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ABSTRACT 

 

The increase in global environmental concerns as well as advancement of 

computational tools and methods have had significant impacts on the way in which 

buildings are being designed. Building professionals are increasingly expected to 

improve energy performance of their design. To achieve a high level of energy 

performance, multidisciplinary simulation-based optimization can be utilized to help 

designers in exploring more design alternatives and making informed decisions. Because 

of the high complexity in setting up a building model for multi-objective design 

optimization, there is a great demand of utilizing and integrating the advanced modeling 

and simulation technologies, including BIM, parametric modeling, cloud-based 

simulation, and optimization algorithms, as well as a new user interface that facilitates 

the setup of building parameters (decision variables) and performance fitness functions 

(design objectives) for automatically generating, evaluating, and optimizing multiple 

design options. 

This study presents an integrated framework for Building Information Modeling 

(BIM)-based Performance Optimization (BPOpt). This framework enables designers to 

explore design alternatives using a visual programming interface, while assessing the 

environmental performance of the design models to search for the most appropriate 

design alternatives. BPOpt integrates the rich information stored in parametric BIM with 

building performance simulation tools to make performance optimization more 

accessible in the process of design. This framework uses evolutionary multi-objective 
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optimization to explore the design space and provides a set of Pareto Optimal solutions 

to the designers. Using this framework, multiple competing objective functions such as 

construction and operation costs and environmental performance can be studied and a 

potential set of solutions can be presented. 

The BPOpt framework is developed by systematic integration of: 1) Parametric 

BIM-based Energy Simulation (PBES); 2) Parametric BIM-based Daylighting 

Simulation (PBDS); and 3) Optimo – an open-source Multi-Objective Optimization 

(MOO) in a visual programming interface tool, developed as part of this research, to 

provide efficient design space exploration for achieving high-performance buildings. 

This dissertation describes the prototype development and validation of PBES, PBDS, 

and Optimo, tools for BPOpt. Furthermore, the present document details the 

development process of BPOpt and also demonstrates the usefulness of this framework 

through multiple case studies. The case studies show the use of BPOpt in optimizing 

multidisciplinary conflicting criteria such as minimizing the annual energy cost while 

maximizing the appropriate daylighting level for the building models. 
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1. INTRODUCTION  

 

1. 1. Research Problem 

The building sector is the largest consumer of the United States primary energy 

and accounted for 40% of carbon dioxide emission in the country in 2010 (US Dept. of 

Energy 2012). On the other hand, the building sector has the greatest potential for carbon 

reduction with the lowest cost (Sustainable Buildings and Climate Initiative, 2009). As a 

result of the rising awareness of environmental issues and due to the considerable impact 

of buildings on the environment, the demand for sustainable buildings with efficient 

energy use and minimal environmental impact is growing (Azhar et al., 2009). 

Consequently, building professionals are increasingly expected to improve the 

environmental performance of their design. 

However, high-performance building design is a multidisciplinary and complex 

process (Wang et al., 2005; Wright et al., 2002) and architects mostly do not have 

sufficient expertise and knowledge to deal with it (Bazjanac, 2008; Schlueter and 

Thesseling, 2009). The complexity comes from the large number of interrelated 

parameters involved in performance-based design such as building geometry, space 

layout, construction materials, analytical properties, sites, weather data, user behaviors, 

etc. as well as the complex natures of building simulation outputs (Nguyen et al., 2014). 

As a result of this complexity and due to the lack of efficient tools to help architects 

explore design alternatives and assess their efficiency, performance assessments are 

typically performed during the later phases of design. Consequently, design practitioners 
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typically create and explore a very limited set of design alternatives before choosing the 

final design, which leads to underperforming buildings (Hensen, 2004). 

Applying individual sustainable strategies would help improving the 

performance of the building to some extent. However, achieving high level of 

performance requires an optimal combination of several strategies (Stevanović, 2013). 

Although improving building performance by applying separate strategies can be simple, 

optimizing the design performance can become complicated and time intensive, 

requiring multidisciplinary inputs to provide relevant feedback (Wang et al., 2005).  

Multidisciplinary optimization for high performance building design is a method 

with potentials to: 1) provide desired performance feedback for decision making during 

the design process; 2) help designers with creative design space exploration and provides 

an expanded set of design alternatives and the assessment of their impacts on the 

performance; and 3) support designers in decision making by ranking design alternatives 

according to multiple design criteria (Lin and Gerber, 2014a). Although optimization is 

undoubtedly a promising method to achieve high performance building design, due to its 

inherit complexity, it is not commonly used in the design practice yet and currently its 

use is mainly limited to a few academic research studies.  Because of the high 

complexity in setting up a building model for multi-objective design optimization, there 

is a great demand of utilizing and integrating the advanced modeling and simulation 

technologies, including Building Information Model (BIM), parametric modeling, cloud-

based simulation, and optimization algorithms, as well as a new user interface that 

facilitates the setup of building parameters (decision variables) and performance fitness 
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functions (design objectives) for automatically generating, evaluating, and optimizing 

multiple design options. 

A systematic integration of parametric BIM and building performance analysis 

can provide a new workflow that will make the building performance optimization more 

accessible for innovative energy-efficient building design. BIM delivers relevant 

building information required for building energy performance analysis and if used 

appropriately can save a significant amount of time and effort in preparing input data for 

building performance simulation while reducing errors (Kumar, 2008). Though 

parametric BIM-based performance optimization could significantly benefit high 

performance building design, there are only a very limited number of research studies on 

creating an integrated methodological framework for BIM-based multidisciplinary 

performance optimization. Welle (2012) developed ThermalOpt, a multidisciplinary 

design optimization (MDO) workflow for automated BIM-based thermal simulation. 

ThermalOpt was the first reported research study to mitigate technical barriers to BIM-

based multidisciplinary performance optimization while integrating commercially 

available technologies into a workflow. Welle at al. (2011) reported there are seven 

modeling requirements for ThermalOpt that the designer needs to follow (most of them 

are due to the limitations of the BIM tool, Digital Project) to conduct a successful 

optimization. In addition, ThermalOpt uses ModelCenter® (Phoenix Integration, 2013) 

as the MDO environment, which requires extensive training to define the trade study 

strategy.  More recently, Lin (2014) developed an Evolutionary Energy Performance 

Feedback for Design (EEPFD) framework that enables complex geometric form 
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exploration via energy performance feedback in the early design stage using a BIM tool. 

The EEPFD uses Microsoft
®
 Excel for storing financial parameters and formulas, and 

also a user interface proxy in which designers can set up design parameters. EEPFD is 

designed for the parametric conceptual models in Autodesk
®
 Revit mass family and as a 

result does not fully utilize the detailed analytical properties of building objects (i.e. 

thermal properties) in BIM for performance analysis. 

Both of the abovementioned research studies introduce a successful 

methodological framework to mitigate the technical barriers of the BIM-based thermal 

simulation and design optimization and make them more accessible in the process of 

design. In this dissertation, we introduce a BIM-based Performance Optimization 

(BPOpt) framework that tries to overcome the limitations of the previous research 

studies and provides an integrated, easy-to-setup, and expandable multidisciplinary 

performance optimization tool on top of a widely-used BIM platform - Autodesk
®
 Revit. 

BPOpt uses a visual programming user interface for users to setup building parameters 

and performance fitness functions, utilizing the significant benefits of visual 

programming (Myers, 1990), especially in architecture (Boeykens and Neuckermans, 

2009). 

The BPOpt framework is developed by systematic integration of: 1) a Parametric 

BIM-based Energy Simulation (PBES) tool that provides a systematic integration of 

BIM, parametric modeling, and building energy simulation; 2) a Parametric BIM-based 

Daylighting Simulation (PBDS) tool to integrate parametric BIM and building 

daylighting simulation; and 3) an open-source, visual programming-based Multi-
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Objective Optimization (MOO) tool for BIM - Optimo - that provides multidisciplinary 

design space exploration and the analysis of tradeoffs for design decision.  In this 

dissertation we demonstrate the functionality of BPOpt, PBES, PBDS, and Optimo in 

multiple case studies by optimizing the energy and daylighting performance of 

residential buildings design. However, the applicability of BPOpt framework is not 

limited to these two performance metrics and can be expanded to include other building 

performance metrics as described in Sections 4 and 6. 

