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ABSTRACT 

 

China has experienced substantial land cover changes for hundreds of years, such 

as deforestation, agricultural expansion, and urbanization. These land cover changes can 

modify the physical and thermodynamic characteristics of the land surface, thereby 

influencing climate at regional or broader scales. In this dissertation, I first examine the 

performance of state-of-the-art general circulation models to assess their ability to 

skillfully simulate climate in China. Then, the CESM and WRF models are used to 

investigate specific biogeophysical effects of land cover changes—including vegetation 

changes and urbanization.  

Multimodel ensembles of CMIP5 models are found to well capture the spatial 

patterns of seasonal and annual temperature and precipitation. However, they contain 

substantial cold biases over the Tibetan Plateau especially in the cold season, and 

overestimate precipitation in most regions of China, especially along the eastern edge of 

the Tibetan Plateau. Four CMIP5 models are identified due to their better simulation of 

historical surface air temperature variability over China: MPI-ESM-LR, CanESM2, 

MIROC-ESM, and CCSM4. Focusing on CCSM4, a subset of CESM, sensitivity analyses 

indicate that, for historical vegetation changes, summer temperatures are regulated by 

evapotranspiration, which can decrease the diurnal temperature range. Decreases in winter 

temperature over northern China are mainly influenced by surface albedo changes. 

Vegetation changes do not exhibit significant impacts on summer precipitation or the East 

Asian summer monsoon, but could strengthen East Asian winter monsoon and decrease 
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winter precipitation in southern China. When urbanization is included, there are more 

significant and extensive impacts on temperature and precipitation in China, including 

greatly increased minimum temperatures and influences on East Asian Monsoon. Future 

climate projection reveals that urbanization produces strong warming effects, up to 1.9°C 

at local scales, which is comparable to the magnitude of greenhouse gas forcing under the 

RCP 4.5 scenario. The impacts of urbanization on precipitation show a combined effect 

from local moisture deficits and large-scale circulation changes.  

In summation, land cover changes play an important role in climate over China. 

Not only vegetation changes, but urbanization also should be included in model 

simulations to provide realistic and complete climatic impacts of land cover changes. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Introduction 

Land cover changes can influence regional climate through modifying the surface 

energy and water fluxes, and can also affect climate at large scales through adjustments in 

atmospheric general circulation (IPCC 2007). With its rapid population growth and 

economic development, China has experienced significant land cover changes, such as 

urbanization (Hua et al. 2008; Zhou et al. 2004), agricultural expansion (Zhang 2000), and 

desertification (Wang et al. 2006a; Xue 1996). Even though there have been several 

studies focusing on land surface-atmosphere interactions through observations (Hua et al. 

2008; Li et al. 2013a; Yang et al. 2009b; Zhang et al. 2005) and numerical modeling (Fu 

2003; Gao et al. 2003; Zheng et al. 2002), there is still limited scientific understanding of 

the impacts of land cover changes on climate in China (Hua and Chen 2013). Model-based 

studies on land-atmosphere interactions rely on the performance of the climate models 

used. The development of the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

promoted improvement of climate models to support the Intergovernmental Panel on 

Climate Change’s (IPCC) Fifth Assessment Report (AR5) (Flato et al. 2013). However, 

there has been little work applying these new climate models to investigate the climate 

variability and possible effects of land cover changes on climate over China. Also, most 

previous studies only considered vegetation changes (Fu 2003; Gao et al. 2003; Zhao and 

Pitman 2005; Zheng et al. 2002) or urbanizations (Feng et al. 2013; Feng et al. 2012; Feng 

et al. 2014; Wang et al. 2012; Wang et al. 2013) individually, however, both land surface 
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alterations have occurred simultaneously and contributed to land cover and land use 

changes. Their joint impacts on historical climate have rarely been compared. Furthermore, 

most previous studies only focused on the impacts of the historical land cover changes on 

climate. Few studies have considered the impacts of land cover changes within future 

climate projections, although land cover changes may have a comparable effect on climate 

to that of increases in greenhouse gases (Chase et al. 2001; Feddema et al. 2005b; Zhao 

and Pitman 2005). In this study, I therefore provide a comprehensive investigation into 

the performance of current GCMs in their ability to simulate climate over China, how land 

cover changes in China have influenced climate in the past, and what their impacts will be 

in the future. The specific objectives to address these overarching goals are to 1) evaluate 

the performance of the state-of-the-art GCMs in China, 2) investigate the climatic impacts 

of historical land cover changes, including both vegetation changes and urbanization over 

China, and 3) estimate the impacts of land cover changes on future climate. This will 

provide a better understanding of the land surface-atmosphere interactions over China, 

and provide a scientific assessment with important implications for agriculture, ecology, 

and water management, all of which are crucial to China’s future. 

 

1.2. Literature Review 

Assessing the climate impacts of land cover change is a vital part of understanding 

climate change. Land cover changes can influence the local, regional, and global climate 

system through a series of biogeophysical and biogeochemical processes that modify the 

exchanges of momentum, energy, and mass between the land surface and the overlying 
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atmosphere (Bonan 2008). Previous studies have shown that historical land cover change 

has affected the climate system at local, regional, and global scales. There are two 

biogeophysical effects on temperature derived from changes in land cover properties: the 

surface albedo effect that modifies the received solar irradiance, and the 

evapotranspiration effect that changes the latent heat flux (Fall et al. 2010; Gibbard et al. 

2005). Several studies suggested that mid-latitude land cover changes from forests to 

croplands can increase the surface albedo and lead to cooling (Betts et al. 2007; Feddema 

et al. 2005a). The IPCC 5th assessment report (AR5) indicated a radiative cooling of 

−0.15 W/m2 from surface albedo changes due to human-induced land cover change since 

1750 (IPCC 2013). On the other hand, studies of deforestation in tropical regions showed 

that deforestation can increase surface temperature through reduced evapotranspiration 

and increased sensible heat flux (Pongratz et al. 2006). Lawrence and Chase (2010) 

suggested that the current global warming has been predominantly driven by this 

evapotranspiration effect, with the albedo forcing playing a secondary role. Precipitation 

impacts of land cover change are not as straightforward as those of temperature, because 

they depend on many more complex factors, such as geographic location, regional 

atmospheric characteristics, area extent of land cover change, and teleconnections (Pielke 

et al. 2007). Swann et al. (2011) suggested that mid-latitude afforestation can lead to a 

decrease in precipitation over parts of the Amazon region and an increase over the Sahel 

and Sahara regions. Lawrence and Chase (2010) found a significant localized and seasonal 

change in precipitation response to land cover change, and specified that the largest 
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decrease is in annual precipitation for the China region, with the largest decrease in 

summer and the smallest in winter.  

Since China has been experiencing dramatic changes in land cover, scientists have 

also recognized land cover impacts on climate at regional and broader scales. Generally, 

two methods have been used to investigate land-atmosphere interactions. The first is an 

observation minus reanalysis (OMR) approach, which exploits the difference between 

directly observed in situ data, and temperature data from atmospheric reanalysis models. 

The reanalysis data used in this approach are insensitive to surface processes associated 

with different land cover types, whereas the in situ observations are strongly influenced 

by surface changes. Therefore the OMR approach allows for an observational 

quantification of surface processes (Kalnay and Cai 2003). By using the OMR method, 

Zhang et al. (2005) suggest that urbanization in southern China, deforestation, and 

desertification in northern China may increase surface temperature, while vegetation cover 

increases may decrease surface temperature over the Yellow River Basin. Yang et al. 

(2009b) also indicate that surface warming is larger in barren and anthropogenically 

developed areas. Smaller warming trends are found in areas with vegetation cover. 

However, this observationally-based method can only examine the relationship between 

temperature and land cover types. Effects of land cover changes on other climatic elements, 

as well as the physical mechanisms of the land-atmosphere interactions, cannot be easily 

explored.  

Climate models coupled with land surface models are commonly used to investigate 

land-atmosphere interactions. Zhao and Pitman (2005) examined climate impacts of land 
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cover change over eastern China and increasing CO2 with a GCM (NCAR CCM3) coupled 

with the Biosphere-Atmosphere Transfer Scheme (BATS). They suggest that land cover 

changes have a comparable effect on climate to that of historical increases in greenhouse 

gases at the regional scale. By using a global atmospheric GCM (CAM4.0) coupled with 

an urban canopy parameterization scheme, Chen and Zhang (2013) found warming effects 

of large-scale urbanization in eastern China and its influence on the East Asian winter 

monsoon. Also, regional models are used to investigate feedbacks of land cover to climate 

at the regional scale. Compared with GCMs, regional climate models allow for a more 

detailed investigation of the interactions between land cover modification and the 

atmospheric conditions, because regional models provide higher spatial resolution and 

capture physical processes and feedbacks occurring at the regional scale, which GCMs are 

not able to describe due to their coarse resolution (Anav et al. 2010; Fu 2003; Li et al. 

2013b; Myoung et al. 2012; Shi and Wang 2003; Wang et al. 2012; Zheng et al. 2002). 

For instance, a regional climate model (RegCM2) coupled with BATS was used to 

estimate the climate effects of historical (Gao et al. 2003) and other possible land cover 

changes such as desertification, afforestation, and vegetation degradation (Zheng et al. 

2002) in China. There is a resulting decrease in mean annual precipitation over northwest 

China and a decrease in temperature in coastal areas as a result of historical land cover 

changes. Vegetation degradation may increase flood events over the Yangtze-Huai River 

valleys and intensify droughts in northern China. 

These model-based studies rely strongly on the skill of climate models at the 

particular study regions. For instance, land surface models are a key component in climate 
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models for simulating the energy, matter, and momentum exchanges between the land 

surface and atmosphere, thereby capturing the climatic responses to land cover changes. 

However, most of the land surface models used in previous studies are out-of-date already, 

because of large uncertainties in modeling soil moisture, soil temperature, and 

evapotranspiration (Abramowitz et al. 2008; Yang et al. 2009a). The IPCC AR5 promoted 

the development of the fifth phase of the Coupled Model Intercomparison Project 

(CMIP5), which is comprised of state-of-the-art GCMs. These climate models have been 

improved and many of them have been expanded into earth system models by adding more 

complex land surface processes that can be important contributors to land-atmosphere 

interactions. However, there has been little work evaluating the performance of these new 

models and applying them to investigate the effects of land cover changes on climate over 

China. 

Vegetation changes, such as deforestation and agricultural expansion, and 

urbanization can be considered as the two most prominent cover changes due to human 

activities. As mentioned before, there are plenty of studies that have discussed the possible 

impacts of vegetation changes and urbanization on climate in China. However, most of 

these studies have only considered the two types of land cover changes individually, even 

though their impact has occurred simultaneously in the process of land cover changes. 

Furthermore, the impacts from vegetation changes and urbanization on historical climate 

have never been compared. 

For future climate projections, Feddema et al. (2005b) suggest that land cover 

changes can significantly alter the regional climate outcomes associated with global 
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warming. In CMIP5, land cover changes have been assessed for both historical and future 

climate simulations (Dirmeyer et al. 2010; Kumar et al. 2013b). Based on the results from 

CMIP5, Brovkin et al. (2013) indicate that the effects of land cover changes are significant 

where the spatial extent of changes exceeds 10% of the land area, even though they do not 

have a discernible effect globally. However, of the land cover changes assessed in CMIP5, 

urbanization (urban area expansion) was not included in future climate modeling efforts 

(Di Vittorio et al. 2014; Oleson 2011). It has been suggested that a sustained assessment 

of climate forcing and feedbacks of land cover changes needs to account for realistic land 

surface complexity, including human disturbance such as from land cover changes and 

urbanization (Loveland and Mahmood 2014). Mahmood et al. (2014) also indicate that 

urban forcing should be included in future climate modeling systems because of its 

impacts on atmospheric dynamics, thermodynamics, energy exchanges, cloud 

microphysics, and composition.  

Therefore, to provide a more accurate and systematic evaluation of the climate 

impacts of land cover change, this dissertation evaluates the performance of the state-of-

the-art climate models for China, investigates the climate impacts of land cover changes 

by using the fully coupled NCAR Community Earth System Model (CESM), and further 

explores the impacts of urbanization on future climate by using the regional Weather 

Research and Forecasting (WRF) climate model. This dissertation is broken down into 

three specific questions: 
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1) How skillful is the performance of current GCMs over China? 

Before applying any climate modeling approach to investigate land-atmosphere 

interactions over China, the performance of the models must be assessed. The IPCC AR5 

promoted the development of the CMIP5, which makes it possible for scientists outside 

of the modeling community to conduct comprehensive analyses on climate variability and 

change at both global and regional scale. Therefore, the first step in this study is to evaluate 

how well these state-of-the-art GCMs perform in our study area.  

2) What are the climate impacts of land cover change over China? 

Based on the model evaluation in objective 1 and availability of model code, CESM 

is used to explore the biogeophysical impacts of land cover changes on climate over China. 

This part focuses specifically on how historical land cover changes including agricultural 

expansion and urbanization in China influence regional climate, and whether urbanization 

exerts a comparable impact on climate as vegetation changes do. 

3) What are impacts of urbanization on future climate over China? 

Urban warming has not explicitly been taken into account in future climate change 

simulations to date (IPCC 2007; Oleson 2011). This part therefore focuses on the impacts 

of future urbanization on climate in China. Due to the uncertainties in GCMs, the WRF 

model, which better delineates the urban extent and is driven by the RCP 4.5 future climate 

projections from CESM, is used to estimate the biogeophysical effects of urban expansion 

on future climate. This will clarify the contribution of urbanization to future temperature 

changes. 
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2. SURFACE AIR TEMPERATURE CHANGES OVER THE 20TH AND 21ST 

CENTURIES IN CHINA SIMULATED BY 20 CMIP5 MODELS* 

 

2.1. Introduction 

The global average surface temperature has increased by 0.74°C ± 0.18°C during 

1906–2005 (IPCC 2007). This warming trend, in particular the warming since the mid-

20th century, is very likely due to the increased level of anthropogenic greenhouse gas 

concentrations (Wang et al. 2011). China has also experienced significant temperature 

increases concurrent with global warming. In fact, previous studies suggest that the 

central-northern continent of eastern Asia was one of the most rapidly warming regions in 

the world during the last two decades of the 20th century (Wang and Gong 2000). For 

China as a whole, Ding et al. (2007) imply that the annual mean surface air temperature 

has increased by 0.5–0.8°C during the 20th century, with an accelerated warming of 1.1°C 

during the second half of the century, which is slightly higher than the global temperature 

trend for the same period. Based on 486 stations during the period 1960–2000, Qian and 

Qin (2006) suggest that temperature increased at a rate of 0.2–0.3°C (10 yr)-1 in northern 

China, and less than 0.1°C (10 yr)-1 in the southern China. Seasonally, the greatest 

warming occurred in winter, and a cooling took place in the Yangtze River and Yellow 

River basins in spring and summer.  

                                                
* This section is reprinted with permission from “Surface Air Temperature Changes over the 20th and 21st 

Centuries in China Simulated by 20 CMIP5 Models” by Chen and Frauenfeld, 2014. Journal of Climate, 27, 

3920–3937, Copyright [2014] by the American Meteorological Society. 
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Accurate prediction of future climate change, especially in regard to global warming, 

has been one of the most important scientific and societal challenges in current climate 

research efforts. Simulations from coupled ocean-atmosphere general circulation models 

(GCMs) forced with projected greenhouse gas and aerosol emissions are the primary tools 

for estimating trends and variability of future climate (Kharin et al. 2007). The 

establishment of the third phase of the Coupled Model Intercomparison Project (CMIP3) 

by the World Climate Research Programme (WCRP) provided scientists outside of the 

modeling community an opportunity to conduct comprehensive analyses on climate 

variability and change at both global and regional scales, based on the output from multiple 

climate models (Meehl et al. 2007). The Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report (AR4) estimates a warming of about 0.2°C (10 yr)-1 for 

a range of emission scenarios over the next two decades. By the end of the 21st century, 

global mean surface temperature is projected to increase by 1.1–6.4°C over the 1990 level 

(Van Vuuren et al. 2008). Detailed temperature projections at a regional scale are also 

crucial for local development and decision-making at a country-level, such as in China. 

Under varied emission scenarios, the annual mean temperature in China based on CMIP3 

simulations is projected to increase by 3.9–6.0°C by 2100 relative to the 1961–1990 

average (Ding et al. 2007). However, limitations exist in CMIP3. Wild (2009) indicates 

that CMIP3 models underestimate the decadal variations in global land surface warming 

during the 20th century. Using 19 coupled climate models driven by historical natural and 

anthropogenic forcings in CMIP3, Zhou and Yu (2006) found that the robustness of 

temperature estimates averaged over China is lower than that of the global and 
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hemispheric average, and discrepancies exist between the observed and simulated spatial 

patterns of temperature trends. By comparing output from 24 models with observational 

data in China, Miao et al. (2012) evaluated the performance of the CMIP3 GCMs in 

simulating temperature, and found that 18 models underestimate the annual mean 

temperature of China. Based on 24 CMIP3 models, Li et al. (2011) indicated that in 

simulating both the daily maximum and minimum July–August temperatures, the largest 

cold bias is found over western China.  

The IPCC Fifth Assessment Report (AR5) promoted the development of the fifth 

phase of CMIP (hereafter CMIP5), which is comprised of state-of-the-art GCMs. 

Compared with CMIP3, CMIP5 uses new Representative Concentration Pathways (RCPs) 

and includes a larger number of GCMs that are more complex and have higher spatial 

resolution (Taylor et al. 2011). By comparing results from CMIP3 and CMIP5, Knutti and 

Sedlacek (2013) suggest that the projected global temperature change from CMIP5 is 

remarkably similar to that from CMIP3 after accounting for the different underlying 

scenarios. Based on 19 CMIP5 models, Kumar et al. (2013a) found that the multimodel 

ensemble average of the global land-averages temperature trend (0.07°C (10 yr)-1) agrees 

well with the observed trend (0.08°C (10 yr)-1) during the 20th century, but large 

uncertainties exist in the simulation of regional-scale temperature trends in CMIP5. 

Therefore, it is important to evaluate the performance of the state-of-the-art climate 

models in CMIP5 for different regions. Based on 24 CMIP3 and 10 CMIP5 models, Hua 

et al. (2013) found that all models capture the climatological pattern of land surface 

temperatures for the period 1960−2000, but a large spread exists among the models in 
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simulation the climatology, interannual variation, and temperature trends. Over the 

Tibetan Plateau, it is found that cold biases exist in the majority of the CMIP5 models, 

with a mean underestimation of 1.1–2.5°C for the months of December–May, and less 

than 1°C for June–October (Su et al. 2012). Future temperature projections suggest that 

there will be 1.9–3.3°C and 3.4–5°C increases in 2070-2099 under RCP4.5 and RCP8.5, 

respectively (Wang and Chen 2013). However, to date there is a lack of a comprehensive 

evaluation of CMIP5 temperature simulations and their possible improvement compared 

with CMIP3 over the entire region of China. China’s extremely complex terrain and 

confluence of circulation regimes (such as the various monsoons) likely represent a 

particularly challenging environment for GCMs. 

Therefore, the goal of this investigation is to objectively and comprehensively 

evaluate the performance of CMIP5 surface air temperature simulations over China. As 

the world’s largest emitter of carbon dioxide, China is thus also the largest contributor to 

greenhouse gas-based climate change. Due to the continuing rapid development and 

industrialization of China and the contribution of this growth to regional and global change, 

accurate projections for this part of the world are of particular concern. Over the coming 

years, until the release of the IPCC’s sixth assessment report in approximately 2020, these 

CMIP5 simulations will likely be used by various subfields of the scientific community, 

ranging from physical to social sciences, as the basis for future climate projections. CMIP5 

simulations for China in particular will see increased usage, as the rapidly emerging 

science and technology community in China will also increasingly rely on these state-of-

the-science projections for their region of the world. It is thus important to assess the 
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accuracy and skill of CMIP5 simulations for China, as well as the degree to which they 

have improved or otherwise changed with respect to CMIP3. Such evaluations are then 

also useful for identifying shortcomings and necessary improvements for future modeling 

efforts. 

Our evaluation includes an assessment of the CMIP5 multimodel ensemble average, 

which is commonly used by researchers because the multimodel-average approach 

reduces noise in the predictions. This spatial and temporal (annual and seasonal scale) 

evaluation is conducted with respect to observational data, as well as with CMIP3 to 

identify potential CMIP5 improvements. The quality of the CMIP5 multimodel average 

obviously depends on the quality of the individual models. Therefore, we also evaluate 

and identify the most (and least) suitable individual CMIP5 models for this part of the 

world, to minimize the uncertainty in multimodel ensemble averages, and to improve 

future temperature projections. Finally, we provide a comprehensive overview of CMIP5 

temperature projections for China over the 21st century. This paper is organized as follows. 

Section 2.2 describes the datasets and analysis methods. Section 2.3 presents a comparison 

between observations with the simulations from both CMIP3 and CMIP5 in temperature 

variability during the 20th century. Section 2.4 shows the projected temperature trends in 

China for the 21st century. Sections 2.5 and 2.6 provide a discussion and a summary, 

respectively. 
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2.2. Data and Methods 

2.2.1. Data 

We obtained monthly surface air temperature output from 20 GCMs in the CMIP5 

archive (Table 2.1). Four sets of experiments were used: one historical experiment for the 

20th century, and three future emission scenarios for the 21st century. The historical 

experiment (HIST) provides simulations of surface temperature for 1850–2005 on the 

basis of observed natural and anthropogenic forcings. Future climate projections for 2006–

2300 include three RCPs adopted by the IPCC AR5, including RCP 8.5, RCP 4.5, and 

RCP 2.6, which correspond to higher, medium, and lower greenhouse gas emissions, 

respectively. More specifically, the RCP 8.5 scenario assumes high population growth and 

high energy demand without climate change policies. It thus results in the pathway with 

the highest greenhouse gas emissions, brought about by a radiative forcing of 8.5 W/m2 in 

2100 (Riahi et al. 2011). Under RCP 4.5, radiative forcing stabilizes at 4.5 W/m2 in 2100 

without exceeding that value (Thomson et al. 2011), which results in a medium 

stabilization scenario. Finally, RCP 2.6 has a peak radiative forcing of ~3 W/m2 before 

2100 and then declines to 2.6 W/m2 by 2100, making it a low emission scenario (Vuuren 

et al. 2011). To assess the potential improvements in CMIP5 compared with the earlier 

version, historical simulations of surface air temperature from 22 GCMs in the CMIP3 

archive were also used. Monthly surface air temperature output from CMIP5 was obtained 

from http://cmip-pcmdi.llnl.gov/index.html. Output from the CMIP3 20th century 

experiment (20C3M) was obtained from the CMIP3 archive (http://esg.llnl.gov:8080/). 

