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ABSTRACT

Spintronics is a sub-field of condensed matter physics which explores the physics
of electrons involving both their charge and spin, with an emphasis on the active
manipulation of the spin degree of freedom in solid state systems. In spin-based
memory and storage devices, information ( 0 or 1) is stored based on the magne-
tization orientation in ferromagnets or layered magnetic structures. We study the
utilization of spin-orbit torques in ferromagnets and antiferromagnets as an effective
ways of magnetization switching in these nonvolatile memory devices. The method
we use is linear response theory and numerical simulation. Our results show that the
spin-orbit torques are effective approaches of manipulating magnetization in both
ferromagnets and antiferromagnets, which can be used in the future memory device
applications.

In ferromagnets, we start from a simple two dimensional electron gas ferromag-
netic model with Rashba spin-orbit coupling to study the different components of
spin-orbit torques and the parameter dependence. The results show the existence of
these torques. Then, we study these torques in a realistic material, GaMnAs, with
a complex band structure. We confirm that these torques have the same parameter
dependence in GaMnAs and the simple two dimensional model. The complex band
structure changes the magnitudes of the effective fields and shows more features
in the results which unveils the competition between band structure and spin-orbit
coupling.

In antiferromagnets, by studying the spin-orbit torques in the two dimensional
antiferromagneic model and the realistic material MnsAu, we predict that a lateral

electric current in antiferromagnets can induce non-equilibrium Neel-order fields, i.e.,

i



fields whose sign alternates between the spin sub lattices, which can trigger ultrafast
spin-axis reorientation. Due to the two dimensional nature, the spin-orbit torques
can have large magnitudes if we tune the Fermi energy to a certain level. We then

extend the study to the three dimensional non-collinear antiferromagnet IrMns.
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NOMENCLATURE

AC Alternating Current

AFM Antiferromagnets

BIA Bulk Inversion Asymmetry

CIT Current Induced Torques

DC Direct Current

DMS Diluted Magnetic Semiconductor
DOS Denisty of States

FM Ferromagnets

r Spectrum Broadening

GMR Giant Magnetoresistance

ISGE Inverse Spin Galvanic Effect

LLG Landau-Lifshitz-Gilbert Equation
LLGS  Landau-Lifshitz-Gilbert-Slonczewski Equation
MRAM Magnetic Random Access Memory
SHE Spin Hall Effect

SIA Structural Inversion Asymmetry
SOC Spin-Orbit Coupling

SOT Spin-Orbit Torques

STT Spin-Transfer Torques

2D Two Dimensional

2DEG  Two Dimensional Electron Gas
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1. INTRODUCTIONS TO CURRENT-INDUCED TORQUES

1.1 Introductions to spintronics

Spintronics is a sub-field of condensed matter physics which explores the physics
of electrons involving both their charge and spin, with an emphasis on the active
manipulation of the spin degree of freedom in solid state systems [1]. In our mod-
ern computers, devices using charge are mainly used for information processing, and
devices using magnetism (spin) are used for information storage. The aim of spin-
tronics is trying to understand the physics involving both the charge and the spin in
order to manipulate one with the other. By doing this, we are able to build devices
which combine data storage and data processing together.

Traditional electronics use the transport properties of charges. By controlling the
charge transport, people are able to realize the control of current density, switching,
heat generation, etc. The discovery of magnets dates back to thousands years ago.
Today, they are widely used for data storage, for example magnetic tape, hard disk
drives, credit, debit cards and so on. The microscopic mechanism of magnetism is
given by quantum theory [2]. In quantum theory, other than the charge degree of
freedom, the electron has another degree of freedom called the spin [3, 4]. Unlike
the charge, the spin is a vector that corresponds to a magnetic moment. The Pauli
principle forces the spins to align in the same direction in order to minimize the
Coulomb interaction which gives rise to magnetic elements [2]. Exchange interactions
between magnetic elements in materials result in the formation of ferromagnets and
anti-ferromagnets.

In the 1980s, with the discovery of spin-dependent charge transport, in particular

the discovery of giant magnetoresistance (GMR) [5, 6], spintronics emerged as an



important subfield of physics. It is growing rapidly these years with the advance of
nanoscale device fabrication technology. GMR makes use of the different resistances
between ferromagnetic layered structures with parallel or anti-parallel configurations.
This discovery resulted in the revolution of our current hard disk technology [7]. Tt
also made research on spin-based devices a hot topic.

In spin-based memory and storage devices, information ( 0 or 1) is stored based on
the magnetization orientation in ferromagnets or layered structures [1, 7]. To write
information, effective ways of manipulating the magnetization are needed. In early
days, magnetization switching was achieved with the use of external magnetic fields.
Recently, current-induced switching approaches are under intensive study in the field
of nonvolatile magnetic memory devices, in order to improve device performance and
efficiency [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The aim of this research is to try
to control the magnetization direction using electric current. To realize this, we need
to understand how magnetization changes in the presence of external perturbation,

i.e. magnetization dynamics.
1.2 Magnetization dynamics and spin-transfer torques

In ferromagnetic materials, the dynamics of magnetization M is described by the
Landau-Lifshitz-Gilbert (LLG) equation [20, 21, 22].
om om

7:—’}/TﬁXﬁ-€ff+amX E, (11)

where 1M = M / ]M | is a unit vector along the magnetization direction, v = gupg/h
is the gyromagnetic ratio and « is the Gilbert damping constant which causes the
relaxation of magnetization to its equilibrium direction [22, 23, 24]. This equation
gives the time evolution of the magnetization in the effective magnetic field, ﬁef £

determined by the external magnetic field, exchange field, anisotropic field, etc. [22]



This first term in the right side of this equation leads to the precession of magnetiza-
tion around the effective field and the second term is the damping term which forces
the magnetization relax to this field. From this equation, we see that we are able
to control the magnetization dynamics by changing the effective field using external
magnetic field.