1. 2. Research Overview 

1.2.1 Research Objectives 

The investigation of the limitations and problems of building performance 

optimization in the early design stage has motivated this research. In order to overcome 

these limitations, the overall aim of this research is set to propose and develop a 

framework to facilitate performance-based design and optimization using rich 

information in BIM. This framework should be able to make building performance 

optimization more accessible in the process of architectural design. The proposed 

research is streamlined on the top of emerging technologies to provide a fast 

performance evaluation feedback and improve parametric study of design performance 

analysis for multiple design alternatives. In order to pursue this aim, the following three 

specific objectives are defined for this research: 

1. To study the literature and investigate the existing methods that can help 

address the gap between architectural design and building performance 
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optimization and identify potential means by which this research goal can be 

achieved. 

2. To identify the requirements that the proposed framework needs to be 

adopted by architects for high-performance building design. 

3. To develop a prototype of the proposed framework, and through validation 

and case studies, evaluate its components’ effectiveness as well as its overall 

usefulness in improving the building performance. 

1.2.2 Research Methodology 

This research proposes developing a new system to optimize building 

performance using the information stored in BIM as a response to the identified gap in 

the literature.  The proposed framework, BPOpt, is created by utilizing the development 

of three component tools, PBES, PBDS, and Optimo, through an iterative testing and 

evaluation process. Descriptions of the BPOpt framework as well as PBES, PBDS, and 

Optimo tools are provided below. 

Parametric BIM-based Energy Simulation (PBES) 

Current building energy modeling tools, such as EnergyPlus developed by the 

US Department of Energy (DOE), do not support comprehensive parametric relations 

among building objects. For instance, if a wall is transformed in an energy model, none 

of the related objects including windows, shading devices, rooms, roofs, and floors will 

be updated automatically. In other words, parametric design intents that are embedded in 

parametric BIM are not embedded in the energy models. As a result, a manual update of 
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the model data is needed before running the simulations, but this process is complex, 

tedious, and error-prone. 

Although many different approaches to design are becoming possible through the 

rapidly developing technology of computers, appropriate tools to explore design 

alternatives and assess their performance are not yet available in the early design process 

(Rahmani Asl et al., 2013). In order to fulfill the requirements of low energy building 

design, there is a need for an innovative design methodology and integrated design 

process. The integration of parametric modeling and BIM is the new trend of building 

modeling, which can greatly benefit sustainable building design. Parametric modeling 

enables the creative exploration of a design space by varying parameters and their 

relationships (Azhar and Brown, 2009). BIM delivers relevant building information 

required for building energy performance analysis, and if used appropriately, can save a 

significant amount of time and effort in preparing input data for building energy 

simulation while reducing errors (Kumar, 2008). 

In response to the observed need, PBES is developed as a framework that enables 

designers to make parametric changes to the BIM model and simulate the energy 

performance accordingly. The parametric runs of the energy simulation enable designers 

to explore design alternatives and at the same time assess the building energy 

performance to search for the most energy efficient design alternative. The design 

criteria that are considered in developing PBES are as following: 
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1. rapid generation of design alternatives; 

2. use of relevant building information stored in BIM for preparing the input file 

for energy simulation; 

3. automatic transfer of parametric changes of the BIM model to the energy 

analytical model; 

4. rapid evaluation of design alternatives by overcoming scalability barrier 

using cloud computing; 

5. adaptability to wide spectrum of design scenarios. 

The designed framework uses Autodesk
®
 Revit

®
 as the BIM platform and 

collects the geometrical information and the thermal properties of construction materials 

stored in the model to create the energy analytical model. The parametric relationships 

can be defined either through the Revit user interface, which has limited parametric 

capabilities at the family level or with the use of Dynamo (“Dynamo BIM,” 2015), 

which is an open-source visual programming application that interacts with Revit to 

extend its parametric capabilities. The parametric connections help propagate parameter 

changes throughout the BIM model during the optimization process. 

PBES generates energy model data in Green Building eXtended Markup 

Language (gbXML) open schema to transfer to an energy simulation tool using 

Autodesk
®
 Revit

®
’s Application Programming Interface (API). An automatic link is 

created between Revit and a web-based energy simulation engine - Autodesk
®
 Green 

Building Studio
®
 (GBS). The interaction between Revit and GBS has been enabled using 

Revit-API and GBS-API. 
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Parametric BIM-based Daylighting Simulation (PBDS) 

Lighting Analysis for Revit is a cloud service that uses Autodesk
®
 Rendering 

Service to calculate electric lighting and daylighting results directly from the BIM 

models during the process of the design. The daylighting simulation tools are accessible 

in Dynamo through a few nodes. Using the Dynamo daylighting nodes, we have created 

a flexible daylighting simulation package for calculation of hourly illuminance values to 

enable automation of parametric daylighting analysis. This package calculates the 

percentage of the area with the daylighting performance factor within the acceptable 

range set by LEED Version-4 Daylight Option-2 (“U.S. Green Building Council,” 2013). 

Based on LEED Version-4 Daylight Option-2 the building gets 1 point if the illuminance 

level of 75% of the regularly occupied area lies between 300 lux and 3,000 lux for 9 a.m. 

and 3 p.m., both on a clear-sky day at the equinox and it gets 2 points for more than 90% 

within this illuminance range. The daylighting simulation package is designed to be 

integrated into the performance optimization process as an objective function. 

Multi-Objective Optimization Component (Optimo) 

As a part of the BPOpt framework, Optimo, an open-source MOO package, is 

developed to parametrically interact with Autodesk Revit for BIM-based optimization ( 

project URL at Rahmani Asl et al., 2015). It is developed as an application that can be 

installed as a package for Dynamo and works based on the Nondominated Sorting 

Genetic Algorithm-II (NSGA-II) (Deb et al., 2002). Optimo is branched from the 

jmetal.NET open source code with the goal of providing C# implementation of 

http://jmetalnet.sourceforge.net/
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Metaheuristic Algorithms in Java (Durillo and Nebro, 2011). The source code of Optimo 

is available to the public and it is published as an open-source package under GNU 

Lesser General Public License. 

BIM-based Performance Optimization (BPOpt) 

To address the need to an integrated, easy-to-setup, and expandable 

multidisciplinary performance optimization tool on top of a widely-used BIM platform , 

BPOpt framework is developed. The proposed framework uses parametric BIM and 

building performance simulation tools along with evolutionary multi-objective 

optimization to explore the design space and provides a set of optimal solutions to the 

designers. Using BPOpt, multiple competing objective functions such as construction 

and operation costs and environmental performance can be studied and a potential set of 

solutions can be presented. 

The process of implementing BPOpt to optimize building performance and 

obtain feedback for design decisions can be described in six major steps: 

1. Preparing the BIM model by implementing the necessary analytical 

properties of building objects for performance analysis. 

2. Defining parametric relationships among building objects. 

3. Defining decision variables and their domains for the optimization process. 

4. Defining fitness functions for the optimization process. 

5. Performing optimization by feeding variables and fitness functions into the 

optimization package. 
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6. Making decisions - the main design task that can only be addressed by the 

designers themselves. 

The BPOpt framework is designed as an iterative loop to enable designers to 

make design decisions and test their impact on the performance of the model. In the last 

step of the framework, the designer evaluates the results and there are two ways to 

proceed: 1) a design alternative is selected from the optimal solution set provided by this 

framework and the design proceeds or; 2) based on the provided results the designer 

makes changes in the optimization settings and parametric relationships and repeats the 

same process till the desired design is achieved. 

1. 3. Research Significance 

This research provides an integrated framework that enables designers to search a 

larger design space more efficiently and provides them with an optimal set of solutions 

towards higher performance of buildings. The proposed framework impacts the process 

of building design by: 

 enabling designers to investigate important criteria and helping them make 

informed design decisions; 

 discovering issues during the building design with a large number design 

alternatives very quickly, which redefines the responsibilities of design team 

members and helps them perform their tasks in a shorter amount of time; 

 changing design process towards more accurate computation and 

optimization-based methods. 



