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ABSTRACT

Bioinformatics skills required for genome sequencing often represent a significant

hurdle for many researchers working in computational biology. This dissertation

highlights the significance of genome assembly as a research area, focuses on its need

to remain accurate, provides details about the characteristics of the raw data, ex-

amines some key metrics, emphasizes some tools and outlines the whole pipeline for

next-generation sequencing. Currently, a major effort is being put towards the as-

sembly of the genomes of all living organisms. Given the importance of comparative

genome assembly, herein dissertation, the principle of Minimum Description Length

(MDL) and its two variants, the Two-Part MDL and Sophisticated MDL, are ex-

plored in identifying the optimal reference sequence for genome assembly. Thereafter,

a Modular Approach to Reference Assisted Genome Assembly Pipeline, referred to as

MARAGAP, is developed. MARAGAP uses the principle of Minimum Description

Length (MDL) to determine the optimal reference sequence for the assembly. The

optimal reference sequence is used as a template to infer inversions, insertions, dele-

tions and Single Nucleotide Polymorphisms (SNPs) in the target genome. MARA-

GAP uses an algorithmic approach to detect and correct inversions and deletions,

a De-Bruijn graph based approach to infer insertions, an affine-match affine-gap lo-

cal alignment tool to estimate the locations of insertions and a Bayesian estimation

framework for detecting SNPs (called BECA).

BECA effectively capitalizes on the ‘alignment-layout-consensus’ paradigm and

Quality (Q-) values for detecting and correcting SNPs by evaluating a number of

probabilistic measures. However, the entire process is conducted once. BECA’s

framework is further extended by using Gibbs Sampling for further iterations of
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BECA. After each assembly the reference sequence is updated and the probabilistic

score for each base call renewed. The revised reference sequence and probabilities

are then further used to identify the alignments and consensus sequence, thereby,

yielding an algorithm referred to as Gibbs-BECA. Gibbs-BECA further improves the

performance both in terms of rectifying more SNPs and offering a robust performance

even in the presence of a poor reference sequence.

Lastly, another major effort in this dissertation was the development of two cohe-

sive software platforms that combine many different genome assembly pipelines in two

distinct environments, referred to as Baari and Genobuntu, respectively. Baari and

Genobuntu support pre-assembly tools, genome assemblers as well as post-assembly

tools. Additionally, a library of tools developed by the authors for Next Generation

Sequencing (NGS) data and commonly used biological software have also been pro-

vided in these software platforms. Baari and Genobuntu are free, easily distributable

and facilitate building laboratories and software workstations both for personal use

as well as for a college/university laboratory. Baari is a customized Ubuntu OS

packed with the tools mentioned beforehand whereas Genobuntu is a software pack-

age containing the same tools for users who already have Ubuntu OS pre-installed

on their systems.
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NOMENCLATURE

GOLD Genome OnLine Database

GPL General Public License

LTS Long Term Support

MARAGAP Modular Approach to Reference Assisted Genome Assembly Pipeline

MDL Minimum Description Length

NIH National Institute of Health

NGS Next Generation Sequencing

OS Operating System
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Q-values Quality values
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SH Sequencing by Hybridization
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SMR (Standard Method for choosing an optimal Reference
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1. INTRODUCTION ∗

Genome assembly involves taking millions, if not billions, of smaller fragments,

called ‘reads’ and assembling them together to form a cohesive unit, called the ‘se-

quence’. However, simply assembling all the reads into one contiguous sequence,

a ‘contig’, is not sufficient. One has to ensure that the assembled sequence does

indeed resemble what is truly present in the cell. Some common hurdles are low

coverage areas, false positive read-read alignments, false negative alignments, poor

sequence quality, polymorphisms and repeated regions of the genome. An even more

fundamental concern lies in the difficulty of determining which of the two strands

was finally reported in the sequencing procedure. Moreover, as a number of research

domains draw suitable conclusions from the sequence itself, a sequence that has not

been reported accurately may potentially affect subsequent analyses [122].

Sanger’s deoxydinucleotide sequencing with large and accurate reads opened the

door to whole genome sequencing, which deciphered the first human genome in

2001 [94, 114]. Sanger’s approach is still commercially available with improved cap-

illary electrophoresis, enhanced speed and accuracy, and longer read lengths. The

National Institute of Health’s (NIH) $1,000 genome project led researchers to de-

velop efficient, economical and high-throughput sequencing platforms called next-

generation-sequencing (NGS). For instance, Roche’s 454 GS, Illumina’s MiSeq and

HiSeq, ABI’s SOLiD, and Life Technologies’s Ion Torrent and Proton Torrent plat-

∗Reprinted with permission from “Do it yourself guide to Genome Assembly,” by Bilal Wajid
and Erchin Serpedin, Briefings in Functional Genomics, Aug.’ 14.

Reprinted with permission from “Review of General Algorithmic Features for Genome Assem-
blers for Next Generation Sequencers,” by Bilal Wajid and Erchin Serpedin, Genomics, Proteomics
& Bioinformatics, Elsevier, 2012.

1



forms all sequence the same genome at a fraction of the time and cost [125].

NGS platforms produce terabytes of data thereby challenging traditional soft-

ware tools and hardware architectures which were not designed to process such large

amounts of data. What is needed parallel to the development of NGS platforms is the

development of algorithms and statistical tools with improved memory management

and time complexity.

This chapter acts as an introductory note to scientists and researchers working

in the area of genome assembly. Section 1.1 provides an overview of NGS platforms,

Section 1.2 discusses raw data, including Sequencing Read Archive, Fasta and Fastq

file formats. It provides particulars on filtering and correcting raw data in order

to determine the ‘right-set’ of reads. Additionally, the second section enforces the

need to report accurate results. Section 1.3 supplies necessary answers addressing the

draft assembly process. Section 1.4 reviews common metrics employed to evaluate the

assembly and Section 1.5 projects considerations on possible future research trends.

Furthermore, to facilitate a better understanding of the research area, the Appendix

A presents a ‘Step-by-Step Guide to DNA assembly’ which provides examples with

real data to help reinforce the important concepts.

1.1 Overview of Next Generation Sequencing Platforms

Among NGS platforms, Roche’s 454 sequencing is based on Nyren’s pyrosequenc-

ing approach [3]. This method recognizes the individual bases of the DNA by flagging

the bioluminescence produced by the bases as and when they attach themselves onto

a primed DNA template. This scheme is referred to as ‘sequencing by synthesis’ (SS).

SS takes one DNA strand as a template and then uses it to synthesize the sequence of

its complementary strand. Roche’s 454 SS uses four polymerase enzymes to extend

several DNA strands in a parallel array. By correctly incorporating the required nu-
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cleotide, a pyrophosphate molecule is produced which emits light when triggered [2].

Some characteristics of Roche sequencing include its automated procedures and high

speed, while some drawbacks are the lower read accuracy for homopolymer segments

of identical bases and relatively high operating costs [74].

In varying degrees of comparison, Illumina differs from Sanger. Sanger’s approach

uses dideoxynucleotide for irreversible termination of primer extension, whereas Il-

lumina employs reversible terminators for primer extension of the complementary

strand. Illumina’s 3-O-azidomethy reversible terminators are tagged with four differ-

ent colored fluorophores to distinguish between the four nucleotides. Therefore, the

use of these reversible terminators aids in observing the identity of the nucleotides

as they attach onto the DNA fragment because the fluorophores are detected by

highly sensitive CCD cameras [7]. Illumina’s method significantly reduces the dura-

tions of sequencing and assumes a $1000 price tag for 30× human genome. It’s the

homopolymeric segments sequencing that show benefits over Roche’s pyrosequenc-

ing; however, its characteristic short read lengths (<300bp) present challenges when

resolving short sequence repeats.

In addition to Roche and Illumina, Applied Biosystems’s SOLiD sequencer is an-

other key player among genome sequencers. SOLiD uses the principle of ‘sequencing-

by-ligation’ (SL). It differs from Illumina in its method for ligation of octamer

oligonucleotides. It uses di-base fluorescent labeled octa-oligonucleotide adaptors

which link the template DNA and are bound with 1-µm magnetic beads [102]. At

each step, SOLiD’s technique encrypts two bases simultaneously and every nucleotide

is cross-examined twice: first as the right nucleotide of a pair, and then the left

one. This approach reduces homopolymeric sequencing errors. However, similar to

Illumina, SOLiD generates short read length data which present complications in

sequence assembly.
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Collectively, these high throughput sequencers have substantially reduced the

cost (≤$0.1/Mb) and duration of genome sequencing. However, new innovators have

appeared. The advent of non-optic, semiconductor-based genome sequencers have

shown potential. Manufacturers like Life Technologies developed Ion Proton and Ion

PGM, both of which use SS amplification and hydrogen ion sensing semiconductors

[91]. The sequence is obtained by sensing hydrogen ions emitted when nucleotides

incorporate themselves onto template DNA, a process catalysed by DNA polymerase.

Massively parallel transistor-based integrated circuits with about two million wells

allow simultaneous detection of multiple reactions. Signal processing tools translate

voltage fluctuations into base calls for successive nucleotides.

Another technique which was recently promoted is the single-molecule-real-time

(SMRT) sequencing, introduced by HeliScope [72]. SMRT sequencing scheme is free

from library preparation or amplification errors. PacBio RS II (by HeliScope) uti-

lizes SMRT sequencing and can produce about 50,000 reads ranging from 15,000 to

40,000 bases in length in just three hours. The extended read length facilitates se-

quence alignment and improves precision in drafting an assembly, simply because long

repetitive DNA fragments can be easily spanned. Together with non-optic semicon-

ductor nanopore technology, SMRT sequencers are referred to as ‘third-generation-

sequencers’ [29]. Overall, the above mentioned high throughput sequencers have

substantially reduced the duration and cost of sequencing ($0.1/Mb).

Companies are investing significant resources to upgrade existing technologies and

introduce newer machines. It is hoped that many third-generation-sequencers are

expected to surface, coupling SMRT sequencing with principles of quantum physics,

electro-thermodynamics and nanopore technology [77, 95, 113]. Existing platforms

are currently designed to cater for de novo synthesis, whole genome/exome and

transcriptome synthesis, targeted re-sequencing, RNA profiling, ChIP-Seq, mutation
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detection and metagenomics. Tables 1.1 and 1.2 presents some important details

about current sequencers.

1.2 Preliminary Data Processing Steps

Software tools and applications enter the research process once the sequencers

fulfill their role of generating reads. The aim of this and the next set of sections is

to provide an outline of the individual steps involved in transforming raw data into

the novel genome, as presented in Fig. 1.1. The set of interconnected methods are

referred to as a ‘pipeline’. For a more thorough study, readers are recommended to

see the Appendix A, ‘Step-by-Step Guide to DNA Sequence Assembly’.

The process starts by using the data generated by one’s lab or by downloading

the data from the Sequencing Read Archive (SRA) [58]. Data is described in the

‘.sra’ format and must be converted into the .FASTQ file format by employing the

SRA toolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/). Once converted, the

FASTQ format adopts a four line representation to display the sequence and its

associated quality:

@ Sequence Identifier

sequence line(s)

+ Sequence Identifier

ASCII encoding of quality values

ASCII characters utilized in the last line of the above mentioned SRA format

symbolize Quality values (Q-values). Q-values are log-probabilities illustrating the

quality of each base call. For example, for Sanger the formula is:

QPHRED = −10× log10(Pe)
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Figure 1.1: Flow chart for DNA assembly pipeline: Some commonly used tools are
mentioned next to each step [39].
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where Pe is the probability of determining a base incorrectly [118, 122]. For ASCII

encoded quality values the following characters depict an increasing order of quality:

!”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM

NOPQRSTUVWXYZ[ \ˆ ‘abcdefghijklmnopqrstuvwxyz{ }

Similar to FASTQ, FASTA format seems like an abridged version of FASTQ file

format. It maintains a two-line arrangement to display the sequence and contains

no mention of its quality:

@ Sequence Identifier

sequence line(s)

Once reads are received in their correct format, one must trim adapter sequences,

filter or trim low quality ends and collapse identical reads. A naive approach is to

remove all reads that contain the flag ‘N ’. An improved method retains all reads

that have an overall quality Pqual > q, where q is a user defined parameter [38, 80].

A more enhanced approach consists in matching reads against known ribosomal and

heterochromatin DNA and removing them should they match [75]. Nevertheless,

since a significant portion of raw data contains errors one must correct them. Please

refer to Appendix A ‘Step-by-Step Guide to DNA Sequence Assembly’ for a detailed

study.