Are there any other ways of changing the LLG equation? If we analyze the units
of both sides of this equation, we see that they have the units of torque. In 1996,
Slonczewski and Berger [8, 9] proposed to use spin polarized current to manipulate
the magnetization. The physical picture can be easily understood by using the
angular momentum conservation [22]. When the direction of the spin polarization is
non-collinear with the magnetization, the spins of carriers will trend to align with the
magnetization due to exchange interactions. Reversely, the carrier spins will exert
torques on the magnetization itself, because of angular momentum conservation, to
ultimately switch the magnetization direction. These spin current-induced torques
are called spin-transfer torques (STT) [8, 9, 12, 13].

The LLG equation with STT is called Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation, which is written as [22]

om om

T =~y X Hopp + ot x rr + 7, (1.2)

where T denotes the spin-transfer torques. Later, people realize that two types of
terms are allowed in STT in the asymmetric layered system based on symmetry

arguments. One is called Slonczewski torque which has form

7oocm x (m x Jy), (1.3)



where J, is the spin current. The other term is called a field-like torque which can
be written as

Tog o< Bt % J,, (1.4)

where [ gives the relative strength with respect to the Slonczewski torque.

With the discovery of STT, current-induced magnetization manipulation is un-
der intensive study recently. People are able to build new spin-based devices using
STT, one of the examples is spin-transfer-torque magnetic random access memories
(STT-MRAM) [22], which are ideal for integrating data storage and data process-
ing in a single device. Information is stored in MRAM using layers of ferromagnets
which are stable even without power supply. This makes the instant data accessing
and processing possible when we turn on the computer. However, the disadvan-
tage of STT-MRAM is the requirement of a polarized current and a large current
density which causes heating problems. If we can find other ways of manipulating
magnetization in which to overcome these issues, MRAM will be a promising future
information technology. This is the reason we are going to study spin-orbit torques

(27, 28, 29, 30, 31, 32, 33, 34].
1.3 Spin-orbit troques

Before introducing the details of spin-orbit torques, let’s have a look at the LLG
equation. As mentioned before, the effective field includes external magnetic field,
dipole field, exchange interaction, anisotropic field, etc. Can we add some sort of
effective fields by electric current, so that we can control the magnetization? The
answer is yes. Inverse spin galvanic effect (ISGE) [25, 26] says that in electronic
systems lacking inversion symmetry, electric current will result in non-equilibrium
spin polarizations. If we consider this effect in ferromagnets, these non-equilibrium

spin polarization will be exchange-coupled with magnetization and act as effective



fields [34]. The question is whether ISGE really exists in ferromagnetic materials.

Recent observations of in-plane current-induced magnetization switching at fer-
romagnet and normal-conductor interfaces [18, 19], suggests that we may use un-
polarized current to realize magnetization manipulation. The explanation of these
experiments is based on either spin Hall effect (SHE) [35, 36, 37, 38] plus STT across
the surface [19, 39], or the spin-dependent scattering of carriers which gives rise to
a relativistic anti-damping spin-orbit torque (SOT) [18, 27, 28, 33]. The SOT effect
was initially observed in epilayers of (Ga,Mn)As diluted magnetic semiconductors
with bulk inversion asymmetry in their strained zinc-blende crystal [40, 41]. This
effect was soon widely confirmed in metallic bilayers with structural inversion sym-
metry breaking [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Later experiments on bulk
(Ga,Mn)As, which eliminates the surface effects, show similar effects demonstrating
that SOT causes the unpolarized current inducing magnetization switching [34].

As discussed in the previous paragraphs, SOT is the inverse spin galvanic effect in
magnets. To understand the physics of ISGE, spin-orbit coupling and symmetry must
be considered. Spin-orbit coupling is the interaction between spin and momentum
of electron which comes from the relativistic Dirac equation [3]. Usually, a simple
physical picture using semiclassical electrodynamics can gives us some hint. In atoms,
an electron moves around the nucleus. In the rest frame of this electron, the nucleus
is moving around this electron. As we know, moving charges will generate magnetic
field. So, the spin of the electron will interact with the magnetic field generated by
the moving nucleus. This is the origin of spin-orbit coupling which can be generated
to electrons moving in any potential V(7). A more rigorous result can be obtained

from the Dirac equation.

Hsoc - W(& X VV) 25; (15)



where & is the Pauli matrix vector. Equation (1.5) is the most general form of spin-
orbit coupling. However, in solid state systems, the potential V' is usually hard to
determine. People use some symmetry arguments and phenomenological parameters
to describe the spin-orbit coupling which can be compared with experimental obser-
vations. Due to the crystal symmetry of solid state materials, the form of spin-orbit
couping can be simplified. The two most commonly used forms of spin-orbit coupling
in solids are Dresselhaus [52] spin-orbit coupling and Rashba [53] spin-orbit coupling.

The Dresselhaus spin-orbit coupling is from the bulk inversion asymmetry

Hp = p(ky0, — kyoy), (1.6)

and the Rashba spin-orbit coupling is from the structural inversion asymmetry

Hp = a(kyo, — ky0y), (1.7)

where 3, a are the corresponding coupling strengths.

Figure 1.1: ISGE in 2D electron gas model with Rashba SOC.

After understanding the spin-orbit coupling in solids, we can give a physical pic-

ture of ISGE. As shown in Figure 1.1, the Rashba spin-orbit coupling aligns the spins



of carriers on the Fermi surface to a certain configuration. By adding an external
electric field (current), the Fermi surface is shifted in k& space. The spin expecta-
tion value will give rise to non-equilibrium spin polarizations which correspond to
the intra band contributions [34, 54]. On the other hand, carrier spins will precess
around the effective spin-orbit field, as shown in the right panel of figure 1.1, which
correspond to the inter band contributions [34, 54].

In magnets, the non-equilibrium spin polarizations generated by ISGE will in-
teract with the magnetic order which correspond to effective magnetic fields. As

discussed, these effective magnetic fields correspond to torques in the LLG equation.

Jsd

SHo s = o

55, (1.8)

where 65 is the non-equilibrium spin polarization, Jy; is the exchange constant be-
tween carrier spins and magnetization, ¢ is the g-factor, and pp denotes Bohr mag-
neton. This is exactly what we need in order to manipulate the magnetic order
by current. Due to the spin-orbit coupling origin of these torque, they are called
spin-orbit torques.

