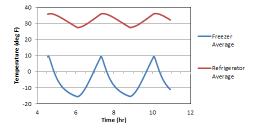
(Borrowed Defrost)

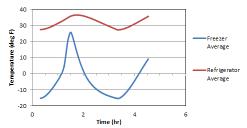


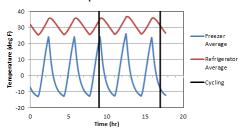


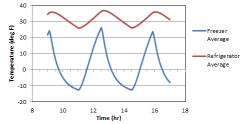
Power vs Time-Total Test



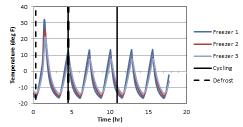

(90°F coldest)


Internal Temperatures vs Time-Total Test

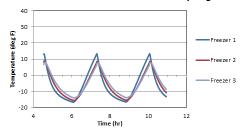

Internal Temperatures vs Time-Cycling


Internal Temperatures vs Time-Defrost

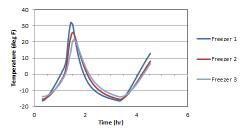
Internal Temperatures vs Time-Total Test

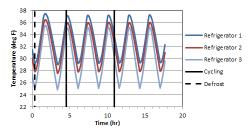


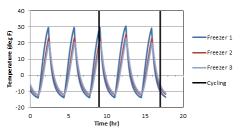
Internal Temperatures vs Time-Cycling

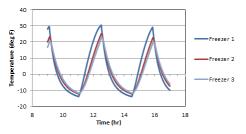


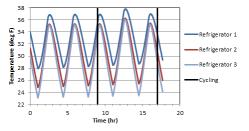
(90°F coldest)



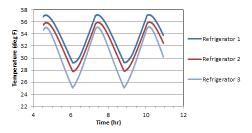




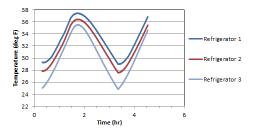

Refrigerator Measurements vs Time-Total Test

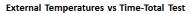

Freezer Measurements vs Time-Total Test

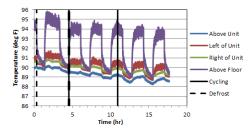
Freezer Measurements vs Time-Cycling

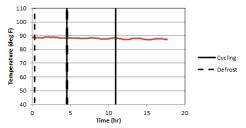


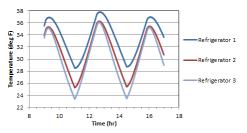
Refrigerator Measurements vs Time-Total Test

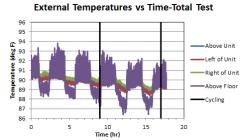


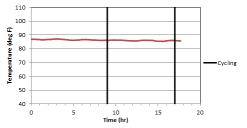

(90°F coldest)


Refrigerator Measurements vs Time-Cycling

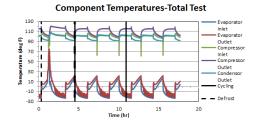


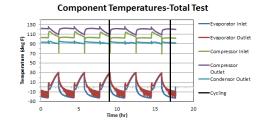






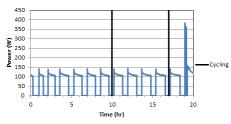
Refrigerator Measurements vs Time-Cycling



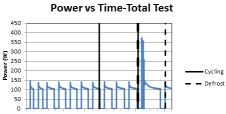


(90°F coldest)

Unconditioned Space Temperature: 100°F (median thermostat)

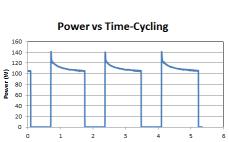

T	r	• .	
1/	n	11	A
\mathbf{U}	111	v	1

Unit B


EP1	0.501	kwh	EP1	0.501	kwh
T1	420	min	T1	420	min
EP2	-	kwh	EP2	0.339	kwh
T2	-	min	T2	230	min
к	1		K	1	
СТ	-	hours	СТ	3.8	hours
ET	1.718	kWh/day	ET	1.923	kWh/day
EY	627.05	kWh/year	EY	701.71	kWh/year
Cost	\$ 66.78		Cost	\$ 74.73	

EP1	0.373	kwh
T1	321	min
EP2	0.339	kwh
T2	230	min
к	1	
СТ	3.8	hours
ET	1.902	kWh/day
EY	694.08	kWh/year
Cost	\$ 73.92	

Power vs Time-Total Test

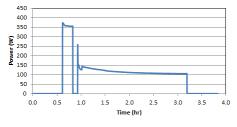


15

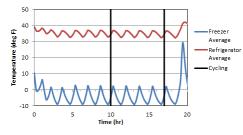
20

10

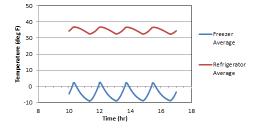
Time (hr)

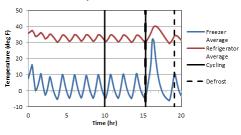


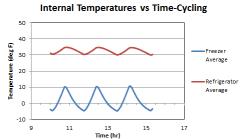
Time (hr)


0

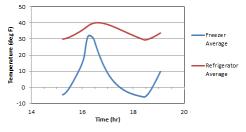
(100°F median)


