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ABSTRACT 

Microbialite carbonate deposits are highly influenced by environmental settings, 

resulting in a large variety of depositional textures and fabrics. Pore systems in these 

deposits have a primary relation to the dominant depositional texture, which is later 

modified by diagenesis. Therefore, recognizing the textural controls on the pore system 

development and petrophysical characteristics is important to enhance the reservoir 

quality prediction in subsurface. Three microbialite carbonate deposits on different 

basins and ages were studied to address the effectiveness of these controls. 

The first deposit, documented in chapter I, is a microbialite build-up formed in 

the Holocene lagoon Lagoa Salgada in Brazil. This deposit has undergone minimum 

diagenetic evolution, and textures and pore systems are directly correlated. Their 

textures and pore systems were evaluated by computed tomography and petrography. 

Stratigraphic interpretation and carbon and oxygen stable isotopes link these changes to 

depositional settings. The results show that large structure size, open packing and 

chaotic fabric form a better primary pore system. 

The second deposit is the subsalt microbialite carbonates formed in lacustrine to 

lagoonal settings in the Santos Basin, Brazil. These carbonates have high heterogeneity 

in terms of textures and pore systems. Texture analysis indicated that particle size is a 

primary control on pore size and permeability, whereas sorting influences the porosity, 

and the permeability, and packing is a secondary control on porosity. Cements reduce 



iii 

the final pore system, while dissolution enhances it. These results are presented in 

chapter II, and supplemented with log interpretation in Appendix A. 

The third deposit, documented in chapter III, is an outcrop with lacustrine 

microbialite carbonates of the Eocene Green River Formation in Utah. Computed 

tomography and petrography were used to characterize pore systems and their relations 

to textures. In these deposits, pore systems derived from chaotic and open fabrics are 

better developed, with larger pores and higher connectivity than those derived from 

organized and tight fabrics. Stratigraphic relations indicate a strong depositional control 

on the distribution of microbialite textures throughout the outcrop. 
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CHAPTER I  

THREE-DIMENSIONAL PORE CONNECTIVITY EVALUATION IN HOLOCENE 

AND JURASSIC MICROBIALITE BUILD-UPS1 

Overview 

Microbial carbonates have complex pore networks formed by their biological 

growth framework, which later may be modified by diagenetic alteration. A proper 

evaluation of the porous media characteristics and their evolution is essential to better 

characterize microbial carbonate reservoirs. However, conventional methods of 

fundamental rock characteristic description are insufficient to elucidate the heterogeneity 

of pore networks and textural shifts. X-ray computed tomography allows a better 

evaluation of these fundamental characteristics, which integrated with stratigraphic 

analysis enhances understanding of the volume and connectivity of pore networks in 

different microbial textures.   

A three-dimensional evaluation of a Holocene microbialite from Brazil provides 

insights about how the primary pore network is related to textural changes in 

microbialite successions, which in ancient deposits may be reduced or enhanced by 

diagenesis. Conventional methods such as petrography, carbon and oxygen stable 

isotopes analysis and laboratory measurements for porosity and permeability were 

1 This chapter was published in the American Association of Petroleum Geologists Bulletin, Volume 97, p. 
2085 – 2101. Copyright ©2013. Reprinted by permission of the AAPG whose permission is required for 
further use. 
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integrated with computed tomography images and three-dimensional rendering to 

provide a high-resolution history of the evolution of porosity and permeability within 

this microbialite.  

The pore network differences are related to the microbial textural evolution 

driven by environmental changes. The depositional textures control the petrophysical 

properties based on fundamental rock characteristics such as: structure size, structure 

packing and framework fabric. Those fundamental characteristics influence the pore 

volume and number of pore throats. Large structures, open packing, and chaotic 

framework fabric result in a better connected pore network, whereas small structures, 

tight packing and organized fabric result in less connected pore networks. Comparative 

pore geometry analysis of Late Jurassic Smackover Formation thrombolites show that 

their depositional textures also had high primary porosity values. If the microbial 

textures and petrophysical properties are environmentally controlled, their prediction in 

the subsurface is possible by refined depositional models. 

Introduction 

The principal goal of reservoir characterization is to construct three-dimensional 

images of petrophysical properties (Lucia, 2007). The evaluation and quantification of 

porous media are essential steps for this construction (Bowers et al., 1995). In carbonate 

reservoirs the analysis of the evolution of the porous media also is important, since they 

record textural shifts and they are easily modified by diagenetic processes. These steps 

become critical when working on microbial carbonates, because the porosity within 
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biological framework of these rocks generally has complex geometries and complex 

network connection patterns. 

Carbonate reservoirs are influenced by depositional and diagenetic processes 

which control texture, fabric and pore geometries (Choquette and Pray, 1970; Tucker 

and Wright, 1990; Moore, 2001). Pores related to microbial textures have properties that 

reflect biological processes rather than mechanical sedimentation of loose grains (Ahr, 

2008). These pore networks require detailed descriptions of the fundamental 

characteristics, such as texture and fabric, for an appropriate evaluation of the 

petrophysical properties (Verwer et al., 2011). Conventional methods of fundamental 

rock characteristic description are insufficient to elucidate the heterogeneity of pore 

networks in microbial carbonates. Computed Tomography (CT scan) volumes are a 

powerful tool that allows for the recognition of fundamental rock characteristics and the 

pore network elements to a degree not matched by conventional methods. Two-

dimensional (2D) and three-dimensional (3D) reconstructions better resolve the 

heterogeneity of pore and pore throat geometries and how these influence pore network 

changes in conventional and complex reservoirs (Ehrlich et al., 1991; Anselmetti et al., 

1998; Xu et al., 1999; Akin and Kovscek, 2003; Ashbridge et al., 2003; Hidajat et al., 

2004; Okabe, 2004; Ketcham and Iturrino, 2005; Glemser, 2007; Okabe and Blunt, 

2007; Padhy et al., 2007; Al-Kharusi and Blunt, 2008; Čapek et al., 2009). 

The results of a 3D reconstruction of a Holocene microbialite build-up, whose 

diagenetic processes are minor and do not affect the depositional patterns provides a 

better understanding of how the pore networks evolve within the depositional framework 
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evolution. This analysis integrates conventional methods such as petrography, carbon 

and oxygen stable isotopes, and laboratory measurements for porosity and permeability, 

with CT scan image analysis and 3D rendering to provide high-resolution history of the 

evolution of porosity and permeability within this microbialite.  

The results of this analysis were compared with a cathodoluminescence 

petrographic analysis of the pore network in a Late Jurassic Smackover Formation 

thrombolite and indicate that the thrombolites primary pore networks have similar 

characteristics that are controlled by their depositional textures. The Late Jurassic 

Smackover Formation thrombolite depositional porosity was estimated to be very high, 

up to 59%. However, subsequent diagenetic events reduced the final porosity of the 

Smackover Formation thrombolite to a range of 6 to 12%. The diagenetic alterations of 

the rock framework may be influenced by the primary pore geometry and pore 

connectivity (Morse and Mackenzie, 1990) that are related to the microbial texture. 

Thus, it is important to understand how the microbial texture controls the primary pore 

network characteristics under different environmental conditions. 

Geologic setting 

Lagoa Salgada microbialites 

Holocene microbialites (figure I.1) grew on the west side of an isolated coastal 

lagoon (Lagoa Salgada) located in the Paraíba do Sul deltaic complex, in Campos dos 

Goytacazes, Rio de Janeiro, Brazil (Srivastava, 1999; Silva e Silva et al., 2007). The 

lagoon was formed 3850 ±200 BP (Srivastava, 1999) by sea level rise and the formation 



 

5 

 

of coastal barriers by longshore spit progradation (Dias and Kjerfve, 2009; Dominguez, 

2009). The lagoon formed within a seasonal climate, and its water chemistry fluctuated 

from normal to hypersaline in response to the low precipitation rates from February to 

April. These conditions were dominant until the 1980s, when the lagoon was connected 

to a nearby river for agricultural purposes (Srivastava, 1999).  

 
 
 

 

Figure I.1. Satellite maps show the location of the Lagoa Salgada (highlighted box), 
and the microbialite build-up sampling site on the western margin (white arrow). 

 
 
 

Deltaic sediments (figure I.2) were deposited unconformably above Neogene 

continental sandstone of the Barreiras Formation, and they grade upward from medium 

to coarse marine sandstone into prodeltaic mudstone that is overlain by fine to medium 

deltaic and beach ridge sands (Lemos, 1995; Dias and Kjerfve, 2009). The lagoon 

sediments are skeletal grains, microbialite build-ups, microbial mats and mudstone 
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(Srivastava, 1999). The microbialites (figure I.1) formed only on the west side of the 

lagoon as a rim of laterally continuous bioherms, with irregular width. These 

microbialites vary in thickness, and morphology from thin laminated crusts to 0.6 meter 

thick coalescent build-ups (Srivastava, 1999). The microbialite in this study began 

growing on a cemented hardground surface that formed on the top of sandstone rich in 

brackish and marine fossils (Dias, 1981; Srivastava, 1999; Iespa et al., 2008) at 2260 

±80 BP, and ceased growth at 290 ±80 BP (Coimbra et al., 2000). 

The microbialite growth rate varied in accordance to seasonal variations in 

climate and aerobic conditions (Vasconcelos and McKenzie, 1997; Coimbra et al., 

2000). These changes are related to the major differences in the framework texture 

(Coimbra et al., 2000).  Texture attributes such as size, fabric and packing of the 

microbial framework structures allow for the differentiation of the depositional textures. 

Carbonate mudstone and accumulations of microbialite fragments, gastropod, bivalve, 

ostracod, and vertebrate fragments commonly are associated with the microbialites 

(Srivastava, 1999), and occasionally occur in channels between the microbialite build-

ups. The diagenetic processes in these microbialites are early carbonate rim cementation 

and meteoric dissolution (Iespa et al., 2008).  

Late Jurassic Smackover Formation thrombolite 

The Late Jurassic Smackover Formation records carbonate deposition on a 

carbonate ramp (Ahr, 1973), during a major transgression during the formation of 

oceanic crust in the Gulf of Mexico and thermal subsidence due to cooling (Nunn et al., 
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1984; Mancini et al., 1999). Smackover Formation reefs consist of cyanobacteria 

(microbial buildups) or a more diverse coral-algal assemblage (Baria et al., 1982). In 

Little Cedar Creek Field, southeast Alabama, the Smackover Formation microbial 

buildup consists of microbial mats at its base and thrombolite (reservoir facies) in the 

top. The thrombolite is composed mainly by peloids, and rare skeletal grains (benthic 

foraminifera and green algae).  

Methods 

A microbialite build-up (figure I.3) 25 cm (9.84 inches) high and 30 cm (11.81 

inches) wide from the Lagoa Salgada was described, scanned by computed tomography 

and sampled for petrography, stable isotopes, porosity, and horizontal permeability. All 

data was integrated to allow an improved geological interpretation of the pore networks 

at different scales. 

X-ray computed tomography 

X-ray computed tomography is used to scan rock samples, and render volumes in 

voxel units (Ketcham and Carlson, 2001; Mees et al., 2003; Van Geet et al., 2003; 

Ketcham and Iturrino, 2005). The main purpose of this technique is to predict the 

petrophysical parameters and model their results (Akin and Kovscek, 2003; Van Geet et 

al., 2003; Hidajat et al., 2004; Glemser, 2007; Okabe and Blunt, 2007), a major 

objective in the reservoir characterization. Nevertheless, the use of the geologic 

information is reduced to lithology and pore type classification. Adding geologic 
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information can produce better predictive models related to depositional and diagenetic 

settings (Grochau et al., 2010). 

Figure I.2. Schematic stratigraphic column for the Paraíba do Sul deltaic complex. 
The thickness of each interval changes laterally along the deltaic complex. Modified 
from Lemos (1995), and Dias and Kjerfve (2009). 
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A set of 384 axial slices were obtained with spacing of 1.25 mm (0.05 inches) in 

a 16 channel BrightSpeed GE® CT scanner, with X-ray voltage set at 130 kV, current at 

100 mA, and image resolution of 0.5 x 0.5 mm (0.02 x 0.02 inches). The data from the 

CT scanner at the PETROBRAS Research Center in Rio de Janeiro was converted, using 

in-house algorithms, to SEGY file format to use seismic volume interpretation software 

from commercial and in-house developers. This allowed a numeric and well defined 

segmentation for the volumes of the pore networks and the rock framework.  
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Figure I.3. (A) Photograph of the microbialite build-up. The growth cycles, 
erosional surface (red dotted line) and sampling points for cores (red circles with 
white fill) and stable isotopes (yellow boxes) are shown. (B) Interpreted section 
labeled for different depositional textures (stromatolite, thrombolite, digitate 
stromatolites and grainstone). The green material that cover some areas on the 
sample are surface coloring by encrusting algae. 
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Once the volumes were segmented and rendered, the total porosity was 

quantified for the entire sample and for each sub-volume of interest, using the software 

algorithms for volume quantification. The method to calculate the porosity from CT 

slices is well known and is based on the difference of attenuation coefficients of the rock 

and fluid (Withjack, 1988; Ketcham and Iturrino, 2005).  The precision on these pore 

volumes was limited to millimeters due to the tomograph resolution.  

Sagittal (horizontal) slices were reconstructed from the 3D matrix of attenuation 

values obtained by CT scanning. These slices cut the sample horizontally, producing 

simulated time-slice maps. These maps were useful to explain the vertical evolution of 

depositional elements and pore networks. Furthermore, using the sagittal (horizontal), 

coronal (vertical), and axial (vertical) planes the fundamental rock properties such as 

size, internal morphology and packing were described, measured and correlated to 

changes in the porous media properties.  

Carbon and oxygen stable isotopes 

Continental carbonates are sedimentary deposits highly influenced by their 

environmental settings. Small changes in climate conditions and water chemistry result 

in large differences between two contiguous deposits (Alonso-Zarza and Tanner, 2010). 

Thus, a good stratigraphic interpretation of continental carbonate deposits must evaluate 

all the environmental variables, which is complicated by the overprinting influence of 

subsequent meteoric, marine or burial diagenesis. 
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In carbonate rocks, the porous media derive from the depositional texture and 

later dissolution and cementation during diagenesis (Lucia, 2007; Ahr, 2008). 

Continental carbonates due to their higher susceptibility to environmental changes also 

may have abundant vertical heterogeneity. Therefore, the δ13C and δ18O analysis for 

these rocks are essential to constrain the environmental interpretation of the depositional 

controls on the pore media. 

Eleven bulk rock samples were collected vertically at regularly spaced intervals 

(~2 cm; 0.8 inches each) along a profile of the microbialite build-up (figure I.1). The 

samples were analyzed at the PETROBRAS Research Center stable isotope facility using 

an automated carbonate device (KIEL IV) linked to a dual inlet Delta V Plus Thermo® 

Finnigan isotope ratio mass spectrometer. Results are presented as values compared to 

VPDB.  The analytical precision for this set of samples was δ13C = 0.05‰ VPDB and δ18O 

= 0.10‰ VPDB.

Petrophysics 

Two horizontal cores, 1.5 inch long and 1 inch wide, were analyzed under a 

pressure of 500 psi using the Corelab® Ultrapore-300 p300 porosimeter and the 

Corelab® Ultra-perm 400 permeameter at the PETROBRAS Research Center. These two 

cores were drilled where the depositional texture is homogeneous, insuring the measured 

values correspond to differences in texture and pore geometries. 
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Petrography and cathodoluminescence 

Standard petrography and cathodoluminescence analysis were used to 

characterize microfabrics, diagenetic features and porosity in a representative sample for 

the Smackover Formation thrombolite, 2.54 cm (1 inch) diameter plug taken from core. 