 

12 

 

1. 4. Overview of Dissertation 

This dissertation includes 6 sections that are described below: 

 Section 1- Introduction: This section describes the research problem and 

provides an overview of the research. It explains the research objectives and 

contains a brief overview on the proposed framework (BPOpt) and its 

component tools (BPES and Optimo). The introduction section includes the 

significance of the research as well as the dissertation outline. 

 Section 2- Background: This section provides current literature about 

parametric building performance analysis, BIM-based high performance 

building design, and building performance optimization. The gap in the body 

of knowledge is summarized at the end of this section. 

 Section 3- Research Methodology: This section provides detailed description 

of the methods used to conduct this research, and elaborates the process of 

the development of the research components and their validation design. 

 Section 4- Prototype Development and Validation: This section provides the 

details on the development process of PBES, PBDS, and Optimo tools. The 

validation studies of these component tools are elaborated in this section. 

 Section 5- Experiment of the BPOpt Framework: This section describes the 

BPOpt framework and provides the initial validation of this framework 

through two experiments. These experiments demonstrate the successful use 

of BPOpt in minimizing the energy use while maximizing the appropriate 

daylighting level of two different building models. 
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 Section 6- Conclusion and Future Work: This section includes the 

contribution of the research to the body of knowledge and research 

limitations as well as future work. Also, strengths, limitations, current 

adoption by academia and industry, and future improvements of BPOpt for 

high-performance building design are discussed. 
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2. BACKGROUND
*
 

 

Based on the report developed by the United States Department of Energy (DOE) 

(2012), the building sector is the largest consumer of the United States primary energy 

(41%) and accounts for 40% of carbon dioxide emission in the country in 2010. 

Meanwhile, the building sector has the greatest potential for carbon reduction with the 

lowest cost (Ochsendorf, 2012). As a result of the rising awareness of environmental 

issues and due to the considerable impact of buildings on the environment, the demand 

for high performance buildings with minimal environmental impact is increasing. 

Most of the initial work on building performance simulation algorithms was 

developed a few decades ago. Nevertheless, building performance simulation tools 

became widely available to designers over the past few years with the advancement of 

computational tools and methods. The U.S. DOE (2015) has been publishing the 

“Building Energy Software Tools Directory” that provides information for over four 

hundred software tools for evaluating energy efficiency, renewable energy, and 

sustainability in buildings. Crawley et al. (2008) provided a report comparing the 

features and capabilities of twenty major building energy simulation tools. Maile et al., 

(2007) provided a detailed description of 5 energy simulation tools and discussed their 

strengths and weaknesses as well as data exchange capabilities. These resources have 

provided detailed information about the widely used building energy simulation tools. 

                                                 

*
Part of this section is reprinted with permission from “Towards BIM-based Parametric Building Energy 

Performance Optimization” by Rahmani Asl, M., Zarrinmehr, S., Yan, W., 2013, Proceedings of the 33rd 

Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Page 

Range 101-108, Copyright 2013 by “ACADIA 2013 International Conference, Riverside Architectural 
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The concurrent growth of the global environmental concerns and the availability 

of building performance simulation tools have had a significant impact on the way in 

which buildings are designed (Malkawi, 2004). Designers are increasingly expected to 

consider energy performance of their design by exploring design alternatives that are 

more promising to save energy. However, the traditional process of building 

performance analysis in the design process is ineffective and must be improved. 

Simulation of few number of design options rarely reaches optimal solutions and this 

leads to underperforming buildings (Paoletti et al., 2011). Exploring design alternatives 

parametrically and optimizing the performance at the early design stage are still a 

challenge for design professionals (Lin and Gerber, 2014b). As a result, parametric 

energy studies are rarely used due to the lack of appropriate tools. In order to be most 

effective, a holistic and integrated approach to building design is necessary for 

optimizing building performance (Welle et al., 2011). In recent years, an increasing 

amount of literature on optimizing building performance has been published (De Boeck 

et al., 2013) but BIM-based building performance optimization has only a few research 

studies (Flager et al., 2012; Lin and Gerber, 2014a; Welle et al., 2011). 

Many research studies focused on improving performance-based design process 

consistency and mitigating technical barriers to the building performance optimization 

process. In this section I review literature for (1) parametric performance-based design, 

(2) recent studies on Building Information Modeling (BIM)-based building performance 

analysis, and (3) the use of optimization methods in high performance building design. 
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2. 1. Parametric Building Performance Analysis 

Parametric modeling and simulations are becoming fundamental parts of building 

design. Parametric modeling enables generative form-making based on aesthetic and 

performance metrics of buildings through the use of parametric rules between objects 

and allows objects to automatically update based on the change in the context (Aish and 

Woodbury, 2005). Performance-based design requires designers to explore potential 

design alternatives parametrically and choose the best alternative for the project 

(Mourshed et al., 2003; Welle et al., 2011). 

Parametric studies show a significant potential contribution to improve building 

environmental performance (Naboni et al., 2013; Pratt and Bosworth, 2011). While most 

of the current parametric modeling-based designs are focused on the aesthetic form 

generation, significant potential lies in the field of performance-based design (Caplan, 

2011; Kensek, 2011). Designers can integrate parametric modeling into the process of 

performance analysis in different fields of building design, including, but not limited to, 

energy simulation (Paoletti et al., 2011; Pratt and Bosworth, 2011), structural analysis 

(Shea et al., 2005), and acoustic simulation (Wu and Clayton, 2013). Benefiting from the 

new technologies, current parametric design tools provide design iteration and 

visualization. 

Nonetheless, in practice, designers rarely use parametric building performance 

analyses due to the difficulty in preparing the energy models as well as the long 

simulation run time. In the literature, there are a few common approaches to address this 

issue and achieve results in a timely manner, which are described in detail in the 
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Building Energy Performance Optimization section of this section. Moreover, parametric 

building performance analysis only results in limited improvement of building 

performance due to the complex impacts of the input variables on building performance. 

In order to achieve an optimal building energy performance, simulation-based 

optimization methods are needed (Nguyen et al., 2014). 

2.1.1 Visual Programming for Parametric Building Performance Analysis 

Computer programming is often needed for designers to implement their 

sophisticated design intent in parametric modeling (e.g. through the use of for-loop and 

conditional statements). For instance, in existing BIM tools, certain design and 

engineering knowledge can be directly embedded into geometry components of BIM 

through tabular forms. However, for the large number of parameters across various 

disciplines, the complexity increases and tracking the interrelationships of objects and 

parameters gets very difficult. Consequently, designers have no way other than writing 

scripts to create the design that they have in mind. Usually, however, architects do not 

have computer programing or scripting expertise. 

Visual programming interfaces can replace the elaborate code scripts with a 

visual metaphor of connecting small blocks of independent functionalities into a whole 

system or procedure (Boeykens and Neuckermans, 2009). Visual programming lets users 

create computer programs by manipulating program elements graphically rather than 

textually. Based on a survey of 50 visual programming languages (Myers, 1990), it is 

clear that a more visual style of programming would be easier to understand for non-

programmers or novice programmers (architects normally fit into these categories). 
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Examples of visual programming tools for architectural design are Bentley
®
 Generative 

Components, Grasshopper
®
 for McNeel Rhinoceros

®
, and Dynamo for Autodesk

®
 

Revit
®
. 