Power vs Time-Defrost

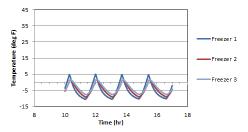

Internal Temperatures vs Time-Total Test



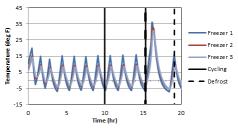
Internal Temperatures vs Time-Cycling

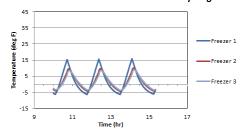


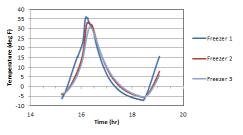
Internal Temperatures vs Time-Total Test

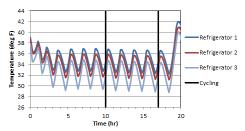


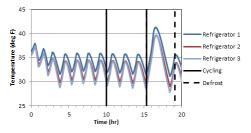
(100°F median)

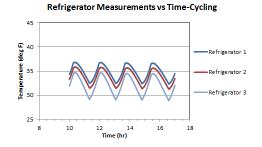

Freezer Measurements vs Time-Total Test



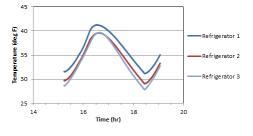

Freezer Measurements vs Time-Total Test


Freezer Measurements vs Time-Cycling

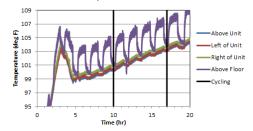

Freezer Measurements vs Time-Defrost


Refrigerator Measurements vs Time-Total Test

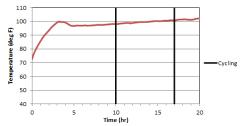
Refrigerator Measurements vs Time-Total Test

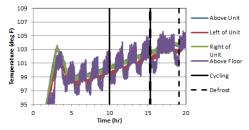


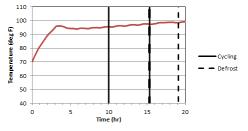
(100°F median)

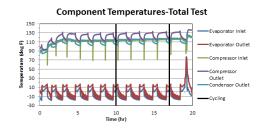


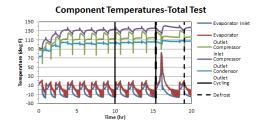
Refrigerator Measurements vs Time-Cycling


Refrigerator Measurements vs Time-Defrost

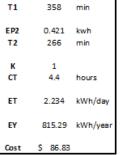

External Temperatures vs Time-Total Test

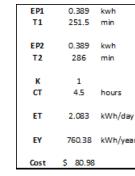



External Temperatures vs Time-Total Test

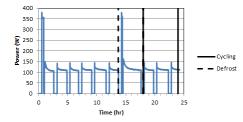


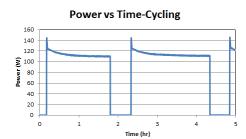
(100°F median)

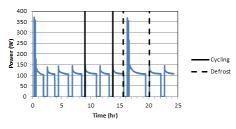


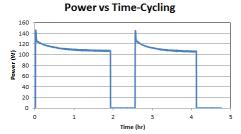

Unconditioned Space Temperature: 110°F (median thermostat)

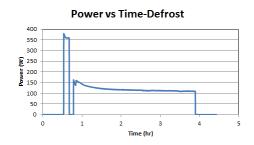
Unit A


Unit B

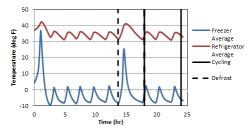

EP1	0.545	kwh
T1	358	min
EP2	0.421	kwh
T2	266	min
к	1	
ст	4.4	hours
		nours
ET	0.004	LAND LAND
EI	2.234	kWh/day
EY	815.29	kWh/year
Cost	\$ 86.83	

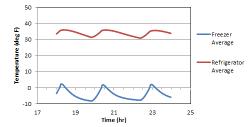


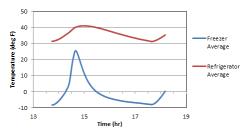

Power vs Time-Total Test

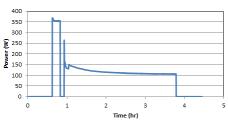


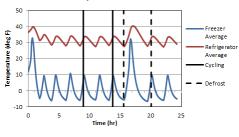
Power vs Time-Total Test

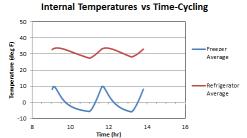


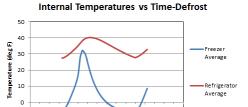

(110°F median)


Internal Temperatures vs Time-Total Test

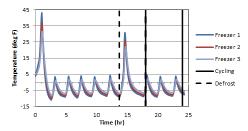

Internal Temperatures vs Time-Cycling



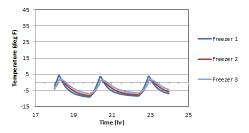



Power vs Time-Defrost

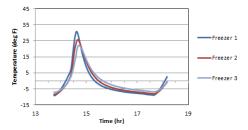
20

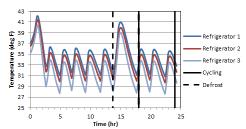

22

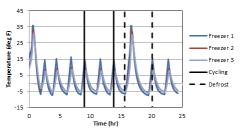
18 Time (hr)

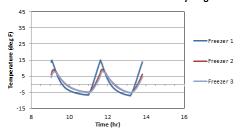


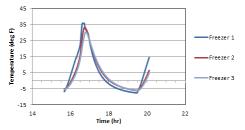
(110°F median)