So far, we have only discussed the SOT in ferromagnets. The physical picture is
very clear. However, the majority of magnetic materials are antiferromangets which
are also widely used in spintronics. Do we have similar SOT effects in antiferromag-
nets? The answer is yes. In antiferromagnet, sub lattice magnetizations cancel with
each other and the total magnetization is zero. It seems that SOT have no effects on
the magnetic order. But the SOT are local effects meaning that we can project these
torques onto sub lattices. With careful choice of crystal asymmetry or structural
asymmetry, SOT can be used to manipulate the Neel order in antiferromagnets [55].

This report is organized as follows. Chapter 2 is the methods of our SOT simu-



lation where two approaches and their equivalence will be discussed. Chapter 3 to 6
contain the SOT studies in 2D Rashba model, GaMnAs ferromagnetic semiconduc-

tors and anti-ferromagnets. Chapter 7 is our conclusions.



2. SEMICLASSICAL APPROACH AND KUBO FORMULA

2.1 Introductions

In this chapter, we will discuss the simulation methods for the spin-orbit torques.
As mentioned in the first chapter, we need to compute the non-equilibrium spin
polarization 65 when a unpolarized electric current is driven through the system.
Current is related to the electric field across the system by the conductivity. For
later convenience, we will use the electric field vector E as external perturbation.

Linear response is assumed in our system. The Hamiltonian can be written as
H = Hy+ Hy, (2.1)

where Hj is the Hamiltonian of the system without perturbation and H; is the
perturbation. Linear response theory says that the response of the system can be

written as [56]

X(F t) = /dﬂ/dt’x(ﬁr";t YV HL (7, 1), (2.2)

where Y is called the response function, which we will calculate. For some cases, the
response function can be integrated to give a proportional constant between response
and perturbation. There are two main approaches, the semiclassical Boltzmann
[57, 58] approach and Kubo formula [56, 57]. In the next sections, we’ll discussion

these two approaches and the links between them.
2.2 Semiclassical approach

In the semiclassical Boltzmann approach, the ground state of the system is de-

scribed by an equilibrium distribution function fjy. In fermion system, fy is nothing



but Fermi-Dirac distribution function. Perturbation will change the equilibrium dis-
tribution function to some unknown distribution f. What we need to do is calculate
this unknown distribution. In our case, the equilibrium spin expectation value is
given by

. 1

o= 5 6 o (2.3

k,a

where a denotes different bands, § is the spin operator vector which is /2 for free

electron, and

(5) = (K, als|k,a) (2.4)

is the spin expectation value for quasiparticle. When we introduce the external
electric field E as a perturbation, both the distribution function and the quasiparticle
wave function will change [59]. It is natural to divide the resulting non-equilibrium
spin expectation value into two parts. We call these two parts intra band and inter

band. The reason will become clearer later. So we have

| . 1 1
53 = 63" 4 55T = 30 (8) 6f + 77 3 (99) fo, (2.5)

ka ka
where 0 f = f — fo, and we have ignored the higher order term. The first term corre-
sponds to the redistribution of electrons on the Fermi surface, and the second term
corresponds to the modification of electronic wave functions cause by the external
electric field. Next, we’ll derive these two terms separately.
In the framework of relaxation time approximation, if we consider an electronic

system in a uniform external electric field, we have

qE0fg.  Ofia
h ok T

, (2.6)

10



where 7 is the relaxation time, and ¢ is the charge of carrier. Here we write out f
explicitly which depends on (I;, a). Since we consider a steady current state and a

uniform system, so

af
af
ar

We have the relation

10fz, 10E;, 0f;. . Of;.
hook  h ook OBp, MOE,

(2.8)

where Er is the band structure and v}, is the velocity operator. In the linear

response and zero temperature limit, fz is very close to the Fermi-Dirac distribution.

We have
ofz
2~ —§(E: — Ep). 2.
8E,;7a (5< k.a F) ( 9)
So, we have
0fzo =T(GE - 0)ud(Ey, — Er). (2.10)

Here, we have used the notation

(- Ja=()y=(kal. |ka). (2.11)

for later convenience. Plugging into equation (2.5), we get the non-equilibrium spin

polarization

, 1 h =
5 = 250 S (alaB 98By, — Fr) (212)

k,a

11



where T' = h/27 is the spectral broadening. This term is called the intra band
contribution because the average of the spin and velocity operators is within the
same band. Then, contributions from different bands are added together.

To derive the inter band contribution, we use quantum mechanics perturbation

theory [4]. We start from the Hamiltonian of the system in an AC electric field

H=Hy+ L (qE - 8)e ™ + c.c, (2.13)
w

where w is the frequency of the field. Later, we’ll take the DC limit. The eigenvectors

for the unperturbed Hamiltonian H is denoted by |l§, a >, and
Holk,a >= Ej |k,a > . (2.14)

The time dependent wave function for the unperturbed system can be written as

—

bo(t) >= S e #Fra | 0 > | (2.15)
E,a

Following the standard time dependent perturbation theory, the perturbed wave

function can be written as
6(t) >= 3" e o (t)e 7 FRa K, a >, (2.16)
Ea

where c; (t) are the time dependent expansion coefficients. Then, we expand these

coefficients into a perturbative series

Cialt) = () + () + ... (2.17)

12



Within the linear response limit, we only need to calculate cgi(t). On the other

hand, the perturbed wave function can be written as

6(t) >= 3 e Rk, a > +6|k,a >), (2.18)
ka

where 5]/2, a > is the correction to the unperturbed wave function |12, a > due to the

perturbation. Using the standard expression for cg) (t) and comparing with equation

,a

(2.18), we obtain

efiwt (QE . U)ba

zb: Ep,—Ep, +1h

S|k, a >= kb > +c.c, (2.19)
w

—iw

where similar notation is used here

(- Jab = (F,al...|E,b). (2.20)
And the non-equilibrium spin polarization can be obtained as

1

b5 = =37 (K, al5(3] k,b)) + c.c| fr., (2.21)
k,a

Putting the expression of § \lg, a > into this formula, we get

4 ’ (g»)ab(qE_; . U)ba
5—'mter - o | 222
S wy Ez;éb EIZ,a - E,;b + hw + (fk,a fk:,b) ( )

where the spectral broadening I' must be smaller than the average eigen energy
difference.

