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ABSTRACT 

The North American Monsoon System (NAMS) has been projected to undergo a 

redistribution of precipitation due to enhanced spring convective barriers. Previous 

studies have utilized coarse-scaled global climate models (GCMs) from the Coupled 

Model Intercomparison Project (CMIP) Phase 5 to assess the impacts climate change 

over the southwest United States and northern Mexico. However, GCMs’ spatial 

resolution limits the representation of regional to local scale processes, especially over 

complex terrain. Thus, the focus of this research is to determine whether statistically 

downscaled GCMs are viable tools for assessments of the NAMS. First, two reanalysis 

systems are compared to station observations over the NAMS region using a suite of 

goodness of fit measures. This evaluation seeks to illustrate the suitability of each 

product in quantifying the climate characteristics associated with the NAMS over the 

monsoon-affected region. Second, simulated temperature and precipitation 

characteristics of downscaled CMIP5 GCMs are assessed against the reanalysis product 

identified in our previous analysis. The use of downscaled CMIP5 model output has 

been introduced as a means for evaluating the climate system and their impacts on a 

regional to local scale. This second objective will demonstrate the improvements, or 

limitations, in using statistical downscaling to assess the NAMS. 

Two highly resolved, gridded reanalyses, the North American Regional 

Reanalysis (NARR) and the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Interim Reanalysis (ERA-I) are assessed in their ability to simulate 
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temperature and precipitation in comparison to in-situ Global Historical Climatology 

Network (GHCN) observations. Results indicate similar temperature agreement for both 

reanalyses, while simulated precipitation is better captured in NARR. Precipitation 

demonstrated varying degrees of agreement, signifying difficulties when simulating 

precipitation. However, seasonal errors suggest better performance with NARR when 

compared to ERA-I, thus chosen as the superior reanalysis. Statistically downscaled 

CMIP5 output was then compared to NARR to explore the improvements, or limitations, 

in using downscaled climate model output. Various downscaled CMIP5 outputs, 

including from CNRM-CM5, HadGEM2-CC, and HadGEM2-ES, demonstrated 

improved representation of temperature and precipitation when compared to their 

coarsely resolved counterparts. Furthermore, the downscaled temperature and 

precipitation climatologies reveal better portrayal of the monsoon seasonality, capturing 

the onset and decay phase of the NAMS. However, all three downscaled models exhibit 

a warm, wet bias over complex terrain, indicating continued difficulties in reproducing 

observations. These results confirm enhancements achieved via statistical downscaling, 

and suggest this statistical approach to improve future climate projections. Thus, 

statistically downscaled model output serves a viable tool for improved climate 

projections for water resources and future adaptation.  
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NOMENCLATURE 
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AZ/NM Arizona/New Mexico 
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GCM Global Climate Model 

GHCN Global Historical Climatology Network 

GHG Greenhouse Gas 
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GoC Gulf of California 

GoF Goodness of Fit 

GoM Gulf of Mexico 

GPCC Global Precipitation Climatology Centre 

HadCM Hadley Centre Coupled Model 

HadGEM2-CC Hadley Centre Global Environmental Model, version 2 – Carbon 

Cycle 

HadGEM2-ES Hadley Centre Global Environmental Model, version 2 – Earth 

System 

ITCZ Inter-Tropical Convergence Zone 

IPCC Intergovernmental Panel on Climate Change 

JJA June-July-August 

JJAS June-July-August-September 

LLJ Low-Level Jet 

MAE Mean Absolute Error 

MAM March-April-May 

MAPE Mean Absolute Percent Error 

MJO Madden-Julian Oscillation 

NAMS North American Monsoon System 

NCDC National Climatic Data Center 

NCEP National Centers for Environmental Prediction 

NARR North American Regional Reanalysis 
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NNR NCEP-NCAR Reanalysis 

NOAA National Oceanic and Atmospheric Administration 

NWS National Weather Service 

PDO Pacific Decadal Oscillation 

R Pearson’s product-moment correlation coefficient 

R2   Coefficient of Determination 

RCM Regional Climate Model 

RCP Representative Concentration Pathways 

RDAS Regional Data Assimilation System 

RMSE   Root Mean Square Error 

SDB   Standard Deviation of Bias 

SON   September-October-November 

SST Sea Surface Temperature  

VAR Variation Analysis 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

I.1 Overview 

The North American Monsoon System (NAMS) plays an integral role in the 

livelihoods of communities within the regions of western Mexico and southwestern 

United States. The regional NAMS phenomenon provides up to 50-70% of the total 

rainfall within the southwest US and Mexico, feeding into economic and environmental 

resources including agricultural practices, water management, and fire season variability. 

As global temperatures continue to rise as a consequence of climate change, many 

stakeholders and populations depend on reliable projections regarding the future of these 

resources. Furthermore, profound socioeconomic effects can result from changes to the 

progression of the seasonal monsoon rains, underscoring the need for an accurate 

representation of the NAMS in, e.g., climate models. Both regional and global-scale 

climate models are commonly used to simulate the NAMS and its associated large-scale 

features. Many of these models in the monsoon region are sensitive to parameterizations 

such as the convective scheme and boundary layer treatment, which in turn have an 

effect on continental-scale simulations (Ropeleweski et al., 2005). Furthermore, the 

steep terrain in many parts of the monsoon-affected region is difficult to represent using 

dynamical models because of their coarse resolution (Adams and Comrie, 1997; 

Ropelewski et al., 2005; Vera et al., 2006). These limitations hinder key local processes 

from being simulated in global climate models (GCMs) including models’ coarse 
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resolution and individual model biases. However, large-scale atmospheric features and 

their associated teleconnections with oceanic influences are well-captured in GCMs 

(Polade et al., 2013) and make them ideal for investigating future climate changes. 

 The NAMS exhibits both inter- and intra-seasonal variability and is affected by 

sea surface temperature (SST) anomalies, land surface conditions such as soil moisture 

and antecedent snowpack, the position and strength of tropical convergence zones, water 

vapor transport, and large-scale circulations (Vera et al., 2006). Seager et al. (2007) have 

shown a consensus between future model projections of a more arid climate in the 

southwestern United State and thus a reduction in precipitation within the mean 

monsoon season. Enhanced spring convective barriers can shift the monsoon season due 

to a reduction in early seasonal rainfall, followed by increased precipitation late in the 

monsoon season and a delayed demise (Cook and Seager, 2013). The convective barriers 

that inhibit convection and cloud formation in the spring and early summer are brought 

on by remote forcing based on tropospheric stability, and local forcing based on low-

level and surface moisture (Seth et al., 2011; Cook and Seager, 2013). Coarse model 

resolution still remains an issue in simulating NAMS timing and seasonal precipitation 

distribution (Cook and Seager, 2013).  

 Monsoon research and applications are key for many stakeholders within this 

highly complex and multicultural/binational region. Seasonal forecasts of the onset and 

strength of the monsoon on an intra- and inter-annual basis increases society’s ability to 

cope with climate variability and tailor adaptive practices for their own needs (Ray et al. 

2006). Providing plausible predictions of future monsoon changes will allow 
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stakeholders and decision makers to use climate information to plan effectively within 

the numerous economic sectors, thereby providing support to vulnerable populations.  

 

I.2 Seasonal Development 

The NAMS, also known as the Arizona monsoon and Mexican monsoon, is a 

large-scale summertime precipitation phenomenon that is characterized by its wind 

reversals and distinct rainfall over the southwestern United States and western Mexico. 

The NAMS shares most of the basic characteristics of the Asian monsoon, but not to the 

same degree of intensity and longevity. The differential heating between the North 

American landmass and adjacent oceans leads to the associated seasonal wind shifts that 

switch from dry westerly winds aloft, to moist southeasterly winds. Through these 

changes in circulation patterns, the inflow of moisture into the southwest US gives way 

to dramatic increases in convective activity (Crimmins, 2006). Along with the land-sea 

thermal gradients, the development of a surface low-pressure system is accompanied by 

the development of an upper-level monsoon anticyclone, thus giving way to the seasonal 

precipitation (Ropelewski et al., 2005). Furthermore, the seasonal rainfall is coupled 

with the northward progression of the Inter-Tropical Convergence Zone (ITZC), with 

most of the total rain falling over oceans rather than land. Precipitation has been 

associated with large values of deep tropospheric heating and a tropical-type 

thermodynamic balance between diabatic heating and adiabatic cooling, which is 

controlled by static stability in the upper-half of the troposphere (Barlow et al., 1997). 

The NAMS provides precipitation to numerous regions within western Mexico and the 
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southwest United States, with different areas receiving a high percentage of their annual 

rainfall from the NAMS. For example, 40% of the annual precipitation in southern 

Arizona/New Mexico, 50% in western Mexico, and some areas in Mexico receive up to 

70% of their annual precipitation during the monsoon season (Ropelewski et al., 2005). 

Large uplands such as the Colorado Plateau, Sierra Madre Occidental, and mountain 

ranges through Nevada, southwestern Arizona, and northwestern Sonora, play a key role 

in monsoonal deep convection and channeling moisture into regions of the southwest 

(Adams and Comrie, 1997). Furthermore, the peninsular ranges such as on Baja 

California, and the Sierra Nevada Range, play an important climatological role for the 

interior deserts, limiting penetration of marine moisture from the Pacific Ocean (Adams 

and Comrie, 1997). Also, the lower Colorado River valley and surrounding low desert 

areas play a critical role in the formation of the thermal low during the summer months 

(Adams and Comrie, 1997). Oceanic regions including the eastern Pacific Ocean, Gulf 

of California (GoC), and Gulf of Mexico (GoM), are critical moisture sources for the 

NAMS. Low-level moisture advection is primarily derived from the GoC and eastern 

Pacific, while mid- to upper-level moisture has been shown to originate from the GoM. 

Also, moisture recycling via evapotranspiration from the green-up in the Sierra Madre 

Occidental and anomalous wet conditions in the Great Plains during the early monsoon 

period can represent moisture sources. Furthermore, the spatiotemporal progression of 

the monsoon is driven by continental-scale interactions of the Pacific high pressure and 

Bermuda high-pressure systems (Carleton, 1987; Crimmins, 2006). 
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Prior to the onset of the NAMS, upper-level flow is predominantly zonal. 

Furthermore, enhanced low-level jet (LLJ)-related precipitation over the Great Plains is 

associated with suppressed rainfall over the desert regions of the southwest US and 

along the east coast (Higgins et al., 1997). The seasonal onset of the monsoon begins in 

late May/early June, as heavy precipitation spreads northward along the Sierra Madre 

Occidental. During this time, the zonal flow transitions to a monsoon-like anticyclone, 

centered near 15°N just to the south of Mexico (Ropelewski et al., 2005). Increased 

precipitation in northwest Mexico coincides with increased vertical transport of moisture 

by convection (Douglas et al., 1993). During this time, the subtropical high pressure is 

too far south, inhibiting any moisture from entering the southwest US. The abrupt 

change in large amounts of precipitation in the southwest US during the months of July 

to August is accompanied with the out-of-phase relationship of decreased precipitation 

over the Great Plains and enhanced rainfall on the east coast (Higgins et al., 1997). The 

rainfall characteristics over the Great Plains are associated with upper-tropospheric 

convergence as a result of the strengthened and expanded middle- and upper-

tropospheric monsoon high, while the east coast’s increased rainfall is due to a weak 

trough (Higgins et al., 1997). The increased precipitation over the southwest is 

associated with the evolution of an anticyclone at the jet stream level, a thermally 

induced trough over the desert regions, the continued displacement of the semi-

permanent high-pressure systems, the formation of southerly low-level jets over the 

GoC, and the formation of the Arizona monsoon boundary (Vera et al., 2006). Changes 

in the environment’s thermodynamic potential for convection during this time, which is 
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key in understanding the mechanisms behind deep convection in the monsoon region, 

are primarily driven by increases in low-level moisture since surface temperatures are 

already high (Barlow et al., 1997). Furthermore, vertical velocity fields have shown 

ascent over regions of monsoonal and coastal precipitation, as well as over the North 

American Plateau, with descent occurring over the west coast and central US during this 

time (Barlow et al., 1997). Also, moisture transport onto the landmass is accomplished 

by boundary layer flow from the GoC and the middle troposphere via southeasterly flow 

from the GoM (Vera et al., 2006). During the months of July to August, the NAMS has 

reached the mature phase and experiences the bulk of its monsoonal rainfall. The 

anticyclonic feature has strengthened with a strong ridge to the north, which dominates 

the atmospheric circulation pattern from the Pacific Coast eastward through the GoM 

(Ropelewski et al., 2005). By mid-September to October, the monsoon has reached its 

decay phase, with the ridge over the southwest U.S. weakening considerably due to the 

retreat of the subtropical high. Along with the weakened monsoonal high, the region 

begins to experience decreases in precipitation and a shift in precipitation events 

stemming from synoptic-scale frontal systems rather than localized convective instability 

(Vera et al., 2006). The official National Weather Service (NWS) season is a fixed date-

range from June 15th to September 30th.  

 

I.3 Causes of Variability 

The NAMS precipitation has continuously varied due to several dynamical 

mechanisms that have an impact on different time scales (inter-annual and intra-
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seasonal). One of the most noted mechanisms behind the variability stems from episodic 

moist tropical Pacific surge events termed gulf surges, which are channeled from the 

GoC into the southwest United States as a result of a low-level atmospheric pressure 

gradient (Adams and Comrie, 1997; Favors and Abatzoglou, 2012; Ropelewski et al., 

2006; Zehnder, 2004). The pressure gradient that is driven by the thermal equilibrium 

between the tropical Pacific and the GoC becomes disrupted, primarily due to a moist air 

mass at the mouth of the gulf (Adams and Comrie, 1997). Furthermore, the southerly or 

southeasterly flow is accompanied by a rise in dew point, cooling, and a general increase 

in low cloud and convective activity. This destabilization of the boundary layer over the 

low elevation regions of Arizona promotes the development of deep convection 

(Zehnder, 2004). The GoC, confined between mountain ranges to the west and east, is 

able to channel moisture into low elevation regions in the desert southwest. The 

mechanism behind the initiation of a major gulf surge has been hypothesized to stem 

from the passage of easterly waves or Pacific hurricanes at the mouth of the GoC. Minor 

surges have been shown to occur from the passage of an easterly wave without the 

preceding upper-level trough (as seen in major surges), the passage of a mesoscale 

convective complex passing from the landmass onto the gulf, or backdoor cold fronts 

approaching from the north/northeast instead of from the typical west/northwest 

direction (Adams and Comrie, 1997). Gulf surges are generally confined below 700hPa 

and with associated wind speeds as high as 20 m/s at the 850 hPa level (Zehnder, 2004). 

Although past research has extensively investigated gulf surge events, the exact 

dynamics are still unknown. It is generally thought that gulf surges are some type of 
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coastally trapped disturbance, but a dynamical explanation of gulf surges is still unclear 

(Newman and Johnson, 2013; Zehnder, 2004).   

On a daily basis, the convective maximum closely aligns with the orography of 

the region, e.g., mountain ranges. The daily maximum varies depending on the time of 

day, with convection initiated during the morning hours and transported from the GoC to 

the slopes of the Sierra Madre Occidental. Throughout the midday hours, convection is 

usually initiated along the western slopes and high ridges of Sierra Madre Occidental, 

while during the evening/nighttime hours the flow reverses out into the GoC from the 

Sierra Madre Occidental slopes. On an intra-seasonal basis, the NAMS precipitation is 

largely influenced by the location of the subtropical ridge which controls convective 

activity. If there is a southerly shift of the subtropical ridge, locations in the southwest 

are characterized by a strong drying effect, while a northerly shift is associated with 

increased moisture flow from the south (Adams and Comrie, 1997). The Madden-Julian 

Oscillation (MJO), a 30-60 day oscillation associated with velocity potential anomalies 

in the Pacific, has the ability to influence the NAMS by amplifying easterly waves, 

which are key in gulf surge initiation (Lorenz and Hartmann, 2006). The relative 

location of the upper-level monsoon anticyclone in the midlatitudes at the time of the 

gulf surge affects the response to the surge in the southwest United States (Higgins et al., 

2004). Wetter-than-normal conditions occur in the southwest when the ridge axis is 

located to the east of the region, while drier-than-normal conditions are evident when the 

ridge axis is located to the west (Vera et al., 2006). The effects of the MJO seem to be 

region-limited, as positive zonal wind anomalies in the eastern tropical Pacific lead to 



 

 9 

above-normal precipitation in northwest Mexico and Arizona (Lorenz and Hartmann, 

2006). This connection can be regionally limited because these areas are affected by gulf 

surges, which is not the case over New Mexico. Furthermore, potential predictability of 

NAMS precipitation is improved when the El Niño-Southern Oscillation (ENSO) and 

MJO phases are known, since they are linked to adjustments of the precipitation patterns 

throughout the NAMS region.  