As it has been noted, high-performance building design is a highly complex 

process and thus can significantly benefit from visual programming interfaces. Visual 

programming can help manage the complexity of high-performance building design by 

making the programming process less dependent on strict syntax but more easily 

adaptable. However, the use of visual programming tools in building energy simulation 

and performance-based design is still new. A few tools have been created to make the 

parametric performance-based building design more accessible using a visual 

programming interface. Most of these tools are created on top of Rhinoceros
®
 (Rhino), a 

3D NURBS modeling program, because of its tightly integrated visual programming 

editor, Grasshopper
®
, which is designed for parametric modeling. There are a few 

studies trying to use these tools to enable designers to explore various design options and 

access energy performance analysis results quickly. These studies try to create 

workflows to integrate Rhino/Grasshopper with building performance analysis tools. For 

instance, Lagios et al. (2010) created a workflow within Rhino/Grasshopper to export 

scenes (geometry, material properties, and sensor grids) to Radiance/ DAYSIM to 

calculate a series of daylighting performance indicators. Jakubiec and Reinhart (2011) 

described a design workflow for integrating daylighting analysis using 

Radiance/DAYSIM and thermal analysis using EnergyPlus within their plugin called 

DIVA. Roudsari and Pak (2013) developed a free and open source plugin that connects 
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Grasshopper to EnergyPlus, Radiance, DAYSIM and OpenStudio for building energy 

and daylighting analysis. They also created Ladybug to import EnergyPlus weather files 

(.EPW) for better understanding the weather data and visualizing the building 

performance analysis results (Roudsari et al, 2013). Some studies added existing 

optimization tools to the process of parametric building energy simulation to help 

designers in finding an optimal set of solutions for a specific project. For instance, Shi 

and Yang (2013) created a performance driven workflow by integrating Ecotect with 

Rhino/Grasshopper to obtain an optimal roof shape using a single objective optimization 

algorithm. Aly and Nassar (2013) used DIVA along with Galapagos, an Evolutionary 

Algorithm plugin in Grasshopper, to optimize urban daylight performance. Bechthold et 

al. (2011) used DIVA to integrate environmental design and robotic fabrication for 

shading systems. Although these studies created parametric architectural design 

workflows with performance optimization available in Rhino/Grasshopper, they do not 

have access to actual building assemblies and properties available in BIM. 

2. 2. BIM-based Performance-based Design 

BIM is the process of generating and managing digital representations of the 

building’s physical and functional characteristics to facilitate the exchange of 

information (Eastman et al., 2011). It is a model-based process that provides methods 

and tools for creating and managing building projects faster and more economically, 

with the potential to reduce buildings’ environmental impact. BIM represents the 

building as an integrated database of coordinated information that can be used for the 
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analysis of the multiple performance criteria including architectural, structural, energy, 

acoustical, lighting, etc. (Ahn et al., 2014; Fischer, 2006). 

BIM-based high performance  building design is increasingly being used in the 

architectural design disciplines and allows practitioners to efficiently generate and 

modify building models (Welle et al., 2011). The integration of BIM with energy 

analysis tools has the potential to greatly facilitate the often cumbersome and difficult 

energy simulation process (Azhar et al., 2009).  To simulate building performance in the 

early design stage, architects need to access the information of the building such as 

geometry, materials, construction, and technical systems, which are available in the BIM 

models (Schlueter and Thesseling, 2009). 

The existing studies that consider BIM as the central data model for building 

energy performance analysis are mainly focused on automatic preparation of the 

building energy models for various energy simulation tools such as DOE-2 (Maile et al., 

2007), EnergyPlus (Bazjanac, 2008; Cormier et al., 2011; Maile et al., 2007), TRNSYS 

(Cormier et al., 2011), Ecotect and Green Building Studio (Azhar et al., 2011, 2009), and 

Modelica-based tools (Kim et al., 2015; Yan et al., 2013). The common approach among 

most of these studies is to translate the BIM models to energy input files for solving 

interoperability issues using Industry Foundation Classes (IFC) or to create an automatic 

link between BIM authoring tools and building energy simulation engines. 
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2.2.1 BIM-based Parametric Building Energy Simulation 

The process of parametric building energy analysis can be much more effective if 

integrated with BIM and automated parametric changes. As a matter of fact, BIM’s 

information can quickly and accurately facilitate and support parametric energy 

simulation analysis. The existing studies that consider BIM as the central data model to 

automate the parametric energy analysis process can be classified into two main 

categories: 

1. Towards parametric design optimization – This category of research is 

scoped to explore solutions that optimize the building performance by 

utilizing a methodology that is composed of parametric modeling and 

optimization algorithms (e.g. Gerber et al., 2012). This group of research uses 

CAD software tools or only BIM mass models rather than the non-graphical 

information embedded inside BIM. In other words, these studies focus on 

form generation and do not benefit from the full capabilities of BIM. 

2. Towards BIM-based parametric energy optimization - This group of studies 

provides automated BIM-based parametric modeling to optimize the building 

energy performance. For instance, Welle et al. (2011) created a thermal 

optimization methodology (ThermalOpt) to enable designers to pre-process, 

configure, execute, and analyze the energy performance of their design 

during the early stage of the project by automating the whole process. 

ThermalOpt is faster, more accurate, and more consistent than conventional 

methods, which enables a larger number of design alternatives to be explored. 
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The main issue is that those studies using third party optimization tools to 

integrate the process have very complex procedures. For instance, in 

ThermalOpt the whole process of integration is controlled by ModelCenter
®
 

(Phoenix Integration, 2013) which is difficult to set up, lacks visual 

parametric modeling capabilities, and needs an extensive level of expertise 

and training, therefore is beyond the access of most architects. Rahmani Asl 

et al. (2013) developed Revit2GBSOpt, a plug-in for a BIM platform 

(Autodesk Revit
®
), which integrates parametric BIM and building energy 

performance simulation and thus becomes one of the foundations for the 

present study. 

2.2.2 Interoperability Issues of BIM-based Performance-based Design 

In the process of performance-based design the designer needs to interact with 

various design tools and simulation engines to predict different performance aspects of 

the design which makes the interoperability among different software tools a necessity. 

A large and growing body of literature has reported that the seamless integration 

between these software programs is typically lacking (Attia et al., 2012a; Lin and 

Gerber, 2014b). Augenbroe (2002) reported that two major movements started in parallel 

with similar goals in mind to address this issue: 

1. A collective effort by industry and governmental and research organizations 

to establish data exchange standards for the building industry, such as IFC 

(Bazjanac and Crawley, 1999) or Green Building eXtended Markup 

Language (gbXML) (gbXML, 2014). 
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2. Researchers and industry attempt to address the existing interoperability 

issues across different software platforms by scripting interfaces between the 

design and performance analysis domains (Attia et al., 2012b; Lin and 

Gerber, 2014a; Welle et al., 2011). 

The first effort tries to remove inefficiencies in data sharing by representing the 

relevant data to a generic common data. The standard data model contains the required 

information by all other software tools. The latter is aiming to functionally create a 

connection among two or more design and performance simulation software to reach to 

specific goals. 

2. 3. Building Performance Optimization 

Optimization studies are recently being used in building design after long being 

computationally intractable on multi-scale systems in various topics, particularly 

building environmental performance. As a result, simulation-based optimization has 

been changed to an efficient process to satisfy several requirements of energy efficient 

buildings (Nguyen et al., 2014). During the recent past years, computational 

optimization methods applied to building performance analysis have become very 

popular and have been applied to a wide range of problems such as building form, 

envelope design, configuration and control of Heating, Ventilating, and Air Conditioning 

(HVAC), and renewable energy generation (Evins, 2013; Malkawi, 2005). There are a 

few comprehensive reviews published on research studies applying computational 

optimization to building performance analysis. Evins (2013) published an inclusive 

review of 74 significant research studies applying computational optimization to 
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different fields of sustainable building design and speculated about future trends and 

challenges. Stevanović (2013) gave a thorough review of the research studies of 

simulation-based optimization of passive solar design strategies. Outlining potential 

challenges, Nguyen et al. (2014) provided an overview on the advances and obstacles in 

building energy performance optimization. Machairas et al. (2014) reviewed 

performance-based design optimization methods and tools and studied their abilities and 

performance issues, as well as the reasoning behind their selection. Moreover, they 

identified the key characteristics of the future versions of design optimization methods. 

In the process of design optimization there are many physical processes that lead 

to multiple conflicting objectives. For many multi-objective optimization problems, it is 

not always possible to find one optimal design solution that satisfies all design 

objectives. In traditional optimization techniques a composite objective function is 

defined by combining all of the individual objective functions. The composite objective 

function can be determined with various methods, like using weighting factors. 

Determining the composite objective function needs knowledge of the relationships 

among individual objectives and their weighting factors (Konak et al., 2006). 

Nevertheless, in building design these relationships are unknown in many cases. 

Moreover, due to the difficulty of including factors such as aesthetics in the optimization 

process, it is likely that any optimum result will be found to be unacceptable (Coley and 

Schukat, 2002). 