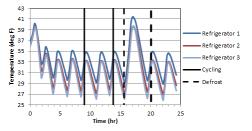

Freezer Measurements vs Time-Total Test

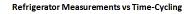


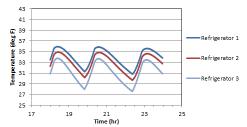


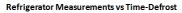


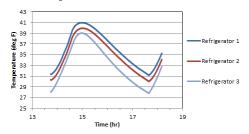

Freezer Measurements vs Time-Total Test


Freezer Measurements vs Time-Cycling

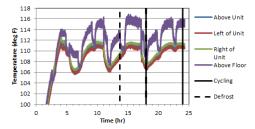


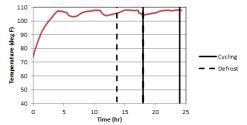


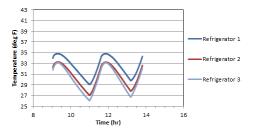


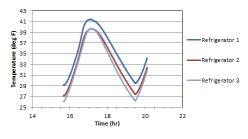


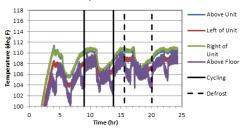
(110°F median)

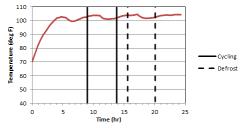


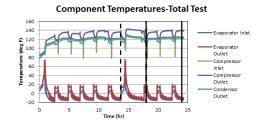


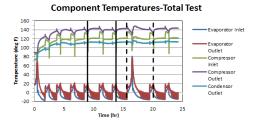

External Temperatures vs Time-Total Test




Refrigerator Measurements vs Time-Cycling


Refrigerator Measurements vs Time-Defrost

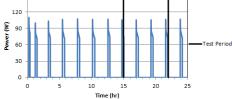

External Temperatures vs Time-Total Test



(110°F median)

APPENDIX E: TEMPERATURE AND POWER PLOTS FOR

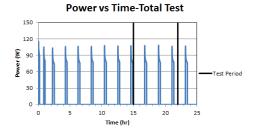
CHEST FREEZER UNITS

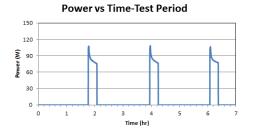

Unconditioned Space Temperature: 40°F (median thermostat)

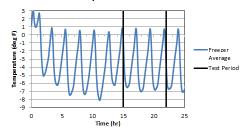
Unit A

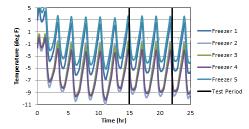
150

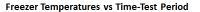
EP 0.085 kwh 420 т min К 0.7 kWh/day ET 0.203 EY 74.23 kWh/yr s 8.91 Cost

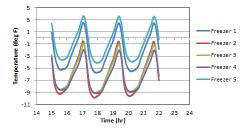


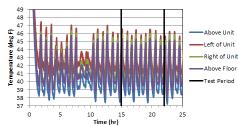


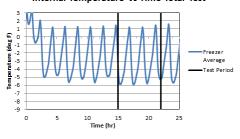

EP	0.076	kwh
т	420	min
к	0.7	
ET	0.182	kWh/day
EY	66.49	kWh/yr
Cost	\$ 7.98	

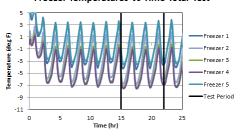


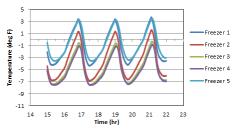

(40°F median)

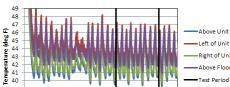

Internal Temperature vs Time-Total Test


Freezer Temperatures vs Time-Total Test






Internal Temperature vs Time-Total Test

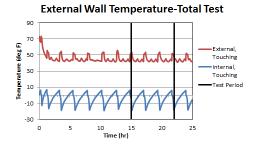


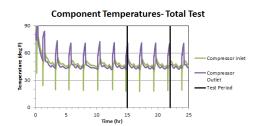
Freezer Temperatures vs Time-Total Test

Freezer Temperatures vs Time-Test Period

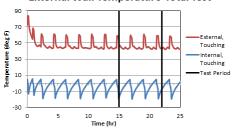
20

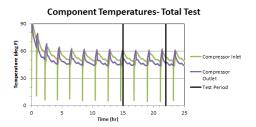
10 15 Time (hr)


External Temperatures vs Time-Total Test

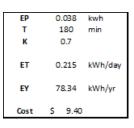


25


0

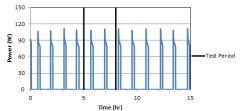

(40°F median)

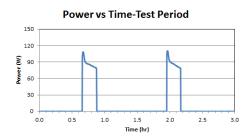
External Wall Temperature-Total Test

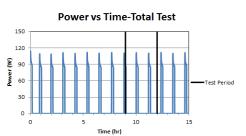


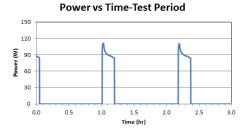


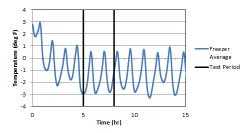
Unconditioned Space Temperature: 55°F (median thermostat)