1.3 Assembly Process

The primary aim of the assembly process is to connect all reads together, one

after another, to form a single contiguous sequence. Interestingly, due to the inherent

nature of the problem, graph theory models very well such a process. In graphical

models individual nodes symbolize reads whereas edges between the nodes emphasize

9



‘overlaps’ between reads. Once the overlap between all reads is established the task

at hand is to generate a ‘layout’ by searching for a single path from beginning, i.e., the

root of the graph structure to the end, the leaf of the graph structure, as illustrated

in Fig. 1.2 and Fig. 1.3. As such, generating a layout is very challenging, because

not one, but multiple disjointed graphs are constructed, each depicting a contig. In

addition, each graph has many loops portraying repeat regions as well as multiple

branches, both long and short. All these hazards need to be resolved. Branches

that are small may be discarded, while longer branches compete with one another

to serve as potential representatives for each contig. Loops portray repeat regions,

so one must decide how many times the repeats should be placed within the final

assembly. Nevertheless, assemblers do spend significant amounts of time resolving

potential hazards, in multiple ways. Fig. 1.4 demonstrates these processes. The

output is a collection of contigs that needs to be ordered, appended and elongated,

a process called ‘scaffolding’ [121].

Interested readers are directed to Appendix A.

1.4 Evaluating the Quality of an Assembly

Evaluating the quality of an assembly requires analysing multiple metrics. These

statistics measure an assembly from various standpoints. Table 1.3 illustrates some

commonly used assembly metrics/statistics and their explanations. After evaluating

the assembly one should visualize it as well. Appendix A provides practical examples

for evaluating and visualizing an assembly.

1.5 Considerations and Concerns

Genome OnLine Database (GOLD) reports that as of May 2, 2015, 1,037 Ar-

chaeal, 44,576 Bacterial and 8,181 Eukaryotic genomes have been sequenced. There

remains plenty of room for work. The $1000 genome project has reduced the cost

10



Table 1.3: Some common assembly statistics. Here an ↑ indicates higher is better
while a ↓ implies less is better.

↑/↓ Description

N50: Quantifies the length of the scaffold at which 50% of the total
assembled size of the sequence is covered. NG50: Similar to N50,
NG50 quantifies the length of the scaffold at which 50% of the total
length of the genome is covered. The length of the sequence is either
known or predicted [9]. Continuity: Similar to N50 and NG50 there
are other metrics like N75, NG75, N90 and NG90. Number of Genes:
an assembly which exhibits more highly-conserved core Eukaryotic
genes in the organism is considered better [9]. Accuracy: an assem-
bly is considered accurate provided at least 90% of the bases reported
have at least 5× coverage. Choppiness: The average contig length
should be greater than a certain threshold. Otherwise, the assembly
would be considered to have too many pieces and would need to be
redrafted. Validity: the fraction of assembly that can be validated
by a reference sequence [9]. Completeness: Should the scaffolds cover
more than 90% of the actual genome then the draft assembly is consid-
ered complete. Length of the Longest scaffold: typically the greater
the length of the largest contig, the better the assembly. Number of
scaffolds > X, where X is a user-defined length. Similarly, %age of
scaffolds > X. Total length of the scaffolds and total scaffold length
as percentage of estimated genome size: the closer it is to 100%, the
better. Percentage of contigs scaffolded: since not all contigs may be
connected to form scaffolds [122].

Number of gaps in the assembly: by aligning paired-read data onto
scaffolds one may determine scaffolding errors [44]. Number of scaf-
folds: an assembly which has less number of scaffolds would be as-
sumed better. For example, the optimum assembly would be one con-
tinuous sequence depicting the true sequence. LG50 scaffold count:
number of scaffolds counted in reaching NG50 threshold. Similarly
it would be the case of LG75 and LG90. Percentage of unscaffolded
contigs: contigs may remain unscaffolded.
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significantly, but if personalized medication is expected to be effective and available

to everyone, the cost and time duration for sequencing need to be reduced further.

Processing raw data needs to be done both cheaply and at ultra-fast rates. Spending

about 50 hours of processing time on a system with 20 microprocessor cores and 20

GB RAM is not uncommon (as of 2014) [9]. Imagine trying to sequence the genomes

of an entire country’s population. Transferring all the raw-data via an Internet con-

nection from one county to another is not feasible. Therefore, countries will have

to provide for their own supercomputers and algorithms will need to be parallelized

with careful attention to Hadoop and MapReduce architectures [5, 126, 132]. With

so many obstacles ahead, genome assembly will remain challenging for many years

to come.

Figure 1.2: Do-novo assembly: Reads that overlap each other are shown to align
at appropriate places with respect to one another thereby, generating the layout.
The layout, in turn, constructs a consensus sequence, simply by basing itself on
the majority base call. The above mentioned framework is called ‘Overlap-Layout-
Consensus’ [121].
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Figure 1.3: Reference assisted assembly: Reads align relative to a reference sequence
setting up the layout. The layout, in turn, constructs a consensus sequence, simply
by basing itself on the majority base call. Please note that the reads do not need
to match perfectly with the reference. The example shows a shaded region where
the consensus sequence differs from the reference. This working scheme is called
‘Alignment-Layout-Consensus’ [121].
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Figure 1.4: Graph simplification techniques: (A-1) Ambiguous paths; (A-2) Pulling
apart operation: the resultant graph is divided into four possible paths. (B-1) Sim-
plistic path; (B-2) Removing intermediate nodes: nodes that have an in-degree =
out-degree = 1 are collapsed to form one giant node, also referred to as a ‘unitig’. (C-
1) Unnecessary edges; (C-2) Removing edges: an edge between two nodes is removed
if there is an intermediate node between them which connects them simplistically.
(D-1) Loop; (D-2) Disambiguation: the loop edge is unrolled and integrated in the
continuous edge from left to right. (E-1) Shorter paths shown in blue; (E-2) Remov-
ing tips: a tip is defined as a chain of nodes that is disconnected at one end. Tips are
removed if they are shorter than t, where t is a user-defined parameter. Furthermore,
if there is a longer/common path, it will also trigger a tip’s removal.
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2. OPTIMAL REFERENCE SEQUENCE SELECTION FOR REFERENCE

ASSISTED ASSEMBLY USING MINIMUM DESCRIPTION LENGTH

PRINCIPLE ∗

Reference assisted assembly requires the use of a reference sequence, as a model,

to assist in the assembly of a novel genome. The standard method for identifying

the best reference sequence, henceforth referred to as SMR (Standard Method for

choosing the optimal Reference), aims at counting the number of reads of the novel

sequence that align to the reference sequence, and then choosing the reference se-

quence which has the highest number of reads aligning to it. This chapter explores

the use of the Minimum Description Length (MDL) principle and its two variants,

the Two-Part MDL and the Sophisticated MDL, in identifying the optimal reference

sequence for genome assembly. A comparison of the proposed MDL scheme with

SMR reveals that simply “counting the number of reads of the novel sequence found

within the reference sequence” is not a sufficient criterion. Furthermore, the pro-

posed MDL scheme provides improved results since it not only includes SMR within

its framework, but also moves forward by taking the the model as well, i.e., the

reference sequence into consideration while, at the same time, deciding the optimal

(Opt.) reference sequence.

Rissanen’s Minimum Description length (MDL) is an inference tool which op-

∗Reprinted with permission from “Optimal reference sequence selection for genome assembly
using minimum description length principle,” by Bilal Wajid, Erchin Serpedin, Mohamed Nounou
and Hazem Nounou, EURASIP Journal on Bioinformatics and Systems Biology, 2012(1), 18.

Reprinted with permission from “Minimum Description Length Based Selection of Reference
Sequences for Comparative Assemblers,” by Bilal Wajid and Erchin Serpedin, 2011 IEEE Inter-
national Workshop on Genomic Signal Processing and Statistics (GENSIPS11), Dec. 2011, San
Antonio, TX. USA.
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erates by learning regular features in the data through data compression. MDL

uses “code-length” as a measure to identify the best model among a set of mod-

els. The model which compresses the data the most efficaciously and presents the

smallest code-length is considered the best model. MDL stems from the princi-

ple of Occam’s razor which states that “entities should not be multiplied beyond

necessity”, (http://www.cs.helsinki.fi/group/cosco/Teaching/Information/

2009/lectures/lecture5a.pdf), which stated briefly means “the simplest expla-

nation is the best one” [89,112]. Therefore, MDL principle tries to find the simplest

explanation (model) to match the phenomenon, which is the data.

The MDL principle has been used successfully in inferring the structure of gene

regulatory networks [16, 17], compression of DNA sequences [52], gene clustering

[47, 107], analysis of genes related to breast cancer [31] and transcription factor

binding sites [100].

This chapter is organized as follows. Section 2.1 discusses briefly, the variants of

MDL and their application to reference assisted assembly. Section 2.2 explains the

algorithm used for the purpose. Section 2.3 elaborates on the simulations carried out

to test the proposed scheme. Section 2.4 explains the results, and finally, Section 6.2

summarizes the main features of this chapter.

2.1 Methods

The relevance of MDL to genome assembly can be realized by understanding

that genome assembly is an inference problem in which the task at hand is to infer

the novel genome from read data obtained from sequencing. Comparative assembly,

therefore, is an inference problem which requires identifying a model which best de-

scribes the data. It begins the process by identifying a model, the reference sequence

most closely related to the set of reads. Comparative assembly then uses the set
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of reads to build on this model producing one which overfits the data, the novel

sequence [120,121].

MDL presents three variants Two-Part MDL, Sophisticated MDL and MiniMax

Regret [89]. The application of these will now be briefly discussed.

2.1.1 Two-Part MDL

Also called old-style MDL, two-part MDL chooses the hypothesis which minimizes

the sum of two components:

A) The code-length of the hypothesis.

B) Code-length of the data given the hypothesis.

The two-part MDL selects the hypothesis which minimizes the sum of (A) and

(B) above [89].

2.1.2 Sophisticated MDL

The two components of the two-part MDL can be further divided into three

components:

A) Encoding the model class: l(Mi), where Mi belongs in model class, and l(Mi)

denotes the length of the model class in bits.

B) Encoding the parameters (θ) for any model Mi : li(θ).

C) Code-length of the data given the hypothesis is log2
1

pθ(X )
.

where pθ(X ) denotes the distribution of the Data X according to the model θ. The

three part code-length assessment process again can be converted into a two-part

code-length assessment by combining steps B and C into the single step B.

A) Encoding the model class: l(Mi), where Mi belongs to any Model class.
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B) Code-length of the Data given the hypothesis class (Mi) = l(Mi(X )), where X

stands for any data set.

Item (B) above i.e., the ‘length of the encoded data given the hypothesis’ is also

called the stochastic complexity of the model. Furthermore, if the data is fixed, or if

item (B) is constant, then the job reduces to minimizing l(Mi), otherwise, reducing

part (A) [89,119].

2.1.3 MiniMax Regret

MiniMax Regret relies on the minimization of the worst case regret [89]:

minMmaxX

[
loss(M,X )−minM̂ loss(M̂,X )

]
(2.1)

where M can be any model, M̂ represents the best model in the class of all models

and X denotes the data. Regret, RMi,X , is defined as

RMi,X =
[
loss(Mi,X )−minM̂ loss(M̂,X )

]
(2.2)

Here the loss function, loss(Mi,X ), may be defined as the code-length of the

data, X , given the model class Mi. The application of Sophisticated MDL in the

framework of comparative assembly will be discussed in what follows.

2.1.4 Sophisticated MDL and Genome Assembly

In comparative assembly, a reference sequence is used to assemble a novel genome

from a set of reads. Therefore, the best model is the reference sequence most closely

related to the novel genome and the data at hand are the set of reads. It should be

pointed out that the aim is not to find a general model, rather, the aim is to find a

“model that best overfits the data” since there is just one or maybe two instances of
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the data, based on how many runs of the experiment took place. One “run” signifies

that the genome was sequenced once and the data was obtained. The term “model

that best over-fits the data” can be explained using the following example.

Assume one has three Reads {X, Y and Z} each having n number of bases. If

reference sequences (L) and (M), where (L) = XXYYZZ and (M) = XYZ contain

all three reads placed side by side. Since both models contain all the three reads,

the stochastic complexity of both (L) and (M) is the same and both “over-fit” the

data perfectly. However, since (M) is shorter than (L), (M) is the model of choice

precisely because the model “best” over-fits the data.

To formalize the MDL process, the first step would be to identify the following

considerations:

To formalize the MDL process, the first step would be to identify the following

considerations:

A) Encoding the model class: l(Mi), where Mi belongs to Model classes.

B) Encoding the parameters (θ) of the Model Mi : li(θ).

C) Code-length of the data given the hypothesis is log2
1

pθ(D)
.