 

http://esg.llnl.gov:8080/
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Table 2.1. Twenty CMIP5 GCMs used in our study and their forcings used for the historical simulations. Nat: natural 

forcing (e.g., solar and volcanic), Ant: anthropogenic forcing (e.g., well-mixed greenhouse gases, aerosols, ozone, and 

land-use changes), GHG: well-mixed greenhouse gases, SA: anthropogenic sulfate aerosol direct and indirect effects, 

SD: anthropogenic sulfate aerosol, accounting only for direct effects, Oz: ozone, LU: land-use change, Sl: solar 

irradiance, Vl: volcanic aerosol, SS: sea salt, Ds: dust, BC: black carbon, OC: organic carbon, MD: mineral dust, AA: 

anthropogenic aerosols. 

 
Model Spatial Resolution Nat Ant GHG SA SD Oz LU Sl Vl SS Ds BC OC MD AA 

ACCESS1.3 145×192   Y Y  Y  Y Y   Y Y   

BCC-CSM1.1 64×128 Y Y Y  Y Y  Y Y Y Y Y Y   

CanESM2 64×128   Y Y  Y  Y Y   Y Y   

CCSM4 192×288   Y  Y Y Y Y Y Y Y Y Y Y Y 

CESM1(CAM5) 192×288   Y  Y Y Y Y Y Y Y Y Y Y Y 

CMCC-CESM 48×96 Y Y Y Y  Y  Y        

CNRM-CM5 128×256   Y Y    Y Y   Y Y   

CSIRO-Mk3.6.0 145×192 Y Y              

EC-EARTH 160×320 Y Y              

FGOALS-g2 60×128   Y Y  Y  Y Y Y Y Y Y   

GFDL-CM3 90×144   Y Y  Y Y Y Y Y  Y Y Y  

GISS-E2-H 90×144   Y Y  Y Y Y Y   Y Y   

HadGEM2-CC 73×96   Y Y  Y Y Y Y   Y Y   

INM-CM41 120×180                

IPSL-CM5A-LR 96×96 Y Y Y Y  Y Y   Y Y Y Y Y Y 

MIROC-ESM 128×256   Y Y  Y Y Y Y   Y Y Y  

MIROC5 128×256   Y Y  Y Y Y Y Y Y Y Y Y  

MPI-ESM-LR 96×192   Y Y Y Y  Y Y   Y Y   

MRI-CGCM3 160×320   Y Y  Y Y Y Y   Y Y   

NorESM1-M 96×144   Y Y  Y  Y Y   Y Y   

 

                                                
1 Forcing information for INM-CM4 is not available 
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Figure 2.1. Time series of average annual temperatures derived from CRU, GISS, 

UDEL, GHCN, WANG, and the CMIP3 and CMIP5 multimodel ensemble averages 

for China. The grey lines correspond to the individual CMIP5 GCMs. 

 

 

 

To ensure our study is not biased by the choice of observational datasets, two surface 

air temperature products were used to evaluate model performance. The Climatic Research 

Unit (CRU) time-series (TS) 3.10 dataset from the University of East Anglia provides 

monthly mean temperature for the global land surface at 0.5° × 0.5° resolution for the 

period 1901–2009 (Harris et al. 2014). This dataset is widely used for assessing climate 

variability and validating climate models at regional scales (Giorgi et al. 2004; Jacob et al. 

2007; Xu et al. 2009). The second observational dataset is the 1900–2010 gridded air 

temperature time series data version 3.01 (referred to as UDEL from hereon), developed 

by (Willmott and Robeson 1995). This data archive contains terrestrial monthly air 
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temperature with 0.5° × 0.5° resolution, which is derived from the Global Historical 

Climatology Network (GHCN) version 2 and other mean monthly surface air temperature 

station records (Legates and Willmott 1990a; Legates and Willmott 1990b). Other globally 

gridded air temperature products are also available, such as the NASA Goddard Institute 

for Space Studies (GISS) surface temperature analysis, and GHCN itself (part of UDEL). 

GISS provides global surface temperature anomalies (2° × 2°) since 1880 (Hansen et al. 

2010), while GHCN combines two individual observational datasets and contains global 

land surface temperatures with a high resolution (0.5° × 0.5°) since 1948 (Fan and van den 

Dool 2008). However, GISS temperatures are not spatially continuous in the early part of 

the 20th century, and the GHCN product only begins in 1948. However, with the exception 

of the 1915–1930 period, these products all agree reasonably well (Figure 2.1). We 

therefore focus on CRU and UDEL because they are both spatially and temporally 

complete from 1901 onward. Additionally, observational time series of annual mean 

surface air temperature over China were used to further validate the reliability of the two 

global observational temperature datasets at a regional scale. This dataset (hereafter 

referred to as WANG) was constructed based on temperature observations, documentary 

records, ice core data, and tree ring data over China for the period 1880–2009 (Gong and 

Wang 1999; Wang and Gong 2000; Wang et al. 2001; Wang et al. 1998). However, it is 

only available for surface air temperatures at the mean annual scale, hence it cannot be 

used for the seasonal analysis. 
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2.2.2. Methods 

Based on the temporal coverage of observations and the CMIP5 output, the period 

1901–2005 was extracted from the HIST simulations, and the period 2006–2100 was 

extracted from the three RCP experiments. Because the CRU observations start from 1901 

and most of the CMIP3 20C3M simulations end in 1999, therefore, our 20th century 

analysis focuses on the period 1901–1999, and the second half of 20th century analysis 

focuses on the period 1950–1999. Due to the different spatial resolutions adopted by 

different GCMs (shown in Table 2.1), we used bilinear interpolation to regrid all GCM 

output into a uniform resolution (2.5° × 2.5°). Some modeling groups provide multiple 

realizations for each experiment (for instance, there are 6 runs for the HIST experiment in 

the CCSM4 output). To avoid potentially biasing our results with respect to one randomly 

selected realization, all available realizations were used and ensemble averages were 

calculated for each model. The multimodel ensemble averages of CMIP3 and CMIP5 were 

then created. From here on, “CMIP3” and “CMIP5” refer to these multimodel ensembles. 

CMIP3 and CMIP5 were compared with the two observational products to assess the 

performance of CMIP5, as well as CMIP5’s potential improvements over CMIP3. 

Furthermore, the HIST simulation of each CMIP5 GCM was compared individually with 

observations to investigate the agreement among different models. 

Linear trends were calculated to estimate the long-term trends in monthly, seasonal, 

and annual temperature for China during the 20th and 21st centuries. For the evaluation 

and comparison of GCMs, several statistical measures were used in this paper including 

mean error (ME), mean absolute error (MAE), standard deviation of the error (SDE), root 
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mean square error (RMSE), and Pearson's correlation coefficients (R). Temperature over 

the whole domain of China was calculated by averaging the grid cell values within the 

political boundaries (land areas) of China. To further assess the regional historical and 

future temperatures, four regions of China were selected: the north (35–43°N, 102.5–

122.5°E), south (22–35°N, 102.5–122.5°E), northwest (38–48°N, 73–102.5°E), and the 

Tibetan Plateau (28–38°N, 80–102.5°E). Regional temperature trends were calculated as 

the area average for each region. Due to the likely shortcomings in the observations prior 

1950s, model performance was also assessed for the second half the 20th century 

separately. 

 

2.3. Temperature in the 20th Century 

Figure 2.1 compares annual temperature anomalies (departures from 1961–1990 

baseline) derived from observations and CMIP3 and CMIP5 multimodel ensemble 

averages for all of China. The CRU and UDEL observations exhibit good agreement after 

the 1930s (R = 0.98, p<0.01). However, when the station network was sparse before 1930, 

discrepancies exist between the observations. Also included here are the GISS, GHCN, 

and WANG observations for comparison. CRU shows better agreement with the other two 

observational products than UDEL. The 1901−2000 correlation of CRU and UDEL with 

GISS is 0.97 and 0.95, respectively. The CRU and UDEL correlations with GHCN are 

both 0.99 for the period 1951−2000, although this slightly higher correlation is likely due 

to the greatly enhanced station coverage during 1951–2000. Compared with the WANG 

observations, both CRU and UDEL show large discrepancies before 1950. The 1901–1950 
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correlation of CRU and UDEL with WANG is 0.49 and 0.45, respectively. In the WANG 

time series, temperature increased from the 1910s with a peak in the 1940s. This peak was 

also reported in other observed time series of surface air temperature over China (Tang 

and Ren 2005). Time series from all global datasets also indicate a warming peak in the 

1940s, however, with a smaller magnitude. After 1950, both CRU and UDEL show good 

agreement with WANG, with 1951−2000 correlations of 0.98 and 0.97. Therefore, this 

time series comparison (Figure 2.1) between all the observational data products supports 

our choice of CRU and UDEL for subsequent evaluations. However, it is obvious that 

large uncertainties in temperature variability exist prior to 1950 in the currently available 

observational datasets. A separate model evaluation for 1951–2000 is therefore needed, in 

addition to the 20th-century assessment. 

Evaluating the model simulations, both CMIP3 and CMIP5 illustrate an overall 

warming trend throughout 20th century. However, interannual variability in temperature 

is obvious for the individual models, but is suppressed by the multimodel ensemble 

averages. For instance, the multimodel ensemble average did not reproduce the highest 

annual temperature in 1998 as indicated by the observations. Interdecadal variability also 

appears muted in CMIP3 and CMIP5. For instance, neither the CMIP3 nor CMIP5 models 

capture the observed warming during 1920–1930. The accelerated warming trend evident 

in the observations since the 1970s is also underestimated in the multimodel ensembles, 

i.e. observed warming in China outpaced model simulations. The annual mean 

temperature climatology for the 1961–1990 baseline was 5.40°C in CMIP5 and 5.15°C in 
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CMIP3. Comparing CMIP3 and CMIP5 shows that CMIP3 has a consistent cold bias in 

China relative to CMIP5 before the 1960s. 

 

 

 

Table 2.2. Annual and seasonal temperature means and trends for China during 

the 20th century derived from UDEL and CRU observations, and CMIP3 and 

CMIP5 multimodel ensemble averages. Statistically significant differences or 

trends (95% level) are shown in bold. 

 

 Annual Spring Summer Autumn Winter 

 Mean Temperature (°C) 

CRU 7.11 7.82 19.29 7.85 −6.52 

UDEL 6.92 7.89 19.48 7.55 −7.24 

CMIP3 5.04 5.50 17.94 5.53 −8.80 

CMIP5 5.38 6.03 18.42 5.72 −8.66 

 Temperature Difference (°C) 

CRU−UDEL 0.19 −0.07 −0.19 0.29 0.72 

CMIP3−CRU −2.07 −2.31 −1.34 −2.32 −2.28 

CMIP5−CRU −1.73 −1.78 −0.87 −2.13 −2.14 

CMIP3−UDEL −1.88 −2.39 −1.54 −2.02 −1.56 

CMIP5−UDEL −1.54 −1.86 −1.06 −1.84 −1.42 

CMIP5−CMIP3 0.33 0.53 0.48 0.19 0.14 

 Pearson Correlation 

CRU and UDEL 0.93 0.95 0.93 0.94 0.97 

CMIP3 and CRU 0.70 0.50 0.33 0.43 0.46 

CMIP5 and CRU 0.65 0.42 0.55 0.45 0.37 

CMIP3 and UDEL 0.54 0.36 0.18 0.31 0.36 

CMIP5 and UDEL 0.57 0.33 0.46 0.38 0.28 

CMIP5 and 

CMIP3 
0.85 0.73 0.79 0.79 0.74 

 1901–1999 Trend (°C (100 yr)-1) 

CRU 0.79 1.01 0.18 0.54 1.40 

UDEL 0.48 0.65 −0.05 0.31 0.97 

CMIP3 0.65 0.61 0.56 0.62 0.83 

CMIP5 0.42 0.39 0.31 0.42 0.55 
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We compared the CMIP3 and CMIP5 multimodel ensemble averages of annual and 

seasonal air temperature with CRU and UDEL observations in the 20th century (Table 

2.2). Generally, the mean annual temperatures from both CMIP3 and CMIP5 are 

significantly lower than both observational products. These cold biases also exist in the 

seasonal temperatures. Compared with CMIP3, CMIP5 shows less bias relative to 

observations throughout the four seasons. Both CMIP3 and CMIP5 are significantly 

correlated with the two observational annual temperature averages (Table 2.2). The 

correlation of CMIP3 and CMIP5 with CRU is 0.70 and 0.65, respectively, and their 

correlation with UDEL is 0.54 and 0.57, respectively. This suggests that only 29–49% of 

the observational temperature variability is captured by the multimodel ensembles. For 

seasonal temperature, CMIP5 exhibits better agreement with observations in summer and 

fall, while CMIP3 is better in summer and fall. These seasonal correlations, although 

mostly statistically significant, are even weaker than the annual relationships and account 

for, at most, 31% of observed temperature variability. In summer, CMIP3 has no 

significant correlation with UDEL. 

Linear trend analysis reveals that there are significant warming trends in annual 

temperatures during the 20th century from both observations and model simulations 

(Table 2.2). The CRU observations exhibit the largest warming rate of 0.79°C (100 yr)-1 

for China, which is in line with rates of global temperature increases. The UDEL trend is 

only 0.48°C (100 yr)-1, which is due to the ~1915–1930 period when UDEL was 

anomalously warm compared to other observational products (except WANG, which 

shows a 20th century warming trend of only 0.38°C (100 yr)-1).  CMIP3 and CMIP5 
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show warming rates of 0.64 and 0.40°C (100 yr)-1, respectively. The greater CMIP3 trend 

is driven by its cold bias (relative to CMIP5) prior to ~1960. Seasonally, both the CRU 

and UDEL observations suggest that the largest warming trends in China occurred in 

winter and spring. Except for CRU (autumn), there is no significant increase in 

temperature in summer and fall, i.e. the annual warming in China is driven by changes in 

winter and spring. However, this seasonality in temperature trends was not well captured 

by CMIP3 or CMIP5. CMIP3 exhibits consistently larger warming trends than CMIP5, 

and these trends are statistically significant throughout all four seasons. The seasonal 

variability of temperature increases is much less than that in observations, although both 

CMIP3 and CMIP5 do also exhibit the most warming in winter. The winter warming in 

the models is only about half of the observed warming. 

Given the denser observational station network and hence more reliable trend 

estimates after ~1950, temperature biases and trends during the second half of the 20th 

century were also calculated separately (Table 2.3). Both the observations and model 

simulations indicate increasing mean annual temperature. CMIP5 shows fewer cold biases 

than CMIP3 in both annual and seasonal temperatures. However, CMIP3 has higher 

correlations with the observations (including GHCN, GISS, and WANG) except for 

summer temperature. For annual temperature, CRU and UDEL show an accelerated 

warming of 0.20 and 0.16°C (10 yr)-1, respectively, with the largest warming occurring in 

winter at a rate of 0.43 and 0.35°C (10 yr)-1. Annual temperature trends were also 

calculated from GHCN and WANG, showing a warming rate of 0.20°C (10 yr)-1 and 

0.16°C (10 yr)-1, respectively. However, there is no statistically significant trend during 
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summer for either of the observational products. Similar to the period of 1901–1999, both 

CMIP3 and CMIP5 underestimate the annual temperature trends and exhibit less seasonal 

variability. 

 

 

 

Table 2.3. As Table 2.2 but for the second half of the 20th century (1950–1999). 

 

 Annual Spring Summer Autumn Winter 

 Mean Temperature (°C) 

CRU 7.24 7.99 19.27 7.90 -6.24 

UDEL 6.97 7.97 19.41 7.55 -7.07 

CMIP3 5.18 5.63 18.06 5.66 -8.62 

CMIP5 5.45 6.10 18.46 5.78 -8.55 

 Temperature Difference (°C) 

CRU−UDEL 0.27 0.02 -0.14 0.35 0.83 

CMIP3−CRU -2.05 -2.36 -1.21 -2.24 -2.37 

CMIP5−CRU -1.79 -1.89 -0.81 -2.12 -2.31 

CMIP3−UDEL -1.79 -2.34 -1.35 -1.89 -1.54 

CMIP5−UDEL -1.52 -1.87 -0.96 -1.77 -1.48 

CMIP5−CMIP3 0.26 0.47 0.40 0.12 0.07 

 Pearson Correlation 

CRU and UDEL 0.98 0.99 0.98 0.98 0.99 

CMIP3 and CRU 0.75 0.46 0.43 0.49 0.64 

CMIP5 and CRU 0.66 0.33 0.53 0.45 0.49 

CMIP3 and UDEL 0.69 0.39 0.37 0.39 0.58 

CMIP5 and UDEL 0.62 0.28 0.49 0.37 0.45 

CMIP5 and CMIP3 0.89 0.72 0.88 0.86 0.68 

 1950–1999 Trend (°C (10 yr)-1) 

CRU 0.20 0.19 0.03 0.17 0.43 

UDEL 0.16 0.16 0.01 0.12 0.35 

CMIP3 0.12 0.11 0.10 0.13 0.13 

CMIP5 0.08 0.07 0.07 0.09 0.08 
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Figure 2.2. Annual and seasonal temperature biases of CMIP3 and CMIP5 relative 

to CRU observations. Top: the difference between CMIP3 and CRU, bottom: the 

difference between CMIP5 and CRU. The left column is annual temperature; the 

middle column is summer (JJA) temperature; and the right column is winter (DJF) 

temperature. Shaded regions indicate statistically significant differences (95% 

level). 

 

 

 

To obtain a better sense of model variability within China, we also investigate the 

spatial variability of climatological annual mean temperature over the 20th century. We 

provide this assessment relative to the CRU observations only, because the UDEL spatial 

patterns are similar (not shown). We calculated the difference in annual and seasonal 

temperatures between CRU and CMIP3 (Figure 2.2a–c) and CMIP5 (Figure 2.2d–f). 

CMIP3 and CMIP5 show a similar spatial pattern of temperature bias relative to the CRU 

observations. Generally, cold biases exist over most parts of China, including the Tibetan 

Plateau, the central and southern region, and most of the north. Warm biases exist in the 

northeast and northwest. In CMIP3, there is a consistent warm bias along the southern 
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edge of the Tibetan Plateau, which does not appear in CMIP5. For both annual and 

seasonal temperatures, CMIP5 has a lower bias than CMIP3, especially over eastern China. 

In CMIP5, the largest cold bias occurs over the high elevations of the Tibetan Plateau in 

winter, while the largest warm bias occurs in the desert regions in northwestern China 

during summer. This suggests that in CMIP5, the cold regions are too cold during winter, 

while the warm regions are too warm during summer. We also calculated the inter-model 

standard deviations in annual and seasonal temperatures (not shown), and they exhibit a 

similar spatial pattern as the temperature bias. The regions with high inter-model standard 

deviations correspond to the regions of largest bias. The temperature biases for the second 

half of the 20th century show the same spatial pattern and are therefore not discussed here. 

Figure 2.3 shows the spatial annual temperature trends over the 20th century based 

on observations and multimodel ensemble averages. Both CRU and UDEL show that the 

largest warming trend occurred in the northwest and northeast of China. However, in the 

UDEL observations, there is no significant warming trend over the Tibetan Plateau, but a 

significant cooling trend in central and southern China that is not captured by CRU. 

Compared with the observations, both CMIP3 and CMIP5 underestimated temperature 

trends over most regions of China. Spatial patterns of temperature trends in CMIP3 exhibit 

substantial disagreement with the observations. The largest warming trend occurred over 

the Tibetan Plateau, and there is significant warming in central and southern China. The 

spatial trend pattern is slightly improved in CMIP5, however, substantial discrepancies 

remain.  
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Figure 2.3. Trends in average annual temperatures over the 20th century derived 

from a) CRU and b) UDEL observations, and c) CMIP3, and d) CMIP5 multimodel 

ensemble averages. Shaded regions indicate statistically significant differences 

(95% level). 
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Figure 2.4. As figure 3 but for the second half of the 20th century (1950–1999). 

 

 

 

Recognizing the inherent limitations in the observations in the early part of the 20th 

century, temperature trends for the second half of the 20th century were calculated (Figure 

2.4). Over the past half century, there is accelerated warming over most regions of China. 

The two observational products show that the largest warming occurred in the northwest 

and northeast. There are significant warming trends over the Tibetan Plateau. In central 

China, especially over the Sichuan province, temperature tends to decrease. Disagreement 

in temperature trends also still exist over 1950–1999 between the two observational 

products. Over the south and southeast, CRU shows significant warming trends while 
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UDEL indicates cooling. As for the entire 20th century, both CMIP3 and CMIP5 

underestimate the warming trends over the north, and cannot reproduce the cooling trends 

in central and southern China. 

 

 

 

Table 2.4. Historical surface air temperature trends (°C (100 yr)-1) in different sub-

regions of China during the 20th century. Statistically significant trends (95% 

level) are shown in bold. 

