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ABSTRACT

Spintronics is a sub-field of condensed matter physics which explores the physics

of electrons involving both their charge and spin, with an emphasis on the active

manipulation of the spin degree of freedom in solid state systems. In spin-based

memory and storage devices, information ( 0 or 1) is stored based on the magne-

tization orientation in ferromagnets or layered magnetic structures. We study the

utilization of spin-orbit torques in ferromagnets and antiferromagnets as an effective

ways of magnetization switching in these nonvolatile memory devices. The method

we use is linear response theory and numerical simulation. Our results show that the

spin-orbit torques are effective approaches of manipulating magnetization in both

ferromagnets and antiferromagnets, which can be used in the future memory device

applications.

In ferromagnets, we start from a simple two dimensional electron gas ferromag-

netic model with Rashba spin-orbit coupling to study the different components of

spin-orbit torques and the parameter dependence. The results show the existence of

these torques. Then, we study these torques in a realistic material, GaMnAs, with

a complex band structure. We confirm that these torques have the same parameter

dependence in GaMnAs and the simple two dimensional model. The complex band

structure changes the magnitudes of the effective fields and shows more features

in the results which unveils the competition between band structure and spin-orbit

coupling.

In antiferromagnets, by studying the spin-orbit torques in the two dimensional

antiferromagneic model and the realistic material Mn2Au, we predict that a lateral

electric current in antiferromagnets can induce non-equilibrium Neel-order fields, i.e.,

ii



fields whose sign alternates between the spin sub lattices, which can trigger ultrafast

spin-axis reorientation. Due to the two dimensional nature, the spin-orbit torques

can have large magnitudes if we tune the Fermi energy to a certain level. We then

extend the study to the three dimensional non-collinear antiferromagnet IrMn3.
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NOMENCLATURE

AC Alternating Current

AFM Antiferromagnets

BIA Bulk Inversion Asymmetry

CIT Current Induced Torques

DC Direct Current

DMS Diluted Magnetic Semiconductor

DOS Denisty of States

FM Ferromagnets

Γ Spectrum Broadening

GMR Giant Magnetoresistance

ISGE Inverse Spin Galvanic Effect

LLG Landau-Lifshitz-Gilbert Equation

LLGS Landau-Lifshitz-Gilbert-Slonczewski Equation

MRAM Magnetic Random Access Memory

SHE Spin Hall Effect

SIA Structural Inversion Asymmetry

SOC Spin-Orbit Coupling

SOT Spin-Orbit Torques

STT Spin-Transfer Torques

2D Two Dimensional

2DEG Two Dimensional Electron Gas
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1. INTRODUCTIONS TO CURRENT-INDUCED TORQUES

1.1 Introductions to spintronics

Spintronics is a sub-field of condensed matter physics which explores the physics

of electrons involving both their charge and spin, with an emphasis on the active

manipulation of the spin degree of freedom in solid state systems [1]. In our mod-

ern computers, devices using charge are mainly used for information processing, and

devices using magnetism (spin) are used for information storage. The aim of spin-

tronics is trying to understand the physics involving both the charge and the spin in

order to manipulate one with the other. By doing this, we are able to build devices

which combine data storage and data processing together.

Traditional electronics use the transport properties of charges. By controlling the

charge transport, people are able to realize the control of current density, switching,

heat generation, etc. The discovery of magnets dates back to thousands years ago.

Today, they are widely used for data storage, for example magnetic tape, hard disk

drives, credit, debit cards and so on. The microscopic mechanism of magnetism is

given by quantum theory [2]. In quantum theory, other than the charge degree of

freedom, the electron has another degree of freedom called the spin [3, 4]. Unlike

the charge, the spin is a vector that corresponds to a magnetic moment. The Pauli

principle forces the spins to align in the same direction in order to minimize the

Coulomb interaction which gives rise to magnetic elements [2]. Exchange interactions

between magnetic elements in materials result in the formation of ferromagnets and

anti-ferromagnets.

In the 1980s, with the discovery of spin-dependent charge transport, in particular

the discovery of giant magnetoresistance (GMR) [5, 6], spintronics emerged as an
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important subfield of physics. It is growing rapidly these years with the advance of

nanoscale device fabrication technology. GMR makes use of the different resistances

between ferromagnetic layered structures with parallel or anti-parallel configurations.

This discovery resulted in the revolution of our current hard disk technology [7]. It

also made research on spin-based devices a hot topic.

In spin-based memory and storage devices, information ( 0 or 1) is stored based on

the magnetization orientation in ferromagnets or layered structures [1, 7]. To write

information, effective ways of manipulating the magnetization are needed. In early

days, magnetization switching was achieved with the use of external magnetic fields.

Recently, current-induced switching approaches are under intensive study in the field

of nonvolatile magnetic memory devices, in order to improve device performance and

efficiency [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The aim of this research is to try

to control the magnetization direction using electric current. To realize this, we need

to understand how magnetization changes in the presence of external perturbation,

i.e. magnetization dynamics.

1.2 Magnetization dynamics and spin-transfer torques

In ferromagnetic materials, the dynamics of magnetization ~M is described by the

Landau-Lifshitz-Gilbert (LLG) equation [20, 21, 22].

∂ ~m

∂t
= −γ ~m× ~Heff + α~m× ∂ ~m

∂t
, (1.1)

where ~m = ~M/| ~M | is a unit vector along the magnetization direction, γ = gµB/h̄

is the gyromagnetic ratio and α is the Gilbert damping constant which causes the

relaxation of magnetization to its equilibrium direction [22, 23, 24]. This equation

gives the time evolution of the magnetization in the effective magnetic field, ~Heff ,

determined by the external magnetic field, exchange field, anisotropic field, etc. [22]
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This first term in the right side of this equation leads to the precession of magnetiza-

tion around the effective field and the second term is the damping term which forces

the magnetization relax to this field. From this equation, we see that we are able

to control the magnetization dynamics by changing the effective field using external

magnetic field.

Are there any other ways of changing the LLG equation? If we analyze the units

of both sides of this equation, we see that they have the units of torque. In 1996,

Slonczewski and Berger [8, 9] proposed to use spin polarized current to manipulate

the magnetization. The physical picture can be easily understood by using the

angular momentum conservation [22]. When the direction of the spin polarization is

non-collinear with the magnetization, the spins of carriers will trend to align with the

magnetization due to exchange interactions. Reversely, the carrier spins will exert

torques on the magnetization itself, because of angular momentum conservation, to

ultimately switch the magnetization direction. These spin current-induced torques

are called spin-transfer torques (STT) [8, 9, 12, 13].

The LLG equation with STT is called Landau-Lifshitz-Gilbert-Slonczewski (LLGS)

equation, which is written as [22]

∂ ~m

∂t
= −γ ~m× ~Heff + α~m× ∂ ~m

∂t
+ ~τ , (1.2)

where ~τ denotes the spin-transfer torques. Later, people realize that two types of

terms are allowed in STT in the asymmetric layered system based on symmetry

arguments. One is called Slonczewski torque which has form

~τs ∝ ~m× (~m× ~Js), (1.3)
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where ~Js is the spin current. The other term is called a field-like torque which can

be written as

~τsβ ∝ β ~m× ~Js, (1.4)

where β gives the relative strength with respect to the Slonczewski torque.

With the discovery of STT, current-induced magnetization manipulation is un-

der intensive study recently. People are able to build new spin-based devices using

STT, one of the examples is spin-transfer-torque magnetic random access memories

(STT-MRAM) [22], which are ideal for integrating data storage and data process-

ing in a single device. Information is stored in MRAM using layers of ferromagnets

which are stable even without power supply. This makes the instant data accessing

and processing possible when we turn on the computer. However, the disadvan-

tage of STT-MRAM is the requirement of a polarized current and a large current

density which causes heating problems. If we can find other ways of manipulating

magnetization in which to overcome these issues, MRAM will be a promising future

information technology. This is the reason we are going to study spin-orbit torques

[27, 28, 29, 30, 31, 32, 33, 34].

1.3 Spin-orbit troques

Before introducing the details of spin-orbit torques, let’s have a look at the LLG

equation. As mentioned before, the effective field includes external magnetic field,

dipole field, exchange interaction, anisotropic field, etc. Can we add some sort of

effective fields by electric current, so that we can control the magnetization? The

answer is yes. Inverse spin galvanic effect (ISGE) [25, 26] says that in electronic

systems lacking inversion symmetry, electric current will result in non-equilibrium

spin polarizations. If we consider this effect in ferromagnets, these non-equilibrium

spin polarization will be exchange-coupled with magnetization and act as effective
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fields [34]. The question is whether ISGE really exists in ferromagnetic materials.

Recent observations of in-plane current-induced magnetization switching at fer-

romagnet and normal-conductor interfaces [18, 19], suggests that we may use un-

polarized current to realize magnetization manipulation. The explanation of these

experiments is based on either spin Hall effect (SHE) [35, 36, 37, 38] plus STT across

the surface [19, 39], or the spin-dependent scattering of carriers which gives rise to

a relativistic anti-damping spin-orbit torque (SOT) [18, 27, 28, 33]. The SOT effect

was initially observed in epilayers of (Ga,Mn)As diluted magnetic semiconductors

with bulk inversion asymmetry in their strained zinc-blende crystal [40, 41]. This

effect was soon widely confirmed in metallic bilayers with structural inversion sym-

metry breaking [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Later experiments on bulk

(Ga,Mn)As, which eliminates the surface effects, show similar effects demonstrating

that SOT causes the unpolarized current inducing magnetization switching [34].

As discussed in the previous paragraphs, SOT is the inverse spin galvanic effect in

magnets. To understand the physics of ISGE, spin-orbit coupling and symmetry must

be considered. Spin-orbit coupling is the interaction between spin and momentum

of electron which comes from the relativistic Dirac equation [3]. Usually, a simple

physical picture using semiclassical electrodynamics can gives us some hint. In atoms,

an electron moves around the nucleus. In the rest frame of this electron, the nucleus

is moving around this electron. As we know, moving charges will generate magnetic

field. So, the spin of the electron will interact with the magnetic field generated by

the moving nucleus. This is the origin of spin-orbit coupling which can be generated

to electrons moving in any potential V (~r). A more rigorous result can be obtained

from the Dirac equation.

Hsoc =
h̄

4m2
0c

2
(~σ ×∇V ) · ~p, (1.5)
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where ~σ is the Pauli matrix vector. Equation (1.5) is the most general form of spin-

orbit coupling. However, in solid state systems, the potential V is usually hard to

determine. People use some symmetry arguments and phenomenological parameters

to describe the spin-orbit coupling which can be compared with experimental obser-

vations. Due to the crystal symmetry of solid state materials, the form of spin-orbit

couping can be simplified. The two most commonly used forms of spin-orbit coupling

in solids are Dresselhaus [52] spin-orbit coupling and Rashba [53] spin-orbit coupling.

The Dresselhaus spin-orbit coupling is from the bulk inversion asymmetry

HD = β(kxσx − kyσy), (1.6)

and the Rashba spin-orbit coupling is from the structural inversion asymmetry

HR = α(kyσx − kxσy), (1.7)

where β, α are the corresponding coupling strengths.

Figure 1.1: ISGE in 2D electron gas model with Rashba SOC.

After understanding the spin-orbit coupling in solids, we can give a physical pic-

ture of ISGE. As shown in Figure 1.1, the Rashba spin-orbit coupling aligns the spins
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of carriers on the Fermi surface to a certain configuration. By adding an external

electric field (current), the Fermi surface is shifted in k space. The spin expecta-

tion value will give rise to non-equilibrium spin polarizations which correspond to

the intra band contributions [34, 54]. On the other hand, carrier spins will precess

around the effective spin-orbit field, as shown in the right panel of figure 1.1, which

correspond to the inter band contributions [34, 54].

In magnets, the non-equilibrium spin polarizations generated by ISGE will in-

teract with the magnetic order which correspond to effective magnetic fields. As

discussed, these effective magnetic fields correspond to torques in the LLG equation.

δ ~Heff = − Jsd
gµB

δ~s, (1.8)

where δ~s is the non-equilibrium spin polarization, Jsd is the exchange constant be-

tween carrier spins and magnetization, g is the g-factor, and µB denotes Bohr mag-

neton. This is exactly what we need in order to manipulate the magnetic order

by current. Due to the spin-orbit coupling origin of these torque, they are called

spin-orbit torques.

So far, we have only discussed the SOT in ferromagnets. The physical picture is

very clear. However, the majority of magnetic materials are antiferromangets which

are also widely used in spintronics. Do we have similar SOT effects in antiferromag-

nets? The answer is yes. In antiferromagnet, sub lattice magnetizations cancel with

each other and the total magnetization is zero. It seems that SOT have no effects on

the magnetic order. But the SOT are local effects meaning that we can project these

torques onto sub lattices. With careful choice of crystal asymmetry or structural

asymmetry, SOT can be used to manipulate the Neel order in antiferromagnets [55].

This report is organized as follows. Chapter 2 is the methods of our SOT simu-
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lation where two approaches and their equivalence will be discussed. Chapter 3 to 6

contain the SOT studies in 2D Rashba model, GaMnAs ferromagnetic semiconduc-

tors and anti-ferromagnets. Chapter 7 is our conclusions.
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2. SEMICLASSICAL APPROACH AND KUBO FORMULA

2.1 Introductions

In this chapter, we will discuss the simulation methods for the spin-orbit torques.

As mentioned in the first chapter, we need to compute the non-equilibrium spin

polarization δ~s when a unpolarized electric current is driven through the system.

Current is related to the electric field across the system by the conductivity. For

later convenience, we will use the electric field vector ~E as external perturbation.

Linear response is assumed in our system. The Hamiltonian can be written as

H = H0 +H1, (2.1)

where H0 is the Hamiltonian of the system without perturbation and H1 is the

perturbation. Linear response theory says that the response of the system can be

written as [56]

X(~r, t) =
∫
d~r′

∫
dt′χ(~r, ~r′; t− t′)H1(~r′, t′), (2.2)

where χ is called the response function, which we will calculate. For some cases, the

response function can be integrated to give a proportional constant between response

and perturbation. There are two main approaches, the semiclassical Boltzmann

[57, 58] approach and Kubo formula [56, 57]. In the next sections, we’ll discussion

these two approaches and the links between them.

2.2 Semiclassical approach

In the semiclassical Boltzmann approach, the ground state of the system is de-

scribed by an equilibrium distribution function f0. In fermion system, f0 is nothing
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but Fermi-Dirac distribution function. Perturbation will change the equilibrium dis-

tribution function to some unknown distribution f . What we need to do is calculate

this unknown distribution. In our case, the equilibrium spin expectation value is

given by

~s0 =
1

V

∑
~k,a

〈~s〉 f0, (2.3)

where a denotes different bands, ~s is the spin operator vector which is ~σ/2 for free

electron, and

〈~s〉 =
〈
~k, a |~s|~k, a

〉
(2.4)

is the spin expectation value for quasiparticle. When we introduce the external

electric field ~E as a perturbation, both the distribution function and the quasiparticle

wave function will change [59]. It is natural to divide the resulting non-equilibrium

spin expectation value into two parts. We call these two parts intra band and inter

band. The reason will become clearer later. So we have

δ~s = δ~sintra + δ~sinter =
1

V

∑
~k,a

〈~s〉 δf +
1

V

∑
~k,a

〈δ~s〉 f0, (2.5)

where δf = f − f0, and we have ignored the higher order term. The first term corre-

sponds to the redistribution of electrons on the Fermi surface, and the second term

corresponds to the modification of electronic wave functions cause by the external

electric field. Next, we’ll derive these two terms separately.

In the framework of relaxation time approximation, if we consider an electronic

system in a uniform external electric field, we have

q ~E

h̄

∂f~k,a

∂~k
= −

δf~k,a
τ

, (2.6)
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where τ is the relaxation time, and q is the charge of carrier. Here we write out f

explicitly which depends on (~k, a). Since we consider a steady current state and a

uniform system, so

∂f

∂t
= 0 (2.7)

∂f

∂~r
= 0.