Cathodoluminescence analysis was performed using Technosyn® cold cathode 

luminescence equipment, model 8200 MK II.  Operating conditions for the analysis were 

10 KeV accelerating voltage and 300 µA current.  The differences in the cement 

morphology and cathodoluminescence color and intensity were used as criteria to 

reconstruct the primary porosity network of the Jurassic thrombolite. 

Results 

Lagoa Salgada microbialite depositional textures 

Four microbial depositional textures are differentiated in the Lagoa Salgada 

microbialite: planar stromatolite, thrombolite, small digitate stromatolite, and large 

digitate stromatolite and (figure I.3). While these four depositional textures are 

representative of the microbialite at this site, different textures may occur in other 

microbialite deposits. The microbial structures are composed of micritic peloids and 

bound skeletal fragments, oncolite, quartz grains, and syndepositional calcite cement. 

The thrombolites have a massive internal structure and the stromatolites laminated 

(figure I.4). The planar stromatolites are characterized by crinkly laminations, with 

horizontal fabric, open packing, and structure size smaller than 5 mm (0.2 inches).  The 

porosity in the planar stromatolite texture is fenestral with simple pore geometry, pore 
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size mean less than 1.5 mm (0.05 inches), and a low number of pore throats (0 to 2). The 

thrombolites are composed by interconnected and morphologically irregular branches, 

with chaotic fabric, open packing and structure size large than 2 cm (0.8 inches) (figures 

I.3 and I.4). The pore geometry within the thrombolite intervals is complex, with pore 

size mean higher than 5 mm (0.2 inches), and a high number of pore throats (2 to 6). The 

digitate stromatolite grew vertically divergent touching digits, with tight internal packing 

(figures I.3 and I.4). The structure size varies from small digits, with height lower 1 cm 

(0.39 inches) to large digits, with height higher than 1 cm (0.39 inches). The pore 

geometry is simple, with low to medium number of pore throats (0 to 4). The mean pore 

size is 1.5 mm (0.05 inches) in the small digitate stromatolites and higher than 3 mm 

(0.12 inches) in the large digitate stromatolite. These data are summarized on table I.1.  

Early carbonate rim cementation and meteoric dissolution are the most evident 

diagenetic modifications in these microbialite build-ups. However, neither of these 

events substantially modified the depositional texture, because they are not expressive 

on thin sections, and the microbial framework boundaries are very well preserved (figure 

I.4).  

Stable isotopes 

Carbon and oxygen isotope values for bulk rock, in the Holocene microbialite 

build-up range from 7.7 to 18.7‰ δ13C VPDB, and -0.8 to -3‰ δ18O VPDB, with an average 

of 14.7‰ δ13C VPDB, and -1.8‰ δ18O VPDB (figure I.5). These enriched 13C values suggest 

that the carbonate precipitation occurred from bacterial methanogenesis (Talbot and 

Kelts, 1990). The dominant mineral phase for this microbialite is calcite, with minor 
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concentrations of aragonite near the base of the sample as determined by infrared 

spectroscopy. 

 
 
 

 

Figure I.4. Photomicrographs for the thrombolite (A and B), and stromatolite (C 
and D) textures (plain polarized light on left and cross polarized light on right). The 
thrombolite texture is massive and has a chaotic growth pattern. The stromatolite is 
laminated and with an organized growth pattern. Micritic peloids are the main 
building block for both textures. The peloids are bounded by calcium carbonate 
cements. The non-carbonate grains are quartz and undifferentiated feldspars.  
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Table I.1. Depositional texture and pore network characteristics described for each 
interval on the build-up. 

Smackover thrombolite primary porosity reconstruction 

The initial pore space of the Smackover Formation thrombolite sample, 

calculated by analyzing petrography and cathodoluminescent images was 40% (figure 

I.6), similar to the porosity value of the Holocene thrombolite. The first cementation 

phase was mosaic calcite cement that reduced the initial pore space 6%. The final 

cementation phase was blocky calcite cement that reduced the porosity by up to 27%. As 

a result, after these cementation phases 33% of the initial pore space was filled and the 

final porosity is 7%. 

Growth 
Cycle 

Depositional 
Texture 

Fabric Packing Structure 
Size 

Pore 
Geometry 

Mean 
Pore Size 

Number of 
Pore 
Throats 

Pore 
Network 
Connectivity 

1 Planar 
Stromatolite 

horizontal open Small 
(<0.5 cm) 

Simple 1.5 mm 0 to 2 Low 

1 Thrombolite chaotic open Large 
(>2 cm) 

Complex > 5 mm 2 to 6 High 

1 Small 
Digitate 
Stromatolite 

vertical very tight Small 
(<1 cm) 

Simple 1.5 mm 0 to 2 Low 

2 Large 
Digitate 
Stromatolite 

vertical tight Large 
(>1 cm) 

Simple > 3 mm 0 to 4 Medium 

2 Thrombolite chaotic open Large 
(>2 cm) 

Complex > 5 mm 2 to 6 High 

2 Small 
Digitate 
Stromatolite 

vertical very tight Small 
(<1 cm) 

Simple 1.5 mm 0 to 2 Low 

*Structure size was measured on the sample. Pore size and number of pore throats were measured in the rendered volume.  Fabric, 
packing, pore geometry and pore network connectivity are qualitative characteristics by visual estimative. 
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Figure I.5. Stratigraphic profile described for the microbialite build-up, δ13C VPDB 
and  δ18O ‰ VPDB. The isotopic values increase towards the thrombolite intervals 
and decrease towards the stromatolites intervals indicating higher methanogenesis 
rate for the thrombolite intervals. The strong shift in the δ13C ‰ and  δ18O ‰ 
values across the discontinuity resulted from a more humid climate condition that 
brought 16O rich meteoric waters to the lagoon reducing, the evaporative trend and 
decreasing the rate of methanogenesis by more oxygenated bottom waters. 
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Figure I.6. (A) Upper Jurassic Smackover Formation thrombolite, Little Cedar 
Creek Field, Alabama. The greyish colors are the microbial structures and the 
brownish colors are diagenetic cements. (B) Thin section image showing the 
microbial structures formed by syndepositional peloids cementation (dark 
components), mosaic and blocky calcite diagenetic cements (bright yellow colors) 
and pores (blue colors). (C) Cathodoluminescent thin section image. The microbial 
structures are dull, the calcite mosaic cement phase has low bright brown color and 
the blocky calcite cement has a zonation from low bright brown to bright yellow 
colors. (D) Reconstruction of the original microbial framework and subsequent 
cementation phases. The microbial structures are shown in brown, the calcite 
mosaic cement is shown in pink, the blocky calcite cement is shown in purple and 
the pores are shown in light blue. 
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Discussion 

Evolution of the Lagoa Salgada microbialite build-up 

Microbial growth initiated in the Lagoa Salgada when the enclosed water body 

achieved high salinity and low levels of dissolved oxygen. These environmental 

conditions allowed reactions of methanogenesis and carbonate precipitation by microbial 

metabolism (Kelts and Talbot, 1990; Vasconcelos and McKenzie, 1997; Konhauser, 

2007; Pueyo et al., 2011). Changes in the environmental conditions controlled the 

microbial growth rates, depositional textures, and the carbon and oxygen stable isotopic 

values (Coimbra et al., 2000).  

Strong evaporative conditions and anoxic bottom waters prevailed during the 

driest periods, increasing microbial growth and methanogenesis rates, which resulted in 

rapid carbonate precipitation with high values of δ13C and δ18O. The rapid carbonate 

precipitation formed a more chaotic fabric by disorganized accretion processes, 

producing the thrombolite textures (Konhauser, 2007). As the environment returned to 

humid conditions, the influx of meteoric waters reduced the potential for 

methanogenesis, and this resulted in slower growth rates (Coimbra et al., 2000), lower 

δ13C and δ18O values and well organized fabric, including well defined lamination and 

tighter packing that characterize the stromatolite textures. Planar stromatolites formed 

during the initial growth phase, when the environmental conditions reached proper levels 

to stabilize the microbial community.  
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As a result of environmental fluctuations, two growth cycles, separated by an 

erosional surface, formed the microbialite build-up. Both cycles have their own 

characteristics in terms of succession of the depositional textures and thickness of each 

interval. 

The first cycle (figure I.3) starts with a phase of planar stromatolite development 

on a hardground pavement cemented by calcium carbonate. These stromatolites evolve 

upward into a columnar external morphology that initiated on topographic highs (e.g. 

ripple marks and bivalve shells) of the hardground pavement.  Flow channels formed 

between the columns (figures I.3 and I.7), and they generally are filled by skeletal grains 

(e.g. gastropods). The δ13C and δ18O values are low and decrease upward (figure I.5), 

which may record a relative increase on humidity during this depositional phase.  

The second growth phase is characterized by chaotic branching thrombolites 

(figures I.3, I.4 and I.7), with massive internal texture. These branches grew with well-

spaced packing, producing a large and well-connected pore network. This phase was 

previously interpreted to result from the destruction of the original laminated texture by 

feeding organisms (Srivastava, 1999; Silva e Silva et al., 2007; Iespa et al., 2008). 

However, the highest δ13C and δ18O values (figure I.5) suggest a high rate of 

methanogenesis, better microbial productivity and rapid carbonate precipitation during 

this phase (Sumner, 2001; Konhauser, 2007; Conrad et al., 2011), producing the chaotic 

thrombolite texture. Lower humidity environmental conditions also are suggested by the 

higher growth rates (Coimbra et al., 2000), and the lack of skeletal grains within the 

thrombolite (figure I.4). 



 

21 

 

Figure I.7. “Time” slice series for the microbialite build-up. On the left plate, the 
horizontal and vertical arrows show the directions incremental height from the 
bottom to top. The slices are spaced 1.22 mm apart. This plate allows the 
interpretation of the build-up evolution, showing the upward shift and lateral 
distribution of internal depositional textures, and changes on the external 
morphologies, from individual to coalesced heads. A main flow channel and several 
secondary channels are partially filled with grains visible on these slice series. On 
the right plate selected slices to show specific features (red outlines), such as 
channels (white arrows), phases of head individualization and coalescence, and 
each depositional texture. These selected slices are numbered, and identified by 
color margins on the slice series. The first three slices are on the growth cycle 1 and 
the last three are on the growth cycle 2. Slice 37 is in the planar stromatolite 
interval, two individual heads are visible separated by a flow channel filled by 
grains. Slice 57 is in the first thrombolite interval, several round branches with an 
open packing define the main aspect of this depositional texture, the heads started 
to coalesce during this phase. Slice 80 is in the small digitate stromatolite, whose 
heads are totally coalesced and the channel between heads is closed. The packing is 
tight, which resulted in small isolated pores (black spots). Slice 94 is at the base of 
the large digitate stromatolite interval of cycle 2. The growth initiated as isolated 
heads, and a large channel filled by grains was developed in between heads. Slice 
112 is at the top of the large digitate stromatolite interval, the individual heads are 
visible with a well-connected channel system. The tight packing and the vertical 
pore network orientation isolated the framework porosity that appears as dark 
circular zones in each head. Slice 149 is in the second thrombolite interval defined 
by round branches and open packing. The heads coalesced at this phase and 
enclose the channel system. The small digitate stromatolite cap the microbialite 
build-up appears as a rim around the build-up on slices 112 and 149. 

 

 

 

 

 

 

 



22 

Figure I.7.  Continued. 

Small digitate stromatolites record the final growth phase of the first cycle 

(figure I.3). The digits touch each other in a tight vertical growth framework. They 

spread laterally and cover the thrombolite structures formed earlier, allowing the 

individual build-ups to coalesce (figure I.7). This growth behavior suggests a time of 

more stressful environmental conditions for the microbial community, with reduction of 

the methanogenesis rate expressed as lower values of 7.7‰ δ13C‰ VPDB and -2.6‰ δ18O 

VPDB (figure I.5). This cycle of microbial growth was interrupted and the system 
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underwent erosional processes. Intraclasts and skeletal grains accumulated as sediments 

in ponds and cavities along the structures. 

The second growth cycle begins with a thin planar stromatolite that acted as a 

veneer covering the erosional surface and grain deposits. Following this initial phase, 

large digitate stromatolites formed when the system began to return to arid conditions. 

Each set of digits formed an individual build-up with flow channels between them 

(figure I.7). The δ13C and δ18O values increase upward in a trend of intensification of 

methanogenesis rate and evaporative conditions (figure I.5). The δ18O profile has a shift 

near the base of the cycle from relative high values to low -1.4 to -3.0‰  δ18O VPDB 

(figure I.5); this shift is related to influx of 16O-rich meteoric waters.  

The digitate stromatolite graded upward to thrombolite with massive internal 

structure and a less oriented growth pattern (figures I.3 and I.4). Individual build-ups and 

well-connected flow channels persisted in this third phase (figure I.7). This textural 

change is coincident with a narrow range of more positive values in stable isotopes (18.7 

to 18.5 δ13C ‰ VPDB and -1.2 to -0.8 δ18O ‰ VPDB) within this second growth cycle 

(figure I.5). The final growth phase is recorded by the development of small digitate 

stromatolites. Similar to the final phase of the first cycle, the small digitate stromatolites 

grew in a tightly packed vertical growth pattern. During this phase, coalescence of 

individual build-ups shaped the build-up external domal morphology. 

 

 



 

24 

 

Evolution of the Lagoa Salgada microbialite porous media 

The texture and fabric of each interval created differences in pore geometries and 

pore connection patterns, in the growth framework porosity at each interval, which are 

best evaluated on CT scan volumes. Furthermore, depositional elements such as flow 

channels connect different porosity areas and textural intervals. The planar stromatolite 

and thrombolite of the first cycle, and the large digitate stromatolite and small digitate 

stromatolite of the second cycle were isolated in the volume. The best-connected pore 

network occurs in the thrombolite interval, because even though it has more complex 

pore geometries, it also has a higher number of connected pores, resulting from the 

chaotic fabric and open packing. The stromatolite intervals with their oriented fabrics 

and tight packing have the worst pore connection patterns, which are horizontal in the 

planar stromatolites and vertical in the digitate stromatolites. The size and packing of the 

structures also control the pore connectivity in these intervals. In small digitate 

stromatolites, which have small structure sizes and tight packing, the pore volume and 

amount of connected pores are very low in comparison to the other stromatolite intervals 

on the build-up (figure I.8). 

Stromatolite 

The planar stromatolites have a simple horizontal pore geometry that interferes 

with the vertical connections between porous layers in this interval (figure I.8a). The 

pores also are segmented laterally or show narrow and few pore throats. The porosity 
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estimation for a 2 x 16 cm (0.8 x 6.3 inches) CT scan volume defined on this 

depositional texture is 11%. 

Thrombolite 

The thrombolite interval has the highest porosity with a well-connected pore 

network, inherited from its chaotic depositional fabric and high growth rate (figure I.8b). 

This pore network is enhanced when flow channels connect the space between the 

branches. The pore geometries are irregular, without a preferential orientation, and 

usually with four or more pore throats. These pore throats also vary in width, and a set of 

pores may have narrow pore throats besides wide pore throats (figure I.9).  The porosity 

and permeability values are 40.6% and 6.9 Darcys, respectively for a plug in the first 

thrombolite interval. The porosity value obtained by a 3 x 16 cm (1.18 x 6.3 inches) CT 

scan volume was 31.5%. The high permeability value – lacking compaction and 

cementation – is due to the well-connected pore network of this depositional texture. 
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Figure I.8. Pore networks from CT scan rendering in different depositional 
textures. (A) Planar stromatolite has horizontally oriented pore network that is 
poorly connected vertically. (B) Thrombolite interval has large pore volume with 
chaotic porous network formed by fast growth rates and no preferential growth 
pattern. (C) Large digitate stromatolite has large and vertically oriented pores 
produced by the open growth pattern. Some pores resulted from enclosing of flow 
channels during the coalescence of different heads in this interval. (D) Small 
digitate stromatolite has vertically oriented pores that are poorly connected due the 
tight packing. 
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Figure I.9. Detail of pore geometries and pore throats of the thrombolite texture. 
The pores have very irregular geometries and a wide size distribution, thus small 
and simple pores occur besides large and complex pores. The pore throats also have 
irregular distribution and differing diameters.  A set of pores may be connected by 
narrow and wide pore throats (black arrow). 