On an inter-annual basis, influences of SSTs anomalies, land surface conditions, 

position and strength of the tropical convergence zones, water vapor transport, and large-

scale circulation have been explored (Adams and Comrie, 1997; Barlow et al., 1998; 

Ropelewski et al., 2006; Vera et al., 2006). SSTs are an important feature causing 

differential sensible heating that produces sea level pressure gradients (Barlow et al., 

1998). Around 80% of rainfall within the southwest US occurs after SSTs in the GoC 

reach 28.5°C or higher. Remote SST anomalies in the equatorial Pacific influence the 

monsoon through an anomalously dry monsoon season related to El Niño conditions, or 

an anomalously wet monsoon season throughout the core monsoon region in response to 

La Niña (Vera et al., 2006). This pattern is illustrated due to ENSO’s ability to modulate 

the monsoonal ridge. Furthermore, Pacific SSTs can influence the timing of the 

monsoon. Pacific wintertime SSTs impact summer monsoon conditions through 

variations in the Pacific jet. This jet impacts the west coast’s precipitation regime during 

the preceding winter, which in turn affects local land-based sources of memory, timing, 

and intensity of the monsoon (Higgins and Shi, 2000). Through this mechanism, early-

onset monsoon is related to negative North Pacific SST anomalies and positive 
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subtropical SST anomalies, with the opposite conditions leading to a late-onset monsoon 

(NOAA/NWS, 2004). Castro et al. (2001) investigated the relationship between NAMS 

and tropical and north Pacific SSTs, revealing a connection with the monsoonal ridge, 

monsoonal onset, and the distribution of precipitation. As revealed through observational 

analysis, the north and tropical Pacific affect regional teleconnection patterns (Castro et 

al., 2001). The north Pacific SSTs control the northeast/southwest displacement of the 

monsoon ridge or trough, while ENSO controls north-south displacements (Castro et al., 

2001). On a decadal scale, north Pacific SSTs are related to the Pacific Decadal 

Oscillation (PDO), which impacts precipitation conditions (drought vs. rainy 

conditions). Furthermore, the effects of remote SSTs on precipitation modulate the 

location of the subtropical ridge (large-scale circulation). The location of the ridge can 

inhibit moisture from entering the southwest US if its location is positioned too far south 

or west. The ridging and troughing that is influenced by SST anomalies gives way to the 

out-of-phase relationship between the Great Plains and southwest US. If the Great Plains 

region experiences anomalously wet conditions, the southwest US tends to experience 

dry conditions, and vice-versa.  

Land surface conditions provide a memory that may influence variations in the 

monsoon (NOAA/NWS, 2004). Different land surface characteristics, such as antecedent 

snowpack, soil moisture, and seasonal green-up, influence the monsoon system. 

Previous studies have shown anomalously deep snowpack can be associated with 

decreased summer rainfall in the southwest US (Notaro and Zarrin, 2011; Vera et al., 

2006). The snowpack-rainfall relationship exists due to solar energy being used for 
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snowmelt rather than atmospheric heating, as well as weakening the land-ocean thermal 

contrast. Previous modeling studies have shown that the monsoonal anticyclone is 

sensitive to the amount of soil moisture (NOAA/NWS, 2004). Furthermore, the 

monsoonal rainfall during the early summer in Mexico is accompanied by the rapid 

green up in vegetation along the slopes of the Sierra Madre Occidental, impacting 

surface temperatures and humidity (NOAA/NWS, 2004). The movement of the ITCZ 

has been shown to influence the precipitation regime of the NAMS. During El Niño 

events, the ITCZ shifts southward, resulting in an anomalously strong local meridional 

circulation and reduction in rainfall over Mexico. During La Niña events, the ITCZ 

shifts northward, resulting in a weakening of the local Hadley circulation, which 

increases NAMS precipitation (Vera et al., 2006). Furthermore, high SSTs can displace 

the ITCZ southward off the Mexican coast, while low SSTs weaken the convergence 

zone and displace it further north (NOAA/NWS, 2004). 

An important aspect of the NAMS is the moisture content that is derived from 

the GoC and GoM. However, a debate still remains on how much each body of water 

contributes to the total NAMS moisture. Thermal gradients, driven by SSTs in the GoC, 

influence the formation of lower level jet episodes such as gulf surges. The Great Plains 

jet, weakened due to the continental-scale circulation features, is pushed into Mexico 

and the southwest as another source of mid- and upper-level moisture (NOAA/NWS, 

2004).  

Numerous influences, from remote SSTs to continental-scale circulation patterns, 

have a range of impacts on the precipitation regime of the NAMS. Profound 
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socioeconomic impacts, including water management practices, agricultural production, 

and timing of the fire season, can be affected by monsoonal variability as countless 

people are directly or indirectly dependent on the seasonal rains. With future climate 

changes and increases in greenhouse gases, characteristics of the NAMS are expected to 

change in a warming world, making it imperative to skillfully represent the monsoon 

variability.  

 

I.4 Modeling Approaches 

Representing the NAMS, which relies on correctly simulating intricate coupling 

of the atmosphere-ocean-land system, remains a challenge for state-of-the-art GCMs, 

increasing uncertainty in monsoon projections for the 21st century in part because of 

GCMs’ coarse resolution. Many of these state-of-the-art GCMs are fully coupled (sea, 

ice, land, atmosphere components) and represent past and present climate reasonably 

well (Geil et al., 2013; Maloney et al., 2013; Seager et al., 2007). Furthermore, GCMs 

have been extensively used to investigate numerous climate phenomena at different 

temporal and spatial scales. In modeling the NAMS, efforts continue to integrate correct 

parameterizations and increased spatial resolution to better capture the key dynamics of 

the system. Although GCMs have been able to capture the general progression of the 

NAMS and its associated continental-scale features, limitations such as spatial resolution 

inhibit regional to local scale projections of precipitation. Many dynamical models are 

limited by different features of the NAMS, including realistic seasonal evolution and 

spatial distribution of rainfall due to the orography within the monsoon region. The 
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interaction of steep orography, diurnal land-ocean circulations, and atmospheric 

buoyancy are difficult to simulate due to the inadequate deep convection schemes in 

models (Ropelewski et al., 2006). Furthermore, precipitation rates in the core region of 

the NAMS have been shown to be sensitive to the choice of convective parameterization 

and boundary layer treatment, land surface treatment, and SSTs in the GoC (Ropelewski 

et al., 2006). That, in turn, has an effect on the continental-scale features, which can be 

sensitive to the precipitation rates in dynamical models. Also, the diurnal cycle and its 

associated processes and feedbacks are poorly represented in models, stemming from the 

limited resolution and their representation of high topography (Ropelewski et al., 2006; 

Vera et al., 2006).  

The representation of key topographic features due to coarse spatial resolution is 

one of the limitations in global models. Regional climate models (RCMs), however, 

have a better depiction of monsoon precipitation because of a more realistic 

representation of diurnal cycle convection (Castro et al., 2012). Castro et al. (2012) 

identified shortcomings within GCMs since two conditions must be met in simulating 

the NAMS: mesoscale physical processes that lead to precipitation, and reasonable 

representation of the climatology and inter-annual variability of continental-scale 

circulation. GCMs are limited in representing the diurnal cycle of convection due to the 

poor representation of terrain forcing, mesoscale features, land-atmosphere coupling, 

and parameterized convective rainfall (Castro et al., 2012). Although RCMs provide a 

better representation of the NAMS, they remain computationally expensive to run due to 
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their fine spatial resolution and number of ensemble runs. GCMs provide a greater 

number of runs due to their coarser resolutions.   

As part of the fifth phase of the Coupled Model Intercomparison Project 

(CMIP5), over a dozen international climate modeling groups have examined long-term 

simulations of the 20th and 21st century using representative concentration pathways 

(RCPs) for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 

Report (AR5). The Fourth Assessment Report (AR4) of the IPCC used 23 coupled 

ocean-atmosphere models, based on the CMIP phase 3, which showed that most GCMs 

were able to produce the monsoonal rain belt and its northward progression, but 

overestimated seasonal precipitation, especially during the monsoonal retreat in boreal 

fall (Cavazos and Arriaga-Ramirez, 2012; Lin et al., 2008). Recent focus has been on the 

CMIP5 GCMs and their ability to simulate the NAMS. Geil et al. (2013) found no 

significant improvement in the simulation of the magnitude of the mean annual cycle of 

monthly precipitation, but the timing of seasonal changes has improved, with 27% of 

CMIP5 models having a zero phase lag versus the CMIP3 models. However, the CMIP5 

multimodel mean annual cycle has a wet bias with a late monsoonal decay. On a decadal 

basis, Langford et al. (2014) found climatological monsoon precipitation in CMIP5 

models to be higher than in atmospheric reanalysis products. Higher-resolution models 

were able to perform better due to improved orographic representation on the west coast 

of Mexico. Furthermore, Langford et al. (2014) found that the small fraction of variance 

(20%) accounted for by tropical and North Pacific SSTs limits the predictability of 

decadal precipitation. They hypothesize that the remainder of the decadal variability is 



 

 15 

due to land-atmosphere feedbacks in regions where SST forcing is limited (farther 

inland) or because of anomalies generated by internal atmospheric variability. Also, they 

suggest future studies should focus on land-atmosphere feedbacks involving soil 

moisture and aerosol forcing due to the absence of a connection between low-frequency 

precipitation and SST anomalies.  

Using CMIP5 models, future projections of the southwest US produce a greater 

drying trend in the twenty-first century and a transition to a more arid climate is already 

underway (Langford et al., 2014; Seager et al., 2007). Furthermore, Seth et al. (2011) 

found the redistribution of precipitation from spring to summer can be driven by two 

mechanisms that lead to enhanced convective barriers. This forcing includes a local 

mechanism, where reduced evapotranspiration decreases surface moisture availability, 

and a remote mechanism, where greenhouse gas (GHG)-induced atmospheric warming 

increases tropospheric stability (Cook and Seager, 2013). Increases in tropospheric 

stability persist from winter into spring and are reinforced by a reduction in surface 

moisture conditions, suggesting both mechanisms are important (Seth et al., 2007). In 

terms of the NAMS, early season precipitation will decrease but is balanced by a change 

in late season precipitation increases. This decline in early precipitation is caused by 

increases in tropospheric stability forced by GHG warming in the troposphere (remote 

mechanism) and modulated by available moisture at the surface (local mechanism) 

(Cook and Seager, 2013). Once enough surface moisture is able to overcome the 

enhanced convective barrier, precipitation begins to increase. However, total NAMS 

precipitation changes are small and largely insignificant (Cook and Seager, 2013). Cook 
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and Seager (2013) present shortcomings affecting their results due to model biases 

including a substantial positive precipitation bias, as well as a delay in the monsoon 

retreat.  

 

I.5 Objectives 

The focus of this thesis is to determine whether statistically downscaled GCMs 

are viable tools for assessments of the NAMS. Coarse-scale GCMs remain a viable tool 

to investigate present and future climate but are limited due to their orographic 

representation, limiting local scale analysis and impacting future adaptation practices.  

Statistical downscaling of GCM simulations represents a way to take advantage of the 

computational efficiency of GCMs, while still obtaining the finer-resolution output 

similar to that of RCMs. The purpose of this study is to determine whether this 

downscaled model output is able to accurately portray historical climate throughout the 

southwest United States and northern Mexico. This research will quantify the 

representation of temperature and precipitation characteristics over the monsoon-

affected region using CMIP5 downscaled model output for the 20th century.  

The specific objectives to address the overarching focus are: 

1) To evaluate two reanalysis systems in representing realistic observations over 

the NAMS region (Chapter II), and 

2) to assess simulated temperature and precipitation characteristics of 

downscaled CMIP5 GCMs against the reanalysis product identified in #1 

(Chapter III). 
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Temporally complete and highly resolved reanalysis products will be compared to in-situ 

observations in Chapter II to identify a reanalysis best suited for the subsequent model 

evaluation. The initial reanalysis assessment will illustrate the suitability of each 

reanalysis in quantifying the climate characteristics over the monsoon-affected region. 

Reanalysis products have been extensively utilized in previous studies including 

dynamical processes that cannot be ascertained by in-situ point-observations. Validation 

of the two reanalyses’ performance will also provide confidence for other users who 

apply these products in their own research. In Chapter III, statistically downscaled 

CMIP5 output will be assessed based on the better-suited reanalysis product identified in 

objective 1. Using downscaled CMIP5 model output will demonstrate the improvements, 

or limitations, in using statistical downscaling to assess temperature and precipitation 

characteristics related to the NAMS. As the need for future assessments of regional to 

local scale climate conditions continues to grow, downscaling methodologies for 

coarsely resolved GCMs have been introduced as a means for evaluating the climate 

system. This provides key information to, e.g., decision makers and water managers in 

the southwest US and Mexico to better prepare for future climate change impacts, 

including mitigation and adaptation practices.  
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CHAPTER II 

ASSESSMENT OF REANALYSIS PRODUCTS AGAINST GHCN OBSERVATIONS 

 

II.1 Overview 

Previous studies have utilized reanalysis products to investigate the state of the 

North American Monsoon System (NAMS), as well as for validation of general 

circulation models (GCMs). Reanalyses provide spatially and temporally complete 

output, whereas station observations are limited due to their inconsistencies and limited 

point observations. We assess the ability of two reanalyses, NARR and ERA-I, in 

representing air temperature and total precipitation in comparison to in-situ observations 

(GHCN) over the southwest United States and western Mexico from 1980 to 2010. 

Results demonstrate similar small errors in air temperature for both reanalysis products, 

based on a suite of goodness of fit metrics. Reanalysis precipitation yields greater 

disagreement with observations, with the greatest biases over the four corners region and 

southwestern Mexico. However, correlation coefficients and index of agreement, on an 

annual and seasonal basis, reveal NARR to have reduced differences in comparison to 

ERA-I. Grid cells with best and worst case differences between reanalyses and 

observations illustrate a better precipitation agreement with NARR in terms of 

magnitude and variability. Elevation differences are evident between both reanalyses and 

observed elevations, with topographic variability accounting for 24% and 69% of the 

variance in seasonal temperature bias for NARR and ERA-I, respectively. This analysis 
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demonstrates that NARR has smaller errors compared to ERA-I and will therefore be 

more suitable for the subsequent model evaluation.  

 

II.2 Introduction 

 Previous studies have extensively used reanalysis products for climate 

monitoring, as they provide a dynamically consistent estimate of the climate state at 

different temporal and spatial scales (Dee et al., 2014). Many reanalysis efforts vary in 

terms of input variables (satellite observations, meteorological stations, aircraft 

measurements, ship reports, etc.), which are merged with state-of-the-art ocean-

atmosphere-sea ice models to create a best estimate of the present atmosphere and land 

conditions (Burke et al., 2011). Furthermore, reanalysis products, sometimes spanning 

horizontally across the entire globe and vertically into the stratosphere, are used for 

numerous applications including driving land surface models and as boundary conditions 

for regional climate models (e.g., Brunke et al., 2011). The European Centre for 

Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-I; Dee et al., 

2011) and the National Centers for Environmental Prediction (NCEP) North American 

Regional Reanalysis (NARR; Mesinger et al., 2005) are two reanalyses evaluated in this 

study because they both have high spatial resolution in comparison to other similar 

products. NARR, an extension of the global low-resolution NCEP-NCAR Reanalysis 

(NNR), is a unique real-time high-resolution dataset, spanning from 1979 to the present, 

which uses detailed precipitation observations as one of its assimilated data products 

(Mesinger et al., 2005). Although near surface temperature is not assimilated into 
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NARR, it has been shown to produce a better temperature representation than NNR 

(Mesinger et al., 2005). 

 NARR uses the NCEP Eta Model (32 km/45 layer resolution) and the Regional 

Data Assimilation System, a recent version of the Noah land surface model, in addition 

to numerous observational datasets to provide a much improved analysis of land 

hydrology and land-atmosphere interactions (Mesinger et al., 2005). The ERA-I 

represents a global, high-resolution dataset that is spatially and temporally complete (i.e., 

1979 to the present), with an improved atmospheric model and assimilation system 

relative to the predecessor 40-year reanalysis, ERA-40 (Dee et al., 2013). ERA-I is based 

on a 2006 version of the ECMWF Integrated Forecast Model with a spectral resolution 

of T255 (~80 km), 60 vertical levels, and a model top at 0.1 hPa (~64 km; Dee et al., 

2014). The core component of the ERA-I data assimilation is based on the 12-hourly 

four-dimensional variation analysis with adaptive estimation of biases in satellite 

radiance data (Dee et al., 2011). ERA-I precipitation is forecasted separately, simulating 

stratiform precipitation from the prognostic parameterization of clouds and convective 

precipitation from the parameterization of convection solely (Bechtold et al., 2004; de 

Leeuw et al., 2014; Tompkins et al., 2007). Although forecasted separately, both 

parameterizations are linked by detrainment of convective clouds (de Leeuw et al., 

2014). NARR produces precipitation through the assimilation of data from rain gauge 

observations, the Climate Prediction Center Merged Analysis of Precipitation, and the 

Parameter-elevation Regressions on Independent Slopes Model using numerous 

weighting schemes (Dee et al., 2011; Mesinger et al., 2005). Despite being directly 
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assimilated, precipitation is difficult to simulate within a reanalysis system for it is 

highly dependent on the model itself (Janowiak et al., 1998).  

 Temperature and precipitation variables are key in monsoonal processes and are 

largely associated with the term ‘monsoon.’ Previous analyses have utilized reanalysis 

products to investigate dynamical processes related to the NAMS, which impact 

precipitation characteristics over the southwest U.S. and western Mexico. Station 

observations only provide surface based data, whereas reanalysis offers a top-down 

overview of the state of the climate. Reanalyses, including ERA-I and NARR, have been 

used to investigate historical changes of the NAMS, as well as validating general 

circulation models to identify biases (Cook and Seager, 2013; Geil et al., 2013; Kumar 

and Merwade, 2011; Torrez-Alvarez et al., 2014). Furthermore, Lin et al. (2014) have 

demonstrated the ability of ERA-I to represent climatological spatial patterns and 

interannual variability in a multi-reanalysis investigation of global monsoons, including 

the NAMS. However, the study uses an index to investigate the mean monsoon 

precipitation variations over the Northern Hemisphere. 

The goal of this portion of the study is to evaluate the ability of the NARR and 

ERA-I systems to realistically represent in situ observations. Although biases and errors 

have been recognized within reanalysis systems, observations also have shortcomings, as 

they are temporally sparse, spatially limited, and many only represent point-

measurements. The goal of this objective is to provide a quantitative assessment of 

NARR and ERA-I in capturing the variability of station-based observations. The 

agreement will be assessed using a suite of statistical measures between reanalysis 
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products and observations. Conducting this comparison for monsoon-relevant surface 

variables (i.e., temperature and precipitation) within the NAMS region will allow us to 

assess which reanalysis is better-suited to capturing monsoonal processes. 