We have the relation

1

h̄

∂f~k,a

∂~k
=

1

h̄

∂E~k,a

∂~k

∂f~k,a
∂E~k,a

= ~v~k,a
∂f~k,a
∂E~k,a

, (2.8)

where E~k,a is the band structure and ~v~k,a is the velocity operator. In the linear

response and zero temperature limit, f~k,a is very close to the Fermi-Dirac distribution.

We have
∂f~k,a
∂E~k,a

≈ −δ(E~k,a − EF ). (2.9)

So, we have

δf~k,a = τ(q ~E · ~v)aδ(E~k,a − EF ). (2.10)

Here, we have used the notation

(. . .)a = 〈. . .〉a =
〈
~k, a |. . .|~k, a

〉
. (2.11)

for later convenience. Plugging into equation (2.5), we get the non-equilibrium spin

polarization

δ~sintra =
1

V

∑
~k,a

h̄

2Γ
(~s)a(q ~E · ~v)aδ(E~k,a − EF ), (2.12)

11



where Γ = h̄/2τ is the spectral broadening. This term is called the intra band

contribution because the average of the spin and velocity operators is within the

same band. Then, contributions from different bands are added together.

To derive the inter band contribution, we use quantum mechanics perturbation

theory [4]. We start from the Hamiltonian of the system in an AC electric field

H = H0 +
i

ω
(q ~E · ~v)e−iωt + c.c, (2.13)

where ω is the frequency of the field. Later, we’ll take the DC limit. The eigenvectors

for the unperturbed Hamiltonian H0 is denoted by |~k, a >, and

H0|~k, a >= E~k,a|~k, a > . (2.14)

The time dependent wave function for the unperturbed system can be written as

|φ0(t) >=
∑
~k,a

e−
i
h̄
E~k,at|~k, a > . (2.15)

Following the standard time dependent perturbation theory, the perturbed wave

function can be written as

|φ(t) >=
∑
~k,a

c~k,a(t)e
− i
h̄
E~k,at|~k, a >, (2.16)

where c~k,a(t) are the time dependent expansion coefficients. Then, we expand these

coefficients into a perturbative series

c~k,a(t) = c
(0)
~k,a

(t) + c
(1)
~k,a

(t) + . . . (2.17)
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Within the linear response limit, we only need to calculate c
(1)
~k,a

(t). On the other

hand, the perturbed wave function can be written as

|φ(t) >=
∑
~k,a

e−
i
h̄
E~k,at(|~k, a > +δ|~k, a >), (2.18)

where δ|~k, a > is the correction to the unperturbed wave function |~k, a > due to the

perturbation. Using the standard expression for c
(1)
~k,a

(t) and comparing with equation

(2.18), we obtain

δ|~k, a >=
e−iωt

−iω
∑
b

(q ~E · ~v)ba
E~k,a − E~k,b + h̄ω

|~k, b > +c.c, (2.19)

where similar notation is used here

(. . .)ab =
〈
~k, a |. . .|~k, b

〉
. (2.20)

And the non-equilibrium spin polarization can be obtained as

δ~sinter =
1

V

∑
~k,a

[〈
~k, a |~s(δ|~k, b

〉
) + c.c

]
f~k,a. (2.21)

Putting the expression of δ|~k, a > into this formula, we get

δ~sinter =
i

ωV

∑
~k,a6=b

(~s)ab(q ~E · ~v)ba
E~k,a − E~k,b + h̄ω + iΓ

(
f~k,a − f~k,b

)
, (2.22)

where the spectral broadening Γ must be smaller than the average eigen energy

difference.

In the next steps, we should take the DC limit by setting ω → 0. We will use a
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trick here. If the limit

lim
ω→0

f(ω)

ω
(2.23)

exists for some function of f(ω), f(0) must be 0. So, we have

lim
ω→0

f(ω)

ω
= lim

ω→0

f(ω)− f(0)

ω
. (2.24)

Using this relation in our expression of the inter band contribution, we obtain

δ~sinter =
i

ωV

∑
~k,a6=b

 (~s)ab(q ~E · ~v)ba
E~k,a − E~k,b + h̄ω + iΓ

− (~s)ab(q ~E · ~v)ba
E~k,a − E~k,b + iΓ

 (f~k,a − f~k,b) . (2.25)

Then, after working out this limit and taking the real part only, we have two terms

δ~sinter = δ~s(1) + δ~s(2), (2.26)

with

δ~s(1) = − h̄
V

∑
~k,a6=b

2Re[(~s)ab(q ~E · ~v)ba]
Γ(E~k,a − E~k,b)

[(E~k,a − E~k,b)2 + Γ2]2

(
f~k,a − f~k,b

)
;

δ~s(2) = − h̄
V

∑
~k,a6=b

Im[(~s)ab(q ~E · ~v)ba]
Γ2 − (E~k,a − E~k,b)2

[(E~k,a − E~k,b)2 + Γ2]2

(
f~k,a − f~k,b

)
.

These formulae are the final expressions for the inter band contributions. They are

called inter band because the summation is over a 6= b, which involve transitions

between different bands. One important point we should keep in mind is that these

formulae only work for small Γ.
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2.3 Kubo formula

In this part, we will give a brief derivation of the non-equilibrium spin polarization

using Kubo linear response theory. This part is covered by most standard many body

textbooks, the book by Mahan [56] for example. Just like the semiclassical derivation,

we consider a AC field of form ~Eei(~q·~r−ωt) first. Then, we take the limits ~q → 0 and

ω → 0. The Hamiltonian for a particle in electric field can be written by vector

potential ~A by making substitution ~p → ~p− q ~A. By expanding the Hamiltonian to

the first order of ~A with Coulomb gauge ∇· ~A = 0, we obtain the standard expression

H = H0 −
∫
~j(~r) · ~A(~r, t)d~r, (2.27)

where ~j(~r) is the current density operator and the vector potential depends on posi-

tion and time. In linear response, the spin response can be written as

δsα(~r, t) =
∫

d~r′dt′χαβ(~r − ~r′, t− t′)Aβ(~r′, t′), (2.28)

where χαβ(~r − ~r′, t − t′) is the retarded response function, α, β are the coordinate

indices x, y, z, and summation over repeated indices is assumed. This expression is in

real space. After the Fourier transformation, we obtain the equation in momentum

space

δsα(~q, ω) = − i
ω
χαβ(~q, ω)Eβ(~q, ω), (2.29)

where Eβ(t) = −∂Aβ/∂t is the external electric field component. We’ll use imaginary

time methods to calculate the response function. By replacing it by τB, The response

function is

χαβ(~r − ~r′, τB − τ ′B) =< T sIα(~r, τB), jIβ(~r′, τ ′B) >, (2.30)

15



where the thermal average of an operator is defined as < O >= Tr{e−βBHO}, βB =

1/kBT and T is the time ordering operator. The operators in equation (2.30) are in

the interaction representation. Then, we calculate the Fourier transform

χαβ(~q, iωn) =
∫

d~r
∫ βB

0
dτBe

−i(~q·~r−ωnτB)χαβ(~r, τB), (2.31)

where h̄ωn = 2nπ/βB with integer n, is the Matsubara frequency corresponding to

the external field. So,

χαβ(~q, iωn) =< sα(~q, ωn)jβ(−~q,−ωn) > . (2.32)

The spin polarization in momentum space can be written as

sα(~q, iωn) =
1

βB

∑
~k,a,b,m

ψ†~k,a(iωm)(sα)abψ~k+~q,b(iωm + iωn), (2.33)

where h̄ωm = (2m + 1)π/βB is the fermionic Matsubara frequency. ψ~k,a(iωm) is the

Fourier transform of the imaginary time field operator that annihilates a carrier with

momentum ~k and band index a. For the Fourier transform of the current, we have

a similar expression

jα(~q, iωn) =
1

βB

∑
~k,a,b,m

ψ†~k,a(iωm)(jα)abψ~k+~q,b(iωm + iωn) + jdiaα . (2.34)

The term jdiaα represents the diamagnetic contribution to the current which cancels

the zero-frequency part of the response function. We define the matrix element of

the current operator as

(jα)ab =
q

h̄

〈
~k, a

∣∣∣∣∣ ∂H∂kα
∣∣∣∣∣~k, b

〉
. (2.35)
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The response function can be written as

χαβ(~q, iωn) = − h̄

βB

∑
m

∑
~k,a,b

(sα)ab(jβ)baG~k,a(iωm)G~k+~q,b(iωn + iωm). (2.36)

The Green’s functions in this formula are the propagators for the carriers in the

disordered carrier system. We consider the Green’s functions in the presence of

disorder

G~k,a(iωm) =
1

ih̄ωm − (E~k,a − EF ) + ih̄
2τ

sgn(ωm)
. (2.37)

Equation (2.36) has ignored the vertex corrections. We can calculate the response

function by using the Matsubara sum. Let’s consider the integration

1

βB

∑
m

F (iωm) =
1

2πi

∫
C

dzf(z)F (z). (2.38)

where f(z) = 1/(e−βBz+1) is the Fermi function in the complex plane and the contour

C is the sum of all the counter-clockwise contours around the poles and branch cuts

of the function F (z). The function F (z) is

F (z) = −
∑
~k,a,b

(sα)ab(jβ)baG~k,a(z)G~k+~q,b(z + iωn). (2.39)

We define the retarded and advanced Green’s function in complex domain as

G
R(A)
~k,a

(z) =
1

z − (E~k,a − EF )± ih̄
2τ

. (2.40)
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By working out the complex integral in the ~q → 0 limit and using analytical contin-

uation iωn → ω + i0+, we obtain

χαβ(~q = 0, ω) =
iωh̄

2π

∑
~k,a,b

Re[(sα)ab(jβ)ba(G
A
~k,a
GR
~k,b
−GR

~k,a
GR
~k,b

)]. (2.41)

Plugging into equation (2.29), we have

δsα(~q = 0, ω) =
h̄

2π

∑
~k,a,b

Re[(sα)ab(q~v · ~E(~q = 0, ω))ba(G
A
~k,a
GR
~k,b
−GR

~k,a
GR
~k,b

)], (2.42)

where we have used relation ~j = q~v. In an almost uniform electric field, the spin

response from ~q 6= 0 is quite small, δsα(~q = 0)� δsα(~q 6= 0). We will ignore the non-

uniform spin response. The real space spin polarization is δsα(~r) ≈ δsα(~q = 0)/V .

So, by taking ω → 0 limit, finally we have the expression for the average spin

polarization from Kubo linear response theory

δ~s =
h̄

2πV

∑
~k,a,b

Re[(~s)ab(q~v · ~E)ba(G
A
~k,a
GR
~k,b
−GR

~k,a
GR
~k,b

)], (2.43)

where the Green’s function in energy domain is

GR
~k,a

(E)|E=EF ≡ GR
~k,a

=
1

(EF − E~k,a + iΓ)
, (2.44)

with the property GA
~k,a

=
(
GR
~k,a

)∗
, and Γ = h̄/2τ is the spectral broadening. Equation

(2.43) can be divided into two parts with summation a = b, and a 6= b, which

correspond to intra band and inter band contributions respectively.
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2.4 Equivalence between Semiclassical approach and Kubo

In the last two sections, we have derived the non-equilibrium spin polarization

using two different approaches. The two sets of formulae look quite different from

each other. In this part, we will show that these two sets of formulae are actually

equivalent to each other within the small Γ limit (weak disorder) [54, 59]. But for

large Γ, they are different, even a sign difference. So we will limit our study in the

clean sample limit with Γ → 0. When considering disorder samples, more realistic

treatment of disorder is needed. However, our method can give a good approximation

when Γ is not too large. We will start from the Kubo formula, and arrive at the

semiclassical expressions.

First, we will consider the intra band term. From equation (2.43), we have

δ~sintra =
h̄

2πV

∑
~k,a

Re[(~s)a(q~v · ~E)a(G
A
~k,a
GR
~k,a
−GR

~k,a
GR
~k,a

)]. (2.45)

For simplicity, we label x = EF − E~k,a, and G = Re[GA
~k,a
GR
~k,a
−GR

~k,a
GR
~k,a

]. So

G(x) =
2Γ2

(x2 + Γ2)2
(2.46)

This expression can be further written as

G(x) = 2π2δ2
Γ(x), (2.47)

with δΓ(x) = (Γ/π)/(x2 + Γ2). When Γ → 0, we have δΓ(x) approaches Dirac δ

function with properties δΓ(x) → 0 for any x 6= 0 and
∫∞
−∞ δΓ(x)dx converges to 1.

In the same manner, we can show that 2πΓδ2
Γ(x) approaches the Dirac δ function.
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So we have

G(x) =
π

Γ
δ(x). (2.48)

Putting this relation into equation (2.45), we get

δ~sintra =
h̄

2ΓV

∑
~k,a

(~s)a(q~v · ~E)aδ(EF − E~k,a). (2.49)

This expression is indeed the same as the one obtained from the semiclassical ap-

proach.

Then, we will study the inter band term. Instead of starting from equation (2.43),

it is easier to start from the Kubo formula for spin response function

δsα(~q = 0, ω) = − i
ω
χαβ(ω)Eβ(ω) (2.50)

where

χαβ(~q, iωn) = − h̄

βB

∑
m

∑
~k,a,b

(sα)ab(jβ)baF (iωm), (2.51)

with the function

F (z) =
1

z − E~k,a
1

z + ih̄ωn − E~k,b
. (2.52)

This function F (z) has two poles, and we can perform the Matsubara sum with the

aid of integration (2.38) to get

1

βB

∑
m

F (iωm) =
f~k,a − f~k,b

E~k,a − E~k,b + ih̄ωn
. (2.53)

Putting this relation into the response function equation (2.51), and making the
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analytical continuation iωn → ω + i0+, we obtain the average spin polarization

δ~sinter =
i

ωV

∑
~k,a6=b

(~s)ab(q ~E · ~v)ba
E~k,a − E~k,b + h̄ω + iΓ

(
f~k,a − f~k,b

)
, (2.54)

where we have made substitution 0+ → Γ. This expression is exactly the same as

the AC results obtained from semiclassical approach. By performing the same trick

to take the DC limit, we get the same results as equation (2.26).

2.5 Summary

In this chapter, we have used two approaches to derive the non-equilibrium spin

polarization for a system in the presence of electric field. The two approaches give

equivalent results in the weak disorder limit. From semiclassical approach, we have

δ~sintra =
1

V

∑
~k,a

h̄

2Γ
(~s)a(q ~E · ~v)aδ(E~k,a − EF ); (2.55)

and

δ~sinter = δ~s(1) + δ~s(2), (2.56)

with

δ~s(1) = − h̄
V

∑
~k,a6=b

2Re[(~s)ab(q ~E · ~v)ba]
Γ(E~k,a − E~k,b)

[(E~k,a − E~k,b)2 + Γ2]2

(
f~k,a − f~k,b

)
;

δ~s(2) = − h̄
V

∑
~k,a6=b

Im[(~s)ab(q ~E · ~v)ba]
Γ2 − (E~k,a − E~k,b)2

[(E~k,a − E~k,b)2 + Γ2]2

(
f~k,a − f~k,b

)
.
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Γ = h̄/2τ is the spectral broadening. From Kubo linear response theory, we get

Kubo formula

δ~s =
h̄

2πV

∑
~k,a,b

Re[(~s)ab(q~v · ~E)ba(G
A
~k,a
GR
~k,b
−GR

~k,a
GR
~k,b

)], (2.57)

where

GR
~k,a

(E)|E=EF ≡ GR
~k,a

=
1

(EF − E~k,a + iΓ)
, (2.58)

with the property GA
~k,a

=
(
GR
~k,a

)∗
, and Γ = h̄/2τ is the spectral broadening. Sum-

mations over a = b, and a 6= b correspond to intra band and inter band contributions

respectively.

The choice of these two sets of formulae is personal preference. In the numerical

simulation, we do see some differences, especially when we use finite values of Γ. To

be consistent, we usually compare the results from the two sets of formulae for a

specific system. Then, we will decide which set of formula is more suitable for that

system.