In the next steps, we should take the DC limit by setting w — 0. We will use a

13



trick here. If the limit

lim 1) (2.23)

w—0 W

exists for some function of f(w), f(0) must be 0. So, we have

i 1) _ py 1) =1O)

w—0 W w—0 w

(2.24)

Using this relation in our expression of the inter band contribution, we obtain

A ! (§)ab(qﬁ : U)ba (§)ab(qE . ﬁ)ba
5—'mte7‘ - B o, | 225
S wV E%b EE,@ — EE,b + hw + I EE,a — EE,b 44 (fk,a fk,b) ( )

Then, after working out this limit and taking the real part only, we have two terms

santer = 550 4 553, (2.26)

with
h , IE. —E;,)
650 = == 5" 2Re|(5)ap(¢E - T)pa) ka kb fro—Fi)
v kZﬂJ [(Bfq = Egy)? + 177 (e~ Jeo)
h . [? — (B, — Eg,)?
05 = =3 3 Tml($)an(aE - ) Sy i — i)
v Ea) [(Bo — Bgp)* + TP (e = fes)

These formulae are the final expressions for the inter band contributions. They are
called inter band because the summation is over a # b, which involve transitions
between different bands. One important point we should keep in mind is that these

formulae only work for small T'.
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2.3 Kubo formula

In this part, we will give a brief derivation of the non-equilibrium spin polarization
using Kubo linear response theory. This part is covered by most standard many body
textbooks, the book by Mahan [56] for example. Just like the semiclassical derivation,
we consider a AC field of form Ee/ @™ first. Then, we take the limits ¢ — 0 and
w — 0. The Hamiltonian for a particle in electric field can be written by vector
potential A by making substitution p'— p'— qf_f. By expanding the Hamiltonian to

the first order of A with Coulomb gauge VA= 0, we obtain the standard expression
H = Hy— [ j(7) - A7 t)d7, (2.27)

where j(f’) is the current density operator and the vector potential depends on posi-

tion and time. In linear response, the spin response can be written as
55a(F 1) = [ ATl a7 = 17,8 =€) A5, ), (2.28)

where xa5(7" — ot —t ) is the retarded response function, «, 8 are the coordinate
indices x, y, z, and summation over repeated indices is assumed. This expression is in
real space. After the Fourier transformation, we obtain the equation in momentum
space

50 (0.w) = =~ Xas 0. 0) B5(7.), (2.20)
where Eg(t) = —0Ap/0t is the external electric field component. We'll use imaginary
time methods to calculate the response function. By replacing it by 75, The response

function is

Xag(F— 17,75 — 75) =< TsL(F,75), j5(7, 75) >, (2.30)
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where the thermal average of an operator is defined as < O >= Tr{e #2710}, Bp =
1/kgT and T is the time ordering operator. The operators in equation (2.30) are in

the interaction representation. Then, we calculate the Fourier transform

Xaﬁ’(q,an /d?“/ drge™ i(q-7— w”TB)Xaﬁ(F’ TB), (231)
where hw, = 2nm/fp with integer n, is the Matsubara frequency corresponding to

the external field. So,

Xap (G, iwn) =< $o(q, wn)jp(—q, —wn) > . (2.32)

The spin polarization in momentum space can be written as

5 0 ) o) galion + i), (2.33)

k,a,b,m

Sa(q, iwn) =

where hiw,, = (2m + 1)7/Bp is the fermionic Matsubara frequency. ;. (iwy,) is the
Fourier transform of the imaginary time field operator that annihilates a carrier with
momentum & and band index a. For the Fourier transform of the current, we have

a similar expression

s -dia
ja(% an) - BB qz lDT ZWm)(]a)ab¢k+q b(Z(JJm + ’Lwn) + Jo - (234)
k,a,b,m
The term ;%@ represents the diamagnetic contribution to the current which cancels

the zero-frequency part of the response function. We define the matrix element of

.\ _q/z |0H
(ja)(lb - <k ‘ak

the current operator as

i b> (2.35)
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The response function can be written as

h
Xaﬁ(q_; iwn) = _67 Z Z (Sa)ab(jﬁ>baGE,a(iwm)GE_f_qu(iwn + iwm)' (2-36)

B m E,a,b

The Green’s functions in this formula are the propagators for the carriers in the
disordered carrier system. We consider the Green’s functions in the presence of

disorder
1

: ) 2.37
1hwy, — (EE,a — Er) + %sgn(wm) ( )

G E,a(iwm) =

Equation (2.36) has ignored the vertex corrections. We can calculate the response

function by using the Matsubara sum. Let’s consider the integration

1 : 1
G S Fliwn) = 5 [ A=1(2)F(:) (2:38)

where f(z) = 1/(e~##**1) is the Fermi function in the complex plane and the contour
C is the sum of all the counter-clockwise contours around the poles and branch cuts

of the function F'(z). The function F'(z) is

F(2) = — Z (8a)ab(78)6aG o (2) Grpgy (2 + iwn). (2.39)
k,a,b

We define the retarded and advanced Green’s function in complex domain as

1
GEN () = | 2.40
fa ) z—(Bp,— Ep) £ it (2.40)

Ne)
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By working out the complex integral in the ¢ — 0 limit and using analytical contin-
uation iw, — w + 10, , we obtain

1=0.w) = “s g ) (G2 GE — GE GE 2.41

Xas(q = 0,w) > Rel(sa)ab(a)ea(GE ,GF, — GG (2.41)

2m £
k,a,b

Plugging into equation (2.29), we have

050(7=0,w) = =—— Y Re[(sa)a(qV - E(7 = O7w))ba(G2aG£b - Ggang)], (2.42)

where we have used relation j = ¢v. In an almost uniform electric field, the spin
response from ¢ # 0 is quite small, ds,(¢ = 0) > ds,(¢ # 0). We will ignore the non-
uniform spin response. The real space spin polarization is 05, (7) = ds.(7 = 0)/V.
So, by taking w — 0 limit, finally we have the expression for the average spin

polarization from Kubo linear response theory

. h L o=
0§ = oy > Re[(8)an(qv - E)ba(Ggang - G%ang)], (2.43)
E@,b

where the Green’s function in energy domain is

1
GE (B)lp=p, = Gf

= , 2.44
ka ™ (Bp — By, +1I) (2.44)

with the property Gga = (Gga)*, and I' = h/27 is the spectral broadening. Equation