The model class in comparative assembly would be the reference (Ref.) sequence

itself. The parameters of the model θ, are such that, θ ∈ {-1, 0, 1}. In the process

of encoding, the model class regions of the genome that are covered by the reads

of the unassembled genome are flagged with “1”(s). Areas of the Ref. genome not

covered by the reads are flagged as “0”(s), whereas areas of the Ref. genome that

are inverted in the novel genome are marked with “-1”(s). In the end, every base

of the Ref. sequence is flagged with {-1, 0, 1}. Therefore, the code-length of the

parameters of the model is proportional to the length of the sequence.
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Table 2.1: Counting Number of Reads not enough. The table shows that SMR is not
sufficient. Simply looking at “Data given the model” ≡ “Number of reads found”
one ends up choosing Human Chromosome 21. However, as Chromosome 21 is about
9 times larger than S85 one concludes that S85 is the model of choice. Furthermore,
S85 is a bacterial genome whereas Chromosome 21 comes from a eukaryote genome.
PAb1 is also a bacteria, therefore, S85 is definitely the model of choice.

S. No. Reference Sequence Number of bases in genomes Number of Reads found

1 Fibrobacter succinogenes subsp. succino-
genes S85 (NC 013410.1)

3842635 157

2 Human Chromosome 21 (AC 000044.1) 32992206 158

In SMR data given the hypothesis is typically defined as “Number of reads that

align to the Ref. sequence”. In the case presented below “data given the hypothesis”

is defined in an inverted fashion as the “Number of reads that do not align to the

reference sequence”. These two are interchangeable as the “Total number of reads”

is the sum total of the “number of reads that aligned to the Ref.” and the “number

of reads that do not align to the Ref.”.

Table 2.1 shows that choosing the reference sequence having the highest number of

reads present is not a sufficient condition for selecting the optimal reference sequence.

The simulation carried out compared two reference sequences Fibrobacter succino-

genes S85 (NC 013410.1) [65], and Human Chromosome 21 (AC 000044.1) [46], with

the reads of Pseudomonas aeruginosa PAb1 (SRX000424) [119]. It shows that in

order to choose the optimal reference sequence one has to take into account both

the “Code-length of the model” and “Number of reads found” to be the sufficient

conditions for choosing the optimal reference sequence. This is a crucial insight.

Therefore, a simple, novel scheme is proposed for the solution to the problem,
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Figure 2.1: Correcting inversions in the Reference Sequence. (A) Reads are derived
from the novel sequence. (B) The reference sequence, SR, contains two inversions,
shown as yellow and blue regions. (C) The sequence generated Θ has both yellow
and blue regions rectified. Notice that using a simple ad-hoc scheme of counting
the number of reads in the reference sequence one would have made use of (B)
for assembly of novel genome. However, using MDL one can now use (C) for the
assembly of the novel genome.

see Table 2.2. The proposed solution follows the “three assessment” process of So-

phisticated MDL. The MDL-based idea stores the model class (Ref. sequence), the

parameters of the model (where each base of the sequence is flagged with {-1, 0,

1}) and the data given the hypothesis (reads of the novel genome that do not align

to the Ref. sequence) is one file. The file is then encoded using either Huffman

Coding [43] or Shannon-Fano coding [32] to determine code-length. For simplistic,

three-bits-per-character coding, the Code-length will equal (Length(Ref. Seq.) × 3) +

(Length(Parameters of the Model) × 3) + (Length(Read) × 3× No. of Unique Reads which

did not align). The proposed scheme not only allows the assembler to determine the

best model, among a pool of models to choose from, but also improves the model

making it better suited according to the novel genome to be assembled. This is done

by identifying all deletions and inversions larger than one read length. It then rec-

tifies those deletions and inversions to get a better model, better suited to assemble

the novel genome compared to what it started from (see Figures 2.1 and 2.2).
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Figure 2.2: Removing deletions in the Reference Sequence. (A) Reads are derived
from the novel sequence. (B) The reference sequence, SR, contains two regions (shown
as shaded gray boxes) that need to be deleted in order to make it more suitable to
act as a reference for an assembly. (C) The proposed MDL process generates Θ. The
process removes only those deletions which are larger than τ1 but smaller than τ2;
where τ1 and τ2 are user-defined. To remove the other insertion the value of τ2 could
be increased.

2.2 MDL Algorithm

The pseudo code for Analysis using Sophisticated MDL and the scheme proposed

in Section 2.1.4 is shown in Algorithm 1.

Given the reference sequence SR andK set of reads, {r1, r2, . . . , rK} ∈ R, obtained

from the FASTQ [19] file, the first step in the inference process is to filter all low

quality reads. Lines 3-10 filters all reads that contain the base N in them and also

the reads which are of low quality, leaving behind a set of O reads to be used for

further analysis. This pre-processing step is common to all assemblers. Once all the

low quality reads are filtered out, the remaining set of O reads are sorted and then

collapsed so that only the unique reads remain.

Lines 12-26 describe the implementation of the proposed scheme as defined in

Section 2.1.4. Assume that SR is l bases long, and the length of each read is p.

Therefore, φSR picks up p bases at a time from SR and checks whether or not φSR

is present in the set of collapsed reads R′. In the event that φSR ∈ R′, then the

corresponding location on SR i.e., j → j + p are flagged with “1(s)”. If φSR 6∈ R′,
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Algorithm 1 MDL Analysis of a Ref. Sequence given a set of Reads

1: Input reference sequence SR;
2: Input read data set {r1, r2, . . . , rK} ∈ R;
3: for i : 1→ K do
4: if ri contains base N then
5: remove ri from the set of reads;
6: end if
7: if ri has low quality bases then
8: remove ri from the set of reads;
9: end if

10: end for
11: Sort remaining set of reads {r1, r2, . . . , rO} ∈ R′, Collapse duplicated reads.
12: for j : 1→ l do
13: read φSR = {SjR, S

j+1
R , . . . , Sj+pR };

14: if φSR = rk ∈ R′ then
15: flag 1(s) in locations j → j + p
16: flag read rk to be present.
17: else
18: invert read φSR → ψSR
19: if ψSR = rq ∈ R′ then
20: flag -1(s) in locations j → j + p
21: flag read rq to be present
22: else
23: flag 0(s) in locations j → j + p
24: end if
25: end if
26: end for
27: Call out function f(SR, τ1, τ2)
28: for i : 1→ O do
29: if read ri is flagged, remove from R;
30: end for
31: ζ = Code-length of encoded modified sequence Θ
32: γ = Code-length of reads R′ not present in SR
33: Total code-length ξ = ζ + γ.
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Algorithm 2 f(SR, τ1, τ2): Correcting all inversions and deletions

1: for j : 1→ l do
2: modified sequence Θ← SR
3: identify all inversions by looking at -1 flags
4: start ≡ start of an inversion, end ≡ end of an inversion
5: invert genome Θstart → Θend

6: end for
7: for j : 1→ l do
8: identify all deletion by looking at 0 flags
9: start ≡ start of a deletion, end ≡ end of a deletion

10: if τ1 < end− start < τ2 then
11: remove segment of genome Θstart → Θend

12: else
13: segment of genome is either too large or too small.
14: end if
15: end for

then invert φSR → ψSR and check whether or not ψSR ∈ R′. If yes, then one marks

the corresponding location on SR i.e., j → j + p with “-1(s)” and flag φSR to be

present in R′. Otherwise, the corresponding locations on SR as “0(s)” are marked.

Lines 27-32 generates a modified sequence Θ which has all the inversions rectified

in the original sequence SR. Lines 33-41 identifies all deletion larger than τ1 and

smaller than τ2 and removes them (see Fig. 2.2). Here τ1 and τ2 are user-defined.

Lines 42-44 removes all the reads that are present in the original SR and the modified

sequence Θ identified by flags 1 and -1. In the end the code-lengths are identified by

any popular encoding scheme like Huffman Coding [43] or Shannon-Fano coding [32]

If ξ is the smallest code-length amongst all models then use Θ as a reference for the

assembly of the unassembled genome rather than using SR.

2.3 Results

Simulations were carried out on both synthetic data as well as real data. At

first, the MDL process was analysed on synthetic data using four different sets of
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mutations by varying the number and length of {SNPs, inversions, deletions and

insertions}. The experiments using synthetic data were carried out by generating

a sequence SN . The set of reads were derived from SN and sorted using quick sort

algorithm [41]. Each experiment modified SN to produce two reference sequences

SR1 and SR2 by randomly putting in the four sets of mutations. The choice of the

best reference sequence was determined using the code-length generated by the MDL

process. See Tables 2.3, 2.4, 2.5 and 2.6 for results.

Once robustness of the MDL scheme on each of the four types of mutations

was confirmed, two-set of experiments were carried out on real data using Influenza

viruses A, B and C which belong to the Orthomyxoviridae group. Influenza Virus

A has five different strains i.e., {H1N1, H5N1, H2N2, H3N2, H9N2}, while Influenza

Viruses B and C each have just one. The genomes of Influenza viruses are divided

into a number of segments. Influenza virus A and B each have eight segments while

virus C has seven segments [87]. Among the first segments of each of the viruses only

one was randomly selected and then modified to be our novel genome, SN . Reads

were then derived from SN and compared with all the seven reference sequences.

Results are tabulated in Table 2.7.

Similarly, the second set of experiments analyzed the performance of the MDL

proposed scheme on reference sequences of various lengths. The test was designed to

determine whether the proposed scheme chooses a smaller reference sequence with

more number of unaligned reads or does it choose the optimal reference sequence

for assembly? The reads were derived from Influenza A virus (A Puerto Rico 834

(H1N1)) segment 1. All the reference sequences used in this test were also derived

from the same H1N1 virus, however, with different lengths. Please see Tables 2.8

and 2.9 for details.
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Table 2.3: Variable number of SNPs: The experiment shows the effect of increasing
the number of SNPs. SR2 has a higher number of SNPs as opposed to SR1. The
code-length suggests that SR1 is the model of choice as it has a smaller code-length.
The results indicate that the MDL based scheme works successfully on a variable
number of SNPs by opting for the model with fewer numbers of SNPs.

Ref. Seq. SNPs No. of inversions No. of insertions No. of deletions Code-length using Proposed
Scheme (Kb)

SR1 183 52 / 52 62 / 59 62 1815.14
SR2 224 50 / 51 66 / 58 63 1843.35

Table 2.4: Variable number of deletions: The experiment shows the effect of a variable
number of deletions where the locations and lengths of these deletions were random.
136
196

shows that out of 196 deletions in SR1, only 136 were removed. The remaining
deletions were not recovered due to the choice of τ1 and τ2. SR2 has a higher number
of deletions as opposed to SR1. The code-length suggests that SR1 is the model of
choice because it has a smaller code-length.

Ref. Seq. SNPs No. of inversions No. of insertions No. of deletions Code-length using proposed
Scheme (Kb)

SR1 0 0 0 136 / 196 1200.3
SR2 0 0 0 132 / 203 1228.25
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Table 2.5: Variable number of insertions: The experiment shows the effect of in-
creasing the number of insertions where the locations and lengths of deletions was
random. SR2 has higher number of insertions. The code-length suggests that SR1

is the model of choice because it has a smaller code-length. The experiment shows
that although no deletions were put in the actual sequence, yet still two and three
deletions were found for SR1 and SR2 respectively. This may be due to a large sec-
tion of reads which could not align to the reference sequence on the edges of these
insertions.

Ref. Seq. SNPs No. of inversions No. of insertions No. of deletions Code-length using Proposed
Scheme (Kb)

SR1 0 0 182 2 / 0 1997.28
SR2 0 0 189 3 / 0 2015.35

2.4 Discussion

The MDL proposed scheme was tested using two-set of experiments. In the first

set the robustness of the proposed scheme was tested using reference sequences,

both real and simulated, having four types of mutations {Inversions, deletion, Dele-

tions, SNPs} where the locations and the lengths of these mutations were chosen

randomly. This was done with the help of a program called change sequence. The

program ‘change sequence’ requires the user to input Υm, the probability of mu-

tation, in addition to the original sequence from which the reference sequences are

being derived. It start by traversing along the length of the genome, and each time it
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Table 2.6: Variable number of inversions: The experiment shows the proposed scheme
is robust to the number of inversions in the reference sequence. Both SR1 and SR2

have the same code-length. This is because the MDL scheme not only detected all
the inversions for SR2 but also recovered all of them. So effectively SR2 ≡ SR1 after
utilizing the MDL process as explained in Fig. 2.1.

Ref. Seq. SNPs No. of inversions No. of insertions No. of deletions Code-length using Proposed
Scheme (Kb)

SR1 0 0 0 0 586.04
SR2 0 176 / 176 0 0 586.04

arrives at a new base, a uniformly distributed random generator generates a number

between 0 and 100. If the number generated is less than or equal to Υm a mutation is

introduced. Once the decision to introduce a mutation is made, the choice of which

mutation still needs to be made. This is done by rolling a biased four sided dice.

Where each face of the dice represents a particular mutation i.e., {inversion, deletion,

insertion and SNPs}. The percentage bias for each face of the dice is provided by

the user as four additional inputs, Υinv, for the percentage bias for inversions, Υindel,

representing percentage bias for deletion and deletions and ΥSNP for SNPs. If the

dice chooses inversion, insertion or deletion as a possible mutation it still needs to

choose the length of the mutation. This requires one last input from the user, Υlen,

identifying the upper threshold limit of the length of the mutation. A uniformly dis-

tributed random generator generates a number between 1 and Υlen, and the number

generated corresponds to the length of the mutation.