22



3. SPIN-ORBIT TORQUES IN 2D FERROMAGNETIC SYSTEM

3.1 Introductions

The simplest model to study the SOT effects is the two dimensional electron gas

(2DEG) with ferromagnetism and spin-orbit coupling [54]. In this model, we assume

the ferromagnetic order is embedded in the 2DEG. The electrons are described using

parabolic approximation. The spins of electrons interact with the ferromagnetic order

semi-classically. This model can be integrated analytically in certain limits which

can be compared with numerical results. Also, from these analytical results, we are

able to obtain the parameter dependence which will be used to test the results from a

more realistic model, for example, the GaMnAs model in chapter 4. The rest of this

chapter includes the Hamiltonian of this model, SOT in small and large exchange

limits, and the comparison with numerical results.

3.2 2DEG ferromagnetic model

In parabolic approximation, the Hamiltonian of a 2DEG ferromagnet with Rashba

spin-orbit coupling can be written as

H =
h̄2

2m∗
(k2
x + k2

y) + α(kyσx − kxσy) + Jsd ~M · ~σ (3.1)

where m∗ is the effective mass, α is the Rashba spin-orbit coupling constant, σ are

the Pauli matrices, and Jsd is the exchange interaction constant. For simplicity, we

assume that the external electric field is in the x direction,

~E = Exx̂ (3.2)
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and the magnetization is in plane.

~M = (cos θm, sin θm) (3.3)

gives the direction of the magnetization, and θm is the angle between the magnetiza-

tion and electric current (electric field). The setup of this system is shown in figure

3.1. The effective magnetic field is what we need to calculate next.

Figure 3.1: Simulation setup of SOT in 2DEG FM model with Rashba SOC.

3.3 SOT in 2DEG FM

This Hamiltonian mentioned in the previous part can be diagonalized directly.

The eigenvalues as a function of ~k are given by:

E~k± =
h̄2

2m∗
(k2
x + k2

y)±
√

(Jsd cos θm + αky)2 + (Jsd sin θm − αkx)2. (3.4)
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To simplify this expression, we denote:

∆~k = Jsd cos θm + αky + i(−Jsd sin θm + αkx)

≡ |∆~k|e
iφ~k (3.5)

where

φ~k = tan−1

(
−Jsd sin θm + αkx
Jsd cos θm + αky

)
. (3.6)

So, the eigenvalues are

E~k± =
h̄2

2m∗
(k2
x + k2

y)± |∆~k|, (3.7)

and the eigenvectors are given by

λ~k± =
ei
~k·~r

√
2L2

 ±eiφ~k
1

 , (3.8)

where the factor ei
~k·~r/
√
L2 is added by hand to represent the wave function for

carriers. The velocity operators for this Hamiltonian are

vx =
h̄kx
m∗
− α

h̄
σy

vy =
h̄ky
m∗

+
α

h̄
σx (3.9)

and the spin operator are Pauli matrices. So we have

〈λ~k+|vx|λ~k+〉 =
h̄kx
m∗

+
α

h̄
sinφ~k

〈λ~k−|vx|λ~k−〉 =
h̄kx
m∗
− α

h̄
sinφ~k

〈λ~k+|vx|λ~k−〉 =
iα

h̄
cosφ~k
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〈λ~k+|vy|λ~k+〉 =
h̄ky
m∗

+
α

h̄
cosφ~k

〈λ~k−|vy|λ~k−〉 =
h̄ky
m∗
− α

h̄
cosφ~k

〈λ~k+|vy|λ~k−〉 = −iα
h̄

sinφ~k

〈λ~k±|vz|λ~k±〉 = 0 (3.10)

and for the spin operator

〈λ~k+|σx|λ~k+〉 = cosφ~k

〈λ~k−|σx|λ~k−〉 = − cosφ~k

〈λ~k+|σx|λ~k−〉 = −i sinφ~k

〈λ~k+|σy|λ~k+〉 = − sinφ~k

〈λ~k−|σy|λ~k−〉 = sinφ~k

〈λ~k+|σy|λ~k−〉 = −i cosφ~k

〈λ~k+|σz|λ~k+〉 = 0

〈λ~k−|σz|λ~k−〉 = 0

〈λ~k+|σz|λ~k−〉 = −1. (3.11)

Using above relations, we can calculate the current induced spin polarization using

the Kubo formula.

3.3.1 Intra band term

The Kubo formula for the intra band contribution is given by

δ~sintra =
1

L2

∑
~ka

h̄

2Γ
(~s)~ka(q

~E · ~v)~kaδ(E~ka − EF ). (3.12)
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Here Γ is the spectrum broadening, and ~s = ~σ. We need to multiply a factor of 1
2

in the final result if we consider spin 1
2

electrons. In our two-band model with the

electric field in the x direction, we have

〈λ~k+|σx|λ~k+〉〈λ~k+|vx|λ~k+〉 =
h̄kx
m∗

cosφ~k +
α

h̄
sinφ~k cosφ~k

〈λ~k+|σy|λ~k+〉〈λ~k+|vx|λ~k+〉 = − h̄kx
m∗

sinφ~k −
α

h̄
sin2 φ~k

〈λ~k+|σz|λ~k+〉〈λ~k+|vx|λ~k+〉 = 0 (3.13)

and

〈λ~k−|σx|λ~k−〉〈λ~k−|vx|λ~k−〉 = − h̄kx
m∗

cosφ~k +
α

h̄
sinφ~k cosφ~k

〈λ~k−|σy|λ~k−〉〈λ~k−|vx|λ~k−〉 =
h̄kx
m∗

sinφ~k −
α

h̄
sin2 φ~k

〈λ~k−|σz|λ~k−〉〈λ~k−|vx|λ~k−〉 = 0. (3.14)

So the current induced spin polarization can be calculated as follows

δsintrax =
1

L2

L2

(2π)2

qExh̄

2Γ

∫
d2k

[(
h̄kx
m∗

cosφ~k +
α

h̄
sinφ~k cosφ~k

)
δ(E~k+ − EF )

+

(
− h̄kx
m∗

cosφ~k +
α

h̄
sinφ~k cosφ~k

)
δ(E~k− − EF )

]

=
qExh̄

8π2Γ

∫
kdkdθ

[(
h̄k

m∗
cos θ cosφ~k +

α

h̄
sinφ~k cosφ~k

)
δ(E~k+ − EF )

+

(
− h̄k
m∗

cos θ cosφ~k +
α

h̄
sinφ~k cosφ~k

)
δ(E~k− − EF )

]
, (3.15)

δsintray =
qExh̄

8π2Γ

∫
kdkdθ

[(
− h̄k
m∗

cos θ sinφ~k −
α

h̄
sin2 φ~k

)
δ(E~k+ − EF )
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+

(
h̄k

m∗
cos θ sinφ~k −

α

h̄
sin2 φ~k

)
δ(E~k− − EF )

]
, (3.16)

and

δsintraz = 0. (3.17)

We have changed the integrations to polar coordinates for simplicity. These integrals

are difficult to treat exactly. So we’ll test different limits.

3.3.1.1 Small exchange limit

In the small exchange limit Jsd → 0 or Jsd/αkF � 1, where kF is the Fermi wave

vector, we can expand expressions up to the first order of Jsd

1

|∆~k|
= [J2

sd + 2Jsdα(ky cos θm − kx sin θm) + α2(k2
x + k2

y)]
−1/2

=
1

αk

[
1 +

2Jsd
αk

(sin θ cos θm − cos θ sin θm) +
J2
sd

α2

]−1/2

∼ 1

αk
− Jsd
α2k2

(sin θ cos θm − cos θ sin θm). (3.18)

and

sinφ~k ∼ cos θ − Jsd
αk

(sin θm + sin θ cos θ cos θm − cos2 θ sin θm)

cosφ~k ∼ sin θ +
Jsd
αk

(cos θm − sin2 θ cos θm + sin θ cos θ sin θm). (3.19)

Then the integrand can be expressed as

h̄k

m∗
cos θ cosφ~k +

α

h̄
sinφ~k cosφ~k

∼ h̄k

m∗
sin θ cos θ +

h̄Jsd
m∗α

(cos θ cos θm − sin2 θ cos θ cos θm + sin θ cos2 θ sin θm)

−α
h̄

sin θ cos θ +
Jsd
h̄k

(cos θ cos θm − sin2 θ cos θ cos θm + sin θ cos2 θ sin θm)
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−Jsd
h̄k

(sin θ sin θm + sin2 θ cos θ cos θm − sin θ cos2 θ sin θm), (3.20)

and

− h̄k
m∗

cos θ sinφ~k −
α

h̄
sin2 φ~k

∼ − h̄k
m∗

cos2 θ +
h̄Jsd
m∗α

(cos θ sin θm + sin θ cos2 θ cos θm − cos3 θ sin θm)

−α
h̄

cos2 θ +
2Jsd
h̄k

(cos θ sin θm + sin θ cos2 θ cos θm − cos3 θ sin θm), (3.21)

where we have only kept terms up to the first order of Jsd. The Fermi surface (lines

in 2D) is given by equation

h̄2k2

2m∗
±
√

(Jsd cos θm + αky)2 + (Jsd sin θm − αkx)2 = EF (3.22)

In the small exchange limit, we have

h̄2k2

2m∗
± αk ± Jsd(sin θ cos θm − cos θ sin θm) = EF (3.23)

For simplicity, we denote

Θ = sin θ cos θm − cos θ sin θm. (3.24)

as the angle dependence of the Fermi surface. Then

h̄2k2

2m∗
± αk ± JsdΘ = EF . (3.25)
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The solutions give the Fermi surface as a function of θ. Here we assume both bands

are occupied. So we have only one acceptable solution for each band

k± = ∓m
∗α

h̄2 +

√
m∗2α2

h̄4 +
2m∗

h̄2 (EF ∓ JsdΘ). (3.26)

Here k± correspond to the Fermi surface for the upper and lower bands respectively.

Then, we’ll do the integration. One thing we’ll keep in mind is that we only keep

terms up to the first order of the small parameter and the integration of some com-

binations of sin θ and cos θ from 0 to 2π are zero. First we have

∫
kdkdθ

h̄k

m∗
[δ(E~k+ − EF )− δ(E~k− − EF )] sin θ cos θ ∼ 0 (3.27)

because the k integration will give the Jsd independent term and first order of JsdΘ

term, and the later θ integrations will both be zero. We can do the same arguments

to the other terms in the δsintrax integration. All of these terms are zero. So we have

δsintrax ∼ 0 (3.28)

And for the δsintray integration, we have non-zero terms

−
∫
kdkdθ

h̄k

m∗
cos2 θ[δ(E~k+ − EF )− δ(E~k− − EF )]

= − h̄

m∗

∫
dkdθ cos2 θ[k2δ(E~k+ − EF )− k2δ(E~k− − EF )], (3.29)

−
∫
kdkdθ

α

h̄
cos2 θ[δ(E~k+ − EF ) + δ(E~k− − EF )]

= −α
h̄

∫
dkdθ cos2 θ[kδ(E~k+ − EF ) + kδ(E~k− − EF )], (3.30)
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and all other terms are zero. So

δsintray ∼ qExh̄

8π2Γ

∫
dθ cos2 θ

∫
dk

[(
− h̄k

2

m∗
− αk

h̄

)
δ(E~k+ − EF )

+

(
h̄k2

m∗
− αk

h̄

)
δ(E~k− − EF )

]

∼ qExh̄

8π2Γ

∫
dθ cos2 θ

(− h̄k2
+

m∗
− αk+

h̄

)
1∣∣∣ h̄2k+

m∗
+ α

∣∣∣
+

(
h̄k2
−

m∗
− αk−

h̄

)
1∣∣∣ h̄2k−

m∗
− α

∣∣∣


∼ qExh̄

8π2Γ

∫
dθ cos2 θ

1

h̄
(k− − k+)

=
qExαm

∗

4πh̄2Γ
(3.31)

where we have used the relation

δ(f(x)) =
∑
x0

δ(x− x0)

|f ′(x0)|
. (3.32)

The final results in these limits are

δ~sintra = 0x̂+ ŷ
qExαm

∗

4πh̄2Γ
+ 0ẑ. (3.33)

These results indicate that in the small exchange limit, the non-equilibrium spin

polarization is independent of the angle θm, and is inversely proportional to Γ. We

can actually numerically integrate the polarization. The numerical results match

with analytical result very well. As show in figure 3.2, intra band SOT in the small

exchange limit is indeed inversely proportional to Γ.
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Figure 3.2: Intra band SOT as a function of Γ for small exchange interaction.

3.3.1.2 Large exchange limit

On the other hand, in the large Jsd limit, Jsd � αkF , Jsd � Γ, keeping up to the

first order of α/Jsd, we have

1

|∆~k|
= [J2

sd + 2Jsdα(ky cos θm − kx sin θm) + α2(k2
x + k2

y)]
−1/2

=
1

Jsd

[
1 +

2αk

Jsd
(sin θ cos θm − cos θ sin θm) +

α2

J2
sd

]−1/2

∼ 1

Jsd
− αk

J2
sd

(sin θ cos θm − cos θ sin θm). (3.34)
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then

sinφ~k ∼ − sin θm +
αk

Jsd
(cos θ + sin θ sin θm cos θm − cos θ sin2 θm)

cosφ~k ∼ cos θm +
αk

Jsd
(sin θ − sin θ cos2 θm + cos θ sin θm cos θm). (3.35)

So, in this limit, the integrand can be written as

h̄k

m∗
cos θ cosφ~k +

α

h̄
sinφ~k cosφ~k

∼ h̄k

m∗
cos θ cos θm +

αh̄k2

m∗Jsd
(sin θ cos θ − sin θ cos θ cos2 θm + cos2 θ sin θm cos θm)

−α
h̄

sin θm cos θm (3.36)

and

− h̄k
m∗

cos θ sinφ~k −
α

h̄
sin2 φ~k

∼ h̄k

m∗
cos θ sin θm −

αh̄k2

m∗Jsd
(cos2 θ + sin θ cos θ sin θm cos θm − cos2 θ sin2 θm)

−α
h̄

sin2 θm (3.37)

where we have only kept terms up to first order of α/Jsd. Then we’ll do the integration

term by term. We’ll do the k integration first. The Fermi surface (lines in 2D) is

given by equation

h̄2k2

2m∗
±
√

(Jsd cos θm + αky)2 + (Jsd sin θm − αkx)2 = EF (3.38)

In the large exchange limit, we have

h̄2k2

2m∗
± Jsd ± αk(sin θ cos θm − cos θ sin θm) = EF (3.39)
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Again, we denote

Θ = sin θ cos θm − cos θ sin θm. (3.40)

as the angular dependence of the Fermi surface. Then

h̄2k2

2m∗
± Jsd ± αkΘ = EF . (3.41)

The solutions give the Fermi surface as a function of θ. Here we assume both bands

are occupied.

k± = ∓m
∗αΘ

h̄2 +

√
m∗2α2Θ2

h̄4 +
2m∗

h̄2 (EF ∓ Jsd). (3.42)

We can ignore the first term in the square root.

k± = ∓m
∗αΘ

h̄2 +

√
2m∗

h̄2 (EF ∓ Jsd). (3.43)

Here k± correspond to the Fermi surface for the upper and lower bands respectively.

Two useful relations can be obtained

k+k− ∼
√

2m∗

h̄2 (EF + Jsd)

√
2m∗

h̄2 (EF − Jsd)

+
m∗αΘ

h̄2

√2m∗

h̄2 (EF − Jsd)−
√

2m∗

h̄2 (EF + Jsd)

 ,
k− − k+ ∼

2m∗αΘ

h̄2 +

√2m∗

h̄2 (EF + Jsd)−
√

2m∗

h̄2 (EF − Jsd)

 . (3.44)

Then we write

δsintrax =
qExh̄

8π2Γ
(A1 + A2 + A3) (3.45)
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The first term has form

A1 =
∫
kdkdθ

h̄k

m∗
cos θ cos θm[δ(E~k+ − EF )− δ(E~k− − EF )]. (3.46)

By integrating over k, we only keep terms with first order of α, because the α

independent term will be zero when integrating over θ later.