(2.43) can be divided into two parts with summation a = b, and a # b, which

correspond to intra band and inter band contributions respectively.
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2.4  Equivalence between Semiclassical approach and Kubo

In the last two sections, we have derived the non-equilibrium spin polarization
using two different approaches. The two sets of formulae look quite different from
each other. In this part, we will show that these two sets of formulae are actually
equivalent to each other within the small I' limit (weak disorder) [54, 59]. But for
large I', they are different, even a sign difference. So we will limit our study in the
clean sample limit with I' — 0. When considering disorder samples, more realistic
treatment of disorder is needed. However, our method can give a good approximation
when I" is not too large. We will start from the Kubo formula, and arrive at the
semiclassical expressions.

First, we will consider the intra band term. From equation (2.43), we have
§gmtre = 27TV Z Rel[(8)4(qV - E) (GﬁaGk}%a - GgaGga)]. (2.45)

For simplicity, we label z = Ep — Ef , and G = Re[G?aGga — GSGGERG]. So

212
i 2.4
This expression can be further written as
G(z) = 2102 (), (2.47)

with ér(z) = (T/7)/(2* + T?). When I' — 0, we have dr(x) approaches Dirac ¢§
function with properties or(xz) — 0 for any « # 0 and [ or(x)dx converges to 1.

In the same manner, we can show that 27T'62(z) approaches the Dirac ¢ function.
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So we have

m
G(z) = fé(a:) (2.48)
Putting this relation into equation (2.45), we get

h
2I'V 4
k,a

5 g'intra o

- (5‘)(1((]77 E)aé(EF - EE’(J- (249)
This expression is indeed the same as the one obtained from the semiclassical ap-
proach.

Then, we will study the inter band term. Instead of starting from equation (2.43),

it is easier to start from the Kubo formula for spin response function

7

05a(7 = 0,w) = = —Xap(w) Es(w) (2.50)
where
Xon ) = =50 5 Y sl i), (251)
b
with the function
F(z) = — ! (2.52)

z— E,;’a z + thw, — E,;b
This function F'(z) has two poles, and we can perform the Matsubara sum with the

aid of integration (2.38) to get

1 Jia = Ti
T F(iwn) = ’ : .
ﬁB %: (Zw ) EE,a — EE,b + ihwn

(2.53)

Putting this relation into the response function equation (2.51), and making the
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analytical continuation iw, — w + i0., we obtain the average spin polarization

(9)ab(¢E - D)
ia— Epp+hw+iT

55 = — Y = (fra = Fin)- (2.54)
k,a#b

where we have made substitution 0, — I'. This expression is exactly the same as
the AC results obtained from semiclassical approach. By performing the same trick

to take the DC limit, we get the same results as equation (2.26).
2.5 Summary

In this chapter, we have used two approaches to derive the non-equilibrium spin
polarization for a system in the presence of electric field. The two approaches give

equivalent results in the weak disorder limit. From semiclassical approach, we have

1 h

65" =2 Z o (a(aE - 0ud(By, — Er); (2.55)
and
ggimter — 53 4 552, (2.56)
with
I(E;, - Ef,)
o5t = —— 2Re[(5)q qE 0)pal 5o fio— feo)s
kazaﬁb ' " (Ez, — Br,)? +F2] ( ha ’“’b)

T (B B
55(2):_VE%bIm[(g)ab(qE-v)ba][(EEa_ EE) Ty TP 5 (Fra— Tin) -
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' = h/27 is the spectral broadening. From Kubo linear response theory, we get

Kubo formula

- h L =
05 = 57 2_ Rel(S)a(g¥ - E)ua(GE,GF, — GELGE,), (2.57)
E,a,b
where
1

GE (B)lp=p, =Gf, = (2.58)

Fa © " (Bp — By, +il)’

with the property Gg"a = (Gga)*, and I' = h/27 is the spectral broadening. Sum-
mations over a = b, and a # b correspond to intra band and inter band contributions
respectively.

The choice of these two sets of formulae is personal preference. In the numerical
simulation, we do see some differences, especially when we use finite values of I'. To
be consistent, we usually compare the results from the two sets of formulae for a
specific system. Then, we will decide which set of formula is more suitable for that

system.
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3. SPIN-ORBIT TORQUES IN 2D FERROMAGNETIC SYSTEM

3.1 Introductions

The simplest model to study the SOT effects is the two dimensional electron gas
(2DEG) with ferromagnetism and spin-orbit coupling [54]. In this model, we assume
the ferromagnetic order is embedded in the 2DEG. The electrons are described using
parabolic approximation. The spins of electrons interact with the ferromagnetic order
semi-classically. This model can be integrated analytically in certain limits which
can be compared with numerical results. Also, from these analytical results, we are
able to obtain the parameter dependence which will be used to test the results from a
more realistic model, for example, the GaMnAs model in chapter 4. The rest of this
chapter includes the Hamiltonian of this model, SOT in small and large exchange

limits, and the comparison with numerical results.
3.2 2DEG ferromagnetic model

In parabolic approximation, the Hamiltonian of a 2DEG ferromagnet with Rashba

spin-orbit coupling can be written as

2

h —
H = (B2 4 k) + alkyo, = ko) + Jud - 3 (3.1)

where m* is the effective mass, a is the Rashba spin-orbit coupling constant, o are
the Pauli matrices, and Jg; is the exchange interaction constant. For simplicity, we

assume that the external electric field is in the x direction,

E = E,i (3.2)
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and the magnetization is in plane.

M = (cos,,,sin 6,,) (3.3)

gives the direction of the magnetization, and 6,, is the angle between the magnetiza-
tion and electric current (electric field). The setup of this system is shown in figure

3.1. The effective magnetic field is what we need to calculate next.

Fat

Figure 3.1: Simulation setup of SOT in 2DEG FM model with Rashba SOC.