The proposed MDL scheme is shown to work successfully, as it chooses the optimal

reference sequence to be the one which has smaller number of SNPs (Table 2.3),

smaller number of deletions (Table 2.4) and smaller number of insertions (Table 2.5)

29



when compared to the novel genome. The proposed MDL scheme is also seen to

detect and rectify most, if not all, of the inversions present in the reference sequence

(Table 2.6). Since the code-length of SR1 is the same as SR2, and all the inversions

of SR2 are rectified, the corrected SR2 sequence and SR1 sequence are equally good

for reference-assisted assembly.

The experiment carried out using Influenza viruses is shown in Table 2.7. One

sequence was randomly chosen amongst the seven sequences and modified at random

locations, using the same ‘change sequence’ program, to form the novel sequence SN .

The novel sequence contained {SNPs = 7, inversions = 4, deletions = 1, deletion =

3} as compared to the original sequence. The MDL process used the reads derived

from SN to compare seven sequences and determined Influenza Virus B to be optimal

reference sequence as it had the smallest code-length. The MDL process rectified all

inversions while only one insertion was found. This meant that the remaining two

deletions were smaller than τ1. The set of reads and Influenza virus B was then fed

into MARAGAP (discussed in detail in chapter 3.8). The novel genome reconstructed

by the MARAGAP pipeline was one contiguous sequence with a length of 2368 bases

and a completeness of 96.62%.

The second-set of experiment tests the correctness of the MDL proposed scheme,

by testing the MDL scheme on a single set of reads, but on a number of different

reference sequences having a wide range of lengths. Results tabulated in Tables

2.8 and 2.9 prove that the MDL proposed scheme determines the optimal reference

sequence even when all the contending reference sequences are closely related to one

another in terms of their genome and length.

All simulations were carried out on Intel Core i5 CPU M430 @ 2.27 GHz, 4 GB
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Table 2.7: Simulations with Influenza Virus A, B and C. One of the sequences from
Influenza Virus {A, B, C} was randomly selected and modified to include {SNPs =
7, inversions = 4, deletions = 1, insertions = 3}. Out of the seven reference sequences
Influenza Virus B (SR6) was found to have the smallest code-length (68.62 Kb), and
is therefore, the model of choice. The experiment also shows that given the optimal
reference sequence, in this case SR6, the MDL process rectifies all inversions (4/4).
However, given non-optimal reference sequences, the proposed MDL process is not
able to rectify the inversions (0/4). So the proposed algorithm chooses the optimal
reference sequence, and given the optimal reference sequence it may correct most of
the inversions.

S. No. Ref. Seq. (Influenza Virus) No. of Inversions No. of Deletions Code-length using
Proposed Scheme
(Kb)

SR1 A, H1N1 (NC 002023.1) 0 / 4 1 254.109
SR2 A, H5N1 (NC 007357.1) 0 / 4 1 254.109
SR3 A, H2N2 (NC 007378.1) 0 / 4 1 254.109
SR4 A, H3N2 (NC 007373.1) 0 / 4 1 254.109
SR5 A, H9N2 (NC 004910.1) 0 / 4 1 254.109
SR6 B (NC 002204.1) 4 / 4 1 68.62
SR7 C (NC 006307.1) 0 / 4 1 254.027
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RAM. Execution time of MDL proposed scheme have been provided in Table 2.8.

Table 2.8: The proposed MDL scheme is verified on a different set of reference
sequences but the same set of reads R. R contained 3817 reads all of which were
derived from ‘Influenza A virus (A Puerto Rico 834 (H1N1)) segment 1, complete
sequence’. Out of 3817 reads the method extracted 696 unique reads which were
then used in the MDL proposed scheme. All the reference sequences were derived
from the same Influenza A (H1N1) virus. Ref. Seq. 1% (SR1) has a length which
is only 1% of the actual genome. Similarly SR5 has a quarter of the length of the
actual genome. All other genomes were derived in a similar way. For e.g., SR9 has
two H1N1 viruses concatenated together making the length twice that of the original
H1N1 sequence. The results show that the proposed MDL scheme chooses the best
reference sequence, one which has the smallest code-length. The experiment also
proves the correctness of the scheme as it determines SR7 as the optimal reference
sequence. Note: It was SR7 from which all the reads were derived.

S.No. Ref. Seq. No. of Unaligned Reads Code-length (KB) Execution Time (s) Length of New Seq

SR1 1% 696 128.60 0.046 14
SR2 2% 696 128.73 0.031 47
SR3 5% 693 128.575 0.046 113
SR4 10% 684 127.576 0.046 229
SR5 25% 668 126.615 0.093 565
SR6 50% 650 126.615 0.109 650
SR7 100% 3 14.276 0.078 2342
SR8 150% 2 21.164 0.062 2341
SR9 200% 2 27.808 0.124 2341
SR10 300% 2 41.525 0.140 2341

2.5 Conclusions

The chapter explored the application of MDL based proposed scheme for selection

of the optimal reference sequence for comparatively assembly. The proposed scheme
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Table 2.9: The experiment tests the proposed MDL scheme on a single set of reads,
and also on a number of reference sequences. The set of reads, 390 in total, were
derived from ‘Influenza A virus (A Puerto Rico 834 (H1N1)) segment 1, complete
sequence’ using the ART read simulator for NGS with read length 30, standard
deviation 10, and mean fragment length of 100 [42]. Similarly the reference sequences
were derived from the same H1N1 virus. SR1 signifies that it’s length is 75% of the
actual genome. Results show that the MDL proposed scheme chooses the correct
reference sequence SR4 even when all the contending sequences are closely related to
one another in terms of genome and length.

S.No. Ref. Seq. No. of Unaligned Reads Code-length (KB) Length of New Seq

SR1 75% 172 25.91 1755
SR2 85% 148 25.10 1989
SR3 95% 123 24.20 2223
SR4 100% 109 23.62 2341
SR5 105% 108 24.22 2458
SR6 115% 107 25.50 2692
SR7 125% 106 26.78 2926

was compared SMR and found that the standard method is not sufficient for finding

the optimal sequence. An alternative is needed. Therefore, the proposed MDL

scheme encompassed within itself the standard method of ‘counting the number of

reads’ by defining it in an inverted fashion as ‘counting the number of reads that did

not align to the reference sequence’ and identified it as the ‘data given the hypothesis’.

Furthermore, the proposed scheme included the model, i.e., the reference sequence,

and identified the parameters (θMi
) for the model (Mi) by flagging each base of the

reference sequence with {-1, 0, 1}. The parameters of the model helped in identifying

inversions and thereafter rectifying them. It also identified the locations of deletions.

Deletions larger than a user defined threshold τ1 and smaller than τ2 were corrected.

Therefore, the proposed MDL scheme not only chooses the optimal reference sequence

but also fine-tunes the chosen sequence for a better assembly of the novel genome.
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Furthermore, experiments conducted to test the robust and correctness of the MDL

proposed scheme, both on real and simulated data, proved to be successful.
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3. A MODULAR APPROACH TO REFERENCE ASSISTED GENOME

ASSEMBLY PIPELINE - MARAGAP ∗

Information theory has had profound impacts on almost every brach of science,

from analysing radio channels [1], to inferences in gene-regulatory networks [70,130]

and cancer informatics [81]. Rissanen’s Minimum Description Length (MDL), an

information-theoretic criterion, is an inference tool that learns regular features in

data through data compression. MDL uses “code-length” as a metric to determine

the optimum model [26,89,112]. Even within the area of computational biology and

bioinformatics, the MDL principle has been used successfully in inferring the struc-

ture of gene regulatory networks [17,27], compression of DNA sequences [52,53], gene

clustering [47,107], analysis of genes related to breast cancer [11,30,31], transcription

factor binding sites [100] and to determine the optimal reference sequence selection

for reference assisted genome assembly [116–119,121,123,124].

This chapter presents MARAGAP, a modular approach to reference assisted

genome assembly pipeline. MARAGAP employs concepts from MDL, graph the-

ory and Bayesian statistics to present an algorithmic pipeline which is modular in

nature, provides detailed information on the mutations of the novel genome when

compared to the reference and assembles the novel sequence. The modular approach

of the assembly pipeline allows each module to be updated or replaced without af-

∗Reprinted with permission from “A modular approach to reference assisted sequence assembly,”
by Bilal Wajid, Erchin Serpedin, Mohamed Nounou and Hazem Nounou, Int. J. Computational
Biology and Drug Design, Apr. 14 (manuscript accepted).

Reprinted with permission from “MiB: A Comparative Assembly Processing Pipeline,” by Bilal
Wajid, Erchin Serpedin, Mohamed Nounou and Hazem Nounou, 2012 IEEE International Workshop
on Genomic Signal Processing and Statistics (GENSIPS12), Dec 2012, Washington DC., USA.
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fecting the remainder of the pipeline. Each module itself uses the reference sequence

and the set of reads to first determine the mutations in the novel sequence and then

correct them.

Use of graph theory is somewhat inherent in the assembly pipeline as reads may

be represented as nodes, and can overlap between the reads as edges. Once the graph

is identified the assembly process may be defined as determining a Hamiltonian path

or an Eulerian path from the root to the leaf. The nodes in the graph represent the

intermediary reads while the path itself signifies the contiguous sequence.

MARAGAP initiates by deducing the optimal reference sequence using the MDL

principle. Additionally, the proposed module infers the locations and lengths of

inversions and deletions allowing the user to correct them [116, 117, 119, 123, 124].

Further on, a De-Bruijn graph-based technique infers the set of insertions while

an affine-match, affine-gap local alignment search tool determines the locations for

these insertions. The user is allowed to vary parameters to make the search space

looser or tighter and then correct these mutations to obtain a better novel sequence.

Lastly, the resultant sequence and the set of reads are passed onto a Bayesian detec-

tion/estimation tool which identifies SNPs and then estimates the most appropriate

base for that position of the sequence. Together, via the inference of these muta-

tions and subsequent corrections, the reference assisted genome assembly pipeline

‘MARAGAP’ provides a novel sequence. Figure 3.1 shows the proposed work flow

diagram of the assembly pipeline. MARAGAP was compared against nine other

assembly algorithms with sequences ranging from 0.15 million bases to 6.6 million

bases in length. Larger sequences were not assembled owing to limitations in the

available computing infrastructure.

36



Figure 3.1: Work flow of MARAGAP: The MDL-based scheme requires τ1 and τ2,
two user-defined parameters, where τ1 > k, where k is the length of a read, and
τ2 prevents the method from runaway. Similarly ITAP, requires four user-defined
parameters: Match score, Mis-match score, gap penalty and extension. In addi-
tion, ITAP requires a strictness parameter, τs, which is increased for achieving more
strictness and decreased for less strictness. Lastly, the Bayesian framework does not
present any user defined parameters. MARAGAP’s current design does not cater for
either translocations or duplications.
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3.1 Estimating the Optimal Reference Sequence using ‘Code-Length’

The first line of analysis for any reference assisted assembly tool deals with deter-

mining the optimal reference sequence for assembly. The optimal reference sequence

is defined as the sequence which reports the lowest number of mutations when com-

pared to the reads of the target sequence. There are a number of methods that

determine the optimal reference sequence. The simplest approach is to count the

number of reads that align to the reference sequence. The optimal reference being

the one onto which most reads align to. A more sophisticated approach is to use the

MDL framework which takes into consideration both the length of the reference and

the number of reads that align to the reference in order to evaluate a ‘code-length’, the

optimal reference being the one with the smallest code-length [116–119,121,123,124].

3.2 Detection and Correction of Inversions and Deletions

MARAGAP assumes that the reference sequence is a mutated version of the

target sequence, and therefore, MARAGAP attempts to detect and then correct

these mutations in order to bring the reference a step closer to the target sequence.

Each module provides details about the length and locations of the mutations as a

separate log file while the detection and correction of inversions and deletions are

performed using MDL based method described earlier in chapter 2.

3.3 Detecting Insertions

The previous module established reads that do/do not map to the reference se-

quence. If R is the entire set of reads from the novel genome, let R′ identify the set

of reads that did not align to the reference sequence. Reads not aligning to the ref-

erence sequence may be attributed to either SNPs or insertions. The current module

uses a De-Bruijn graph structure to infer the set of insertions present in the novel
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sequence when compared to the reference sequence. The method works by looking

at each read r′i, within the set of reads R′ as a node Ni of the graph. The parent Pai

and child Chi of each read are sought for within the set of reads R′. Once the parents

and the children of all the reads are identified such that a link from the parent to the

child is established, Pai → Ni → Chi, determining the roots and leaves is relatively

simple. Nodes of the graph structure that do not have any parents are the roots,

whereas nodes that do not have any children are the leaves. In genome assembly,

each graph has only one root, therefore, the total number of roots define the total

number of graphs that need to be formed. Traversing from the root all the way to a

leaf helps in finding one contig, (please refer to Fig. 3.2). The movement from the

root to the leaf divides R′ into smaller groups {R′1, R′2, · · · , R′p}, where R′x represents

the set of reads used in generating the xth contig or the xth insertion, and subscript

p illustrates the total number of insertions. Furthermore, the number of reads that

make up one insertion may not necesarily be equal to the number of reads that col-

lectively make up another insertion. Therefore, R′ = [R′1, R
′
2, · · · , R′p]T , where each

R′x contains all the reads needed to define one insertion.