∫
dk
(
k2δ(E~k+ − EF )− k2δ(E~k− − EF )

)
∼

k2
+∣∣∣ h̄2k+

m∗
+ αΘ

∣∣∣ −
k2
−∣∣∣ h̄2k−

m∗
− αΘ

∣∣∣
∼

m∗h̄2k+k−(k+ − k−)−m∗2αΘ(k2
+ + k2

−)

h̄4k+k− +m∗h̄2αΘ(k− − k+)

∼
−4m∗2αΘ

(√
2m∗

h̄2 (EF + Jsd)
√

2m∗

h̄2 (EF − Jsd)
)

h̄4
(√

2m∗

h̄2 (EF + Jsd)
√

2m∗

h̄2 (EF − Jsd)
)

∼ −4m∗2αΘ

h̄4 (3.47)

So,

A1 = −
∫
dθ

4m∗αΘ

h̄3 cos θ cos θm

= −4m∗α

h̄3 cos θm

∫
dθ cos θ(sin θ cos θm − cos θ sin θm)

=
4m∗πα

h̄3 sin θm cos θm. (3.48)

The second term has form

A2 =
∫
kdkdθ

αh̄k2

m∗Jsd
(sin θ cos θ − sin θ cos θ cos2 θm + cos2 θ sin θm cos θm)×

[δ(E~k+ − EF )− δ(E~k− − EF )]. (3.49)

35



By integrating over k, we only keep the α independent term.

∫
dk
(
k3δ(E~k+ − EF )− k3δ(E~k− − EF )

)
∼

k3
+∣∣∣ h̄2k+

m∗
+ αΘ

∣∣∣ −
k3
−∣∣∣ h̄2k−

m∗
− αΘ

∣∣∣
∼

m∗h̄2k+k−(k2
+ − k2

−)

h̄4k+k−

∼ −4m∗2Jsd

h̄4 (3.50)

So,

A2 ∼ −4m∗2Jsd

h̄4

∫
dθ

αh̄

m∗Jsd
(sin θ cos θ − sin θ cos θ cos2 θm + cos2 θ sin θm cos θm)

∼ −4m∗α

h̄3

∫
dθ(sin θ cos θ − sin θ cos θ cos2 θm + cos2 θ sin θm cos θm)

∼ −4m∗πα

h̄3 sin θm cos θm. (3.51)

And the third term is

A3 = −
∫
kdkdθ

α

h̄
sin θm cos θm[δ(E~k+ − EF ) + δ(E~k− − EF )] (3.52)

Again, we only keep the α independent term when integrating over k

∫
dk
(
kδ(E~k+ − EF ) + kδ(E~k− − EF )

)
∼ k+∣∣∣ h̄2k+

m∗
+ αΘ

∣∣∣ +
k−∣∣∣ h̄2k−

m∗
− αΘ

∣∣∣
∼ 2m∗

h̄2 (3.53)
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and

A3 = −4m∗πα

h̄3 sin θm cos θm (3.54)

So, the final result is

δsintrax =
qExh̄

8π2Γ
(A1 + A2 + A3)

∼ qExh̄

8π2Γ
(−4m∗πα

h̄3 sin θm cos θm)

∼ −qExαm
∗

2πh̄2Γ
sin θm cos θm. (3.55)

We’ll do similar derivations for the y component

δsintray =
qExh̄

8π2Γ
(B1 +B2 +B3) (3.56)

where

B1 ∼ −
∫
dθ

4m∗αΘ

h̄3 cos θ sin θm

∼ −4m∗α

h̄3 sin θm

∫
dθ cos θ(sin θ cos θm − cos θ sin θm)

∼ 4m∗πα

h̄3 sin2 θm, (3.57)

B2 ∼
4m∗2Jsd

h̄4

∫
dθ

αh̄

m∗Jsd
(cos2 θ + sin θ cos θ sin θm cos θm − cos2 θ sin2 θm)

∼ 4m∗α

h̄3

∫
dθ(cos2 θ + sin θ cos θ sin θm cos θm − cos2 θ sin2 θm)

∼ 4m∗πα

h̄3 (1− sin2 θm), (3.58)

and

B3 = −4m∗πα

h̄3 sin2 θm. (3.59)
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The final result is

δsintray ∼ qExh̄

8π2Γ

4m∗πα

h̄3 (1− sin2 θm)

=
qExαm

∗

2πh̄2Γ
cos2 θm. (3.60)

So, the final results in this limit are

δ~sintra =
qExαm

∗

2πh̄2Γ
(−x̂ sin θm cos θm + ŷ cos2 θm) + 0ẑ. (3.61)
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Figure 3.3: Intra band SOT as a function of θm for large exchange interaction.

As shown in figure 3.3, the numerical results match with analytical results. In
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this limit, the results are still inversely proportional to Γ. So, in both limits, the

intra band SOT have this inverse proportionality.

3.3.2 Inter band term

The Kubo formula for the inter band contribution is given by two terms

δ~sinter = δ~s(1) + δ~s(2), (3.62)

with

δ~s(1) = − h̄

L2

∑
~ka6=b

2Re[(~s)ab(q ~E · ~v)ba]
Γ(E~ka − E~kb)

[(E~ka − E~kb)2 + Γ2]2
(f~ka − f~kb)

δ~s(2) = − h̄

L2

∑
~ka6=b

Im[(~s)ab(q ~E · ~v)ba]
Γ2 − (E~ka − E~kb)2

[(E~ka − E~kb)2 + Γ2]2
(f~ka − f~kb).

As in the intra band term, Γ is the spectrum broadening, ~s = ~σ, and f~k is the

Fermi-Dirac distribution function. In our two-band model with electric field in the

x direction, we have

〈λ~k+|σx|λ~k−〉〈λ~k−|vx|λ~k+〉 = −α
h̄

sinφ~k cosφ~k

〈λ~k+|σy|λ~k−〉〈λ~k−|vx|λ~k+〉 = −α
h̄

cos2 φ~k

〈λ~k+|σz|λ~k−〉〈λ~k−|vx|λ~k+〉 =
iα

h̄
cosφ~k (3.63)

and

〈λ~k−|σx|λ~k+〉〈λ~k+|vx|λ~k−〉 = −α
h̄

sinφ~k cosφ~k

〈λ~k−|σy|λ~k+〉〈λ~k+|vx|λ~k−〉 = −α
h̄

cos2 φ~k

〈λ~k−|σz|λ~k+〉〈λ~k+|vx|λ~k−〉 = −iα
h̄

cosφ~k. (3.64)
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So the non-equilibrium spin polarization can be calculated as follows

δs(1)
x =

h̄qEx
L2

2α

h̄

∑
~k

sinφ~k cosφ~k

[
Γ(E~k+ − E~k−)

[(E~k+ − E~k−)2 + Γ2]2
(f~k+ − f~k−)

+
Γ(E~k− − E~k+)

[(E~k− − E~k+)2 + Γ2]2
(f~k− − f~k+)

]

=
2qExα

L2

L2

(2π)2

∫
d2k

2Γ(E~k+ − E~k−) sinφ~k cosφ~k
[(E~k+ − E~k−)2 + Γ2]2

(f~k+ − f~k−)

=
qExαΓ

π2

∫
d2k

2|∆~k| sinφ~k cosφ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−)

=
2qExαΓ

π2

∫
d2k
|∆~k| sinφ~k cosφ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−), (3.65)

δs(1)
y =

h̄qEx
L2

2α

h̄

∑
~k

cos2 φ~k

[
Γ(E~k+ − E~k−)

[(E~k+ − E~k−)2 + Γ2]2
(f~k+ − f~k−)

+
Γ(E~k− − E~k+)

[(E~k− − E~k+)2 + Γ2]2
(f~k− − f~k+)

]

=
2qExα

L2

L2

(2π)2

∫
d2k

2Γ(E~k+ − E~k−) cos2 φ~k
[(E~k+ − E~k−)2 + Γ2]2

(f~k+ − f~k−)

=
2qExαΓ

π2

∫
d2k

|∆~k| cos2 φ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−), (3.66)

and

δs(2)
z = − h̄qEx

L2

α

h̄

∑
~k

cosφ~k

[
Γ2 − (E~k+ − E~k−)2

[(E~k+ − E~k−)2 + Γ2]2
(f~k+ − f~k−)

−
Γ2 − (E~k− − E~k+)2

[(E~k− − E~k+)2 + Γ2]2
(f~k− − f~k+)

]

= −2qExα

L2

L2

(2π)2

∫
d2k cosφ~k

Γ2 − (E~k+ − E~k−)2

[(E~k+ − E~k−)2 + Γ2]2
(f~k+ − f~k−)

= −qExα
2π2

∫
d2k

(Γ2 − 4|∆~k|2) cosφ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−). (3.67)

Again, these integrals are difficult to treat exactly. We’ll test the different limits.
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3.3.2.1 Small exchange limit

In the small exchange limit Jsd → 0 or Jsd/αkF � 1, we have

|∆~k| = [J2
sd + 2Jsdα(ky cos θm − kx sin θm) + α2(k2

x + k2
y)]

1/2

= αk

[
1 +

2Jsd
αk

(sin θ cos θm − cos θ sin θm) +
J2
sd

α2

]1/2

∼ αk + Jsd(sin θ cos θm − cos θ sin θm). (3.68)

1

|∆~k|
= [J2

sd + 2Jsdα(ky cos θm − kx sin θm) + α2(k2
x + k2

y)]
−1/2

=
1

αk

[
1 +

2Jsd
αk

(sin θ cos θm − cos θ sin θm) +
J2
sd

α2

]−1/2

∼ 1

αk
− Jsd
α2k2

(sin θ cos θm − cos θ sin θm). (3.69)

and

sinφ~k ∼ cos θ − Jsd
αk

(sin θm + sin θ cos θ cos θm − cos2 θ sin θm)

cosφ~k ∼ sin θ +
Jsd
αk

(cos θm − sin2 θ cos θm + sin θ cos θ sin θm). (3.70)

So we have

sinφ~k cosφ~k

∼ sin θ cos θ +
Jsd
αk

(cos θ cos θm − sin2 θ cos θ cos θm + sin θ cos2 θ sin θm)

−Jsd
αk

(sin θ sin θm + sin2 θ cos θ cos θm − sin θ cos2 θ sin θm), (3.71)
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and

cos2 φ~k

∼ sin2 θ +
2Jsd
αk

(sin θ cos θm − sin3 θ cos θm + sin2 θ cos θ sin θm). (3.72)

The k integration boundaries are given by the roots

k± = ∓m
∗α

h̄2 +

√
m∗2α2

h̄4 +
2m∗

h̄2 (EF ∓ JsdΘ). (3.73)

Again, we only need results up to the first order of small parameter. For the δs(1)
x

integration, we have terms like

2qExαΓ

π2

∫
kdkdθ

(αk + JsdΘ) sin θ cos θ

[4(αk + JsdΘ)2 + Γ2]2
(f~k+ − f~k−)

∼ 2qExαΓ

16π2

∫
kdkdθ

(αk − JsdΘ) sin θ cos θ

α4k4
(f~k+ − f~k−)

∼ 0 (3.74)

because after integrating over k, the θ integration will be zero for any combinations

here. And it is the same for other terms in δs(1)
x . So

δs(1)
x ∼ 0 (3.75)

For the same reason, the only non-zero term in δs(1)
y is given by

δs(1)
y ∼ 2qExαΓ

π2

∫
kdkdθ

(αk + JsdΘ) sin2 θ

[4(αk + JsdΘ)2 + Γ2]2
(f~k+ − f~k−)

∼ 2qExαΓ

π2

∫
dθ sin2 θ

∫
kdk

αk

16α4k4
(f~k+ − f~k−)

∼ qExΓ

8π2α2

∫
dθ sin2 θ

∫
dk

1

k2
(f~k+ − f~k−)
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∼ qExΓ

8π2α2

∫
dθ sin2 θ

(
1

k−
− 1

k+

)

∼ − qExΓ

8παEF
(3.76)

Here in the k integration, we only keep the Θ independent term because, otherwise,

the θ integration will be zero. And we have two non-zero terms in δs(2)
z

Z1 = ∼ −qExα
2π2

∫
kdkdθ

[Γ2 − 4(αk + JsdΘ)2] sin θ

[4(αk + JsdΘ)2 + Γ2]2
(f~k+ − f~k−)

∼ qExα

8π2

∫
dkdθ

k sin θ

(αk + JsdΘ)2
(f~k+ − f~k−)

∼ qExα

8π2

∫
dkdθ sin θ

(
1

α2k
− 2JsdΘ

α3k2

)
(f~k+ − f~k−)

∼ − qExJsd
8παEF

cos θm +
qExJsd
4παEF

cos θm

∼ qExJsd
8παEF

cos θm. (3.77)

Z2 = ∼ −qExα
2π2

∫
kdkdθ

[Γ2 − 4(αk + JsdΘ)2]Jsd(1− sin2 θ) cos θm
[4(αk + JsdΘ)2 + Γ2]2αk

(f~k+ − f~k−)

∼ qExJsd cos θm
8π2α2

∫
dkdθ

cos2 θ

k2
(f~k+ − f~k−)

∼ − qExJsd
8παEF

cos θm. (3.78)

So

δs(2)
z = Z1 + Z2 ∼ 0. (3.79)

Here we assume α � Γ. EF is the Fermi energy. So, the final results in this limits

are

δ~sinter = 0x̂− ŷ qExΓ

8παEF
+ 0ẑ. (3.80)

Comparing with the intra band SOT, the inter band SOT is also independent of
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Figure 3.4: Inter band SOT as a function of Γ for small exchange interaction.

θm, but is proportional to Γ, which is shown in figure 3.4 from numerical simulation.

3.3.2.2 Large exchange limit

On the other hand, in the large Jsd limit, Jsd � αkF , Jsd � Γ, keeping up to the

first order of α/Jsd, we have

|∆~k| = [J2
sd + 2Jsdα(ky cos θm − kx sin θm) + α2(k2

x + k2
y)]

1/2

= Jsd

[
1 +

2αk

Jsd
(sin θ cos θm − cos θ sin θm) +

α2

J2
sd

]1/2

∼ Jsd + αk(sin θ cos θm − cos θ sin θm). (3.81)
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and

1

|∆~k|
= [J2

sd + 2Jsdα(ky cos θm − kx sin θm) + α2(k2
x + k2

y)]
−1/2

=
1

Jsd

[
1 +

2αk

Jsd
(sin θ cos θm − cos θ sin θm) +

α2

J2
sd

]−1/2

∼ 1

Jsd
− αk

J2
sd

(sin θ cos θm − cos θ sin θm). (3.82)

then

sinφ~k ∼ − sin θm +
αk

Jsd
(cos θ + sin θ sin θm cos θm − cos θ sin2 θm)

cosφ~k ∼ cos θm +
αk

Jsd
(sin θ − sin θ cos2 θm + cos θ sin θm cos θm). (3.83)

The angular dependence in the integrands are given by

sinφ~k cosφ~k

∼ − sin θm cos θm +
αk

Jsd
(cos θ cos θm + sin θ sin θm cos2 θm − cos θ sin2 θm cos θm)

−αk
Jsd

(sin θ sin θm − sin θ cos2 θm sin θm + cos θ sin2 θm cos θm) (3.84)

and

cos2 φ~k

∼ cos2 θm +
2αk

Jsd
(sin θ cos θm − sin θ cos3 θm + cos θ sin θm cos2 θm). (3.85)

When both bands are occupied, the integration boundaries are given by

k± = ∓m
∗αΘ

h̄2 +

√
m∗2α2Θ2

h̄4 +
2m∗

h̄2 (EF ∓ Jsd). (3.86)
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where EF is the Fermi energy. Then, we have

δs(1)
x =

2qExαΓ

π2

∫
d2k
|∆~k| sinφ~k cosφ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−)

∼ −2qExαΓ

π2

∫
kdkdθ

(Jsd + αkΘ) sin θm cos θm
[4(Jsd + αkΘ)2 + Γ2]2

(f~k+ − f~k−)

∼ −qExαΓ sin θm cos θm
8J3

sdπ
2

∫
kdkdθ(f~k+ − f~k−)

∼ qExαΓ sin θm cos θm
8J3

sdπ
2

∫
dθ

(
k2

2

) ∣∣∣k−k+

∼ qExαΓ sin θm cos θm
8J3

sdπ
2

4πmJsd

h̄2

∼ qExαm
∗Γ

2πh̄2J2
sd

sin θm cos θm (3.87)

δs(1)
y =

2qExαΓ

π2

∫
d2k

|∆~k| cos2 φ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−)

∼ 2qExαΓ

π2

∫
kdkdθ

(Jsd + αkΘ) cos2 θm
[4(Jsd + αkΘ)2 + Γ2]2

(f~k+ − f~k−)

∼ qExαΓ cos2 θm
8J3

sdπ
2

∫
kdkdθ(f~k+ − f~k−)

∼ −qExαm
∗Γ

2πh̄2J2
sd

cos2 θm (3.88)

and

δs(2)
z = −qExα

2π2

∫
d2k

(Γ2 − 4|∆~k|2) cosφ~k
(4|∆~k|2 + Γ2)2

(f~k+ − f~k−).