 

II.3 Data and Methodology 

 

II.3.1 Study Region 

 The core NAMS region, following Cook and Seager’s (2013) definition, is 

112°W-102°W to 18°N-33°N (Figure 2.1). We use this same area as our NAMS core 

region, as well as the extended region of 125°W-96°W, 15°N-42°N, to encompass a 

similar region used within the North American Monsoon Experiment (NAME) to 

investigate intraseasonal variability (Higgins, 2000). This expanded area will thus 

facilitate the understanding of larger-scale variability that impacts the NAMS.  

 

 

 

 

Figure 2.1. Domain of the NAMS core region (black dashed line) as identified by Cook 

and Seager (2013). The black solid box shows the extended study region also utilized for 

this portion of the study. 
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II.3.2 Observational and Reanalysis Data 

To validate the reanalysis products, monthly observational temperature and 

precipitation data were obtained from the National Oceanic and Atmospheric 

Administration (NOAA)/ National Center for Environmental Information (NCEI) 

GHCN. GHCN version 2 represents historical precipitation data derived from numerous 

sources, including up to 20,000 stations globally (Lawrimore et al., 2011). The historical 

precipitation records underwent various quality control tests including visual inspection 

of the stations themselves, and quantitative controls including the cumulative sum test, 

an analogous test that looks for changes in the variance, and determination of station 

outliers using a variety of nonparametric statistics (Peterson and Vose, 1997). 

Operational climate monitoring for GHCN temperature has transitioned from version 2 

to 3. GHCN version 3, an updated historical temperature record that uses version 2 as its 

platform, underwent new quality control processes and advanced techniques for 

removing data inhomogeneities (Menne and Williams, 2009). These new quality 

controls include checks for spatial inconsistencies, climatological outliers, series 

duplications, as well as automated pairwise comparisons for homogeneity adjustments 

(Lawrimore et al., 2011; Menne and Williams, 2009). Here, monthly mean total 

precipitation amounts are used from the GHCN version 2 for 1980 to 2010, while 

monthly mean air temperature measurements are obtained from version 3, derived from 

the daily maximum and minimum temperatures, for 1980 to 2010.  

As mentioned in the prior section, ERA-I and NARR data will be compared 

against these GHCN observations. 2-meter air temperatures were obtained from the 
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monthly means of daily means from the ERA-Interim dataset, while total precipitation 

was procured from synoptic monthly means, both at a 0.75° spatial resolution from 1980 

to 2010. 2-meter monthly air temperature and monthly average total precipitation at the 

surface were obtained from the NARR dataset at a 0.3° resolution.  

 

II.3.3 Methodology 

 Evaluation of the two reanalysis products is based on a suite of statistical 

methods to investigate the agreement between GHCN observations and reanalysis 

temperature and precipitation. Because the reanalysis products have different spatial 

resolutions, they were first regridded to a uniform 1°×1° resolution using a bilinear 

interpolation scheme, which is a common regridding technique (e.g., Chen and 

Frauenfeld, 2014). Observations in Mexico are sparse, whereas the U.S. contains a 

greater amount. GHCN observations were also aggregated to a 1°×1° resolution 

following a similar analysis as Ma et al. (2009), whereby station observations were 

averaged within 1°×1° grid cells for comparison with the reanalysis products. Once 

averaged, grid cells with 20 or more years of data and at least three stations from 1980 to 

2010 were retained. Although a higher number of stations per grid cell would be 

desirable, a higher threshold would severely limit the number of grid cells available for 

our study. 

 To quantify the ability of reanalysis products to capture temperature and 

precipitation variability, different goodness-of-fit (GoF) measures were used. The 

evaluations were performed on two different temporal scales: annual, based on the 

calendar year, and seasonal, focusing on the monsoon months of June-July-August-
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September (JJAS). The goodness-of-fit measures for this study include Pearson’s 

product-moment correlation coefficient (R), coefficient of determination (R2), root mean 

square error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), 

standard deviation of bias (SDB), and index of agreement (d). Multiple metrics are used 

to investigate the agreement between reanalysis and observational products because 

individual metrics have their own biases and assumptions. Where applicable, statistical 

significance is assessed using the 90% confidence interval similar to previous 

assessments of NARR (Fall et al., 2010). Finally, elevation differences between 

observations and the reanalyses were correlated with annual and seasonal temperature 

and precipitation biases to explore the dependence of the biases on topography. 

 The correlation coefficient can be thought of as a dimensionless quantity that 

provides an absolute measure of the relationship (direction and degree) between two 

variables (Bulmer, 1979). A coefficient of determination value quantifies the fraction of 

the total variance of one variable that can be accounted for by the other. The correlation 

based on these measures assumes two variables to be linear, but their degree of 

association will be underestimated if it is not (Bulmer, 1979). Another major limitation 

of correlation-based measures is their greater sensitivity to outlying values than to 

observations near the mean (Legates and Davis, 1997). Thus, R and R2 potentially 

provide a biased estimate of the agreement between the two variables. RMSE and MAE 

are metrics used to quantify the variations in errors between two sets of forecasts. Lower 

RMSE and MAE values indicate better agreement, whereas, greater differences in 

RMSE and MAE are indicative of greater variance in the individual errors. RMSE 
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values will be larger or equal to MAE because RMSE penalizes large errors while the 

MAE gives the same weight to all errors (Chai and Draxler, 2014). That, in turn, biases 

RMSE, as it is not a reliable measure of average error (Willmott and Matsuura, 2005). 

Furthermore, biases can be either positive or negative, and can cancel each other when 

summed (Ma et al., 2009). MAE takes the sum of the magnitudes (absolute values) of 

the errors and divides the total error by the number of observations, capturing the 

average magnitude error (Willmot and Matsuura, 2005). MAPE is another metric used to 

capture a forecast error, but can be biased if extreme values are present (zeros or near-

zeros). Standard deviation expresses the extent to which a certain variable departs from 

the mean, as well as measures the random errors due to uncertainty in initial and 

boundary conditions or observations. SDB is computed both spatially and temporally 

between the station observations and reanalysis products, as in Ma et al. (2009). Index of 

agreement (d), developed by Willmott (1981), is a metric that is much less sensitive to 

the shape of the error-frequency distribution and, as a consequence, to errors 

concentrated in outliers (Legates and McCabe, 1999; Willmott et al., 2012). Values 

range from 0.0 to 1.0 with greater values signifying better agreement between reanalysis 

and observations. A disadvantage of the index of agreement is the assumption of error-

free observations when comparing to model-based products (Ji and Gallo, 2006).  
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II.4 Results 

 

II.4.1 Goodness-of-fit Measurements 

 

 

 

Annual  R2 RMSE MAE MAPE SDB d 

Temperature NARR 0.82 9.89 8.23 64 2.35 0.58 

 ERA-I 0.79 7.90 6.42 50 2.15 0.64 

Precipitation NARR 0.006 38.04 31.48 61 4.62 0.35 

 ERA-I 0.001 37.62 30.80 59 4.65 0.42 

        

Seasonal  R2 RMSE MAE MAPE SDB d 

Temperature NARR 0.18 2.26 1.74 8 1.21 0.54 

 ERA-I 0.13 1.88 1.66 7 0.94 0.51 

Precipitation NARR 0.008 34.01 28.48 55 4.32 0.36 

 ERA-I 0.005 30.58 25.72 50 4.07 0.39 

 

Table 2.1.  Goodness-of-fit metrics depicting the association of reanalysis temperature 

and precipitation variables against GHCN observations, averaged over the monsoon 

domain on an annual and seasonal basis. 

 

 

 

 Mean GoF measurements over the monsoon domain are shown in Table 2.1. In 

general, the statistical metrics reveal ERA-I to have a slightly greater agreement relative 

to NARR for temperature and precipitation on an annual basis. In contrast, GoF seasonal 

values depict slightly higher errors for ERA-I temperature compared to NARR, while 

precipitation remains in better agreement with ERA-I. On an annual basis (mean of all 

grid cells), R2 shows ERA-I temperature to have a somewhat greater association with 

observations in comparison to NARR. A weak precipitation relationship is evident 

between both reanalysis products and GHCN, with NARR having a higher R2 value. On 
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a seasonal basis, ERA-I temperature continues to have a higher relationship with 

observations, but is statistically insignificant, whereas NARR demonstrates a slightly 

lower significant relationship. However, R2 values for annual ERA-I and NARR 

precipitation and seasonal ERA-I temperature and precipitation failed to pass the 90% 

significance interval, showing no association.  

 RMSE values indicate similar relationships, with lower errors for ERA-I 

temperature and precipitation on an annual basis, but greater disagreement for 

temperature seasonally. NARR RMSE values for temperature illustrate a decrease in 

error from its annual and seasonal results. MAE demonstrates a similar relationship for 

temperature and precipitation on an annual basis. MAPE values show that NARR and 

ERA-I seasonal precipitation (NARR = 180%; ERA-I = 187%), as well as annual 

temperature (NARR = 109%; ERA-I = 102%), poorly simulate the observations. On a 

seasonal basis, NARR temperature and precipitation MAPE depict lower errors when 

compared to ERA-I. Annual and seasonal SDB depicts ERA-I temperature and 

precipitation to align more closely with GHCN observations. 

 On an annual basis, index of agreement (d) reveals a higher temperature 

association between ERA-I and observations, while the opposite is true for precipitation 

(NARR = 0.42; ERA-I = 0.38). On a seasonal basis, similar index of agreement values 

are observed for both reanalysis products, with NARR having a higher association for 

temperature (NARR = 0.42; ERA-I = 0.39). In general, GoF values depict contrasting 

results for the reanalysis products in comparison to GHCN observations. This analysis 

was based on grid cells averaged over the entire monsoon domain, which can be skewed 
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by individual grid cell outliers. To better capture the spatial variability of the 

relationships, individual grid cell statistics are explored next.  

 Figure 2.2 shows significant annual grid cell correlations between reanalysis and 

observed precipitation and temperature. Annual temperature correlations reveal a similar 

spatial pattern for both NARR and ERA-I: strong agreement over the southwest U.S., 

indicating good agreement with GHCN in capturing temperature interannual variability 

(Figure 2.2). In contrast, NARR precipitation illustrates a stronger grid cell correlation 

with GHCN observations while ERA-I simulates a higher significant negative 

correlation, demonstrating ERA-I fails to capture the temporal variability in certain grid 

cells (Figure 2.2). No significant correlations over Mexico demonstrate the lack of 

observations, or the inability of reanalyses to simulate an accurate signal over the steep 

terrain in this area.  

 

 

 

 
Figure 2.2. Statistically significant annual grid cell correlation coefficients for 

temperature (left) and precipitation (right) for NARR (a) and ERA-I (b) against GHCN 

station observations.  

 

 

a)
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Figure 2.2 Continued. Statistically significant annual grid cell correlation coefficients 

for temperature (left) and precipitation (right) for NARR (a) and ERA-I (b) against 

GHCN station observations.  

 

 

 

 Individual grid cells of annual RMSE values for NARR and ERA-I are shown in 

Figure 2.3. A similar RMSE temperature spatial pattern is revealed across the southwest 

U.S. A high disagreement is observed in Utah and Colorado, with certain grid cells 

exceeding 20°C errors for both products. Many of the grid cells’ RMSE values for 

temperature are within 2-6°C, but are skewed due to the higher disagreement in complex 

terrain as shown in the domain-averaged RMSE temperature mean in Table 2.1. Spatial 

RMSE patterns for precipitation are similar in both reanalyses. However, NARR 

precipitation RMSE (mm/month) shows greater errors over Colorado in comparison to 

ERA-I. In general, precipitation errors in both products are high, ranging between 75 to 

100 mm/month.  

b)
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Figure 2.3. Annual temperature (left; °C) and precipitation (right; mm/month) RMSE 

for NARR (a) and ERA-I (b).  

 

 

 

 MAE reveals a similar pattern of errors as RMSE, including high temperature 

errors throughout the four corners region (not shown, Appendix 1). Precipitation MAE 

demonstrates a similar error over the Utah region for NARR (Figure 2.3), as well a 

reduced error in ERA-I within that same region (Appendix 1). MAE results further 

support our initial findings for the precipitation RMSE, showing observed precipitation 

to be a difficult variable to accurately capture in both reanalyses. To further quantify the 

distribution of errors, temperature and precipitation MAPE were assessed (Figure 2.4). 

a)

) 

b)
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The general distribution of temperature MAPE again identifies high values over the four 

corners region, exceeding 100% in both products. Precipitation error in NARR exceeds 

100% over the four corners region, while the error is reduced in ERA-I.  

 

 

 

 

 

Figure 2.4. Annual temperature (left; °C) and precipitation (right; mm/month) MAPE 

for NARR (a) and ERA-I (b).  

 

 

 

 SDB plots for temperature and precipitation show a similar bias pattern in both 

reanalysis products when compared to previous analyses (Appendix 1). Spatial patterns 

of temperature illustrate a large bias in the four corners region, extending into Oklahoma 

a)

) 

b)
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and Kansas. Precipitation patterns demonstrate better performance in ERA-I over the 

four corners region when compared to NARR.   

 Annual index of agreement (d) for temperature shows a similar spatial 

agreement with GHCN observations for both products (Figure 2.5). A greater agreement 

is demonstrated throughout Texas and the Arizona/Mexico border, with reduced 

agreement northward. In contrast, NARR precipitation demonstrates a greater 

association with observations in comparison to ERA-I. Both products simulate similar 

maximum and minimum values (max = 0.75, min = 0) but show different spatial 

agreements. No relationship was exhibited over the complex terrain of western Mexico, 

illustrating the limitations with either the in-situ observations or the simulated climate 

characteristics in the reanalyses. 

 

 

 

 
Figure 2.5. Annual temperature (left; °C) and precipitation (right; mm/month) index of 

agreement for NARR (a) and ERA-I (b).  
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Figure 2.5 Continued. Annual temperature (left; °C) and precipitation (right; 

mm/month) index of agreement for NARR (a) and ERA-I (b).  

 

 

 

 Spatially, the seasonal results show lower agreement in contrast to annual 

temperature GoF measures such as correlation coefficients and index of agreement. 

Similarly to annual temperature correlations, seasonal temperature R-values illustrate a 

strong positive correlation over Texas, but weaken over the four corners region (Figure 

2.6). This result illustrates that the reanalyses tend to capture the annual temperatures 

more closely than during the summer months. Furthermore, weaker correlations over the 

four regions highlight the difficulties of accurately capturing climate conditions over 

complex terrain. However, as both products do not assimilate temperature, our 

correlation results provide confidence in the performance of the reanlyses. Seasonal 

NARR precipitation patterns demonstrate a positive correlation over the four corners 

region, whereas ERA-I illustrates both weak positive and negative correlations. 

Precipitation correlations demonstrate the improved representation in NARR as it 

assimilates precipitation from numerous sources, while ERA-I is model dependent. 

b)

) 



 

 35 

 

  

Figure 2.6. Statistically significant seasonal grid cell correlation coefficients for 

temperature (left) and precipitation (right) for NARR (a) and ERA-I (b) with GHCN 

station observations. 

 

 

 

 Seasonal temperature RMSE at the grid cell level shows a better agreement 

between reanalyses and observations in comparison to annual RMSE values, especially 

over the four corners region (Figure 2.7). Low errors are seen throughout the southwest; 

however, errors in NARR are slightly smaller in comparison to ERA-I. In contrast, 

NARR precipitation RMSE at the grid cell level demonstrates greater disagreement over 

the four corners region in comparison to ERA-I. Similar spatial disagreements over 

Mexico are evident in both reanalysis. Previous analysis has identified ERA-I as an 

a)

) 

b)
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adequate product for reproducing the seasonal precipitation spatial distribution for global 

monsoons, but has been shown to do poorly over North America. This can be due to the 

zonal land-ocean and hemispheric thermal contrast (Lin et al., 2014).  

 

 

 

 

 
 Figure 2.7. Seasonal temperature (left; °C) and precipitation (right; mm/month) RMSE 

for NARR (a) and ERA-I (b).  

 

 

 

Similarly to seasonal temperature and precipitation RMSE, seasonal MAE spatial 

patterns depict a large error over the four corners region, with NARR precipitation 

simulating greater errors than ERA-I (Appendix 1). Both reanalyses demonstrate a large 

error over California for precipitation; an error only slightly captured by RMSE.  
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b)

) 



 

 37 

 

 

 Figure 2.8. Seasonal temperature (left; °C) and precipitation (right; mm/month) MAPE 

for NARR (a) and ERA-I (b) in percent.  

 

 

 

 MAPE for seasonal temperatures illustrate a lower error over the southwest U.S. 

in NARR and ERA-I; however, they both exceed 60% error over Colorado (Figure 2.8). 

Seasonal precipitation also demonstrates a large region of error exceeding 100% over 

Colorado, while ERA-I hovers around ~75% error. In both reanalyses, precipitation 

exceeds 100% error over the west coast, demonstrating difficulties in accurately 

simulating precipitation. Also, precipitation SDB illustrates a similar bias over the 

Colorado region, while spatial temperature patterns show a reduced seasonal bias in 

comparison to annual plots (Appendix 1). Seasonal temperature index of agreement 

a)

) 

b)
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illustrates a decreased error over the study region, but still shows NARR to have better 

agreement than ERA-I (e.g., Texas and four corners; Figure 2.9). Similarly, NARR 

precipitation index of agreement illustrates better agreement with GHCN observations 

over the four corners region and the Sierra Madre Occidental. However, the general 

variability in the index of agreement is similar in both products.  

 

 Figure 2.9. Seasonal index of agreement (d values) for temperature (left) and 

precipitation (right) for NARR (a) and ERA-I (b).  

 

 

 

II.4.2 Temporal Variability 

 To further assess the spatiotemporal capabilities of the reanalysis products in 

simulating observations at the grid cell level, best and worst-case scenario grid cell time 

a)

) 

b)
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series, using RMSE results as a determinant, were explored on an annual and seasonal 

basis. Previous statistical analyses on model evaluations have used RMSE to quantify 

model error (Geil et al., 2013), motivating our choice of this measure as a means of 

selecting best and worst case grid cells. Figure 2.10 shows the best and worse case 

scenario annual grid cell temperature for reanalysis and observations from 1980 to 2010. 