Large digitate stromatolite 

The large digitate stromatolite interval has a vertically oriented and laterally 

disconnected pore network (figure I.8c). The pores are usually large, being the space 

between large sets of packed digits. However, the number of pore throats is low and 

those are usually narrow, reducing the connectivity between the pores. The porosity and 

permeability values for a plug in this texture are 30.7% and 92.1 millidarcys, 

respectively. The porosity obtained on a 3 x 16 cm (1.18 x 6.3 inches) CT scan volume 
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on the same area where the plug was obtained is 12.1%. These diverse values indicate 

the complex nature of microbial pore network due to textural heterogeneity. The 

difference in horizontal permeability from the thrombolite interval to this interval 

reflects the change from an irregular and well-connected pore network to a poorly 

connected vertically oriented pore network. 

Small digitate stromatolite 

The small digitate stromatolites have few vertical oriented pores, which are 

barely connected due to their tight packing (figure I.8a). The small and narrow size of 

the digits and less space between them produced less pore space when compared to other 

textures. The porosity obtained in a 2 x 16 cm (0.8 x 6.3 inches) CT scan volume in this 

interval is 2.1%. However, channels between individual build-ups and areas with higher 

number of pores may link some of this more isolated porosity with the well-connected 

pore network of other intervals, as seen on the entire CT scan volume (figures I.10 and 

11). 

This evaluation of how the porous network evolved was also done for the entire 

build-up, providing insights into how depositional elements act as channels to connect 

different areas and intervals with diverse textures and pore networks (figures I.6, I.10 

and I.11). The porosity obtained from the CT scan volume of the entire sample is 25%. 

This value considers the presence of flow channels and other textures, such as the loose 

skeletal grains dispersed within some of these channels. Whereas the thrombolite 

intervals have higher porosity with large, chaotic and well-connected pores, they do not 
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represent by itself the entire volume and pore connectivity of the sample. The digitate 

stromatolite and the planar stromatolite textures reduced the overall porosity value, and 

due to their poorly connected and strongly oriented pore network will likely decrease the 

average permeability for the entire sample. The textural and pore network characteristics 

of the entire sample are given in Table I.1. Since these textures evolved from differing 

environmental conditions, it is possible to evaluate the primary porosity and predict the 

pore connectivity and model petrophysical properties. 

Figure I.10. CT scan rendered volumes for the microbialite build-up. The pores 
shown in blue and the rock constituents are shown in green (high attenuation) and 
in red (low attenuation). The high attenuation is caused by dense carbonate areas 
(binding cement) and the low attenuation is caused by microporosity in peloid rich 
areas. The flow channels between coalescent heads connect different pore intervals 
and areas along the build-up. 
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Figure I.11. CT scan rendered volume presented as the pore-rock boundary. The 
planar stromatolite appears at the base of the build-up with narrow horizontal pore 
geometries. The thrombolite is next visible texture, characterized by a chaotic and 
bright interval. This chaotic texture is due to a large volume of well-connected 
pores and chaotic fabric.  The small digitate stromatolite appears as small vertical 
pores isolated in a dark interval after the thrombolite. These three intervals define 
the growth cycle 1. The upper part of the build-up indicates the growth cycle 2 has 
a lower volume of pores compared to the growth cycle 1. The limit between the 2 
cycles is shown by a white dotted line. The large digitate stromatolite appears on 
the upper interval as large and vertical oriented bright areas. The thrombolite of 
the growth cycle 2 is visible on the chaotic bright are above the large digitate 
stromatolite. Channels between heads appear on the image as wide and tall vertical 
features on the middle of the build-up. These channels connect the large digitate 
stromatolite with the thrombolite intervals, and the two growth cycles.  The dark 
interval on top is the small digitate stromatolite low volume of pores, which capped 
the build-up. 
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Comparison to Late Jurassic thrombolite from Smackover Formation 

The comparison between ancient and recent microbialites can clarify some aspects of 

diagenetic evolution on these bioherms. Analyses of a Late Jurassic Smackover 

Formation thrombolite, deposited in ancient Gulf of Mexico embayments (Baria et al., 

1982), were compared to the Holocene thrombolite intervals in the microbialite build-up 

from Lagoa Salgada. This sample of the Jurassic Smackover Formation thrombolite has 

a microbial texture formed by irregular branches, chaotic fabric, and open packing that is 

similar to the Holocene thrombolite, (compare figures I.3, I.4 and I.6a). The original 

framework components of the Jurassic Smackover Formation thrombolite and the 

Holocene build-up are peloids and syndepositional cement.  

The Holocene thrombolite interval has a porosity value of 40.6%, whereas the 

Smackover Formation thrombolite has porosity values ranging from 6 to 12%. 

Analyzing petrographic and cathodoluminescence images of a sample from the Jurassic 

thrombolite (figures I.6b and I.c), the diagenetic history and the evolution of the porosity 

in this sample were reconstructed (figure I.6d). It was possible to observe how each 

diagenetic event modified the primary pore network (figure I.6d). The initial porosity on 

the Holocene thrombolite and in the Smackover Formation thrombolite are similar (c.a. 

40%), with irregular pore geometry inherited from the thrombolite depositional texture, 

chaotic fabric and open packing. 
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Application of data to production 

Microbialite porous media are very complex and difficult to describe using 

traditional methods (e.g. general attributes and petrography), so volumetric techniques, 

such as CT scan, are necessary to fully understand 3-D porous media. Furthermore, pore 

volumes provide insights into the amount of connected and non-connected pores, pore-

pore throat ratio, and allow their results to be upscaled during reservoir modeling 

exercises.  

The fundamental characteristics of structure size, structure packing and 

framework fabric help to predict the major changes on petrophysical properties. The 

differences in calculated porosity and measured porosity in the thrombolite, large 

digitate stromatolite, small digitate stromatolite and planar stromatolite indicate the 

importance of accurately defining fundamental characteristics for studies of porous 

media. Differences in permeability in the thrombolite and the large digitate stromatolite 

also are related to textural changes. Thus, the bigger the structures and the more chaotic 

is the fabric, better are the chances for high permeability and porosity to develop, 

whereas tight packing of microbial fabrics reduces both porosity and permeability.  

Once the controls on the depositional texture and external morphology are 

understood, computed models may be generated to build 3-D models for the evolution of 

microbialites and their porous media. During reservoir characterization projects much is 

done to build sedimentary, stratigraphic and petrophysical models, but in complex 
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reservoirs such as microbialites, they must be integrated to increase the quality of these 

projects aiming to more completely exploit the resource. 

Conclusions 

The pore networks of the microbialite build-ups analyzed formed under 

environmental and microbial influence, resulting in complex pore-pore throat relations, 

which were driven by the changes in depositional textures. In this case, the depositional 

pore networks changed as the microbial structures evolved. The depositional textures 

provide insights of pore network characteristics such as pore geometry and connectivity, 

based on the attributes of structure size, structure packing and framework fabric. Thus, 

refined depositional models become very important to the microbial reservoir 

characterization, and can add valuable information to the petrophysical evaluation. 

Two growth cycles occurred during the formation of the Lagoa Salgada 

microbialite build-up. The vertical succession of depositional textures shows a gradual 

increase in microbial production and carbonate precipitation, which transitions from 

organized to chaotic fabrics, and also towards the enlargement of structures and more 

open packing. The environmental changes are recorded in the δ13C and δ18O profiles, 

which pass upward from low values in the basal stromatolites to high values in the 

thrombolite intervals in the middle and return to low values to the top for both cycles.  

Internal flow channels occur between build-ups, and they formed lateral and 

vertical connection pathways along the microbialite build-ups. These channels may be 
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effective at reducing flow barriers and enhancing the vertical permeability in 

microbialite reservoirs.  

The comparison between the Holocene thrombolite and the Jurassic thrombolite 

indicates they had comparable primary pore networks, with similar porosity values, 

which were controlled by similar depositional textures. Thus, the identification of 

microbialite depositional textures, and their relationship to environmental changes, 

provides insights into understanding some primary pore network characteristics such as 

pore geometry and pore connectivity. This information, when related to diagenetic 

modifications of the rock framework, improves the correlation of the fundamental rock 

characteristics and petrophysical properties that is useful for rock type classification, 

formation analysis and reservoir modeling.  

CT scan volumes provide important detail about the pore networks that enhance 

the recognition of fundamental rock characteristics and porous media properties to a 

degree not matched by basic description and petrography. These types of scans are 

highly recommended for geological description of microbialites to better exploit these 

complex reservoirs. 
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CHAPTER II  

IMPORTANCE OF DEPOSITIONAL TEXTURE IN PORE CHARACTERIZATION 

OF SUBSALT MICROBIALITE CARBONATES, OFFSHORE BRAZIL2 

Overview 

Microbialite carbonates (e.g. stromatolites, thrombolites, shrubs and spherulites) 

are sedimentary deposits highly influenced by their environmental settings such as water 

depth, water chemistry and relative energy. Lower Cretaceous subsalt microbialite 

carbonates, in the Santos Basin (Brazil), have complex pore systems produced by their 

growth framework, which are related to carbonate precipitation by biotic and abiotic 

processes and also influenced by subsequent cementation and dissolution. Complex pore 

systems and high spatial reservoir heterogeneity result in reservoirs having total porosity 

ranging from 2 to 27% and permeability from less than 0.01 millidarcys to 4.9 Darcys. 

Differences in textural characteristics such as shrub size, sorting and packing lead to 

different pore systems that subsequently control the petrophysical properties. Cements 

and dissolution also modify these texturally controlled pore systems by respectively 

reducing or enhancing the pore volume and pore-throats. The shrub size is a primary 

control on changes in the pore size and affects the permeability, whereas the shrub 

sorting influences the primary porosity, and secondarily the permeability. Packing acts 

2 This chapter was published in the Geological Society of London Special Publications, Volume 418, First 
published online February 26, 2015. Copyright ©2015. Reprinted by permission of the Geological Society 
of London whose permission is required for further use. 
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as a secondary control on porosity. As result, a sample with small shrubs, well-sorted 

and tight packing has lower permeability for the same range of porosity than a sample 

with the same characteristics, but larger shrubs. 

Introduction 

Microbialite units have been intensely studied in recent years to address 

questions about the nature of the carbonate precipitation (Dupraz et al. 2009), the 

distribution and geometry of microbialite deposits (Harris et al. 2013) and the 

importance of establishing the relations between fundamental rock characteristics and 

petrophysical properties in hydrocarbon reservoirs formed or dominated by microbial 

induced carbonate precipitation (Tonietto & Pope 2013). A central element in these 

studies is the pore system. In microbialites, pores are formed or modified by biological, 

depositional and diagenetic processes, which leads to complex pore systems ( Parcell 

2002; Ahr 2008). Internal factors of each process can cause differentiation in texture and 

fabric of carbonate rocks that also affects pore system characteristics, such as pore and 

pore-throat sizes (Lønøy 2006; Lucia 2007; Ahr 2008; Verwer et al. 2011). Thus, the 

relative importance of these processes in the pore system development is the key to 

understanding the petrophysical properties within these reservoir rocks (Melim et al. 

2001; Parcell 2002; Mancini et al. 2004; Ahr 2008).  

However, microbialite textures and fabrics are heterogeneous as a result of 

diverse depositional environments, biotic and abiotic processes (Monty 1976; Burne & 

Moore 1987; Riding 2000; Riding 2011), and subsequent diagenetic modifications. This 
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heterogeneity obscures the direct link between microbialite textures, pore system and 

petrophysical properties. Textural controls on pore system characteristics and 

petrophysical properties in detrital carbonate rocks were outlined previously (McCreesh 

et al. 1991; Luo & Machel 1995; Dürrast & Siegesmund 1999; Melim et al. 2001). An 

approach to better understand these microbialite reservoirs is to describe their basic 

textural elements and mode of occurrence, relating them to differences in pore systems 

and petrophysical properties for each texture (Melim et al. 2001; Ahr 2008; Rezende et 

al. 2013). 

Such an approach is used here to evaluate Lower Cretaceous subsalt microbialite 

carbonate units in the Santos Basin (figure II.1) formed in transitional to marine settings 

(Dias 2005). There is an ongoing scientific debate about the origin and nature of 

microbialite carbonates in terms of biotic and abiotic processes that lead to carbonate 

precipitation (Chafetz & Guidry 1999; Pope et al. 2000; Dupraz et al. 2009; Rainey & 

Jones 2009; Mancini et al. 2013). Herein, these subsalt carbonate deposits are assumed 

as microbialites, which are defined as deposits formed by association between biotic and 

abiotic carbonate precipitation processes and detrital particles (Burne & Moore, 1987).  

These carbonates are highly heterogeneous in terms of texture, pore systems and 

diagenetic history. Plugs were selected in core sections with well-defined textures and 

fabrics to determine their porosity, permeability and capillary pressures to understand 

how fundamental rock characteristics relate to the interconnected pore network in these 

microbialites. The results suggest that textural aspects such as size, sorting, packing and 
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morphology of structures are fundamental controls on the porosity, permeability and 

pore-throat distribution within this reservoir. 

 

Figure II.1. (A) Inset map - The eastern shore of Brazil and the Federation States 
are shown. (B) Location map of the Santos and Campos basin on the south-eastern 
Brazilian margin. The white circle marks the approximate study area in the zone of 
deep-water subsalt reservoirs (shaded dark grey area). 
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Geologic setting 

Extensive Lower Cretaceous subsalt carbonate deposits (figure II.1) formed in 

shallow water environments in a compartmentalized sag basin along the south-eastern 

Brazilian coast (Bueno 2004; Dias 2005; Campos Neto et al. 2007; Moreira et al. 2007; 

Araújo et al. 2009;). Paleontological data suggest that Tethyan waters entered the basin 

through seaways to the north (Araí 2009). Microbialites and detrital carbonates formed 

in these shallow water environments in a transitional phase between previous continental 

settings characterized by fan deltas and lacustrine deposits (e.g. coquina banks) and 

overlying marine salt deposits (Winter et al. 2007). In the Santos Basin these carbonate 

deposits are included in the Barra Velha Formation (Moreira et al. 2007). 

Harsh hypersaline environmental conditions prevailed in these shallow 

environments because of evaporation in this arid setting (França et al. 2007; Araújo et 

al. 2009; Beglinger et al. 2012). Furthermore, the sedimentary basins were 

compartmentalized into proximal areas with siliciclastic sediments and distal areas 

where siliciclastic input was minimal and carbonate deposition flourished (Dias 2005; 

França et al. 2007; Moreira et al. 2007; Gomes et al. 2013). 

These subsalt microbialite carbonate deposits have different external 

morphologies and textures (Terra et al. 2009). The external morphologies of these 

microbial carbonates were related to water depth, water chemistry and environmental 

energy (Dias 2005; Araújo et al. 2009;). Furthermore, depositional textures in these 

microbialite deposits have diverse textural variations in size, morphology, sorting and 
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packing (Terra et al. 2009). The microbialite textures in the dataset presented herein 

range from microbial laminite to shrub microbialite with distinct morphological aspects 

(figure II.2). This textural diversification was caused by changes in environmental 

processes that drove microbial growth and carbonate precipitation (Schmid 1996; 

Konhauser 2007; Dupraz et al. 2009).  