∼ −qExα
2π2

∫
kdkdθ

[Γ2 − 4(Jsd + αkΘ)2] cos θm
[4(Jsd + αkΘ)2 + Γ2]2

(f~k+ − f~k−)

∼ qExα cos θm
8π2J2

sd

∫
kdkdθ(f~k+ − f~k−)

∼ −qExαm
∗

2πh̄2Jsd
cos θm. (3.89)
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So, the final results are:

δ~sinter =
qExαm

∗Γ

2πh̄2J2
sd

(x̂ sin θm cos θm − ŷ cos2 θm)− ẑ qExαm
∗

2πh̄2Jsd
cos θm. (3.90)
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Figure 3.5: Inter band SOT as a function of θm for large exchange interaction.

Again, these results can be compared with the numerical integrations. As shown

in figure 3.5 and 3.6, numerical results match with analytical results exactly. One

important observation is that the out-of-plane SOT is independent of Γ, which means

this is an intrinsic contribution. As shown in figure 3.7, this term is independent of

Γ whenever Γ is small. The importance of this term is that it will induce in-plane

magnetization switching.
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Figure 3.6: Inter band out-of-plane SOT as a function of θm for large exchange
interaction.
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Figure 3.7: Inter band out-of-plane SOT as a function of Γ for large exchange inter-
action.
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3.4 Summary

A brief summary of this chapter will be given in this part. The Hamiltonian of

this system is

H =
h̄2

2m∗
(k2
x + k2

y) + α(kyσx − kxσy) + Jsd ~M · ~σ (3.91)

The external electric field is

~E = Exx̂ (3.92)

The magnetization is given by

~M = (cos θm, sin θm), (3.93)

where θm is the angle between the magnetization and the external electric current,

which is along the x-axis in our case. Base on this simulation setup, in the small

Jsd limit (Jsd → 0 or Jsd/αkF � 1) and α� Γ, current induced spin polarization is

given by

δ~sintra = 0x̂+ ŷ
qExαm

∗

4πh̄2Γ
+ 0ẑ

δ~sinter = 0x̂− ŷ qExΓ

8παEF
+ 0ẑ. (3.94)

In the large Jsd limit, (Jsd � αkF , Jsd � Γ), current induced spin polarization is

given by

δ~sintra =
qExαm

∗

2πh̄2Γ
(−x̂ sin θm cos θm + ŷ cos2 θm) + 0ẑ (3.95)

δ~sinter =
qExαm

∗Γ

2πh̄2J2
sd

(x̂ sin θm cos θm − ŷ cos2 θm)− ẑ qExαm
∗

2πh̄2Jsd
cos θm. (3.96)
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All these results are confirmed by the numerical simulations. With this minimal

model, we are able to derive the form of SOT as well as the parameter dependence

analytically in certain limits. In the next chapter, we will study how the complicated

band structure will affect the results of SOT using numerical simulations.
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4. SPIN-ORBIT TORQUES IN Ga1−xMnxAs∗

4.1 Introductions to GaAs and Ga1−xMnxAs

GaAs is a typical III-V semiconductor with the Zinc-blende crystal structure [60],

as shown in figure 4.1. The lattice constant is 0.56535 nm. Figure 5.3 illustrates the

band structure near Γ point [60, 61]. GaAs is direct gap semiconductor with a band

gap of 1.424 eV at 300K. The valence band is 6 fold degenerate with the symmetry

similar that of an angular moment l = 1. Due to spin-orbit coupling, this band splits

into three 2-fold degenerate bands: two heavy hole bands, two light hole bands and

two spin split-off bands. The gap between the heavy hole and split-off band at the

Γ point is 0.34 eV. GaAs is widely used in the semiconductor industries.

When doping Manganeses (Mn) into GaAs, the Mn will take the cations of Ga to

form substitutional dopants [62]. This doping is referred to as hole doping because

there are two valance electrons for Mn whereas there are three for Ga. And also, Mn

will introduce magnetic moments into this material. (see figure 4.3) When the doping

rate is high enough, ferromagnetism happens due to hole mediated ferromagnetic

interactions between Mn moments.

A ferromagnetic semiconductor [62] is the magnetic system in which ferromag-

netism is primarily due to the coupling between the magnetic element moments that

are mediated by conducting carriers. Ga1−xMnxAs is an example of a ferromagnetic

semiconductor. Since the doping rate of Mn is usually less than 10%, Ga1−xMnxAs is

called a diluted ferromagnetic semiconductor(DMS). This material is ideal to study

the spin-obit torque effects, because of the relatively simple band structures, large

∗Reprinted with permission from Hang Li, H. Gao, Liviu P. Zarbo, K. Vyborny, Xuhui Wang,
Ion Garate, Fatih Dogan, A. Cejchan, Jairo Sinova, T. Jungwirth, and Aurelien Manchon, Phys.
Rev. B 91, 134402 (2015). Copyright 2015 by the American Physical Society.
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Figure 4.1: Lattice structure of GaAs.
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Figure 4.2: Band structure of GaAs near the Γ point.
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spin-orbit coupling, and strain induced spin-orbit coupling [34, 61, 63, 64].

After an introduction of the Ga1−xMnxAs simulation model, we will study the

spin-orbit torques and the impact of band structure on spin-orbit torques. Com-

pared with the simple 2DEG Rashba model, we see that the spin-orbit torques in

Ga1−xMnxAs follow similar parameter dependence, and the more complicated band

structures affect the magnitudes of the results.

Figure 4.3: Dope Mn into GaAs to form Ga1−xMnxAs. S denotes spin.

4.2 Model to simulate Ga1−xMnxAs

To calculate the band structures of a crystal, there are three main methods [57],

tight-binding, ~k ·~p, and density functional theory. In this project, we use ~k ·~p method
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to describe Ga1−xMnxAs, because this method can make use of the symmetry of band

structures and greatly simplify the calculation [64, 65]. Also, the spin-orbit coupling

is embedded naturally in this method. We also consider strain-induced spin-orbit

coupling which is important in nano-scale thin film geometry.

4.2.1 Introduction to the ~k · ~p method

The ~k · ~p method is used to calculate the band structure near a specific ~k0 point

if we know the eigen energies and wave functions for each bands at that ~k0 point.

For GaAs we choose ~k0 = 0 because this is the top of the valence band and is highly

symmetric. As we know, in crystals, the periodic potential V0 satisfies:

V0(~r + ~Rl) = V0(~r) (4.1)

where ~Rl is the lattice vector. Then we have the time-independent Schrödinger

equation: (
~p2

2m0

+ V0

)
|φn~k〉 = εn~k|φn~k〉 (4.2)

where n is the band index, and ~k is the wavevector.

Using Bloch theorem [57], the solution of this equation can be written as:

〈~r|φn~k〉 = ei
~k·~run~k(~r) (4.3)

where un~k(~r) has the periodicity of the lattice vector. Plugging equation (4.3) into

equation (4.2), we get the equation for un~k(~r):

(
~p2

2m0

+ V0 +
h̄

m0

~k · ~p
)
un~k(~r) =

εn~k − h̄2~k2

2m0

un~k(~r) (4.4)

If we choose the reference point as ~k = 0, for ~k near ~k = 0, we can treat the
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term h̄
m0

~k · ~p as a perturbation. That is why it is called the ~k · ~p model. When

the valence bands are degenerate, we have to use degenerate perturbation theory

to calculate the band structure. See chapter 6 of S. Chow [61]. After doing the

perturbation expansion, we will get a polynomial of kx, ky, kz to describe the band

structure near the reference k point. This Hamiltonian is called Kohn-Luttinger

Hamiltonian [65, 66, 67].

4.2.2 Hamiltonian of Ga1−xMnxAs

To describe Ga1−xMnxAs, we need the band structures of the valence band of

the host GaAs, the exchange interaction between holes and local magnetic moments,

and the spin-orbit coupling induced by strain. So the Hamiltonian can be written

as: [34, 54]

H = HKL +Hexch +Hstrain. (4.5)

where HKL is the Kohn-Luttinger Hamiltonian for GaAs. In our simulation, we

choose the four band model to describe the valence band of GaAs, which includes

two heavy hole bands and two light hole bands.

HKL =
h̄2k2

2m0

(
γ1 +

5

2
γ2

)
I4 −

h̄2

m0

γ3(~k · ~J)2

+
h̄2

m0

(γ3 − γ2)(k2
xJ

2
x + k2

yJ
2
y + k2

zJ
2
z ). (4.6)

Here m0 is the electron mass, γ1 = 6.98, γ2 = 2.06, γ3 = 2.93 are the Luttinger

parameters for GaAs, I4 is 4 × 4 identity matrix, and ~J = (Jx, Jy, Jz) are the 4 × 4
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angular momentum matrices. One choice of ~J is given by: [65]

Jx =



0 0
√

3
2

0

0 0 1
√

3
2

√
3

2
1 0 0

0
√

3
2

0 0


(4.7)

Jy = i



0 0 −
√

3
2

0

0 0 1 −
√

3
2

√
3

2
−1 0 0

0
√

3
2

0 0


(4.8)

Jz =



3
2

0 0 0

0 −1
2

0 0

0 0 1
2

0

0 0 0 −3
2


(4.9)

So the KL Hamiltonian can also be written in the matrix form [68]

HKL =



Hhh −c −b 0

−c∗ Hlh 0 b

−b∗ 0 Hlh −c

0 b∗ −c∗ Hhh


(4.10)

where

Hhh =
h̄2

2m
[(γ1 + γ2)(k2

x + k2
y) + (γ1 − 2γ2)k2

z ], (4.11)

Hlh =
h̄2

2m
[(γ1 − γ2)(k2

x + k2
y) + (γ1 + 2γ2)k2

z ], (4.12)
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b =

√
3h̄2

m
γ3kz(kx − iky), (4.13)

c =

√
3h̄2

2m
[γ2(k2

x − k2
y)− 2iγ3kxky]. (4.14)

One thing that should be mentioned here is that we are working in the hole picture.

It means that the zero energy is on the top of the valence band, and the positive

energy goes into the valence band side.

The exchange coupling between holes and the Mn local moments is given by

[62, 69]

Hexch = JpdSMncMn
~M · ~s (4.15)

where Jpd=55 meV nm3, SMn = 5/2, cMn is the Mn density, ~M is the unit direction

of magnetization, and ~s = ~J/3 is the spin operator of the holes. The matrix form is

easy to obtain as

Hexch = JpdSMncMn



Mz

2
0 Mx−iMy

2
√

3
0

0 −Mz

6
Mx+iMy

3
Mx−iMy

2
√

3

Mx+iMy

2
√

3

Mx−iMy

3
Mz

6
0

0 Mx+iMy

2
√

3
0 −Mz

2


(4.16)

Our later simulations always assume that magnetization is in-plane. So, there is no

Mz component.

The strain Hamiltonian in the hole picture is [61, 68, 70]

Hstrain = b

J2
x −

~J2

3

 εxx + c.p.

+
d√
3

[2 {Jx, Jy} εxy + c.p.]

−C4 [Jx(εyy − εzz)kx + c.p.]
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−C5 [εxy(kyJx − kxJy) + c.p.] (4.17)

Here, b = −2.0 eV and d = −4.8 eV [70] are the deformation potentials. C4 and

C5 are the strength of the momentum dependent Dresselhaus-symmetric [52, 71]

and Rashba-symmetric [53, 72] strain terms respectively. In our calculation, we use

C4 = 5.0 eVÅ calculated from first principles [63] and C5 = C4 [33, 40]. We assume

εxz = εyz = 0 and εxx = εyy. So the b term is given by

b



Q 0 0 0

0 −Q 0 0

0 0 −Q 0

0 0 0 Q


(4.18)

where

Q = εzz −
1

2
(εxx + εyy). (4.19)

And we have one more relation

εzz = −(εxx + εyy)C12

C11

. (4.20)

For GaAs, C11 = 122.1 GPa, C12 = 56.6 GPa. Then using relation

{Jx, Jy} =
1

2
(JxJy + JyJx)

=
1

2



0 −i
√

3 0 0

i
√

3 0 0 0

0 0 0 −i
√

3

0 0 i
√

3 0


, (4.21)
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the d term can be written as



0 −idεxy 0 0

idεxy 0 0 0

0 0 0 −idεxy

0 0 idεxy 0


. (4.22)

And C4, C5 terms are

−C4(εxx − εzz)



0 0
√

3(kx+iky)
2

0

0 0 kx − iky
√

3(kx+iky)
2

√
3(kx−iky)

2
kx + iky 0 0

0
√

3(kx−iky)
2

0 0


, (4.23)

and

−C5εxy



0 0
√

3(ky+ikx)
2

0

0 0 ky − ikx
√

3(ky+ikx)
2

√
3(ky−ikx)

2
ky + ikx 0 0

0
√

3(ky−ikx)
2

0 0


. (4.24)

Adding all terms together, the matrix form of the strain Hamiltonian is obtained.

Since all the details of our simulation Hamiltonian have been given, we are able

to diagonalize the Hamiltonian and calculate the SOT. The out-of-plane SOT study

has been reported earlier to explain the experimental observation on Ga1−xMnxAs

[34]. They primarily focus on the inter band term. We are going to study SOT

systematically in this project to understand the parameter dependence, impact of

complex band structure, and the analogy with the 2DEG Rashba model [54].
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4.3 Numerical results

Here we use a slightly different notation since we are dealing with a 3D sample.

We decompose the SOT effective fields into components parallel to the magnetization

~M , and components perpendicular to ~M . So the effective field ~h can be written as

~h = hm ~M + h‖ê‖ + h⊥ê⊥, (4.25)

where ê‖, ê⊥ are the unit vectors perpendicular to ~M , ê‖ is within the sample plane,

and ê⊥ is perpendicular to the sample plane. The hm component has no contribution

to the torques. So we don’t consider this component in our calculation. For all the

following simulation, we assume an electric field of E = 0.02 V/nm along the x

axis. The hole concentration is between 0.3 and 1 nm−3, and the Fermi energy is

determined by the corresponding hole density.

4.3.1 Intrinsic versus extrinsic SOT: disorder effect

As seen in the 2DEG FM model, we have an out-of-plane intrinsic SOT, which

means it is independent of disorder. For the in-plane components, the intra band

and inter band have 1/Γ and Γ dependence respectively for both small and large

exchange limits. These components are called extrinsic because they depend on the

disorder broadening. Do we have similar Γ dependence in Ga1−xMnxAs?

Figure 4.4 shows the SOT as a function of the energy broadening Γ. Although Γ

is on the order of hundreds of meV in realistic Ga1−xMnxAs, we choose Γ < 10 meV

in order to compare with the analytical result in the 2DEG FM model. The intra

band contribution to the SOT field, hintra‖ , is inversely proportional to Γ for all hole

densities as is seen in figure 4.4(a), which agrees with the the Rashba 2DEG FM. The

inset of figure 4.4(a) shows that this relation works well for large Γ. As in the 2DEG
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Figure 4.4: (a) Intra band and (b), (c) inter band SOT effective fields as a function
of Γ.
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FM, no hintra⊥ component exists. On the other hand, the inter band contributes to

both hintra‖ and hintra⊥ , which is shown in figure 4.4(b) and 4.4(c). The former scales

as hinter‖ ∝ Γ in the weak scattering limit which is consistent with the 2DEG FM.The

out-of plane component hinter⊥ converges to a finite value when Γ vanishes, indicating

the intrinsic character of this component. All these results are consistent with the

analytical solutions obtained in in the Rashba 2DEG FM model and weak scattering

limit.