3.3 SOT in 2DEG FM

This Hamiltonian mentioned in the previous part can be diagonalized directly.

The eigenvalues as a function of k are given by:

h2
Ep, = —(K+k)+ \/(Jsd 08 Oy, + aky)? + (Jsqsin b, — ak,)?. (3.4)

2m*
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To simplify this expression, we denote:

Ap = Jecosbp, + aky +i(—Jssin by, + ak,)
= |Agple’s (3.5)
where
—Jggsinb,, + ak,
;= tan ' . .
o al < Jsq cos O, + ak, > (3:6)
So, the eigenvalues are
h2
Bpe =5~ (k3 + k) = 1A, (3.7)
and the eigenvectors are given by
= —— , (3.8)

where the factor ei’;'F/ VvV L? is added by hand to represent the wave function for

carriers. The velocity operators for this Hamiltonian are

o hkx a
T omr h
hk, «
Uy % (39)

and the spin operator are Pauli matrices. So we have

hk:x o
<)‘]Z+‘U$|)‘E+> — 1tz 7 sin (bk

hkx o
<)\E—|UIE|)\E7> h sin (bk

xe
(AE+|U,,3|)\,;_) cos ¢y

h
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hk «
<)\E+"l}y‘)\,g+> = mf + — cos (ﬁ];

D
O Iyl ) = o 2 s

oy Ag_) = =2 sin g

Apelv=[Ag) =0 (3.10)

and for the spin operator

(ApploalAzy) = cos o
(Ai_loa|Az_) = —cos g
<)‘E+|‘79C|/\E—> = —isingp
(AgploylAzy) = —singg
(Ar_loy|Ap_) = sin ¢y
<)\,;+|0y|)\,—§-_) = —1cos P
(Aiplo:| Az ) =0
Ap_loz|Az_) =0

<)‘E+‘O’z’)‘]}'7> = -1 (3.11)

Using above relations, we can calculate the current induced spin polarization using

the Kubo formula.
3.3.1 Intra band term

The Kubo formula for the intra band contribution is given by

—intra 1 h s
05" = 5 2 o (palaF - 05, 0(Eg, — Erp). (3.12)
ka
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Here T" is the spectrum broadening, and 5= &. We need to multiply a factor of %
in the final result if we consider spin % electrons. In our two-band model with the

electric field in the x direction, we have

hk, a .
<)\;;’+|%|/\;;+></\;;+|Uz|)\,;+> = W cos ¢ + ﬁ sin ¢y cos ¢

<)‘E+ |O-y|/\]}'+> </\E+ |v$|)‘E+>

and

hk, a .
<>\;;_|Ux|)\;;_><)\g_|vx|>\,;_) = _W cos gb,; + ﬁ sin c;S,; cos gb,;

hk, . a .
Ogloy e Y foalAg ) = —= sin g — — sin” o

Az loa A2 ) (A [ve| Ag_) = 0. (3.14)

So the current induced spin polarization can be calculated as follows

- L? qE h
ntra 2
053 N L2 (2m)? /d [(

h @ sin ¢y cos ¢,;> 6(Ez, — Er)

+ ( >+ 7 sin ¢y cos ¢E> 5<EE7 — EF)]
qEh hk
= ST /kdkd9 [( cos ) cos ¢y + SlIl ¢ cos q§k> (E}er — Ep)
hk a
+ <—* cos 6 cos ¢ + 7 sin ¢z cos gb,;) By — Ep)l : (3.15)
m
intra quh hk
§sint o] /k;dk:dé’ [(—cosesmqﬁ - —sm ér) 6(Eg, — Er)
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+ <ka cos 0 sin ¢ — %sin2 gb,;) S(Ep — EF)] , (3.16)

and

§sintra = (), (3.17)

z

We have changed the integrations to polar coordinates for simplicity. These integrals

are difficult to treat exactly. So we’ll test different limits.
3.8.1.1 Small exchange limit

In the small exchange limit Jyq — 0 or Jyg/akr < 1, where kp is the Fermi wave

vector, we can expand expressions up to the first order of Jy4

1 ) ) 2/7.2 2\1—1/2
A = [Ja + 2Jsac(ky, cos Oy, — kysinby,) + o (k; + k)] /
, ) 9 7-1/2
= — |1+ Jsd (sinf cos 6, — cosfsinb,,) + Jua
ak « a?
1 Jsa . .
N T (sinf cos 6, — cosfsinb,,). (3.18)

and

Jsd , . . .
sin ¢ ~ cos 6 — —Ij(sm O, + sin @ cos 6 cos 0, — cos® fsinb,,,)
e

I : , :
cos ¢p ~ sinf + —lj(cos 0, — sin? 0 cos B, + sinf cossinb,,).  (3.19)
a
Then the integrand can be expressed as

o .
. cos 0 cos ¢y + 7 sin @5 cos dr

~ —k; sin 6 cos 0 + i sa

— (cosfcosb,, — sin? 0 cos 0 cos 0, + sin 0 cos? 0 sin Om)
m m*a

—% sin 6 cos 0 + i:]: (cos 0 cos 0, — sin® 6 cos 6 cos 0, + sin & cos® Osin ,,)
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_Jua

o (sin @sin 6,,, + sin® @ cos 0 cos ,,, — sin 6 cos® Osin b,,,), (3.20)

and

k . & . 4
———cosfsin ¢y — — sin” ¢y

h

sd (cos @ sin 0, + sin 6 cos?  cos 6, — cos® Osin b,,,)

~ ——cos?h + —2
m* m*a

2
—% cos? 6 + ;ljl(cos 0 sin 0, + sin 6 cos®  cos f,,, — cos® Osinb,,), (3.21)

where we have only kept terms up to the first order of Jy4. The Fermi surface (lines

in 2D) is given by equation

h2k2

Y + \/(Jsd cos b, + aky)? 4+ (Jsasinb,, — ak,)? = Ep (3.22)

In the small exchange limit, we have

h2k2

m*

+ ak + Jg4(sin 6 cos 6, — cosOsinb,,) = Er (3.23)

For simplicity, we denote

© = sinf cos b, — cosfsinb,,. (3.24)

as the angle dependence of the Fermi surface. Then

h2k?