 
 
 

 

Figure II.2. Three common textures formed in the subsalt microbialite carbonates 
in the South Atlantic. (a) Microbial laminite, with plain to crinkle micritic laminae. 
(b) Medium shrub microbialite defined by shrubs with heights between 5 mm and 
10 mm occurring in the upper half of the image. (c) Large shrub microbialite 
texture (shrubs > 10 mm). In most intervals microbial structures of different sizes 
coexist, so the textures are differentiated based on the dominance of one size class 
over the others. 

 
 
 

Syndepositional and diagenetic processes are common in these microbial 

carbonates, which led to a shift from depositional to diagenetically modified pore 

systems (figure II.3). Usually, dissolution is the major process that enhances the pore 

system in these carbonates, by enlarging depositional pores or creating new pores 

(Araújo et al. 2009). Dolomite, calcite and silica occur as cements and replacive phases. 
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These cements formed as result of syndepositional and burial processes and they 

normally reduce the depositional pore system. In most cases however, the pore system in 

these rocks is classified as a hybrid between depositional and diagenetically enhanced or 

reduced using the classification proposed by Ahr (2008). 

Methods 

A large variety of textures are currently described for these subsalt carbonates 

from the Santos Basin (Terra et al. 2009). While this variation is important in 

understanding the depositional conditions, it also makes the correlation between texture 

and petrophysical properties more complex. This added complexity occurs because a 

large number of textures can have similar pore system characteristics. To simplify the 

correlation procedure, depositional textures were re-classified by sampling based on 

their morphometric aspects (Hofmann 1976), height to width ratio (h/w). This 

classification scheme considers lamina, spherulite and shrub as the basic textural 

elements in these microbialite carbonates (figure II.4). To simplify the textural 

classification criteria and evaluate the effect of shrub size and sorting on the pore 

system, shrub microbialite textures were divided in three size classes (small – less than 5 

mm height; medium – between 5 to 10 mm height; and large – greater than 10 mm 

height).  
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Figure II.3. Three possible pore system end-members formed by the depositional 
framework and diagenetic modifications. The three images show large digitate 
stromatolite texture, with the pore system end-members. Pores are shown in blue. 
The depositional pore system is characterized by a clear textural control on pore 
characteristics. The diagenetically enhanced pore system has depositional pores 
enlarged and new pores (intraparticle, moldic and vugs) formed by dissolution. The 
diagenetically reduced pore system has most of its pore space filled by cements (e.g. 
calcite). Hybrid pore systems have characteristics between the diagenetic end-
members. 
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46 core plugs were selected from three wells in different hydrocarbon fields of 

the Lower Cretaceous subsalt microbial carbonates. This selection was based on textural 

homogeneity and diagenetic modification by rock description and thin-section 

petrography. The main macroscale and microscale characteristics for each texture 

described in these cores and the assumptions related to carbonate precipitation rate are 

summarized in figure II.5. These assumptions are based on previous works that relate 

more complex morphologies and rapid structure development to environmental 

conditions considered more suitable for microbial growth and biotic/abiotic carbonate 

precipitation to nutrient availability and high carbonate saturation respectively (Dupraz 

et al. 2006). 

 
 
 

 

Figure II.4. Three main textural components formed in the subsalt microbialite 
carbonates in the South Atlantic. Dark areas are pores. All photomicrographs are 
with cross-polarized light. (a) Micritic laminae. (b) fibrous-radial spherulite. 
Crystals floating around the spherulite are dolomite. (c) Fan shaped radial shrub 
with peloids. 
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Cored intervals with very high textural heterogeneity, regarding differences in 

shrub size sorting, morphology and packing were avoided so as to illustrate a more 

straightforward correlation between individual textural aspects, pore system 

characteristics and petrophysical properties. Intervals where the depositional pore system 

was strongly reduced or obliterated by cements were discarded from the dataset, because 

in these intervals the relationship between pore system characteristics and petrophysical 

properties is defined by the presence of cement within the pores. However, intervals with 

dissolution features such as the presence of vugs and dissolved particles were sampled to 

evaluate the enhancement effect of dissolution in the depositional pore system. This 

sampling strategy results in 46 core plugs, 38.1 mm long and 25.4 mm wide that were 

described and their effective porosity and absolute permeability measured. These 

petrophysical analyses were performed under reservoir pressure regime, using the 

Corelab® Ultrapore-300 helium porosimeter and the Corelab® Ultra-perm 400 gas 

(nitrogen) permeameter. The permeability measurements were corrected to Klinkenberg 

gas slippage effect.  

Five plugs for each of the four depositional textures analysed (e.g. laminite, small 

shrub microbialite, medium shrub microbialite and large shrub microbialite) were 

selected in a range of pore systems from purely depositional to diagenetic enhanced from 

the initial selection of 46 plugs. The criteria to select these plugs were based on texture 

and diagenetic enhancement and petrophysical properties. Samples with similar 

characteristics in each textural class were removed from the original dataset. These 20 

plugs were described in detail for textural and pore system characteristics and they also 
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were analysed by mercury injection porosimetry to measure capillary pressure and 

calculate the pore-throat radius distribution.  

Mercury injection capillary pressure (MICP) were measured with a 

Micromeritics® AutoPore IV 9500 porosimeter on clean and dry 1 cubic centimetre 

fragments. The incremental pressure was measured up to 60,000 psia. The pore-throat 

radius distribution was obtained from this pressure data. Explanations about laboratory 

procedures and calculations are extensively detailed in Luo & Machel (1995) and Basan 

et al. (1997). All petrophysical measurements on the selected samples were performed at 

the PETROBRAS Research Centre, Rio de Janeiro, Brazil. 
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Figure II.5. Macroscopic and microscopic characteristics used to describe different microbial carbonate textures the 
relative precipitation rate for each texture. On the photo/depositional pore system pairs the red cross is an anchor for 
the field views. On the photo (left image) the greyish and white colours are carbonate and black areas are pore-system. 
The depositional pore system (right hand binary image) is shown in blue and the rock components in white. 
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The 15 samples selected from the three microbialite textures were described by 

petrography for texture, fabric, microbial components, mineralogy, pore system 

characteristics and diagenetic features, as shown in the figure II.5. The shrubs had their 

attributes, such as size (height and width) and packing (ratio between shrub width and 

adjacent spacing) measured and the morphological aspects (simple or complex branches) 

classified on the area adjacent to the plugs (up to 10 cm). Each shrub attribute was 

measured 80 times to allow a minimum quantitative modal analysis and further 

correlation to petrophysical properties. Height and width were measured assuming the 

longer linear lengths (vertical and horizontal) as a value for these attributes. The space 

between shrubs was assumed as the longer linear length for the space between two 

adjacent shrubs.  

The spatial distribution of shrubs in these microbialite carbonates occurs as a 

three-dimensional arrangement that is not completely defined by means of two-

dimensional measurements. However, the basic textural characteristics such as shrub 

size, packing and morphologic aspects may suffice to identify the basic textural controls 

on the pore system characteristics and the petrophysical properties in these subsalt 

microbialite carbonate units. 

The standard deviation (σ) calculated for the shrub attributes data series was used 

as an internal variability index to address how each sample differs from others in the 

same texture class. The σ calculation intentionally did not exclude possible outliers 

because in these rocks the presence of these may modify the pore system and alter the 

petrophysical parameters. The shrub size was defined by its height. The shrub size 
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variability index of each sample was used as a measure for sorting (shrub size sorting 

index). It was determined using the normalized height, which was calculated by the ratio 

between each measured value and a fixed maximum size in each sample. This procedure 

allows the evaluation of the shrub size sorting for different height ranges in a same 

decimal scale. Higher values for shrub size sorting index means poorer sorted textures 

and low values means better sorted textures.  

The ratio between the length of a space adjacent to a shrub and the width of the 

shrub was used as measure of packing. In this ratio, lower values define closely spaced 

shrubs and higher values define more separated shrubs. The packing variability index of 

each sample was calculated based on the distribution of this space and width ratio, and 

represents the internal dispersion in a sample from tight to loose packing. Thus, a texture 

with packing index close to 1 has tighter packing and a packing index close to 0 has 

looser packing. 

The shrub normalized size and the packing index distributions (figure II.6) 

indicate that these samples are texturally heterogeneous. Therefore, measuring textural 

and shrub morphometric attributes can provide insights into the importance of the 

microbialite texture to pore system characterization. However, this high textural 

heterogeneity and the three-dimensional (3D) aspect of the pore system also affects a 

proper assessment of a representative elementary volume (REV) that accounts for fluid 

flow and the measurement of the permeability in these microbialite carbonates. It occurs 

because of the small dimension of samples analysed, as well the scale of morphometric 
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measurements on cores does not include all the elements of the 3D interconnected pore 

network.  

Data 

Carbonate textures 

Three basic microbialite textural components are described as lamina, spherulite, 

and shrub (figure II.4). Since these three basic elements coexist in a sample, the 

microbialite texture was determined by its dominant component by rock description and 

petrographic analysis. This procedure results in a simplified textural classification 

(figure II.5) that contains four textures: microbial laminite and three classes of 

microbialite shrub (small, medium and large). The differentiation between shrub textural 

classes was based on the shrub mean size distribution. Spherulites occur dispersed in the 

microbial laminite and shrub microbialite textures, and are a common textural 

component, but in none of our samples was it dominant. 

Lamina developed as micritic and peloidal horizontal layers (figure II.4a) with 

planar to crinkly morphologies. Spherulites usually have diameters less than 5 mm and 

are composed of calcite with variable nucleus composition (figure II.4b) and an internal 

radial-fibrous pattern. The shrubs have diverse morphologies from simple to complex 

branches and variable sizes from spherulite/small shrubs less than 5 mm in height to 

large shrubs greater than 10 mm, usually constructed of a combination of micritic 

peloids and fibrous fan-shaped calcite (figure II.4c). In addition, the textures were 
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grouped based on size sorting, tight or loose packing and complex or simple morphology 

(figure II.7).  

Pore system characteristics 

The pore system of each sample was classified as depositional, hybrid or 

diagenetically enhanced or reduced (figure II.3) based on the genetic classification 

proposed by Ahr (2008). This classification describes the amount of the pore geometry 

characteristics inherited from the in situ microbialite carbonate texture and its 

subsequent diagenetic alteration. Additionally, the pore geometry was described in 

relation to it spatial organization (e.g. horizontal, vertical or complex) and size (figure 

II.8). The impact of caves and channels, diagenetic vugs and fractures larger than the 

plugs, on the petrophysical properties in these microbial carbonates was not evaluated 

because of sample size limitations. 

Results 

The porosity and permeability data for the selected samples have a wide range of 

values (φ = 5.5 to 27%; κ = 3 millidarcys [md] to 4.9 Darcys [d]). Generally, intervals 

with a higher degree of cementation have the lowest porosity and permeability values for 

any microbialite texture analysed (figure II.9). Conversely, the diagenetically enhanced 

intervals (e.g. pore enlargement, particle dissolution and vug creation) have the highest 

porosity and permeability values (figure II.9). Furthermore, each texture described (e.g. 

laminite, small shrub microbialite, medium shrub microbialite, and large shrub 
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microbialite) has a positive correlation for porosity and permeability values, but 

differing slopes (figure II.9).  

 
 
 

Figure II.6. Data distribution for a set of 15 samples, showing the normalized 
structure size (a) and packing (b). The box thickness and whiskers indicates that 
the individual samples are different, regarding their internal variability for the 
analysed attribute. The boxes are built to show the number of measurements within 
the first and third quartiles. Longer boxes indicate that the sample has a high 
internal variability and shorter boxes indicate a lower variability in the sample. 
The black bar is the median value for each sample. The length of whiskers 
represents the lowest and highest values within 1.5 times the difference between the 
third and first quartile. Circles indicate measurements distant from the rest of the 
data, in this study they were not discarded as outliers. The area adjacent to each 
plug was described and categorized by texture and reference number: L = large 
shrub microbialite, M = medium shrub microbialite and S = small shrub 
microbialite. 
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Figure II.6.  Continued. 
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Figure II.7. Microbialite carbonate textures are grouped based on shrub size, 
sorting, packing and morphology aspect. The dark areas represent the microbialite 
framework. This textural grouping is important because changes on these 
properties results in changes in the pore system characteristics such as pore size, 
pore-throat radius and tortuosity. 
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Figure II.8. Pore geometry characteristics related to different microbialite 
carbonate textures. Usually, laminites have horizontal pores. Shrub microbialites 
have a variety of pore geometries from vertical to complex. The pore size, pore-
throat radius and tortuosity are controlled by textural characteristics as shrub size, 
sorting and packing. The pore system is shown in white, and the rock framework in 
black. Modified after Hofmann (1976). 
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Figure II.9. Porosity v. permeability plot for each texture analysed from the subsalt 
microbialite reservoir units. There is a wide distribution of values with a positive 
correlation. However, the regression line for each texture has different slopes. 
These relationships suggest that given moderate or less diagenetic modifications, 
texture also controls pore system characteristics and impacts petrophysical 
properties. Only samples with reservoir potential are shown. The grey areas 
represent samples with more dissolution features (top right area) and more 
cementation (bottom left area) described by petrography. The samples outside 
these areas have the depositional pore system less modified by diagenesis. The scale 
for shrubs is: small shrubs < 5 mm; medium shrubs between 5 mm and 10 mm; 
large shrubs > 10 mm. 
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The mean pore-throat distribution for four sets of MICP samples in each 

microbialite texture shows a progressive trend of higher pore-throat radii from the 

laminite towards the large shrub microbialite (figure II.10a). This trend still occurs when 

samples with diagenetic enhanced pore systems are removed from the calculation of the 

mean pore-throat radius distribution (figure II.10b). Only the small shrub microbialite 

shows a bimodal distribution that is caused by a higher proportion of laminae associated 

with the small shrubs in some samples.  

A clear separation on the correlation trends for the four textures analysed in this 

dataset indicates that the larger shrub microbialite texture has higher permeability values 

for the same porosity value than the other textures (figure II.9). This characteristic is 

corroborated by the largest pore-throat radii measured on the larger shrub microbialite 

textures in comparison to the other textures analysed (figure II.10a).  

The link between shrub size and pore-throats in these subsalt carbonate units also 

occurs when pore-throat radius distribution is compared to the shrub size distribution for 

the three shrub microbialite textures (figure II.10c). Pore-throat radius and shrub size 

have a similar distribution at different observational scales. The laminite texture does not 

have any measurable shrubs to allow a comparison between shrub size and pore-throat 

radii distribution.  

However, no correlation occurs between the mean structure size and porosity in 

the shrub microbialite textures (figure II.11a). Conversely, the permeability shows a 

positive correlation with an increase in the mean structure size (figure II.11b). A positive 
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correlation also occurs for each of the shrub microbialite textures, but with some 

dispersion in the small and large shrub microbialite textures (figure II.11b). 

When porosity is plotted versus the shrub size sorting index (figure II.12a) a 

slight negative correlation trend is observed. Samples with poorer sorting have lower 

porosity values, whereas samples with better sorting have higher porosity. Thus, the 

shrub size sorting is a primary control on porosity. The dispersion of low porosity values 

in the shrub size sorting and porosity plot (figure II.12a) represents the reduction of pore 

volume in samples with a higher proportion of cement in the pore system. Furthermore, 

the shrub size sorting index shows a slight negative correlation with permeability for 

each shrub microbialite texture class (figure II.12b), which suggests that in addition to 

shrub size, sorting is a secondary control on permeability. Consequently, a better shrub 

sorting leads to higher permeability values. 