From these results, we see that the complex band structure of Ga1−xMnxAs

doesn’t affect the SOT qualitatively. The intrinsic out-of-plane SOT is consistent

with previous studies [34].

4.3.2 Impact of the band structure

The Hamiltonian to describe the GaAs is Kohn-Luttinger Hamiltonian. As shown

in equation 4.6, this Hamiltonian has centrosymmetric and noncentrosymmetric com-

ponents. The first term in the right hand side of equation 4.6 has parabolic form.

The second term has spherical symmetry. And the third term is noncentrosymmet-

ric. By tuning the Luttinger parameters γ1, γ2, γ3, we are able to study the effects of

these three terms separately.

Table 4.1: Symmetry of the Hamiltonian
Symmetry Parameters
Parabolic γ1 = 2.00, γ2 = 0.00, γ3 = 0.00
Spherical γ1 = 6.98, γ2 = 2.50, γ3 = 2.50
Diamond γ1 = 6.98, γ2 = 2.06, γ3 = 2.93

As shown in table 4.1, we model three cases: (i) the parabolic band approxi-

mation where no centrosymmetric spin-orbit coupling is present, (ii) the spherical
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approximation where the cenrosymmetric spin-orbit coupling is turned on but only

contains the spherical symmetric part, and (iii) the diamond crystal where the orig-

inal Luttinger parameters are used. The reason we call it the diamond crystal is

because we have ignored the cubic Dresselhaus spin-orbit coupling due to bulk inver-

sion asymmetry. There is no experimental indication that this cubic term contributes

significantly to the SOT. So the Kohn-Luttinger Hamiltonian has bulk inversion sym-

metry as in the diamond crystal case. Figure 4.5 shows the angular dependence of

the SOT in the approximation of (i)-(iii). The magnetization is in the (x, y) plane

θ = π/2, and its direction is given by angle φ. We have changed the magnitudes to

similar order.

As shown in this figure, all three approximations have roughly sinφ dependence

for these three components. The parabolic approximation gives perfect sinφ de-

pendence. In the spherical approximation, the inter band component deviates from

this dependence, while the intra band term remains unaffected. Furthermore, the

magnitudes of intra band and inter band SOT strongly decrease, which manifests the

competition between the strain-induced spin-orbit coupling and the centrosymmetric

Luttinger spin-orbit coupling terms. When the spherical approximation is lifted, the

band structures become warped. This results in an increase of the inter band SOT

and an additional angular dependence on top of the sinφ dependence.

4.4 Summary

In this chapter, we have discussed the spin-orbit torques in Ga1−xMnxAs ferro-

magnetic semiconductor. We have studied the parameter dependence and the impact

of complex band structures. The SOT results in the more realistic model following

the same qualitative trends as in the case of the simple Rashba 2D FM model. The

impact of complex band structures give rise to more feathers in the SOT results. The
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Figure 4.5: (a) Intra band and (b), (c) inter band SOT effective fields as a function
of the magnetization direction using different approximations.
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change of the magnitudes of the SOT unveils the competition between band structure

and spin-orbit coupling with different symmetries. To conclude, SOT effects exist in

this realistic material and can be used for current-induced magnetization switching.
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5. SPIN-ORBIT TORQUES IN 2D ANTIFERROMAGNETIC SYSTEM∗

5.1 Introductions to antiferrogmantes

We have studied the spin-orbit torque effects in ferromagnets systematically in

the previous chapters. As we know, there is another category of magnetic materi-

als called antiferromagnets. Antiferromagnets (AFM) are attractive building blocks

of spintronics devices because they are insensitive to magnetic field perturbation,

produce no perturbing stray fields, and are readily compatible with metal, semicon-

ductor, or insulator electronic structure. They can also act as magnetic memory

because they can generate large magneto transport effects [73, 74, 75, 76]. A natu-

ral question is whether we have similar effects in AFM. Experiments on the Mn2Au

AFM show that a field-like spin-orbit torque exists in this system [77, 78]. Unlike

ferromagnets, AFM usually have more than one sub lattice magnetization which add

up to zero total magnetization [79, 80, 81]. Although the simple picture for SOT in

ferromagnets doesn’t work in this case, if we project the SOT into sub lattices, we

expect meaningful results [55].

To describe AFM, we consider the simplest case with two sub lattices. ~mA, ~mB

represent the sub lattice magnetizations. And we have two relations

~M = ~mA + ~mB ≈ 0, (5.1)

and

~n = ~mA − ~mB ≈ 2~mA, (5.2)

∗Reprinted with permission from J. Zelezny, H. Gao, K. Vyborny, J. Zemen, J. Masek, Aurelien
Manchon, J. Wunderlich, Jairo Sinova, and T. Jungwirth, Phys. Rev. Lett. 113, 157201 (2014).
Copyright 2014 by the American Physical Society.

67



where ~M is called the magnetization and ~n is called the Neel vector. The dynamics

of these parameters are coupled differential equations [82].

The AFM Neel vector direction can be controlled indirectly by a magnetic field

via an attached exchanged-coupled FM [74, 75] or, without the auxiliary FM, by

techniques analogous to heat-assisted magnetic recording [76]. However, as with

heat-assisted FM MRAMs [83, 84], the speed and energy efficiency of this method

are limited. The SOT effects provide us a novel mechanism for AFM spin-arid

reorientation by a lateral electrical current via Neel-order SOT fields, i.e., via non-

equilibrium fields that alternate in sign between the two spin sub lattices [55],

In this chapter, we will study the static SOT effects in the AFM with a 2D model.

The systematic study of dynamics will be left for further research.

5.2 Hamiltonian of the 2D AFM: Four bands model

We start with a simple model by assuming that the underlying lattice is a 2D

square lattice with local moments on each lattice sites. As shown in figure 5.1,

these local moments interact with each other antiferromagnetically to form sub lat-

tice magnetization which is treated as static background since we only consider the

static effective field. The carriers are treated by using tight-binding model. We con-

sider the nearest and next nearest neighbor hopping and the exchange interaction

between carrier spins and local moments. Also, we’ll incorporate the Rashba spin

orbit interaction in this 2D system. The total Hamiltonian reads:

H =
∑
<ij>

Jdd ~Si · ~Sj +H tb +
∑
i

Jsd~s · ~Si +HR, (5.3)

where Jdd and Jsd are the exchange constants, H tb is the tight-binding Hamiltonian

for the carriers with both nearest and next nearest neighbor hopping, and HR is the

68



Figure 5.1: 2D antiferromagnetic square lattice structure.

Rashba spin-orbit interaction in 2D system. It is given by formula

HR =
α

h̄
(σxpy − σypx) (5.4)

where α is the strength of the Rashba spin-orbit coupling. The antiferromagnetic

background can be ignored and the sd exchange interaction are treated as onsite

energies. In the tight-binding scheme, H tb is given by:

H tb = −tN
∑

<ij>Nσ

c†iσcjσ − tNN
∑

<ij>NNσ

c†iσcjσ, (5.5)

where tN and tNN are the nearest and next nearest neighbor hopping parameters

respectively, and σ is spin index. The onsite energy is written as

Hsd =
∑
iσσ′

1

2
Jsd ~Si · (~σ)σσ′c

†
iσciσ′ , (5.6)
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where ~σ is the Pauli matrices vector, carrier spin is ~s = 1
2
~σ (h̄ is absorbed in Jsd),

and the ~Si change sign if they are on nearest neighbors which capture the antiferro-

magnetism in the system. The Rashba spin-orbit interaction in 2D system is given

by [85], (see also Appendix B)

HR = VSO
∑
i

[(c†i↑ci+δx↓ − c
†
i↓ci+δx↑)− i(c

†
i↑ci+δy↓ + c†i↓ci+δy↑) + H.c.]. (5.7)

Here, VSO = α/2a represents the spin-orbit coupling strength, and δx,δy are the

nearest neighbors in the x and y direction. So, the total Hamiltonian is

H =
∑
i

1

2
Jsd ~Si · (~σ)σσ′c

†
iσciσ′ − tN

∑
<ij>Nσ

c†iσcjσ − tNN
∑

<ij>NNσ

c†iσcjσ

+ VSO
∑
i

[(c†i↑ci+δx↓ − c
†
i↓ci+δx↑)− i(c

†
i↑ci+δy↓ + c†i↓ci+δy↑) + H.c.]. (5.8)

This model can be studied by either finite-size supercell method or Bloch theory.

In the case without disorder, this model is treated in the frame of the Bloch energy

band theory. The unit vector is defined as ~a1 = (a,−a) and ~a2 = (a, a). See figure 5.2.

For later convenience, we change our coordinates such that ~a1 ≡
√

2ax̂,~a2 ≡
√

2aŷ.

There are two atoms in each unit cell, which are denoted by A and B with positions

~rA = (0, 0) and ~rB = a√
2
(1, 1) within the unit cell. We label the creation and

annihilation operator on atom A by (c†, c), and on atom B by (d†, d) respectively.

The Hamiltonian can be written as

H =
∑
i

1

2
Jsd ~SiA · (~σ)σσ′c

†
iσciσ′ +

∑
i

1

2
Jsd ~SiB · (~σ)σσ′d

†
iσdiσ′ (5.9)

−tN
∑

<ij>Nσ

c†iσdjσ − tN
∑

<ij>Nσ

d†iσcjσ
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Figure 5.2: Unit vectors and unit cell of the 2D antiferromagnetic square lattice
structure.
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−tNN
∑

<ij>NNσ

c†iσcjσ − tNN
∑

<ij>NNσ

d†iσdjσ

+ VSO
∑
i

{(c†i↑di↓ − c
†
i↓di↑)− i(c

†
i↑di−δx↓ + c†i↓di−δx↑)

+ (−c†i↑di−δx−δy↓ + c†i↓di−δx−δy↑) + i(c†i↑di−δy↓ + c†i↓di−δy↑)}

+ VSO
∑
i

{c↔ d}

where the summation i is over the unit cell. Then, we do the transformation

ciσ =
1√
N

∑
~k

ei
~k·~Ric~kσ (5.10)

and

diσ =
1√
N

∑
~k

ei
~k·(~Ri+~rB)d~kσ (5.11)

Here, we don’t write out ~rA = (0, 0) explicitly. Using the relation

1

N

∑
~Ri

ei(
~k−~k′)·~Ri = δ~k~k′ , (5.12)

the Hamiltonian can be written as:

H =
∑
~k

1

2
Jsd~S · (~σ)σσ′c

†
~kσ
c~kσ′ −

∑
~k

1

2
Jsd~S · (~σ)σσ′d

†
~kσ
d~kσ′

−tN
∑
~kσ

4 cos (
kxa√

2
) cos (

kya√
2

)(c†~kσd~kσ + d†~kσc~kσ) (5.13)

−tNN
∑
~kσ

2[cos(
√

2kxa) + cos(
√

2kya)](c†~kσc~kσ + d†~kσd~kσ)

+ VSO
∑
~k

{2[sin (
−kxa√

2
+
kya√

2
) + i sin (

kxa√
2

+
kya√

2
)]c†~k↑d~k↓

+ 2[sin (
−kxa√

2
+
kya√

2
)− i sin (

kxa√
2

+
kya√

2
)]c†~k↓d~k↑ + H.c.}

where we have considered the direction of magnetization for sub-lattices explicitly.
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This Hamiltonian can be written in the form of a matrix. We define a vector φ =

(c~k↑, c~k↓, d~k↑, d~k↓)
T . Then

H =
∑
~k

φ†Mφ (5.14)

where

M =



hz − 2tNN(cos(
√

2kxa) + cos(
√

2kya)) hx − ihy

hx + ihy −hz − 2tNN(cos(
√

2kxa) + cos(
√

2kya))

−4tN cos (kxa√
2

) cos (kya√
2
) 2VSO(sin (−kxa+kya√

2
) + i sin (kxa+kya√

2
))

2VSO(sin (−kxa+kya√
2

)− i sin (kxa+kya√
2

)) −4tN cos (kxa√
2

) cos (kya√
2
)

−4tN cos (kxa√
2

) cos (kya√
2
) 2VSO(sin (−kxa+kya√

2
) + i sin (kxa+kya√

2
))

2VSO(sin (−kxa+kya√
2

)− i sin (kxa+kya√
2

)) −4tN cos (kxa√
2

) cos (kya√
2
)

−hz − 2tNN(cos(
√

2kxa) + cos(
√

2kya)) −hx + ihy

−hx − ihy hz − 2tNN(cos(
√

2kxa) + cos(
√

2kya))


(5.15)

Here, ~h = Jsd~S/2. We can obtain the band structure by diagonalizing the 4 × 4

matrix for different ~k.

It can be shown that the finite-size supercell method give the same DOS curve

in certain limit. And the advantage of the supercell method is the ability of dealing

with disorder more realistically. In the first step, we’ll focus on Bloch theory method

in the clean limit.

5.3 Numerical simulations

In this section, we’ll discuss the details of numerical simulation. First, we’ll

discuss the matrix elements of spin operator and velocity operator between two

eigenvectors and how to get the site resolved values of the spin operator. Then, we’ll

explicitly work out the results in the four band model.
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Figure 5.3: Typical 3D plot of the band structures (four bands) with parameters
tN = 1eV, tNN = 0.1eV, VSO = 0.1eV and hz = 1.5eV .

Figure 5.4: Total DOS plot with the parameters in the band structure calculation in
Fig. 5.3.
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5.3.1 Spin and current operator

In order to use the Kubo formula given in the previous chapter, we need to

find out the expectation value of spin operator and current operator within tight-

binding scheme. After diagonalizing the Hamiltonian, the eigenvector has form

Φ(α) = ((φ
(α)
1↑ , φ

(α)
1↓ ), (φ

(α)
2↑ , φ

(α)
2↓ ), · · ·, (φ(α)

i↑ , φ
(α)
i↓ ), · · ·)T . So the expectation value for the

spin operator is given by

(~s)αβ =
1

2

∑
i

((φ
(α)
i↑ , φ

(α)
i↓ )T )†(~σ)(φ

(β)
i↑ , φ

(β)
i↓ )T , (5.16)

where the summation is over all lattice sites. When we simulate the non-equilibrium

spin polarization in anti-ferromagnets, we need the resolved site results in order to

capture the effects of SOT on different sub lattices. This is easy to realize using

the linear response formula. Instead of summing over all the sites i, we sum over

different sites corresponding to different sub lattices separately.

(~s)Aαβ =
1

2

∑
i∈A

((φ
(α)
i↑ , φ

(α)
i↓ )T )†(~σ)(φ

(β)
i↑ , φ

(β)
i↓ )T (5.17)

(~s)Bαβ =
1

2

∑
i∈B

((φ
(α)
i↑ , φ

(α)
i↓ )T )†(~σ)(φ

(β)
i↑ , φ

(β)
i↓ )T , (5.18)

where A,B correspond to A,B sub lattices. By doing this, we’ll get site resolved

non-equilibrium spin polarization.