Another approach is to use the concept of Pareto optimality, which is a set of 

promising solutions, known as the Pareto Optimal set (Fonseca and Fleming, 1993), 
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given multiple objectives. Pareto Optimality supports decision making by finding the 

equally optimal solutions such that it is not possible to improve a single individual 

objective without causing at least one other individual objective to become worse off 

(Hoes et al., 2011). Selecting the best solution from the Pareto set is not a trivial problem 

as it depends on a number of aspects (Nguyen et al., 2014). A posteriori set of 

preferences may be used to evaluate the optimal solutions and find the unique solution 

by the designers (Gossard et al., 2013). 

2.3.1 Computationally Expensive Simulation-based Optimizations 

Simulation-based optimization for energy efficient building design can be very 

time intensive and complicated since each design alternative evaluation requires input 

from multiple disciplines as well as expensive simulation runs. In the literature, there are 

4 common approaches to address this issue: 

1. Use of surrogate models to approximate computationally expensive 

simulation processes. The basic approach is to create a simplified 

mathematical approximation of the computationally expensive simulation and 

use it in place of the original simulation to facilitate parametric modeling 

with multiple runs and multidisciplinary optimization (Ong et al., 2003; 

Wetter and Polak, 2004). Since the approximation model works as a 

surrogate for the original simulation process, it is often referred to as a 

surrogate model (Simpson et al., 2004). 

2. Use of computational algorithms to reduce the number of simulation runs. 

There are various approaches to reduce the number of runs. For instance 
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Coley and Schukat (2002) used a method to avoid duplicate fitness evaluation 

of annual energy use calculation by keeping a list of all unique designs in 

memory and checking new designs against this list. 

3. Use of computational algorithms for model decomposition and recomposition 

to reduce the size of runs (Welle et al., 2012). Decomposition has long been 

recognized as a powerful tool for analysis of large and complex simulations. 

Decomposition increases reliability and speed of simulation process, by 

reducing complexity of the problem and enabling parallel and distributed 

computation (Kusiak and Wang, 1993; Welle et al., 2012).  

4. Use of increased computational power through multi-threading, 

parallelization, and high performance computers. Using computer clusters for 

process parallelization, dividing calculation across multiple processors or 

multiple computers in a cluster, is a new approach for parametric building 

energy simulation (Garg et al., 2010; Pratt and Bosworth, 2011; Zhang and 

Korolija, 2010). However, due to the inherently high costs, dedicated high 

performance computing resources are not available in every design company. 

Cloud computing is an emerging technology of computing, in which services 

to users are provided over the Web by managing a large number of 

virtualized resources to resemble a single large scalable resource. This 

approach dramatically improves productivity and cost effectiveness of 

software solutions for large-scale computational problems (Iorio and 

Snowdon, 2011). Cloud computing enables access to a large amount of 
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computing power that provides the ability to evaluate hundreds or thousands 

of different design alternatives and their overall effects on the project 

performance simultaneously. This would provide an opportunity for 

simulation-based decision-making and for further confirmation of a design 

choice made by a subject matter expert. Distributed databases have been 

commonly used in cloud-based Web applications for some time. However, 

the use of cloud infrastructures is still a novel approach (Iorio and Snowdon, 

2011; Naboni et al., 2013). 

Based on the provided literature in this section it can be understood that high 

performance building design can highly benefit from the integration of BIM-based 

building performance analysis, parametric building energy simulation, and building 

performance optimization. However, most of the precedent studies consider only one or 

the integration of two of these domains for improving building performance. Moreover, 

the proposed systems in the literature usually require extensive experience in tools that 

architects are not usually familiar with. In particular, the use of building information 

stored in BIM for building performance optimization in the process of design has not 

been fully addressed, and therefore remains inaccessible. 

In order to address this gap in the body of knowledge and move toward high 

performance building design, this research proposes a BIM-based multidisciplinary 

performance optimization workflow that uses parametric BIM coupled with multi-

objective optimization. This workflow can serve as a potential workflow for designers to 

efficiently explore design space and improve their design performance. The proposed 
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workflow enables designers to work in the design platform and search the optimal set of 

high performance building design alternatives in a timely manner. In the next sections 

the process of research, design, development, and validation of the proposed workflow is 

provided in detail. 
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3. METHODOLOGY 

 

3. 1. Design Science Research Methodology 

The research methodology that was used in conducting this research can be 

described by the Design Science Research Methodology (DSRM) process proposed by 

Peffers et al. (2007). Design in this domain is defined as the act of creating an explicit 

and applicable solution to a problem. The DSRM was proposed to incorporate 

principles, practices, and procedures required to carry out applied research including 

system development research. The research methodology for system development was 

initially proposed by Nunamaker and Chen (1990) and modified in DSRM to deliver a 

commonly accepted framework. In the proposed system development research 

methodology, the integration of system development is advocated into the research 

process, by proposing a multi-methodological approach that would include theory 

building, systems development, experimentation, and observations (Nunamaker and 

Chen, 1990; Peffers et al., 2007). The research methodology of this dissertation was 

formed from this methodological approach and is illustrated in Figure 1. 
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Figure 1. DSRM research methodology is adopted in this research 

The BPOpt framework was developed as a system based on the DSRM research 

methodology in an iterative process with six steps (Peffers et al., 2007): 

1. Identifying Problem: The specific research problem is defined at this step and 

the importance and value of the solution is justified as well. Justifying the 

value of a solution motivates the researcher and the audience. 
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Resources required: knowledge of the state of the problem and the 

importance of its solution. 

2. Defining Objectives: At this step the objectives of the research and the 

criteria of the ideal system that would be able to address the identified 

problems and gaps are defined. 

Resources required: knowledge of the problems and current solutions. 

3. Design and Development: The system is designed based on the defined 

objectives from step 2. Then, a prototype is developed to test the general 

usefulness and accuracy of the designed system. The system prototype can be 

used for testing and validation in the next steps. 

Resources required: knowledge of theory that can be implemented in a 

solution. 

4. Demonstration: At this stage, the developed system prototype is used to solve 

a few samples of the problem to demonstrate the usefulness of the designed 

system. 

Resources required: knowledge of how to use the developed system to solve 

the problem. 

5. Evaluation: At this step the researcher observes and measures how well the 

proposed system and the developed prototype solve the problems identified 

in the first step. 

Resources required: 1) knowledge of relevant metrics and analysis 

techniques; and 2) the study domain. 
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6. Communication: At this step, the researcher communicates the problem and 

its importance and the proposed solution to other researchers, the community, 

and other relevant audience. 

Resources required: knowledge of the disciplinary culture. 

Since multiple methods and activities are followed simultaneously during the 

research process, the order of these steps and their related activities are not an indication 

of the chronological order of the process for this research. Figure 2 illustrates the overall 

DSRM research methodology for system development steps and the chronological order 

of the steps taken for this research. 

 

Figure 2. The overall DSRM research methodology and process adopted in this work and their 

chronological order (Steps 1-6 are in the white boxes and their accompanying research methods 

are in grey boxes) 
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The in-depth description of each step that was taken for this research is 

introduced as follows: 

3.1.1 Literature Review 

A comprehensive study regarding the existing building performance optimization 

approaches was conducted in the early phase of this research by reviewing the literature. 

The literature review helped us understand the existing issues and gaps in this field and 

the potential solutions and methods that could be used in the system design and 

prototype development process in the next steps. As Figure 2 shows, the literature 

review started at the beginning of the project and was updated continuously throughout 

the whole project. A review of literature on the subject of this research provides the 

knowledge of the problems and current solutions during the whole project period. 

In this research we reviewed the literature for building energy performance 

simulation tools very briefly by introducing resources that provided detailed information 

about the widely used building energy simulation tools. We provided the detailed 

literature review for: 

a) Parametric performance-based design. 

b) Recent studies on Building Information Modeling (BIM)-based building 

performance analysis. 

c) The use of optimization methods in high performance building design. 

These three topics are directly related to the BPOpt framework designed and 

were developed in this research. 
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3.1.2 System Design 

In the system design stage, the objectives of the BPOpt workflow were defined 

based on gathered knowledge in the literature review. The objectives were defined to 

address the identified problem considering the available methods. The BPOpt objectives 

were defined as follows: 

a) the ability to provide a solution space with an improved performance across 

the multiple competing objective functions using stored information in BIM; 

b) the ability to be adapted to a wide spectrum of design scenarios; 

c) easily implemented by architects in the design platform. 