Packing is a tertiary control on porosity in these shrub microbialite textures, as 

indicated by the subtle positive trends between packing index and porosity for each 

texture (figure II.13a). The packing control on porosity is expressed by higher porosity 

values towards looser packing. The samples of small and medium shrub microbialites 

with the highest porosity values are the most affected by diagenetic dissolution in their 

classes. The presence of pores larger than the average shifts the packing index to higher 

values. The relationship between packing and permeability is not defined because of 

large data scattering (figure II.13b).  
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Figure II.10. (a) Plot of mean pore throat radius distribution per texture, including 
samples with pore systems classified as depositional, hybrid and diagenetically 
enhanced. (b) Plot of mean pore throat radius distribution per texture, without 
samples with pore systems classified as diagenetically enhanced. The pore-throat 
radius distribution is shifted towards larger values, as the texture change from 
laminites to large digitate stromatolite. The effect of diagenetic enhancement is 
identified where distributions show peaks for larger pore-throats for the laminite, 
small digitate stromatolite and medium digitate stromatolite. This diagenetic signal 
is not observed for the large digitate stromatolite texture. (c) Shrub size 
distribution compared to the pore-throat radius distribution in (a). These two 
properties measure distinct properties at different scales, but the similarity of the 
shift toward larger values between these properties distributions is suggestive that 
the size of the structures controls the pore and pore-throat sizes 
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Figure II.10.  Continued. 
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Figure II.11. (a) Comparison between shrub mean size (mm) and effective porosity (%) for shrub microbialite textures. 
The data are scattered showing no correlation between size and porosity. (b) Comparison between shrub mean size 
(mm) and absolute permeability (md). The data suggest that the shrub size is related to permeability as size controls the 
pore size and pore-throat radius. 
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Figure II.12. (a) Comparison between shrub size sorting index and effective porosity (%) for shrub microbialite 
textures. Higher values indicate poorer sorting. (b) Comparison between shrub size sorting index and permeability 
(md). The relationships observed on both plots suggest that shrub size sorting impacts porosity and permeability. 
Poorly-sorted textures have their pore volume reduced, smaller pore-throats and higher tortuosity because of the 
presence of shrubs of different sizes that occupy more space in a volume when compared to well-sorted textures. 
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Figure II.13. (a) Comparison between packing index and effective porosity (%) for each shrub microbialite texture. 
There are subtle trends for the shrub microbialite textures that correlates porosity increments to looser packing (higher 
packing index values), which are identifiable for each texture. The points that are plotted outside the main field are 
textures with a high concentration of large spaces between adjacent shrubs. (b) Comparison between packing index and 
permeability (md) for each shrub microbialite texture. The relationship between packing and permeability is not clear 
for this dataset. 
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Discussion 

Textural characteristics such as fabric, shrub size, sorting and packing in the 

Lower Cretaceous subsalt microbialites in the Santos Basin control the development of 

the depositional pore system and influence their petrophysical properties. Four 

microbialites textures (e.g. microbial laminite, small shrub microbialite, medium shrub 

microbialite and large shrub microbialite) are defined in terms of textural characteristics 

and petrophysical properties (figure II.8). The data scattering observed in this porosity 

and permeability relationship is related to the textural heterogeneity observed in these 

samples (figure II.6). 

The size of shrubs controls changes in the pore-throat size (figure II.10) and 

consequently affects the permeability (figure II.11b), whereas the shrub size sorting 

controls porosity (figures II.12a). Additionally, shrub size sorting is a secondary control 

on permeability (figure II.12b) as result of an increased pore system tortuosity in poorly-

sorted textures. The effect of packing is perceptible on porosity by increased porosity 

towards textures with looser packing in each texture (figure II.13a). However, its 

influence on permeability is unclear in this dataset. Generally, the textural differences 

identified herein as large shrub size, well sorting and loose packing result in higher 

porosity and permeability values in the shrub microbialite textures (figure II.14), because 

of the textural control of the pore system characteristics (i.e. pore, pore-throat size, and 

tortuosity). 
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The role of complex versus simple textural component (e.g. shrub) morphology 

needs further evaluation because complex morphologies may result in intricate pore 

networks with dead-end pores and tortuous pathways, which may cause permeability 

reduction. Additionally, a more detailed morphometric description is needed to 

determine how much this actually affects the petrophysical properties in these 

microbialites. Whereas, shrub size, sorting and packing defined by two-dimensional 

measurements can provide a basic means to understand the textural controls on the pore 

system, more precise relations can be obtained by the use of three-dimensional methods 

(e.g. computed tomography) to access both texture and pore system characteristics. 

These textural controls are valid in depositional to hybrid pore systems, when the 

depositional pore systems were not completely altered by cementation and dissolution 

(figures II.9, II.10). In these latter cases, the textural controls on the pore system 

characteristics may be totally obscured and the petrophysical properties related to the 

effect of diagenetic modifications on the pore system. Overall, the highest permeability 

and porosity values are related to diagenetically enhanced pore systems (figures II.9, 

II.10a and II.10b) because of enlargement of depositional pores, creation of new pores, 

such as vugs and intraparticle pores. 
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Figure II.14. Based on the relations of textural aspects, pore system characteristics 
and petrophysical properties, a general model is suggested for the microbialite 
carbonate textures analysed in this study. The numbers below the boxes are the 
total porosity calculated from bi-dimensional image analysis. The size of the shrubs 
for a given sorting controls major changes in the pore size and permeability, as 
result large structures allow larger pores and pore-throats. The porosity apparently 
is controlled by the shrub size sorting, because poorly-sorted textures have more 
shrubs with different sizes in comparison to well-sorted textures. This occurs 
because a relative reduction on the pore volume and pore throat radius, as well an 
increase the tortuosity of the pore system in poorly-sorted textures. 

 
 
 

Future work will focus on the upscaling of both depositional and diagenetic 

textures and pore system to well-log evaluation. For this purpose, changes on 

mineralogical content associated with diagenetic processes may provide a better 

interpretation about how different processes (e.g. dolomitization and silicification) are 

related to changes in pore system characteristics. Furthermore, spatial distribution of 
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textures obtained from outcrops can provide more predictable outcomes about lateral 

variability of both microbial carbonate texture and its pore system.  

Conclusions 

Lower Cretaceous subsalt microbialite carbonates in the Santos Basin have pore 

system characteristics (e.g. pore size and pore-throat radius) defined by textural 

characteristics, shrub size, sorting and packing. Four microbialite textures defined by 

differences in fabric and shrub size have distinct porosity and permeability relationships, 

and pore-throat size distributions.  

The shrub size in these microbialites is the main control on permeability. Larger 

structures result in large pores and pore-throats, leading to higher permeability values. 

Furthermore, the shrub size sorting controls porosity and is a secondary control on 

permeability. This control relates to the observation that textures with poorer shrub 

sorting means that more shrubs can occupy the available space per unitary volume, 

which reduces the total porosity, impacts the pore-throat radii and increases the pore 

system tortuosity. Packing also affects the porosity by reducing the space available 

between digits. However, its effects on permeability are unclear.  As a result, a texture 

defined by well-sorted small shrubs that are tightly packed has lower permeability for 

the same range of porosity than a texture with the same characteristics, but larger shrubs. 

These depositional pore systems characteristics were later altered by diagenetic 

processes that reduced or enhanced porosity and permeability. In this study, hybrid pore 

systems, diagenetically enhanced by dissolution, have higher porosity and permeability 
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values than purely depositional pore systems. This enhancement is visible on the pore-

throat radius distribution that increases towards larger radii in samples with dissolution. 

Conversely, the precipitation of cements into the pore system reduces both porosity and 

permeability. The lowest porosity and permeability values are related to samples with 

high proportion of cements in the pore system.  
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CHAPTER III 

LATERAL CONTINUITY OF ROCK AND PETROPHYSICAL PROPERTIES IN A 

MICROBIALITE BUILD-UP IN THE GREEN RIVER FORMATION, UTAH  

 

Overview 

Eocene Green River Formation microbialite carbonate build-ups are common as 

proximal lacustrine deposits. Build-up outcrops offer good opportunities to address 

questions regarding the depositional controls on the pore system development and its 

petrophysical properties. They also provide understanding of the spatial distribution and 

lateral continuity of microbialite facies and their reservoir rocks quality. A detailed study 

of one of these microbialite build-ups outcrops, along Three Mile Canyon Road, Uintah 

County, Utah, presents clear results that demonstrate that porosity and permeability in 

this build-up are strongly controlled by the microbialite depositional texture and the 

resultant primary pore system. Thrombolite texture produced open and chaotic fabrics 

and results in pore systems with better porosity and permeability values, than digit 

stromatolite texture which has organized fabrics, but is tighter. Petrophysical 

measurements on plugs drilled in the microbialites with these textures have porosity 

values ranging from 17.2% and 30.6% and permeability as low as 3.75 millidarcys to 

over 50 darcys. X-ray computed tomography scans of the rock textures provide more 

information showing that the thrombolite texture has better pore systems with larger 

pore sizes, higher number of pore throats and a better connectivity density per volume 

when compared to the digit stromatolite texture. The microbialite intervals are laterally 
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continuous through tens of meters in terms of depositional characteristics and reservoir 

quality. The interbedding with detrital carbonates is common, which allows the 

recognition of stratigraphic relations between these types of carbonate deposits, and the 

periods that favored microbialite growth and open pore system development. These 

relations provide useful insights that could be used to build more detailed reservoir 

models, using geologic and petrophysical information. 

Introduction 

Several studies recently characterized sedimentology, stratigraphy, depositional 

models and petrophysical characterization of microbialite and abiotically precipitated 

carbonate rocks in continental depositional settings (Pope and Grotzinger, 2000; Parcell, 

2002; Bohacs et al., 2013; Chafetz, 2013; Rezende et al., 2013; Sarg et al., 2013; Seard 

et al., 2013; Tonietto and Pope, 2013). The aim of these studies was to improve our 

knowledge of microbial and abiotic carbonate deposits, providing better understanding 

of rock properties for the exploitation of microbial or abiotic hydrocarbon reservoirs, 

such as those along the south Atlantic Margins (Mancini et al., 2013; Rezende and Pope, 

2015). However, to build refined 3-dimensional (3D) reservoir models, more 

information about the 3D depositional architecture and lateral distribution of 

sedimentary environments and their petrophysical properties is necessary (Fitch et al., 

2015). Outcrops provide 3D access to the deposits, allowing for the recognition of 

textures and morphologies at different scales and lateral and vertical changes in the 

distribution of these properties. 
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The Eocene Green River Formation provides excellent examples of microbialite 

and associated carbonate facies formed in lacustrine settings (Awramik and Buchheim, 

2012; Seard et al., 2013). Extensive outcrops in this unit in Utah, Colorado and 

Wyoming provide information about the origin of these carbonate rocks, their fabrics, 

morphologies, depositional conditions and stratigraphic evolution (; Tänavsuu-

Milkeviciene and Sarg, 2012; Sarg et al., 2013; Seard et al., 2013; Frantz et al., 2014; 

Swierenga, 2014). However, more detailed reservoir characterization studies are still 

necessary to address the presence and characteristics of pores, their spatial distribution 

and connectivity, the lateral continuity of rock properties, the position of the best 

reservoir facies in the deposit and the distribution of external morphologies.  

This study details a laterally continuous microbialite outcrop of the Eocene 

Green River Formation on the western margin of the Uinta Basin in Utah (figures III.1 

and III.2) mapped out the lateral and vertical facies distribution and their rock properties. 

This paper discusses the genetic character, textural controls and lateral continuity of pore 

networks in these Green River Formation microbialite carbonates. The variation of 

petrophysical parameters is related to changes in texture, fabric, pore network and 

cement content. Shrub microbialites, thrombolites and stromatolites are laterally 

continuous and vertically connected throughout the outcrop. Their distribution and 

interbedding with other carbonate rocks is related to the relative position in the 

depositional setting, such that microbialite textures with better reservoir characteristics 

developed in areas and intervals with minor influence of transport or detrital sediments. 
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Figure III.1. Inset map A – United States map with the states where the Great 
Green River Basin, Uinta Basin and Piceance Creek Basin are located. B – Regional 
map with the areal distribution of the Eocene lake basins (Great Green River 
Basin, Uinta Basin and Piceance Creek Basin), major uplifts and tectonic 
lineaments (modified after Smith et al., 2008). The white square shows the area of 
study in Utah, at the eastern border of the Uinta Basin. 

 
 
 

Geologic setting 

During the Late Cretaceous to Eocene a series of isolated non-marine basins 

separated by emergent basement uplifts formed in the western US (Figure III.1), as result 

of the Laramide Orogeny (Beck et al., 1988; Dickinson et al., 1988). These basins 

formed in mid-latitude temperate to sub-tropical climates (Sloan, 1994; Morrill et al., 

2001; Sewall and Sloan, 2006). As a result of tectonic and climatic variations, the non-
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marine environments in these basins episodically expanded and contracted (Surdam and 

Stanley, 1979; Carroll and Bohacs, 1999; Smith et al., 2008). Fluvial drainages were 

tectonically blocked at times to form large freshwater or saline lakes with interfingering 

lacustrine and fluvial deposits along the basin margins (Dickinson et al., 1988; Roehler, 

1992; Pietras et al., 2003; Smith et al., 2008). 

 
 
 

 

Figure III.2. (a) Local map with the main roads and cities near the area of study in 
the Uintah County, UT (Map courtesy from the State of Utah). The red square 
indicates the area of study. (b) Satellite image showing the Three Mile Canyon 
Road and adjacent terrain (Image courtesy from Google and NASA). The areas 
highlighted in red are the microbialite build-ups and detrital carbonates outcrops. 
The numbers 1 to 5 show the location of the stratigraphic sections in the outcrop. 

 
 
 

In this tectonic setting, the Uinta Basin and Piceance Creek Basin were separated 

from the Greater Green River by the Uinta uplift (Bradley, 1964; Roehler, 1992). 

However, during times of prolonged pluvial periods and/or periods of active volcanism 
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in the northern end of the Greater Green River Basin, sediment and water influxes 

increased, and proximal areas were filled with volcanic sediments and the lake levels 

rose (Surdam and Stanley, 1980; Keighley et al., 2003; Smith et al., 2008). These 

regional events caused the overflow of the lake systems and expansion of its areal extent 

(Keighley et al., 2003; Smith et al., 2008). As a result, these basins became 

hydrologically connected, causing changes in lake stratification, water chemistry and 

distribution of depositional environments (Desborough, 1978; Surdam and Stanley, 

1980; Boyer, 1982; Keighley et al., 2003; Smith et al., 2008). In the Uinta and Piceance 

Creek basins, the Green River Formation (GRF) is defined by rocks that record 

transitions from open, freshwater lakes to closed, saline lakes (Smith et al., 2008). The 

rocks deposited in these lakes are siltstone, sandstone, kerogen-rich carbonate mudstone, 

evaporite, and shallow-water carbonate (Sarg et al., 2013).  

This paper focuses on microbialite build-ups and shallow-water carbonates 

within the lower part of the Eocene Green River Formation along the eastern border of 

the Uinta Basin (Figure III.1). Previous studies considered the microbialites as nearshore 

deposits of littoral environments in a transgressing lake system (Roehler, 1993; Bohacs 

et al., 2000; Osmond, 2000; Sarg et al., 2013; Tänavsuu-Milkeviciene and Sarg, 2012). 