Then, we’ll derive the current operators.

vx =
1

h̄

∂H

∂kx
=
h̄kx
m
− α

h̄
σy (5.19)

vy =
1

h̄

∂H

∂ky
=
h̄ky
m

+
α

h̄
σx (5.20)

75



and the current density operator can be written as

jx = − ih̄

2m
(ψ†∂xψ − ∂xψ†ψ)− α

h̄
ψ†σyψ (5.21)

jy = − ih̄

2m
(ψ†∂yψ − ∂yψ†ψ) +

α

h̄
ψ†σxψ. (5.22)

Then, we express the corresponding operator in the tight-binding model, and we get

the current operator

~J = ~J0 + ~JR, (5.23)

where

~J0 =
1

ih̄
[−tN

∑
<ij>Nσ

( ~Ri − ~Rj)c
†
iσcjσ − tNN

∑
<ij>NNσ

( ~Ri − ~Rj)c
†
iσcjσ], (5.24)

with ~Ri the lattice vectors, and

~JRx =
iα

h̄

∑
i

(c†i↑ci↓ − c
†
i↓ci↑) (5.25)

~JRy =
α

h̄

∑
i

(c†i↑ci↓ + c†i↓ci↑). (5.26)

So, the expectation value of the current operator (which is the same as velocity

operator) is given by the corresponding combination of eigenvector elements. For

example:

( ~JRx)αβ =
iα

h̄

∑
i

(φ
(α)∗
i↑ φ

(β)
i↓ − φ

(α)∗
i↓ φ

(β)
i↑ ); (5.27)

( ~JRy)αβ =
α

h̄

∑
i

(φ
(α)∗
i↑ φ

(β)
i↓ + φ

(α)∗
i↓ φ

(β)
i↑ ). (5.28)

These are the relations needed in the numerical simulation using the Kubo formula.
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5.3.2 Spin and current operator in four bands model

In the four band model, ~k is a good quantum number, and the Hamiltonian

matrix is 4× 4. The spin operator is simply given by

(~s)αβ =
1

2

∑
i=A,B

((φ
(α)
i↑ , φ

(α)
i↓ )T )†(~σ)(φ

(β)
i↑ , φ

(β)
i↓ )T , (5.29)

and the site resolved results are

(~s)Aαβ =
1

2
((φ

(α)
A↑ , φ

(α)
A↓ )

T )†(~σ)(φ
(β)
A↑ , φ

(β)
A↓ )

T (5.30)

(~s)Bαβ =
1

2
((φ

(α)
B↑ , φ

(α)
B↓ )

T )†(~σ)(φ
(β)
B↑ , φ

(β)
B↓)

T . (5.31)

These results are ~k dependent, and in the last step we’ll sum or integrate over the

first Brillouin zone.

The current operator is more complicated. But we can follow the same procedure

as we derive the four band Hamiltonian by writing:

~J0 =
1

ih̄
[−tN

∑
<ij>Nσ

( ~Ri − ~Rj)(c
†
iσdjσ + d†iσcjσ)

−tNN
∑

<ij>NNσ

( ~Ri − ~Rj)(c
†
iσcjσ + d†iσdjσ)], (5.32)

and

~JRx =
iα

h̄

∑
i=A,B

[(c†i↑ci↓ − c
†
i↓ci↑) + (d†i↑di↓ − d

†
i↓di↑)] (5.33)

~JRy =
α

h̄

∑
i=A,B

[(c†i↑ci↓ + c†i↓ci↑) + (d†i↑di↓ + d†i↓di↑)]. (5.34)
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Transform these equations to k-space. We have

Jx =
tNa

h̄

∑
~kσ

2 sin (
kxa√

2
+
kya√

2
)(c†~kσd~kσ + d†~kσc~kσ) (5.35)

tNNa

h̄

∑
~kσ

2[sin(
√

2kxa) + sin(
√

2kya)](c†~kσc~kσ + d†~kσd~kσ)

+
i2aVSO
h̄

∑
~k

[(c†~k↑c~k↓ + d†~k↑d~k↓) + H.c]

and

Jy =
tNa

h̄

∑
~kσ

2 sin (−kxa√
2

+
kya√

2
)(c†~kσd~kσ + d†~kσc~kσ) (5.36)

tNNa

h̄

∑
~kσ

2[− sin(
√

2kxa) + sin(
√

2kya)](c†~kσc~kσ + d†~kσd~kσ)

+
2aVSO
h̄

∑
~k

[(c†~k↑c~k↓ + d†~k↑d~k↓) + H.c].

Here, we assume the Jx direction is the same as ~rB direction in Figure (5.2), not

the same as kx direction. So, when we calculate the value of the current operator

sandwiched by two eigenvectors, we have

(Jx)αβ = φ†αJxφβ (5.37)

and

(Jy)αβ = φ†αJyφβ (5.38)
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where the summation over ~k is dropped, and Jx, Jy are given by matrices

Jx =
a

h̄



2tNN [sin(
√

2kxa) + sin(
√

2kya)] i2VSO

−i2VSO 2tNN [sin(
√

2kxa) + sin(
√

2kya)]

2tN sin (kxa√
2

+ kya√
2
) 0

0 2tN sin (kxa√
2

+ kya√
2
)

2tN sin (kxa√
2

+ kya√
2
) 0

0 2tN sin (kxa√
2

+ kya√
2
)

2tNN [sin(
√

2kxa) + sin(
√

2kya)] i2VSO

−i2VSO 2tNN [sin(
√

2kxa) + sin(
√

2kya)]


(5.39)

and

Jy =
a

h̄



2tNN [− sin(
√

2kxa) + sin(
√

2kya)] 2VSO

2VSO 2tNN [− sin(
√

2kxa) + sin(
√

2kya)]

2tN sin (−kxa√
2

+ kya√
2
) 0

0 2tN sin (−kxa√
2

+ kya√
2
)

2tN sin (−kxa√
2

+ kya√
2
) 0

0 2tN sin (−kxa√
2

+ kya√
2
)

2tNN [− sin(
√

2kxa) + sin(
√

2kya)] 2VSO

2VSO 2tNN [− sin(
√

2kxa) + sin(
√

2kya)]


(5.40)

Then, we can plug these relations into the Kubo formula and integrate over k-space

to get the current induced non-equilibrium spin density.
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5.4 Results of the 2D AFM model

5.4.1 Band structures and DOS

First, we’ll show the band structures and DOS. The results are obtained from the

four band model with parameters tN = 3.0eV, tNN = 0.0, Jsd|S||s| = 1.0eV, VSO =

0.1eV . From the band structures, figure 5.5, we see a band gap around zero energy

due to the exchange interaction. Near the Γ point, the lower bands are similar to

the 2D Rashba electron gas. The splitting is due to Rashba spin-orbit coupling.

Compared to the 2D FM system with two bands separated by the large exchange

interaction, we have two groups of bands with two nearby bands in each group in

the AFM system. The DOS are show in figure 5.6. The total DOS is the sum of all

the four curves. The reason we show the DOS this way is that we can clearly show

that there are four Von Hove singularities in this system. These singularities play

important roles in the inter band contribution of the SOT.

Another useful DOS plot is the spin projected DOS. Like the local density of

states, the spin projected DOS is defined as

DoSσ(E) =
∑
n

〈φn|σ〉 〈σ|φn〉 δ(E − En), (5.41)

where |σ 〉 is the eigenvectors of the spin operator. The eigenvectors of spin 1/2

electrons with arbitrary quantization direction (θ, φ) are given by [4]

| ↑ 〉 =

 e−iφ/2 cos
(
θ
2

)
eiφ/2 sin

(
θ
2

)
 , | ↓ 〉 =

 −e−iφ/2 sin
(
θ
2

)
eiφ/2 cos

(
θ
2

)
 . (5.42)

For example, when sub lattice magnetization is in-plane and we want to project

the spin in the direction of sub lattice magnetization, we need to set θ = π/2. By
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doing this projection, the spin projected DOS is shown in figure 5.7. These curves

clearly show that there is no net magnetization in equilibrium and the singularities

correspond to the saddle points in the band structure curve.
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Figure 5.7: Spin projected DOS plots. A and B denote sub lattices.

5.4.2 DC conductivity

Experimentalists usually measure current density and find other quantities as a

function of current density. To connect the electric field with current density, we

need DC conductivity. Using the same Kubo linear response approach, the DC con-

ductivity can be easily obtain by replacing the s operator with the current operator
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or e~v. We have

σij =
h̄

2πL2
Re

∑
~kαβ

(evi)αβ(evj)βα[GA
~kα
GR
~kβ
−GR

~kα
GR
~kβ

]. (5.43)

We will ignore the inter band contributions here because they are order of magnitudes

smaller than the intra band contributions and we will also ignore the off-diagonal

term. Then this formula can be simplified in the small spectral broadening (small

Γ) limit as

σ0 =
1

L2

∑
~kα

h̄

2Γ
(evx)α(evx)αδ(E~kα − EF ). (5.44)

Here, current and sub lattice magnetization are along the x-axis. Figure 5.8 shows

the calculated DC conductivity as a function of Fermi energy. Zero results around

zero energy corresponds to the gap of the system. Otherwise it is almost constant at

other Fermi energies. We do see magneto-resistance in this system. It’s of the order

of ∼ 1% here.

5.4.3 Spin-orbit torques

In this part, we show the main results of our study, current induced effective field

or SOT. Again, we discuss the intra band and inter band contribution separately.

First, we study the in-plane (xy-plane) sub lattice magnetization case. To com-

pare with experiments, we assume a 2D sample with thickness 10 nm in the z-

direction and current density 105Acm−2. The parameters we use are tN = 3.0eV, tNN =

0.0eV, Jsd = 1.0eV, VSO = 0.1eV,Γ = 0.01eV and EF = −6.0eV . Figure 5.9 and 5.10

are the effective field projected to A and B sub lattice from intra band and inter

band contributions respectively. All these components projected onto the A and B

sub lattice have the same sign except the out-of-plane inter term which has opposite

signs for A and B sub lattices in the in-plane sub lattice magnetization case. This
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Figure 5.10: SOT projected to A and B sub lattices from the inter band contribution.

sign change following the local magnetic moments can be used to manipulate the

Neel parameter which is harder to achieve by other conventional methods.

We’ll study the out-of-plane inter term further here. If we change the carrier

density or Fermi level, figure 5.11 (which is obtained with a Fermi energy of -2.0eV),

shows that the overall angular dependence is the same, but the magnitude is much

larger than the EF=-6.0eV case. From the band resolved DoS curves, we have two

peaks close to each other near ±1.0eV . We expect a great enhancement of the inter

band component when the Fermi energy is approaching these regions. Figure 5.12

shows the out-of-plane inter band component for different Fermi energies. Site B has

opposite sign. To have a better view of the change in magnitude, we show the same

data in figure 5.13 with logarithmic y-scale. It is clearly shown that we have roughly

a three order of magnitude enhancement near the singularity points.

When the sub lattice magnetization goes out-of-plane, the results will change.
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Figure 5.11: SOT projected to A and B sub lattices for the in-plane sub lattice
magnetizations with EF = −2.0eV .

-15

-10

-5

 0

 5

 10

 15

 20

-4 -3 -2 -1  0  1  2  3  4

B
z
 (

m
T

)(
p

e
r 

0
.1

A
/c

m
)

EF(eV)

AFM A

Figure 5.12: Out-of-plane inter band SOT as a function of the Fermi energy with
the sub lattice magnetizations along 100 and -100 directions.

86



 0.01

 0.1

 1

 10

 100

-4 -3 -2 -1  0  1  2  3  4

B
z
 (

m
T

)(
p

e
r 

0
.1

A
/c

m
)

EF(eV)

AFM A

Figure 5.13: Out-of-plane inter band SOT as a function of the Fermi energy with
y-axis in logarithmic scale.

Figure 5.14 and 5.15 are the results of rotating the sub lattice magnetizations along

the path (−ẑ → x̂→ ẑ) for intra band and inter band contribution respectively. The

only non-zero component from the intra band term is along y-direction. And both

the x-component and z-component of the inter band term have different signs for A

and B sub lattices.

5.5 Summary

This project is about current induced spin orbit torques in 2D antiferromagnetic

system with broken inversion symmetry. The main results we get are i) the effective

field (torque) from inter band contribution can have different signs for sub lattices

which can be used to manipulate the Neel parameter, ii)when Fermi energy ap-

proaches singularity points in the DOS, we get greatly enhanced results. Symmetry
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plays an important role here which determines the signs of different components. By

only symmetry arguments, we may determine which component should be zero and

which components should have the same or opposite signs. This will be our next

project. Besides this model study, we are also studying this effect in the realistic

material Mn2Au. The details of this study is available in the paper by J. Zelenzy,

and H. Gao [55].
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6. SPIN-ORBIT TORQUES IN NON-COLLINEAR AFM IrMn3

6.1 Introduction

We have studied the spin-orbit torques (SOT) in collinear antiferromagnetic sys-

tems, e.g. 2D AFM with Rashba and Mn2Au. In this chapter we will extend the

study to the non-collinear antiferromagnet IrMn3 [86], which is widely used as an

exchange bias in spin-valve devices. This material is also under intensive research

due to its complicated magnetic structure, and other structural parameters which

will affect the quality and stability of the devices. SOT effects are important in

IrMn3 because they can change the configuration of magnetic structures. As shown

in figure 6.1, IrMn3 crystal is a face-center-cubic with Mn in the face-center positions

forming two kagome lattice planes perpendicular to the 111 direction [86, 87]. This

structure has bulk inversion symmetry, meaning that there are no SOT effects in

the bulk material. However, if we consider the IrMn3 layer with structural inversion

asymmetry, the spin-orbit torques will be non-zero. The dynamics of magnetization

in the present of SOT is quite complicated and require further study.

6.2 Tight-binding model of IrMn3

The crystal structure is shown in figure 6.1. We will use a tight-binding approach

to study this material. For simplicity, only the nearest neighbors (NN) are considered.

The exchange interaction is incorporated by a simple s− d model. We treat the Mn

spins as classical magnetic moments. There are four atoms in each unit cell, one Ir

atom and three Mn atoms with different spin directions. The relative positions are

chosen as:

Ir (0, 0, 0) (6.1)
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Figure 6.1: IrMn3 lattice structure.
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MnA (a/2, a/2, 0)

MnB (a/2, 0, a/2)

MnC (0, a/2, a/2).

And the ground state sub lattice magnetizations are:

~mA =
1√
6

(−1,−1, 2) (6.2)

~mB =
1√
6

(−1, 2,−1)

~mC =
1√
6

(2,−1,−1).

For later convenience, we list all the NN for each atom in the unit cell here.

Ir-Ir:

(a, 0, 0) (−a, 0, 0) (6.3)

(0, a, 0) (0,−a, 0)

(0, 0, a) (0, 0,−a)

Ir-Mn:

(a/2, a/2, 0) (−a/2, a/2, 0) (a/2,−a/2, 0) (−a/2,−a/2, 0) (6.4)

(a/2, 0, a/2) (−a/2, 0, a/2) (a/2, 0,−a/2) (−a/2, 0,−a/2)

(0, a/2, a/2) (0,−a/2, a/2) (0, a/2,−a/2) (0,−a/2,−a/2)

MnA-Ir:

(0, 0, 0) (a, 0, 0) (0, a, 0) (a, a, 0) (6.5)
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MnB-Ir:

(0, 0, 0) (a, 0, 0) (0, 0, a) (a, 0, a) (6.6)

MnC-Ir:

(0, 0, 0) (0, a, 0) (0, 0, a) (0, a, a) (6.7)

MnA-Mn:

(a/2, 0, a/2) (a/2, 0,−a/2) (a/2, a, a/2) (a/2, a,−a/2) (6.8)

(0, a/2, a/2) (0, a/2,−a/2) (a, a/2, a/2) (a, a/2,−a/2)

MnB-Mn:

(a/2, a/2, 0) (a/2,−a/2, 0) (a/2, a/2, a) (a/2,−a/2, a) (6.9)

(0, a/2, a/2) (0,−a/2, a/2) (a, a/2, a/2) (a,−a/2, a/2)

MnC-Mn:

(a/2, a/2, 0) (−a/2, a/2, 0) (a/2, a/2, a) (−a/2, a/2, a) (6.10)

(a/2, 0, a/2) (−a/2, 0, a/2) (a/2, a/2, a) (−a/2, a/2, a)

Here, we need several different hopping parameters. To be simple, we assume the

hopping parameters between different Mn sub lattices are the same. So, we have

hopping between Ir and Ir t1, hopping between Ir and Mn t2, and hopping between

Mn and Mn t3. We need one more parameter to describe the onsite energy. Here
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only the energy difference matters. ∆ε = εIr− εMn. The Hamiltonian can be written

as

H0 =
∑
αiσσ′

Jsd~Si · (~σ)σσ′c
†
αiσcαiσ′ +

∑
αiσ

∆εc†αiσcαiσ −
∑

αβ<ij>σ

tαβc
†
αiσcβjσ, (6.11)

where tαβ are the hopping parameters, the summations over i, j in the third term

are limited to nearest neighbors, and (c†α, cα) denote the creation and annihilation

operators of an α-kind of atom in the unit cell. Then we change to k-space by using

relations

cαiσ =
1√
N

∑
~k

ei
~k·(~Ri+~rα)cα~kσ, (6.12)

where ~rα are the relative positions of atoms in the unit cell, and

1

N

∑
~Ri

ei(
~k−~k′)·~Ri = δ~k~k′ . (6.13)

The first two terms in equation (6.11) are straight forward. The third term needs to

be calculated carefully. We will list the results here.