The BPOpt framework was designed to address these objectives in this step as 

well. The framework design was improved many times in the prototype development 

and demonstration phases based on the feedback that we received. The BPOpt system’s 

desired functionalities are defined as following: 

a) the ability to provide rapid generation of design alternatives and rapid 

evaluation; 

b) the ability to provide trade-off analysis for competing criteria; 

c) the ability to sort design alternatives and highlight the most appropriate 

design. 

The theoretical foundation of BPOpt is built upon the integration of BIM, 

parametric modeling, visual programming, building performance analysis, and MOO 

through platform integration and automation on one hand, and the interaction between 

designers and the integrated system on the other hand. The process of implementing 
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BPOpt to optimize building performance and obtain feedback for design decisions can 

be described in terms of the six major steps illustrated in Figure 3. The detailed 

descriptions of these steps are provided in Section 5 of this dissertation. 

 

Figure 3. The process of implementing BPOpt to optimize building performance and the tools 

and applications that are used in the process 

3.1.3 Prototype Development 

In order to explore the applicability of BPOpt framework in the design process, 3 

prototype tools were developed and utilized as part of this study: 

a) Parametric BIM-based Energy Simulation (PBES); 

b) Parametric BIM-based Daylighting simulation (PBDS); 

c) Optimo - a Multi-objective Optimization (MOO) in visual programming 

interface. 

The BPOpt framework was developed by systematic integration of these tools to 

provide efficient design space exploration and achieve high-performance buildings. As 
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demonstrated in Figure 2, the developed prototypes were improved based on the 

feedback from the demonstration and evaluation steps. 

3.1.4 Case-based Experiments 

There were 2 case studies developed to demonstrate the usefulness of the 

proposed system in solving instances of problems: 

a) The BPOpt framework with the integration of PBES and Optimo was tested 

in a case study and presented at eCAADe 2014 (Rahmani Asl et al., 2014). 

b) The of BPOpt framework with the integration PBES, PBDS, and Optimo was 

tested and presented as a journal paper (Rahmani Asl et al. 2015a). 

There were some test experiments that are done at Stanford University and 

Georgia Institute of Technology in two graduate level classes as well. In the Stanford 

University project, the student used Optimo with two internal spreadsheet-based tools 

for energy and structural performance optimization. At Georgia Institute of Technology, 

students used Optimo with PBES and some other internal tools to optimize building 

performance design. 

3.1.5 Evaluation Process 

The components of the BPOpt system were validated in separate studies: 

a) PBES was validated via a case study to improve building performance using 

parametric design at ACADIA 2013 (Rahmani Asl et al., 2013). 

b) Optimo was validated using standard test cases for multi-objective 

optimization algorithms (Rahmani Asl et al, 2015b). 
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c) PBDS was validated in the same two case experiments designed for BPOpt 

framework mentioned above in the process of optimizing building 

performance. 

The detailed explanations of validation studies and case studies are provided in 

Sections 4 and 5. 

3.1.6 Communication with the Community 

The developed framework and the results of this research were communicated 

with the community in the following ways: 

a) Published 5 journal and conference papers (Rahmani Asl et al. 2013, 

Rahmani Asl et al. 2014, Rahmani Asl et al. 2015a, Rahmani Asl et al. 

2015b, Rahmani Asl et al. 2015c) based on the results of this study. 

b) The applications developed in this study were published as open-source tools 

and are being used in the community. 

c) The developed applications are being taught in a few universities. 

d) The published application is used in the building industry in companies such 

as Arup and Autodesk internal projects for structural performance analysis. 
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4. PROTOTYPE DEVELOPMENT AND VALIDATION
*
 

 

In order to explore the applicability of Building Information Modeling (BIM)-

based Performance Optimization (BPOpt) framework in the design process, 3 prototype 

tools were developed and utilized as part of this study. Figure 4 shows the overview of 

BPOpt and the optimization and performance simulation tools that were developed and 

used in this research.  

 

Figure 4. The overview of the BPOpt framework 

                                                 

*
 Part of this section is reprinted with permission from “Towards BIM-based Parametric Building Energy 

Performance Optimization” by Rahmani Asl, M., Zarrinmehr, S., Yan, W., 2013, Proceedings of the 33rd 

Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Page 

Range 101-108, Copyright 2013 by “ACADIA 2013 International Conference, Riverside Architectural 

Press, Cambridge, Canada”. 
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The BPOpt framework was developed by systematic integration of: 1) Parametric 

BIM-based Energy Simulation (PBES); 2) Parametric BIM-based Daylighting 

Simulation (PBDS); and 3) Optimo - a Multi-Objective Optimization (MOO) in a visual 

programming interface tools to provide efficient design space exploration for achieving 

high-performance buildings. This framework is developed on the top of a widely used 

BIM tool, Autodesk Revit
®
, and its visual programming tool, Dynamo (2015), to 

integrate the rich information stored in parametric BIM with building performance 

simulation tools and make performance optimization more accessible in the process of 

design. Dynamo is an open-source visual programming application that interacts with 

Revit to extend its parametric capabilities to the Revit project level. It also provides an 

environment to create customized packages using scripting and sharing it with other 

users. BPOpt, containing Optimo, energy simulation, and daylighting simulation 

packages, is created by utilizing Revit Application Programming Interface (API) and 

Dynamo. BPOpt is compatible to user defined building performance simulation 

packages (energy and daylighting simulation packages for the case study of this research 

paper). Other simulation packages can be easily added into the BPOpt framework, e.g. a 

structural analysis package is created and used following the BPOpt framework by an 

industry user to optimize structural performance of the building (Vermeulen, 2015). The 

following sub-sections describe the details of Optimo, energy analysis, and daylighting 

analysis. This section describes the prototype development and validation of PBES, 

Optimo, and PBDS tools for BPOpt. The detailed description about the BPOpt 

framework is provided in Section 5 of this dissertation. 
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4. 1. Parametric BIM-based Energy Simulation (PBES) 

The traditional process of building energy performance analysis is ineffective 

and must be improved. Design practitioners typically create and explore very few design 

alternatives before choosing a final design, which leads to underperforming buildings. 

Parameterizing design and developing automated methods to evaluate the performance 

of design open an opportunity to search for optimized solutions. In response to the 

observed need for a parametric energy simulation and also the necessity of having access 

to this tool, PBES was developed as an automatic routine that enables designers to make 

parametric changes to the BIM models and simulate the energy performance 

accordingly. Simulating the parametric energy runs enables designers to explore design 

alternatives and at the same time assess the building energy performance to search for 

the energy efficient building design. 

PBES was developed both as a plugin for Autodesk
®
 Revit

®
 (Revit) and as a 

package of nodes for Dynamo (2015), an open-source visual programming application 

that interacts with Revit to extend its parametric capabilities. BPES, integrated with 

Revit and Autodesk
®
 Green Building Studio

®
 (GBS), enables architects to 

parametrically study the energy performance in the early phase of design. GBS is a web-

based energy simulation service with DOE2.2 as the background engine. GBS was 

evaluated and met the criteria under ANSI/ASHRAE Standard 140, the standard method 

of test for the evaluation of building energy analysis computer programs, certified by the 

U.S. Department of Energy as a qualified computer software program for federal tax 

incentive requirements. 
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The necessary development process of PBES can be broken down into the eight 

steps as illustrated in Figure 5 and described below: 

 

Figure 5. The development process of parametric BIM-based Energy Simulation (PBES) 

 PBES System Design: The high level characteristics and the architecture of 

this application were determined in this step.  It was decided to have this 

application as a Revit plugin at the beginning and as a package of nodes in 

Dynamo later in the process. 

 Connecting GBS and Revit for Parametric Energy Simulation: The existing 

connection between Revit and GBS in Revit user interface does not support 

full parametric energy performance studies. For example, the parametric 
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changes of building geometry are important for architectural design, but not 

possible with the existing Revit to GBS interface. In this step the connection 

between Revit and GBS for parametric energy simulation was created. Also, 

the automatic access to the simulation results from GBS was enabled. In 

order to integrate parametric BIM models in Revit and GBS, an application 

plugin was developed using Autodesk Revit’s Application Programming 

Interface (API) and the GBS-API. 