 

Regions Data Annual Spring Summer Fall Winter 

North 

CRU 0.88 1.07 0.06 0.55 1.82 

UDEL 0.17 0.32 −0.46 0.00 0.80 

CMIP3 0.60 0.54 0.48 0.59 0.79 

CMIP5 0.37 0.31 0.21 0.37 0.57 

South 

CRU 0.40 0.53 0.31 0.27 0.51 

UDEL −0.04 0.03 −0.11 −0.12 0.02 

CMIP3 0.46 0.45 0.46 0.37 0.56 

CMIP5 0.21 0.14 0.30 0.19 0.21 

Northwest 

CRU 0.94 0.95 0.47 0.71 1.58 

UDEL 0.74 0.73 0.26 0.70 1.21 

CMIP3 0.73 0.62 0.66 0.77 0.88 

CMIP5 0.53 0.45 0.40 0.54 0.72 

Tibetan 

Plateau 

CRU 0.39 0.48 0.17 0.23 0.66 

UDEL 0.20 0.32 0.09 0.10 0.29 

CMIP3 0.84 0.83 0.72 0.73 1.07 

CMIP5 0.54 0.69 0.42 0.50 0.55 

 

 

 

Annual and seasonal temperature trends were calculated for individual regions within 

China (Table 2.4). CRU shows statistically significant increases in annual temperatures in 

all four regions, with greater warming trends over the northeast and the northwest (0.88°C 

(100 yr)-1 and 0.94°C (100 yr)-1, respectively). In UDEL, the temperature increase is only 

statistically significant over the northwest at a rate of 0.74°C (100 yr)-1. Compared with 



 

30 

the CRU observations, both CMIP3 and CMIP5 overestimate the warming trend over the 

Tibetan Plateau, and underestimate the warming trend over the northwest and northeast. 

Based on the two observational products, there is no significant seasonal warming trend 

in the northeast in summer, in the south in fall and winter, and in the Tibetan Plateau in 

summer and fall. However, both CMIP3 and CMIP5 exhibit significant warming trends in 

all four regions throughout the year.  

 

 

 

Table 2.5. Same as Table 2.3 but for the second half of the 20th century (1950–

1999). 

 

Regions Data Annual Spring Summer Fall Winter 

North 

CRU 2.60 2.55 0.46 2.14 5.30 

UDEL 2.29 2.10 0.72 1.77 4.57 

CMIP3 0.98 0.76 0.88 1.24 1.00 

CMIP5 0.72 0.58 0.61 0.88 0.72 

South 

CRU 1.00 0.82 -0.08 1.14 2.05 

UDEL 0.23 0.03 -0.54 0.31 1.11 

CMIP3 0.76 0.60 0.80 0.82 0.81 

CMIP5 0.39 0.24 0.47 0.58 0.18 

Northwest 

CRU 2.73 1.63 0.34 2.48 6.60 

UDEL 2.09 1.17 0.28 2.06 5.02 

CMIP3 1.33 1.21 1.17 1.54 1.41 

CMIP5 1.17 0.98 1.12 1.20 1.29 

Tibetan 

Plateau 

CRU 0.88 0.40 0.04 0.91 2.25 

UDEL 0.69 0.60 0.14 0.58 1.54 

CMIP3 1.49 1.65 1.18 1.36 1.75 

CMIP5 0.93 1.10 0.77 1.05 0.72 

 

 

 

The temperature trends over the second half of the 20th century indicate accelerated 

warming in annual mean temperature based on both observations and simulations (Table 

2.5). The observed accelerated warming in the north is mainly attributed to greater 
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Table 2.6. Evaluation of individual CMIP5 GCMs relative to annual CRU 

temperatures based on Pearson's correlation coefficients (R), mean error (ME), 

mean absolute error (MAE), standard deviation of the error (SDE), and root mean 

square error (RMSE). Included also are the 20th century trends. Statistically 

significant differences, correlations, and trends (95% level) are shown in bold. 

 

Simulation R 
ME 

(°C) 

MAE 

(°C) 

SDE 

(°C) 

RMSE 

(°C) 

Trend 

(°C (100 yr)-1) 

CMIP5 0.66 −1.73 1.73 0.31 17.58 0.45 

ACCESS1.3 0.25 −0.39 0.47 0.43 5.81 −0.09 

BCC-CSM1.1 0.58 −1.96 1.96 0.35 19.89 0.98 

CanESM2 0.57 −0.52 0.53 0.33 6.13 0.34 

CCSM4 0.61 −1.36 1.36 0.34 14.06 0.97 

CESM1(CAM5) 0.48 −1.53 1.53 0.36 15.68 0.37 

CMCC-CESM 0.12 −1.13 1.16 0.56 12.65 0.22 

CNRM-CM5 0.47 −3.15 3.15 0.35 31.69 0.28 

CSIRO-Mk3.6.0 0.47 −1.38 1.38 0.36 14.21 0.17 

EC-EARTH 0.64 −1.98 1.98 0.31 20.10 0.96 

FGOALS-g2 0.30 −4.12 4.12 0.47 41.45 0.68 

GFDL-CM3 0.17 −2.10 2.10 0.45 21.46 −0.17 

GISS-E2-H 0.39 −0.41 0.45 0.37 5.49 0.20 

HadGEM2-CC 0.10 −2.32 2.32 0.54 23.87 −0.23 

INM-CM4 0.25 −4.44 4.44 0.51 44.66 0.81 

IPSL-CM5A-LR 0.68 −3.09 3.09 0.32 31.10 1.08 

MIROC5 0.20 0.80 0.82 0.42 9.02 −0.07 

MIROC-ESM 0.49 −0.74 0.74 0.35 8.20 0.28 

MPI-ESM-LR 0.62 −0.45 0.48 0.32 5.55 1.05 

MRI-CGCM3 0.46 −2.13 2.13 0.37 21.59 0.63 

NorESM1-M 0.51 −2.23 2.23 0.36 22.59 0.52 

 

 

 

temperature trends in winter and spring, and in the northwest it is attributed to temperature 

increases in winter and fall. In the south, temperature increased in winter and fall, but 

decreased in summer. Over the Tibetan Plateau, there is no significant warming except in 

winter. However, neither CMIP3 nor CMIP5 reproduced the seasonality of the 

temperature trends in these regions. Model simulations show significant warming 
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throughout the four seasons, with the greatest warming occurring in fall while the 

observations indicate that winter warming is the greatest. 

Using multimodel ensemble averages is a common approach because it is thought 

that noise in the predictions is thereby reduced. However, as illustrated for CMIP5 in 

Figure 2.1 (grey lines), there is a large amount of variability among the individual model 

ensembles that comprise a multimodel average. CMIP5 likely includes models that are 

well suited for capturing the temperature variability across China, in addition to potentially 

underperforming models. We therefore assess the individual GCMs relative to the CRU 

observations for annual temperature over the 20th century (Table 2.6), to identify the most 

suitable models for our particular region. The assessment is based on the strength of the 

correlation, as well as on various error measures. Comparisons with UDEL are similar to 

CRU, and are therefore not shown. Several models exhibit better agreement (higher 

correlations and smaller errors/biases) with the observations: MPI-ESM-LR, CanESM2, 

MIROC-ESM, and CCSM4. Even though IPSL-CM5A-LR and EC-EARTH show the 

highest correlations with the observations (0.68 and 0.66, respectively), large cold biases 

and RMSEs exist in these models. FGOALS-g2, INM-CM4, and IPSL-CM5A-LR have 

the largest cold biases, and MIROC5 is the only model with a warm bias. Among the 20 

models, ACCESS1.3, CMCC-CESM, GFDL-CM3, HadGEM2-CC, and MIROC5 show 

no trend throughout the 20th century. The correlation coefficients demonstrate that 

CMCC-CESM and HadGCM2-CC, which have the coarsest spatial resolution among the 

20 GCMs (Table 2.1), have the largest disagreement with temperature observations in 

China. 
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Figure 2.5. Comparison between CRU observations and individual CMIP5 GCMs 

for annual and seasonal temperatures: temperature bias from observations (left) 

and correlations between observations and individual models (right). Error bars 

indicate standard deviation of temperature biases, green stars indicate significant 

(95% level) correlations. 

 

 

 

The individual models’ performance was also compared with observations for the 

four seasons (Figure 2.5). The agreement between models and observations varies through 

the seasons. Most models show good agreement with CRU in summer. However, only six 

models exhibit significant correlations with the observations in winter. Individual models 

were also evaluated by comparing simulated surface air temperatures relative to CRU, 

UDEL, and WANG observations for the second half the 20th century (not shown). The 

models exhibit the same agreement as over the entire 20th century. 
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Figure 2.6. Trends in seasonal temperatures over the 20th century for China 

derived from CRU and UDEL observations, and CMIP3 and CMIP5 multimodel 

ensemble averages (color bars indicate temperature trends derived from the 

individual CMIP5 models). 

 

 

 

To investigate the seasonal variability in temperature trends during the 20th century, 

we calculate the monthly temperature trends from CRU and UDEL observations, CMIP3 

and CMIP5 multimodel ensemble averages, and the individual GCMs (Figure 2.6). 

Between the two observational products, CRU consistently has a greater warming trend 

than UDEL throughout the year. As discussed before, the two observational products 

exhibit a clear seasonality in temperature trends for China. Larger warming trends 

occurred in the cold season, and less warming or even cooling trends occurred in the warm 

season. However, this seasonality was not captured by CMIP3, and CMIP5 also only 

shows a very weak seasonal pattern in temperature trends. As was the case for the annual 

and seasonal trends, CMIP5 trends are lower than CMIP3 for all individual months of the 
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year. Based on the monthly temperature trends in the individual GCMs, some models 

show cooling trends during most parts of the year, including ACCESS1.3, GFDL-CM3, 

HadGEM2-CC, and MIROC5. Several individual models did capture the seasonality 

shown by the observations, including BCC, CCSM4, CMCC-CESM, CSIRO-Mk3.6, 

GISS-E2-H, and MIROC-ESM. However, despite capturing the seasonality of the trends, 

the magnitude is generally much lower. For the period 1950–1999, both CRU and UDEL 

exhibit temperature increases for all months, with the greatest warming in February, 

December, and January, and the least warming in August, July, and June. As for the entire 

20th century, both CMIP3 and CMIP5 show a much weaker annual cycle. Some models 

do not capture the accelerated warming in winter months, such as HadGEM2-CC, GFDL-

CM3, and MIROC5.  

 

 

 

 
Figure 2.7. Time series of historical and projected temperature for China from 

different CMIP5 experiments during 1900–2100. 
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Table 2.7. Projected warming in different sub-regions of China during the 21st 

century, and the temperature change for 2090−2099 relative to 1980−1999. All 

trends and changes are statistically significant (95% level). 

 

Experiments Regions 
Temperature Trend 

(°C (10 yr)-1) 

Temperature Change 

(°C) 

RCP 2.6 

China 0.10 ± 0.05 1.78 ± 0.56 

North 0.11 ± 0.05 1.91 ± 0.57 

South 0.11 ± 0.05 1.78 ± 0.67 

Northwest 0.10 ± 0.05 1.95 ± 0.56 

Tibetan Plateau 0.09 ± 0.06 1.49 ± 0.54 

RCP 4.5 

China 0.27 ± 0.07 2.84 ± 0.73 

North 0.27 ± 0.07 2.87 ± 0.76 

South 0.25 ± 0.07 2.52 ± 0.67 

Northwest 0.28 ± 0.07 3.12 ± 0.81 

Tibetan Plateau 0.29 ± 0.09 2.89 ± 1.17 

RCP 8.5 

China 0.60 ± 0.14 5.66 ± 1.05 

North 0.59 ± 0.14 5.59 ± 1.07 

South 0.53 ± 0.13 4.90 ± 0.95 

Northwest 0.64 ± 0.16 6.22 ± 1.20 

Tibetan Plateau 0.63 ± 0.17 5.96 ± 1.14 

 

 

 

2.4. Temperatures in the 21st Century 

The projected future temperatures for China as a whole under three emission 

scenarios is shown in Figure 2.7. RCP 8.5 and RCP 4.5 exhibit a gradual increase in annual 

temperature during the 21st century at a rate of 0.60°C (10 yr)-1 and 0.27°C (10 yr)-1, 

respectively. As the lowest-emission mitigation scenario, the RCP 2.6 experiment projects 

the lowest rate of temperature increase (0.10°C (10 yr)-1). By the end of the 21st century, 

temperature will increase by 1.78−5.66°C over China (Table 2.7). Under the RCP 2.6 

scenario, temperature will increase until 2040, and then remain stable or even decrease 

slightly. This indicates the effectiveness of anticipated climate mitigation strategies, while 
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largely reflecting the design of the RCP scenarios in terms of the radiative forcing (see 

section 2.1). Additionally, in the near-term (before the 2030s) the temperature increase 

under RCP 2.6 is greater than under RCP 4.5, even though its radiative forcing is lower 

than RCP 4.5. 

Figure 2.8 illustrates the spatial pattern of annual temperature change over China 

during the 21st century under the three emission scenarios. Interestingly, there is not a 

common spatial pattern in temperature trends among the three scenarios (Figure 2.8 a–c). 

RCP 2.6 shows the greatest warming across eastern China, as well as in some isolated 

regions in the Himalayas and northwestern China. However, the greatest warming under 

the RCP 4.5 scenario will occur on the western Tibetan Plateau, while drastic countrywide 

warming is projected for RCP 8.5. We also calculated the temperature difference between 

the period 2070–2099 and 1961–1990 (Figure 2.8 d–e), to determine where changes will 

be greatest relative to the 20th century. We find significantly higher temperature in the 

late 21st century compared to the three decades in the late 20th century. Unlike the trend 

patterns, the temperature differences exhibit a somewhat consistent spatial pattern among 

the three scenarios. For RCP 4.5 and 8.5, the greatest temperature increase will occur over 

the Tibetan Plateau, the northwest, and the northeast, with smaller increases over eastern 

China. While the temperature changes are of course smallest under the RCP 2.6 scenario, 

the Tibetan Plateau would experience relatively smaller temperature changes than the 

northwest and northeast, with east-central China also being part of this greater warming 

region. Table 2.7 shows projected temperature changes in the different sub-regions of 

China under the 3 emission scenarios. For RCP 2.6, there are similar temperature trends 
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Figure 2.8. Annual temperature trends for the 21st century for three emission 

scenarios (left) and changes in annual temperature (2070–2099 versus 1961–1990) 

based on CMIP5 projections (right). Shaded regions indicate statistically significant 

trends/differences (95% level). 
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in the four sub-regions, with a slightly greater increase over the northwest and northeast 

(~1.9°C warming by the end of 21st century). With the increase in radiative forcing in 

future projections, the northwest and the Tibetan Plateau will have a larger warming trend, 

and the northwest will experience the greatest temperature increase, 3.1°C and 6.2°C for 

RCP 4.5 and RCP 8.5, respectively. 

 

 

 

 
 

Figure 2.9. Trends in annual and seasonal temperatures over the 21st century 

derived from individual GCMs for the three experiments. 

 

 

 

Figure 2.9 shows the annual as well as the winter and summer temperature trends in 

the individual CMIP5 GCMs for the 21st century. The variability of temperature trends 
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among the 20 models shows virtually the same pattern under the three scenarios. Several 

models project greater rates of temperature increase than others, such as CMCC-CESM, 

CSIRO-Mk3.6, GFDL-CM3, HadGEM2-CC, and MIROC-ESM. It is unclear which of 

these 21st century trend projections may be the most reliable, given that those models that 

agreed best with observations in terms of the mean climate states (see Table 2.6, e.g., MPI-

ESM-LR, CanESM2, MIROC-ESM, and CCSM4) nonetheless did not capture the 

observed 20th century trends. There is also limited agreement in the seasonal patterns of 

future temperature trends among the 20 GCMs. For instance, CMCC-CESM, HadGEM2-

CC, and NorESM1-M exhibit much higher winter warming while some other models show 

no obvious difference in temperature trends between the two seasons. This disagreement 

is evident for all three scenarios. For MIROC-ESM, there is much greater warming in 

winter than in summer for RCP 8.5. However, under RCP 4.5 and RCP 2.6, the warming 

trend is greater in summer relative to winter. 

An additional interesting observation regarding the modeled trends is that, when 

compared to trends in the HIST experiment, the models with the lower temperature trends 

during the 20th century usually exhibit greater warming trends during the 21st century. 

Figure 2.10 illustrates the significant negative correlation between the historical and RCP 

4.5 projected temperature trends (R=−0.70, p<0.01). The negative relationship also exists 

for the RCP 2.6 and RCP 8.5 experiments, but is not as strong as for RCP 4.5.  
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Figure 2.10. Scatterplot of historical temperature trends during the 20th century 

and the projected temperature trend under the RCP 4.5 scenario. 

 

 

 

2.5. Discussion 

The objective of this study is to evaluate CMIP5’s performance in simulating surface 

air temperature during the 20th century, relative to two observational datasets. Compared 

with UDEL, CRU shows a stronger warming trend during the 20th century of 0.79°C (100 

yr)-1, while UDEL only shows ~60% of that warming trend (0.48°C (100 yr)-1). This 

discrepancy between the two observational products can be attributed to two factors. First, 

as mentioned in section 2.2, different data sources were assimilated into the respective 

databases. Second, these two datasets were generated based on different interpolation 

methods. Based on four different observational datasets, Zhao et al. (2005) suggested that 

the country-averaged annual mean surface air temperature has increased at a rate of 0.2–
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0.8°C (100 yr)-1 from 1901 to 1999. Greater warming trends, 0.3–1.2°C (100 yr)-1, were 

detected for the period 1906–2005 (Ren et al. 2012). Based on previous studies (e.g.,(Hu 

et al. 2003), there was a pronounced warming from 1951 to 2000 in the entire country in 

winter, spring, and autumn, particularly in the north. There was also a summer cooling 

trend reported for central China. These conclusions agree well with the results from CRU 

and UDEL. Therefore, CRU and UDEL provide reasonable observational temperature 

trends, and are likely valid for our model evaluation.  

In our results, both CMIP3 and CMIP5 show a smaller warming trend than CRU 

observations. CMIP3 shows a more consistently linear warming trend during the whole 

century than CMIP5. This is also found by Knutti and Sedlacek (2013) who explain that 

the 20th century historical simulations in CMIP5 included more diverse and complete 

radiative forcings (shown in Table 2.1), but some models in CMIP3 did not consider solar 

and volcanic forcings, or aerosol effects. Zhou and Yu (2006) found that there is a 

significant correlation between CMIP3 simulations and observed annual temperatures 

over all of China. However, most of the CMIP3 models failed to reproduce the 

summertime cooling trend in the middle part of eastern China, and many models 

underestimate the winter warming trend. Our CMIP3 results agree well with these findings. 

However, our findings for CMIP5 indicate little improvement in simulating the spatial and 

seasonal patterns of temperature trends. 

Compared with observations, there is a significant cold bias over the Tibetan Plateau 

where we also observe the largest inter-model variation. This disagreement implies a 

common deficiency among the CMIP5 models still exists for reproducing atmospheric 
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processes in such a highly spatially-heterogeneous and complex terrain. These cold biases 

have also been reported in previous studies. Substantial cold biases were found over high 

plateaus, especially the Tibetan Plateau, in GCM simulations (Annan et al. 2005; Gao et 

al. 2010; Ji and Kang 2012; Su et al. 2012). Seasonally, this cold bias is largest during the 

cold season and smallest in the warm season, implying that models may fail to represent 

snow-albedo feedbacks over this mountain region. Additionally, previous studies suggest 

that model deficiencies in simulating cloud properties over the plateau may introduce 

insufficient plateau heating, therefore resulting in temperature biases over the Tibetan 

Plateau (Zhou and Li 2002; Yu et al. 2004).  

Based on our model evaluation, several CMIP5 models were identified as the most 

suitable models for China, including MPI-ESM-LR, CanESM2, MIROC-ESM, and 

CCSM4. Before CMIP5 had been completed, Chen et al. (2011) evaluated 28 atmosphere-

ocean GCMs and five models were identified with better performance over China, 

including the ECHAM4 (INGV ECHAM4), the third climate configuration of the Met 

Office Unified Model (UKMO HadCM3), the CSIRO Mark version 3.5 (Mk3.5), the 

NCAR Community Climate System Model, version 3 (CCSM3), and the Model for 

Interdisciplinary Research on Climate 3.2 (MIROC3.2). Except for CanESM2, MPI-ESM-

LR, MIROC-ESM, and CCSM4 still show the same good results as their earlier versions, 

indicating a consistently better performance of these models (MPI-ESM and MIROC-

ESM are new earth system models incorporating ECHAM and MIROC, respectively). 

MPI-ESM-LR and CanESM2 were also ranked in the top five of the best models in 

simulating temperature over the Tibetan Plateau by Su et al. (2012).  
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Future temperature projections show that there will be continued warming over China. 

The greatest warming trend will occur over northern China and the Tibetan Plateau. 

However, these spatial trend patterns appear to be the least reliable statistics calculated 

from the CMIP5 archive. Severe temperature increases such as the ones projected as part 

of RCP 8.5 will probably aggravate environmental degradation in the northern China, such 

as drought and desertification, which have been documented to be serious problems 

already (Wang et al. 2008). Over the Tibetan Plateau, which is called the “third pole” of 

the earth, glacier retreat has occurred since the 1960s and has intensified in the past 10 

years (Yao et al. 2007). Since the Tibetan Plateau is the source region for many of the 

major rivers of China, further warming may generate substantial hydrological impacts 

over China. 

 

2.6. Conclusions 

This study evaluated 20 CMIP5 GCMs’ performance in simulating surface air 

temperature variability over China during the 20th century with respect to two 

observational datasets. For seasonal and annual mean temperatures, GCMs show 

substantial cold biases over the Tibetan Plateau, especially in the cold season. These cold 

biases over the Tibetan Plateau are also characterized by the greatest disagreement among 

the individual models, indicating GCMs’ deficiencies in reproducing climatic features in 

this complex, high elevation terrain. CMIP5 shows slightly better agreement with 

observations than CMIP3 in terms of temperature biases. Both CMIP3 and CMIP5 exhibit 

climatic warming over the 20th century with an accelerated warming during the second 
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half of the century. However, annual mean temperature trends are underestimated, and the 

seasonal trends are poorly simulated. The spatial pattern of temperature trends over China 

is also not simulated well. 