Ir-Ir:

−t1
∑
~kσ

2(cos kxa+ cos kya+ cos kza)c†Ir~kσcIr~kσ. (6.14)

Ir-Mn:

−t2
∑
~kσ

4 cos
kxa

2
cos

kya

2
c†Ir~kσcMnA~kσ (6.15)

−t2
∑
~kσ

4 cos
kxa

2
cos

kza

2
c†Ir~kσcMnB~kσ

−t2
∑
~kσ

4 cos
kya

2
cos

kza

2
c†Ir~kσcMnC~kσ.
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Mn-Ir:

−t2
∑
~kσ

4 cos
kxa

2
cos

kya

2
c†MnA~kσ

cIr~kσ (6.16)

−t2
∑
~kσ

4 cos
kxa

2
cos

kza

2
c†MnB~kσ

cIr~kσ

−t2
∑
~kσ

4 cos
kya

2
cos

kza

2
c†MnC~kσ

cIr~kσ.

MnA-Mn:

−t3
∑
~kσ

4 cos
kya

2
cos

kza

2
c†MnA~kσ

cMnB~kσ (6.17)

−t3
∑
~kσ

4 cos
kxa

2
cos

kza

2
c†MnA~kσ

cMnC~kσ.

MnB-Mn:

−t3
∑
~kσ

4 cos
kya

2
cos

kza

2
c†MnB~kσ

cMnA~kσ (6.18)

−t3
∑
~kσ

4 cos
kxa

2
cos

kya

2
c†MnB~kσ

cMnC~kσ.

MnC-Mn:

−t3
∑
~kσ

4 cos
kxa

2
cos

kza

2
c†MnC~kσ

cMnA~kσ (6.19)

−t3
∑
~kσ

4 cos
kxa

2
cos

kya

2
c†MnC~kσ

cMnB~kσ.

By diagonalizing the Hamiltonian in k-space, we will obtain the band structures.

In order to break the inversion symmetry, we consider a Rashba type spin-orbit

coupling which introduces the structural inversion asymmetry. Experimentally, the
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growth direction of L12 type IrMn3 is 001 direction. So, we add the spin orbit

coupling within 001 plane.

HSO = α(~σ × ~k) · ẑ, (6.20)

where α is the strength of the spin-orbit coupling. In 001 plane, the lattice structure

is square lattice. We can use the same ~k from the 3D lattice and keep only kx, ky.

Following the same procedure as in previous notes, we write the spin-orbit coupling

in the tight-binding basis. We have two terms

H
(1)
SO = VSO

∑
i

{(c†Iri↑cMnAi↓ − c
†
Iri↓cMnAi↑) (6.21)

−i(c†Iri↑cMnAi−δx↓ + c†Iri↓cMnAi−δx↑)

+ (−c†Iri↑cMnAi−δx−δy↓ + c†Iri↓cMnAi−δx−δy↑)

+i(c†Iri↑cMnAi−δy↓ + c†Iri↓cMnAi−δy↑)}

+{Ir↔ MnA}

H
(2)
SO = VSO

∑
i

{(c†MnBi↑
cMnC i↓ − c

†
MnBi↓

cMnC i↑)

−i(c†MnBi↑
cMnC i−δy↓ + c†MnBi↓

cMnC i−δy↑)

+ (−c†MnBi↑
cMnC i+δx−δy↓ + c†MnBi↓

cMnC i+δx−δy↑)

+i(c†MnBi↑
cMnC i+δx↓ + c†MnBi↓

cMnC i+δx↑)}

+{MnB ↔ MnC}

Here the summation i is over 2D square lattice unit cells, VSO = α/2a, and↔ means

exchanging the positions of the left and right components in the previous bracket. If

we only keep kx, ky, we have similar orthogonal relations as in equation (6.12) and

(6.13). And kx, ky have the same values as in the 3D case. In the 2D case, ~rα will be
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also two dimensional.

~rA = (a/2, a/2);~rB = (a/2, 0);~rC = (0, a/2). (6.22)

Transforming to k space, we get

H
(1)
SO = VSO

∑
~k

{2[sin (−kxa
2

+
kya

2
) + i sin (

kxa

2
+
kya

2
)]c†Ir~k↑cMnA~k↓ (6.23)

+ 2[sin (−kxa
2

+
kya

2
)− i sin (

kxa

2
+
kya

2
)]c†Ir~k↓cMnA~k↑ + H.c.}

H
(2)
SO = VSO

∑
~k

{2[sin (−kxa
2
− kya

2
) + i sin (−kxa

2
+
kya

2
)]c†MnB~k↑

cMnC~k↓

+ 2[sin (−kxa
2
− kya

2
)− i sin (−kxa

2
+
kya

2
)]c†MnB~k↓

cMnC~k↑ + H.c.}

These are the two terms we should include in our Hamiltonian matrix to break the

inversion symmetry.

6.3 Numerical simulations

In this part, we discuss the numerical simulation details. Basically, the procedures

of simulation are similar to the 2D AFM model. Since it is more complicated for

IrMn3, we write out the spin and velocity operators explicitly. Here we also need

the sub lattice projected spin operator. Since there is no magnetic moment on the

Ir sub lattice, we only consider the three Mn sub lattices which are denoted by A,B

and C.
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6.3.1 Spin operator

The Hamiltonian matrix is 8× 8. The eigenvector has form

Φ(α) = ((φ
(α)
Ir↑, φ

(α)
Ir↓), (φ

(α)
A↑ , φ

(α)
A↓ ), (φ

(α)
B↑ , φ

(α)
B↓ ), (φ

(α)
C↑ , φ

(α)
C↓ ))

T . (6.24)

The spin operator is simply given by

(~s)αβ =
1

2

∑
i=Ir,A,B,C

((φ
(α)
i↑ , φ

(α)
i↓ )T )†(~σ)(φ

(β)
i↑ , φ

(β)
i↓ )T , (6.25)

and the site resolved results are

(~s)Aαβ =
1

2
((φ

(α)
A↑ , φ

(α)
A↓ )

T )†(~σ)(φ
(β)
A↑ , φ

(β)
A↓ )

T (6.26)

(~s)Bαβ =
1

2
((φ

(α)
B↑ , φ

(α)
B↓ )

T )†(~σ)(φ
(β)
B↑ , φ

(β)
B↓)

T (6.27)

(~s)Cαβ =
1

2
((φ

(α)
C↑ , φ

(α)
C↓ )

T )†(~σ)(φ
(β)
C↑ , φ

(β)
C↓ )

T . (6.28)

We only list the projected results on sites with magnetic moments. These results are

~k dependent, and in the last step we sum or integrate over the first Brillouin zone.

6.3.2 Velocity operator

The velocity operator can be obtained by calculating the k-derivatives of the

Hamiltonian matrix, or by computing the commutator between the displacement

operator and Hamiltonian following Mahan’s textbook [56]. The velocity operator

can be written as

~v = − 1

ih̄

∑
αβ<ij>σ

tαβ(~Ri − ~Rj)c
†
αiσcβjσ, (6.29)
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where ~Ri denote the lattice vectors, and we only consider nearest neighbors here.

By transforming to k space, we will obtain the same results as direct k-derivatives

of the Hamiltonian matrix. The results can be easily read off from the Hamiltonian.

We don’t list them here.

After adding spin orbit coupling, there is another term we should include. Fol-

lowing same procedure in the 2D AFM notes, we have

vRx =
i2aVSO
h̄

∑
~k

(c†Ir~k↑cIr~k↓ + c†MnA~k↑
cMnA~k↓) + H.c (6.30)

+
i2aVSO
h̄

∑
~k

(c†MnB~k↑
cMnB~k↓ + c†MnC~k↑

cMnC~k↓) + H.c

vRy =
2aVSO
h̄

∑
~k

(c†Ir~k↑cIr~k↓ + c†MnA~k↑
cMnA~k↓) + H.c (6.31)

+
2aVSO
h̄

∑
~k

(c†MnB~k↑
cMnB~k↓ + c†MnC~k↑

cMnC~k↓) + H.c

and

vRz = 0. (6.32)

6.4 Results and discussion

By diagonalizing the Hamiltonian, we are able to calculate the SOT effective

fields. The results are hard to show because of the complicated magnetic structure.

We show a sample calculation here with underlying magnetic structure as the equilib-

rium configuration. Figure 6.2 shows the results for the projected effective magnetic

fields on different sub lattices. Blue arrows show the intra band contributions and

green arrows show the inter band contributions. The actual lengths of the arrows

do not represent the magnitude of the effective fields. Inter band contributions are

99



overall one order of magnitude smaller than the intra band contributions. Our re-

sults confirm that structure inversion asymmetry gives rise to nonzero SOT effects,

which enable us to manipulate the magnetic structures using electric current. Fur-

ther study involves the parameter dependence and magnetization dynamics which

will be studied later.

6.5 Summary

We have simulated the SOT effects in IrMn3 non-collinear antiferromagnet using

tight-binding approach. Rashba type spin-orbit coupling is added to break the inver-

sion symmetry. The nonzero results of SOT show that electric currents have effects

on the magnetic structure. Later study of this project includes the magnetization

dynamics in the presence of SOT. Once the dynamics is known, we can extract the

information of magnetization changes and compare with experiments.
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Figure 6.2: Projected SOT effective fields from the intra and inter band contributions.
Red arrows denote the sub lattice magnetization directions, blue and green arrows
denote the intra and inter band SOT respectively.
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7. CONCLUSIONS

In this report, we study the SOT effects in ferromagnets systematically to un-

derstand the underlying physics, symmetry, parameter dependence, as well as these

effects in collinear and non-collinear antiferromagnets. The methods we use include

the tight-binding electronic structure calculation, the ~k ·~p band structure calculation,

and the Kubo linear response formula.

In ferromagnets, the SOT effects are easier to understand. From the simple 2D

ferromagnetic model, we can analytically study the symmetry and the parameter

dependence. Intra band contribution is inverse proportion to the disorder broaden-

ing, while inter band is proportion to this parameter. A special intrinsic component

exists for the inter band term which is independent of disorder broadening. In the

study of the more realistic material Ga1−xMnxAs, we see the same parameter de-

pendence which indicates the nature of these torques. The complex band structures

of Ga1−xMnxAs add higher harmonics in the magnetization dependence of SOT and

change the overall magnitude, which show the competition of the different symmetry

and asymmetry terms in the Hamiltonian.

Comparing with the ferromagnets, SOT in antiferromagnets are more complicated

and interesting. We need to project the non-equilibrium spin density onto sub lattices

to study the effects of SOT on the magnetic orders. An interesting result is that a

lateral electrical current in antiferromagnets can induce non-equilibrium Neel-order

fields, i.e., fields whose sign alternates between the spin sub lattice, which can trigger

ultrafast spin-axis reorientation. In the 2D AFM model, due to the 2D nature, the

spin-orbit torques can have very large magnitudes if we tune the Fermi energy to

certain level. The study of 3D non collinear antiferromagnet IrMn3 show that SOT
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can exist in this material and may play important role in the magnetization dynamics.

All of our simulations assume a static magnetic configuration. We can easily

generalize SOT to the study of magnetization dynamics if we know the equation

governing the dynamics, e.g. LLG equation in ferromagnets. This is a very in-

teresting project because the results from dynamics study can be compared with

experimental observations directly. However, the magnetization dynamics in com-

plex AFM (for example IrMn3) is very complicated. This area is still under intensive

research.

To conclude, our results provide us a nonvolatile approach of manipulating the

magnetic orders in the spin-based devices, which is the future trend in the novel mem-

ory devices. The parameter dependence studies enable us to optimize these devices

using doping control and structural design. Compared with the ferromagnetic ma-

terial based devices, SOT effects make the antiferromagnetic material based devices

even better candidates with faster spin switching, lower switching current density,

and better stability in the presence of external magnetic fields. In addition to these

future applications, SOT effects are also important for unveiling the rich underlying

physics and symmetry of various complex electric magnetic coupled systems.
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APPENDIX A

EQUIVALENCE BETWEEN KUBO AND GRGA-GRGR

The Green’s function formula is

δ~s =
h̄

2πL2
Re

∑
~ka,b

(~s)ab(e ~E · ~v)ba[G
A
~ka
GR
~kb
−GR

~ka
GR
~kb

], (1)

where the Green’s functions are GR
~kα

(E)|E=EF ≡ GR
~kα

= 1/(EF −E~kα + iΓ), with the

property GA = (GR)∗. Here, L is the dimension of the 2D sample, e is the charge of

electrons (negative), and Γ is the spectral broadening. For small Γ, we have Kubo

formula for intra band contribution

δ~sintra =
1

L2

∑
~ka

h̄

2Γ
(~s)~ka(e

~E · ~v)~kaδ(E~ka − EF ). (2)

And inter band contribution is given by two terms

δ~sinter = δ~s(1) + δ~s(2), (3)

with

δ~s(1) = − h̄

L2

∑
~ka6=b

2Re[(~s)ab(e ~E · ~v)ba]
Γ(E~ka − E~kb)

[(E~ka − E~kb)2 + Γ2]2
(f~ka − f~kb)

δ~s(2) = − h̄

L2

∑
~ka6=b

Im[(~s)ab(e ~E · ~v)ba]
Γ2 − (E~ka − E~kb)2

[(E~ka − E~kb)2 + Γ2]2
(f~ka − f~kb). (4)

We compare these two sets of formulae numerically in the 2D FM system with

the parabolic band description of the kinetic term ( h̄2

2m∗
= 3.0eV, Jsd = 1.0eV, VSO =

111



0.1eV ). Figure A.1, A.2, A.3 show that these two sets of formulae match quite well

at small Γ.
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Figure A.1: y component of the intra band SOT.
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Figure A.2: y component of the inter band SOT.
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Figure A.3: z component of the inter band SOT.
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APPENDIX B

RASHBA SPIN-ORBIT COUPLING IN SECOND QUANTIZATION

Rashba spin-orbit coupling is given by

HR =
α

h̄
(σxpy − σypx) (5)

or

HR = α(σxky − σykx) (6)

where α is the strength of the Rashba spin-orbit coupling. In second quantization

we have

HR =
∫
d2x(−iα)ψ†(σx∂y − σy∂x)ψ. (7)

Transforming to the atomic-like basis using

ψ(~r) =
∑
iσ

wσ(~r − ~Ri)ciσ (8)

ψ†(~r) =
∑
iσ

w∗σ(~r − ~Ri)c
†
iσ,

where σ is spin index. We replace the derivative by the difference

∂xwσ(~r) =
wσ(~r + ~δx)− wσ(~r − ~δx)

2a
; (9)

∂ywσ(~r) =
wσ(~r + ~δy)− wσ(~r − ~δy)

2a
. (10)
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For the nearest neighbor approximation, we have

HR = −iα
∫
d2x

∑
ijσσ′

[w∗σ(~r − ~Ri)c
†
iσ(σx∂y)wσ′(~r − ~Ri)cjσ′ (11)

−w∗σ(~r − ~Ri)c
†
iσ(σy∂x)wσ′(~r − ~Ri)cjσ′ ]

=
−iα
2a

∑
ijσσ′

∫
d2x{w∗σ(~r − ~Ri)(σx)[wσ′(~r − ~Ri + ~δy)− wσ′(~r − ~Ri − ~δy)]c

†
iσcjσ′

−w∗σ(~r − ~Ri)(σy)[wσ′(~r − ~Ri + ~δx)− wσ′(~r − ~Ri − ~δx)]c
†
iσcjσ′}

Using the orthogonal relation of the basis, we get the results

HR =
α

2a

∑
i

[(c†i↑ci+δx↓ − c
†
i↓ci+δx↑)− i(c

†
i↑ci+δy↓ + c†i↓ci+δy↑) + H.c.]. (12)

And VSO = α/2a in the previous formula.
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