For temperature, both products capture the interannual variability but tend to 

underestimate the observed temperature. NARR’s best case illustrates a temperature bias 

of up to 4°C, as seen in 1998, while ERA-I depicts a bias of about 1.4°C (Figure 2.10). 

The worst-case grid cell for ERA-I overestimates temperature by up to ~20°C, while 

NARR’s worst-case overestimates temperature by ~23°C. In both worst-case scenarios, 

there is a considerable underestimation when compared to observed temperatures. 

However, annual ERA-I seems to show better agreement with observed temperatures 

when comparing “best” and “worst” case scenarios. 

 

 

 

 
Figure 2.10. Best (left) and worst (right) case annual temperature grid cell time series 

for NARR (a; blue), ERA-I (b; red), and GHCN (black) using RMSE as a determinant. 
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Figure 2.10 Continued. Best (left) and worst (right) case annual temperature grid cell 

time series for NARR (a; blue), ERA-I (b; red), and GHCN (black) using RMSE as a 

determinant. 

 

 

 

 In comparison, the best-case grid cell partially captures observed precipitation 

variability, as seen in figure 2.11. NARR’s best-case scenario simulates the observed 

magnitude, however, a bias of up to 230 mm/month is exhibited. ERA-I’s best case 

illustrates an underestimation in the earlier time period (~143 mm/month), while an 

increase in variability is shown at the end of 1990. For the worst-case scenario, NARR 

precipitation cannot capture the interannual variability, however, the observed 

magnitude is somewhat captured. The ERA-I worst-case scenario neither matches the 

interannual variability in the observations, nor the magnitude, with a bias of up to 640 

mm/month.  
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Figure 2.11. Best (left) and worst (right) case annual precipitation grid cell time series 

for NARR (a; blue), ERA-I (b; red), and GHCN (black) using RMSE as a determinant. 

 

 

 

 A similar analysis was conducted using Pearson’s correlation coefficient as the 

determinant for best and worst-case grid cells (Appendix 2). Temperature results 

demonstrate ERA-I to have a temperature bias of 4 to 5°C for its best-case scenario. On 

the other hand, NARR’s correlation-based best-case grid cell was identical to RMSE-

based best-case grid cell, with a maximum temperature bias just under 4°C. Both 

products capture some of the temperature variability, however, NARR is able to fairly 

reproduce the observed magnitude when compared to ERA-I. Precipitation best case 

results demonstrate both products somewhat capture observed interannual variability, 

however, NARR is able to simulate the observed magnitude better than ERA-I. 
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Figure 2.12. Best (left) and worst (right) case seasonal temperature grid cell time series 

for NARR (a; blue), ERA-I (b; red), and GHCN (black) using RMSE as a determinant. 

 

 

 

 Seasonal time series for the best and worst-case grid cells, using RMSE as a 

determinant, for NARR and ERA-I (blue and red) and GHCN (black) from 1980-2010 

are shown in figure 2.12. On a seasonal basis, both reanalyses reproduce the temperature 

variability throughout the 31-year time period. However, NARR simulates a lag when 

compared to observations, especially around 1990, while ERA-I can reproduce the 

observed magnitude. Both products simulate similar temperature magnitudes and 

interannual variability in their worst-case, with a temperature overestimation by at least 

10°C.  
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Figure 2.13. Best (left) and worst (right) case seasonal precipitation grid cell time series 

for NARR (a) and ERA-I (b) using RMSE as a determinant. 

 

 

 

 Precipitation, although highly variable, is better represented in NARR in 

comparison to ERA-I (Figure 2.13). NARR seasonal precipitation captures the 

variability in observations; however, both products overestimate the observed 

precipitation. Worst grid cell time series shows NARR overestimating precipitation but 

with a decreased bias when compared to ERA-I, which misses much of the seasonal 

variability in observations.  

 Best-case temperature grid cells, using correlation coefficients as the 

determinant, for both reanalyses demonstrates a colder bias when compared to 

observations. However, NARR illustrates a smaller bias by about ~3°C in comparison to 

the ~5°C from ERA-I (Appendix 1). However, worst-case grid cells demonstrate 
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increased temperatures in NARR and decreased temperatures in ERA-I when compared 

to observations. Best-case precipitation grid cells illustrate both products to 

underestimate precipitation (Appendix 1).  

 

II.4.3 Elevation Comparisons 

 Finally, simulated temperature and precipitation biases were quantified in 

relation to elevation biases to examine the role elevation plays in reanalyses’ 

shortcomings. Elevation biases were calculated for each reanalysis based on station 

elevation averages within each grid cell. There is a greater disagreement over steep 

terrain, e.g., over Colorado and New Mexico, but the bias decreases towards the western 

states. Both reanalyses show similar results, with slight grid cell elevation differences. 

Correlation coefficients between elevation differences and temperature and precipitation 

biases on an annual and seasonal basis are shown on Table 2.2. Results illustrate a 

significant negative relationship between NARR’s temperature bias and elevation 

differences, both on an annual and seasonal basis. Thus, NARR tends to underestimate 

temperature as elevation differences increase. Furthermore, results show that 21% of the 

variance in annual temperature error, as well as a 24% variance on a seasonal basis, can 

be attributed to elevation. Land surface temperatures are not directly assimilated into 

NARR because of the 3DVAR scheme (Chuang and Manikin, 2001), making 

temperature dependent on NARR’s model configuration. In contrast, ERA-I 

demonstrates a significant positive correlation between elevation differences and 

seasonal temperature biases, showing an increase in elevation error can lead to an 

increase in temperature bias. Also, results illustrate that 69% of the variance in 
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temperature bias is explained by the elevation difference. Although decreasing the 

elevation bias will decrease the temperature error, both reanalyses’ shortcomings cannot 

be fully explained by elevation biases. 

Annual R P-Value R2 

NARR Temperature 0.45 <0.1 0.21 

Precipitation 0.18 0.35 0.03 

ERA-I Temperature 0.29 0.25 0.08 

Precipitation 0.11 0.61 0.01 

Seasonal R P-Value R2 

NARR Temperature 0.49 < 0.1 0.24 

Precipitation 0.28 0.14 0.08 

ERA-I Temperature 0.83 < 0.1 0.69 

Precipitation 0.30 0.17 0.09 

Table 2.2.  Correlation coefficients between elevation differences and temperature and 

precipitation biases, on an annual and seasonal basis.    

II.5 Discussion and Conclusions

This objective examined the ability of two reanalysis products—NARR and 

ERA-I—in simulating GHCN observed precipitation and temperature from 1980 to 2010 

using different statistical metrics and time series. The results indicate: 

1. Based on mean goodness-of-fit measurements, ERA-I and NARR temperature

show similar relatively low errors when compared with in-situ observations. 

ERA-I annual precipitation shows a slightly better association with observations, 

but errors demonstrate the inability of reanalyses to accurately capture 
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precipitation amount. On a seasonal basis, NARR exhibits better agreement with 

temperature in contrast to ERA-I, whereas precipitation errors gave no clear 

indication of the better reanalysis.  

2. Individual grid cell statistics show a similar spatial temperature agreement in 

both reanalyses, with large forecast errors over the four corners. Seasonally, 

NARR temperature demonstrates better performance over ERA-I, based on 

RMSE and index of agreement.  

3. Annual precipitation illustrates similar spatial errors between NARR and ERA-I. 

However, certain metrics, such as RMSE and MAPE, demonstrate a greater 

agreement between ERA-I and observed precipitation, while correlation 

coefficient and index of agreement illustrates NARR to have better agreement 

with observations.   

4. Temperature time series for the best-case grid cell time series, on an annual and 

seasonal basis, show both reanalyses capture the interannual and seasonal 

variability. However, both products tend to underestimate temperature. 

Precipitation time series for the best-case grid cell, both on an annual and 

seasonal basis, show NARR to generally better capture the interannual and 

seasonal variability in comparison to ERA-I.  

5. Worst-case grid cells illustrate a large bias in both precipitation and temperature.  

6. Elevation differences demonstrate an elevation gradient going from east to west. 

NARR and ERA-I exhibiting higher elevations in the Rocky Mountains and 
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lower elevations in the southern Great Plains and west coast in comparison to 

station based observations. 

7. Furthermore, a significant correlation was found between temperature errors in 

NARR (annual and seasonal) and ERA-I (seasonal) and elevation biases. Also, 

elevation biases account for some of the variance in the temperature biases in 

NARR and ERA-I. Thus, decreasing the elevation error can have an impact on 

simulated temperature.  

This study can be used to inform which reanalysis product may be best to use for 

research focused on NAMS variability. It is also used here to select the more suitable 

reanalysis to represent spatially and temporally complete observations for our 

subsequent model comparison. Based on the mean statistics, ERA-I is best to use for 

temperature and precipitation variability. However, grid cell outliers significantly impact 

the mean statistics presented in Table 2.1.  Although individual grid cells also 

demonstrate similar temperature errors for both reanalyses, NARR is also able to 

simulate interannual and interseasonal variability, based on grid-cell time series results. 

Both products can thus resolve temperature fairly well. Precipitation, on the other hand, 

is a variable that many reanalysis and model products cannot resolve accurately due to, 

e.g., spatial resolution issues and precipitation parameterizations. Similar to temperature, 

mean precipitation metrics show that ERA-I has a better agreement with GHCN 

observations. Grid cell statistics depict NARR precipitation to have a stronger 

relationship with observations in comparison to ERA-I, especially based on index of 

agreement and correlation coefficients. The influence of grid cell outliers thus skewed 
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the domain-averaged annual/seasonal metric means. Furthermore, grid-cell time series 

showed NARR’s ability to capture the interannual and interseasonal precipitation 

variability when compared to observations. ERA-I precipitation captures the general 

interannual variability in its best-case grid cell, but fails to capture the magnitude. Area-

averaged GoF statistics show little differences between the two reanalyses, 

demonstrating the need to evaluate the agreement at the grid-cell level, rather than for 

regional averages. NARR’s ability to better simulate precipitation likely stems from its 

assimilation of numerous precipitation products, and its high spatial resolution over 

North America. Thus, based on results presented in our study, NARR is better able to 

simulate precipitation and temperature over the North American Monsoon region.  
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CHAPTER III 

ASSESSMENT OF STATISTICALLY DOWNSCALED CMIP5 MODELS 

 

III.1 Overview 

 Projections of the North American Monsoon System (NAMS) have utilized the 

Coupled Model Intercomparison Project (CMIP) Phase 5 to assess the impacts of climate 

change over the southwestern United States and Mexico. However, the global climate 

models in CMIP5 have limitations due to their sensitivity to their respective convective 

schemes and orographic representations. Different methodologies have been introduced 

to counter the spatiotemporal biases within coarse-scaled models, including dynamical 

and statistical downscaling. This study focuses on statistical downscaling, and assesses 

the ability of this downscaled CMIP5 output to accurately capture NAMS processes. 

Temperature and precipitation output from 1979 to 1999 is evaluated against the North 

American Regional Reanalysis (NARR) over both the core monsoon region (112°W - 

102°W to 25°N-33°N), and also an extended region (125°W - 95°W to 25°N - 40°N) 

that better captures regional-scale impacts that could be related to the NAMS. 

Statistically downscaled temperature shows good agreement with NARR but simulates a 

warm bias over the Sierra Madre Occidental during the monsoon season (JJAS). 

Similarly, downscaled model output reveals a precipitation bias over a similar region, 

potentially due to simulated orographic features important to the NAMS. Skill scores 

reveal the weakest temperature agreement between the downscaled model output and 

NARR to be during the monsoon season, however, the pre-monsoon season illustrates 
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the greatest agreement for precipitation. In general, statistically downscaled CMIP5 

output better captures the NAMS spatiotemporal variability when compared to the 

original coarse global climate models output, and is therefore effective in projecting 

future climate over the monsoon region. 

 

III.2 Introduction 

 Climate models are a key tool in investigating earth system processes and their 

variability through different climate forcings. Global climate models (GCMs) have been 

extensively utilized to evaluate climate projections at various times ranging from future 

to historical and paleo, including by the Intergovernmental Panel of Climate Change 

(IPCC) through the CMIP. Evaluation of climate models between the Fourth (CMIP3) 

and Fifth (CMIP5) Assessment Reports (AR) has shown continued development and 

improvements through the inclusion of biogeochemical cycles important in the climate 

system (Flato et al., 2013). Furthermore, the ability of climate models to simulate 

variables such as surface temperature has improved in many important aspects relative to 

AR4, but remains a challenge with slight improvements for variables such as large-scale 

precipitation patterns (Flato et al., 2013). Some of the systematic errors can be attributed 

to model resolution and the depiction of complex topography. Coarse resolution issues 

and their impacts on regional to local scales can be addressed through the application of 

regional climate downscaling. Statistical downscaling involves deriving empirical 

relationships linking large-scale atmospheric variables (predictors) and local/regional 

climate variables (predictands), which can then be applied to equivalent predictors from 
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climate models (Flato et al., 2013). Downscaling methods, while having shown 

improvements due to their output at a higher resolution, vary in terms of location, time 

frame, and methodology, making them difficult to evaluate. Furthermore, the reliability 

of downscaled output depends on the quality of the downscaling method and the large-

scale boundary conditions, which are provided by coarse GCMs (Flato et al., 2013). 

This, in turn, questions the ability of downscaled models to accurately represent 

historical observations, and provide credible climate projections.  

 The NAMS has exhibited no distinct precipitation trends in the last half of the 

20th century; however, decreasing monsoonal streamflow in western Mexico has 

nonetheless been reported due to changing precipitation or antecedent hydrological 

conditions (Anderson et al., 2010; Arriaga-Ramirez and Cavazos, 2010; Christensen et 

al., 2013; Gochis et al., 2007). Furthermore, a systematic delay in monsoon onset, peak, 

and decay has been shown (Grantz et al., 2007). GCMs have demonstrated difficulties in 

simulating key NAMS features, but do capture some features of the seasonal cycle. Geil 

et al. (2013) found no improvements in the magnitude of the mean annual cycle of 

monthly precipitation over the NAMS core region between CMIP3 and CMIP5. 

Furthermore, the multi-model mean annual cycle has exhibited a wet bias and fails to 

capture the retreat of the NAMS accurately (Geil et al., 2013). However, a 27% 

improvement in the timing of seasonal precipitation changes is evident in CMIP5 models 

in comparison to CMIP3, as well as adequate monsoon representation during the early 

and mid-season period, albeit with a large-scale circulation pattern bias (Geil et al., 

2013). An additional significant issue is the inability of some GCMs to even simulate a 
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monsoon signal. This results in inconsistencies in future monsoon projections in the 

CMIP5 models, showing a general precipitation decrease in the core monsoon region but 

with little homogeneity. Also, CMIP5 models produce no consensus for future changes 

in monsoon timing (Christensen et al., 2013). Cook and Seager (2013) have shown small 

changes in future total monsoon precipitation but rather significant declines in early 

monsoon precipitation (June - July) and increases in late monsoon season precipitation 

(September - October).  

 The Downscaled Climate and Hydrology Projections (DCHP) represent a unique 

collaborative effort to provide statistically downscaled output for CMIP3 and CMIP5 

models. Monthly bias-correction and spatial disaggregation (BCSD) and daily bias-

corrected and constructed analogs (BCCA) techniques are applied to historical and 

future climate projections from GCM output in the CMIP3 and CMIP5 archive. DCHP 

recognized water managers’ needs to assess the implications of future climate change for 

the management of their systems, as well as when climate change vulnerabilities and 

impacts may exceed thresholds, triggering the need for adaptive intervention 

(Reclamation, 2013). Furthermore, downscaled projections have been utilized because of 

GCMs’ inability to provide an adequate local-scale assessment due to their coarse 

resolution.  

To create monthly BCSD projections, a two-step process was implemented 

including bias-correction and spatial disaggregation. Historical simulations from GCM 

output were compared to observations to identify and remove biases for the bias-

correction step. Three datasets are gathered including observed historical data, derived 
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from Maurere et al. (2002) for the 20th century, simulated historical conditions that span 

from 1950 to 1999, and the GCMs’ simulated future climate conditions (Reclamation, 

2013). GCMs are initially regridded to a common spatial resolution of 1°. To identify 

biases within the historical time frame, cumulative distribution functions (CDFs) are 

used based on observational grid cells, months, and variables (Reclamation, 2013). The 

paired CDFs are combined to create “quantile maps,” where, at each percentile, one can 

assess the bias between the simulated GCM output and observations (Reclamation, 

2013). The next step entails adjusting simulated historical and future outputs based on 

the quantile maps to correct any biases. The result of this methodology is an adjusted 

GCM dataset that is statistically consistent with observations over the given time frame 

(Reclamation, 2013). Next, the spatial disaggregation of the GCM output is downscaled 

from the 1° bias-corrected to a 1/8° downscaled resolution. This is achieved by merging 

the historical spatial climatology with the spatially disaggregated changes of the given 

time step measured from that climatology (Reclamation, 2013). Factor values are 

computed for every grid cell that reflects departures from the observed spatial 

climatology at every grid cell, and translated to the targeted downscaled resolution using 

a modified inverse-distance-squared interpolation based on Shepards’ (1984) computer 

mapping algorithm (Reclamation, 2013). Finally, the downscaled-resolution factor 

values are merged with the downscaled-resolution observational spatial climatologies to 

produce downscaled-resolution adjusted GCM values (Reclamation, 2013).  

Geil et al. (2013) have demonstrated the limitations using CMIP5 coarsely 

resolved models in representing NAMS precipitation characteristics. Downscaling 
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methodologies provides an avenue to attempt to resolve resolution issues and, in turn, 

key variables in the NAMS. The goal of our study is to evaluate the ability of 

statistically downscaled models in their ability to realistically represent a highly resolved 

reanalysis product. Our results can provide a foundation for future projections 

employing downscaling methodologies and their ability to capture the climate system.  