3.4 Estimating the Locations of Previously Identified Insertions

Once the insertion sequences have been inferred, the current module tries to

estimate the location of these insertions in the novel sequence. This is accomplished

via an affine-match, affine-gap local alignment search tool which prefers consecutive

matches and gaps over sparsely distributed matches and gaps in the alignment with

zero tolerance for mismatches. This finely-tuned local alignment tool ensures that the

start and end sections of the insertions match perfectly with the reference sequence

with continuous gaps in the middle. Should this happen, the area of the genome

where such an alignment occurs will be considered as the exact location where the
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Figure 3.2: This figure shows how the insertion sequence is formed. The first read
happens to be the root. The overlapping reads are shown aligned at the appropriate
place with respect to the parent and the child of the read. The number shown after
the read is an indication of the length of the read which did not overlap with its child,
the less the better. For instance the number ‘1’ means the node and its child shares
an overlap of ‘k − 1’ set of bases. The last line shows the consensus sequence that
was formed, i.e., the insertion sequence. Please note that the underlying principle
is that the figure shows the formation of a graph structure with the parent nodes
and child nodes determined by the degree of overlap between them. This figure may
show similarity to a multiple sequence alignment, however, within the framework of
genome assembly, it is strictly a graph construction.

40



Figure 3.3: This figure shows how the locations of the insertions are determined. The
sequence at the top is part of the reference sequence whereas the sequence at the
bottom happens to be the insertion. Using a fine-tuned local alignment search tool,
the alignment between the reference sequence and the insertion is shown. Identical
start and end sections with continuous gaps in the middle illustrate the exact location
of the insertion. Once the appropriate place is determined, the insertion is corrected.

insertion is to be corrected. Fig 3.3 represents such an alignment. Once all the

insertions are corrected, the entire set of reads, R, of the novel genome and the

resulting sequence are used as an input to the next module.

3.5 Bayesian Framework for Detection and Estimation of SNPs

A Bayesian framework for the detection and estimation of SNPs is necessary

in order to make effective use of the Q-values present in the .fastq file. These Q-

values portray the probability of making an incorrect base-call. Let Pe denote the

probability of an incorrect base-call, then e.g., for Solexa, the expression for Pe is

given by Pe = 1 − (1/(1 + 10−Q/10)). Assume a read ri to be w bases long, and

each position of the read ri to be identified by a different base, rli = X, where X

∈ {A, T,G,C} and l ∈ {1, . . . , w}. Therefore, assume p(X) = 1 − Pe denote the

probability that the base call X is correct.

As Q-values are derived by analyzing images taken of the cells on which sequenc-

ing is performed, let Y represent such an ‘image data’. Therefore, if Y is used to

derive p(X), then p(X) is in fact p(X|Y ). The Q-values stored in the .fatsq file do

not provide the complete probability mass function and only capture one Q-value

per base at any particular location of the read. Assume a uniform distribution for

the remaining set of bases in the read such that of
∑

X={A,T,G,C} p(X|Y ) = 1. Let βji
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identify the probability that the ith read, ri, has a base X at location j, i.e., rji = X.

Therefore,

p(X|Y ) = p(rji = X|Y ) = βj(i,X)∑
X={A,T,G,C}

βj(i,X) = 1.

Using the above scheme one obtains a complete distribution βji for each location

j within the read ri, and it does this for the entire set of reads, R, as illustrated in

Fig. 3.4.

Figure 3.4: Each location of the read has its associated probability distribution as
shown in the columns underneath it. The base-call for a particular location is the
base which has the highest probability (shown in red).

As MARAGAP uses reference assisted assembly, let SR denote the reference se-

quence and ST be the target sequence that we wish to derive. Furthermore, assume

SkR is the k-th base in the sequence SR, where k ∈ {1, . . . , n} and n is the size of

the reference genome. The Bayesian framework uses probability scores to evaluate

the best alignment of a read with the reference sequence. The region along which

a read ri, w bases long, aligns to the reference sequence ranges from SkR to Sk+w−1R ,

where k denotes the position where the alignment starts, and k + w − 1 represents

the position where the alignment ends. The probability of the alignment ‘a’ of a

42



Figure 3.5: Alignment of a read with the reference sequence. The underlined bases
differ in relation to each other.

particular read ri onto a location k on the reference strain SR is given by

p(a|ri;SkR) =
w∏
l=1

βli = αki . (3.1)

The probability of alignment, αki , measures how well any read aligns onto any

location on the reference template, and, like all probabilities, follows the basic rule

of summing up to one, i.e.,
∑n

k=1 α
k
i = 1, see Fig. 3.5.

Eq. (2.1) is used to calculate the alignment probability of all reads to all loca-

tions on the reference sequence. Let R represent all the reads and let ϕ denote all

the alignment probabilities α(.), calculated above. Once the probabilities of all the

alignments ϕ of all the reads R are calculated, the ‘layout’ is built. Only those align-

ments of the reads are taken into consideration greater than a user defined threshold

‘τ ’, where τ ∝ 1/n, ‘n’ being the size of the reference sequence.

Establishing the layout allows the consensus sequence to be constructed via es-

timating ‘site-specific-probabilities’ of the novel sequence ST . Let Φj
T be the site-

specific-probabilities such that either of the bases {A, T,G,C} may belong to the

location j on ST . Assuming m to be the total number of reads which align to a

43



particular position j, then

Φj
T = p(SjT |R,ϕ, Y, SR) ≡ p(SjT | ~Z) ∝

m∏
k=1

αak × β
l=j−a+1
k , (3.2)

where a is the starting position of the alignment of the read rk onto SR, αak is its

probability score and βlk identifies the probability of the base call at the lth location

of the read rk. In Eq. (2.2), the variable ~Z sums all the variables, i.e., the combined

effect of all the reads, R, all alignment probabilities ϕ(.), the image data Y , and

the reference sequence SR. Thus, Φj
T = p(SjT |R,ϕ, Y, SR) ≡ p(SjT | ~Z). Therefore, by

using Baye’s rule twice, it follows that

p(SjT | ~Z) =
p( ~Z|SjT )p(SjT )

p( ~Z)
=
p(SjT )

p( ~Z)
×

m∏
k=1

p(~zk|SjT )

=
p(SjT )

p( ~Z)
×

m∏
k=1

p(SjT |~zk)p(~zk)
p(SjT )

=

∏m
k=1 p(~zk)

p( ~Z)
×

∏m
k=1 p(S

j
T |~zk)

[p(SjT )]m−1

= λj

m∏
k=1

p(SjT |~zk) (3.3)

λj =

∏m
k=1 p(~zk)

p( ~Z)× [(SjT )]m−1
. (3.4)

In Eq. (2.3), the variable ~z represents the effect of an individual read r with their

individual alignments a, whereas the variable ~Z represents the combined effect of all

the reads, R, and all alignment probabilities, ϕ(.). Eq. (2.3) is used to calculate the

site-specific-probabilities Φj
T and λj is a scaling factor such that

∑
j={A,T,G,C}Φj

T = 1.

The base-call on each site of the novel genome ST is given to the base which has the

highest site-specific-probability, depicted in Fig 3.6.
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Figure 3.6: Alignment of the reads with the reference sequence and formulation of
the site-specific-probabilities is based on α(), probability of the alignments, and β(),
probability mass function of the bases of the reads. The base-call of the new sequence
depends on the highest site-specific-probability at that location. Therefore, for each
location of the new sequence, one ends up with a complete distribution identified by
Φ(.).

3.6 Results and Discussion

Four sets of experiments were conducted on genomes of varied lengths, as il-

lustrated in Table 3.1. In the first three experiments, the reference sequence was

obtained by modifying the original sequence at random locations with mutations of

random lengths. For the assembly of Pseudomonas Aeruginosa PAb1, the reference

sequences were real and belong to the same phylogeny as PAb1. They are Pseu-

domonas Aeruginosa PA14, PAO1 and PA7. Standard assembly metrics were used

to compare the assembly, carried over by MARAGAP, with the assemblies produced

by other algorithms such as Velvet [129], SSAKE [15], VCAKE [48], QSRA [10],
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SHARCGS [25], IDBA [?], MIRA [18] and Maq [http://maq.sourceforge.net/].

All these assemblers are part of the Baari and Genobuntu Package (chapters 4.5 and

5.2 respectively). Brief explanations of these metrics have been presented in Table

1.3.

The assembly of Mycobacterium NBB4 revealed that Mira’s assembly was the

best, followed closely by Maq. MARAGAP’s assembly did not reveal assembly statis-

tics as efficacious as either Mira or Maq because MARAGAP assembler could not

rectify one insertion and one deletion. Comparing the assemblies of Nitrobacter Ha.

X14 shows that MARAGAP provides a more improved assembly when compared to

other assemblers. This improvement comes at the cost of a higher time complexity.

Assembly of Vibrio Ch. O1 chromosome 2 using optimum reference shows that Mira

and MARAGAP assemblies were similar, while using sub-optimum reference MARA-

GAP assembly was better than the rest. The assembly of Pseudomonas Aeruginosa

PA7 chromosome using PA14 as an optimum reference illustrates that MARAGAP

assembly performs the best. The assembly statistics of other assemblers were not pre-

sented in Table 3.7 since the other assemblers exhibited ‘exceptions’ during their run

causing them to end prematurely. Overall, MARAGAP has shown performance ex-

ceeding most assemblers; exceptions include Mira whose performance closely matches

MARAGAP’s. In addition, MARAGAP provides details of all four mutations, i.e.,

insertions, deletions, inversions and SNPs as ‘log’ files. The location and size of these

mutations relative to the reference sequence may be used in downstream analysis for

disease association studies, understanding inter-individual variations and drug re-

sponses [101]. The larger time complexity of MARAGAP is primarily due to its

inherent probabilistic framework and insertion location identification framework. As

for medical and pharmaceutical reasons, one may largely favor accuracy of results

over inherent time-complexity [69,90].
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In order to facilitate reproducibility of results the version number of these as-

semblers, along with the parameters used in the assemblies, have been provided. All

experiments and all algorithms, except the Bayesian framework, were conducted on

an Intel(R) Core(TM) i5 CPU M430 @ 2.27 GHz 2.26 GHz with 4 GB Ram. The

Bayesian framework was executed on Intel Core2 Duo E8500, 3.16 Ghz, 4 GB Ram,

CentOS 5.5 ×64 operating system. MARAGAP was not tested on larger species

because of hardware limitations. In addition, estimated figures for time and mem-

ory have been avoided owing to the inherent random nature of the mutations. As

MARAGAP is based on detecting and correcting mutations, the time it takes to

assemble a genome would be based on the number of mutations present in the target

genome in relation to the reference genome. However, it is not uncommon to assem-

ble a bird, a fish or a snake using 50-100 cores, 512-1000 GB RAM with a reasonable

execution time ranging from 24 hours to 1000 hours [9].

Source code of MARAGAP, MARAGAP’s installation instructions and all neces-

sary data can be downloaded from (https://sourceforge.net/projects/refasp/).

3.6.1 Experiment 1: Assembly of Mycobacterium Cholerae NBB4 Plasmid

pMYCCH.02

The reference sequence was derived from Mycobacterium Cholerae NBB4 Plas-

mid pMYCCH.02, complete sequence (NC 018023.1), length 142623 base-pairs, us-

ing change sequence.exe, with the following parameters, Υm = 2%,ΥSNP = 60%,

Υinv = 20%,Υindel = 10%,Υ1 = 100,Υ2 = 1000. This set-up introduced the

following mutations in the reference sequence {SNPs: 451, inversions: 140, inser-

tions: 85, deletions: 63}. Reads of length 30 were derived using the ART NGS read

simulator using 10× fold coverage, standard deviation 30 and without paired-ends.
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S. No Sequence Accession Number Sequence
Length (bp)

1 Mycobacterium Chubuense NBB4 plas-
mid pMYCCH.02

NC 018023.1 142623

2 Nitrobacter hamburgensis X14 plasmid
1

NC 007959.1 294829

3 Vibrio cholerae O1 str. 2010EL-1786
chromosome 2

NC 016446.1 1,046365

4 Vibrio cholerae IEC224 chromosome II NC 016945.1 1,072136
5 Vibrio cholerae LMA3984-4 chromo-

some II
NC 017269.1 946986

6 Vibrio cholerae Ban5, ICEVchban5 GQ 463140 1,02122
7 Pseudomonas Aeruginosa PAO1 chro-

mosome
NC 002516.2 6,264404

8 Pseudomonas Aeruginosa UCBPP-
PA14 chromosome

NC 008463.1 6,537648

9 Pseudomonas Aeruginosa PA7 chromo-
some

NC 009656.1 6,588339

Table 3.1: This table shows the list of sequences used in the experiments.