Based on six statistical measures, four CMIP5 models better simulate historical 

surface air temperature variability over China: MPI-ESM-LR, CanESM2, MIROC-ESM, 

and CCSM4. The two observational products both exhibit clear seasonality in temperature 

trends during the 20th century: larger warming trends occurred in cold season, with less 

warming trend or cooling during the warm season. However, the multimodel ensembles 

(both CMIP3 and CMIP5) as well as most individual GCMs did not capture this seasonal 

pattern, in particular ACCESS1.3, GFDL-CM3, HadGEM2-CC, and MIROC5. 

The future temperature projections for China indicate that the RCP 8.5 and RCP 4.5 

scenarios exhibit a consistent increase in annual temperature during the 21st century at a 

rate of 0.60°C (10 yr)-1 and 0.27°C (10 yr)-1, respectively. The lowest-emission mitigation 

scenario, RCP 2.6, produces the lowest rate of warming (0.10°C (10 yr)-1), all of which is 

projected to occur by approximately 2040. By the end of the 21st century, temperature is 

projected to increase by 1.7−5.7°C, with the larger warming over northern China and the 

Tibetan Plateau.  
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3. A COMPREHENSIVE EVALUATION OF PRECIPITATION SIMULATIONS 

OVER CHINA BASED ON CMIP5 MULTIMODEL ENSEMBLE PROJECTIONS* 

 

3.1. Introduction 

Precipitation is a key component in the climate system and represents a crucial link 

between the atmosphere, hydrosphere, and biosphere. Climate change and the associated 

precipitation variability produce substantial impacts on both natural environments and 

human society. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 

Report (AR5) indicates that the global average surface temperature has increased by 0.85 

[0.65 to 1.06]°C over the period 1880−2012, with additional warming of 0.3°C to 0.7°C 

for the period 2016−2035 relative to the reference period of 1986−2005 (IPCC 2013). On 

the other hand, precipitation has likely increased since 1901 over the mid-latitude land 

areas of the Northern Hemisphere (IPCC 2013). Temporally, there is a slight upward trend 

in global annual mean land precipitation, however, with large inter-decadal variability 

because of the El Niño-Southern Oscillation (ENSO) and changes in atmospheric 

circulation patterns such as the North Atlantic Oscillation. 

China is one of the most populous countries in the world. Climate change and 

especially precipitation variations are of particular importance due to the vulnerability of 

water resources in this region (Vörösmarty et al. 2000). Water availability plays an 

important role in agricultural and industrial development, which guarantees food supplies 

                                                
* This section is reprinted with permission from “A Comprehensive Evaluation of Precipitation Variability 

over China Based on CMIP5 Multimodel Ensemble Projections” by Chen and Frauenfeld, 2014. Journal of 

Geophysical Research-Atmospheres, 119, 5767–5786, Copyright [2014] by John Wiley & Sons, Inc. 
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and thus the welfare of 1.3 billion people in this country. Increasing water consumption 

as a result of rapid population growth, economic development, and strong climatic 

variations, mean China faces substantial water-related challenges in the coming decades, 

such as food security and environmental degradation (Varis and Vakkilainen 2001). 

Furthermore, hydrological extreme events such as floods and droughts, can lead to 

environmental risks and economic losses. For instance, due to the drought in northern 

China in winter 2008–2009, more than 4 million people and 2 million livestock had 

insufficient drinking water (Gao and Yang 2009). The drought in southwestern China 

during 2009−2010 also caused a ~20% reduction in the nationwide hydro-electrical 

production (Barriopedro et al. 2012). Therefore, robust precipitation projections are 

crucial for China’s future. Piao et al. (2010) suggest that annual precipitation decreased in 

northeast China, and increased in northwest and southeast China over the period 1960–

2006. Precipitation increases over northwest China may be caused by increases in 

atmospheric water vapor content and an enhanced water cycle caused by global warming 

(Shi et al. 2007). Over east China, which is dominated by the East Asian monsoon, a “wet 

south-dry north” precipitation pattern has been suggested to arise from the weakening of 

the East Asian summer monsoon since the end of the 1970s (Zhou et al. 2009), which is 

associated with a strong upper-tropospheric cooling and the phase of North Atlantic 

Oscillation (NAO) in the preceding winter (Xin et al. 2006; Yu and Zhou 2007; Yu et al. 

2004). This multi-decadal variability of the East Asian summer monsoon can also be 

explained by tropical ocean warming, a weakening sensible heat source over the Tibetan 

Plateau, aerosol forcing, and internal variability (Zhou et al. 2009).  
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Simulations from global coupled ocean-atmosphere circulation models forced with 

projected greenhouse gas and aerosol emissions are the primary tools for estimating trends 

and variability of future climate (Kharin et al. 2007). The Coupled Model Intercomparison 

Project (CMIP) was established as a standard experimental protocol to evaluate the 

atmosphere-ocean general circulation models (GCMs) and to estimate future climate 

projections under different scenarios. Based on the output of CMIP3, Tu et al. (2009) 

indicate that long-term precipitation trends over eastern China were largely 

underestimated, and the observed spatial pattern of rainfall changes was not reproduced 

by most models. Miao et al. (2012) evaluated the applicability of temperature and 

precipitation data from CMIP3 for China, and suggest that annual precipitation and 

temperature generated by IPCC AR4 GCMs should be used cautiously in China due to 

their poor performance. The most recent phase of CMIP, CMIP5, provides simulations 

from the latest generation of state-of-the-art GCMs, which includes more comprehensive 

GCMs with generally higher spatial resolution compared with CMIP3 (Taylor et al. 2011).  

A number of studies have evaluated specific aspects of CMIP5 precipitation 

simulations for China, such as specific regions or seasons. For instance, Huang et al. (2013) 

examined CMIP5 summer precipitation over eastern China and suggest that the 

multimodel ensemble can reproduce summer precipitation, however large uncertainties 

exist over south China. Qu et al. (2013) indicate that the CMIP5 historical simulations 

reasonably capture the climatology of East Asian summer rainfall, the associated 

circulation, moisture, and its transport. Also, the circulation features of the East Asian 

winter monsoon can be reasonably reproduced by the multimodel ensemble of CMIP5 
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(Gong et al. 2013). By comparing CMIP3 and CMIP5 simulations with observations in 

regard to the Asian monsoon, CMIP5 shows better skill in capturing the monsoon 

characteristics both in summer (Sperber et al. 2013) and winter (Wei et al. 2013). Some 

studies have described future CMIP5 simulations for the entire region of China (Wang 

and Chen 2013; Xu and Xu 2012), however, a comprehensive assessment relative to 

historical observations has not yet been performed. Similarly, a comparison of CMIP5 

precipitation simulations and potential improvements relative to CMIP3 has not yet been 

provided. 

In this study, we therefore investigate precipitation simulations over all of China as 

well as for individual sub-regions, based on the 20 GCMs from the CMIP5 archive with 

simulations for both the 20th and 21st centuries. We employ a suite of model evaluation 

statistics to provide a comprehensive assessment of model performance. Our study focuses 

on the following two research questions; first, how good is the agreement between 

observed precipitation and CMIP5 simulations over the 20th century? As part of this 

assessment we also evaluate the CMIP3 models, to quantify the potential improvements 

in CMIP5 over the previous intercomparison. In light of CMIP5’s 20th century 

performance, the other research question is: what is the projected precipitation variability 

for China over the 21 century? Section 3.2 describes the data sets and analysis methods. 

Section 3.3 compares the historical precipitation variability during the 20th century from 

two observational datasets with precipitation simulations from 20 GCMs. Section 3.4 

estimates the future precipitation trends and variability over the 21st century based on the 

CMIP5 model projections. Section 3.5 discusses the agreement between observations and 
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model simulations and puts the CMIP5 projections into context with respect to the 

observed biases. Section 3.6 provides the conclusions of our study. 

 

3.2. Data and Methods 

3.2.1. Data 

  We use four sets of simulations from 20 GCMs in the CMIP5 archive (Table 3.1): 

one historical experiment and three future emission scenarios. We also evaluate output 

from the CMIP3 archive to assess the potential improvements in CMIP5. The 20 models 

used here are selected because they are the only ones with output available for both the 

historical and all emission scenarios for the future simulations. The future scenarios are 

three of the representative concentration pathways (RCP) developed for the IPCC Fifth 

Assessment Report (AR5), specifically: RCP 8.5, RCP 4.5, and RCP 2.6. The historical 

experiment (1850–2005) was forced by observed atmospheric composition changes 

(reflecting both anthropogenic and natural sources), with some models including time-

evolving land cover (Taylor et al. 2011). For a full listing of all model forcings, see Table 

1 in Chen and Frauenfeld (2014b). The RCP 8.5 scenario (2006–2300) assumes high 

population growth and high energy demand without climate change policies. Therefore, 

it corresponds to the pathway with the highest greenhouse gas emissions, brought about 

by a radiative forcing of 8.5 W/m2 in 2100 (Riahi et al. 2011). RCP 4.5 is a scenario that 

stabilizes radiative forcing at 4.5 W/m2 in 2100 without ever exceeding that value 

(Thomson et al. 2011). It can be considered a medium stabilization scenario. RCP 2.6 
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Table 3.1. List of 20 CMIP5 GCMs used in our study and their spatial resolution. 

 

Model Modeling Center 
Spatial 

Resolution 

ACCESS1.3 
CSIRO (Commonwealth Scientific and Industrial Research 
Organisation, Australia), and BOM (Bureau of Meteorology, 

Australia) 
145×192 

BCC−CSM1.1 Beijing Climate Center, China Meteorological Administration, China 64×128 

CCSM4 National Center for Atmospheric Research, USA 192×288 

CESM1(CAM5) 
National Science Foundation, Department of Energy, National Center 

for Atmospheric Research 
192×288 

CMCC−CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici 48×96 

CNRM−CM5 
Centre National de Recherches Meteorologiques / Centre Europeen 

de Recherche et Formation Avancees en Calcul Scientifique 
128×256 

CSIRO−Mk3.6.0 
CSIRO (Commonwealth Scientific and Industrial Research 

Organisation, Australia), and BOM (Bureau of Meteorology, 

Australia) 
145×192 

CanESM2 Canadian Centre for Climate Modelling and Analysis 64×128 

EC−EARTH EC-EARTH consortium 160×320 

FGOALS−g2 
LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua University, China 
60×128 

GFDL−CM3 Geophysical Fluid Dynamics Laboratory, USA 90×144 

GISS−E2−H NASA Goddard Institute for Space Studies, USA 90×144 

HadGEM2−CC Met Office Hadley Centre, UK 145×192 

INM−CM4 Institute for Numerical Mathematics, Russia 120×180 

IPSL−CM5A−LR Institut Pierre-Simon Laplace, France 96×96 

MIROC−ESM 
Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of Tokyo), 
and National Institute for Environmental Studies, Japan 

128×256 

MIROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), 

National Institute for Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology, Japan 
128×256 

MPI−ESM−LR Max Planck Institute for Meteorology, Germany 96×192 

MRI−CGCM3 Meteorological Research Institute, Japan 160×320 

NorESM1−M Norwegian Climate Centre, Norway 96×144 
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Table 3.2. List of 22 CMIP3 models in our study and their spatial resolution. 

 

Model Name Modeling Center 
Spatial 

Resolution 

BCCR−BCM2.0 Bjerknes Centre for Climate Research, Norway 64×128 

CGCM3.1 
Canadian Centre for Climate Modeling and Analysis, 

Canada 
48×96 

CNRM−CM3 Centre National de Recherches Météorologiques, France 64×128 

CSIRO−MK3.0 Commonwealth Scientific and Industrial Research 

Organisation, Australia 

96×192 

CSIRO−MK3.5 96×192 

GFDL−CM2.0 US Department of Commerce/National Oceanic and 

Atmospheric Administration (NOAA)/Geophysical 

Fluid Dynamics Laboratory (GFDL), USA 

90×144 

GFDL−CM2.1 90×144 

GISS−AOM National Aeronautics and Space 

Administration(NASA)/Goddard Institute for Space 

Studies(GISS), USA 

60×90 

GISS−MODEL−EH 46×72 

IAP−FGOALS1.0−G LASG/IAP, China 60×128 

INGV−ECHAM4 National Institute of Geophysics and Volcanology, Italy 160×320 

INMCM3.0 Institute of Numerical Mathematics, Russia 45×72 

IPSL−CM4 Institute Pierre Simon Laplace, France 72×96 

MIROC3.2−HIRES CCSR of Tokyo University, Frontier of JAMSTEC, 

Japan 

160×320 

MIROC3.2−MEDRES 64×128 

MIUB−ECHO−G 

Meteorological Institute of the University of Bonn, 

Meteorological Research Institute of the Korea 

Meteorological Administration (KMA), and Model and 

Data Group, Germany/Korea 

48×96 

MPI−ECHAM5 Max Planck Institute for Meteorology, Germany 96×192 

MRI−CGCM2.3.2 Meteorological Research Institute, Japan 96×192 

NCAR−CCSM3.0 
National Center for Atmospheric Research, USA 

128×256 

NCAR−PCM1 64×128 

UKMO−HADCM3 Hadley Center for Climate Prediction and Research/Met 

Office, United Kingdom, UK 

73×96 

UKMO−HADGEM1 145×192 
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corresponds to a very low forcing level, with peak radiative forcing at ~3 W/m2 before 

2100 and then declining to 2.6 W/m2 by 2100 (Vuuren et al. 2011). Monthly precipitation 

output from the 20 GCMs based on the historical and three future scenarios was obtained 

from the CMIP5 website (http://cmip-pcmdi.llnl.gov/). Model output from the climate of 

the 20th century experiment (20C3M) from CMIP3 was obtained from the CMIP3 archive 

(http://esg.llnl.gov:8080/), and was compared with the historical CMIP5 experiment 

(Table 3.2). 

To ensure that our assessment of model performance is not biased by our choice of 

observations, two different observational datasets of precipitation were used to evaluate 

the GCMs’ performance. The Climatic Research Unit (CRU) time-series (TS) 3.10 dataset 

from the University of East Anglia provides high-resolution gridded (0.5° × 0.5°) monthly 

precipitation from 1901 to 2009. This CRU dataset is based on interpolated monthly 

observations from meteorological stations across global land areas (Harris et al. 2014). 

The Global Precipitation Climatology Centre (GPCC) version 6 dataset is available for 

monthly precipitation at 0.5° × 0.5° from 1901 to 2010 (Rudolf and Schneider 2005; 

Schneider et al. 2013). Like CRU TS 3.10 it provides gridded monthly precipitation for 

the global land surface, but it is based on a larger number of station observations than the 

CRU dataset. Previous studies have discussed the consistency between these two datasets, 

and found that their discrepancies are small and their time evolutions are consistent (Zhang 

and Zhou 2011; Zhou et al. 2008a). 
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3.2.2. Methods 

  To investigate precipitation variability during the 20th and 21st centuries, the period 

1901–2005 was extracted from the historical experiment, and the period 2006–2100 was 

extracted from the three emission scenario experiments. The observational station 

distribution is rather sparse prior to approximately 1950. In evaluating the GCMs 

beginning in 1901, the early 1901–1950 period may potentially bias the assessment of 

model performance due to shortcomings in the observations. We therefore assess model 

performance for both 1901–2000, and also separately for the more data-rich period of 

1951–2000. Because of the different spatial resolutions among the GCMs, all model 

output was regridded to a uniform resolution of 2.5° × 2.5° through bilinear interpolation, 

which is a common regridding technique (Alkama et al. 2013; Hsu et al. 2013; Huang et 

al. 2013; Qu et al. 2013; Wang and Chen 2013). Due to the heterogeneity in precipitation 

in different regions of China (Piao et al. 2010; Wang and Zhou 2005), linear trends in 

seasonal and annual precipitation were analyzed for five individual sub-regions following 

the regional divisions of Ding et al. (2008) and Feng et al. (2011) (north, south, the middle 

and lower reaches of the Yangtze River, northwest, and the Tibetan Plateau) and for all of 

China (Figure 3.1). Precipitation over the whole domain of China was calculated by 

averaging the grid cell values within the political boundaries (land areas) of China. Over 

the five sub-regions, precipitation was averaged according to the latitude and longitude 

boundaries. To quantify the agreement between observations and model simulations, we  
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Figure 3.1. Map of China indicating the 5 regions (north, south, the middle and 

lower reaches of the Yangtze River, northwest, and the Tibetan Plateau) evaluated 

and some of major provinces’ names. 

 

 

 

calculated the differences (absolute and percentages), root mean square errors (RMSE), 

standard deviations of the error (SDE), and Pearson correlation coefficients (R) between 

the two observational datasets and the two CMIP datasets. To evaluate the GCMs’ skill 

in reproducing the climatological precipitation distribution over China, a skill score was 

used as defined by (Taylor 2001): 

𝑆 ≡
(1 + 𝑅)4

4(𝑆𝐷𝑅 + 1/𝑆𝐷𝑅)2
 

where R is the pattern correlation between the models and the observations, and SDR is 

the ratio of spatial standard deviation in the models against that of the observations (Hirota 

and Takayabu 2013). To examine the significance of improved skill in CMIP5 compared 
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with CMIP3, a method proposed by Song and Zhou (2014) was used. Our study domain 

(20°−50°N, 75°−125°E) was evenly divided into 15 subregions of 10° × 10° size. Skill 

scores for both CMIP3 and CMIP5 were calculated in each subregion. Based on Song and 

Zhou (2014)’s test method, if the CMIP5 scores are higher than CMIP3 over 80% of the 

subregions (here, at least 12), the improvement of the CMIP5 multimodel ensemble over 

CMIP3 is considered significant. Additionally, to evaluate the interannual precipitation 

variability in CMIP5, skills scores were calculated for interannual standard deviation 

(ISTD) of precipitation. 

 

3.3. Historical Precipitation in the 20th Century 

We first compare the spatial patterns of the 1901–2000 means for the calendar year, 

as well as the winter (December–February, DJF) and summer (June–August, JJA) seasons 

separately. Figure 3.2 shows the spatial distribution of the mean annual precipitation 

during the 20th century from CRU, GPCC, and the ensemble averages from CMIP3 and 

CMIP5. There is good agreement between the two observational datasets (Figure 3.2a, b). 

The highest precipitation occurs over southern China, likely due to the East Asian summer 

monsoon (Ding and Chan 2005). The lowest precipitation is observed over northwestern 

China, especially in Xinjiang province where the largest desert of China is found. Seasonal 

precipitation suggests a monsoon-induced pattern, with more precipitation in summer and 

less during winter. In general, both CMIP3 and CMIP5 can reproduce the spatial 

distribution of annual and seasonal precipitation reasonably. However, they overestimate 

the precipitation magnitude in many regions of China (Figure 3.2c and d). There are very  
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Figure 3.2. Spatial distribution of mean annual precipitation over China during the 

20th century generated from a) CRU, b) GPCC, and ensemble averages from c) 

CMIP3, and d) CMIP5. The left column is annual precipitation; the middle column 

is summer (JJA) precipitation; and the right column is winter (DJF) precipitation. 
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large positive biases in Yunnan and Sichuan provinces, which are at the eastern edge of 

the Tibetan Plateau. Additionally, the models underestimate summer precipitation over 

southeast China.  

Because the spatial pattern is extremely similar for CRU and GPCC (Figure 3.2a and 

b), we show only the difference with CMIP3 and CMIP5 based on GPCC (Figure 3.3). 

Compared with the observations, the CMIP5 models exhibit better correspondence than 

the CMIP3 models over 1901–2000. For CMIP3, there are much larger negative biases in 

eastern China during summer, and larger positive biases in the southwest during both 

summer and winter. The multimodel ensemble average of CMIP5 has a higher skill score 

(S = 0.79) compared with CMIP3 (S = 0.71), demonstrating the better performance of 

CMIP5 (Figure 3.4). Based on the Song and Zhou [2014] test method, CMIP5 skill scores 

are higher than CMIP3 in 13 subregions, suggesting that CMIP5 exhibits a statistically 

significant improvement in simulating climatological precipitation over CMIP3. There is 

very good agreement between the two observational products (S = 0.95). The individual 

models show a varying ability to capture the climatological annual precipitation 

distribution for China. EC-EARTH and HadGEM2-CC exhibit better skill than the other 

models (0.83 and 0.79, respectively), while MIROC-CAM5 and FGOALS-g2 present the 

lowest skills. These skill scores show little change if we focus on the 1951–2000 

climatological annual precipitation distribution, rather than 1901–2000 (Figure 3.4). 
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Figure 3.3. The difference in mean annual precipitation between model simulations 

and observations: a) CMIP3−GPCC, b) CMIP5−GPCC. The left column is annual 

precipitation; the middle column is summer (JJA) precipitation; and the right 

column is winter (DJF) precipitation. Dashed regions indicate statistically 

significant differences. 

 

 

 

 
 

Figure 3.4. Skill scores of CMIP5, CMIP3, and CRU relative to the GPCC annual 

precipitation distribution over China for 1901–2000 (black) and 1951–2000 (white). 

The dashed line indicates the skill of the CMIP5 ensemble average (S = 0.79). 
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Table 3.3. Annual and seasonal precipitation means and trends for China over 

1901–2000 derived from GPCC and CRU observations, and CMIP3 and CMIP5 

multimodel ensemble averages; 95%-level statistically significant differences 

(expressed as percentage here) or trends are shown in bold. 