 

III.3 Data and Methodology 

 

III.3.1 Study Region 

Two domains were chosen to assess precipitation and temperature characteristics 

in CMIP5 model output relative to observations from the North American Regional 

Reanalysis (NARR). The core NAMS domain (112°W - 102°W to 25°N-33°N; Figure 

3.1) was chosen based on previous analysis from Cook and Seager (2013), but 

constrained to areas north of 25°N due to data availability. An extended NAMS domain 

(125°W - 95°W to 25°N - 40°N; Figure 3.1) is also chosen to further assess synoptic-

scale processes up- and downstream from the core domain. Furthermore, the North 

American Monsoon Experiment employs a multi-scale analysis including a regional 

study area similar to our extended domain to better understand the intraseasonal 

variability of the NAMS (Higgins et al., 2000).  
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Figure 3.1. Seasonal climatology (JJAS) of the NAMS, based on NARR precipitation at 

1° spatial resolution from 1979 to 1999. The dashed line represents the core NAMS 

region (112°W-102°W to 25°N-33°N) while the solid line illustrates the extended 

NAMS region (125°W-95°W to 25°N-40°N).  

 

 

 

III.3.2 Reanalysis and Model Products 

To assess the ability of statistically downscaled CMIP5 models in simulating the 

NAMS, monthly 2-meter air temperature and precipitation rate were obtained from 

NARR. NARR is based on the NCEP Eta Model (32 km /45 layer resolution) and 

numerous observational datasets to provide a much-improved analysis of land hydrology 

and land-atmosphere interactions (Mesinger et al., 2005). Three CMIP5 models are 

assessed based on previous findings from Geil et al. (2013) and Cook and Seager (2013), 

who evaluated CMIP5 model output for both historical and future time frames.  
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Figure 3.2. Comparison of the annual cycle of modeled and observed precipitation using 

root-mean-square error (RMSE) of monthly mean rainfall, percent bias of annual 

rainfall, and phase lag in number of months based on the defined core NAMS domain of 

Geil et al. (2013). 

 

 

 

Figure 3.2 illustrates better performance of 5 of the 21 CMIP5 GCMs based on 

their low RMSE values and percent biases with no phase lag between 1979 to 2005: the 

Centre National de Recherches Météorologiques Coupled Global Climate Model, 

version 5 (CNRM-CM5; CNR), Commonwealth Scientific and Industrial Research 

Organisation Mark, version 3.6.0 (CSIRO-Mk3.6.0; CSI), Hadley Centre Coupled 

Model, version 3 (HadCM3; HA3), Hadley Centre Global Environmental Model, version 

2 – Carbon Cycle (HadGEM2-CC; HGC), and Hadley Centre Global Environmental 

Model, version 2 – Earth System (HadGEM2-ES, HGE) (Geil et al., 2013). However, 

Cook and Seager (2013) identified 11 CMIP5 models based on their ability to simulate 

the NAMS seasonal cycle from 1980 to 1999 (Figure 3.3). Three of these higher 

resolution models, including CNRM-CM5, HadGEM2-CC, and HadGEM2-ES, were 
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able to simulate the seasonal progression of the NAMS in comparison to an 

observational climatology over their defined core monsoon domain. Thus, these three 

models are chosen here for subsequent evaluation.  

 

 

 

 

Figure 3.3. Precipitation comparisons of modeled and observed precipitation 

climatologies for the core NAMS region with lowest and highest resolution models 

displayed in (a) and (b), respectively (Cook and Seager, 2013).  

 

 

 

 CNRM-CM5 was developed specifically to contribute to CMIP5. It currently has 

a 1.4° and 1° horizontal resolution in the atmosphere and ocean respectively (Voldoire et 

al., 2012) and a new dynamical core based on a two time-level semi Lagrangian 

numerical integration scheme (Voldoire et al., 2012). Improvements over the previous 

versions were made, including a reduced bias in the mean surface temperature; however, 

precipitation and radiative biases still remain in certain regions.  

 The suite of HadGEM2 versions was created with specific model configurations 

incorporating varying levels of complexity, but with a common physical framework. 

These include the Carbon-Cycle (HadGEM2-CC) and Earth-System (HadGEM2-ES) 

versions (Martin et al., 2011). HadGEM2-CC includes the same processes as 
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HadGEM2-ES, except for the “chemistry” process. Both models have an atmospheric 

horizontal resolution of 1.875° × 1.25° and an ocean horizontal resolution of 1° (Martin 

et al., 2011).  

 The DHCP project provides statistically downscaled gridded CMIP5 output for 

climate and hydrology variables.  Historical monthly bias-corrected GCM output at 1° 

was obtained for precipitation rate and near-surface air temperature for CNRM-CM5, 

HadGEM2-CC, and HadGEM2-ES. The data were downloaded for 1979 -1999, to 

overlap with the available NARR variables.  

 

III.3.3 Methodology 

To investigate the ability of statistically downscaled GCM output to simulate the 

NAMS precipitation and temperature characteristics, various statistical metrics and 

observational comparisons were quantified over the historical time period. Because of 

different spatial resolutions between model and observational output, NARR was 

regridded to a resolution of 1° through a bilinear interpolation scheme, a common 

regridding technique (e.g., Chen and Frauenfeld, 2014). Monthly and seasonal 

climatologies for temperature and precipitation were created to investigate models’ 

ability to capture the seasonal progression of the monsoon system over the core monsoon 

domain, as well as the extended region. To quantify the spatio-temporal agreement 

between observations and model simulations, we calculated the root-mean-square 

difference (RMSD), Pearson correlation coefficients (R), linear regressions, and seasonal 

to yearly differences. When applicable, Student’s t-tests were used to assess significance 

of differences, based on a 90% significance level similar, to previous assessments of 
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temperature trends and NARR (e.g., Fall et al., 2010). To evaluate the GCMs’ skill in 

reproducing the seasonal and yearly climatologies, skill scores were calculated as 

defined by Taylor (2001):  

𝑆 =
(1 + 𝑅)4

4(𝑆𝐷𝑅 +
1

𝑆𝐷𝑅)
2
 

The skill score (S) is calculated using the pattern correlation (R) between the model and 

observations and the ratio of spatial standard deviation (SDR) in the model against 

observations (Chen and Frauenfeld, 2014). Due to the limited number of grid cells, the 

test for statistical significance proposed by Song and Zhou (2014) was not implemented.  

 

III.4 Results 

 

III.4.1 Climatologies 

We first investigate the seasonal spatial temperature and precipitation patterns 

during March-April-May (MAM), June-July-August (JJA), and 

September-October-November (SON), as well as the monthly climatologies. Similar 

patterns are evident in all models, thus only those from CNRM-CM5 are shown. Figure 

3.4 shows the seasonal JJA patterns for simulated and observed temperature (left) and 

precipitation (right). The original (coarsely resolved) CNRM-CM5 output (Figure 3.4a) 

is also included to elucidate potential improvements of the downscaled output. In 

general, the spatial patterns in the downscaled output more closely resemble those from 

NARR. Furthermore, the decreased temperatures, due to the high terrain over the core 

monsoon region, are resolved in both the downscaled and original data.  
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Figure 3.4. JJA temperature (left) and precipitation (right) spatial patterns for (a) 

original CNRM-CM5 output, (b) statistically downscaled CNRM-CM5 output, and (c) 

NARR observations from 1979 to 1999.  

 

 

 

The temperature bias surrounding the Mohave Desert in the original data is also 

evident in the downscaled output, and a similar spatial pattern is observed in HadGEM2-

CC and HadGEM2-ES (not shown, see Appendix 2). However, the downscaled CNRM-

CM5 output captures only a fraction of the spatial temperature patterns east of the core 

domain, whereas the original output does capture the broad temperature pattern. 

Statistically significant differences between the downscaled CNRM-CM5 output and 

NARR depict a temperature bias over the core domain, as well as lower temperatures 

throughout New Mexico and Texas (Figure 3.5). Both HadGEM2s also show a similar 

temperature bias throughout the region (Appendix 2). 
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Figure 3.5. JJA temperature (left) and precipitation (right) spatial differences between 

downscaled CNRM-CM5 output and NARR with 90% statistical significance (stippled).  

 

 

  

MAM spatial patterns are well captured by the downscaled GCM output, including the 

representation of decreased temperatures throughout the New Mexico, Arizona, 

Colorado, and Utah border region. Furthermore, the decreased temperature features are 

generally overestimated in the original resolution data (Appendix 2). SON spatial 

temperature patterns are adequately captured in both the downscaled and original GCM 

output, with a substantial cold bias throughout the southwest U.S. (Appendix 2).  

Simulated JJA spatial precipitation patterns are well captured in the downscaled 

GCM output when compared to the observations, especially throughout the core 

monsoon domain (Figure 3.4). The seasonal progression of the monsoon system is 

replicated in both the downscaled and original CNRM-CM5 output, but a precipitation 

bias remains, as previously identified (Cook and Seager 2013, Geil et al., 2013). 

Furthermore, the precipitation bias is evident in the seasonal precipitation differences 

(Figure 3.5) over the Sierra Madre Occidental. However, the coarse resolution 

HadGEM2 models cannot replicate the local-scale precipitation characteristics of the 

monsoon system, simulating a large precipitation bias throughout the Sierra Madre 
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Occidental (Appendix 2). However, while all downscaled GCMs provide a similar 

precipitation pattern throughout Colorado and New Mexico during the summer season, a 

precipitation bias is also evident in the original GCMs. A reduction in the precipitation 

bias is found throughout the west and southwest U.S. in the downscaled GCM output for 

the pre-monsoon season (MAM) in comparison to the original GCM output. This is 

evident based on the seasonal differences between the downscaled GCMs and NARR 

output (Appendix 2). Broad spatial patterns during SON show a realistic reduction in 

precipitation throughout the core monsoon domain for the downscaled GCMs. Yet, a 

significant pattern is observed in parts of the core monsoon region for CNRM-CM5 and 

HadGEM2-ES, as well a large band south of the Rio Grande River for all downscaled 

GCMs (Appendix 2). The precipitation gradient over the Rio Grande is possibly an 

artifact in NARR. Both original HadGEM2s display broad precipitation patterns 

throughout the southwest, similar to those in NARR; however, CNRM-CM5 cannot 

duplicate the spatial pattern corresponding to the decay phase of the monsoon season.  

Seasonal temporal patterns were explored, averaged for the core and extended 

domains for the summer months (Appendix 2). Over the core region, the observational 

temperature magnitude (~25°C) is well captured throughout the time period, whereas the 

coarsely resolved models fail to simulate the magnitude throughout the time series. 

However, both downscaled and original model output show little interannual agreement 

with NARR, an issue possibly driven by the steep terrain within the core region. 

Interestingly, both HadGEM2 models show increasing temperatures starting in 1990. 

Similarly, temperature time series results for the extended domain demonstrate a lack of 
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interannual agreement between downscaled and NARR output, but tend to capture the 

magnitude. Simulated precipitation results over the core and extended domain show little 

agreement with NARR in terms of their interannual variability. NARR’s precipitation 

magnitude is partially captured by the downscaled output, including the earlier time 

period in CNRM-CM5 (1979 – 1985) and mid-period of HadGEM2-ES (1988 – 1992).   

 General descriptive statistics for annual and seasonal temperature in the core 

and extended domain are explored (Figures 3.6, Appendix 2). For annual temperature in 

the core domain, the three downscaled models’ 75th percentiles fall within NARR’s 25th 

percentile; however, only the HadGEM2-ES median falls within the reanalysis’ 25th 

percentile. Thus, the results show an underestimation of temperature in the three 

downscaled models; however, HadGEM2-ES shows greater range of temperatures in the 

25th percentile in comparison to NARR. In comparison, only the downscaled models’ 5th 

percentile falls with NARR’s 25th percentile over the extended domain, meaning a 

greater underestimation of temperature. During the summer months over the core 

domain, all models show a median of approximately 25.8°C, similar to the NARR 

temperature (26.1°C). However, all three models show the temperature data to be 

skewed below the median, illustrating a larger range. The extended domain illustrates a 

warm bias, with the HadGEM2s’ 25th percentile overlapping with NARR’s 

interquartiles. During the pre-monsoon season (MAM), NARR illustrates temperatures 

skewed below the median, however, interquartiles and averages fall within 18–19°C in 

the core domain, and 14–15.5°C in the extended domain for reanalysis and all three 

models. During SON, NARR denotes temperatures to be skewed below the median, 
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showing higher temperatures within NARR, as well as an average temperature of 

19.2°C. This result is not evident in the downscaled output, which instead shows a 

decreased median in all models, with the lowest average model temperature at 17°C 

(HadGEM2-ES).  

 

 

 

  
Figure 3.6. JJAS temperature for the core (left) and extended (right) domain. The 25th 

and 75th percentiles are shown by the edges of the boxes, the whiskers represent the 5th 

and 95th percentiles, and the medians are plotted as horizontal lines within the boxes. 

The asterisks illustrate the maximum and minimum temperature, average represents a 

black dot, while the yellow dots represent significant differences at the 90% level. 

 

 

 

During the monsoon season (JJAS), the core domain temperature illustrates all 

downscaled models perform well in comparison to NARR (Figure 3.6; left). NARR’s 

average and median temperature is around 25.5°C, while model average and median 

temperature is 0.5°C less than NARR. In comparison, the extended monsoon domain 

fails to reproduce the NARR temperature. However, individual JJAS temperature 
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outliers can skew the overall result, as evident from the maximum and minimum 

temperature values.   

Annual precipitation over the core domain illustrates a wet bias in all downscaled 

models (Appendix 2). NARR indicates a median of about 28 mm/month, whereas the 

models over-predict the reanalysis observations by 6–9 mm, with their average near the 

median. The maximum annual precipitation of NARR and all downscaled models agrees 

well (~43–44 mm/month); however, the precipitation distribution within the downscaled 

model differs from NARR. Furthermore, all downscaled model output illustrates a wet 

bias of about 7 mm/month, based on precipitation averages.  MAM precipitation in the 

core domain shows differences with the downscaled models persist. The HadGEM2s 

demonstrate similar 95th percentile results as NARR, illustrating higher precipitation 

amounts. Furthermore, the model medians indicate a slight overestimation in 

precipitation (~3–7 mm/month). The extended domain during MAM shows an 

overestimation of the average and median NARR value (~29 mm/month) by 4–6 

mm/month, and greater maximum and minimum precipitation values. This similar 

overestimation in JJA is evident for both the core and extended domains.  

During the post-monsoon season (SON), the downscaled models demonstrate 

good agreement between NARR and downscaled models in the core domain, with a 

slight average overestimation ranging from 4 to 8 mm/month. Over the extended 

domain, the downscaled models still show a wet bias, with an average overestimation 

ranging from 8 to 10 mm/month. This overestimation illustrated in both JJA and SON is 

also evident during the monsoon season (JJAS) in the core and extended domain (Figure 
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3.7). Although the downscaled models capture the higher precipitation over the core 

domain, they overestimate the average and median by ~12–15 and ~10–13 mm/month, 

respectively. Furthermore, the range of precipitation differs considerably in the model 

output when compared to NARR, as well as overestimating the median by a 

considerable amount (CNRM-CM5 = ~18 mm/month, HadGEM2-CC = ~21 mm/month, 

HadGEM2-ES = ~15 mm/month).  

 

 

 

 

Figure 3.7. Similar to figure 6, except for precipitation (mm/month).  

 

 

 

III.4.2 Monthly Climatologies 

All grid cells were averaged within both the core and extended domains, and 

monthly temperature and precipitation climatologies of the annual cycle for the three 

GCMs and NARR were created (Figure 3.8 – 3.9). The monthly temperature cycle in 

NARR throughout the core and extended monsoon domains are well captured by the 
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downscaled GCMs (Figure 3.8). Temperature in the original GCMs’ output (red) is 

overestimated in the summer months for both domains, with both HadGEM2s 

overestimating by up to ~4°C and CNRM-CM5 by ~2–3°C. To further illustrate the 

performance of the downscaled GCMs, statistically significant differences between the 

downscaled GCM and NARR output were computed for the core and extended monsoon 

domain (Appendix 2). Significant differences are evident over fall and early winter 

months for the three downscaled models, underestimating the transition to lower 

temperatures by -1°. During the monsoon season, temperature differences show little 

temperature bias, which is no statistically. In contrast, slight increasing temperature 

biases are observed during the monsoon season, with the greatest bias during June and 

July in HadGEM2-ES (0.89°C) and CNRM-CM5 (0.93°C), respectively.  
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Figure 3.8. Monthly temperature climatologies for the (a) core and (b) extended monsoon domain from 1979 to 1999 for 

NARR (green line), original GCMs (red), and downscaled GCMs (green). CNRM-CM5, HadGEM2-CC, and HadGEM2-ES 

are shown from left to right.   
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Figure 3.9 depicts monthly climatologies for precipitation for all three GCMs. 

Within the core domain (Figure 3.9a), the seasonality of the monsoon system is evident, 

including its rapid onset (June) and decay (September). All three downscaled GCMs 

(blue) capture this seasonal progression, but exhibit a wet bias during the summer 

months. Furthermore, winter precipitation, which can contribute up to ~30% of annual 

precipitation over the southwest U.S., is well captured by the downscaled GCMs. 