The assembly was conducted using MARAGAP and compared with Velvet [129],

SSAKE [15], VCAKE [48], QSRA [10], SHARCGS [25], IDBA [?], MIRA [18] and

Maq (http://maq.sourceforge.net/). Results tabulated in Table 3.2 show that

the reference assisted assemblies perform better than the denovo assemblies owing to

their use of the reference sequence. However, it is interesting to note that the varia-

tion in execution times is significant with Velvet completing its assembly in 1 second

and MARAGAP completing its assembly in 2,686 seconds. However, the results ob-

tained show that the assembly completed by MIRA is the best, followed closely by

MARAGAP. Maq lags behind by a decent margin. A more detailed analysis of the

MARAGAP assembled genome conducted using the help of TABLET [71] is shown
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Figure 3.7: MARAGAP assembly of NBB4 Plasmid: This figure shows the output
generated via TABLET for the MARAGAP assembly of Mycobacterium NBB4 Plas-
mid. Notice that there are areas of the genome where no read aligns possibly due
to some insertions in the reference sequence which MARAGAP could not detect and
remove. The figure also shows areas of the genome with large coverage.

in Figs. 3.7 and 3.8.

3.6.2 Experiment 2: Assembly of Nitrobacter Hamburgensis X14 Plasmid 1

The reference sequence was derived from Nitrobacter Hamburgensis X14 Plasmid

1, complete sequence (NC 007959.1), length 294829 base-pairs, by introducing 284

SNPs, 153 inversions, 26 insertions and 26 deletions. Paired-end reads of length 30

were derived using the ART NGS read simulator using 20× fold coverage, standard

deviation 30 and mean fragment length of 1000. Employing the fastx toolkit and

the fastq quality filter, with a quality cut-off of 18 and a minimum percentage 90,

discarded about 6400 low-quality forward-biased reads and about 1900 low quality
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Figure 3.8: High coverage regions of NBB4 plasmid assembly using MARAGAP:
This figure shows one such high coverage region of the assembly of Mycobacterium
Cholerae NBB4 Plasmid using MARAGAP.
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reverse-biased reads. Read error correction was completed using SHREC [99] with

5 iterations and 4 parallel threads. Out of 71,000 forward-biased reads, SHREC

corrected about 16,000 reads, whereas out of 77,000 reverse-biased reads SHREC

corrected about 3,500 reads. The resulting filtered and corrected reads were used

in the assembly process utilizing different assemblers and then compared with stan-

dard assembly metrics using the program assembly statistics.exe. Results, tabulated

in Table 3.3, show that the assembly done by MARAGAP outperforms all other

assemblies with a higher cost in terms of its time complexity. This is due to the

use of the Bayesian framework which aligns all the reads to all possible locations on

the reference sequence to locate the best probabilistic alignments. The results of an

analysis conducted with TABLET [71] are depicted in Figs. 3.9, 3.10 and 3.11.

3.6.3 Experiment 3: Assembly of Vibrio Cholerae O1 strain 2010EL-1786

chromosome 2

The choice of the reference sequences for the assembly of Vibrio Ch. 01 strain

(str.) 2010EL-1786 chromosome (chr.) 2 was determined via the MDL-based pro-

posed scheme. Results tabulated in Table 3.4 reveal that Vibrio Cholerae IEC224 is

the optimal (Opt.) reference sequence with ‘Ref 0: Mutated reference’ coming last.

Vibrio Cholerae Ban5, with 0 reads found, does not qualify as a possible option.

Therefore, the assembly process proceeded with Vibrio Cholerae IEC224 chr. II as

the reference. Paired-end reads of length 30 were derived using the ART NGS read

simulator using 20× fold coverage, standard deviation 20 and mean fragment length

of 10000. Employing the fastx toolkit and the fastq quality filter with a quality

cut-off of 18 and a minimum percentage 90 helped in discarding about 23,000 low-

quality, forward-biased reads. The quality filter was not applied on reverse-biased

reads because the quality box plot and the nucleotide distribution graphs of the re-
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Figure 3.9: MARAGAP assembly of X14 Plasmid: Compared to Fig. 3.7, MARA-
GAP was able to achieve better assembly for X14 than for the NBB4 Plasmid in
Experiment 1. The MARAGAP assembly shows large coverage regions spanning the
entire sequence, illustrating an overall good assembly.
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Figure 3.10: Low coverage regions of X14 plasmid assembly by MARAGAP: The
figure shows a particular low coverage region of the assembly. A closer inspection
reveals that many of these regions are smaller than one read length, and therefore,
difficult to detect and correct.
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Figure 3.11: High coverage regions of X14 assembly: The figure shows a particu-
lar high coverage region of the assembly conducted by MARAGAP of Nitrobacter
Hamburgensis X14 Plasmid 1.
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verse biased reads revealed the reads were of good quality. Read error correction was

employed using SHREC [99] with 5 iterations and 4 parallel threads. Out of 326,000

forward-biased reads SHREC corrected about 9,150 reads, whereas out of 309,000

reverse-biased reads SHREC corrected about 8,600 reads. The resultant filtered and

corrected reads were used in the assembly process.

The assembly statistics reveal that given IEC224 as the reference sequence both

MIRA [18] and MARAGAP produce similar assemblies, as confirmed in Table 3.5.

However, given a suboptimum reference like reference 0 Mutated Reference, MARA-

GAP assembly was better than the remaining assemblies. MARAGAP was found

to be slower than MIRA but faster than SHARCGS [25]. For an analysis using

TABLET [71], please refer to Figs. 3.12, 3.13 and 3.14.

3.6.4 Experiment 4: Assembly of Pseudomonas Aeruginosa PAb1 Chromosome

The choice of the reference sequences for the assembly of Pseudomonas Aerug-

inosa PAb1 was determined via the proposed MDL scheme. Results tabulated in

Table 3.6 reveal that PA14 is the Opt. reference sequence. The assembly was carried

out with reads from the run SRR001657 drawn from SRA (http://www.ncbi.nlm.

nih.gov/sra). Reads were filtered using the fastx toolkit. The assembly of PAb1

was carried out using VCAKE, QSRA, IDBA and MARAGAP. The results are de-

picted in Table 3.7. The assembly statistics reveal that MARAGAP assembly was

better with fewer contigs. MARAGAP also presented the largest single contig with a

decent coverage. Although MARAGAP took a longer time to complete the assembly

process, the improvement in the assembly justifies the time taken. The results from

other assemblers were not presented in Table 3.7 because the other assemblers ended

their runs prematurely.

57



S. No Reference Sequence (Ac-
cession No.)

Code-length (MB)
No. of
Reads
found

No. of
Reads not
found

1 Vibrio Cholerae IEC224
chr. II (NC 016945.1)

11.34 225629 55582

2 Vibrio Cholerae
LMA3984-4 chr. II
(NC 017269.1)

18.644 137023 144188

3 Ref 0: Mutated Refer-
ence (Self Generated)

21.67 109180 172031

4 Vibrio Cholerae Ban5
(GQ 463140)

26.138 0 281211

Table 3.4: This table shows the list of sequences used in Experiment 3. The list has
been arranged in increasing order of the code-lengths with reference Seq. 1 having the
smallest code-length, with reference Seq. 4 having the largest. In accordance with the
MDL principle, the reference Seq. with the smallest code-length is the Opt. reference
sequence. Therefore, we use IEC224 as our Opt. reference sequence in Experiment 3.
However, in order to test the robustness of assemblers Maq, Mira and MARAGAP
we repeat the assembly process, this time using reference 3 to evaluate the strength
of each assembler when the assembly process uses a sub-optimum reference sequence.
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Figure 3.12: MAQ Assembly of Vibrio Cholerae O1 str. 2010EL-1786 chr. 2 Vibrio
Cholerae IEC224 chr. 2 as a reference: Note that there are many areas of the genome
which have little or no coverage. This is because MAQ places a series of N(s) in areas
of the genome it could not confirm.
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Figure 3.13: MIRA Comparative assembly of Vibrio Cholerae O1 str. 2010EL-1786
chr. 2 using Vibrio Cholerae IEC224 chr. 2 as a reference: The target sequence
assembled by MIRA shows overall good coverage. Comparison with Figure 3.12
shows that the assembly conducted by Mira is better than that the one performed
by MAQ.
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Figure 3.14: MARAGAP assembly of Vibrio Cholerae O1 str. 2010EL-1786 chr.
2 using Vibrio Cholerae IEC224 chr. 2 as a reference sequence: The assembly by
MARAGAP shows overall good coverage.
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S. No Reference Sequence (Ac-
cession No.)

Code-length (MB)
No. of
Reads
found

No. of
Reads not
found

1 Pseudomonas Aerugi-
nosa UCBPP-PA14 chr.
(NC 008463.1)

141.04 1,226133 1,031404

2 Pseudomonas Aeruginosa
PAO1 chr. (NC 002516.2)

152.50 1,095037 1,162500

3 Pseudomonas Aeruginosa
PA7 chr. (NC 009656.1)

223.713 399181 1,858356

Table 3.6: This table shows the list of sequences used in the Experiment 4. The list
has been arranged in increasing order of code-lengths with PA14 has the smallest
code-length while PA7 chr. having the largest code-length. In accordance with the
MDL principle, the reference Seq. with the smallest code-length is the Opt. reference
sequence. Therefore, PA14 acts as the Opt. reference sequence in Experiment 4.

3.7 Experimental Methods

3.7.1 Simulating Reference Sequences

In all experiments, the original sequence was modified at random locations by

selecting one of four mutations, i.e., inversion, deletions, insertions and SNPs with

random lengths. The method requires the user to input five parameters, i.e., Υm:

probability of mutation, Υinv: percentage bias for inversions, Υindel: bias for inser-

tions and deletions, ΥSNP : denoting the corresponding percentage for SNPs and

Υlen: largest possible length of the mutation. The method was described previously

in Section 2.4.
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S. No Assembly Metrics VCAKE QSRA IDBA MARAGAP
Ver 1 1 1 1

1 No. of Contigs 156834 76899 34775 1
2 Length of Largest

Contig
4195 5832 5285 6261358

3 N50 92 132 176 6261358
4 N75 297 66 112 6261358
5 N90 155 44 83 6261358
6 NG50 227 159 148 6261358
7 NG75 140 89 84 6261358
8 Contigs ≥ N50 26985 14907 8860 1
9 Contigs ≥ 200 bp 10428 7550 6904 1
10 Mean 76.312 98.71 157.810 6261358
11 Median 45 61 118 6261358
12 Sum of the Contig

Lengths
11968268 7590560 5487859 6261358

13 Coverage 6 10 14 13
14 Run time (hours) 2 0.25 0.1 31
15 Memory used (GB) 1.3 1.6 0.5 4
16 Parameters Used -e 20 -u 17 –mink 17 τ1 = 1000

-k 33 -k 33 –maxk 33 τ2 = 100000
-o 34 -o 34 –step 1 τ3 = 10
-n 17 -l 16 –min count 2 Match 4
-t 5 -t 3 –min contig 34 Mis-Mat -5

-m 16 -c 0.6 Gap 0
-v 3 Exten. 1

Table 3.7: Reads were derived from the run ‘SRR001657’ from the Sequencing Read
Archive. The assembly was conducted using four assemblers and compared using
standard metrics utilizing the program ‘assembly statistics’. Pseudomonas Aerugi-
nosa UCBPP-PA14 was employed as a reference Seq. by MARAGAP for the assem-
bly of PAb1.
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3.7.2 Generating, Filtering and Correcting Reads

In simulations, reads were derived from the original sequence using the ART NGS

read simulator with read length 30, utilizing either 10× or 20× fold coverage and

a standard deviation of 20 or 30 [42]. Reads of length 30 were chosen to ensure

consistency in comparison and to check for the robustness of different assemblers.

First, it was found that most of the assemblers functioned smoothly at read length

30, while some assemblers exhibited ‘unstable’ behavior at different lengths causing

them to terminate pre-maturely during the assembly process. Second, real data

for Experiment 4 also presented read length 30, therefore, the simulated data also

used read length 30. Thirdly, assemblers provide better assembly at larger read

lengths, therefore, in order to test the robustness of any assembler shorter read

length are preferred over larger read lengths as the differences in the assemblies

become magnified.

As for paired reads, Experiment 1 was carried out without paired-end reads while

Experiment 2 and Experiment 3 were completed with mate-pair information. Ex-

periment 1 was performed without filtering low quality reads or undertaking error

correction, while Experiments 2 and 3 were conducted after filtering low quality reads,

using the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), and error

correction using SHREC [99].