The microbialites are interbedded with lacustrine shale, and pisoid/ooid, oncolite, 

intraclast and skeletal grainstone/packstone. One of the microbialite build-ups produces 

oil and gas in an interval with maximum thickness of 30.50 meters in the West Willow 

Creek Field (Osmond, 2000).  
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The microbialite build-up of the Eocene Green River Formation, documented in 

this paper, crops out along the Three Mile Canyon, near the town of Bonanza, Utah 

(Figure III.2). The external geometries in this build-up vary along the outcrop from 

laterally linked mounds to isolated heads. It pinches-out two miles to the northeast into 

profundal mudstones and oil shale (Swierenga, 2014). High wave energy in the littoral 

zone favored the formation of ooids, pisoids, oncolites and sublittoral-generated 

intraclasts. In protected environments, lower energy allowed microbial colonies to grow 

and in situ carbonate precipitation occurred. Open growth framework fabrics formed 

porous textures and well-connected pore networks within some intervals of these 

microbialite build-ups (Sarg et al., 2013; Swierenga, 2014). 

Methods 

Five stratigraphic sections were measured and described (Figure III.2) to 

document the vertical and lateral changes in facies, depositional textures and fabrics 

along the microbialite build-up outcrop. The distance between sections 1 to 3 is ~80 m 

and between sections 3 to 5 is ~45 m. This distance difference between the profiles is 

because of the lack of rock exposure due to erosion and sediment/soil coverage between 

the sections 1 to 2 and 2 to 3.  

Twenty eight samples were collected at regularly spaced intervals (~10 cm) from 

the base to the top of the section 1 in the microbialite carbonate outcrop. These samples 

were used to prepare petrographic thin-sections to study the microfabrics, diagenesis and 

pore system in the microbialite carbonate. This section was chosen for this sampling 

strategy because it was the most accessible section and has a higher number of facies. 
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An additional ten samples, each with at least 10 cm3, were collected throughout 

the five sections for petrophysical analysis and petrography at arbitrary locations. These 

samples were selected based on presence of visible pores and less visible weathering 

conditions. Four of these samples, with more than 20 cm3, were also used for X-ray 

computed tomography. The larger samples allowed a better 3D evaluation by image 

analysis of the relations between depositional textures, sedimentary features and pore 

systems in a more representative elementary volume (REV). These relations are 

fundamental for petrophysical evaluation, and in microbialites they commonly are bigger 

than the scale sampled by plugs (Rezende et al., 2013; Corbett et al., 2015).  

Petrography 

Standard petrography and high-resolution scanning were used to characterize 

microfabrics and the pore system of the samples collected. The large size of microbialite 

fabrics meant 2 x 3 inch thin sections were prepared for twenty seven samples to provide 

better fabric characterization. Conventional 1 x 2 inch thin sections were prepared for 

detrital carbonates and small microbialite samples. All samples were impregnated with 

blue-epoxy resin to better define the pore system. High-resolution images of thin 

sections were made using the Nikon Super CoolScan 8000 scanner, with 4000 dpi true 

optical-resolution and density range of 4.2 in the Department of Geology and 

Geophysics at Texas A&M University.  

Petrophysics 

Ten horizontal cores, 1.5 inch long and 1 inch wide, were analyzed under a 

pressure of 800 psi using the Corelab® CMS 300 plug analysis equipment at the 
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Corelab® unit in Houston. Porosity was determined using Boyle's Law technique by 

measuring grain volume at ambient conditions and pore volume at indicated net 

confining stress. Permeability measurements were corrected to Klinkenberg gas slippage 

effect. These cores were drilled where the depositional texture is homogeneous, insuring 

the measured values correspond to the intended texture and pore system. 

X-ray computed tomography 

 X-ray computed tomography of four microbialite samples was obtained by 

making sets of axial slices with spacing of 1 mm, using a 16 channel Aquilion RXL 

Toshiba® CT scanner, with X-ray voltage set at 130 kV, current at 75 mA, and spatial 

resolution of 0.25 mm, in the Department of Petroleum Engineering at Texas A&M 

University. The data from the X-ray CT scanner were rendered using the open source 

visualization and image computing software 3D Slicer® (Pieper et al., 2004; Pieper et 

al., 2006), available at www.slicer.org. This software also was used for volume 

manipulation (scalar transform and measuring), and threshold segmentation between 

rock and pore space. 

Image analysis 

 The sets of CT scans images for each sample were cut for regular polygons to 

eliminate the empty space outside the boundaries of the samples. Each image in these 

sets was converted to black and white colors (binarized) using the open source image 

analysis software ImageJ® 1.49p, available at imagej.nih.gov/ij. The stack of each set of 

binarized images was used to calculate the pore connectivity density per volume 

(Odgaard and Gundersen, 1993; Toriwaki and Yonekura, 2002), the pore size by 3D 
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particle thickness distribution and the number of pore throats by 3D skeleton (medial 

axis of a particle) analysis (Lee et al., 1994). These calculations were processed using 

the BoneJ® 1.4.0 plugin (Doube et al., 2010) for ImageJ, available at bonej.org. The 

precision of the pore image measurements is limited to millimeters because of the 

tomograph resolution. 

Results 

Stratigraphy, build-up external geometry and facies distribution 

 The microbialite outcrop extends for ~240 m on both sides of the Three Mile 

Canyon Road (figure III.2). It consists of a vertical succession of fluvial-deltaic 

sandstone, microbialite build-ups and detrital carbonate bars and lacustrine shale 

deposited in a transgressive-regressive cycle (figure III.3). Seven carbonate units 

composed of microbialite and detrital carbonate occur interbedded with sandstone and 

shale. The first carbonate unit (Fifgures III.3 and III.4a), which is detailed in this paper, 

has an average thickness of 2.6 m. It was deposited on an erosive unconformity over the 

underlying massive sandstone bed. The five carbonate units within the shale have a 

maximum thickness of 10 cm, and the upper carbonate unit varies in thickness from 10 

cm to 50 cm on the hilltop (figure III.3). 

 The microbialite build-up external geometry changes laterally from coalesced 

meter scale bioherms (figures III.4b and III.4c) in the southeast towards laterally linked, 

but morphologically isolated meter scale heads (figures III.4d and III.4e) in the 

northwest. The top of the microbialite build-up preserves its depositional upper surface, 

showing a change in morphological aspects from coalesced submetric heads (figure 
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III.4c) to isolated metric heads (figure III.4d). Intraclast packstone/grainstone, 

oncoid/pisoids packstone/grainstone and skeletal packstone/grainstone fill channels and 

depressions between heads and form beds that cover the build-up surface all over the 

outcrop (figure III.4b). 

Shallow-water and exposure related sedimentary structures occur throughout the 

outcrop and are more frequent towards the uppermost levels of each build-up. Silica 

caliche (figures III.5a, III.5b and III.5c), desiccation cracks (figure III.5d), and 

brecciated beds are common features in the first microbialite carbonate unit. The caliche 

deposits formed thin intervals (~5 cm maximum thickness), as filling sediments in small 

ponds and channels (figures III.5a and III.5b). Tufa deposits formed by carbonate 

precipitation around tree roots (figures III.5e and III.5f) in the sixth carbonate unit.  

 The facies distribution along the outcrop records a shift from detrital carbonate 

facies that occur more often on the section 1, and become less frequent towards the 

section 5, where the microbialite facies are dominant (figure III.6). Four shallowing 

upward cycles were defined by: (1) unconformity surfaces, (2) progressive development 

worsening of the microbialite texture framework components, (3) grain type proportion 

(higher proportion of pisolites/ooids towards the top of cycles, and intraclasts and 

oncoids on the base of cycles), (4) subaerial exposure structures (brecciation, rip-up 

clasts, mud cracks, caliche formation) and (5) vertical shift of facies from thrombolite to 

digitate stromatolite to laminated stromatolite. 
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Figure III.3. Simplified stratigraphic section for units in the outcrop along Three 
Mile Canyon Road, showing lithology, sedimentary structures, grain types and the 
interpreted regressive-transgressive cycles. There are seven carbonate units 
interbedded with sandstone and shale deposits. The first unit is thicker and has a 
good lateral continuity of detrital and microbial carbonates throughout the 
outcrop. The passage from a transgressive period to the regressive periods was 
defined in the middle of a shale interval deposited before the first carbonate bed 
with gypsum crystal growth. It is based on the assumption that the maximum 
transgressive was reached at this stage and the lake water become more saturated 
in salts, favoring sulfate precipitation during rapid lake level falls, in a similar 
mechanism to the gypsum deposition in Dead Sea lakes proposed by Torfstein et al. 
(2008). 
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These shallow upward cycles formed during transgressive phases. In addition, 

changes in the proportion between microbialite and detrital carbonate, lateral changes in 

texture development and the relative lateral change in thickness in each cycle along the 

carbonate unit (figure III.6) indicate progradation of more proximal facies (detrital 

carbonate) on cycles 1 and 4 and retrogradation of more distal facies on cycles 2 and 3. 

Microbialites grew and spread toward proximal areas during transgressions, but the 

development of their textures were more expressive when the progradation of detrital 

carbonates was limited, as occurred during the cycles 2 and 3 (figure III.6). On top of 

each cycle there is evidence of subaerial exposure (figure III.5) and the microbialite 

textures are simpler (small textural components or planar stromatolite) and less porous. 

However during these periods microbialites still developed on proximal areas (except the 

lowest cycle that does not have microbialite, besides oncoids as grain component on 

detrital carbonates). This pattern indicates that at the end of shallowing upward cycles 

the sediments filled the accommodation space available for deposition, until the 

beginning of other transgression phase. 

The table III.1 summarizes the framework components and characteristics of the 

main depositional textures in this carbonate unit. In terms of depositional texture, detrital 

carbonate is packstone and grainstone, with variable grain composition (e.g. intraclast, 

skeletal grains, insect egg, oncoid, pisoid and ooid) and microbialite units are 

stromatolite and thrombolite with differences in morphologic aspect (size and shape of 

framework components) and fabric. The frequency of each grain type in the detrital 

carbonate changes along the correlation diagram (figure III.6), but intraclasts are the 
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most common grains. Very fine, immature sand fills the pore space in grainstone 

deposited at the base of the lowest carbonate unit. 

Microbial depositional textures, besides oncolite that is recognized as a carbonate 

grain, in this carbonate unit are thrombolite and stromatolite, which were differentiated 

by their fabrics. They were formed by peloid and carbonate crystalline precipitate that 

acted as building blocks, and minor amounts of trapped grains. Variable proportions and 

arrangements in these building blocks result in microfabric differences from peloidal 

shrubs, when the structure is formed mostly by peloids (figure III.7a) to mixed 

microfabric (figure III.7b) to crystal shrubs, when the structure is formed mostly by 

calcite crystals (figure III.7c). The mixed microfabric is dominant in the microbialite; the 

peloidal shrub microfabric occurs as layers in some stromatolite intervals or filling pores 

in thrombolites; and the crystal shrub only grew into the pore space as a diagenetic 

component.  

The thrombolite texture (figures III.8a and III.8b) has branching and shrub 

fabrics without internal lamination and clotted aspect. Additionally, the arrangement of 

branches and shrubs is chaotic (figure III.8a) or irregularly layered (figure III.8b) with 

thin and small particles touching each other, forming an open framework that allows 

large pores without a clear orientation. This microfabric varies from peloid and 

crystalline mixed components to peloid layers linked by crystal bridges (figure III.8b). 

The size of branches and shrubs is variable, and a thrombolite layer may have a 

homogeneous particle size distribution or gradual changes in the particle size.  
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Figure III.4. Main microbialite external morphologies formed in this outcrop. (a) 
Panoramic image of the outcrop. The intervals highlighted in purple correspond to 
the microbialite build-ups and associated detrital carbonate deposits in the first 
carbonate unit. The numbers in red above the first interval are the location of the 
stratigraphic sections on the outcrop. The image has a 3x vertical exaggeration. (b) 
Laterally linked microbialite bioherms between the stratigraphic sections 4 and 5 
(highlighted box on image (a). The white layer at the middle of the section is 
composed of intraclast packstone that represent a moment without microbialite 
growth. (c) Small microbialite heads formed on top of the section showed in the 
image b. They are coalesced in most areas, sometimes forming isolated depressions 
between them. (d) Meter-scale isolated microbialite head formed on top of the 
microbialite interval at section 1. Hammer for scale is 41 cm long. (e) Laterally 
linked microbialite at section 3. The center of this structure has thrombolite texture 
(light colors) and the outer layers formed a digitate stromatolite texture (dark 
colors). Hammer for scale is 41 cm long.  
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Figure III.5. Shallow-water and exposure sedimentary structures. (a) Caliche and 
partially silicified intraclast grainstone filling a small depression on the top of the 
lowest carbonate unit. The S on the image marks the silicified interval. (b) Close-up 
of the highlighted area in a. There is a noticeable stratification in this 
caliche/grainstone deposit. The cavities are grainstone layers more susceptible to 
dissolution and erosion. The bar on this image has a length of 1 cm. (c) Thin section 
image showing the caliche infiltration into the grainstone pore space and partial 
carbonate replacement by silica. The bar on this image has a length of 0.25 mm. (d) 
Intraclast chips of mudstone and desiccation cracks formed on the top of the first 
carbonate unit. (e) Tufa formed around a tree root on the top of the seventh 
carbonate unit. (f) Close-up image on the area highlighted in e, showing the root 
marks impressed on the carbonate surface. 
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Table III.1 Carbonate depositional textures, their framework components, fabric 
and pore system characteristics, in the Three Mile Canyon Road outcrop, Eocene 
Green River Formation. 

Depositional 

Texture 

Framework Component 
Fabric Pore system 

Type Shape Size Packing 

Thrombolite 
Shrubs Complex < 5 cm Loose 

Chaotic Open, chaotic 
Branches Complex < 1 cm Loose 

Stromatolite 

Lamina Simple 
Not 

applicable 
Tight Horizontal Tight, horizontal 

Digit Simple < 5 cm Variable Vertical 
Open to tight;  

Vertical and horizontal 

Grainstone Grains Variable Variable Variable Chaotic Open 

Packstone 
Grains 

Mud 
Variable Variable Variable Chaotic Tight 
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Figure III.6. Stratigraphic section for the first carbonate unit in this outcrop, showing the vertical and lateral 
distribution of facies, the depositional texture, grain and framework components and main unconformities. The 
microbialite and detrital carbonate intervals are laterally continuous, with internal and vertical changes in texture and 
petrophysical characteristics. Detrital carbonate deposits are more frequent at the area between sections 1 and 2, and 
microbialite deposits occur more often between the sections 3 and 5. The unconformities define the limits of different 
stratigraphic events. The texture scale of each section mnemonics are: Sh – shale, P – packstone, G – grainstone, St – 
stromatolite and Th – thrombolite. 
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Figure III.7. Microbialite carbonate microfabrics. (a) Peloid and peloidal shrubs – 
structures formed by peloids. (b) Mixed microfabric with peloids, shrubs and 
crystalline carbonate precipitate. (c) Crystal shrubs – structures formed by calcite 
crystals (light color material filling the pore space on the image). This component 
was only identified in this unit as a diagenetic phase. 

 
 
 
The stromatolite textures (figures III.8c and III.8d) dominant fabric is vertical 

digits (digitate) with internal laminations of peloid/mud, a crystalline phase and pore 

space, and variable height per width ratio. Planar fabric occurs with lower frequency, 

usually at the base or top of a microbialite interval. A more organized vertical 

framework forms a pore network that is mostly vertical, with horizontal connections 

occuring through thin layers in the digits. The digit packing in this texture also 

influences the pore system, with loose packing (figure III.8c) allowing larger pores, and 

tight packing reducing the pore space (figure III.8d). 

The vertical transition between stromatolite and thrombolite layers is defined by 

sharp contacts. A thrombolite layer may form in the nuclei of a bioherm or continue 

laterally for a few meters. A thrombolite layer may gradually change into digitate 

stromatolite layers, which is the dominant microbial texture in this carbonate unit. The 

contact between microbialite and detrital carbonate is also sharp, but not erosive, where 
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thin planar stromatolite developed or the microbialite started to grow on top of a 

previous surface. Conversely, detrital grains usually fill the space between heads and 

digits in the stromatolite texture, and also fill cavities formed by erosion, desiccation and 

bioturbation of the bioherm surface. 