However, the peak in precipitation during the monsoon season has shifted in the 

downscaled GCMs by a month when compared to NARR. This seasonal shift could be 

due to the observational product used in the bias-correction of the downscaling 

methodology. In contrast, coarsely resolved GCMs have varying degrees of agreement 

with NARR precipitation. CNRM-CM5 original output overestimates winter and spring 

precipitation by up to ~20 mm/month and has an early onset of the monsoon system. In 

comparison, the HadGEM2s overestimate precipitation throughout all months but 

capture the seasonality of the monsoon system. Within the extended domain (Figure 

3.9b), a better representation of precipitation is evident between the downscaled GCMs’ 

and NARR output when compared to the original GCM output. However, the 

downscaled GCM precipitation does not simulate the NARR spring magnitude, but has 

improved the high precipitation bias in April and June (red). Downscaled GCM 

differences with respect to NARR reveal the greatest bias to be during the monsoon 

season, particularly during July (20 – 22 mm/month).  
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Figure 3.9. Monthly precipitation climatologies for the (a) core monsoon domain and (b) extended monsoon domain from 

1979 to 1999 for NARR (green line), original GCM output (red line), and downscaled GCM output (blue line). CNRM-CM5, 

HadGEM2-CC, and HadGEM2-ES are shown from left to right.   
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Although the downscaling methodology tries to correct these biases based on 

observations, the representation of precipitation still remains an issue due to the 

uncertainties within the individual GCMs. Still, the bias correction methodology has 

shown improvements in the shortcomings within the coarsely resolved GCMs, evident 

through Figure 3.9. Also, the greatest bias is in CNRM-CM5 over the core domain, with 

the greatest difference in precipitation in 8 out of the 12 months (Appendix 2). For the 

extended domain, a consistent wet bias is observed throughout most of the months for all 

downscaled models, with a significant bias over the monsoon season (Appendix 2). The 

extended domain takes into account larger regions over the United States, including 

regions of complex terrain over Colorado and Utah, which can impact simulated 

precipitation.   

Monthly interannual variability for temperature was also explored for all three 

GCMs to assess potential improvements in the downscaled output (Figure 3.10; 

Appendix 2). During the end of fall to early spring, downscaled CNRM-CM5 

temperature output demonstrates better agreement with NARR in comparison to the 

original CNRM-CM5 output, which shows a cold bias during this time (Appendix 2). 

Furthermore, the increased temperatures during the summer months are well captured in 

the downscaled GCM output, whereas the original coarse model has increased 

temperatures (Figure 3.10). However, CNRM-CM5 downscaled temperature does not 

capture the interannual variability in NARR temperatures.  
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Figure 3.10. Interannual temperature variability from 1979 to 1999 for the core 

monsoon domain in NARR (green), downscaled output (blue), and coarsely resolved 

output (red) for the monsoon season.  

 

 

 

Similarly, HadGEM2-CC downscaled output shows a much better agreement in 

simulating the magnitude of temperature in comparison to the coarse model (Figure 

3.10, Appendix 2). The downscaled HadGEM2-CC does capture the interannual 

variability in some months, including November starting in 1992; however, temperature 

is either overestimated or underestimated within the downscaled output during the 

monsoon months. Interestingly, there is near-perfect agreement in interannual variability 
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during October between the downscaled and original model output, similarly to the 

month of June in CNRM-CM5. Finally, HadGEM2-ES downscaled output provides a 

better representation of temperature in comparison to the coarse model, as was the case 

for both previous models (Figure 3.10, Appendix 2). HadGEM2-ES original model 

output simulates summer temperatures poorly, whereas the downscaled output improves 

on the representation of temperatures when compared to NARR. Furthermore, some of 

the interannual variability is captured during the summer months, e.g., in July and 

September. However, as for the other two models, the downscaled HadGEM2-ES still 

has difficulty in reproducing interannual variability when compared to the NARR 

output.  

Interannual temperature variability for the extended monsoon domain for 

CNRM-CM5 depicts both improvements and shortcomings in the downscaling output 

(Appendix 2). During the summer months, better representation of the simulated 

temperature is evident when compared to observations, as well as improved downscaled 

output in contrast to the original CNRM-CM5 (e.g., July through September). However, 

October through March depicts a near-perfect agreement of the downscaled and original 

model output, with a cold bias when compared to observations. For HadGEM2-CC, a 

similar near-perfect agreement between downscaled and original simulations is evident 

during December through February (Appendix 2). Furthermore, there is better agreement 

between NARR and the original model output during October and November when 

compared to downscaled output. Yet, the summer months are well simulated by the 

downscaled HadGEM2-CC, with some of the interannual variability captured by the 
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model during the monsoon season. However, a bias is observed throughout most of the 

months, a consistent pattern in the downscaled output from the other models. Similarly, 

HadGEM2-ES shows better agreement between the original and NARR output than the 

downscaled data (Appendix 2). The monsoon season is well captured by the downscaled 

data, but the high-resolution output still has difficulty in reproducing the interannual 

variability seen in the NARR temperatures.  

 

 

 

 

Figure 3.11. Interannual precipitation variability from 1979 to 1999, for the core 

monsoon domain in NARR (green), downscaled output (blue), and coarsely resolved 

output (red) during the monsoon season.  
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Interannual variability of precipitation for the monsoon season over the core 

domain is shown for all three GCMs’ in figure 3.11. CNRM-CM5 demonstrates high 

interannual variability during most months, including the fall and winter seasons 

(Appendix 2). Although the model is inconsistent with NARR’s interannual variability, 

it has a smaller wet bias when compared to the original model. During the monsoon 

season, the downscaled and original model output are similar, with the original model 

better simulating precipitation during July and August. Through the downscaling 

technique, HadGEM2-CC reduces the wet bias in the original model output, capturing 

the general precipitation. Yet, an issue remains with the downscaled HadGEM2-CC in 

simulating NARR’s interannual variability. During the monsoon season, the model can 

capture some of the large precipitation increases in NARR during June, but the wet bias 

still remains an issue during the months of July and August (Figure 3.11). In 

comparison, the downscaled HadGEM2-ES does fairly well in capturing the interannual 

variability in July and August (Figure 3.11). Improvements in the downscaled 

HadGEM2-ES are further illustrated during April and May, when the NARR variability 

is well captured in comparison to the original model output.  For precipitation over the 

extended domain, the downscaled CNRM-CM5 is improved during April and May, but 

aligns closely with the coarse model output during other months (Appendix 2). During 

the monsoon season, the downscaled output cannot capture the NARR interannual 

variability. A similar level of agreement is evident in both HadGEM2 models (Appendix 

2). During the monsoon season, the downscaled HadGEM2s show no improvements 

relative to the original model output when compared to NARR. 
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III.4.3 Spatial Temperature Patterns

Monthly climatology differences between downscaled model simulations and 

NARR output are assessed for their spatial agreement throughout the monsoon domain. 

Similar temperature bias patterns are observed for all three downscaled models during 

the monsoon season (Figure 3.12, Appendix 2). Smaller temperature biases are found 

during the winter to spring months, with a significant warm bias over the Sierra Madre 

Occidental and a cold bias east of the range, in Texas. During the monsoon season, this 

cold bias spreads over the entire southwest, with an increasing temperature bias over the 

Sierra Madre Occidental (Figure 3.12). The temperature bias over the core domain is 

similar to the seasonal differences also seen in figure 3.5. The temperature increases in 

the downscaled output could be a product of the orographic representation in the model. 
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Figure 3.12. Temperature differences for (a) June, (b) July, (c) August, and (d) 

September between the downscaled simulated output and NARR with a statistical 

significance of 90% (stippled) during the monsoon season.  

Monthly temperature RMSD was calculated to evaluate grid cell errors of the 

downscaled model output (Figure 3.13, Appendix 2). Small local-scale differences are 

observed in all three downscaled models, but the overall spatial temperature error 

patterns are similar in all three models. Small RMSDs are evident throughout most 

months, with the greatest RMSD values in late winter and spring (~5°C). During the 

monsoon season in the core domain, low RMSD values are observed. This suggests 

skillful representation of temperature in downscaled model output. High RMSD values 
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(~10°C) are observed throughout all months over central California and at the mouth of 

the Gulf of California (GoC). 

Figure 3.13. Temperature Root Mean Square Difference (RMSD) for (a) June, (b) July, 

(c) August, and (d) September between the downscaled simulated output and NARR 

with a statistical significance of 90% (stippled) during the monsoon season.  

Monthly temperatures are correlated between downscaled model output and 

NARR (Figure 3.14, Appendix 2). For CNRM-CM5 downscaled output, there are both 

positive and negative correlations throughout the months. The highest positive 

correlations are demonstrated during September over the mouth of GoC (~0.65), 
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demonstrating the ability of CNRM-CM5 in simulating temperature interannual 

variability as shown by NARR. Significant positive correlations over the core domain 

are evident during the month of June; however, September illustrates a positive-negative 

pattern. Furthermore, a negative correlation over the southwest U.S. shows the inability 

of CNRM-CM5 to simulate temperature variability as represented by NARR, which 

assimilates rawinsondes. CNRM-CM5 uses a global spectral atmospheric model 

(ARPEGE-Climat) that is derived from the ARPEGE/Integrated Forecast System 

numerical model that includes temperature as a prognostic variable (Voldoire et al., 

2011). The different temperature assimilations between the reanalysis and model thus 

can vary, further exacerbated by downscaling methodologies. 

The downscaled HadGEM2-CC model illustrates a different correlation pattern 

when compared to CNRM-CM5 (Figure 3.14). The seasonal temperature correlations 

show either little to no positive signal during the earlier time period of the monsoon 

season; however, August illustrates a high correlation with NARR over the monsoon 

domain. Furthermore, the positive correlation during the month of August is identified 

for all three downscaled models, with CNRM-CM5 and HadGEM2-ES illustrating a 

positive correlation mainly over the Chihuahua Desert. Although the HadGEM2s share 

similar configurations, the correlation patterns differ considerably. This is evident in the 

months of June and July, where HadGEM2-CC demonstrates opposite correlations seen 

in HadGEM2-ES. HadGEM2-CC includes configurations from the atmosphere and 

ocean, coupled with the carbon cycle configuration that includes both the terrestrial 

carbon cycle and ocean biogeochemistry (Martin et al., 2011). The Earth-system model 
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(HadGEM2-ES) not only includes the previous mentioned configurations, but also takes 

into account tropospheric chemistry to quantify the Earth system feedbacks (Martin et 

al., 2011). Thus, the different configurations implemented within the HadGEM2s 

apparently produces contrasting results, evident through our correlation analysis. 

However, HadGEM2-ES illustrates a strong correlation during the month of September 

(0.84), similar to results shown in HadGEM2-CC (0.68) (Appendix 2). However, 

HadGEM2-ES illustrates a positive correlation over the core domain in July, 

demonstrating that the Earth system model is capturing part of the temperature 

variability.  

Figure 3.14. Temperature correlations for (a) June, (b) July, (c) August, and (d) 

September between downscaled simulated output and NARR with a statistical 

significance of 90% (stippled) during the monsoon season.  
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 To further elucidate the relationship between NARR and modeled temperatures, 

linear trends were explored in NARR and compared to those from the downscaled model 

output. Initially, an area-average of the two domains was analyzed to obtain an estimate 

of the overall monthly linear trends. For the core monsoon domain, NARR exhibits 

statistically significant warming during May and November of 0.09°C yr−1 and 0.07 yr−1, 

respectively (Table 3.1). No other significant increases in temperature are seen. The 

overall 1979 to 1999 NARR trend indicated no significant change, a similar result 

illustrated by the downscaled models. The monthly trends are not well captured by both 

HadGEM2s. HadGEM2-CC depicts a significant warming trend during the summer and 

fall, while HadGEM2-ES shows a significant warming in late summer, late fall, and 

winter. However, both models do capture the observed warming in November. CNRM-

CM5 downscaled output shows significant warming in May (0.06°C yr−1) similar to 

NARR, but fails to capture any other significant trends in other months.  
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 NARR 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.05 0.04 0.03 -0.03 0.09 0.02 0.03 0.04 0.03 0.02 0.07 -0.04 

P-Val 0.17 0.32 0.37 0.47 0.01 0.57 0.50 0.14 0.36 0.47 0.03 0.31 

             

 CNRM-CM5 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.01 0.04 0.06 0.06 0.06 0.01 0.05 0.04 -0.05 0.03 0.00 0.02 

P-Val 0.85 0.46 0.17 0.18 0.05 0.73 0.14 0.16 0.12 0.32 0.98 0.57 

             

 HadGEM2-CC 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.01 0.11 0.00 -0.02 0.05 0.07 0.10 0.09 0.07 0.07 0.16 -0.02 

P-Val 0.90 0.02 0.95 0.58 0.26 0.06 0.00 0.01 0.07 0.07 0.00 0.67 

             

 HadGEM2-ES 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.07 0.10 0.10 0.05 0.02 0.04 0.06 0.10 0.06 0.05 0.09 0.08 

P-Val 0.22 0.05 0.08 0.19 0.72 0.21 0.18 0.00 0.08 0.29 0.04 0.06 

 

Table 3.1. Monthly 1979–1999 temperature trends for NARR, CNRM-CM5, 

HadGEM2-CC, and HadGEM2-ES over the core domain. Statistically significant trends 

(90% level) are shaded.  

 

 

 

 Linear temperature trends for the extended domain for all four datasets are shown 

in table 3.2. The linear trends for NARR show a significant warming for the months of 

February (0.07 °C yr−1) and May (0.04 °C yr−1). CNRM-CM5 identifies significant 

warming during the spring season (0.6 – 0.7 °C yr−1). However, the HadGEM2s exhibit 

a significant warming through most of the summer to early winter, a warming that is not 

seen in NARR. 

 

 

 
 



 

 83 

 NARR 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.06 0.07 0.03 -0.02 0.05 0.00 -0.01 0.01 -0.01 0.00 0.04 -0.03 

P-Val 0.12 0.08 0.26 0.57 0.08 0.96 0.80 0.53 0.69 0.90 0.13 0.35 

             

  CNRM-CM5 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.01 0.07 0.07 0.07 0.06 0.01 0.02 0.02 -0.03 0.05 0.01 0.00 

P-Val 0.81 0.18 0.06 0.04 0.02 0.59 0.34 0.34 0.35 0.19 0.82 0.93 

             

  HadGEM2-CC 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.02 0.10 -0.03 -0.03 0.01 0.04 0.06 0.06 0.07 0.05 0.13 -0.02 

P-Val 0.66 0.04 0.44 0.49 0.67 0.18 0.04 0.02 0.04 0.13 0.01 0.64 

             

  HadGEM2-ES 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (°C/yr) 0.08 0.07 0.06 0.06 0.03 0.06 0.08 0.12 0.08 0.09 0.08 0.14 

P-Val 0.13 0.14 0.16 0.12 0.45 0.10 0.02 0.00 0.01 0.00 0.06 0.01 

 

Table 3.2. Monthly 1979–1999 temperature trends for NARR, CNRM-CM5, 

HadGEM2-CC, and HadGEM2-ES over the extended domain. Statistically significant 

trends (90% level) are shaded. 

 

 Figure 3.15 shows the temperature trends over the 21-year period for NARR and 

downscaled model output for the monsoon season.  Significant warming trends during 

the monsoon season occurred over the core domain during August and September for 

NARR. Also, the largest warming trend for NARR occurred during February over 

Oklahoma and Kansas, while a significant cooling trend occurred during December 

throughout the southwest U.S., evident in the area-averaged results (Table 3.2). CNRM-

CM5 downscaled output captures the spatial warming trend during February throughout 

Kansas and Oklahoma, as well as the warming over the Sierra Madre Occidental in 
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August (Figure 3.15, Appendix 2). However, it fails to capture any of the significant 

warming or cooling during late fall and early winter in NARR. Regions of significant 

warming towards the western U.S. are demonstrated during March and May, a signal not 

evident in the reanalysis product. In comparison, HadGEM2-CC downscaled model 

illustrates the largest warmest trend during November, evident in Table 3.2 with an area-

averaged warming of 0.13°C yr−1 (Appendix 2). During most of the monsoon season, a 

large region of significant warming is evident, especially throughout the core domain 

(Figure 3.15). The significant cooling in December is not well captured in the region, 

while the large magnitude of warming in February in NARR is shifted towards Arizona 

and west Texas in HadGEM2-CC.
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Figure 3.15. Monthly temperature trends for (a) June, (b) July, (c) August, and (d) September. Stippled regions indicate 

statistically significance (90% level) during the monsoon season. 
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In general, the spatial warming in the model is overestimated compared to NARR. The 

general trend for HadGEM2-ES shows significant warming during many of the months 

(Figure 3.15, Appendix 2). A large region of significant warming is simulated during the 

months of July, September, and October, which is not evident in NARR. The November 

warming pattern over the core monsoon domain is partly captured in HadGEM2-ES; 

however, the largest warming trend in February is not well captured in the model in 

terms of its spatial distribution. Systematic biases in temperature means and extremes 

appear in all CMIP5 models, which may be related to the land hydrology that affects the 

surface energy budget in drier regions (Sheffield et al., 2013). Furthermore, previous 

analyses have shown western North American to have a warm bias both in CNRM-CM5 

and HadGEM2-ES during the summer months (Sheffield et al., 2013). The trend results 

support the temperature biases found within previous CMIP5 analyses, illustrating 

potential in identifying the shortcomings in simulating accurate climate conditions and 

systematic biases.   