 

 Annual Spring Summer Fall Winter 

 Precipitation (mm/day) 

GPCC 1.94 1.56 4.29 1.57 0.46 

CRU 1.88 1.52 4.17 1.49 0.43 

CMIP3 2.41 2.43 4.06 2.03 1.14 

CMIP5 2.49 2.42 4.40 2.06 1.08 

 Percentage difference (%) 

GPCC vs. CRU 4 3 3 6 6 

CMIP3 vs. GPCC 24 55 -5 29 149 

CMIP5 vs. GPCC 28 55 3 31 136 

CMIP3 vs. CRU 29 60 -3 37 165 

CMIP5 vs. CRU 33 60 5 39 151 

 Precipitation trend (mm/year) 

GPCC -0.47 -0.48 -0.51 -0.63 -0.31 

CRU 0.11 0.17 0.33 -0.06 0.00 

CMIP3 -0.08 0.06 -0.19 -0.19 -0.01 

CMIP5 -0.26 -0.20 -0.50 -0.20 -0.15 

 

 

 

To further quantify the performance of CMIP3 and CMIP5, annual and seasonal 

mean precipitation and precipitation trends over the entire 20th century and for the period 

1951–2000 are calculated (Tables 3.3 and 3.4). For the entire 20th century, the annual 

mean precipitation derived from GPCC and CRU, CMIP3, and CMIP5 for China are 1.94, 

1.88, 2.41, and 2.49 mm/day, respectively. The two observational datasets are significantly 

different from each other for annual, summer, and fall precipitation. Both CMIP3 and 

CMIP5 models overestimate annual and seasonal precipitation over China. The annual 

overestimate by CMIP3 versus observations is statistically significant, and the annual 

CMIP5 overestimate with respect to CMIP3 is as well. CMIP3 has a smaller percentage 
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Table 3.4. As Table 3.3, but for the period 1951–2000. 

 

 Annual Spring Summer Fall Winter 

 Precipitation (mm/day) 

GPCC 1.91 1.53 4.25 1.53 0.43 

CRU 1.88 1.53 4.18 1.48 0.43 

CMIP3 2.41 2.43 4.04 2.02 1.14 

CMIP5 2.47 2.41 4.36 2.04 1.07 

 Percentage difference (%) 

GPCC vs. CRU 1  0  2  3  1  

CMIP3 vs. GPCC 26  59  -5  32  164  

CMIP5 vs. GPCC 29  57  2  34  147  

CMIP3 vs. CRU 28  59  -3  36  167  

CMIP5 vs. CRU 31  57  4  38  150  

 Precipitation trend (mm/year) 

GPCC -0.01 0.13 0.34 -0.63 0.19 

CRU -0.16 0.09 0.03 -0.86 0.14 

CMIP3 -0.01 0.21 -0.15 -0.18 0.03 

CMIP5 -0.27 -0.24 -0.49 -0.14 -0.23 

 

 

 

difference in annual precipitation due to its underestimation of summer precipitation 

(consistent with Figure 3.3). Seasonally, CMIP3 and CMIP5 show a similar capacity to 

simulate precipitation in spring and fall, but CMIP5 results agree more closely with 

observations than CMIP3 does during summer and winter. For the 1901–2000 trends in 

precipitation, there is a discrepancy between GPCC and CRU observations (Table 3.3). 

GPCC indicates significant decreases in annual, fall, and winter precipitation of −0.47, 

−0.63, and −0.31 mm/year, respectively, while CRU shows no statistically significant 

trend in either annual or seasonal precipitation. Previous studies suggest that there is no 

significant linear trend in country-averaged annual precipitation over China (Ding et al. 

2007; Wang et al. 2004). Therefore, the trend derived from the CRU observation is more 
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reasonable, while the drying trend in GPCC may arise from a precipitation bias over the 

Tibetan Plateau (Zhang and Zhou 2011). Both CMIP3 and CMIP5 suggest a drying trend 

during 1901–2000, and the trend from CMIP5 is more similar to GPCC’s in both annual 

and seasonal precipitation. When we focus on the period 1951–2000 (Table 3.4), when 

there is better agreement between the two observational products, precipitation biases still 

show a similar pattern as for the entire 20th century. However, CMIP3 exhibits better 

agreement with the observations in terms of precipitation trends. 

 

 

 

 
 

Figure 3.5. Monthly precipitation (1901–2000) based on CRU, GPCC, and the 

multimodel ensemble averages for CMIP3 and CMIP5. The pink shading indicates 

the range (maximum–minimum) of precipitation simulated by the 20 CMIP5 

GCMs. 
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Figure 3.5 shows the 1901–2000 climatology of monthly precipitation from 

observations and model simulations. There is very good agreement between the two 

observational products, but both CMIP3 and CMIP5 overestimated precipitation 

throughout the year, with only a slight negative bias in CMIP3 in summer. The ranges of 

the maximum and minimum precipitation among individual CMIP5 models indicate that 

there are large uncertainties in summer precipitation simulations in CMIP5. The CMIP3 

models also indicate the largest precipitation range in summer (not shown).  

 

 

 

 
 

Figure 3.6. Time series of annual precipitation anomalies derived from CRU and 

GPCC, the ensemble average of all 20 CMIP5 GCMs, and CMIP3. Grey lines 

represent precipitation from the individual CMIP5 models. 

 

 

 

Figure 3.6 shows time series of annual precipitation anomalies (relative to 1961–

1990 baseline) for all of China derived from the CRU and GPCC datasets, and the 
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ensemble average from both CMIP3 and CMIP5. The two observational time series are 

significantly correlated with each other (R = 0.75, p<0.01). There are nonetheless biases 

between the two datasets at the beginning of the century (before 1930s) when the station 

data coverage is extremely sparse. After then, they exhibit much better agreement and the 

correlation increases to 0.95 (p<0.01). The consistency between the two observational 

products is also supported by previous studies (Zhang and Zhou 2011). However, there is 

a mismatch between the observations and the model simulations. CMIP5 exhibits 

somewhat better agreement with CRU than CMIP3, although neither multimodel 

ensemble is significantly correlated with CRU. The correlations between CMIP3 and 

CMIP5 with GPCC are very weak, and only CMIP5 is significantly correlated with GPCC 

over 1901–2000 (R=0.23, p<0.01), respectively. The multimodel mean shows greatly 

smoothed precipitation variability, as it represents an average of multiple ensembles and 

20 models. 

Assessing the ability of individual GCMs to simulate annual precipitation for the 

second half of the 20th century (Table 3.5), we find a large spread among the individual 

models in terms of model errors, correlations, skill scores, and long-term trends. 

Overestimation of annual precipitation is evident for all the models (except 

MRI−CGCM3). MRI−CGCM3, IPSL−CM5A−LR, CSIRO−Mk3, FGOALS−g2, and 

EC−EARTH have the smallest errors among the 20 models, relative to both the CRU and 

GPCC observations. In terms of correlations with observations, only MPI_ESM_LR 

correlates significantly with both observational products (R = 0.31 and 0.35), and 

ACCESS1 significantly correlated with CRU (R = 0.33). As suggested by Eden et al. 
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(2012), it is not reasonable to expect GCMs to capture the interannual variability in 

observations. We observe that, indeed, they cannot. However, it is interesting to note that 

MPI−ESM−LR does consistently (over both 1901–2000 and 1951–2000 relative to both 

CRU and GPCC) capture the interannual variability in observations, as gauged by 

correlation coefficients. We also calculated the skill scores of ISTD of precipitation to 

determine whether the CMIP5 models can capture the spatial pattern of interannual 

variability of precipitation over China. Because multimodel ensembles greatly smooth the 

interannual variability, both CMIP3 and CMIP5 have very low scores but CMIP5 exhibits 

slightly better skill than CMIP3. The models ACCESS1, HadGEM2−CC, MIROC5, 

EC−EARTH, and INM−CM4 show higher skill than the other models, but most have large 

biases compared with both observational products. Of the five models with higher skill 

scores, it is interesting to note that four of the models (EC−EARTH, HadGEM2, 

INM−CM4, and MIROC5) also exhibit better skill in simulating the climatology of 

precipitation over China (Figure 3.4). 
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Table 3.5. Evaluation of individual CMIP5 GCMs and multimodel ensemble averages of CMIP3 and CMIP5 relative to 

observations for annual precipitation during 1951–2000 based on root mean square errors (RMSE), Pearson's 

correlation coefficients, and skill scores of interannual standard deviation (ISTD). Included also are the annual mean 

precipitation and the trend over 1951−2000. The 95%-level statistically significant correlations and trends are shown in 

bold. 

Model Name 

Annual mean 

precipitation 

(mm/day) 

RMSE (mm/day) Correlation Coefficient ISTD Skill Score Trend 

(mm/year) 
GPCC CRU GPCC CRU GPCC CRU 

CMIP3 2.41  3.56  3.75  0.10  0.11  0.06 0.04 -0.01  

CMIP5 2.47  3.98  4.17  0.18  0.28  0.08 0.05 -0.27  

ACCESS1 3.01  7.76  7.95  0.25  0.33  0.80 0.78 -1.00  

BCC 2.51  4.32  4.51  -0.04  0.02  0.49 0.42 -0.13  

CanESM2 2.26  2.57  2.75  -0.05  0.00  0.40 0.26 -0.06  

CCSM4 2.52  4.38  4.57  -0.02  0.03  0.41 0.31 0.32  

CESM1_CAM5 2.65  5.25  5.44  0.11  0.20  0.46 0.41 -0.31  

CMCC_CESM 2.41  3.61  3.80  0.24  0.25  0.65 0.51 0.46  

CNRM_CM5 2.54  4.48  4.67  -0.02  0.08  0.54 0.40 -0.36  

CSIRO_Mk3 2.10  1.52  1.68  0.12  0.15  0.49 0.38 -0.45  

EC_EARTH 2.18  2.08  2.27  0.11  0.04  0.69 0.52 0.08  

FGOALS_g2 2.15  1.82  1.99  0.05  0.06  0.18 0.15 0.23  

GFDL_CM3 2.32  3.02  3.20  -0.02  0.04  0.28 0.18 -0.95  

GISS_E2_H 2.86  6.71  6.90  0.08  0.11  0.50 0.53 -0.93  

HadGEM2_CC 2.80  6.34  6.53  0.11  0.14  0.80 0.83 -0.80  

INM_CM4 2.71  5.73  5.92  -0.01  0.02  0.65 0.56 -0.07  

IPSL_CM5A_LR 2.02  1.07  1.20  -0.06  -0.01  0.26 0.18 -0.01  

MIROC5 2.89  6.91  7.10  0.00  0.10  0.78 0.69 -1.03  

MIROC_ESM 2.50  4.20  4.38  0.02  0.09  0.29 0.20 -0.60  

MPI_ESM_LR 2.42  3.63  3.82  0.35  0.31  0.59 0.45 0.41  

MRI_CGCM3 1.85  0.80  0.71  0.23  0.20  0.42 0.31 -0.40  

NorESM1_M 2.67  5.44  5.63  -0.25  -0.24  0.49 0.39 0.13  
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Figure 3.7. Annual precipitation trends over the 20th century; a) CRU 

observations, b) GPCC, c) CMIP3, and d) CMIP5; dashed regions indicate 

statistically significant trends (95%-level). 

 

 

 

We next compare the annual precipitation trends over the 20th century based on the 

CRU and GPCC observations, and the CMIP3 and CMIP5 simulations (Figure 3.7). The 

CRU observations show that precipitation increased significantly over the northeast and 

parts of the south and northwest region, and decreased significantly over other parts of 

the south region, as well as the Tibetan Plateau (Figure 3.7a). The GPCC observations 

indicate a similar precipitation trend pattern as CRU, except for a significant decreasing 

trend in a large area of the northwest (Figure 3.7b). CMIP3 and CMIP5 precipitation 

exhibits a much simpler dipole trend pattern, consisting of significantly increasing  
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Figure 3.8. As Figure 3.7, but for the period 1951–2000. 

 

 

 

precipitation over the northwest and parts of the northeast region, and significant drying 

in other regions (Figure 3.7c and d). This spatial multimodel ensemble average trend 

pattern does not correspond to the observed trend patterns over the 20th century. 

When focusing on the more data-rich second half of the 20th century, there is 

much better agreement between the observational spatial patterns of precipitation trends 

in GPCC and CRU (Figure 3.8). There is a positive trend over the northwest, decreasing 

precipitation over north and central China, and increasing precipitation over large regions 

of the Yangtze River Basin and south China. The trends over east China reflect the decadal 

variations of the East Asian monsoon, also associated with a “wet south-dry north”  
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Figure 3.9. Frequency distribution of precipitation trends over the 20th century 

from 20 CMIP5 models (grey bars). Vertical lines indicate the precipitations trends 

from observations (red: CRU, blue: GPCC) and multimodel ensemble averages 

(yellow: CMIP3, black: CMIP5). 

 

 

 

precipitation pattern since the end of the 1970s (Huang et al. 2012; Zhou et al. 2009). 

CMIP3 and CMIP5 have similar 1951–2000 trends compared to the 1901–2000 trend 

patterns. CMIP5’s 50-year trends show improved agreement with observations over 

CMIP3’s in the northeast, however disagreement still exist over the south. 

The frequencies of 20th century precipitation trends from all 20 CMIP5 GCMs were 

also analyzed for the different regions of China (Figure 3.9). Overall, in terms of the sign 

or wetting trends over the south, the Yangtze River Basin, and the northwest. There is a 

decreasing trend over the south and Yangtze River Basin, and a slight increasing trend 

over the northwest. There is worse agreement among the 20 GCMs in precipitation trends  
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Figure 3.10. As Figure 3.9, but for the period 1951–2000. 

 

 

 

over north China and the Tibetan Plateau where the models disagree on the sign of the 

trends, indicating uncertainties in simulating precipitation in this region. Multimodel 

ensemble means from CMIP3 show very similar precipitation trends as CMIP5, except in 

(positive versus negative) of the trends, the 20 GCMs reveal more consistent drying the 

south and the Yangtze River Basin. Compared with observational data, there is poor 

agreement between observed and simulated trends over the north, south, and the Yangtze 

River Basin, indicating poor model performance in simulating the monsoonal circulation. 

Both the GPCC and CRU data indicate positive trends, while CMIP5 reveals negative 

trends in these regions. In the northwest and the Tibetan Plateau, the CRU data show 

similar precipitation trends as CMIP5 and CMIP3. The precipitation trends from GPCC 

are substantially different, illustrating shortcomings in the observations over 1901–2000,  
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Figure 3.11. Seasonal precipitation trends in five sub-regions over the entire 20th 

century (left) and the second half of the century (1951–2000, right). Note the 

different y-axis scale between the panels. 

 

 

 

likely driven by the data-sparse pre-1950 period. The frequency distribution of the 

precipitation trends over 1951−2000 from all 20 CMIP5 GCMs displays a similar pattern 

as over the whole century (Figure 3.10). Also, CRU and GPCC show much better 

agreement over the northwest and the Tibetan Plateau in the second half of the 20th 

century. Figure 3.11 illustrates seasonal precipitation trends in the five sub-regions of 

China for the periods 1901−2000 (Figure 3.11, left) and 1951−2000 (Figure 3.11, right). 
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In the north, the two observational products indicate positive trends in summer 

precipitation over the 20th century, however, this was not captured by either CMIP3 or 

CMIP5. For 1951−2000, drying trends were observed throughout the four seasons, with 

CMIP5 also exhibiting negative trends except in fall. In the south and the Yangtze River 

basin, there are positive trends in spring for the period 1901−2000, and positive trends in 

summer for the period 1951−2000. However, both CMIP3 and CMIP5 were unable to 

reproduce these precipitation trends. GPCC and CRU show large discrepancies over the 

northwest and the Tibetan Plateau in the century-scale precipitation trends due to the data 

scarcity before 1950. Models show similar seasonal trends as CRU observation. Over the 

20th century, there are wetting trends in the northwest throughout the year, and drying in 

summer and fall over the Tibetan Plateau. 

 

 

 

 
 

Figure 3.12. Time series of simulated precipitation in China of CMIP5 ensemble 

averages from different experiments during 1900–2010. 
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3.4. Precipitation Projections for the 21st Century 

Simulated annual precipitation averaged for China from 1900 to 2100 is shown in 

Figure 3.12. All the emission scenario experiments exhibit significantly increasing 

precipitation over China during the 21st century. The RCP 8.5 scenario exhibits the largest 

increasing trend, at a rate of 1.5 mm/year. By the end of the 21st century, annual 

precipitation is projected to increase by 16% for the whole region of China. The RCP 4.5 

and RCP 2.6 scenarios show a relatively smaller increasing trend, at a rate of 1.1 mm/year 

and 0.5 mm/year, accounting for a 12% and 6% increase by 2100, respectively. 

Spatially, precipitation will increase throughout China in the 21st century (Figure 

3.13). The three emission scenarios reveal the same spatial pattern of future precipitation 

changes, but the RCP 8.5 scenario shows the greatest increase compared to the other two. 

Under this scenario of highest greenhouse gas emissions (Figure 3.13a), there is a 

relatively high increasing trend over the Tibetan Plateau (about 3 mm/year) and relatively 

low increases over the northwest (about 0.6 mm/year). Comparing the two periods of 

2070–2099 versus 1961–1990 reveals the same spatial pattern of changes in annual 

precipitation (Figure 3.13b). Under the RCP 2.6 scenario, the annual precipitation 

difference between the two periods does not show any significant differences between 

2070–2099 versus 1961–1990 (Figure 3.13f). This projected precipitation pattern shows 

poor agreement with previous studies. Feng et al. (2011) suggest that annual mean 

precipitation will increase over southeastern China, north China, and northeast China, but 

will decrease over the southern Tibetan Plateau under the A1B scenario. However, Gao et 

al. (2008) suggest that there will be a prevailing increase in precipitation over China with  
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Figure 3.13. Annual precipitation trends in the 21st century for three emission 

scenarios (a: RCP 8.5, c: RCP 4.5, e: RCP 2.6) and changes in annual precipitation 

(2070–2099 versus 1961–1990) based on CMIP5 projections (b: RCP 8.5, d: RCP 

4.5, f: RCP 2.6). Dashed regions indicate statistically significant trends/differences. 
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largest increases over the northwest and the Tibetan Plateau. However, these predictions 

were based on only one individual model projection. The CMIP3 multi-model ensemble 

indicates that there will be a significant increase in precipitation in south and northeast 

China, but a decrease in the Xinjiang Province in northwest China (Chen and Sun 2009). 

Therefore, there are large uncertainties in future precipitation projections. 

 

 

 

 
 

Figure 3.14. Seasonal precipitation trends over different regions of China for the 

21st century based on 3 CMIP5 scenario projections. 

 

 

 

Precipitation projections for the RCP 8.5 and RCP 4.5 scenarios exhibit similar 

seasonal patterns in the different regions of China over the 21st century (Figure 3.14). For 

China as a whole, the largest increase in precipitation will occur in JJA. There will be a 

similar pattern in the north, south, and the Tibetan Plateau. However, the greatest 
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precipitation increase will be in spring in the middle and lower reaches of Yangtze River 

Basin. In the northwest, the wetting trend is much smaller than in the other regions, with 

relatively large increases in winter and spring. Compared with the other two scenarios, the 

RCP 2.6 shows less seasonal variation in precipitation changes. 

 

3.5. Discussion 

In this study, the output of 20 GCMs from CMIP5 was used to assess the precipitation 

variability over China. The CMIP5 models show somewhat better agreement with 

observations than CMIP3. For instance, there are smaller biases in seasonal precipitation 

in CMIP5 than based on CMIP3. CMIP5 also has stronger correlations with the two 

observational datasets. However, significant uncertainties remain. There is a large positive 

bias at the eastern edge of the Tibetan Plateau, especially in summer. It is difficult to 

discern any improvement in CMIP5 in relative to CMIP3 over this region. These biases 

are likely due to the climate models’ coarse resolution (Tables 3.1 and 3.2), which makes 

it difficult to properly reproduce the atmospheric processes in a highly spatially-

heterogeneous and complex terrain (Chen et al. 2010; Su et al. 2012; Yu et al. 2000; Zhou 

and Li 2002). Over eastern China, both CMIP3 and CMIP5 systematically underestimate 

summer precipitation, even though CMIP5 shows reduced biases over CMIP3. This 

underestimation has also been observed in related studies (Huang et al. 2013; Sperber et 

al. 2013), which hypothesized that the convective and microphysical parameterization 

schemes and coarse resolutions of GCMs represent likely error sources in precipitation 

simulations. Because eastern China is dominant by the East Asian monsoon (Chang 2004; 
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Huang et al. 2012), previous studies have suggested GCMs’ deficiencies in simulating the 

East Asian monsoon. The negative biases in eastern China during summer indicate that 

precipitation in the Meiyu front is underestimated (Song and Zhou 2014; Sperber et al. 

2013). Also, the disagreement in winter precipitation may arise from the poor ENSO-

winter monsoon relationship in CMIP5 models (Gong et al. 2013) since ENSO is one of 

main factors that influence the winter and autumn precipitation in China (Gu et al. 2012; 

Wang and Feng 2011). 

 

 

 

 
 

Figure 3.15. Time series of 10-year moving average precipitation from both 

observations and the multimodel ensemble average from CMIP3 and CMIP5. 

 

 

 

Temporally, there is low agreement between observations and GCM simulations. 

Biasutti (2013) observed similar discrepancies for Sahel rainfall trends in CMIP5 output, 
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and suggested that the mismatch could be due to the decadal variability of sea-surface 

temperatures, which was not captured by the multimodel ensemble, and the 

underestimation of aerosol effects in climate models. Over east China, the monsoon 

precipitation is mainly influenced by interdecadal variability over the central–eastern 

Pacific and the western tropical Indian Ocean (Li et al. 2010; Zhou et al. 2008b), with 

aerosol forcing playing a complementary role (Song et al. 2014). However, forcing from 

modes of internal interdecadal variability such as the Pacific Decadal Oscillation cannot 

be reproduced in CMIP5 (Song et al. 2014; Zhou et al. 2013). Figure 3.15 shows the 10-

year moving average of 20th century precipitation from both observations and the 

multimodel means. Observations exhibit decadal variability of precipitation, which is not 

well-captured by the multimodel means.  