Pore system characteristics of microbialites 

In this Eocene microbialite carbonate build-up the primary porosity is well-

preserved. Porous depositional textures are easily recognized and the relations between 

textural components (fabric and packing) and pore system are clear. Chaotic fabric and 

loose packing lead to well-developed pore systems (figures III.8a and III.8b), and 

organized fabric and tight packing lead to a closed pore system (figures III.8c and 

III.8d). Additionally, there is the effect of diagenetic dissolution on the enlargement of 

the primary pore system, as indicated by dissolved grains and moldic pores. However, 

these instances were few and this diagenetic effect secondary and had minimal effect on 

the development of the pore system in the microbialite carbonate.  

Furthermore, the primary pore system was more affected by processes that 

reduced the pore space such as the pore filling by detrital sediment and the precipitation 

of diagenetic cements. Detrital sediment deposition (figures III.9a and III.9b), commonly 

fill the space between digitate textures (stromatolite more often), and also pores formed 

by erosive processes, reducing the pore space. The effects of diagenetic cements on the 

development of the final pore system are variable in terms of cementation intensity and 

number of cement phases. Most intervals have very little cementation, with cements only 
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partially filling the pore system. The temporal relationship between different cement 

phases was not detailed in this study. 

The most important diagenetic component in volume and frequency is the 

formation of dolomite (figures III.9c, III.9d and III.9e), that replaced peloid and 

carbonate mud, and precipitated as crystals into pores. The second most important 

diagenetic event was the formation of crystal shrubs into pores and the pore filling with 

an organic material/clay mineral. These two phases occur as individual diagenetic phases 

very often, but sometimes they appear together (figure III.9f). Microcrystalline silica 

(figure III.9g) occurs in thrombolite textures, filling small pores and closing pore-throats 

of larger ones, but with minimal and localized effects on the pore system. Blocky calcite 

cement (figure III.9h) is common in grainstone beds and when present completely fills 

the available pore space. 

Positive porosity versus permeability correlation trends (figure III.10) occur for 

both microbialite textures (stromatolite and thrombolite). These trends differ from the 

distribution observed for grainstone texture. The porosity varies from 17 to 30% in the 

microbialite textures and the permeability ranges from 3.75 md in digitate stromatolite 

texture to over 50000 md in the thrombolite texture. The well-developed pore system 

observed in thrombolite textures (figures III.8a and III.8b) result in higher permeability 

and porosity values than the values of the digitate stromatolite textures (figures III.8c 

and III.8d) that commonly have a tight pore system. Samples partially cemented or filled 

with detrital sediments have the lowest permeability and porosity values for each 

microbialite texture.  
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Figure III.8. Porous microbialite textures in the lowest carbonate unit. Each row is 
a separate texture. The images on left are hand samples, the middle images are 
high-resolution scans of thin sections, and the images on the right side close-ups on 
the areas marked by squares in the middle image. (a) Thrombolite texture formed 
by mixed peloid and crystalline carbonate, with chaotic shrub fabric and open pore 
system. (b) Thrombolite texture formed by peloid layers and crystalline carbonate 
bridges, with chaotic shrub and branches fabric and open pore system. (c) Digitate 
stromatolite texture formed by layers of mixed peloid and crystalline carbonate, 
with vertically oriented fabric, tight packing and a relatively open pore system. (d) 
Digitate stromatolite texture formed by layers of mixed peloid and crystalline 
carbonate, with vertically oriented fabric, tight packing and a closed pore system.  
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Figure III.9. Pore filling material and diagenetic cements. (a) Desiccation crack 
filled by detrital carbonate material partially replaced by silica (polarized light). (b) 
Bioturbation structure partially filled by intraclast skeletal grainstone (plane light) 
(c) Coarse dolomite with dirty nuclei formed in the dissolved pore space within an 
oncolite/pisolite grain (plane light). (d) Dolomite formed in pores between peloid 
shrubs and as replacement of carbonate mud (polarized light). (e) Dolomite formed 
around peloid and shrub filling the pore space between them (plane light). (f) 
Crystal shrubs (arrow) and amorphous material (greyish). They were precipitated 
around most part of the pore border (plane light) (g). Microcrystalline silica 
partially filling pores (polarized light). (h) Blocky calcite cement an intraclast, 
skeletal grainstone (polarized light). The components are labeled on the image as: c 
– cement, i – intraclast and s – skeletal grain 
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CT scan analysis (figure III.11) provided more detailed information on the 

relationships between the microbialite textures and their pore system. It is clear from the 

visual volume comparison that the pore system of thrombolite textures (figure III.11 – 

P3T and P5T) are more homogeneous and better connected than those formed in digitate 

stromatolite textures (figure III.11 – P1S and P2S) that have more isolated and vertically 

oriented pores. Additionally, the thrombolite texture has a higher number of larger pores 

per volume than the digit stromatolite texture, which has more than 80% of pores with 

radii less than to 0.25 mm (figure III.12). This difference explains the slightly higher 

porosity measured in thrombolite, with more space classified as pores as result of the 

open framework texture, when compared to the digitate stromatolite texture.  

Another difference in the pore system of thrombolite and digit stromatolite 

textures is related to the number of pore throats (figure III.13). The digitate stromatolite 

texture pore system has a lesser amount of pores with 3 and 4 pore-throats, when 

compared to the thrombolite texture. Sample P3T has the higher number of connected 

pores with 3 and 4 pore-throats of all samples analyzed (figure III.13), which is also 

reflected in its exceptionally high permeability (50000 md) measured in this sample. The 

better pore connectivity of thrombolite textures also is characterized by higher values of 

connectivity density per volume in this texture than in the digitate stromatolite texture. 

This parameter has a strong positive correlation with permeability for the analyzed 

samples (figure III.14), indicating the strong control the microbial depositional texture 

has on its pore system. 
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Figure III.10. Porosity versus permeability plot for the digitate stromatolite, 
thrombolite, and intraclast pisolite grainstone. The microbialite results show a 
positive correlation trend that is caused by changes in the pore system from closed 
to open as the texture packing becomes looser and the textures fabric more chaotic.  
The grainstone samples have a slight separation from the microbialite trend that 
could be caused by difference in the pore system between the detrital and 
microbialite carbonate. 
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Figure III.11. CT scans, rock/pore and pore system volumes. The rock components 
are showed as grey and white on the CT scans (left) and yellow and orange on the 
rock/pore volumes (center). White and orange colors represent denser material or 
with areas with less microporosity. The pores are represented in black on the CT 
scans and blue on the rendered volumes (right side). The red polygons on the CT 
images mark the limits of the volumes shown. The first two samples have 
thrombolite texture and the other two have digitate stromatolite texture. The 
thrombolite samples have a much higher pore volume when compared to the 
digitate stromatolite samples. The pore system connectivity is also better in the 
thrombolite samples than in the digit stromatolite samples. However, there are 
differences between samples with similar texture, as visible on the pore system 
volumes between samples P3T and P5T, and P1S and P2S. Sample P3T has the best 
pore system of all samples analyzed by CT, with a high proportion of well-
connected pores. These characteristics result in very high permeability values for 
this sample (50000 darcys). Conversely, the pore system of sample P2S has more 
isolated pores that result in the lowest permeability values measured in these 
samples (3.75 millidarcys). The mnemonic of each sample indicates the section 
number (P1, P2, P3, P4 or P5) and its dominant depositional texture (T for 
thrombolite and S for digitate stromatolite). 
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Figure III.11.  Continued. 
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Figure III.12. Pore size distribution determined by CT image analysis for the 
samples P1S, P2S, P3T and P5T.  The thrombolite samples have a higher frequency 
of large pores when compared with the digitate stromatolite samples, which are 
dominated by small pores. Pores sizes below 0.25 mm were below the CT 
equipment resolution. The mnemonic of each sample indicates the section number 
(P1, P2, P3 or P5) and its dominant depositional texture (T for thrombolite and S 
for digitate stromatolite). 
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Figure III.13. Distribution of pores with 2, 3, and 4 pore-throats for the samples 
P1S, P2S, P3T and P5T. The samples with thrombolite texture have a higher 
number of connected pores, often connected by 3 and 4 pore-throats, in comparison 
to the samples with digitate stromatolite texture. The sample P3T has the higher 
number of connected pores, with 3 and 4 pore- throats of all samples analyzed, 
which helps to explain its very high permeability. The mnemonic of each sample 
indicates the section number (P1, P2, P3 or P5) and its dominant depositional 
texture (T for thrombolite and S for digitate stromatolite). 
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Figure III.14. Connectivity density per volume (Conn. D) versus permeability plot 
for the samples P1S, P2S, P3T and P5T, showing a strong positive correlation 
between the sample pore system connectivity and the permeability measured in 
plugs. The mnemonic of each sample indicates the section number (P1, P2, P3 or 
P5) and its dominant depositional texture (T for thrombolite and S for digitate 
stromatolite). 
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Discussion 

Texture controls on pore system in the Eocene Green River Formation microbialites 

 Two microbial depositional textures (stromatolite and thrombolite) are identified 

in terms of sedimentary characteristics, morphometric aspects and pore space attributes 

in the Eocene Green River Formation. The relationship between texture and pore system 

that produces petrophysical differences are clear in the microbial carbonate (figures 

III.10, III.11, III.12, III.13 and III.14). The data suggest a strong depositional control on 

the development of the pore system and petrophysical properties expressed in terms of 

rock texture, fabric and environmental position.  

The thrombolite texture has an open framework and a pore system formed by a 

chaotic organization of shrubs and branches (figures III.7a, III.7b and III.11) composed 

of peloid, carbonate mud and a crystalline carbonate phase. These characteristics result 

in better porosity and permeability (figure III.10), because it has a higher number of 

large pores and better connectivity (figures III.12, III.13 and III.14). Commonly, this 

pore system is free of detrital sediment in pores and it has low diagenetic cement 

content; the porosity is mostly primary, with localized secondary porosity formed by 

dissolution.  

In contrast, the digitate stromatolite texture usually has a tighter framework and a 

pore system produced by a more organized microbial growth/carbonate precipitation 

fabric (figures III.7c and III.7d). The pore system in the digitate stromatolite texture 

(figures III.7c, III.7d and III.11) is characterized by small pores (submillimetre scale) 

and horizontal pores formed between each stromatolitic lamina and large vertical pores 
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(centimetre scale) formed between digits. However, the lamina related pore space is tight 

and the interdigit space commonly is filled with detrital sediments (figures III.9a, III.9b 

and III.11).  

Reservoir quality lateral continuity in the Eocene Green River Formation microbialites 

 There is a high lateral continuity of microbialite deposits and depositional 

textures in this carbonate unit of the Eocene Green River Formation (figure III.6). The 

thicker intervals of both detrital and microbialite carbonate are continuous across tens of 

meters with minor changes in texture and fabric. The reservoir quality is similarly 

continuous, because it is linked to the dominant texture of a specific interval, however 

external factors such as a higher proportion of detrital sediments (e.g. intraclast 

packstone) as occurred between sections 3 and 4 (figure III.6), or diagenetic reduction of 

pore space, may reduce the expected reservoir quality of a specific interval.  

Figure III.15 summarizes the main changes in reservoir quality in accordance to 

lateral shifts in facies and depositional textures along the studied carbonate unit. These 

interpretations are based on petrophysical measurements and petrographic porosity 

quantification of thin sections and visual estimates of textures on the outcrop. It is 

noticeable that the best microbialite texture in terms of open texture and reservoir quality 

formed during transgressions, when the microbialites had more space available for 

growth and less detrital sediments. During regressive periods, the detrital sediment 

influx was higher, therefore the thickness of the microbialite intervals was reduced and 

the microbialite texture was less developed and has a tighter pore system, resulting in 

worse reservoir quality. 
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Figure III.15. Stratigraphic section of the first carbonate unit interpreted in terms of reservoir quality. Purple and red 
colors represent better reservoir intervals and green and yellow colors indicate poor reservoir intervals, considering the 
following permeability range: green < 10 md; yellow <100 md; red <1000 md and purple >1000 md. Intervals sampled 
for petrophysical analysis are marked with an x to the left of each measured section. All other intervals were classified 
based on the interpretation of thin sections, field descriptions and comparison to similar samples with petrophysical 
measurements and their textural characteristics. There is good lateral continuity in relation to the reservoir quality in 
this unit, since the texture controls the pore system and its porosity and permeability are well-defined for these 
microbialite deposits in the Eocene Green River Formation. The intervals with better reservoir quality are associated 
with thrombolite texture or digit stromatolite with open packing and low pore filing by detrital sediments. They occur 
more often on locations where the microbialite development was favored, and form layers that can be laterally 
correlated in terms of depositional characteristics and reservoir quality. The texture scale of each section mnemonics 
are: Sh – shale, P – packstone, G – grainstone, St – stromatolite and Th – thrombolite. 
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The thrombolite texture usually forms layers or nuclei of microbialite heads that 

change laterally to a digitate stromatolite texture, resulting in patches of excellent 

reservoir quality engulfed in intervals of good to moderate porosity and permeability 

(figure III.15 – sections 2, 4 and 5). The reservoir quality in the digit stromatolite texture 

is driven by its fabric characteristics. The digitate stromatolite texture with its loose 

packing results in intervals with better reservoir quality, whereas a tight packing in this 

texture worsens the reservoir quality. This texture is laterally continuous as result of 

coalesced microbialite bioherms. Despite the occurrence of diagenetic cements and pore 

filling by detrital sediments, the reservoir quality in this texture is also continuous, 

varying in accordance to changes in fabric and morphometric parameters such as digit 

size. The interbedding with detrital carbonate also reduces the reservoir quality in the 

digitate stromatolite texture, mostly because sediment fills available pores and reduces 

the connectivity of microbialite textures in these intervals (figure III.15 – sections 1, 2, 3 

and 4).  

Applicability of data to production 

The results show that for this microbialite build-up in the Eocene Green River 

Formation the controls on porosity and permeability are strongly related to the 

depositional texture, fabric and the characteristics of the primary pore system. The 

thrombolite texture with its open pore system has excellent reservoir quality, but tighter 

textures, such as digitate stromatolite texture filled with detrital sediments, have poorer 

reservoir quality. Reservoir models for other microbialite deposits can be improved 

using similar constraints after the relationship between the depositional textures in 
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microbialites, pore system characteristics and their effects on porosity and permeability 

are defined.  

This study also shows that the facies distribution in microbialite build-ups may 

be continuous across ten of meters with moderate changes in pore system characteristics 

and reservoir quality. The recognition of lateral continuity of both facies and reservoir 

quality in microbialite carbonate deposits demonstrates that it is possible to correlate 

intervals with similar depositional texture and petrophysical properties at a reservoir 

scale. Another important result is the association between depositional textures, reservoir 

quality and stratigraphy. In this Green River Formation microbialite, textures with well-

developed pore system and better petrophysical properties formed during transgressions 

events, when the conditions for microbialite growth were enhanced. 

Microbialites have highly variable depositional textures, fabrics, diagenesis, and 

pore systems characteristics between different deposits. The results of this study provide 

insights of the applicability of a pore system genetic characterization in microbialite 

reservoirs. However, they do not cover all microbialite textures, fabrics and diagenetic 

modifications already detailed on previous works (Parcell et al, 2002; Bohacs et al, 

2013; Seard et al, 2013; Tonietto and Pope, 2013; Rezende and Pope, 2015). Therefore, 

to obtain a more robust and widespread understanding, other microbialite deposits must 

be fully analyzed in terms of their textures, pore systems and petrophysical properties. 
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Conclusions 

Microbialite carbonate build-ups in the Eocene Green River Formation can have 

very high porosity and permeability values that result from open pore systems controlled 

by their depositional textures and fabric characteristics. The porosity in the microbialite 

is dominantly primary, locally reduced by diagenetic cements and enlarged by 

subsequent dissolution. The thrombolite texture in the studied carbonate unit has a more 

open pore system and better permeability when compared to the dominant digitate 

stromatolite texture. However, microbial textures with very low permeability also occur, 

usually related to tight pore systems formed in digitate stromatolite texture with 

organized fabric, tight packing and pore space reduced by sediment infiltration.  