 

III.4.4 Spatial Precipitation Patterns 

 To further assess the ability of the downscaled model output to simulate NARR 

precipitation, we calculate the differences between the model and observations (Figure 

3.16, Appendix 2). The spatial precipitation difference patterns are similar for all 

models, with only slight local differences. A spatial dry bias throughout the southern 

Chihuahua Desert is evident during January in CNRM-CM5 and HadGEM2-ES, while 

HadGEM2-CC illustrates no significant difference (Appendix 2). However, the 

HadGEM2s simulate a dry bias throughout Texas during March that does not appear in 
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CNRM-CM5, while a wet bias is observed throughout all downscaled models over west 

Texas during April. During the initial stages of the monsoon season (June), a significant 

precipitation bias is seen over the Sierra Madre Occidental and Sierra Madre Oriental 

mountains, reaching up to ~30 mm/month (Figure 3.16). Also, HadGEM2-ES 

demonstrates a strong significant dry bias over Oklahoma and Texas. During the early 

stages of the monsoon season, an inverse effect occurs as precipitation builds over 

Mexico and precipitation decreases in the U.S. Great Plains. All three downscaled 

models show this seasonal pattern (Figure 3.3, Appendix 2), however, HadGEM2-ES 

overestimates the lower precipitation in the U.S. Great Plains. The persistent wet bias 

over the mountainous regions of Mexico continues until September, a signal that has 

been observed in many CMIP5 models. Furthermore, these biases have also been noted 

in other monsoon systems, partly related to the vegetation distribution configurations of 

the HadGEM2s (Martin and Levin, 2011). During the winter months, a wet bias is 

simulated over the coastal ranges of California, as well as a dry bias over the Sacramento 

Valley. The wet and dry biases are largely over steep terrain, an issue many models face 

due to poor orographic representation. Previous analysis has shown that most CMIP5 

models capture the Intertropical Convergence Zone (ITCZ), a key component in the 

progression of the NAMS (Sheffield et al., 2013). Furthermore, HadGEM2-ES has 

shown to have the lowest RMSE scores over a similar core domain for annual 

precipitation (Sheffield et al., 2013). However, a percent bias of 40.4, 44.8, and 37.9 

over the core monsoon region was found for CNRM-CM5, HadGEM2-CC, HadGEM2-

ES, respectively (Sheffield et al., 2013). Our results support previous analyses of the 
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overestimation of precipitation due to the timing of the monsoon system. However, all 

three models have shown to improve the precipitation shifts from their predecessor, 

CMIP3 (Geil et al., 2013, Sheffield et al., 2013).  

 

 

 

 
Figure 3.16. Monthly precipitation differences (mm/month) for (a) June, (b) July, (c) 

August, and (d) September between the downscaled simulated output and NARR with a 

statistical significance of 90% (stippled).  

 

 

 

 The differences between modeled precipitation simulations and NARR based on 

RMSD illustrate a higher disagreement for the downscaled model output, compared to 

temperature RMSD. Greater disagreement between all downscaled model and reanalysis 

output is evident over northern California from November to March, exceeding RMSD 
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values of 160 mm/month (Appendix 2). During the pre-monsoon season, in CNRM-

CM5, the RMSD in precipitation illustrate values between 0 to 40 mm/month over the 

southwest U.S., with increased disagreement over Texas and Oklahoma by about 80 to 

100 mm/month. This disagreement over Texas is less pronounced in HadGEM2-CC 

during April, while HadGEM2-ES shows a more pronounced disagreement. During the 

monsoon season, substantial differences are observed over the steep terrain of the Sierra 

Madre Occidental, with values reaching up to ~120 mm/month (Figure 3.17). As the 

monsoon system retreats, HadGEM2-CC exhibits the greatest disagreement over Texas. 

During the winter season, isolated spurious differences appear, which are evident in all 

the models.  
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Figure 3.17. Precipitation root mean square difference (mm/month) for (a) June, (b) 

July, (c) August, and (d) September between downscaled model output and NARR 

during the monsoon season. 

Pearson correlation coefficients between NARR and downscaled model 

precipitation for the monsoon season are shown in figure 3.18. Unlike temperature 

correlations, the spatial patterns from all three downscaled models differ in terms of their 

magnitudes and patterns. CNRM-CM5 exhibits a good agreement with NARR, as also 

shown in the monthly climatologies. During January, March, and May, a strong positive 

correlation is demonstrated across the southwest U.S (Appendix 2). Positive correlations 

in March extend over multiple states across the northern parts of the extended domain, 

while positive correlations are constrained over the Arizona/New Mexico (AZ/NM) 
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border during May. Furthermore, the highest (0.82) and lowest (–0.58) correlations are 

also found during May. During the initial stages of the monsoon season (June), no 

significant relationship is demonstrated over the core domain (Figure 3.18). However, a 

negative correlation is demonstrated in July, illustrating that CNRM-CM5 cannot 

capture the seasonal rains that usually occur during this time period in the southwest 

U.S. By August and September, little to no significant relationship is seen; however, a 

significant positive relationship during September over the southwest does show that 

CNRM-CM5 can capture the decreasing precipitation, or decay phase of the monsoon 

system. Early fall to mid-winter illustrates a general negative relationship with NARR, 

again revealing shortcomings in CNRM-CM5.  

 The downscaled HadGEM2-CC illustrates different correlation patterns when 

compared to CNRM-CM5 monthly correlations (Figure 3.18, Appendix 2). A positive 

relationship is found during April over the Chihuahua Desert and Sierra Madre Oriental 

mountains, similar to CNRM-CM5. Also, it is during this month that HadGEM2-CC 

demonstrates the highest correlation (0.79). In contrast to CNRM-CM5, the largest 

negative relationship (–0.68) is demonstrated during the month of July over Oklahoma 

(Figure 3.18). During July and August, a significant positive signal is illustrated 

throughout the Sierra Madre Oriental Mountains in HadGEM2-CC, while June and 

September demonstrate a negative relationship over Texas and western U.S., 

respectively. Little to no significant correlation are found over the Sierra Madre 

Occidental and AZ/NM region during the monsoon season, suggesting that the model 

cannot fully represent precipitation in steep terrain, despite the statistical downscaling.  
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HadGEM2-ES illustrates a different pattern of correlation when compared to 

CNRM-CM5 and HadGEM2-CC. Significant positive correlations are demonstrated 

throughout the Sierra Madre Oriental and Sierra Madre Occidental during the mid-winter 

and spring months (Appendix 2). However, the maximum significant correlation is in 

April (0.90), similar to HadGEM2-CC. During the monsoon season, the only significant 

relationship is illustrated during the month of July over the Sierra Madre Occidental 

(Figure 3.18), suggesting the model can simulate the interannual precipitation that 

progress over the complex terrain. 

Figure 18. Monthly precipitation correlations for (a) June, (b) July, (c) August, and (d) 

September between the downscaled model output and NARR with a statistical 

significance of 90% (stippled).  
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To further quantify the performance of the downscaled models, monthly area-

averaged linear trends for precipitation over the core and extended domain are 

calculated (Tables 3.3 and 3.4). NARR indicates significant decreases in January (1.33 

mm yr−1) and October (1.02 mm yr−1). The drying trend observed in January is partially 

captured (0.99 mm yr−1) but shows a wetting trend during November (1.02 mm yr−1) for 

CNRM-CM5. No significant drying trend is evident in either HadGEM2 models. 

NARR 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) -1.33 -0.16 -0.42 -0.34 -0.21 -0.65 -1.26 -1.14 -1.09 -1.02 -0.20 -0.77 

P-Value 0.05 0.58 0.19 0.22 0.57 0.31 0.18 0.12 0.14 0.09 0.62 0.36 

CNRM-CM5 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) -0.99 -0.31 0.47 -0.40 0.28 0.81 -0.91 0.66 0.94 0.16 1.02 0.83 

P-Value 0.07 0.52 0.14 0.14 0.41 0.21 0.38 0.55 0.35 0.84 0.03 0.38 

HadGEM2-CC 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) 0.04 0.32 0.07 -0.05 -0.19 -0.48 -1.28 -0.12 -0.51 -0.42 -0.20 0.16 

P-Value 0.96 0.48 0.83 0.80 0.37 0.52 0.16 0.90 0.60 0.52 0.51 0.82 

HadGEM2-ES 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) 0.25 -0.12 0.07 -0.18 0.10 1.04 -0.35 -1.42 0.92 0.40 -0.14 0.45 

P-Value 0.66 0.80 0.85 0.53 0.77 0.11 0.73 0.16 0.38 0.63 0.76 0.49 

Table 3.3. Monthly precipitation trends (mm/month), from 1979 to 1999, for NARR, 

CNRM-CM5, HadGEM2-CC, and HadGEM2-ES over the core domain. Statistically 

significant trends (90% level) are shown in salmon shading. 
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For the extended domain, NARR illustrated no significant wetting or drying 

trend in any month. However, all three models illustrate significant wetting or drying 

trends not evident in NARR precipitation, with HadGEM2-ES showing significant 

precipitation increases in February (0.74 mm yr−1) and decreases in August (0.97 mm 

yr−1). 

NARR 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) -0.27 0.13 -0.52 0.22 -0.30 0.05 -0.09 0.00 -0.05 -0.42 -0.31 -0.17 

P-Value 0.61 0.79 0.23 0.40 0.41 0.88 0.80 0.99 0.87 0.39 0.42 0.74 

CNRM-CM5 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) -0.76 -0.44 -0.16 0.53 0.15 0.23 -0.15 0.70 0.25 -0.87 0.42 1.05 

P-Value 0.17 0.27 0.78 0.19 0.70 0.65 0.81 0.31 0.63 0.15 0.31 0.04 

HadGEM2-CC 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) -0.43 0.72 0.67 0.11 0.36 0.07 -1.21 -0.19 -0.63 -0.05 -0.60 0.37 

P-Value 0.52 0.24 0.16 0.77 0.38 0.91 0.02 0.75 0.35 0.94 0.13 0.45 

HadGEM2-ES 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Trend (mm/yr) 0.16 0.74 0.59 -0.65 0.12 -0.45 -0.74 -0.97 0.18 -0.27 -0.37 0.04 

P-Value 0.80 0.09 0.19 0.12 0.81 0.41 0.23 0.08 0.69 0.66 0.44 0.95 

Table 3.4. Monthly precipitation trends (mm/month), from 1979 to 1999, for NARR, 

CNRM-CM5, HadGEM2-CC, and HadGEM2-ES over the extended domain. 

Statistically significant trends (90% level) are shown in salmon shading. 

Monthly linear precipitation trends for NARR, CNRM-CM5, HadGEM2-CC, 

and HadGEM2-ES are compared (Figure 3.19). During the monsoon season, NARR 
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illustrates decreasing precipitation over the Sierra Madre Occidental and Chihuahua 

Desert, while significant increases in precipitation are established during July over 

portions of New Mexico. Similarly, significant drying is demonstrated over the Sierra 

Madre Occidental during October and January (Appendix 2). CNRM-CM5 does capture 

some of the interannual drying in January, but fails to reproduce any of the significant 

NARR trend patterns (Appendix 2). During the monsoon season, CNRM-CM5 shows no 

significant trend until August and September, at which time positive trends appear over 

Texas/Southern California and Chihuahua desert. Furthermore, positive trends over 

Mexico and the western U.S. are observed during November and December, a feature 

not illustrated in the reanalysis. A similar lack of consistent spatial trend patterns is 

observed for HadGEM2-CC monthly precipitation. No significant drying trend is evident 

during the monsoon season except for July, when the pattern stretches across the 

southwest U.S. (Figure 3.19). However, this pattern is not demonstrated during July for 

NARR precipitation. A significant wetting trend is also seen during February and March, 

but again is not illustrated in the reanalysis. Finally, HadGEM2-ES monthly 

precipitation trends establish a similar pattern as the other two downscaled model output 

(Figure 3.19, Appendix 2). Still, a drying trend over the Chihuahua Desert is revealed in 

the downscaled model during July, comparable to NARR. However, HadGEM2-ES fails 

to capture many of the drying patterns throughout the months. 
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Figure 3.19. Monthly precipitation trends for (a) June, (b) July, (c) August, and (d) September for NARR and downscaled 

model output. Stippled regions indicate statistically significance (90% level).
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III.4.5 Model Evaluation

Finally, to further quantify the downscaled GCMs’ ability to accurately simulate 

seasonal and monthly temperature and precipitation characteristics, skill scores were 

created and descriptive statistics summarized via box-and-whisker plots. The skill of 

CNRM-CM5 for temperature shows good agreement with NARR during MAM and 

SON (0.93, 0.93), as well as for the annual average (Figure 3.20). In comparison, JJA 

and JJAS show lower skill scores, but still illustrate good agreement. July temperature 

depicts the lowest skill score of the three models (0.77), also contributing to the lowest 

seasonal (JJA) skill score. Furthermore, the monsoon-season temperature skill scores 

illustrate lower values when compared to other seasons. 

Figure 3.20. Annual and seasonal temperature skill scores for downscaled output from 

CNRM-CM5, HadGEM2-CC, and HadGEM2-ES. 



 

 100 

 The skill for precipitation depicts slightly greater agreement during MAM 

(~0.93) than temperature, but shows overall good agreement with NARR. This general 

pattern is demonstrated for all downscaled models, meaning good annual and seasonal 

performance is illustrated in the downscaled model simulations. Monthly precipitation 

skill scores show May to have the highest agreement with NARR, evident also in the 

seasonal MAM skill score (Appendix 2). Both CNRM-CM5 and HadGEM2-ES show 

the lowest agreement during January (0.62, 0.59), whereas HadGEM2-CC exhibits the 

lowest agreement during December (0.69). However, all three downscaled models depict 

good agreement with NARR.  

 

 

 

  

 

Figure 3.21. Annual and seasonal skill scores for precipitation for downscaled CNRM-

CM5, HadGEM2-CC, and HadGEM2-ES. 
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III.5 Discussion and Conclusion 

This objective assessed the ability of statistically downscaled model output (CNRM-

CM5, HadGEM2-CC, and HadGEM2-ES) to capture observed NARR precipitation and 

temperature characteristics from 1979 to 1999, based on numerous spatial and temporal 

analyses. The results of the analysis illustrate: 

1. Seasonal spatial climatologies (MAM, JJA, SON) demonstrate downscaled 

model output improves the representation of temperature and precipitation when 

compared to coarsely resolved models.  

2. Monthly downscaled model climatologies of temperature and precipitation 

exhibit a close relationship with NARR temperature and precipitation over the 

core and extended monsoon domain, demonstrating improved model 

performance when statistical downscaling is implemented.  

3. Interannual variability of downscaled temperature model output shows an 

improved performance during the monsoon season; however, precipitation 

remains problematic. 

4. Statistical metrics reveal modeled temperatures to be in agreement with NARR, 

with individual downscaled models illustrating local-scale differences. 

5. Model precipitation simulates a wet bias over high terrain for all downscaled 

models, with greater disagreement compared to temperature. 

6. Seasonal skill scores and descriptive statistics for all downscaled model 

temperatures illustrate good agreement with NARR. Seasonal results for 
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precipitation show slightly worse agreement, revealing a precipitation bias over 

the core monsoon region.  

Understanding the dynamical processes of the monsoon system and its response to 

climate change requires GCMs to have accurate model parameterizations and to 

realistically resolve fine-scale topography. CMIP5 original (coarse resolution) models 

have difficulty in simulating accurate monsoon characteristics, evident from many 

previous studies (Cook and Seager 2013, Geil et al., 2013, Liang et al., 2008). Castro et 

al. (2012) have shown the benefit of using higher resolution models to draw improved 

conclusions of regional climate variability and prediction. This study provides an 

assessment of statistically downscaled models for potential use in future climate 

projections. Based on our analysis, the three downscaled models can resolve historical 

temperature characteristics in the NAMS region. Different metrics implemented 

throughout our study to evaluate modeled temperature show good agreement with the 

reanalysis product; however, the models still overestimate some of the warming trends 

over the core monsoon domain. Although higher resolution has improved simulated 

temperatures, the remaining warm bias can partly be attributed to the steep terrain of the 

Sierra Madre Occidental. This can also be in combination with the timing of the 

monsoon system that has been shown to have a delayed onset and demise, as well higher 

precipitation than observations. Simulated terrain also has an impact on the spatial 

inconsistencies of simulated precipitation. This is evident in the modeled precipitation, 

but there are improvements over the coarsely resolved precipitation. Geil et al. (2013) 

have shown that the models that best represent the seasonal shifts of the monsoon ridge 
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and subtropical highs over the North Pacific and Atlantic tend to have the least issues 

during the end of the monsoon season. This, in turn, can provide an avenue to guide 

improvements in representing precipitation features and seasonality. Statistical 

downscaling provides improvements for understanding the dynamical processes that 

influence the NAMS. Although this study does not take into account dynamical 

processes, it is crucial to improve the representation of large-scale features to fully 

capture the monsoon system. The statistical downscaling technique uses coarse-scale 

CMIP5 output to create downscaled output, reflecting the biases within precipitation and 

temperature in our study. We have shown both improvements and limitations to 

statistically downscaled model output. There remains room for improvement, including 

even finer scale resolution to better simulate local scale processes; however, the 

downscaled output serves as a viable tool to investigate NAMS changes for both 

historical and future time periods.  
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CHAPTER IV  

SUMMARY AND CONCLUSIONS 

 

 This research addresses the question, are statistically downscaled GCMs viable 

tools for assessments of the NAMS?  The objectives for our study not only address our 

overarching question, but also investigate the validity of other widely used datasets. 

Both reanalyses and GCMs have been utilized extensively within the climate community 

as research tools to elucidate dynamical processes in a historical and future setting, 

including for processes such as the NAMS. Reanalyses vary in terms of their input 

variables, resolution, and model structure, making comparisons between products and 

studies difficult. Within our study, we focus on temperature and precipitation over the 

southwest U.S. and western Mexico as they represent key variables within the monsoon 

system. However, precipitation has been shown to be less of a reliable forecast 

parameter and is highly model dependent, whereas temperature contains fewer problems 

as it is assimilated directly into the reanalysis system (Janowiak et al., 2008).  The 

objective for chapter II focuses on the ability of two highly resolved, gridded reanalyses 

(North American Regional Reanalysis; NARR, European Centre for Medium-Range 

Weather Forecasts (ECMWF) Interim Reanalysis; ERA-I) in simulating these two 

variables in comparison to in-situ observations (Global Historical Climatology Network; 

GHCN) through goodness-of-fit measurements. GCMs have been incorporated in many 

studies that focus on understanding historical and future climate, including the 

Intergovermental Panel on Climate Change Assessment Reports. This information is 
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then conveyed to a wide range of audiences including water managers and decision 

makers. The NAMS serves as a key component in the livelihoods of many communities, 

thus making future climate projections critical for adaptation strategies. A drawback that 

hinders the confidence in many climate projections is model resolution. Downscaling 

methodologies, including statistical downscaling, have been an avenue used to obtain 

fine-scale model results with the goal of capturing local to regional scale processes. 