 Improving the Efficiency by Simulation Parallelization: The process of 

creating simulation runs in PBES was updated at this step to maximize the 

benefit of parallel simulation on the cloud. The updated version of parametric 

energy simulation was designed to overcome the barrier of the simulation 

being time consuming and explore the building performance using parallel 

simulation on the GBS cloud. This was enabled by modifying the simulation 

job creation process and submitting a batch of runs to the GBS web before 

querying the simulation results. The simulation results were queried using 

GBS runs’ Globally Unique IDentifiers (GUIDs) after all of the alternative 

runs were submitted. This approach improved the performance of the PBES 

about 50 times faster in this study based on available computing resource in 

the cloud. This improvement could benefit the integration of this system with 

optimization process as well. 

 Creating the PBES Visual Programming Package for Dynamo: PBES was 

originally developed as a plugin for Revit. When the feasibility of the process 
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was tested as a Revit plugin, to increase its capabilities and to make it more 

accessible for designers, a package of nodes was created for Dynamo 

(version 0.6.3).The updated version enables users to create parametric 

relationships in Dynamo’s visual programming interface and assess the 

energy performance using PBES package. 

 Enabling Parametric Change of Thermal Properties: After testing the 

usefulness of BPES using geometry related parameters, the capabilities were 

enhanced to address parametric changes of construction thermal properties of 

building objects. Using this option, the user can create various types of 

building objects with different thermal performances and add them into a list 

for parametric study. During the parametric performance analysis process, the 

appropriate object type would be selected for energy simulation. Hence, the 

PBES workflow was able to parametrically change both form and thermal 

properties of objects in the BIM model and assess the energy performance of 

the building model accordingly. 

 Improving the PBES Design: The overall design and performance of the 

PBES dynamo package was reviewed in an iterative process to make any 

necessary changes to the tool and make it compatible with the BPOpt 

workflow. 

 Evaluation and Process Demonstration: The overall usefulness of the PBES 

was tested using a case study on a residential house building. Detailed 
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information is provided in the section Evaluation and Process Demonstration 

Using a Case Study. 

The PBES uses the project information, the geometry data, and the thermal 

properties of construction materials stored in the BIM model to create an energy 

analytical model. This workflow generates energy model data in the Green Building 

eXtended Markup Language (gbXML) open schema from BIM using Revit-API. An 

automatic link is created between Revit and GBS using Revit-API, GBS-API, and the 

Representational State Transfer (REST) protocol (Figure 6). 

Design Parameters Variation Range (Defined by the Designer)

Revit-APIRevit Dynamo

Revit-API

Green Building 
Studio

Revit-API
GBS-API

Study the Results and 
Modify the Parameters

Energy Analytical Model in 
gbXML Format

 

Figure 6. Parametric BIM-based Energy Simulation (PBES) Overview 

PBES is able to automatically propagate the changes based on the user defined 

parameters and generate new models inside Revit. It creates gbXML files with changes 

uploads these files for parametric energy analysis runs to the GBS cloud through the 

web. It retrieves the energy simulation results and finds the optimum solution for the 
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project. The generated gbXML files include all of the energy analysis related 

information and display it in the BIM model. Some of the required information for 

energy simulation in GBS such as project location, building type, and building operating 

schedule are exposed in the Revit interface as Energy Settings. These properties can also 

be modified through Revit API for parametric analysis. Additional inputs that are 

necessary for the energy analysis are set as defaults based upon ASHRAE Standards by 

GBS. The description of the defaults is provided in the Autodesk GBS help manual 

(Building Performance Analysis Help, 2015). The details of the input assumption can be 

viewed in the GBS project as well. 

4.1.1 PBES Evaluation and Process Demonstration Using a Case Study 

In order to evaluate the performance of PBES a case study has been developed to 

demonstrate the capability of creating BIM-based parametric runs and accessing the 

building performance analysis results inside Revit in a tightly coupled feedback loop. 

This case shows how the tool enables design professionals and architecture students to 

parametrically study the building performance during the early stages of design. 

In this case study, a sample model of Autodesk Revit 2013 was used (Figure 7). 

The geographic location of the home is in the city of Indianapolis, Indiana, USA. The 

climate is dominated by heating loads with 5892 Heating Degree Days on a yearly basis.  

Due to site constraints, the long-axis orientation of the structure is fixed at 15 degrees 

west of true north. 
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Figure 7. Case study building site and floor plans 

The energy and daylighting performance of this building were considered as 

metrics to parametrically improve the combined performance of the model. The goal of 

this parametric study was set to find the optimized window size which resulted in 

minimizing the building energy consumption and at the same time achieving the LEED 

IEQ Credit 8.1 Option2 daylight credit (“U.S. Green Building Council,” 2009). LEED 

IEQ Credit 8.1 Option2 requires the project achieve a minimum glazing factor of 2% in 

a minimum of 75% of all regularly occupied areas of the building. 

BIM-based simulation requires some forethought, as to specific modeling 

requirements to adhere to, in order to successfully transfer the BIM data for the 

downstream analysis (Bazjanac and Kiviniemi, 2007). Any failure in doing the required 

process may result in an interoperability issue which requires the designer to go back to 

the BIM tool, troubleshoot, and redo the process to solve the issue. Therefore, designers 

must follow some specific rules in preparing the BIM model to be able to use PBES 

appropriately. 
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As the first step of building energy simulation for this case study, the building is 

divided into 9 thermal zones based on their functionalities and conditions. In order to 

define thermal zones in the energy analytical model “Room” objects must be added to 

the Revit file and the volume computation for “Room & Area” needs to be set to 

calculate room volumes. The user can change the wall properties to be either room 

bounding or not room bounding in order to achieve desired zones. Room separator lines 

can also be used to separate zones. Figure 8 shows zones and analytical surfaces created 

for this step. 

 

Figure 8. Building zoning (Left) and building analytical surfaces-gbXML (Right) 

In order to create design alternatives, a parametric window family was created 

with “Width” and “Height” instance parameters. PBES takes a range of values for each 

of these two parameters based on user input and creates various alternative designs. The 

window height range was set between 1ft to 6ft and the window width ranged from1ft to 

9ft. In this case, by changing these two parameters of the window, 54 design options 

were created (Figure 9). 
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Figure 9. The BIM model of the case study with different window sizes that can be 

parametrically changed by PBES 

PBES created the gbXML files for all of the design alternatives. A new project 

was created in GBS with the project information gathered from the BIM model such as 

building location, building type, etc. For each alternative design option, a base run was 

created on GBS and its gbXML file was uploaded through the web. PBES retrieved the 

results of building energy analysis from GBS website and Revit. The results, including 

window areas and building energy simulation output for the parametric runs, are 

exported to a comma-separated values (CSV) file. 

Using the building energy costs and LEED daylight results (automatically 

created in GBS and gathered from GBS website for each base run), the optimum size of 

the window is calculated (Figure 10) with a simple algorithm. In this case, with the 

increase in the windows’ area the building energy cost increased. Therefore, the design 
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option with minimum window size that gets the LEED credit was the desired solution. 

PBES automatically updates the BIM model with the optimum window size. Using 

PBES, the user can access the energy analysis results directly inside a single user 

interface (Revit) to explore the other available options. Also, the impact of any small 

change on the building performance profile during the design phase can be explored. 

 

Figure 10. Parametric optimization of windows sizes to get LEED credit and minimized energy 

use 

The current study shows that higher efficiency in energy consumption could be 

achieved using parametric BIM-based energy analysis. This case study also shows that 

highly complex tasks, which architects have to perform in order to evaluate the 

sustainability of their designs, can also be significantly simplified. Though simple, the 

case study demonstrated the great potential of making complex parametric simulation 

seamlessly integrated with architectural modeling. 
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In the design process designers are occasionally equipped with evolutional 

processes that are complex and convoluted. Energy performance analysis is an example 

of this kind. To design a building, however, we need to make design suggestions beyond 

evaluating potential alternatives. When utilizing optimization algorithms the evaluation 

processes will transform to suggestion processes. Evidently, the new parametric BIM 

technology (PBES) coupled with multi-objective optimization (MOO) algorithms 

(Optimo) can tackle the boundaries of sustainable design and design in the general sense 

which are detailed in the following sections of this dissertation. 