For Experiment 4, real data was used and reads were obtained from the Se-

quencing Read Archive (SRA) for the Illumina sequencing of Pseudomonas aerugi-

nosa PAb1 (http://www.ncbi.nlm.nih.gov/sra). SRA contains two runs of PAb1

sequencing, i.e., ‘SRR001656’ and ‘SRR001657’. Quality of these data sets were

tested using the fastx toolkit which showed that run SRR001657 was better than

SRR001656. For SRR001656 the quality of the reads reduced after the seventh base.
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Therefore, the experiment was continued with only SRR001657 which was subse-

quently filtered to remove low quality reads.

3.8 Addendum

Availability and requirements:

• Project name: MARAGAP

• Project home page: https://sourceforge.net/projects/refasp/.

• Operating system (OS): Linux, Windows and MAC OS.

• Programming language: C.

• License: GPL 3.0

• Any restrictions to use by non-academics: None, as long as the users cite the

paper.

• Contact: Please email: bilalwajidabbas@hotmail.com for assistance.
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4. GIBBS-BECA: EMPLOYING GIBBS SAMPLING AND BAYESIAN

ESTIMATION FOR SNPS DETECTION AND CORRECTION ∗

In Chapter 3.8 we discussed BECA, a framework that uses Quality (Q) values for

identifying probabilities of the base calls for every read and subsequently employing

them to find probabilistically the best alignments and the consensus sequence. BECA

used the ‘alignment-layout-consensus’ paradigm where each step was executed after

evaluating probabilistic measures, thereby treating every quantity as a random vari-

able. This chapter extends BECA by using Gibbs sampling for further iterations of

BECA. After each assembly the reference sequence is updated and the probabilistic

score for each base call is then used further to identify the alignments and consensus

sequence, yielding Gibbs-BECA. Although BECA rectifies most of the SNPs, Gibbs-

BECA further improves the performance both in terms of rectifying more SNPs and

offering a robust performance even in the presence of poor reference sequences.

The remainder of the chapter is divided as follows. Section 4.1 provides a quick

recap of BECA, Section 4.2 discusses Gibbs sampling and Section 4.3 discusses the

application of Gibbs sampling on detecting and correcting SNPs. Finally, Section

4.4 describes the computer simulations to assess the performance of the proposed

∗Reprinted with permission from “Gibbs Sampling and Bayesian Estimation for Comparative
Assembly,” by Bilal Wajid, Erchin Serpedin, Mohamed Nounou and Hazem Nounou, 3rd Inter-
national Conference on Biomedical Engineering, Electronics and Nanotechnology (MIC-BEN’13),
June 2013, Valencia, Spain.
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framework.

4.1 BECA

Bayesian Estimation for Comparative Assembly or BECA is used in the MARA-

GAP pipeline to rectify SNPs in the sequence. This is accomplished by making

effective use of a reference sequence ‘SR’, the set of reads ‘R’ = {r1, r2, · · · , rn} and

their associated Q-values to evaluate a set of probabilistic measures. Firstly, the

alignments of the reads along the reference sequence is measured probabilistically

using αki :

αki = p(Ω|ri;SkR) =
w∏
l=1

βli (4.1)

Here ‘Ω’ denotes the alignment of a particular read ri (w bases long) onto a

location k on the reference sequence SR. Additionally, βli = p(rli = X) represents the

probability that base ‘X’ = {A,C,G, T} is present at location ‘l’ on the ith read.

Once the probability of all the alignments (symbolized by ‘ϕ’) of all the reads R

is calculated, the layout is made. The layout establishes the consensus sequence by

evaluating the ‘site-specific-probabilities’ of the target sequence ST . Let Φj
T denote

the site-specific-probabilities, that either of the bases {A, T,G,C} may belong to the

location j on ST .

Φj
T = p(SjT |R,ϕ, Y, SR) ≡ p(SjT | ~Z) ∝

m∏
k=1

αak × β
l=j−a+1
k , (4.2)

where a is the starting position of the alignment of the read rk onto SR. Here ~Z

presents the combined effect of all the reads R, all alignment probabilities ϕ(.), image

data Y , and reference sequence SR. However, rather than using ~Z, one may also use

~z to represent the effect of individual reads r with their individual alignments Ω.
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Figure 4.1: Gibbs Sampling: In the two variables case the initial value Y
′
0 is spec-

ified and X
′
0 is obtained using the conditional probability density f(X|Y = Y

′
0 ).

Thereafter, Y
′
1 is obtained using f(Y |X = X

′
0). The process iterates, each time gen-

erating a set of random numbers, X
′

k and Y
′

k , using the conditional densities until
the distribution of X converge to f(X) and the distribution of Y converges to f(Y ).

Therefore:

p(SjT | ~Z) = λj

m∏
k=1

p(SjT |~zk) (4.3)

λj =

∏m
k=1 p(~zk)

p( ~Z)× [(SjT )]m−1
. (4.4)

Eq. (4.3) is used to calculate the site-specific-probabilities Φj
T and λj is a scaling

factor such that
∑

j={A,T,G,C}Φj
T = 1. The base-call on each site of the novel genome

ST is given to the base that has the highest site-specific-probability. In BECA’s

framework all the above mentioned calculations are executed once in order to deter-

mine the target sequence. In Gibbs-BECA, the target sequence is obtained after a

number of iterations. After each iteration the target sequence of the previous iter-

ation becomes the reference sequence of the next iteration. This process continues

until no new SNPs are corrected. The next sections discuss how Gibbs sampling is

employed to extend BECA’s framework.
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4.2 Gibbs Sampling

Gibbs sampling offers a framework to generate random variables from a distribu-

tion indirectly rather than having to calculate the densities. In the two variable case

(X, Y ), Gibbs sampler generates a random variable from f(x) successively by gen-

erating a Gibbs sequence of random variables by sampling from f(x|y) and f(y|x).

The initial value Y
′
0 = y

′
0 is specified and the remainder of variables are obtained

iteratively by alternately generating values from

X
′

j ∼ f(x|Y ′

j = y
′

j); Y
′

j+1 ∼ f(y|X ′

j = x
′

j)

The distribution of X
′
K converges to f(x) as K → ∞, see Fig. 4.1, thereby

obtaining

Y
′

0 , X
′

0, Y
′

1 , X
′

1, Y
′

2 , X
′

2, · · · , Y
′

K , X
′

K .

The three variants of Gibbs sampling: standard, grouped and collapsed are ex-

tensions of one another. In its standard form, Gibbs sampler updates the coordinates

one by one whereas in its grouped form the Gibbs sampler updates the two coor-

dinates together. Finally, in its collapsed form the Gibbs sampler updates many

coordinates at a time [64], see Fig. 4.2.

4.3 Gibbs Sampling and Genome Sequencing

Looking at the two-component collapsed form of Gibbs sampling, the aim is to

identify the two components X and Y , and the two conditional density functions

f(X|Y ) and f(Y |X). In the method described above, using a reference sequence SR,

a set of reads R, probability mass function β(.) and Eq. (4.1), one is able to identify

the alignment probabilities. Similarly using Eq. (4.3), one is able to identify the

site-specific-probabilities for each base at every location of the final sequence.
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Figure 4.2: Types of Gibbs Sampling: Graphical representation of systematic forms
of Gibbs sampling. (A) Standard form, (B) Grouped form, (C) Collapsed form of
Gibbs sampling.

For each read ri, define the best p alignment probabilities as ζi ∈ {α[i,1], · · · , α[i,p]}.

Therefore, for the entire set of m reads, R, the set of best p alignments for each read

can be defined as ϕ ∈ {ζ1, ζ2, · · · , ζm}. Let SR ≡ ST0. Eq. (4.1) can now be modified

to account for the best p alignments for the entire set of reads. Therefore, for one

read ri and one alignment location k, the alignment probability is

p(a|ri;SkT0) =
w∏
l=1

βli = αki

For the set of best p alignments of all the reads R, the equation above can be modified

as p(ϕ|R;ST0). Also, since

p(SjT |R,ϕ, SR) ≡ p(SjT |~Z) = λj

m∏
k=1

p(SjT |~z),

the two predictive distributions are:

p(ϕ(k+1)|R, ST (k)) and p(SjT (k+1)|R,ϕ(k), ST (k)). (4.5)

In comparative genome assembly, the starting point is naturally the reference
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sequence ST (0). Since every iteration generates the site-specific-probabilities Φj
T , and

the probabilities change at every subsequent iteration, it is appropriate to mark the

site-specific-probabilities as Φj
T (q), where q marks the qth iteration. Similarly, SjT (q)

denotes simply the base call for the highest Φj
T (k). It was mentioned earlier that:

p(a|ri;SkR) =
w∏
l=1

βli = αki .

Incorporating the effects of Φj
T the above equation takes the form:

p(a(k+1)|ri; ΦT (k)) =
w∏
l=1

βliΦ
a+l−1
T (k) = α

a(k+1)
i .

Notice the ΦT (k) has replaced SjT (k). This is because SjT (k) is simply the base call

for the highest Φj
T (k). Similarly for all the reads R and all the alignments ϕ(.), the

first predictive distribution can be modified to incorporate the effects of Φj
T (k) yielding

p(ϕ(k+1)|R,ΦT (k)). Similarly the effects of Φj
T (k) are also reflected in the second pre-

dictive formula, changing it from p(SjT (k+1)|R,ϕ(k), ST (k)) to p(SjT (k+1)|R,ϕ(k),ΦT (k)).

Therefore, reflecting Φj
F (k) onto probability densities (4.5) updates them to get

the following two predictive conditional densities:

p(ϕ(k+1)|R,ΦF (k)) and p(SjT (k+1)|R,ϕ(k),ΦF (k)).

Therefore, the Gibbs sampler generates the following sequences:

ST (0), ϕ(0), ST (1), ϕ(1), ST (2), ϕ(2), · · · , ST (k), ϕ(k)

as k → ∞, ST (k) → ST .
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4.4 Results and Discussion

Experiments were conducted on both real and synthetic data. For synthetic

data, the simulations were carried out by generating a reference sequence SR of

length L. The novel sequence ST was generated by making random substitutions

in the reference genome. The percentage of SNPs in the reference sequence was

increased in steps. This was done to evaluate the robustness of the algorithm by

observing the predictive quality of inferring ŜT given varying degrees of diverging

SR, see Table 4.1. Thereafter, ST was split into reads starting at random locations

on the novel genome ensuring that no two reads start from the same location. All

base locations of the reads were assigned a probability distribution β(.) such that the

overall quality of the reads was good with P (X|Y ) > 0.7. The set of reads R, their

probability distributions β(.), and the reference sequence SR were then used to infer

the novel genome ŜT . As far as the alignment phase is concerned, the alignments of

all the reads ϕ(.) were evaluated and all alignments having a p(a|ri, SkR) < 0.25 were

discarded. In all the experiments, the layout and consensus sequence was established

resulting in one contiguous sequence, ŜT , thereby, resulting in clean assemblies. In

order to evaluate the performance, the assembly of ŜT was compared to ST and the

number of false-positives were recorded. The results are tabulated in Table 4.1.

Table 4.2 shows the result of the assembly when conducted with real data using

genomes of varying sizes. Comparing the performance of BECA with Gibbs-BECA,

it follows that although the Gibbs-BECA assembly takes more than one iteration yet

it rectifies most of the SNPs introduced. Therefore, Gibbs-BECA provides a solution

ŜT , which is very close to the actual genome ST .

The execution time of the first iteration of Gibbs-BECA is exactly the same as

BECA, as the first iteration is common to both. However, as Gibbs-BECA uses
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Table 4.1: Experiment conducted on a reference genome, SR, having 5000 bases.
In every subsequent test, the number of SNPs introduced in the novel genome ST
gets higher and higher. The results show that when SR diverges further from the
actual sequence, it takes more iterations for Gibbs-BECA to converge to the actual
sequence. The results show that even if SR diverges as much as 2252

5000
× 100 = 45%,

most of the SNPs are recovered with only 26 remaining at the end of the 6th iteration
by the time the process converges and stops. This proves that Gibbs-BECA is very
robust.

S. No. No. of SNPs No. of Iteration re-
quired to Converge

No. of SNPs between
ŜT and ST

1 915 2 8
2 1355 2 18
3 1801 2 34
4 2252 6 26

multiple cycles to converge, the time taken by Gibbs-BECA is equal to the number

of cycles multiplied by the time it takes for one execution of BECA. Please refer to

Table 4.2 for details.