Chapter III therefore centers on the evaluation of statistically downscaled model output 

in capturing temperature and precipitation characteristics related to the NAMS in 

comparison to NARR, and to their coarse counterparts.  

 

IV.1 Assessment of Reanalysis Products  

 Two reanalysis products, the NARR and ERA-I, are compared with GHCN 

station based observations to assess their ability to simulate temperature and 

precipitation over the monsoon-affected region. Previous studies have utilized both 

products in historical and future simulations of the NAMS, including downscaling 

methodologies (Chan and Misra, 2011, Torres-Alavez et al., 2014). Both products are 

temporally complete and are initiated from 1979; however, NARR is on a finer 

resolution (0.3°) that spans North America. In comparison, ERA-I is on a larger grid 

resolution (0.75°) but spans the entire globe. Furthermore, both products differ in their 

precipitation estimates, as ERA-I uses microphysical processes in clouds, whereas 

NARR produces precipitation through assimilation of numerous precipitation products.  
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 The ability of the each reanalysis to simulate precipitation and temperature from 

1980 to 2010 was compared with in-situ observations an extended domain encompassing 

the southwest United States and west Mexico (125°W-96°W, 15°N-42°N). Different 

goodness-of-fit measures, such as Pearson’s correlation coefficient (r), root mean square 

error (RMSE), and index of agreement (d), were used to investigate the association of 

each climate variable with observations at different spatiotemporal scales. In general, 

simulated temperatures for both reanalyses showed similar agreement throughout the 

study region. In comparison, precipitation agreement for the reanalyses varied, with 

NARR illustrating better agreement with observations than ERA-I. Error patterns over 

the Arizona, New Mexico, Colorado, and Utah demonstrate the largest biases relative to 

observations over this region, as well as large biases over steep terrain of the Sierra 

Madre Occidental. Best case precipitation agreement, based on R and RMSE, 

demonstrate NARR to generally better capture the interannual and seasonal variability in 

comparison to ERA-I, while worst case scenarios illustrate a large bias in precipitation 

and temperature for both reanalyses.  

 Overall, the results found of the first objective demonstrate a similar temperature 

agreement for ERA-I and NARR, while simulated precipitation is better captured by 

NARR. Precipitation demonstrates varying degrees of agreement in both NARR and 

ERA-I, signifying the difficulties and errors associated with simulating precipitation. 

However, monsoon season (JJAS) patterns show NARR to have better performance 

when compared to ERA-I. Therefore, NARR was used to represent spatially and 

temporally complete observations for the subsequent model evaluation analyses. 
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IV.2 Assessment of Downscaled CMIP5  

 Statistically downscaled models were compared with a complete reanalysis based 

on the results obtained in Chapter II. Statistical downscaling provides a means to 

interpolate coarse-scaled model output biases to a finer resolution. Based on previous 

literature describing simulations of the NAMS (Cook and Seager, 2013, Geil et al., 

2013), three models were chosen: CNRM-CM5, HadGEM2-CC, and HadGEM2-ES. 

Two domains were identified for evaluation including a core (112°W - 102°W to 25°N-

33°N) and extended region (125°W - 95°W to 25°N - 40°N) to examine temperature and 

precipitation characteristics that are associated with the NAMS. Various statistical 

metrics and reanalysis comparisons, including root-mean-square difference (RMSD), 

correlation coefficients (R), and linear regressions, were quantified over the historical 

time period (1979 – 1999).  

 Statistically downscaled model output demonstrates an improved representation 

of temperature and precipitation when compared to its coarsely resolved counterpart. 

Results for model climatologies over the core and extended domains capture the 

seasonality that is associated with the NAMS, including the rapid precipitation onset in 

June and the decay phase in September. Furthermore, the magnitudes of temperature 

during the summer months are well captured in the downscaled models; however, the 

interannual variability remains problematic for both simulated variables. Also, modeled 

temperature and precipitation illustrate a warm and wet bias over the Sierra Madre 

Occidental for all three models, indicating continued difficulties in simulating 

observations over complex terrain. Descriptive statistics and seasonal skill scores 
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showed the agreement between modeled temperatures and reanalysis was better captured 

than precipitation.  

 Overall, our objective established that statistically downscaled model output 

some of the limitations coarse scaled models illustrated. However, the errors over 

complex terrain still exist, leading to increased precipitation and temperature within the 

core monsoon domain. Model resolution has continued to be an issue in capturing 

regional to local scale processes that impact precipitation and temperature 

characteristics. Thus, our results reveal the need for improvements in simulating 

complex terrain to better capture precipitation characteristics. However, addressing the 

issue of high terrain is limited, as correct parameterization in simulating precipitation 

features is key within GCMs. Improved sub-grid scale processes, in combination with 

finer resolution, will allow for NAMS variability to be better simulated and thus provide 

greater confidence in future climate projections. Statistical downscaling provides an 

avenue to improve coarse-scaled model output to a finer resolution.  

 

IV.3 Final Conclusions  

 Our study assessed two different sets of products that have been extensively 

utilized within the climate community. Two reanalysis datasets and three statistically 

downscaled models were assessed to evaluate their ability in capturing temperature and 

precipitation characteristics associated with the NAMS. Results suggest that temperature 

is far simpler to simulate in comparison to precipitation; however, complex terrain 

weakens both the reanalysis and downscaled models’ abilities to simulate the climate 
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variables of interest. Nevertheless, statistically downscaled models provide an avenue 

for improved future climate projections as they have addressed various spatiotemporal 

biases in coarse scaled model output. GCM projections have shown a systematic delay in 

the onset, peak, and decay of the NAMS due to enhanced convective barriers (Cook and 

Seager, 2013; Grantz et al., 2007). Furthermore, Cook et al. (2015) have recently 

revealed a climatic shift with respect to the last millennium, using a combination of 

drought reconstruction and 17 CMIP5 GCMs. The mean state of drought in the late 21st 

century over the Southwest and Central Plains will likely exceed severe megadrought 

periods of the medieval era in both high and moderate emission scenarios (Cook et al., 

2015). These severe droughts can have devastating consequences to the water resources 

throughout the Southwest, placing a substantial burden on water managers and decision 

makers. Thus, the use of statistically downscaled models can serve as a viable tool in 

expanding the uncertainty and knowledge gaps concerning the NAMS, including the 

need for improved climate projections to aid in future adaptation.  
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APPENDIX 1 

 

 

 

Figure A1-1. Annual temperature (left; °C) and precipitation (right; mm/month) MAE 

for NARR (a) and ERA-I (b).  

 

  
Figure A1-2. Annual temperature (left; °C) and precipitation (right; mm/month) SDB 

for NARR (a) and ERA-I (b).  
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Figure A1-2 Continued. Annual temperature (left; °C) and precipitation (right; 

mm/month) SDB for NARR (a) and ERA-I (b).  

 Figure A1-3. Seasonal temperature (left; °C) and precipitation (right; mm/month) MAE 

for NARR (a) and ERA-I (b). 
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 Figure A1-4. Seasonal temperature (left; °C) and precipitation (right; mm/month) SDB 

for NARR (a) and ERA-I (b).  

 

 
Figure A1-5. Best (left) and worst (right) case annual temperature grid cell time series 

for NARR (a) and ERA-I (b) using correlation coefficients as the determinant. 
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Figure A1-5 Continued. Best (left) and worst (right) case annual temperature grid cell 

time series for NARR (a) and ERA-I (b) using correlation coefficients as the 

determinant. 

Figure A1-6. Best (left) and worst (right) case annual precipitation grid cell time seriess 

for NARR (a) and ERA-I (b) using correlation coefficients as the determinant. 
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Figure A1-7. Best (left) and worst (right) case seasonal temperature grid cell time series 

for NARR (a) and ERA-I (b) using correlation coefficients as the determinant. 

 

 

 

Figure A1-8. Best (left) and worst (right) case seasonal precipitation grid cell time series 

for NARR (a) and ERA-I (b) using correlation coefficients as the determinant. 
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Figure A1-9. Elevation differences from NARR (a) and ERA-I (b) against GHCN 

observations in meters. Positive differences illustrate higher elevations while negative 

differences show lower elevations in the reanalyses. 
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APPENDIX 2 

 

  

Figure A2-1. JJA temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled HadGEM2-CC output, (b) original HadGEM2-CC output, and 

(c) NARR observations from 1979 to 1999.  

 

 

Figure A2-2. JJA temperature (left) and precipitation (right) spatial differences between 

downscaled HadGEM2-CC output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-3. JJA temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled HadGEM2-ES output, (b) original HadGEM2-ES output, and 

(c) NARR observations from 1979 to 1999.  

Figure A2-4. JJA temperature (left) and precipitation (right) spatial differences between 

downscaled HadGEM2-ES output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-5. MAM temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled CNRM-CM5 output, (b) original CNRM-CM5 output, and (c) 

NARR observations from 1979 to 1999.  

 

 

Figure A2-6. MAM temperature (left) and precipitation (right) spatial differences 

between downscaled CNRM-CM5 output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-7. MAM temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled HadGEM2-CC output, (b) original HadGEM2-CC output, and 

(c) NARR observations from 1979 to 1999.  

 

 

Figure A2-8. MAM temperature (left) and precipitation (right) spatial differences 

between downscaled HadGEM2-CC output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-9. MAM temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled HadGEM2-ES output, (b) original HadGEM2-ES output, and 

(c) NARR observations from 1979 to 1999.  

 

 

Figure A2-10. MAM temperature (left) and precipitation (right) spatial differences 

between downscaled HadGEM2-ES output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-11. SON temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled CNRM-CM5 output, (b) original CNRM-CM5 output, and (c) 

NARR observations from 1979 to 1999.  

Figure A2-12. SON temperature (left) and precipitation (right) spatial differences 

between downscaled CNRM-CM5 output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-13. SON temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled HadGEM2-CC output, (b) original HadGEM2-CC output, and 

(c) NARR observations from 1979 to 1999.  

 

 

Figure A2-14. SON temperature (left) and precipitation (right) spatial differences 

between downscaled HadGEM2-CC output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-15. SON temperature (left) and precipitation (right) spatial patterns for (a) 

statistically downscaled HadGEM2-ES output, (b) original HadGEM2-ES output, and 

(c) NARR observations from 1979 to 1999.  

 

 

Figure A2-16. SON temperature (left) and precipitation (right) spatial differences 

between downscaled HadGEM2-ES output and NARR with 90% statistical significance 

(stippled).   
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Figure A2-17. JJA temperature (left) and precipitation (right) interannual variability of 

downscaled CNRM-CM5 output (blue), CNRM-CM5 original output (red), and NARR 

(green) for the core (a) and extended domain (b). 

 

 

Figure A2-18. JJA temperature (left) and precipitation (right) interannual variability of 

downscaled HadGEM2-CC output (blue), HadGEM2-CC original output (red), and 

NARR (green) for the core (a) and extended domain (b). 
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Figure A2-19. JJA temperature (left) and precipitation (right) interannual variability of 

downscaled HadGEM2-ES output (blue), HadGEM2-ES original output (red), and 

NARR (green) for the core (a) and extended domain (b). 
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Figure A2-20. Annual temperature box-and-whisker plots for the core (left) and 

extended (right) domain. The 25th and 75th percentiles are shown by the edges of the 

boxes, the whiskers represent the 5th and 95th percentiles, and the medians are plotted as 

horizontal lines within the boxes. The asterisks illustrate the maximum and minimum 

temperature, average represents a black dot, while the yellow dots represent significant 

differences at the 90% level. 

Figure A2-21. Similar to Figure 22, except for MAM. 
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Figure A2-22. Similar to Figure 22, except for JJA. 

 

 

Figure A2-23. Similar to Figure 22, except for SON. 
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Figure A2-24. Annual precipitation box-and-whisker plots for the core (left) and 

extended (right) domain. The 25th and 75th percentiles are shown by the edges of the 

boxes, the whiskers represent the 5th and 95th percentiles, and the medians are plotted as 

horizontal lines within the boxes. The asterisks illustrate the maximum and minimum 

precipitation, average represents a black dot, while the yellow dots represent significant 

differences at the 90% level. 

 

  
Figure A2-25. Similar to Figure 26, except for MAM. 
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Figure A2-26. Similar to Figure 26, except for JJA. 

 

 

Figure A2-27. Similar to Figure 26, except for SON. 
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Figure A2-28. Monthly temperature climatology differences between downscaled 

GCMs’ and NARR output for the (a) core and (b) extended monsoon domain from 1979 

to 1999. Stars denote 90% significance. 
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Figure A2-29. Monthly precipitation climatology differences between downscaled 

GCMs’ and NARR output for the (a) core and (b) extended monsoon domain from 1979 

to 1999. Stars denote 90% significance. 
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Figure A2-30. Interannual temperature variability at each month, from 1979 to 1999, for 

the core monsoon domain in the CNRM-CM5 model. NARR (green), downscaled 

CNRM-CM5 output (blue), and original CNRM-CM5 output (red) are shown.  
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Figure A2-31. Interannual temperature variability at each month, from 1979 to 1999, for 

the core monsoon domain in the HadGEM2-CC model. NARR (green), downscaled 

HadGEM2-CC output (blue), and original HadGEM2-CC output (red) are shown.  
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Figure A2-32. Interannual temperature variability at each month, from 1979 to 1999, for 

the core monsoon domain in the HadGEM2-ES model. NARR (green), downscaled 

HadGEM2-ES output (blue), and original HadGEM2-ES output (red) are shown.  
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Figure A2-33. Similar to Figure 30, except for the extended domain.  
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Figure A2-34. Similar to Figure 31, except for the extended domain. 
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Figure A2-35. Similar to Figure 32, except for the extended domain. 
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Figure A2-36. Interannual precipitation variability at each month, from 1979 to 1999, 

for the core monsoon domain in the CNRM-CM5 model. NARR (green), downscaled 

CNRM-CM5 output (blue), and original CNRM-CM5 output (red) are shown.  
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Figure A2-37. Interannual precipitation variability at each month, from 1979 to 1999, 

for the core monsoon domain in the HadGEM2-CC model. NARR (green), downscaled 

HadGEM2-CC output (blue), and original HadGEM2-CC output (red) are shown.  
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Figure A2-38. Interannual precipitation variability at each month, from 1979 to 1999, 

for the core monsoon domain in the HadGEM2-ES model. NARR (green), downscaled 

HadGEM2-ES output (blue), and original HadGEM2-ES output (red) are shown.  
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Figure A2-39. Similar to Figure 36, except for the extended domain. 
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Figure A2-40. Similar to Figure 37, except for the extended domain. 
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Figure A2-41. Similar to Figure 38, except for the extended domain. 
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Figure A2-42. Monthly temperature differences between CNRM-CM5 output and 

NARR with a statistical significance of 90% (stippled). 
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Figure A2-43. Monthly temperature differences between HadGEM2-CC output and 

NARR with a statistical significance of 90% (stippled). 
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Figure A2-44. Monthly temperature differences between HadGEM2-ES output and 

NARR with a statistical significance of 90% (stippled). 
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Figure A2-45. Monthly temperature root mean square difference (deg C) between the 

CNRM-CM5 downscaled output and NARR. 
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Figure A2-46. Monthly temperature root mean square difference (deg C) between the 

HadGEM2-CC downscaled output and NARR. 
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Figure A2-47. Monthly temperature root mean square difference (deg C) between the 

HadGEM2-ES downscaled output and NARR. 
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Figure A2-48. Monthly temperature correlations between CNRM-CM5 output and 

NARR with a statistical significance of 90% (stippled).  
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Figure A2-49. Monthly temperature correlations between HadGEM2-CC output and 

NARR with a statistical significance of 90% (stippled).  
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Figure A2-50. Monthly temperature correlations between HadGEM2-ES output and 

NARR with a statistical significance of 90% (stippled).  
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Figure A2-51. Monthly temperature trends for NARR. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-52. Monthly temperature trends for CNRM-CM5. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-53. Monthly temperature trends for HadGEM2-CC. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-54. Monthly temperature trends for HadGEM2-ES. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-55. Monthly precipitation differences (mm/month) between CNRM-CM5 

output and NARR with a statistical significance of 90% (stippled).  
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Figure A2-56. Monthly precipitation differences (mm/month) between HadGEM2-CC 

output and NARR with a statistical significance of 90% (stippled).  
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Figure A2-57. Monthly precipitation differences (mm/month) between HadGEM2-ES 

output and NARR with a statistical significance of 90% (stippled).  
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Figure A2-58. Monthly precipitation root mean square difference (mm/month) between 

the CNRM-CM5 downscaled output and NARR. 
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Figure A2-59. Monthly precipitation root mean square difference (mm/month) between 

the HadGEM2-CC downscaled output and NARR. 
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Figure A2-60. Monthly precipitation root mean square difference (mm/month) between 

the HadGEM2-ES downscaled output and NARR. 
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Figure A2-61. Monthly precipitation correlations between CNRM-CM5 output and 

NARR with a statistical significance of 90% (stippled).  
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Figure A2-62. Monthly precipitation correlations between HadGEM2-CC output and 

NARR with a statistical significance of 90% (stippled).  
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Figure A2-63. Monthly precipitation correlations between HadGEM2-ES output and 

NARR with a statistical significance of 90% (stippled).  
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Figure A2-64. Monthly precipitation trends for CNRM-CM5. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-65. Monthly precipitation trends for CNRM-CM5. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-66. Monthly precipitation trends for HadGEM2-CC. Stippled regions 

indicate statistically significance (90% level).  
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Figure A2-67. Monthly precipitation trends for HadGEM2-ES. Stippled regions indicate 

statistically significance (90% level).  
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Figure A2-68. Monthly skill scores for temperature for the downscaled CNRM-CM5, 

HadGEM2-CC, and HadGEM2-ES. 
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Figure A2-69. Monthly skill scores for precipitation for the downscaled CNRM-CM5, 

HadGEM2-CC, and HadGEM2-ES. 