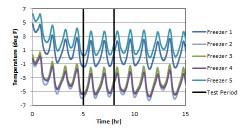

Unit A

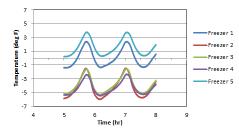

Unit B

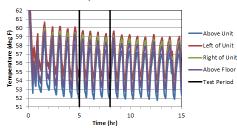


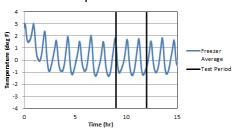


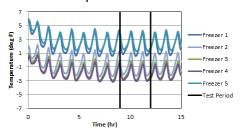


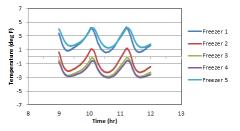


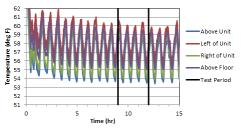

Internal Temperature vs Time-Total Test

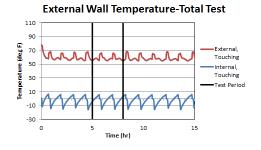

Freezer Temperatures vs Time-Total Test

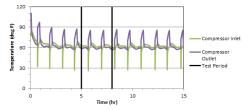

Freezer Temperatures vs Time-Test Period

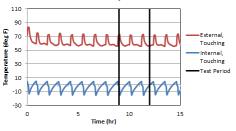

External Temperatures vs Time-Total Test

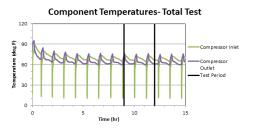

Internal Temperature vs Time-Total Test


Freezer Temperatures vs Time-Total Test


Freezer Temperatures vs Time-Test Period




(55°F median)



External Wall Temperature-Total Test

Unconditioned Space Temperature: 70°F (median thermostat)

Unit A

Unit B

EP

т

к

ET

EY

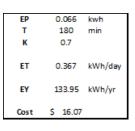
Cost

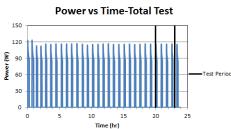
0.062

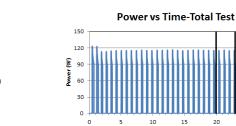
180

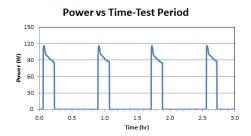
0.7

0.349

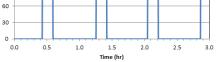

\$ 15.29

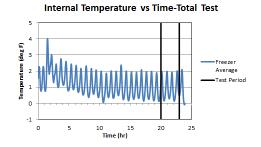

127.38 kWh/yr


kwh

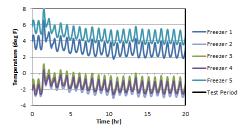

min

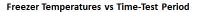
kWh/day

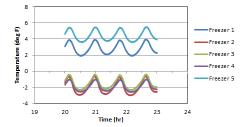


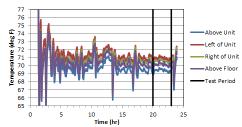


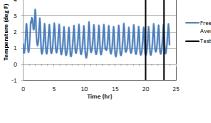
Power vs Time-Test Period

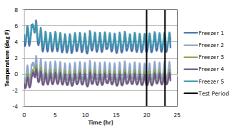

Time (hr)

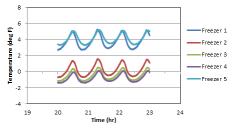

Test Period

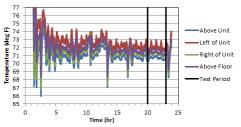


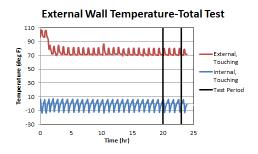


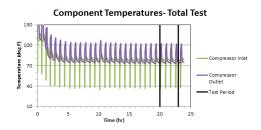


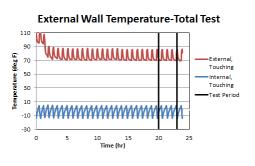

External Temperatures vs Time-Total Test

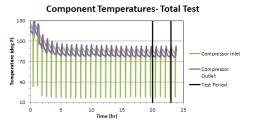

Internal Temperature vs Time-Total Test 5 4 3 Freezer 2 Average •Test Period 1


Freezer Temperatures vs Time-Total Test

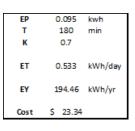

Freezer Temperatures vs Time-Test Period

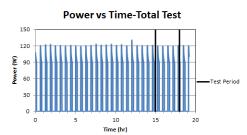


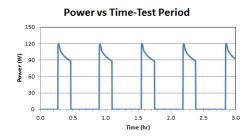


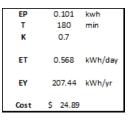


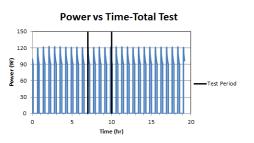
(70°F median)

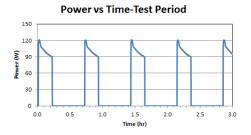


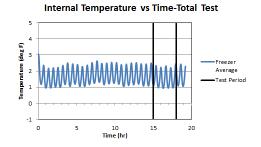


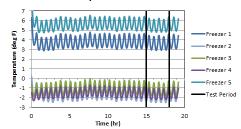

Unconditioned Space Temperature: 90°F (median thermostat)

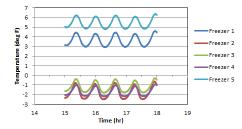

Unit A

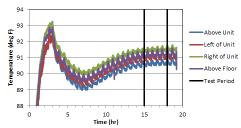

Unit B



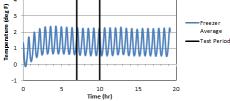




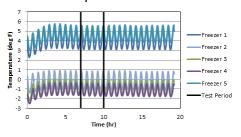

(90°F median)