For the individual model evaluations, there are large uncertainties among different 

models, as discussed in previous studies (Huang et al. 2013; Wang and Chen 2013). The 

substantial differences in precipitation among CMIP5 models are likely due to differences 

in the forcings, the magnitude of the internal variability, and the climate sensitivity of 

individual models. Our results indicate that some models exhibit much better agreement 

with the two observational products in terms of skill scores of the climatology and ISTD 

of precipitation. However, it seems there is no relationship evident between model 

performance and their horizontal resolution. For instance, among the four models with the 

highest skill for both the climatology and ISTD of precipitation (EC−EARTH, 

HadGEM2−CC, INM−CM4 and MIROC5), EC−EARTH has a relatively high horizontal 

resolution (ranking 3rd of all twenty models), while the other three models have medium 
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horizontal resolutions. The NCAR models (CCSM4 and CESM−CAM5) with very high 

spatial resolution, however, do not exhibit high skill in our analysis. Therefore, spatial 

resolution may not be a decisive factor influencing the ability of CMIP5 to reasonably 

reproduce precipitation variability (Song and Zhou 2014).  

The spatial pattern of CMIP5 trends over the 20th century does not correspond to 

observational trends. However, there is also significant disagreement in precipitation 

trends between the two observational datasets. The main reason for this discrepancy could 

be the input data source (rain gauge data) used in the different global precipitation datasets, 

as also observed by Harris et al. (2014) for CRU and GPCC. For instance, large differences 

in observed precipitation are evident at the beginning of the 20th century because of the 

scarcity of weather stations. Also, Schneider et al. (2013) describes the differences in input 

data, and that the GPCC dataset integrates more data sources than just CRU, such as the 

Global Historical Climate Network (GHCN), and data from the Food and Agriculture 

Organization (FAO). Another possible reason is the interpolation method used in the 

different data products. Therefore, caution is necessary when using observational datasets 

at long (century) time scales. To account for and reduce such biases, two observational 

datasets were employed in our study, although changing amounts and quality of data are 

of course inherent in both, as they draw from similar underlying station databases. 

Furthermore, our results suggest that GPCC data might be biased over the Tibetan Plateau 

and northwest China before 1950. This shortcoming has also been noted in previous 

studies (Zhang and Zhou 2011). The GPCC data exhibit artificial drying trends over 

northwest China and the Tibetan Plateau over 1901–2000, which is not evident in other 
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observational datasets (Figure 3.7 and 9, and Figure 3.3 in Zhang and Zhou (2011)). 

However, this shortcoming in GPCC and the discrepancy with CRU has been largely 

eliminated after 1950 (Table 3.4 and Figure 3.8). 

Based on projections from the 20 CMIP5 GCMs, there will be an increase in 

precipitation throughout China in the 21st century. Higher greenhouse emission scenarios 

correspond to larger increases in precipitation. Under continuing positive temperature 

trends (Xu and Xu 2012), the increased atmospheric moisture content associated with 

warming is hypothesized to lead to increased precipitation (IPCC 2007). Spatially, the 

greatest increase will occur over the Tibetan Plateau and the eastern part of China during 

summer. Also, the greater precipitation increase in summer implies a change in the East 

Asian summer monsoon in the future. Kripalani et al. (2007) suggest that the projected 

increases in the East Asian summer monsoon precipitation may be attributed to the 

projected intensification of the subtropical high. However, the increase in atmospheric 

water vapor as the result of a higher sea-surface temperature over the western Pacific may 

play a more critical role in the enhanced precipitation than the change in monsoonal low-

level circulation does (Seo and Ok 2012). The large positive precipitation trend over the 

south and east of China may correspond to increases in extreme precipitation events and 

flood risks in these regions as discussed in previous studies (Kitoh et al. 2013; Li et al. 

2011), indicating a potential sensivity of the East Asian monsoon to global warming. 

Future precipitation increases over the Tibetan Plateau will also influence the water 

resource availability in other regions, as the Tibetan Plateau is the source region for major 

rivers of China and also plays a critical role in the East Asian summer monsoon (Zhang et 
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al. 2004). Even though the projected precipitation increase over northwest China is 

relatively small, this trend may produce significant social and environmental impacts in 

this arid and semi-arid region (Shi et al. 2007). Following the weakening of the East Asian 

summer monsoon since the late 1970s, there has been increasing drought in north China 

with emerging water shortages (Zhou et al. 2009). If projected precipitation increases in 

the 21st century hold true, this may relieve water stress and may benefit agricultural 

development and environmental restoration in these regions. 

Finally, since there are still substantial uncertainties in the simulation of regional 

precipitation trends in the current CMIP5 GCMs as discussed above and in previous 

studies (Kumar et al. 2013a), future precipitation projections should be interpreted with 

caution. Based on our model performance evaluation in the 20th century, there is 

reasonable agreement in annual precipitation trends between observations and model 

simulations over the northwest and the Tibetan Plateau, particularly for the more recent 

1951–2000 period (Figure 3.8). This suggests that future projections for these regions may 

also be reasonable. However, for the Yangtze River Basin and southern China, large biases 

and discrepancies between the observations and models (Figure 3.7, 8, 13) call the 

robustness of the CMIP5 projections into question. The future precipitation trends and 

their magnitude in these regions (Figure 3.13) are highly uncertain. This paper illustrates 

the possible precipitation changes in the 21st century based on multimodel ensemble 

averages from 20 GCMs. Further work is needed (such as using regional climate models 

with higher spatial resolution) to reduce biases and to provide more robust climate 

projections. 
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3.6. Conclusions 

This paper investigates the historical precipitation trends over the 20th century by 

using both observational datasets and model simulations, and estimates future changes. 

CMIP5 models well reproduced the spatial pattern of annual and seasonal precipitation 

over China during the 20th century, which represents an improvement over CMIP3. 

However, uncertainties in climate models are still evident. CMIP5 models overestimate 

the magnitude of precipitation in most regions of China, especially along the eastern edge 

of the Tibetan Plateau, and underestimate summer precipitation over the southeast of 

China. For China as a whole, CMIP5 overestimates annual precipitation, even more so 

than CMIP3. This is mainly due to the greater underestimation of summer precipitation in 

CMIP3. There is large spread among individual models, with the greatest uncertainties in 

simulating summer precipitation. Multimodel ensembles cannot capture the amplitude of 

the decadal variability in observed precipitation. 

Throughout the 20th century, both the observations and models show an increasing 

trend in precipitation over parts of the northwest region, and a decreasing trend over the 

Tibetan Plateau. However, there is poor agreement over the southeast and northeast 

regions, which calls future projections into question for these parts of China. In the 21st 

century, there is a generally increasing trend in precipitation over all of China under all 

the three emission scenarios. RCP 8.5 corresponds to the largest increases in precipitation 

over the 21st century. By the end of the 21st century, annual precipitation will significantly 

increase by 6–16% based on the lowest–highest emission scenarios, respectively. The 
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greatest increase will occur over the Tibetan Plateau and the eastern part of China during 

summer, suggesting future changes in the East Asian Monsoon. 
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4. CLIMATIC IMPACTS OF HISTORICAL LAND COVER CHANGES IN CHINA 

  

4.1. Introduction 

Land cover and land use changes play an important role in the climate system 

(Comarazamy et al. 2013; Feddema et al. 2005b; Kalnay and Cai 2003). Land cover 

changes can influence local and regional climate by modifying the surface energy, water, 

and momentum fluxes, as well as greenhouse gases (Foley et al. 2005; Mahmood et al. 

2014). Also, large-scale land cover changes may affect global climate through adjustments 

in atmospheric general circulation (Chase et al. 2000). Biogeophysical impacts have been 

considered as one of most important effects of land cover changes on climate by altering 

surface albedo, the partitioning of surface radiation fluxes, and surface roughness, thus 

regulating moisture and heat transport between the land surface and the atmosphere 

(Anderson-Teixeira et al. 2012; Mahmood et al. 2014; Notaro et al. 2011). For instance, 

mid-latitude land cover changes from forests to croplands can increase surface albedo and 

lead to cooling (Betts et al. 2007; Feddema et al. 2005a). The Intergovernmental Panel on 

Climate Change (IPCC) 5th assessment report (AR5) indicated there is a “very likely” 

radiative cooling of −0.15 (−0.25 to −0.05) W/m2 from surface albedo changes due to 

human-induced land cover change since 1750 (IPCC 2013). On the other hand, 

deforestation in tropical regions can increase surface temperature through reduced 

evapotranspiration and increased sensible heat flux (Claussen et al. 2001; Davin and de 

Noblet-Ducoudré 2010; Pongratz et al. 2006). Lawrence and Chase (2010) suggested that 

the current global warming has been predominantly driven by this evapotranspiration 
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effect, with the albedo forcing playing a secondary role. Impacts on precipitation are not 

as straightforward as those on temperature, because they depend on many more complex 

factors, such as geographic location, regional atmospheric characteristics, area extent of 

land cover change, and teleconnections (Pielke et al. 2007). 

With rapid population growth and economic development, China has experienced 

significant land cover changes, such as urbanization (Hua et al. 2008; Zhou et al. 2004), 

agricultural expansion (Zhang 2000), and even desertification (Wang et al. 2006b; Xue 

1996). Over recent centuries, large areas of forest have been converted to farmland. For 

example, (Liu and Tian 2010) found that during the last 300 years the land cover changes 

in China were characterized by a forest area decrease of 22%, and cropland increases of 

42%, and growing urban areas. Since the 1950s, additional rapid urban area growth has 

occurred in China, with the most intense urbanization in East China. Therefore, studies on 

the climatic impacts of land cover changes are crucial for our understanding of climate 

change over China. Climate models coupled with land surface models are commonly used 

to investigate these land-atmosphere interactions (Cho et al. 2014; Fu 2003; Gao et al. 

2003; Hu et al. 2014; Suh and Lee 2004; Takata et al. 2009; Wang et al. 2014; Xu et al. 

2015; Yu et al. 2014; Zhao and Pitman 2005; Zheng et al. 2002). Fu (2003) suggested that 

human-induced land cover changes, including agricultural conversion and desertification, 

can weaken the East Asian summer monsoon and enhance the winter monsoon, thus 

resulting in significant reductions of precipitation, runoff, and soil water content. Similarly, 

Suh and Lee (2004) found that land cover changes can lead to a warm and dry summer. 

Using the same climate model, however, Gao et al. (2003) indicated that historical 
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vegetation changes did not lead to significant changes in precipitation over East China. 

This discrepancy implies that there are still uncertainties in understanding the impacts of 

land cover changes on climate over China. In addition to the impacts of natural vegetation 

changes, increasing attention focuses on the influence of urbanization on climate in China 

(Hua et al. 2008; Li et al. 2013a; Zhou et al. 2004). Besides the warming effect on local 

and regional climate, it was found that urbanization is able to influence the East Asian 

monsoon at to a certain extent (Chen and Zhang 2013; Feng et al. 2013; Feng et al. 2014). 

Despite vegetation changes and urbanization occurring simultaneously over the 

historical period, these two types of land cover change have previously rarely been 

considered in combination. Also, few studies have examined the relative magnitude of 

urbanization versus vegetation changes on climate over China. For instance, while Xu et 

al. (2015) did examine the impacts of historical land cover changes including urbanization, 

assessing the relative contribution of these two land cover changes was not their focus. In 

this study, a state-of-the-art general circulation model (GCM) is used to investigate the 

biogeophysical effects of vegetation changes, urbanization, and their combined effects on 

the climate of China. The unique contribution of this paper is therefore that it elucidates 

the relative importance and magnitude of urbanization versus changes in vegetation. We 

thus provide a comprehensive assessment of climatic impacts of human-induced land 

cover changes, which improves our understanding of the drivers of climate change in 

China. In section 4.2 we provide the model description and experimental design. Section 

4.3 presents results about changes in land surface characteristics and their influences on 
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temperature, precipitation, and the East Asian monsoon. Section 4.4 includes discussion 

and conclusions. 

 

4.2. Model Description and Experimental Design 

4.2.1. Model Description 

We use the Community Earth System Model (CESM) version 1.0.41, developed 

by the National Center for Atmospheric Research. This model and its predecessor versions 

have been widely used for studies of land-atmosphere interactions, including land cover 

change (de Noblet-Ducoudré et al. 2012; Kumar et al. 2014; Lawrence and Chase 2010; 

Lawrence et al. 2012; Lee et al. 2011; Notaro et al. 2011) and soil moisture feedbacks 

(Kim and Wang 2007; Meng and Quiring 2010; Wang et al. 2007; Xu et al. 2015). Also, 

its ability to simulate climate specifically over China has been extensively evaluated (Chen 

and Frauenfeld 2014b; Islam et al. 2013) and has been successfully applied to many 

climate studies in China (Chen and Zhang 2013; Li et al. 2014). 

To isolate the effects of land surface changes, we used prescribed climatological sea 

surface temperature (SST) and sea ice cover between 1982 and 2001. Therefore, our model 

configuration only incorporates the Community Atmosphere Model version 4 (CAM4; 

(Neale et al. 2010) and the Community Land Model version 4 (CLM4; (Lawrence et al. 

2011). CLM allows sub-grid heterogeneity by prescribing the land surface as one of five 

                                                
1 It should be noted that CCSM4 is a subset of CESM1. Based on model evaluation in previous chapters, 

CCSM4 shows a better agreement with observation, especially in temperature, compared with other CMIP5 

models. In this study, therefore, we did all CCSM4 experiments from the CESM1 code base. 
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sub-grid land cover types: glacier, lake, wetland, urban, and vegetated. The vegetated 

portion also specifies a fractional allocation of plant functional types (PFTs). Additionally, 

an urban canyon model has been incorporated into CLM4, so that climate change in urban 

areas and the urban heat island effect can be considered (Lawrence et al. 2011; Oleson et 

al. 2008). In this study, the 1.9° latitude × 2.5° longitude finite volume grid was used, with 

a total of 26 levels in the vertical. 

To assess model performance, we compare simulated surface air temperature and 

precipitation from our control run (see section 2.2) with observations. We use the Climatic 

Research Unit (CRU) time-series (TS) 3.10 dataset (Harris et al. 2014) based on our 

comprehensive evaluation of this product for China (Chen and Frauenfeld 2014a, 2014b). 

Observations were regridded to the model resolution using bilinear interpolation. Similar 

to Xu et al. (2015), NCEP/NCAR reanalysis 850 hPa geopotential height and winds were 

also used to represent observed atmospheric circulation features for assessing the model’s 

ability to represent the East Asian monsoon. Because the control run was forced with the 

1982–2001 climatology of monthly SST, the climatology of surface air temperature, 

precipitation, and 850 hPa circulation during this same period was calculated. 

4.2.2. Experimental Design 

Three experiments with different land cover conditions were conducted to evaluate 

the impacts of historical land cover changes on climate in China: 

1) A control run forced with current (CUR) land cover conditions was performed, in 

which the PFT distribution was derived from Moderate Resolution Imaging 
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Spectroradiometer (MODIS) land surface data products (Lawrence et al. 2011; Lawrence 

and Chase 2010).  

 

 

 

 
 

Figure 4.1. Fractional changes (percent of the grid cell) between current day and 

potential vegetation biomes: a. trees (including needleleaf evergreen temperate tree, 

needleleaf evergreen boreal tree, broadleaf deciduous temperate tree, broadleaf 

deciduous boreal tree); b. grass (including c3 arctic grass, c3 no arctic grass, and c4 

grass); c. crop; and d. urban fractional coverage in China.  

 

 

 

2) A potential vegetation run with current urbanization (POT+URB) was forced with 

potential vegetation conditions within China, with the CUR land cover in the rest of the 
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world. The potential vegetation distribution, which represents primary land cover 

conditions without human disturbance, was derived from a historical land use and 

potential vegetation map (Lawrence and Chase 2010; Ramankutty and Foley 1999). This 

dataset was selected because it has previously been evaluated and applied to climate 

studies in East Asia (Liu and Tian 2010; Takata et al. 2009). Figure 4.1a–c shows the 

fractional changes in PFTs between the POT+URB and CUR experiments, highlighting 

the historical vegetation changes as a results of human activities. Extensive deforestation 

and cropland expansion occurred in eastern and southern China. Approximately 7.4% of 

the area of China experienced deforestation, which is mainly attributable to the loss of 

needleleaf evergreen temperate trees, broadleaf deciduous temperate trees, and broadleaf 

deciduous boreal trees. Consequently, intensified agricultural activities led to an 

approximate 6.3% increase of cropland in eastern and southern China and northern 

Xinjiang province. Grassland area decreased in the northeast and northwest (northern 

Xinjiang province) due to agriculture, grazing, or desertification in these regions. However, 

grassland coverage increased in southeastern China.  

3) A completely natural land cover (NAT) run with potential vegetation and no 

urbanization was forced with potential vegetation in China and without the urban portion, 

which was proportionally replaced with potential vegetation PFTs. Figure 4.1d shows the 

distribution of urban areas, accounting for approximately 1.5% of the area of China, and 

mostly located in eastern and southeastern China. Urbanization is associated with human 

activities. Therefore, the removal of the urban portion more realistically represents 

completely undisturbed natural land cover in China. 
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All three experiments were performed as an ensemble of three 30-year realizations 

with a 10-year spin-up simulation. The CUR − POT+URB difference indicates the 

possible biogeophysical effects of vegetation changes, while the CUR − NAT difference 

shows the combined effects of vegetation changes and urbanization. Because the climate 

of China is greatly influenced by the East Asian monsoon, results for summer (JJA) and 

winter (DJF) are analyzed and the impacts of land cover changes on the East Asian 

summer and winter monsoon are also discussed. Most of the land cover changes occurred 

in eastern China, so the average climatic consequences were also quantified over eastern 

China (20–52°N, 102–130°E). 

 

4.3. Results 

4.3.1. Model Evaluation 

The model assessment indicates that CESM 1.0.4 capture the spatial distribution 

of surface air temperature in China well (Figure S1), with a spatial correlation coefficient 

of 0.88 (p<0.01) in summer and 0.96 (p<0.01) in winter. However, the model 

overestimates summer precipitation in the northeast and on the Tibetan Plateau, and 

underestimated winter precipitation in the southeast (Figure S2). The spatial correlation 

coefficients between observed and simulated precipitation are 0.61 (p<0.01) in summer 

and 0.64 (p<0.01) in winter. Figure S3 shows that the model captures the spatial pattern 

of atmospheric circulation at 850 hPa well, but overestimates the wind speed of the 

summer monsoon over eastern China, and fails to represent the southerly wind over 
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southern China during winter. Overall, CESM 1.0.4 provides a reasonable representation 

of climate in China, and should therefore be capable of assessing the climatic impacts of 

land cover changes for our study.  

 

 

 

 
 

Figure 4.2. Leaf area index (top) and albedo (bottom) change in summer and winter 

from CUR − POT+URB experiments, indicating the effects of only vegetation 

changes. The dotted areas indicate statistically significant differences at the 95% 

level. 

 

 

 

4.3.2. Changes in Land Surface Characteristics 

Land cover changes can modify land surface characteristics such as albedo and 

leaf area index (LAI). Figure 4.2 shows the changes in LAI and albedo arising from 

vegetation changes (CUR − POT+URB difference). In eastern and southern China, LAI 
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decreased as a result of deforestation in these regions. Seasonally, we find a smaller 

decrease in winter because deciduous temperate and deciduous boreal trees already have 

a lower LAI in the cold season. Generally, albedo increased in the region where land cover 

change has occurred, which is attributable to the replacement of forest by cropland and 

pasture (Davin et al. 2007).The increase in albedo is stronger in winter, especially in 

northeastern China. This was previously reported by Boisier et al. (2013), who found that 

in northern temperate regions of intense deforestation, a larger albedo increase is observed 

in summer than in winter because of the presence of snow. 

Changes in LAI and albedo from the combined effects of vegetation and urbanization 

changes (CUR − NAT) were also calculated. The same patterns as CUR − POT+URB 

were found, but with slightly greater magnitude (not shown). Urban area accounts for a 

relatively small portion (<10%) in most grid cells (Figure 4.1d), thus its replacement with 

vegetation in NAT only leads to a slighter greater decrease in LAI from potential 

vegetation to current day land cover. 

As discussed above, land cover changes modify the land surface energy balance, and 

hence influence local and regional climate. Figure 4.3 shows sensible and latent heat flux 

as a result of vegetation changes. The sensible heat flux decreases in a large area of China 

during both summer and winter. The decrease in summer can likely be attributed to an 

increase in evapotranspiration, while the decrease in winter is caused by an increase in 

albedo (Figure 4.2). On the other hand, land cover change resulted in a remarkably 

increased latent heat flux in northeastern, northwestern, and east-central, and southern 

China in summer. This result is different from previous studies (Lawrence and Chase 
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Figure 4.3. Sensible (a–b) and latent (c–d) flux change (W/m2) in summer (left) and 

winter (right) from CUR − POT+URB experiments, indicating the effects of only 

vegetation changes. The dotted areas indicate statistically significant differences at 

the 95% level. 

 

 

 

2010), which showed decreases in evapotranspiration in response to global land cover 

change. Further partitioning evapotranspiration reveals that there is a significant decrease 

in canopy evaporation, but a strong increase in canopy transpiration and ground 

evaporation after deforestation. The decrease in canopy evaporation is mainly attributable 

to the decrease in LAI. However, with the conversion from forest to cropland or grassland, 

the decreased surface roughness length and stomatal resistance can provide a favorable 
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environment for evapotranspiration (Bonan 1997; Mahmood et al. 2014; Suh and Lee 

2004). 

 

 

 

 
 

Figure 4.4. Mean surface air temperature changes from vegetation changes only 

(CUR − POT+URB, top) and the combined vegetation and urbanization changes 

(CUR − NAT, bottom). The dotted areas indicate statistically significant differences 

at the 95% level. 

 

 

 

The combined effects from vegetation and urbanization are again similar to the 

vegetation-only effects (not shown). However, in the east-central and southeast regions, 

the increase in latent heat flux from agriculture in summer is even larger with the addition 

of urbanization effects, because urban areas have impervious surface and less vegetation 
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fraction. Similarly, the decrease in sensible heating from agriculture is also greater with 

the addition of urban heat island effects.  