4.5 Conclusions

This chapter demonstrates the use of probabilistic measures and Gibbs sampling

in every step of the alignment-layout-consensus paradigm. The proposed Gibbs-

BECA method, an extension of our earlier work BECA, shows that through the use

of Gibbs sampling, the proposed scheme was able to rectify more SNPs compared to

its predecessor and also was robust even when the choice of the reference sequence

is poor. Future work could involve improving the run time of the algorithm by

parallelizing the alignment and layout phase using MPI and OpenMP.
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Table 4.2: Experiment conducted with real data shows the assembly of three genomes
and compares the performance of BECA with Gibbs-BECA. The original sequence
was modified by inserting a variable number of SNPs. ‘SNPs remaining’ identify
SNPs that were not identified or corrected by the assembler. BECA requires only
one iteration, while Gibbs-BECA illustrates that iterating the process improves per-
formance as more and more SNPs are rectified with the assembly.

S. No. Genome Genome
Length

Number
of SNPs

BECA:
SNPs re-
maining

Gibbs-BECA:
SNPs remain-
ing

Gibbs-
BECA: No.
of iterations
required to
converge

1 Hepatitis
C virus
genotype 1

9646 1769 170 88 4

2 Pneumocystis
carinii mito-
chondrion

22893 4246 553 106 7

3 Acidiphilium
multivorum
AIU301
plasmid
pACMV4

40588 7460 863 345 11
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5. BAARI: A CUSTOMIZED OPERATING SYSTEM DESIGNED FOR

GENOME ASSEMBLY ∗

While previous chapters discuss different software pipelines, Chapters 4.5 and 5.2

discuss cohesive software platforms that combine many different pipelines in one unit.

Efforts like these are especially important in Life Sciences. This is because ever since

the publication of the human genome [68], biological data throughput has exploded

with proportions that has surpassed Moore’s law [33]. Since then many software

packages have been proposed that help translate data into meaningful knowledge.

These software not only helped speed up biological research, but also compelled

biologists to spend increasing amount of time and resources in installing, configuring

and maintaining software.

To address these problems in the field of biology, not one, but many solutions

have been proposed, all of which are built on Linux based operating systems. Ex-

amples like BioLinux [34], Scibuntu [110] (http://scibuntu.sourceforge.net/),

Open Discovery [115], BioSLAX (http://www.bioslax.com) [86], LXtoo [128] and

Scientific Linux (https://www.scientificlinux.org/) address a broad set of users,

however, as there is no ‘one size fits all’ solution, scientists have come with other so-

lutions each tailored for a specific problem. For instance, BioBrew provided an ‘over-

the-counter’ cluster functionality [86, 131]. DNALinux [6] provided a pre-configured

virtual machine that runs on top of the free VMWare Player on Windows XP and

Vista, meaning that one could use Windows in parallel with running one’s bioinfor-

∗Reprinted with permission from “Life Sciences Driven Customized Linux Distributions,” by
Bilal Wajid and Erchin Serpedin, OA Bioinformatics, 2014, Jan 18; 2(1):1.
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Table 5.1: Brief comparison of Linux distributions used in Life Sciences. ? Gentoo
is available in multiple environments like Gnome, KDE, Xfce, LXDE, i3, etc. The
number of packages pre-compiled in Gentoo is not known to the authors.

Operating system Last Updated Free GUI Approx. number
of packages pre-
compiled

Size of Media RAM

SLAX 2013 X KDE Plasma workplace 2050 200 MB 256
Knoppix 2013 X LXDE 3600 4.2 GB 256
Puppy Linux 2014 X JWM 128 161 MB 256
Gentoo Linux 2012 X ? ? 3.9 GB 512
Xubunutu 2014 X Xfce 52,541 700 MB 512
Ubunutu 2015 X Unity 52,541 965 MB 512
Enterprise Linux 2014 × GNOME 12,516 255 MB 512

matics application in DNALinux [6]. BioPuppy, (http://www.biopuppy.org/) built

on Puppy Linux, is a very compact distribution addressed to a class room setting

where the instructor aims to teach the students use of specific tools. Other Ubuntu

based distributions like BioconductorBuntu [36] and PhyLIS [109] are tailored for

a specific type of scientific analysis. For example, BioconductorBuntu provides a

microarray processing platform, whereas, PhyLIS tries to fulfil the needs of Phylo-

genetics and Phyloinformatics. Table 5.1 provides details on Linux-based operating

systems which are used to derive Life-Linux distributions (highlighted in Table 4.2).

5.1 Approach

Baari is a customized distribution of Ubuntu 13.10 operating system containing

more than 70+ software and packages oriented towards Next Generation Sequenc-

ing. It uses Ubuntu’s user friendly Unity Desktop environment to serve as its GUI.

Installation can be done by booting it from DVD image or even a USB. Its current

license allows free distribution with no restriction to use by non-academics as long as

the use of Baari is acknowledged. As Baari is built on top of Ubuntu 13.04, its valid-
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ity, robustness and long-term-support (LTS) are already guaranteed by the Ubuntu

community. Nonetheless, the stability of Baari was tested on a number of systems

and Baari can run safely on hardware that supports an ×64 OS.

In its current version, Baari supports pre-assembly tools, genome assemblers as

well as post-assembly tools. Furthermore, a library of tools developed by the au-

thors for NGS data and commonly used biological software have also been pro-

vided. Baari represents the first piece of work to produce an environment that

can easily install a wide range of tools and software packages oriented towards

genome assembly. It is free, easily distributable and facilitates building laborato-

ries and software workstations both for personal use and for a college/university

setting. Baari is under active development and will undergo periodic updates to

incorporate the latest version of software. Users are requested to contact the au-

thor for additional software that could enhance the usage of Baari. The ‘Installation

Manual’, ‘Supplementary Section’ and the distribution (Baari) itself are available

at (http://people.tamu.edu/~bilalwajidabbas/Baari.html). For a list of pre-

installed software see Tables 5.3 and 5.4.

In addition to various software packages, Baari also includes example script

files for various assembly pipelines. Example shell script files for Velvet [129],

SSAKE [15], VCAKE [48], SHARCGS [25], QSRA [10], IDBA [?], Maq (http:

//maq.sourceforge.net/), MARAGAP [123] and ABySS [103] have also been pro-

vided. These shell scripts may help in both teaching and research, and can be

updated for more extensive assembly pipelines.

5.2 Addendum

Availability and requirements:

• Project name: Baari,
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Table 5.3: Genome Assembly tools present in Baari v. 1.0

Pre-assembly Tools

1 Reads present in the Ref. Seq. [119] 4 HiTEC [45]
2 Minimum Description Length [116,

119,124]
5 SOAPaligner [62]

3 SRA Toolkit [58] 6 FASTQC [98]

Assemblers

1 Velvet [129] 7 MARAGAP [123]
2 SSAKE [15] 8 Celera [75]
3 VCAKE [48] 9 ABySS [103]
4 IDBA [82] 10 TAIPAN [96]
5 Edena [40] 11 SOAPdenovo [63]
6 Maq (http://maq.sourceforge.

net/)
12 IDBA-UD [83]

Post-assembly Tools

1 TABLET [71] 3 ReAligner [4]
2 JEMBOSS [13] 4 SOPRA [20]
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Table 5.4: Common Life Sciences tools present in Baari v. 1.0

Generic Biology Software Tools

1 AmapAlign [108] 22 MAFFT [50]
2 BioPerl [106] 23 MassXpert [93]
3 BioRuby [37] 24 MCL [111]
4 Blast2 [49] 25 MUMmer [22]
5 Bowtie [54] 26 MUSCLE [28]
6 Bwa [59] 27 NCBI Libraries (http://www.ncbi.nlm.nih.

gov/IEB/ToolBox/)
7 ClonalFrame [23] 28 NCBI-BLAST+ (http://www.ncbi.nlm.nih.

gov/IEB/ToolBox/CPP\_DOC/)
8 Clustal W [61] 29 NCBI-ePCR (http://www.ncbi.nlm.nih.gov/

sutils/e-pcr/)
9 Clustal X [55] 30 PerlPrimer [67]
10 DIALIGN2 [73] 31 PLink [85]
11 EMBOSS [88] 32 Primer3 [92]
12 Exonerate [104] 33 ProbCons [24]
13 FASTX-Toolkit 34 Samtools [60]
14 GenomeTools [57] 35 Sim4 [84]
15 GMAP [127] 36 ART NGS Reads Simulator [42]
16 HMMER [35] 37 Staden library [105]
17 Infernal [76] 38 T-Coffee [78]
18 JELLYFISH [66] 39 TIGR-Glimmer [21]
19 Jemboss [13] 40 TREE-PUZZLE [97]
20 Kalign [56] 41 UGENE [79]
21 LAST-align [51] 42 WISE2 (http://www.ebi.ac.uk/~birney/

wise2/)

81



• Project home page: http://people.tamu.edu/~bilalwajidabbas/Baari.html,

• Operating systems: Ubuntu 13.10,

• License: GPL 3.0,

• Any restriction to use by non-academics: no, as long as Baari is acknowledged

in their work,

• Contact: bilalwajidabbas@hotmail.com
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6. GENOBUNTU: GENOME ASSEMBLY UBUNTU PACKAGE

In Chapter 4.5 we introduced Baari, a customized Ubuntu OS comprised of

genome assembly tools. Baari presents an environment that can install a wide range

of tools and software packages oriented towards genome assembly. It is free, easily

distributable and facilitates building laboratories and software workstations. How-

ever, since Baari presents a customized Ubuntu OS, researchers who are already

using Ubuntu OS or for that matter BioLinux do exhibit some hindrance in in-

stalling another OS on their machines. Therefore, we present Genobuntu, a software

package containing more than 70 software and packages oriented towards genome as-

sembly. Genobuntu can be installed on any Ubuntu ×32 or ×64 OS and is available

at (http://people.tamu.edu/~bilalwajidabbas/Genobuntu.html).

6.1 Discussion

Genobuntu contains additional software and packages on top of the ones present in

Baari (see Tables 5.3 and 5.4). Genobuntu includes pre-assembly tools, assemblers,

post-assembly software and script files mentioned in Section 5.1. The additional

software provided in Genobuntu (and not in Baari) are Allpaths [12], Celera [75],

Euler [14,15] and SSPACE [8]. In its current version, Genobuntu has been tested on

both Ubuntu 12.04 LTS and Ubuntu 13.04 OS. Although, Genobuntu can be installed

on both ×32 and ×64 Ubuntu OS, a ×64 architecture is preferred as a number of

tools work better on a ×64 system. Genobuntu was tested on 2.27 GHz Intel Core

i5 CPU, 4 GB RAM with 100 GB of hard-drive space. It is recommended that

Genobuntu be installed on a system with minimum 4 GB RAM and 100 GB hard-

drive space. Some software may require additional memory and hard-disk space,

and therefore, the author is not responsible for any software that misbehaves due
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to hardware limitations on part of the user’s system. Genobuntu is freely available

at (http://people.tamu.edu/~bilalwajidabbas/Genobuntu.html). Installation

requires an active internet connection and instructions for installation are provided

in the Supplementary Section present on the same website (http://people.tamu.

edu/~bilalwajidabbas/Genobuntu.html).

6.2 Addendum

Availability and requirements:

• Project name: Genobuntu,

• Project home page: http://people.tamu.edu/~bilalwajidabbas/Genobuntu.

html,

• Operating systems: any Ubuntu ×32 or ×64 system,

• License: GPL 3.0,

• Any restriction to use by non-academics: no, as long as Genobuntu is acknowl-

edged in their work,

• Contact: bilalwajidabbas@hotmail.com
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7. CONCLUSION

This dissertation highlighted the significance of genome assembly as a research

area, examined key metrics, emphasized tools and outlined the whole pipeline for

next-generation sequencing. It discussed principles of MDL in identifying the opti-

mal reference sequence for genome assembly and MARAGAP for assembly pipeline.

MARAGAP uses an algorithmic approach to detect and correct inversions and dele-

tions, a De-Bruijn graph based approach to infer insertions, an affine-match affine-gap

local alignment tool to estimate the locations of insertions and a Bayesian estima-

tion framework for detecting SNPs (called BECA). BECA’s framework is further

extended by using Gibbs Sampling for further iterations of BECA. After each as-

sembly the reference sequence is updated and the probabilistic score for each base

call renewed. The revised reference sequence and probabilities are then further used

to identify the alignments and consensus sequence, thereby, yielding an algorithm

referred to as Gibbs-BECA. Gibbs-BECA further improves the performance both in

terms of rectifying more SNPs and offering a robust performance even in the presence

of a poor reference sequence.

Lastly, two software platforms Baari and Genobuntu are introduced. Baari and

Genobuntu support pre-assembly tools, genome assemblers as well as post-assembly

tools. Additionally, a library of tools developed by the authors for Next Generation

Sequencing (NGS) data and commonly used biological software have also been pro-

vided in these software platforms. Baari and Genobuntu are free, easily distributable

and facilitate building laboratories and software workstations both for personal use

as well as for a college/university laboratory. Baari is a customized Ubuntu OS

packed with the tools mentioned beforehand whereas Genobuntu is a software pack-
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age containing the same tools for users who already have Ubuntu OS pre-installed

on their systems.
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