Freezer Temperatures vs Time-Total Test

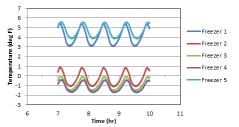
Freezer Temperatures vs Time-Test Period



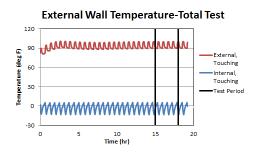
External Temperatures vs Time-Total Test

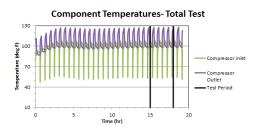


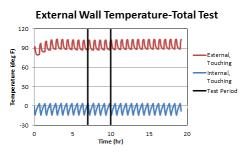
5 4 3 Freeze

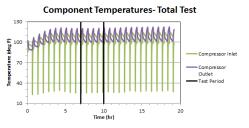

Internal Temperature vs Time-Total Test

Freezer Temperatures vs Time-Total Test

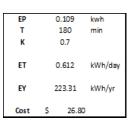

Freezer Temperatures vs Time-Test Period

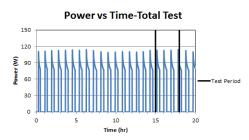


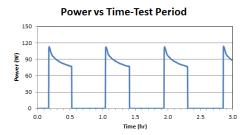


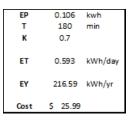


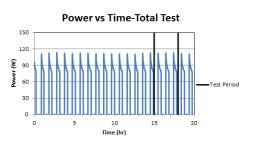
(90°F median)

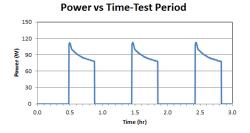


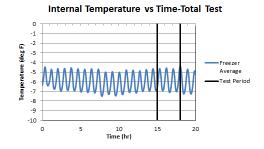

168

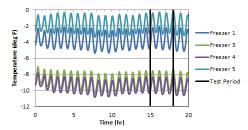

Unconditioned Space Temperature: 90°F (coldest thermostat)

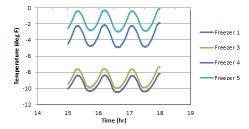

Unit A

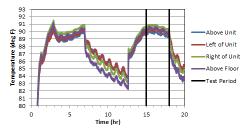

Unit B

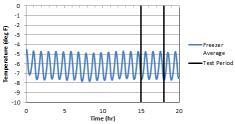


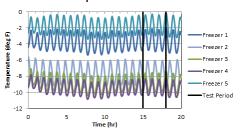


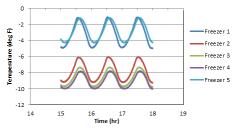


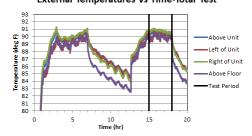

(90°F coldest)

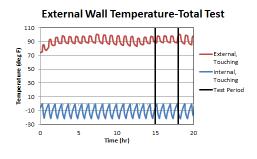

Freezer Temperatures vs Time-Total Test

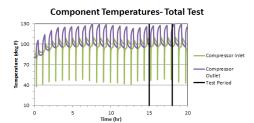

Freezer Temperatures vs Time-Test Period

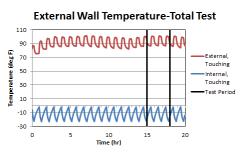

External Temperatures vs Time-Total Test

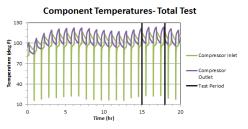

Internal Temperature vs Time-Total Test


Freezer Temperatures vs Time-Total Test


Freezer Temperatures vs Time-Test Period







(90°F coldest)

171

Unconditioned Space Temperature: 100°F (median thermostat)

Unit A

Unit B

EP

т

к

ET

EY

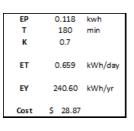
0

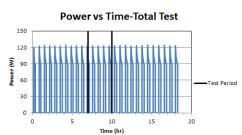
0.117

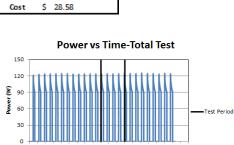
180

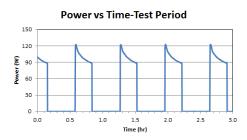
0.7

0.653

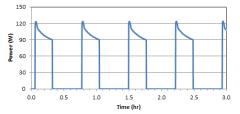

238.18 kWh/yr


5

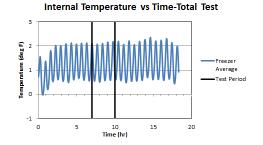

kwh


min

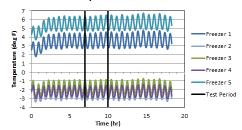
kWh/day

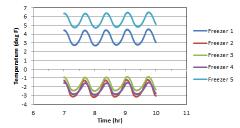


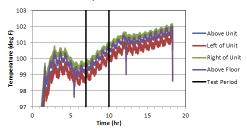
Power vs Time-Test Period

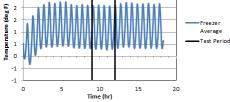

10

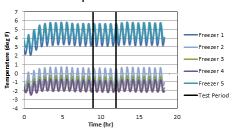
Time (hr)