4.3.3. Temperature Changes 

Figure 4.4 shows the mean surface air temperature response from land cover 

changes in China. When only considering vegetation changes, there is a statistically 

significant warming in the northeast in summer, and a significant cooling in the northeast 

and northwest in winter. However, no significant temperature change is found in east-

central and southeastern China. The winter cooling is likely due to the increased albedo 

reported above. Averaged over eastern China, temperature shows a significant decrease 

(−0.24°C) during winter, but a negligible change in summer. When urbanization is 

included, the warming effect in summer expands to the south. During winter, a significant 

warming effect appears in a large area in the east and south, which corresponds well with 

the urbanized areas of China. 

To further examine the temperature response to land cover changes, we calculate 

daily maximum and minimum temperature changes from CUR − POT+URB and CUR − 

NAT (Figure 4.5). Generally, summer daily maximum temperature (Tmax) decreases in 

central and eastern China (−0.14°C on average), which is consistent with the area of 

relatively greater albedo increase. In winter, most of China exhibits cooling (−0.39°C on 

average) based on on Tmax when only vegetation change is considered. Urbanization in the 

southeast offsets the cooling effects from albedo change. The overall Tmax change in 

eastern China is approximately −0.15°C when urbanization is considered. 
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Figure 4.5. Same as Figure 4.4 but for daily maximum (Tmax) and minimum (Tmin) 

temperature (K). 
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Minimum temperatures (Tmin) show extensive increases from both vegetation change 

and urbanization during summer. The Tmin increased by 0.17–0.19°C in eastern China. The 

spatial pattern of Tmin increase shows good agreement with the area of cropland expansion, 

implying the possible impacts of agricultural activities on climate. This warming effect on 

Tmin during summer may be attributable to changes in cloud amount and irrigation. 

Intensified evapotranspiration could increase clouds, which would exert a warming effect 

at the surface by delaying longwave radiative losses at night, thus increasing Tmin. Also, 

agricultural irrigation can increase the heat capacity of the soil, thus increasing daily 

minimum temperature (Kalnay and Cai 2003; Mahmood et al. 2004; Sampaio et al. 2007). 

During winter, Tmin is barely influenced by agriculture, but urbanization exerts a large 

warming effect (0.11°C on average). 

Finally, observed opposing patterns of daily maximum and minimum temperature 

can decrease the diurnal temperature range, and also likely explains why there is no 

significant change in mean surface air temperature in east-central and southeastern China. 

The reduced diurnal temperature range over eastern China due to land cover changes was 

also reported in Xu et al. (2015). 

4.3.4. Precipitation Changes 

The precipitation response to land cover changes is shown in Figure 4.6. 

Vegetation changes do not have statistically significant impacts on summer precipitation 

in eastern China, but slightly increase summer precipitation in the northwest while 

decreasing winter precipitation in southern China. Gao et al. (2003) also suggested that 

land cover changes in eastern China, mainly due to agricultural practices, do not affect 
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precipitation in a significant way. When urbanization is also considered, land cover 

changes are found to increase precipitation in the south and decrease precipitation in the 

north during summer. Such a southern increase and northern decrease pattern suggests a 

possible influence of land cover changes on the East Asian summer monsoon.  

 

 

 

 
 

Figure 4.6. Same as Figure 4.4 but for precipitation (mm/day). 

 

 

 

The East Asian monsoon is characterized by low-level southwesterly winds during 

summer and northwesterly winds during winter (Huang et al. 2012). Figure 4.7 shows the 

wind field changes at 850 hPa associated with historical land cover changes. Vegetation 

changes do not have noticeable effects on the summer monsoon, however, they can 

strengthen the East Asian winter monsoon. During summer, there is no significant change 



 

100 

 
 

Figure 4.7. Same as Figure 4.4 but for the wind field at 850 hPa (dotted areas 

indicate 95%, significance for differences in wind speeds). 

 

 

 

in surface temperature in eastern and southern China (Figure 4.4). Therefore, vegetation 

changes may impart little influence on broad-scale atmospheric circulation. However, in 
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winter there is a large-scale cooling effect in northern China. The increased temperature 

gradient between land and ocean could intensify the winter monsoon and bring dry and 

cold air masses from interior Asia to eastern and southern China, therefore decreasing 

humidity and precipitation. 

When urbanization is included in land cover changes, it shows northerly wind 

anomalies in eastern China and slight southwesterly wind anomalies in southern China 

(Yunnan and Guangxi provinces) during summer, which can explain the southerly 

movement of the rain belt (as shown in Figure 4.6). Feng et al. (2013) and Shao et al. 

(2013) also found a similar pattern in circulation changes in response to large scale 

urbanization in eastern China in high-resolution regional climate models. However, during 

winter, there are southerly wind anomalies in eastern China and westerly wind anomalies 

in northern China, which offset the strengthening effects from vegetation changes, 

indicating that urbanization can weaken the East Asian winter monsoon due to the surface 

thermal forcing of urban areas. This finding also agrees with previous studies, which 

suggest that the weakening of the winter monsoon is forced by surface thermal heating 

induced by the large-scale urban expansion (Chen and Zhang 2013). 

 

4.4. Discussion and Conclusions 

This paper quantifies the biogeophysical effects of historical land cover changes 

on climate in China using a state-of-the-art GCM. Human-induced vegetation changes and 

urbanization are evaluated separately as well as combined. Our initial model evaluation 
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combined with previous findings (Chen and Frauenfeld 2014a, 2014b) suggests a good 

agreement between observations and model simulations.  

Our results indicate that historical vegetation changes alone are able to alter the 

surface flux balance, thereby modifying regional temperatures. Summer temperature 

changes are likely due to evapotranspiration and cloud cover, which can decrease daily 

maximum temperature and increase daily minimum temperature, thus also decreasing the 

diurnal temperature range. Decreases in winter temperature over northern China are 

mainly influenced by surface albedo changes. In terms of precipitation, vegetation changes 

alone do not exhibit statistically significant impacts on summer precipitation or the East 

Asian summer monsoon, but potentially strengthen the East Asian winter monsoon and 

decrease winter precipitation in southern China. 

Compared with impacts of vegetation changes alone, the addition of urbanization 

shows more significant and extensive impacts on temperature and precipitation in China. 

In summer, both vegetation changes and urbanization have a negligible positive effect on 

mean temperature. However, in winter, a 0.24°C cooling from vegetation changes is offset 

by a 0.27°C warming from urbanization. The urban heat island effect is also associated 

with greatly increased minimum temperatures, and shows a remarkable warming effect in 

southeastern China, especially in winter. When urbanization is also considered, land cover 

changes are those substantial enough to where they can impact the East Asian summer 

monsoon and generate increased extremes in summer precipitation where the wet south 

gets wetter, and the arid north gets drier. Also, urbanization can weaken the East Asian 

winter monsoon by reducing the land-ocean temperature gradient, and amplify the effects 
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from vegetation changes. Therefore, it is important to consider urbanization to properly 

and completely assess the climatic impacts of land cover changes. 

Compared with previous studies, this study presents a more complete examination of 

the biogeophysical effects of historical land cover changes, because we evaluate both 

vegetation changes and urbanization. However, some limitations still exist. Radiative 

forcing from surface albedo may also depend on aerosol concentrations (IPCC 2013), 

which could also be influenced by land cover changes, especially urbanization. In this 

study, our simulations were forced with the climatological seasonal cycle of aerosol 

concentrations. Furthermore, due to the complexity of the system, there is still limited 

understanding of the mechanisms of how land cover changes (including urbanization) 

impact precipitation. The spatial resolution of our study might be a limitation, because 

GCMs with coarse resolutions are not able to resolve mesoscale circulation features 

induced by landscape heterogeneity (Pielke et al. 2007). However, it is still important to 

use state-of-the-art GCMs to assess their ability to represent climate and explore land-

atmosphere interactions in China at regional scales because regional climate modeling is 

still highly dependent on the quality of the large-scale forcing models. 
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5. IMPACTS OF URBANIZATION ON FUTURE CLIMATE IN CHINA 

 

5.1. Introduction 

Human-induced land cover changes exert significant impacts on climate at regional 

and global scales by modifying the energy, water, and momentum exchanges between the 

land surface and atmosphere. Urbanization, one of most extreme and increasing land cover 

changes, is considered to play an important role in local weather and regional climate 

because of its effects on both temperature (Oke 1982) and precipitation (Shepherd 2005). 

Urban areas are warmer, like an “island” of heat surrounded by cooler rural areas (Shastri 

et al. 2015). This is known as urban heat island effect because of the low albedo, large 

heat-storage capacity of urban surfaces (Kalnay and Cai 2003), and anthropogenic heat 

emission (Grimm et al. 2008; Ichinose et al. 1999). Also, it has been reported that 

urbanization can influence precipitation patterns. The impervious surface of urban areas 

can largely reduce the moisture available for evaporation. The urban heat island effect 

may influence the development of clouds, convection, and rainfall patterns over the urban 

areas (Shepherd 2005). Furthermore, surface winds can be affected; buildings in urban 

areas may increase surface roughness, thus decreasing surface wind speed. The urban-

induced sensible heat fluxes can modify vertical momentum fluxes through boundary 

layer convection (Vautard et al. 2010). 

China is a fast growing country with rapid urbanization. Its gross domestic product 

grew at an average rate of 9.5% from 1978 to 2000, compared with 5% in developing 

countries and 2.5% in developed countries (Zhou et al. 2004). Urban population in China 
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increased from 191 million in 1980 to 622 million in 2009, which was largely driven by 

rural-to-urban migration (Gong et al. 2012). In the future, China is projected to have the 

second-largest (after India) urban population growth by 2050 (United Nations, 2014). 

Therefore, not only has urbanization in China become a critical socio-economic topic, but 

it also has crucial implications for the climate system. 

Previous studies have demonstrated the possible effects of urbanization on both 

temperature and precipitation in China. Jones et al. (2008) found an urbanization-related 

warming of about 0.1°C per decade over China for the period 1951−2004. However, the 

warming effects are different from region to region (Li et al. 2004). Based on in-situ 

observations from 1979 to 1998, Zhou et al. (2004) suggested that the rapid urbanization 

in southeastern China has increased mean surface temperature at a rate of 0.05°C per 

decade. For northern China, the contribution of urban warming is estimated to be to 0.11°C 

per decade for the period 1961−2000 (Ren et al. 2008). In addition to this observational 

evidence, climate models have also been used for urbanization-related climate studies at 

different scales and regions, such as in Beijing (Miao et al. 2009; Zhang et al. 2014), the 

Yangtze River Delta (Liao et al. 2014; Wang et al. 2015), the Pearl River Delta (Wang et 

al. 2013; Zhao et al. 2013), and China as a whole (Chen and Zhang 2013; Feng et al. 2013; 

Feng et al. 2012; Feng et al. 2014; Shao et al. 2013; Wang et al. 2012). For instance, Wang 

et al. (2012) found that urban expansion can lead to increased surface air temperature, 

enhanced convergence, decreased cloud fraction, and changes in regional precipitation. 

Furthermore, urbanization is also able to influence the East Asian monsoon system (Feng 

et al. 2013). 
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Despite the well-documented significant impacts of urbanization on climate at both 

local and regional scales, projections of future climate have rarely considered the possible 

increases of urban area in their land cover change scenarios. In CMIP5, even though land 

cover changes have been included in the climatic forcings of some modeling groups (Table 

2.1), usually urban fraction still remains constant over time (Di Vittorio et al. 2014). 

Mahmood et al. (2014) suggest that urban forcing should be included in future climate 

modeling systems because of its impacts on atmospheric dynamics, thermodynamics, 

energy exchanges, cloud microphysics, and composition. 

Therefore, in this section, a regional climate model is used to investigate the impacts 

of urbanization in China on future climate. We use the WRF model to dynamically 

downscale future climate projections from CESM. Impacts of urbanization were detected 

based on two land cover scenarios. The unique contributions of this study are that it is the 

first to estimate how possible future urbanization affects climate in China, and also the 

first to examine whether future urbanization has a comparable impact on climate as 

greenhouse gas forcing.  

 

5.2. Model Description and Experimental Design 

5.2.1. WRF Model 

The WRF model version 3.5 is used for regional climate simulations. A regional 

climate model is used here because the coarse resolution of GCMs precludes an accurate 

depiction of urbanization. In section 4, the horizontal resolution of CESM is 1.9° latitude 
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× 2.5° longitude, which cannot adequately resolve the scale of urban areas or mesoscale 

physical processes. Therefore, regional climate modeling is better suited because it 

provides a higher spatial resolution and a better representation of physical processes and 

feedbacks occurring at regional scales, especially in areas with complex land surface 

conditions, such as heterogeneous land cover and terrain. Furthermore, a number of 

studies have successfully used WRF to examine the influence of urbanization on climate 

in China (Feng et al. 2012; Feng et al. 2014; Miao et al. 2009; Wang et al. 2012). Therefore, 

the WRF model seems able to capture the land-atmosphere interactions such as those 

related to urbanization over China. 

 

 

 

 
 

Figure 5.1. The model domain with elevation in meters at 30 km × 30 km 

resolution. 
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The model domain of this study covers the entire region of China at a horizontal 

resolution of 30 km (Figure 5.1). The domain is centered at 35°N and 103°E, with 

dimensions of 240 grid cells west–east × 180 grid cells south–north, and the top model 

level is at 50 hPa. In this study, the resolution might still not be adequate to describe some 

cities. However, this spatial resolution has been adopted in previous studies employing 

WRF climate downscaling over China (Feng et al. 2013; Gao et al. 2015; Liu et al. 2013) 

and should also be effective for capturing land-atmosphere interactions in our study. 

 

 

 

Table 5.1. Parameterization of physical processes in the WRF model configuration. 

 

Physical processes Parameterization 

Microphysics WRF Single-Moment 3-class scheme (Hong et al. 2004) 

Longwave Radiation RRTM scheme (Mlawer et al. 1997) 

Shortwave Radiation Dudhia scheme (Dudhia 1989) 

Planetary Boundary layer Yonsei University scheme (Hong et al. 2006) 

Cumulus Parameterization Kain-Fritsch scheme (Kain 2004) 

Land Surface Noah Land Surface Model (Tewari et al. 2004) 

Urban Surface Single-layer UCM (Kusaka and Kimura 2004) 

 

 

 

The parameterization of physical processes (Table 5.1) was chosen based on previous 

studies (Feng et al. 2012; Wang et al. 2012). For land surface processes, the Noah land 

surface model (Chen and Dudhia 2001) was coupled with the Urban Canopy Model (UCM; 

Kusaka and Kimura 2004; Kusaka et al. 2001). The UCM is a single-layer model that 
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simulates energy and momentum exchange between an urban surface and the atmosphere 

(Kusaka et al. 2001). Over urban areas, surface temperatures and heat fluxes are estimated 

from three surface types: roof, wall, and road. 

5.2.2. Lateral Boundary and Initial Conditions 

For the WRF downscaling of future climate projections, the “Global 6-hourly Bias-

corrected CMIP5 CESM” (Monaghan et al. 2014) dataset is used as the lateral boundary 

and initial conditions. This dataset is generated based on the output from the simulation of 

CCSM4 ensemble member #6 for each scenario in the CMIP5 archive. This dataset was 

chosen because CESM (CCSM4) ranks as the best of the CMIP5 GCMs in terms of 

simulating observed temperature and precipitation at the global scale (Knutti et al. 2013). 

It also performs well in simulating climate (especially temperature) variability in China 

(Chen and Frauenfeld, 2014a). Therefore, it likely provides relatively robust boundary 

conditions for WRF, compared to other GCMs. Furthermore, the CESM output has been 

bias corrected. As indicated in section 2, all GCMs, including CESM, contain biases at the 

regional scale due to both their coarse resolution, and their limited representation of certain 

physical processes. These biases will also affect the quality of the downscaling. In the 

Monaghan et al. (2014) dataset, the ECMWF’s Interim Reanalysis (ERA-Interim; Dee et 

al. 2011) was used for bias correction, where the bias-corrected CESM output is generated 

by summing the 1981-2005 average 6-hourly annual cycle from ERA-Interim with a 6-

hourly perturbation term from CESM (Bruyère et al. 2014).  

From the bias-corrected CESM output, 11-year historical (1995−2005) and RCP4.5 

(2050−2060) simulations are used as lateral boundary and initial conditions in WRF. The 
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RCP4.5 scenario represents a moderate future climate warming pathway. The first year is 

considered as spin-up period and only 10-year results are analyzed. The SST and deep soil 

temperature are actively updated during the simulations. 

 

 

 

 
 

Figure 5.2. The USGS 24-category land use conditions over China used in the HIST 

run; 1: Urban and Built-Up Land, 2: Dryland Cropland and Pasture, 3: Irrigated 

Cropland and Pasture, 4: Mixed Dryland/Irrigated Cropland and Pasture, 5: 

Cropland/Grassland Mosaic, 6: Cropland/Woodland Mosaic, 7: Grassland, 8: 

Shrubland, 9: Mixed Shrubland/Grassland, 10: Savanna, 11: Deciduous Broadleaf 

Forest, 12: Deciduous Needleleaf Forest, 13: Evergreen Broadleaf, 14: Evergreen 

Needleleaf, 15: Mixed Forest, 16: Water Bodies; 17: Herbaceous Wetland, 18: 

Wooden Wetland, 19: Barren or Sparsely Vegetated, 20: Herbaceous Tundra, 21: 

Wooded Tundra, 22: Mixed Tundra, 23: Bare Ground Tundra, 24: Snow or Ice. 
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Figure 5.3. Urban fractions in 2000 and 2050 specified in the WRF model, with the 

three subregions (bottom) considered as urban agglomerations. 

 

 

 

5.2.3. Experimental Design 

We conduct three experiments to investigate the climatic impacts of future 

urbanization in China. 1) HIST: A historical run (1995−2005) forced with current land 

cover conditions, which is prescribed using the USGS 24-category land use data (Figure 

5.2). 2) RCP45: An RCP4.5 scenario run (2050−2060) forced with current land cover 

conditions. 3) URB: An RCP4.5 scenario run (2050−2060) forced with future urbanized 

land cover conditions. The RCP45 – HIST difference shows future climate change due to 
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greenhouse gas forcing in RCP 4.5, while the URB – RCP45 difference shows the impacts 

of urbanization on future climate. 

Future urban area was derived from global forecasts of urban expansion (Seto et al. 

2012). The probability of urbanization in 2030 was estimated based on global urban extent 

circa 2000, urban population, population density, and country-level gross domestic 

product projections in 2030. From the 2030 urban forecast data, grid cells with 

urbanization probability higher than 75% (Güneralp et al. 2015) were considered as urban 

area in 2050. This is based on the assumption that, if a pixel has a high probability of 

urbanization in 2030, it will likely have a similar or higher probability of becoming urban 

in 2050. Figure 5.3 shows the urban fractions in 2000 and 2050 specified in the WRF 

model. Extensive urbanization is evident in eastern and southeastern China, which 

correspond to the most developed and populated areas in this country.  

In the future urbanized land cover scenario, urban fraction in each grid cell was 

increased based on the urban projection from Seto et al. (2012). Vegetated land cover 

categories were proportionally replaced by urban area. Only grid cells in China were 

modified for future urbanization, while other grid cells were kept the same as current land 

cover conditions. Figure 5.4 shows the four land cover types with the largest changes in 

2050 after the projected urbanization has occurred. Cropland is the major land cover type 

that will be encroached upon by urban area in the future. The total increase in urban area 

will be 2.6% in China. Consequently, cropland will decrease by 2.2% in 2050 due to 

urbanization, with the remaining 0.4% accounted for grassland and forest. 
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Figure 5.4. Four land cover types with the largest changes in 2050 after 

urbanization has occurred. 
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Figure 5.5. Comparison of summer (JJA, left column) and winter (DJF, right 

column) 2 m air temperature (°C) between CRU observation and HIST run. 

 

 

 

5.3. Results 

5.3.1. Evaluation of WRF Downscaling 

To first assess the performance of the WRF downscaling, results from HIST are 

compared with CRU temperature and precipitation observations (Harris et al. 2014). 

Figure 5.5 shows that WRF exhibits a good spatial agreement with the observed 

climatology of seasonal surface air temperature, with a spatial correlation coefficient of 

0.96 (p<0.01) in both summer and winter. In summer, WRF well captures the hot regions, 

such as the Tarim Basin in the Xinjiang Province, Sichuan Basin, Hubei, and Hunan 
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provinces. In winter, a systematic cold bias exists in simulated temperature. This cold bias 

is large over the Tibetan Plateau, which can be attributed to cold biases in the original 

GCMs (Chen and Frauenfeld 2014b) and the high elevation and complex terrain in this 

region (Gao et al. 2015). 

 

 

 

 
 

Figure 5.6. Same as Figure 5.5 but for precipitation (mm). 

 

 

 

Figure 5.6 shows the comparison between observed seasonal precipitation and the 

HIST WRF simulation. Similar to previous studies applying dynamically downscaled 

precipitation over China (Gao et al. 2011; Gao et al. 2012; Liu et al. 2013), WRF only 

simulates precipitation fairly over China, with a spatial correlation coefficient of 0.77 
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(p<0.01) in summer and 0.54 (p<0.01) in winter (Figure 5.6). In summer, the CRU 

observations show low precipitation in northern China, and high precipitation in the 

southeast with the largest precipitation amounts in southern China as a result of the East 

Asian summer monsoon. WRF well reproduces the basic spatial pattern of precipitation 

distribution, however, it overestimates the precipitation in southwestern China and the 

Yangtze River delta regions. The wet bias in southwestern China can result from the 

overestimated precipitation in the GCMs (Chen and Frauenfeld 2014a) and the influence 

of the Tibetan Plateau. However, the wet bias over the Yangtze River delta region may be 

attributed to the uncertainties of the observational data. Feng et al. (2012) presented 

observed precipitation over China based on Tropical Rainfall Measuring Mission (TRMM) 

data, which show high precipitation over the Yangtze River delta region. During winter, 

the observed precipitation decreases from the southeast to the northwest. However, WRF 

largely underestimated precipitation in the southeast and overestimated precipitation in 

the southwest. Yuan et al. (2012) also found such a winter dry bias over southeastern 

China, which might be attributed to the selection of land surface schemes. They suggested 

that the Rapid Update Cycle (RUC) land surface scheme can a produce better climatology 

of winter precipitation in southern China than the Noah land surface scheme. However, 

the RUC land surface scheme does not support the urban model in WRF, which is only 

available for the Noah model. Based on the above assessment and previous studies, WRF 

seems capable of providing reasonable dynamically downscaled high-resolution climate 

simulations for this study. However, due to the large bias evident over the Tibetan Plateau, 

this region will be excluded from our analyses. 
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Figure 5.7. Albedo changes (%) in summer and winter after urbanization. 