m*
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The solutions give the Fermi surface as a function of #. Here we assume both bands

are occupied. So we have only one acceptable solution for each band

m*a m*2a?2  2m*
ki = F—s + \/4 + — (EF + Jsd@)~ (3‘26)
h h h
Here k. correspond to the Fermi surface for the upper and lower bands respectively.
Then, we’ll do the integration. One thing we’ll keep in mind is that we only keep

terms up to the first order of the small parameter and the integration of some com-

binations of sin @ and cos @ from 0 to 27 are zero. First we have

hk

/ kdkd0~— [5(Ey, — Er) — 6(Ez_ — Er)]sinfcosf ~ 0 (3.27)
m

E+

because the k integration will give the J,; independent term and first order of J,40

term, and the later 6 integrations will both be zero. We can do the same arguments

intra

to the other terms in the ds?

integration. All of these terms are zero. So we have
§sitra ~ () (3.28)

And for the 582"”"“ integration, we have non-zero terms

- / kdkdd™™ cos? 06(E;, — Er) — 6(E;_ — Er)]
m

- / kdkd@% cos? 00(Ey, — Er) + 0(Ez_ — Ep)]

_ _% / dkdf cos® 0[kd(Eg, — Er) + k6(Ep_ — Er)), (3.30)
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and all other terms are zero. So

| B, ’
Ssimtra o qﬂif / df cos? 0 / dkl( hk O;f) 0(Ep, — Er)

- (hk - O;f) 5(E; — EF)]

m*
hk2 ak+ 1
( h > ‘%%—a‘

df co
7r2F /
N hk? _ako 1

m* h h2k_ . a‘

E.h 1
~ 1 /d@ cos® Hﬁ(k, —ky)

&2l
qE.am*
= — 3.31
ATh*T (3:31)
where we have used the relation
d(z — xp)
o(f(x 3.32
(F@) = X 7 oy (3.32)
The final results in these limits are
—intra S ~ qEﬂfam* 2
0§ fra. — 01‘+ym+02. (333)

These results indicate that in the small exchange limit, the non-equilibrium spin
polarization is independent of the angle 6,,, and is inversely proportional to I'. We
can actually numerically integrate the polarization. The numerical results match
with analytical result very well. As show in figure 3.2, intra band SOT in the small

exchange limit is indeed inversely proportional to I'.
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Figure 3.2: Intra band SOT as a function of I' for small exchange interaction.

3.3.1.2 Large exchange limit

On the other hand, in the large Jyq limit, Jyg > akp, J;q > T, keeping up to the

first order of a/Jyq, we have

[J2, + 2Jsq0(ky cos 0, — Ky sin 6,,) + o (k2 + k;)]_l/2

X -~ 9 7-1/2

o 14 gd (sin @ cos 0, — cosOsinb,,) + 3:26[
1 ak . .

J—d ~ 7 (sinf cos 6, — cosfsinb,,). (3.34)
S sd
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then

k
sin ¢p ~ —sin 6, + ?—(COS 0 + sin @ sin 0,,, cos ,,, — cos @ sin*4,,)
sd

k
cos ¢z ~ cos by, + ((;d(sin 6 — sin 0 cos® 0, + cos sin B, cos,,,).  (3.35)

So, in this limit, the integrand can be written as

(0%

— cos 0 cos ¢y +
m* oF h

sin ¢y cos ¢y
2
(sin @ cos § — sin 6 cos 0 cos? B, + cos® Osin B, cos 0,,)

k
~ ——cosfcosly, + —
m m=dJgsq

—% sin 0,,, cos 6,,, (3.36)

and

. a
- cos 0 sin ¢ — > sin? o5
/{3 2
~ —cosfsind,, — (cos® @ + sin @ cos 0 sin 0,,, cos ,,, — cos® Osin® f,,,)
m* m*Jsq
(6% .92
——sin“ 0, (3.37)

h

where we have only kept terms up to first order of o/ Jsq. Then we’ll do the integration
term by term. We’ll do the k integration first. The Fermi surface (lines in 2D) is

given by equation

h2k2

Gy + \/(Jsd cos b, + aky)? + (Jsasinb,, — ak,)? = Ep (3.38)

In the large exchange limit, we have

h2k2
2m*

+ Jea £ ak(sinf cos b, — cosOsinb,,) = Er (3.39)
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Again, we denote

© = sinf cos b, — cosfsinb,,. (3.40)
as the angular dependence of the Fermi surface. Then

h2k2
2m*

+ Joy + ak® = Ep. (3.41)

The solutions give the Fermi surface as a function of #. Here we assume both bands

are occupied.

m*&@_l_\/m*zoﬂ@? 2m*

- o o (Br F ). (3.42)

by =F

We can ignore the first term in the square root.

m*a© 2m*
ki =F hQ + \/ (EF F Jsd)- (343)

Here k. correspond to the Fermi surface for the upper and lower bands respectively.

Two useful relations can be obtained

2m* 2m*
k?+k_ ~ \/hg(EF + Jsd)\/hg(EF - Jsd)

Then we write

5Sintra _ qEﬂ?h

= g (Ar+ A+ 4y) (3.45)
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The first term has form

Ar = / kdkdd ™™ cos 0 cos 0,,(6(Ey, — Er) — 6(F;. — Er). (3.46)
m

By integrating over k, we only keep terms with first order of «, because the «

independent term will be zero when integrating over 6 later.

/ dk (K*5(Ey, — Er) — K*6(E;_ — Er))
K2 k2

] - Ee — a0

m* hPkyok_(ky —k_) — m2aO(k2 + k?)

Rkik_ +mh2aO(k_ — k)

—4m*?a® (/25 (Er + Jua)\/ 25 (Er — Jua))

(25 (Br + Ju) /25 (Er — Jua))
Am*2aO

So,

4 *
A = —/d@ mg@cosﬁcosﬁm

I
4 *
= - nfjg 2 cos O, / df cos 0(sin 0 cos 6,,, — cos 0 sinb,,,)
4 *
- W";ngoz sin 6,,, cos O,y,. (3.48)

The second term has form

2
Ay = / kdkdo ai‘zk (sin @ cos § — sin 6 cos 0 cos? B,,, + cos® Osin B, cos B,,) ¥
m=Jsq
[6(EE+ — Ep) — (Er — Er)]. (3.49)

35



By integrating over k, we only keep the o independent term.