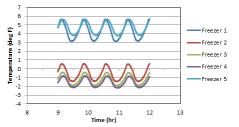

20

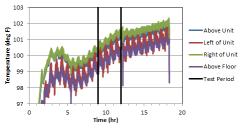

(100°F median)

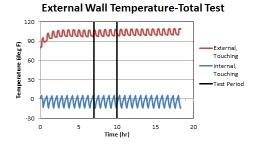

Freezer Temperatures vs Time-Total Test

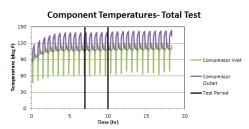

Freezer Temperatures vs Time-Test Period

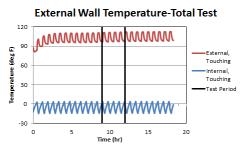

External Temperatures vs Time-Total Test

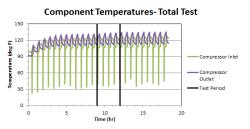

Internal Temperature vs Time-Total Test


Freezer Temperatures vs Time-Total Test

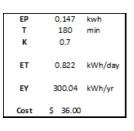

Freezer Temperatures vs Time-Test Period

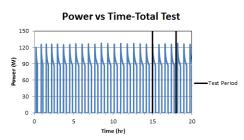


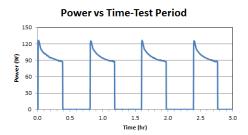


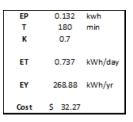


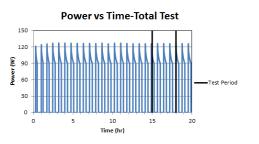
(100°F median)

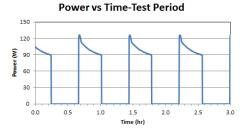


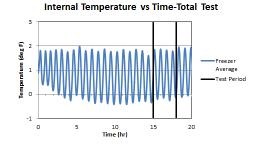


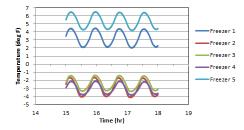

Unconditioned Space Temperature: 110°F (median thermostat)

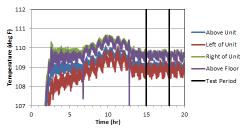

Unit A

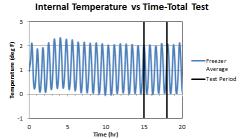

Unit B



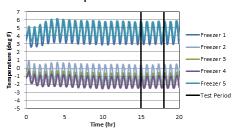



(110°F median)

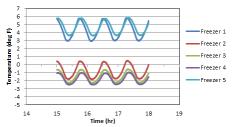

Freezer Temperatures vs Time-Total Test

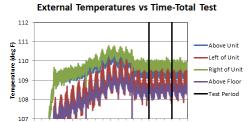


Freezer Temperatures vs Time-Test Period



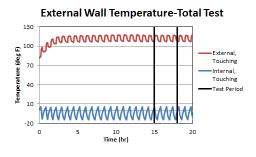
External Temperatures vs Time-Total Test

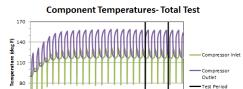




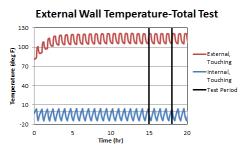
Freezer Temperatures vs Time-Total Test

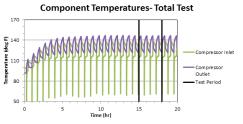
Freezer Temperatures vs Time-Test Period




15

20


10 Time (hr)


(110°F median)

Time (hr)

APPENDIX F: SAMPLES OF DATA

Raw Data Sample of Temperature Measurements

(90°F, median setting, Standard-size Unit A)