The thickness and textural characteristics of the microbialite intervals in this 

carbonate build-up are stratigraphically controlled. Microbialites grew and spread 

toward proximal areas during transgressions, but the development of their textures were 

more expressive when detrital carbonate was limited. Shallow-water and exposure 

structures and the change from digitate stromatolite to planar stromatolite textures on the 

top of microbialite layers at the end of each cycle suggest shallowing-upward deposition 

pattern. This information adds a predictive genetic character to the evaluation and 

reservoir modelling of microbialite reservoirs, positioning the intervals with better 

reservoir characteristics during transgressive phases. 

The microbialite and detrital carbonate textures and their reservoir quality have 

good lateral continuity in this carbonate build-up. Some microbialite intervals are 

continuous across tens of meters and were mapped in five stratigraphic sections. 



 

104 

 

However, the thrombolite texture, which has the better permeability values, occurs only 

when the microbialite growth was favored. Therefore it is a more localized texture than 

the stromatolite texture that occur more often and are more continuous throughout the 

outcrop. These observations indicate that microbialite intervals can be correlated at the 

reservoir scale, in terms of depositional and petrophysical characteristics, but their 

characteristics may vary laterally due to changes in textures from stromatolite to 

thrombolite and vice versa. 
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APPENDIX A 

THE DEPOSITIONAL AND DIAGENETIC EFFECTS ON THE PORE SYSTEM OF 

BRAZILIAN SUBSALT MICROBIALITES EXPRESSED ON WELL-LOGS3 

 

Abstract 

Microbialites, besides their natural texture heterogeneity, can be interpreted using 

well logs. Textural controls on the microbialites pore system result in a negative 

correlation between gamma ray logs and porosity logs. The petrographic analysis and 

CT volumetric evaluation show that the pore system is better connected on large 

homogeneous microbial fabrics (e.g. large shrub stromatolites) compared to laminated or 

smaller heterogeneous fabrics.  

Diagenetic modifications that reduced the porosity by dolomite and silica 

cements define intervals with large separation between porosity logs and the 

photoelectric factor log. Intervals with diagenetically enhanced pore systems commonly 

are associated with dissolution processes showing a positive correlation between the 

porosity logs and photoelectric factor. In the diagenetically enhanced pore systems the 

depositional trend between gamma ray logs and porosity logs is not present. 

                                                 

3 This appendix adds supplemental data to Chapter II. 
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The differentiation between depositional and diagenetically controlled pore 

systems in microbialite carbonates units by petrographic and well log analysis may 

contribute to a better understanding of these reservoirs. The units detailed in this work 

indicate that intervals dominated by depositional or diagenetic characteristics have 

distinct petrographic and petrophysical characteristics, which can lead to different log 

signatures. 

Introduction 

The fabric and pore system of microbialite carbonates are controlled by 

depositional settings (Rezende et al., 2013; Rezende and Pope, 2015; Tonietto and Pope, 

2013). However, these primary rock characteristics are diagenetically modified in 

different ways (dissolution and cementation) and degrees during subsequent burial, 

allowing a genetic classification of the carbonate pore system (Ahr, 2008). 

Consequently, units with the same initial primary characteristics may end up with very 

different pore systems and petrophysical characteristics (Rezende et al., 2013; Tonietto 

and Pope, 2013).  

Subsalt microbialite carbonate units (Gomes et al, 2013; Rezende and Pope, 

2015; Terra et al., 2009) were evaluated in six wells located in the Santos Basin, Brazil 

(figure II.1), using rock types defined by the dominant microbialite texture and well log 

signatures. Diagenetically modified intervals were then compared to these rock types to 

contrast the effects of dissolution and cementation on the primary pore system. The 

results suggest that it is reasonable to use well logs to classify microbialite carbonate 
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units, in terms of their textural, diagenetic and petrophysical characteristics, for further 

reservoir characterization. 

Methods 

Microbialite carbonate units in six wells from hydrocarbon reservoirs were sub-

divided into rock types defined by their textural characteristics and different signatures 

on porosity, resistivity and lithological logs. These rock types also had their pore 

systems evaluated by petrography in terms of depositional and diagenetic history and CT 

scans for 3D structure. The information from log signatures, petrophysics measurements, 

petrographic and 3D pore system were integrated to understand how the microbial 

textures, diagenetic fabrics and pore systems are expressed on well logs.  

Results 

Better developed textures, such as large shrub microbialite, have higher porosity 

(Appendix, figure 1) and very low radioactivity (Appendix, figure 2). The effect of large 

pore structures of these better developed textures is also noted on the resistivity and 

density logs (Appendix, figure 3). Large pore structures result in lower resistivity in the 

water-bearing zones and lower density. 

Textures with larger pore structure have higher acoustic slowness and porosity 

values estimated by Nuclear Magnetic Resonance (NMR) log (Appendix, figure 4), 

except in the authigenic clay-rich intervals. In these intervals the acoustic slowness is 

low because of the clays formed into pores. Higher concentration of mud and organic 

matter is common in lesser developed textures, which also reduces the acoustic slowness 
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(Appendix, figure 5). Interfingering effect between the main textural classes is caused by 

a high textural heterogeneity of these microbialite carbonate units. 
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Appendix A, figure 1. CT rendered volumes for the rock framework and pore 
system of the microbial laminite, small shrub, medium shrub and large shrub 
microbialite textures in the subsalt carbonate deposits in Santos Basin. Orange 
color represents less porous particles, yellow color represents more microporous 
particles and blue color represents the pore system. The pore system is better 
developed, and changes from chaotic organization to horizontally oriented pores, 
on the large shrub microbialite textures and become worse towards the laminite, 
because of smaller pores and tight shrub packing. 
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Appendix A, figure 2. NMR effective porosity v. gamma ray plot, showing that the 
large shrub microbialite (purple) and medium shrub microbialite (red) have higher 
porosity and lower natural radioactivity than the small shrub microbialite (yellow) 
and microbial laminites (green). The grey cluster is formed by samples located in 
intervals rich in authigenic clays that fill pores and reduces the porosity. 
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Appendix A, figure 3. Bulk density v. deep resistivity plot, showing the water-
bearing zone below 20 Ohm.m and the oil bearing zone above 20 ohm.m. The large 
shrub microbialite (purple) and medium shrub microbialite (red) have lower bulk 
density values and lower natural resistivity in the water-bearing zone than the 
small shrub microbialite (yellow) and microbial laminites (green). On the oil-
bearing zone the resistivity values are affected by the high resistivity of the oil, but 
a slight trend is present from lower resistivity values in the microbial laminite and 
small shrub microbialites towards higher resistivity values in the medium and large 
shrub microbialites. The grey cluster is formed by samples located in intervals rich 
in authigenic clays that fill pores, reduces the porosity and increases the water 
saturation. 
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Appendix A, figure 4. NMR effective porosity v. acoustic slowness plot, showing 
that the large shrub microbialite (purple) and medium shrub microbialite (red) 
have higher porosity and higher acoustic slowness than the small shrub 
microbialite (yellow) and microbial laminites (green). The grey cluster is formed by 
samples located in intervals rich in authigenic clays that fill pores and reduces the 
porosity, but keep the acoustic slowness high, because of its microporous 
microstructure and high water saturation. 
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Appendix A, figure 5. Acoustic slowness v. gamma ray plot, showing that the large 
shrub microbialite (purple) and medium shrub microbialite (red) have higher 
acoustic slowness and lower natural radioactivity than the small shrub microbialite 
(yellow) and microbial laminites (green). The grey cluster is formed by samples 
located in intervals rich in authigenic clays that fill pores , reduces the porosity and 
increases the water saturation. 
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Besides the depositional controls on the rock properties, pore system 

characteristics and their effects on the well log measurements, there are two diagenetic 

patterns A and B that can identified by well logs. Pattern A represents intervals where 

the depositional control on the porosity is dominant, and the diagenesis acts enhancing 

or reducing the pore space. Pattern B represents intervals where the diagenetic control on 

the pore system is dominant.  However, the textural changes still drives major changes in 

porosity. 

These two diagenetic patterns and their resultant pore system are clearly defined 

on petrographic thin sections (Appendix figure 6). Pattern A is related to the primary 

porosity, which was enhanced by dissolution or reduced by cements. Pattern B is related 

to diagenetic pore systems formed by cementation and later dissolution of depositional 

particles. This different pore system formed by the pattern B results in lower 

permeability values when compared to the pore system formed by the Pattern A 

(Appendix figure 7).  

Appendix figure 8 shows the correlation between NMR effective porosity and 

Photoelectric effect (PE) for these two diagenetic patterns. Pattern A has a positive 

correlation and Pattern B has a negative correlation. The gray data are the intervals in 

pattern A with strong cementation by dolomite or silica. 
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Appendix A, figure 6. Two diagenetic patterns characterized by differences in pore 
systems and mineral content. Pattern A has a pore system related to the 
depositional texture (left image). Dolomite and Silica are cement phases that 
reduces the porosity in this pattern (right image). Pattern B has a pore system 
(moldic pores and vugs) formed by selective dissolution of calcite particles in a rock 
that was previously cemented (left image). Intervals not affected by dissolution 
have low porosity (right image). 
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Appendix A, figure 7. Effective porosity v. permeability plot, showing that samples 
characterized by the pattern A have higher permeability values than samples 
characterized by the pattern B. All results in this plot were obtained from plugs 
sampled from cores. 
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Appendix A, figure 8. NMR effective porosity v. PE plot, showing two opposite 
correlation trends for the diagenetic patterns A and B. Pattern A has a positive 
correlation trend between porosity and PE, which is defined by the association of 
open pore structure and calcite framework particles and closed pore structure and 
dolomite and/or silica cements. Pattern B has a negative correlation trend between 
porosity and PE, which is defined by the association of open pore structure (moldic 
pores and vugs) and dissolution of calcite framework particles and closed pore 
structure and the presence of calcite particles. 
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Discussion 

Depositional patterns in well-logs 

Depositional patterns in this subsalt microbialite carbonate units are identifiable 

on well-logs, which can be used to track shifts in facies and their related pore systems. 

The data indicate that better primary pore systems are related to better developed 

microbialite textures (Appendix, figure 1) with large particles and low concentration of 

mud and organic content. These patterns are useful to build conceptual reservoir models. 

These textures such as large shrub microbialite and medium shrub microbialite have low 

gamma ray and high acoustic slowness, except intervals rich in authigenic clays 

(Appendix, figures 2, 4 and 5). The larger and better connected pore system in these 

textures is identifiable by the deep resistivity log, which shows relatively lower values in 

the water-bearing zone for these textures than in microbial laminites and small shrub 

microbialites (Appendix, figure 3). However, different carbonate deposits may have 

different distribution of environments, facies and textures that lead to other log 

signatures.   

Diagenetic patterns on well-logs 

In these sub-salt carbonates, two diagenetic patterns A and B are observed as 

result of two different diagenetic pathways. Calcite rock framework, dolomite and silica 

cements, and dissolution processes resulted in totally distinct pore system characteristics 

(Appendix, figures 6 and 7). Pattern A is defined by interparticle porosity reduction by 

cements and interparticle porosity enhancement by dissolution. Pattern B is defined by 
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the generation of moldic and intraparticle porosity in intervals with strong cementation 

by silica or dolomite.  

These changes in the pore system and mineral content allow the recognition of 

these two diagenetic patterns by well logs. Changes in the mineral content (e.g. calcite 

dissolution and dolomite precipitation) caused by the diagenetic processes related to 

these two patterns, result in different PE values. These values show a positive correlation 

for the pattern A and a negative correlation for the pattern B, when plotted against the 

porosity estimated by NMR logs (Appendix, figure 8). Therefore, it is possible to 

distinguish these two patterns by well logs. The integration of these diagenetic patterns 

with the primary depositional patterns allows a better differentiation of rock types with 

different log signatures and petrophysical characteristics. 

Conclusions 

Depositional patterns are expressed on lithological and porosity estimation logs 

in the sub-salt microbialite carbonate deposits. The environmental setting controls the 

depositional textures leading to different pore systems. These depositional patterns are 

the main identifiable element on the gamma ray and the porosity estimated by logs. They 

also impact the petrophysical characteristics of these microbialite carbonate deposits.  

Two diagenetic patterns A and B control diagenetic enhanced and diagenetic 

reduced zones. They both are expressed on logs by changes in porosity and mineral 

composition.  Both patterns result in low porosity values by silica and dolomite cements. 

Pattern A has higher porosity values when the cement content is low, whereas pattern B 
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the higher porosity values are related to moldic porosity in cemented intervals. These 

differences also lead to changes in porosity and permeability between these two 

diagenetic patterns.  

Both depositional and diagenetic patterns can be integrated into reservoir models 

to define classes formed in similar environmental conditions, but with different 

diagenetic histories. Consequently, the petrophysical characteristics in these units can be 

better understood, once the genetic character of the pore system are properly defined. 

Each class can be later sub-divided to incorporate geologic and petrophysical details into 

the model when needed. As note of caution, complete rock-log integration is necessary 

to better define the depositional classes and diagenetic patterns in these microbial 

carbonate units. 
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APPENDIX B 

MICROBIALITE TEXTURES FROM TWO OUTCROPS IN THE EOCENE GREEN 

RIVER FORMATION, IN WYOMING 

 

 

Appendix A, figure 1. Inset map A – United States map with the states where the 
Great Green River Basin, Uinta Basin and Piceance Creek Basin are located. B – 
Regional map with the areal distribution of the Eocene lake basins (Great Green 
River Basin, Uinta Basin and Piceance Creek Basin), major uplifts and tectonic 
lineaments (modified after Smith et al., 2008). The white square shows the outcrop 
location in Wyoming (north of Rock Spring) at 41° 58' 07" N, 109° 15' 05" W. 
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Appendix A, figure 2. a – Microbialite head composed of peloids, peloid shrubs and 
trapped grains (detrital carbonate and clastics). The heads are metric sized and 
occur scattered (some upside-down) in a cross stratified medium sandstone (Farson 
Sandstone). They developed on top of previous reliefs such as wood logs and other 
debris. b – Detail of thrombolite texture with complex 3D fabric capped by thinly 
laminated stromatolite texture. c – High-resolution image showing the complex and 
open fabric of the thrombolite texture formed by irregularly branches. c – Detail of 
the area marked on b (red square) showing the thrombolite texture framework of 
small peloids (S) shrubs and trapped grains (G). The black material is organic 
matter.  



 

135 

 

 

Appendix A, figure 3. a – Microbialite head composed of alternated layers of 
stromatolite (St) and shrub microbialite (Shrub). The heads form a 30 cm (average) 
thick layers interbedded with intraclast, oncolite grainstone that caps a 
shale/sandstone unit. b – Thin section image showing shrubs appearance. Darker 
colors are peloid rich intervals and light colors are crystalline phases intervals. The 
pore space is partially filled by blocky calcite cement (c). c – Close-up on the area 
marked with a black square in b. The shrubs are formed by alternations of thin 
carbonate and organic matter laminae, and vertically grown carbonate crystals. 
Pores formed between shrubs and between laminae. The left side of image is under 
cross-polarized light. 
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APPENDIX C 

MERCURY INJECTION PORE THROAT RADIUS DISTRIBUTION  
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