 

 

 

5.3.2. Changes in Land Surface Characteristics after Urbanization 

Urbanization can modify the surface characteristics and influence the land surface 

energy balance. Figure 5.7 shows surface albedo in the HIST experiment and its changes 

after urbanization in 2050. The surface albedo is high in northern China and low in eastern 

and southeastern China. After urbanization, albedo decreased mainly over the urbanized 

area. In the Noah model, the surface albedo is calculated based on vegetation fractions for 

each grid cell. Compared with vegetated areas (e.g., cropland), urban surfaces have a lower 

albedo. Also, it is found that the albedo decrease in winter is larger than in summer. This 

is because cropland has a low albedo in summer during the growing season, and a high 

albedo in winter after harvest. 

Due to the unique thermal properties of urban surfaces, we also examine the changes 

in surface sensible and latent heat fluxes after urbanization (Figure 5.8). Generally, 

urbanization tends to increase the surface sensible heat but decrease the latent heat flux 
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Figure 5.8. Same as Figure 5.7 but for sensible heat (a-b) and latent heat (c-d) 

fluxes (W/m2). 

 

 

 

over the urban area. The decrease in vegetation, which is replaced with urban area, 

combined with the impervious surface of urban area, may reduce evapotranspiration and 

thus decrease the latent heat flux. For the sensible heat flux, its increase can also be 

attributed to the albedo decrease and the thermal properties of urban surfaces. Seasonally, 

larger heat flux changes are found in summer. This can be explained in terms of the surface 

receiving the highest insolation in summer, which exerts the strongest influence on the 

surface energy budget. Also, evapotranspiration is the strongest in summer, therefore the 
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latent heat flux would be decreased the most during this season as a consequence of 

urbanization. 

 
 

Figure 5.9. Seasonal temperature changes (°C) after urbanization. 

 

 

 

5.3.3. Impacts on Surface Temperature 

With the decreased surface albedo and increased sensible heat flux, urbanization 

exhibits a significant impact on future temperature (Figure 5.9). Warming effects are 

found in eastern China, with the greatest temperature increase over the urban 

agglomerations. The small urban areas, especially in the northwest (such as Lanzhou, 

Gansu Province and Urumqi, Xinjiang Province), also show warming after urbanization. 
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The increase in temperature is the greatest and most extensive during summer, followed 

by spring and autumn, while winter undergoes the smallest projected warming. The 

seasonal pattern of temperature change can be explained by the surface heat flux changes. 

Previous observation-based studies similarly found that the greatest warming due to 

urbanization is observed in the warm season. Based on 282 meteorological stations in 

northern China, Ren et al. (2008) suggested that urban warming contributes the most to 

temperature changes in summer, and fall and spring also show large contributions. This 

largest contribution of urban warming in summer and smallest contribution in winter was 

previously also reported for eastern China (Yang et al. 2011). 

We also focus on three important urban agglomerations in China: the Beijing region, 

Shanghai region, and Hong Kong region (Figure 5.3). These regions are defined based on 

Feng et al. (2013), and allow us to further assess the temperature impacts of urbanization 

at local and regional scales. The three urban agglomerations are chosen because they 

exhibit the greatest increases in urban development nationwide (Feng et al. 2013). Table 

5.2 compares the warming effects of greenhouse gas forcing and urbanization for China, 

and for three urban agglomerations. The grid cells with urban fractions higher than 50% 

are considered as metropolitan areas and are calculated separately, so that the impacts of 

urbanization at local and broader (regional) scales can be discerned. Under the RCP 4.5 

scenario, surface air temperature increases significantly throughout the year. Mean annual 

temperature is projected to be 1.8°C higher than present over China, with a larger warming 

in winter than in summer. The temperature increase is larger in the north (Beijing) than 

the southeast (Shanghai and Hong Kong). Similar warming is found in the metropolitan 
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and surrounding areas, because urbanization is not included in the RCP experiments for 

future climate projections in CMIP5. At the regional (country-wide) scale, urbanization 

increases the mean annual temperature by only 0.2°C over all of China, with a larger 

warming in summer. However, urbanization has much stronger impacts on temperature at 

local scales, such as metropolitan areas. Temperature can increase as much as 1.9°C in 

urban areas, which is comparable to and has even exceeded the warming effects resulting 

from greenhouse gases. 

 

 

 

Table 5.2. Temperature changes for the three subregions and China in the RCP 

(RCP45 − HIST) and URB (URB – RCP45) experiments. Statistically significant 

differences (95% level) are shown with asterisks. Metro indicates that only urban 

areas (urban fraction > 50%) were considered. 

 

Regions 
RCP (°C) URB (°C) 

Annual Summer Winter Annual Summer Winter 

Beijing Region 1.9* 1.3* 3* 0.6* 1.0* 0.3 

Shanghai Region 1.4* 1.2* 1.1* 0.8* 1.3* 0.3 

Hong Kong Region 1.2* 0.5* 1.4* 0.6* 0.8* 0.3 

China 1.8* 1* 2.3* 0.2 0.2 0.1 

Beijing Metro 1.9* 1.2* 3* 1.8* 2.6* 1.0 

Shanghai Metro 1.3* 1.3* 0.9* 1.8* 2.7* 0.7 

Hong Kong Metro 1.9* 0.5* 0.9* 1.4* 1.9* 0.7 

China Metro 1.6* 1* 2* 1.9* 2.4* 1.1* 

 

 

 

The impacts of urbanization on temperature during day versus night were also 

examined (Figure 5.10). Generally, the warming effects of urbanization are stronger 
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during night than day (except in Hong Kong). The larger warming effect during night was 

also found in previous studies (Kalnay and Cai 2003; Wang et al. 2012), and can be 

explained by the high heat capacity in urban areas. During day, urban surfaces with low 

albedo absorb and store energy, but less evapotranspiration limits surface-to-atmosphere 

energy release, which persists into the night and thereby increases nighttime temperatures. 

 

 

 

 
 

Figure 5.10. Daytime and nighttime 2 meter air temperature changes (°C) over 

urban areas in three subregions and China after urbanization. 

 

 

 

5.3.4. Impacts on Precipitation 

The impacts of urbanization on precipitation do not have uniform patterns, like those 

on temperature changes. The spatial distribution of seasonal precipitation changes is 

shown in Figure 5.11. In summer, precipitation decreases in southeastern China, especially 

over the Shanghai region, and increases over southern China (Hong Kong region) and 

Beijing region. These results agree with the conclusions of Feng et al. (2012), who also 

found an increase in precipitation in the Beijing-Tianjin-Hebei region and a decrease in  
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Figure 5.11. Same as Figure 5.7 but for precipitation (%). 

 

 

 

 
 

Figure 5.12. Same as Figure 5.7 but for 2 meter specific humidity (g/kg). 

 

 

 

the Yangtze River delta region. Using two nested domains in the WRF model, Wang et al. 

(2013) suggested urbanization in the Pearl River Delta (Hong Kong region) may increase 

annual total precipitation due to an increase in heavy and extreme rain events. In winter, 

the impacts of urbanization on precipitation are very small. This is because the 
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precipitation in most areas of China is controlled by the East Asian monsoon system, in 

which precipitation is dominant in summer whereas there is little winter precipitation. 

 

 

 

 
 

Figure 5.13. Same as Figure 5.7 but for planetary boundary layer height (meter). 

 

 

 

 
 

Figure 5.14. Same as Figure 5.7 but for wind field at 850 hPa (m/s). 
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To investigate the possible reasons for precipitation changes, impacts on 2 m specific 

humidity, the height of the planetary boundary layer (PBL), and the East Asian monsoon 

are also examined. Figure 5.12 shows the changes in surface specific humidity after 

urbanization. During summer, there is a significant decrease in specific humidity over 

urban areas (by up to -1.0 g/kg over Shanghai and Hong Kong). The change in specific 

humidity in winter shows a similar pattern, but with a much smaller decrease. Decreasing 

specific humidity can be attributed to the decrease in evapotranspiration after urbanization. 

This may reduce atmospheric moisture and therefore decrease precipitation in these 

regions. Many studies indicate that precipitation over urban areas is strongly related to the 

structure of the urban boundary layer (Huszar et al. 2014; Niyogi et al. 2010; Wang et al. 

2012). The impacts of urbanization on the PBL height are presented in Figure 5.13. 

Generally, the PBL height increases over the urban area, with a stronger and more 

extensive increase in summer (up to 100 m) than in winter, as a result of the increased 

sensible heat fluxes. As also found in previous studies (Shimadera et al. 2014), the 

increased PBL height indicates that the atmosphere over the urban area is likely more 

unstable and tends to develop more convective clouds, causing more precipitation from 

afternoon to evening. However, the deficit of atmospheric moisture over the urban area 

may offset the impacts from the elevated PBL.  

Finally, urbanization likely influences the East Asian monsoon system. To 

investigate this potential effect, we quantify the changes in the 850 hPa wind field in 

summer and winter (Figure 5.14). In summer, the strong warming effects of urbanization 

can increase the temperature gradient between the ocean and the land, thus strengthening 



 

126 

the summer monsoon in the south. Indeed, easterly wind anomalies are evident in the 850 

hPa fields, advecting moisture over the Beijing region. This potentially accounts for the 

precipitation increases over this region. However, because urban heating in winter is not 

as strong as in summer, the influence of urbanization on the winter monsoon is very small, 

and is only evident over the Yangtze River delta region. That likely also explains why the 

winter precipitation changes are negligible in response to urbanization. 

 

5.4. Discussion and Conclusions 

Urbanization in China impacts future climate through changes in the energy, water, 

and momentum exchanges between the urban surface and the lower atmosphere. In terms 

of temperature, urbanization shows strong warming effects during summer and at night. 

Over the three urban agglomeration regions, we find a possible warming of 0.6–0.8°C in 

annual mean temperature by the 2050s caused by urbanization. Ren et al. (2008) estimated 

the trend of urban warming to be 0.11°C (10 yr)−1 in northern China based on 1960−2000 

temperature observations. The magnitude of warming is slightly higher in our study 

because we focused on urban agglomeration regions. For the entire area of China, the 

annual mean surface air temperature will increase by 0.2°C by 2050. This temperature 

increase agrees with previously suggested urbanization-contributed warming rates (Zhou 

et al. 2004).  

As discussed in section 4, urbanization has a comparable impact on historical climate 

as vegetation changes. For future climate, vegetation changes are projected to induce a 

significant annual surface temperature increase of 0.4°C in east Eurasia (Jiang et al. 2011). 
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Vegetation conversion from grassland to forestland in southeastern China may decrease 

annual mean temperatures by 0.11°C (Yu et al. 2013). In other regions in the world, Trail 

et al. (2013) found that reforestation of cropland in the southeastern U.S. tends to increase 

surface air temperature by 0.5°C, while deforestation tends to decrease surface air 

temperature by 0.5°C. The reported grassland degradation in Mongolia may lead to a 

warming (0.1–0.4°C) of annual mean temperature in the future (Zhang et al. 2013). In 

terms of the magnitude of future regional temperature changes, we find the effects of 

urbanization to be on par with those from vegetation changes. Therefore, urban forcing 

should be included in future climate simulations.  

At local scales, future urbanization tends to increase summer temperature by as much 

as 2.7°C over urban areas. Previous studies have shown intensified heat stress—a leading 

cause of weather-related human mortality—as a result of urbanization and future climate 

change (Oleson et al. 2015). Therefore, the vulnerability and adaptation of urban 

populations need to be considered in future climate projection. 

Precipitation changes show a more complex pattern than temperature. Urbanization 

tends to decrease atmospheric moisture as a result of decreased evapotranspiration, but 

increases PBL height by increasing the sensible heat flux. Feng et al. (2014) also found 

strengthened vertical motion due to urbanization. However, it did not result in increased 

precipitation because of the decreased surface moisture in urban areas. We did not see a 

consistent change in precipitation over China’s three main urban agglomerations. 

Kaufmann et al. (2007) suggests that there is no causal relationship between urbanization 

and precipitation, because the East Asian monsoon plays a dominant effect in this region. 
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We did indeed find that urbanization may strengthen the summer monsoon, and slightly 

weaken the winter monsoon. Therefore, the impacts of urbanization on precipitation are 

due to the combined effects of both local moisture changes and large-scale circulation 

features. 

Compared with the results for the present climate from section 4, the impacts of 

urbanization on future climate show a different magnitude. For example, the combined 

effects of vegetation changes and urbanization on historical temperature can be up to 1°C 

(Figure 4.4). However, further urbanization shows a greater warming effect, as much as 

2°C (Figure 5.9). This could be due to using different land surface models in these two 

sets of experiments, as the parameterizations for energy exchanges between the urban 

surface and the atmosphere are different. Furthermore, the spatial resolutions differ for the 

historical and future simulations. In CESM (section 4), urban area only accounts for a 

small portion (less than 30%) of each grid cell. In the WRF model with its higher spatial 

resolution, urban area can be as much as 90% in some grid cells in eastern China. 

Therefore, the urban heating is likely higher in these regions in the regional climate model. 

Finally, climate change may increase the urban heat islands’ effects on climate (Oleson 

2011). Therefore, global warming in the RCP 4.5 scenario may strengthen the warming 

effects in urban areas compared to the present climate conditions. 

Urban aerosol effects are another factor that can influence the regional climate during 

urbanization (Kaufmann et al. 2007). However, in this study we only focused on the 

biogeophysical effects of urbanization. Future work will also consider the aerosol impact 

of urbanization.  



 

129 

6. CONCLUSIONS 

 

This study provided a comprehensive investigation of the impacts of land cover 

changes on climate in China. First, we evaluated the performance of state-of-the-art 

climate models in simulating temperature and precipitation in China. Based on our 

evaluation, a well-performing climate model (CESM) was used to explore the land-

atmosphere interactions over China. We examined the biogeophysical impacts of 

historical vegetation changes and urbanization on climate in China. Also, the WRF model 

was used to dynamically downscale future CESM projections and estimate the impacts of 

possible urbanization on future climate.  

 

6.1. Performance of CMIP5 over China 

The performance of 20 CMIP5 GCMs was evaluated in their ability to simulate the 

variability of surface air temperature and precipitation over China during the 20th century 

with respect to observational datasets. The multimodel ensemble of CMIP5 models can 

well capture the spatial patterns of seasonal and annual mean temperatures, however, with 

substantial cold biases over the Tibetan Plateau, especially in the cold season. Models also 

reproduce the observed climatic warming over the 20th century with an accelerated 

warming in the second half of the 20th century. However, the seasonal and spatial patterns 

of temperature trends are not well simulated. Inter-model comparisons suggest that four 

CMIP5 models better simulate historical surface air temperature variability over China: 

MPI-ESM-LR, CanESM2, MIROC-ESM, and CCSM4. Based on three future climate 
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scenarios (RCP 2.6, RCP 4.5, and RCP 8.5), temperature in China is projected to increase 

by 1.7–5.7°C by the end of the 21st century, with larger warming over northern China and 

the Tibetan Plateau. In terms of precipitation, CMIP5 models well reproduce the spatial 

pattern of annual and seasonal precipitation over China during the 20th century, however 

with an overestimation in most regions of China, especially along the eastern edge of the 

Tibetan Plateau. An underestimation is found in summer precipitation over the southeast 

of China. There is a large variability among individual models, with the greatest 

uncertainties in simulating summer precipitation. In the 21st century, there is a general 

increasing trend in precipitation over all of China based on all the three emission scenarios. 

RCP 8.5 corresponds to the largest increases in precipitation over the 21st century. By the 

end of the 21st century, annual precipitation will significantly increase by 6–16% based 

on the lowest–highest emission scenarios, respectively. The greatest increase will occur 

over the Tibetan Plateau and the eastern part of China during summer, suggesting future 

changes in the East Asian Monsoon.  

 

6.2. Impacts of Historical Land Cover Changes on Climate over China 

Based on the model evaluation from objective 1 and the model code availability, 

CESM is selected to specifically investigate the biogeophysical effects of historical land 

cover changes over China. Using this general circulation model, both vegetation and 

urbanization changes were considered as land cover changes, and their impacts on climate 

in China were assessed separately and in combination. Results show that vegetation 

changes alone are able to alter the surface flux balance, therefore modifying regional 
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temperature. Summer temperature changes are regulated by evapotranspiration and clouds. 

This can decrease daily maximum temperature but increase daily minimum temperature, 

thereby decreasing the diurnal temperature range. Decreases in winter temperature over 

northern China are mainly influenced by surface albedo changes. Vegetation changes do 

not exhibit significant impacts on summer precipitation or the East Asian summer 

monsoon, but could strengthen the East Asian winter monsoon and decrease winter 

precipitation in southern China. Compared to impacts of vegetation changes, the 

combination of vegetation and urbanization changes show more significant and extensive 

impact on temperature and precipitation in China. Urban heating produces greatly 

increased minimum temperatures and shows a remarkable warming effect in southeastern 

China, especially in winter when it offsets the cooling effects from vegetation changes. 

When urbanization is included, land cover changes can influence the East Asian summer 

monsoon and are associated with a significant southern increase and northern decrease 

pattern based on summer precipitation changes. Also, with the combined urbanization and 

vegetation changes, the East Asian winter monsoon is actually weakened, and exceeds the 

effects from vegetation changes. Therefore, we conclude that urbanization should be 

included in model simulations to provide realistic and complete climatic impacts of land 

cover changes. 

 

6.3. Impacts of Urbanization on Future Climate over China 

The regional climate model WRF was used to estimate the impacts of possible 

urbanization on future climate in China. WRF shows good performance in downscaling 
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CESM output, however, with large biases over the Tibetan Plateau; this high-altitude 

region is therefore excluded from subsequent analyses. Urban expansion shows strong 

impacts on the surface energy balance due to low albedo and the thermal properties of 

urban surface. Over urban areas, the decrease in latent heat flux and increase in sensible 

heat flux lead to higher surface air temperature and less humidity in the atmosphere. Larger 

urban warming effects are found during night and in summer, which can be attributed to 

the high heat capacity of urban areas. Urbanization does not exert a significant impact on 

the overall future temperature trend in China. However, at regional and local/urban scales, 

urbanization shows strong warming effects of up to 1.9°C, which is comparable to the 

greenhouse effects under RCP 4.5 scenarios. The impacts of urbanization on precipitation 

show a combined effect from changes in both local moisture and the large-scale 

atmospheric circulation. There is a decrease in atmospheric moisture over urban areas. 

The East Asian summer monsoon is strengthened in southern China, but the East winter 

monsoon is slightly weakened in the Yangtze River Delta.  

 

6.4. Overall Contributions 

The robustness of future climate projections and model-based land-atmosphere 

interactions relies strongly on the performance of climate models. This dissertation is the 

first to evaluate the performance of CMIP5 GCMs in simulating climate in China, and 

analyze future climate projections under three scenarios. The results provide useful 

information for future climate-related studies, in that they outline the limitations of current 

climate models, recommend which model has a better ability to capture the climate 



 

133 

variability over China, and describe how temperature and precipitation will change in 

future.  

The biogeophysical feedbacks of land cover changes are an essential part in land-

atmosphere interaction studies. This investigation is the first to compare the impacts of 

both major types of historical land cover changes—vegetation changes and urbanization—

on climate in China. We found that the effects of urbanization have a comparable 

magnitude and impact on climate as vegetation changes; however, urbanization is usually 

not considered in the climate modeling of land cover changes. Our results may benefit 

future climate modeling design, especially for the upcoming CMIP6 experimental design. 

This study is also the first to investigate how urbanization influences future climate 

in China. Even though further urbanization in China does not exhibit significant warming 

at the larger scale, its strong warming effects at the local scale are as strong as those from 

greenhouse gas forcing under the RCP 4.5 scenario, indicating a higher risk of heat stress 

for increased urban populations. Our results are informative for decision makers in climate 

change adaptation and mitigation in China. Furthermore, the possible impacts of 

urbanization on summer precipitation in China may benefit water management 

confronting future climate changes. 

 

6.5. Future Work 

The limitation of GMCs in simulating climate at regional scale has been discussed in 

section 2 and 3. The WRF model has demonstrated its ability to reasonably downscale 

GCM output (section 5). Therefore, my future work will continue to focus on the 
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dynamical downscaling of long-term climate projections in China under various scenarios, 

so that we will have a better understanding of future climate changes in China. 

Further urbanization is not the only possible land cover change in China’s future. 

China has the largest afforested area in the world (Peng et al. 2014). In our current study, 

we only focus on the historical deforestation and its impacts on climate (section 4). China’s 

policy of returning farmland to forests will promote further afforestation, which has a large 

potential to influence regional climate. Therefore, an improved understanding of the 

impacts of afforestation on future climate is needed. 
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APPENDIX 

Figures S1−S3 are supplementary information for section 4. 

 

 

Figure S1. Comparison of summer (a, c) and winter (b, d) mean surface air 

temperature climatology for 1982–2001 between simulations (a, b) and observations 

(c, d). 
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Figure S2. Same as Figure S1 but for precipitation. 
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Figure S3. Same as Figure S1 but for geopotential height and wind field at 850 hPa. 

The shading represents geopotential height (m), and the vectors represent wind 

speed (m/s). 

 

 

 