Fridge A 90 Deg F- Median Setting

		Freezer 1		Freezer 2		Freezer 3		Fridge 1		Fridge 2		Fridge 3		Ext. Top		Ext. Left	
		M	b	M	<u>b</u>	M	<u>b</u>	M	b	M	<u>b</u>	M	b	M	<u>b</u>	M	<u>b</u>
		1.0051	-0.1437	1.0098	-0.5617	1.0052	0.399	1.0047	0.13	0.999	0.8211	1.0082	-0.0839	1.0287	-2.2701	1.0008	0.7685
		Meas	Corrected	Meas	Corrected	Meas	Corrected	Meas	Corrected	Meas	Corrected	Meas	Corrected	Meas	Corrected	Meas	Corrected
Time (s)	Time (hr)	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
0	0	2.527675	2.396866	6.111096	5.609285	6.102601	6.533335	37.47891	37.78506	37.15119	37.93514	36.82075	37.03878	76.77356	76.70686	76.45076	77.28042
1	0.000278	2.540704	2.409962	6.083372	5.581289	6.124503	6.55535	37.47933	37.78549	37.14557	37.92953	36.85229	37.07058	76.8143	76.74877	76.47753	77.30721
2	0.000556	2.51825	2.387393	6.090992	5.588984	6.115581	6.546382	37.47935	37.7855	37.15898	37.94292	36.82984	37.04794	76.83326	76.76827	76.47631	77.30599
3	0.000833	2.511766	2.380876	6.07247	5.57028	6.074258	6.504844	37.46924	37.77534	37.13245	37.91642	36.80805	37.02598	76.85201	76.78757	76.43331	77.26295
4	0.001111	2.477907	2.346844	6.056675	5.55433	6.076794	6.507393	37.45658	37.76262	37.13231	37.91628	36.8105	37.02845	76.88481	76.8213	76.45211	77.28178
5	0.001389	2.4647	2.33357	6.069918	5.567703	6.087802	6.518459	37.46289	37.76896	37.16151	37.94545	36.82071	37.03874	76.88383	76.82029	76.46596	77.29563
6	0.001667	2.477568	2.346504	6.066174	5.563923	6.083611	6.514246	37.48388	37.79005	37.15012	37.93407	36.8037	37.02159	76.89314	76.82987	76.47939	77.30908
7	0.001944	2.446405	2.315182	6.038307	5.535782	6.062451	6.492976	37.45136	37.75738	37.14221	37.92617	36.79664	37.01448	76.89218	76.82889	76.46649	77.29617
8	0.002222	2.423615	2.292275	6.021005	5.518311	6.055433	6.485921	37.46445	37.77053	37.13716	37.92112	36.78381	37.00154	76.91988	76.85738	76.47938	77.30907
9	0.0025	2.403688	2.272247	6.019518	5.516809	6.05797	6.488471	37.4561	37.76215	37.12061	37.90459	36.78238	37.00009	76.95391	76.89239	76.49778	77.32748
10	0.002778	2.409011	2.277597	6.032413	5.529831	6.056557	6.487051	37.46683	37.77292	37.13306	37.91703	36.80564	37.02354	76.94561	76.88385	76.55619	77.38593
11	0.003056	2.375573	2.243988	5.988871	5.485862	6.011228	6.441486	37.43256	37.73849	37.12296	37.90694	36.76529	36.98287	76.91665	76.85405	76.56838	77.39814
12	0.003333	2.380727	2.249169	6.001598	5.498714	6.037816	6.468213	37.44182	37.7478	37.13137	37.91534	36.78883	37.00659	76.96211	76.90082	76.60028	77.43006
13	0.003611	2.359025	2.227356	5.992533	5.48956	6.032776	6.463146	37.46545	37.77154	37.13643	37.9204	36.78179	36.9995	76.94512	76.88335	76.59687	77.42665
14	0.003889	2.361293	2.229636	5.987635	5.484614	6.048893	6.479347	37.43352	37.73946	37.14466	37.92862	36.78657	37.00432	76.92045	76.85796	76.59524	77.42502
15	0.004167	2.352959	2.221259	5.982924	5.479857	6.02272	6.453038	37.45272	37.75875	37.12975	37.91372	36.76689	36.98448	76.88113	76.81752	76.62178	77.45158
16	0.004444	2.304801	2.172855	5.969458	5.466259	5.998971	6.429166	37.4531	37.75913	37.1176	37.90159	36.76641	36.984	76.84074	76.77597	76.61721	77.447
17	0.004722	2.32278	2.190926	5.972136	5.468963	6.015062	6.44534	37.43928	37.74525	37.12192	37.9059	36.78282	37.00054	76.86379	76.79968	76.64108	77.47089
18	0.005	2.294046	2.162046	5.941322	5.437847	5.995877	6.426056	37.41946	37.72533	37.12239	37.90637	36.77206	36.98969	76.91733	76.85476	76.63453	77.46434
19	0.005278	2.265574	2.133428	5.906743	5.402929	5.965325	6.395345	37.41976	37.72563	37.09547	37.87948	36.75378	36.97126	76.9209	76.85843	76.6204	77.4502
20	0.005556	2.242377	2.110113	5.91766	5.413953	5.968192	6.398227	37.39619	37.70195	37.09263	37.87663	36.76	36.97754	76.95894	76.89756	76.62469	77.45449
21	0.005833	2.268782	2.136653	5.939002	5.435504	5.98506	6.415182	37.43363	37.73957	37.1141	37.89809	36.75038	36.96783	76.97446	76.91353	76.63981	77.46962
22	0.006111	2.237634	2.105346	5.909813	5.406029	5.964817	6.394834	37.42315	37.72904	37.1006	37.8846	36.75069	36.96815	76.97188	76.91088	76.63105	77.46085
23	0.006389	2.217396	2.085005	5.906233	5.402414	5.953188	6.383145	37.42574	37.73164	37.09584	37.87985	36.76106	36.9786	76.97106	76.91003	76.62076	77.45055
24	0.006667	2.200872	2.068396	5.901427	5.397561	5.946147	6.376067	37.41031	37.71613	37.10027	37.88427	36.74	36.95737	76.99462	76.93426	76.63568	77.46549
25	0.006944	2.197341	2.064847	5.901046	5.397176	5.942635	6.372537	37.41944	37.72531	37.08738	37.87139	36.74525	36.96266	77.04941	76.99063	76.6098	77.43959
26	0.007222	2.160269	2.027586	5.877149	5.373045	5.941994	6.371892	37.39896	37.70473	37.10058	37.88458	36.73426	36.95158	77.01343	76.95362	76.61086	77.44065
27	0.0075	2.145236	2.012477	5.859515	5.355238	5.917207	6.346976	37.40957	37.71539	37.09349	37.87749	36.71938	36.93658	77.02396	76.96444	76.60368	77.43347
28	0.007778	2.138744	2.005952	5.862004	5.357752	5.898229	6.3279	37.39081	37.69655	37.07041	37.85444	36.71228	36.92942	77.03777	76.97865	76.63727	77.46708
29	0.008056	2.135005	2.002194	5.860522	5.356255	5.914188	6.343942	37.40233	37.70812	37.07459	37.85861	36.71517	36.93233	77.0755	77.01746	76.61573	77.44552
30	0.008333	2.117597	1.984697	5.844105	5.339677	5.896431	6.326092	37.38217	37.68787	37.07947	37.86349	36.71141	36.92854	77.08714	77.02944	76.59938	77.42916
31	0.008611	2.085615	1.952552	5.836453	5.33195	5.896829	6.326493	37.39076	37.69649	37.08806	37.87207	36.73729	36.95463	77.10109	77.04379	76.62033	77.45013
32	0.008889	2.071194	1.938057	5.837319	5.332825	5.886068	6.315676	37.39591	37.70167	37.07853	37.86255	36.70442	36.9215	77.08954	77.03191	76.60919	77.43898