/ dk (K5(Ey, — Er) — K*6(E;_ — Er))
k3
]
m* Bk ko (k% — k%)
Rtk k_
4m*2Jsd
—

(3.50)

So,

4 *2 § I
Ay ~ — m Jd/deaJ (sin 0 cos § — sin 6 cos O cos® 6,,, + cos? fsin 0,,, cos O, )
sd

4ma

~ —

/ df(sin € cos — sin 6 cos ¢ cos? 0, + cos® 0 sin 6, cos Om)

4 *
~ —% sin 6,,, cos O,y,. (3.51)

And the third term is
/ kdkzd@— §in 0, €05 0 [0 (B, — Ep) + 0(Ep_ — Ep)] (3.52)

Again, we only keep the o independent term when integrating over k

[ ak (ko (Eg, ~ Er) + ko(Eg_  Ex))

k. k_
h2k+ + @‘ h2k_ @‘
2m
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and
dm*Ta

A3:— h?’

sin @,,, cos 6,, (3.54)

So, the final result is

, qE.h
5 mntra —
% 82T
82T
qE,am*

R T

(A1 + As + Az)
dm* o

—

sin 6,,, cos O,,. (3.55)

sin 6, cos 0,,)

We'll do similar derivations for the y component

intra __ quh
05, = S 5p(Bi+ Ba+ D) (3.56)
where
4 *
By ~ —/de:?@ cos 0 sin 0,
h
4 *
~ —% sin 6,,, / df cos O(sin 0 cos 0, — cos O sin b,,,)
4 *
~ % sin2 Qm, (357)
4 *2J3 h
By ~ mh4 d / de miéJ (cos? @ + sin 0 cos 0 sin 0,,, cos ,,, — cos® O sin® f,,,)
sd
4 *
~ % / df(cos® 0 + sin @ cos 0 sin 0,,, cos 0,,, — cos® #sin®0,,,)
4 *
~ ”;3” (1 —sin20,,), (3.58)
and
4 *
B, ”;SM $in2 O, (3.59)
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The final result is

intra qE hdm* o _
05, ~ ST T(1 —sin®6,,)
E,.am*
_ q2 ;‘;ﬁ Cos2 O, (3.60)
m

So, the final results in this limit are

. E.am*, | . 5
§gintra q2 7?2”;‘ (=2 sin O, cos Oy, + G cos® 6,,) + 03. (3.61)
m

08 | | | |
Intra, ——
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04 | -
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Figure 3.3: Intra band SOT as a function of 6,, for large exchange interaction.

As shown in figure 3.3, the numerical results match with analytical results. In
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this limit, the results are still inversely proportional to I'. So, in both limits, the

intra band SOT have this inverse proportionality.
3.3.2  Inter band term

The Kubo formula for the inter band contribution is given by two terms

samter — 5t 4 55 (3.62)
with
h , I(E; — Ey)
55 — 2R, . E.G . ka b s
S JE Egb e[(g) b(q 'U)b ][(EE — EEb)2 + F2]2 (fka fkb)
h - ?—(E; — Ey)?
6_(2) —_ - I = “ E . — . ka kb -~ . -~ .
S 12 Egb m[<3) b(q U)b ] [(Ega _ EEb)Q + F2]2 (fka fkb)

As in the intra band term, I' is the spectrum broadening, 5 = &, and f; is the
Fermi-Dirac distribution function. In our two-band model with electric field in the

x direction, we have

o .
</\E+|Uw|)‘;2_><)\;;_\vz|)\,;+> =3 sin ¢y cos ¢
Q@
</\E+|Jy|AE—></\E_|vx|)\E+> == _ﬁ COS2 ng
1
(Arplo M) v A, ) = =, co8 o (3.63)

and

Q.
<)‘E_|O-x|)‘]}’+><)‘]}’+|vaz|)\g_> = _ﬁ Sin ¢E Ccos ng

(6%

<AE—|0y|)\E+><)\E+|Uz|)\E_> = —% COS2 ¢E
Q0

Ne_lo= g ) Ny ozl Ap ) = == cos ¢ (3.64)
h
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So the non-equilibrium spin polarization can be calculated as follows

55

58?51)

and

65 =

_ - 2 R
ok z,;:cos ékl[(Em—E,; )2 +I2]2

P(EE-;- — Ly )

Zsmqﬁkcosqﬁk [[(EEJF_EE )2 1 22 (fk+ fi)
F(E,—C; — ;)
[(EE —E-‘ ) —|—F2] (fk— fl;-;—)}
2qE « L2 2E k+ — E}_ ) sin ¢y cos ¢
/ — B )24+
E,al 2| Az sin ¢ cos ¢
1= /d2 |4‘|ASI|I;f;2j (e — fi)

2qE ol 2 |Aj| sin ¢z cos ¢ s
/d (4]A P +T2)2 (frr = foo): (3.65)

th 2a0

(f12+ - fE—)

hqE, 2a N(Eg, — E; )

(fk:+ fE_)

(B — Ep,)
[(E;_ — Bz )?+ 1?22 (fi - f;;ﬁ]
2qE, o L? 2I'(Ey, — B ) cos? ¢y
far / 2 [(EE++_ EE_)Q T FQ]Q (fE+ - f;g_)

Iz (2n)?
= QqE ol /d2 iﬁ;lzofﬁf)z(fm = fi)s (3.66)
P Lo
N [(l;;_ (_Eg _)2?}12]2 (fre =1 ;;Q]
2qu:?2 el L kcowk[(; EEE—) E+ F)Q] G — i)
_qzb;:?a /d2 4|A4|ﬁ _||_)F(;())z i (fiy = Jio)- (3.67)

Again, these integrals are difficult to treat exactly. We'll test the different limits.
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3.3.2.1 Small exchange limit

In the small exchange limit Joq — 0 or Jy/akr < 1, we have

Azl = [J2 4 2Jsaa(ky, cos O, — Ky sind,,) + o (k2