Raw Data Sample of Power Measurements

(90°F, median setting, Standard-size Unit A)

Date	Time	Time (s)	Time (min)	Time (hr)	Voltage (V)	Current (A)	Power Factor	PF (negated)	Power (W)	Power (kW)	kWh
12/9/2014	3:29:49 PM	0	0.000	0.000	115.7	0.941	-0.958	0.958	104.301	0.1043	0.0003
12/9/2014	3:29:59 PM	10	0.167	0.003	115.7	0.937	-0.958	0.958	103.85764	0.1039	0.0003
12/9/2014	3:30:09 PM	20	0.333	0.006	115.8	0.938	-0.957	0.957	103.94972	0.1039	0.0003
12/9/2014	3:30:19 PM	30	0.500	0.008	115.7	0.94	-0.957	0.957	104.08141	0.1041	0.0003
12/9/2014	3:30:29 PM	40	0.667	0.011	115.8	0.938	-0.956	0.956	103.8411	0.1038	0.0003
12/9/2014	3:30:39 PM	50	0.833	0.014	115.7	0.937	-0.957	0.957	103.74923	0.1037	0.0003
12/9/2014	3:30:49 PM	60	1.000	0.017	115.9	0.934	-0.955	0.955	103.37932	0.1034	0.0003
12/9/2014	3:30:59 PM	70	1.167	0.019	115.8	0.936	-0.957	0.957	103.72808	0.1037	0.0003
12/9/2014	3:31:09 PM	80	1.333	0.022	115.7	0.934	-0.957	0.957	103.41706	0.1034	0.0003
12/9/2014	3:31:19 PM	90	1.500	0.025	115.8	0.936	-0.956	0.956	103.61969	0.1036	0.0003
12/9/2014	3:31:29 PM	100	1.667	0.028	115.8	0.934	-0.956	0.956	103.39828	0.1034	0.0003
12/9/2014	3:31:39 PM	110	1.833	0.031	115.8	0.933	-0.957	0.957	103.39562	0.1034	0.0003
12/9/2014	3:31:49 PM	120	2.000	0.033	115.8	0.931	-0.955	0.955	102.95836	0.1030	0.0003
12/9/2014	3:31:59 PM	130	2.167	0.036	115.7	0.931	-0.955	0.955	102.86945	0.1029	0.0003
12/9/2014	3:32:09 PM	140	2.333	0.039	115.8	0.934	-0.955	0.955	103.29013	0.1033	0.0003
12/9/2014	3:32:19 PM	150	2.500	0.042	115.7	0.935	-0.956	0.956	103.4196	0.1034	0.0003
12/9/2014	3:32:29 PM	160	2.667	0.044	115.8	0.934	-0.956	0.956	103.39828	0.1034	0.0003
12/9/2014	3:32:39 PM	170	2.833	0.047	115.8	0.93	-0.955	0.955	102.84777	0.1028	0.0003
12/9/2014	3:32:49 PM	180	3.000	0.050	115.8	0.931	-0.956	0.956	103.06617	0.1031	0.0003
12/9/2014	3:32:59 PM	190	3.167	0.053	115.6	0.931	-0.955	0.955	102.78054	0.1028	0.0003
12/9/2014	3:33:09 PM	200	3.333	0.056	115.7	0.931	-0.954	0.954	102.76173	0.1028	0.0003
12/9/2014	3:33:20 PM	210	3.500	0.058	115.7	0.928	-0.955	0.955	102.53797	0.1025	0.0003
12/9/2014	3:33:29 PM	220	3.667	0.061	115.7	0.925	-0.954	0.954	102.09947	0.1021	0.0003
12/9/2014	3:33:39 PM	230	3.833	0.064	115.8	0.928	-0.956	0.956	102.73405	0.1027	0.0003
12/9/2014	3:33:49 PM	240	4.000	0.067	115.7	0.933	-0.955	0.955	103.09044	0.1031	0.0003
12/9/2014	3:33:59 PM	250	4.167	0.069	115.7	0.933	-0.955	0.955	103.09044	0.1031	0.0003
12/9/2014	3:34:09 PM	260	4.333	0.072	115.7	0.933	-0.956	0.956	103.19838	0.1032	0.0003
12/9/2014	3:34:19 PM	270	4.500	0.075	115.7	0.926	-0.955	0.955	102.31698	0.1023	0.0003
12/9/2014	3:34:29 PM	280	4.667	0.078	115.9	0.928	-0.954	0.954	102.60766	0.1026	0.0003
12/9/2014	3:34:39 PM	290	4.833	0.081	115.8	0.928	-0.955	0.955	102.62659	0.1026	0.0003