4. 2. Parametric BIM-based Daylighting Analysis 

Lighting Analysis for Revit is a cloud service that uses Autodesk Rendering 

Service to expose electric lighting and daylighting results directly on the BIM models. 

The daylighting simulation tools are accessible in Dynamo as a built-in functionality 

through a few nodes.  

Using the Dynamo daylighting nodes and Python scripting, we have created a 

flexible daylighting simulation package for calculation of hourly illuminance values to 

enable automation of parametric daylighting analysis. This package uses the Perez sky 

model and calculates the percentage of the area with the illuminance level within the 

acceptable range set by LEED Version-4 Daylight Option-2 (“U.S. Green Building 

Council,” 2013) Based on LEED Version-4 Daylight Option-2 the building gets 1 point 

if the illuminance level of 75% of the regularly occupied area lies between 300 lux and 

3,000 lux for 9 a.m. and 3 p.m., both on a clear-sky day at the equinox and it gets 2 

points for more than 90% area within this illuminance range. The daylighting simulation 
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package is designed to be integrated into the performance optimization process as an 

objective function which aims to maximize the occupied area of the building (or a part of 

the building) within the illuminance range between 300 lux and 3,000 lux. In other 

words, LEED daylighting requirements are used as a reference for creating one of the 

objective functions in the present study (the other being minimizing the annual energy 

cost described in the previous section.). Figure 11 shows the Daylighting package 

workflow in Dynamo. 
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The package requires a user input for the building floor levels that the designer 

intends to include in daylighting simulation. The created daylighting package 

automatically finds the floors and the rooms assigned to the defined levels using Revit 

API via Python scripting in Dynamo (Figure 12). The floor is used to define the desk 

level and sensors needed for daylighting simulation and the room properties are used to 

check if the room is regularly occupied. The package tracks whether the rooms are 

regularly occupied by reading the room properties from the Revit project. Other 

necessary project information for glazing and opaque construction materials are 

automatically collected from the BIM model as well. Then the daylighting simulation 

jobs are created and uploaded to the cloud. 

 

Figure 12. The created daylighting package automatically finds the floors and the rooms 

assigned to the defined levels using Revit API via Python scripting in Dynamo 
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The developed package creates multiple daylighting analysis and sends them for 

simulation to the cloud in order that they are created in the package. After all of the 

daylighting analysis are submitted to the Autodesk cloud simulation engine, the package 

starts collecting the results back from the cloud. This process can overcome the 

scalability barrier and reduce the simulation time using parallel simulation (However, 

the current Autodesk rendering and daylighting analysis server limits the number of 

parallel runs to 4 simultaneous runs for the education rendering accounts which limits 

the simulation time saving). When all of the simulations are done, the daylighting results 

are collected from the server. The simulation results include a list of illuminance values 

for sensor points and the sensors’ positions in the 3D environment. The developed 

Python script parses the results and calculates the percentage of regularly occupied area 

with the illuminance level within the LEED-acceptable range.  This parametric 

daylighting analysis is integrated with parametric energy simulation and Optimo to 

conduct building performance optimization. 

4. 3. Optimo 

In conventional building design, once the simulation model is created, the 

designer changes design variables to improve the building performance. Though 

applying various individual changes to the design variables may help improve the 

building performance to some extent, achieving high performance building design 

requires the application of the optimal variable combinations (Stevanović, 2013). The 

demand of multidisciplinary optimization in the process of design is growing and the use 

of optimization has the potential to provide desired real-time or fast performance 
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feedback for decision-making during the design process. However, there is a lack of 

easy-to-use tools that integrate both advanced building design models, i.e. BIM, and 

efficient multidisciplinary optimization for helping designers explore design alternatives 

across multiple competing design criteria. 

In response to the observed need, Optimo - a BIM-based multi-objective 

optimization tool - was developed to enable rapid building performance optimization in 

the process of design. Optimo is an open-source application for parametrically 

interacting with BIM models for design optimization.  Optimo provides the option to 

optimize multiple objective functions with respect to multiple parameters and works 

based on the Nondominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002). 

The design parameters can be continuous variables (defined with lower and upper 

bounds), discrete variables (defined as a list of variables), or both. One of the major 

features of Optimo is that its user interface is a visual programming environment, which 

greatly facilitates sophisticated parametric modeling and simulation studies by architects 

and engineers, who may have a limited computer programming background. 

This section details the development process of Optimo and also provides the 

initial validation of the results through a comparison experiment with original test cases 

found in Deb et al. (2002) when introducing the NSGA-II algorithm. 

4.3.1 Creating a Working Prototype 

As a part of the BPOpt workflow, Optimo, an open-source MOO package, was 

developed to parametrically interact with Autodesk Revit for BIM-based optimization 

(Rahmani Asl et al., 2015). Optimo was developed as an application that can be installed 
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as a package for Dynamo and works based on NSGA-II. It uses jmetal.NET open source 

code whose goal is to provide C# implementation of the Metaheuristic Algorithms in 

Java (Durillo and Nebro, 2011). 

As demonstrated in Figure 13 and described below, Optimo structure can be 

divided into 5 main parts: 

 

Figure 13. Optimo Structure 

 User Inputs (Population Size, Number of Objectives, and Variables’ Range 

List): This part gathers the user input on specifications of the optimization 

algorithm and decision variables’ ranges. The population size (N) should be 

an even number that is equal or larger than 2 (   ). Overall, there is no 

limitation on how large the population size can be. We have internally run a 

test with the population size of        without any problem. The number 

of objectives (NO) defines the number of fitness functions that are included 

in the optimization process. This number should be equal to the number of 
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fitness functions. Optimo accepts the lower limits and upper limits for 

variable ranges as a list, which gives the user an option to be able to 

manipulate the number of variables and their domains. 

 User Inputs (Fitness Functions List): Optimo can be used during the design 

process for optimizing the objective functions that may be evaluated as 

external functions containing performance simulation results as function 

arguments. Therefore, the user can insert the fitness functions as external 

functions (using custom nodes in Dynamo) without having to make any 

changes to the optimization source code. Otherwise it would require a lot of 

experience and programming expertise to change the source code. The 

number of fitness functions (NF) should be equal to the NO (i.e.      ). 

 Initial Population List: The initial random population list and the fitness 

values are generated at this part of the Optimo structure. Optimo uses 

variable ranges to generate random decision variables in the ranges, 

calculates the fitness functions for the design options using these variables, 

and assigns the fitness values to the population list. 

 Generation and Sorting Loop: This is the main optimization loop in Optimo, 

which iterates till its counter reaches the completion check that is defined by 

the user. The loop gets the user inputs as well as the initial solution list and 

generates the crossover population. Then it sorts the combined population 

(parent population and crossover population) using the nondominated sorting 
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algorithm and selects a list of the best nondominated solutions with the size 

of N. 

 Exporting Optimization Results: The population of all iterations and the 

final Pareto optimal set can be exported in a Comma Separated Values (CSV) 

format for further analysis. The Pareto Optimal Set includes equally optimal 

solutions such that for each of the solutions in the set it is not possible to 

improve a single objective without also causing at least one other objective to 

become worse off than before the change. 

Figure 14 shows an overview of Optimo in Dynamo version 0.7.5. The 

population size (N) is set to be 500 in this case. The number of the objectives (NO) is set 

to be 3 and there are two decision parameters varying in the domains of [-10, 10] and [-

20, 20], respectively. The upper limits and lower limits for the decision variables are 

listed separately using the List.Create node as required by Optimo. There are 3 fitness 

functions defined for this case which are gathered in a list using the List.Create node. In 

the InitialSolutionList node a random parent population of size N is created which 

includes the values of the decision variables. The fitness function results are calculated 

by applying the fitness functions to the initial population using the Function.Apply node. 

The fitness function result values are assigned to the initial population list in the 

AssignFitnessFuncResults node by matching and joining the initial solution list of 

decision variables and the fitness function results. 

In the GenerationAlgorithm node the initial population list is sorted based on the 

assigned fitness values using the nondominated sorting method. Then the usual binary 
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tournament selection, crossover, and mutation operators are used to create an offspring 

population list. The fitness values of the offspring population list are calculated and 

assigned in the same way as the initial population list. Then a combined population list 

with the size of 2N is generated with the current offspring population list and the 

previously found best nondominated solutions to ensure elitism. The combined 

population is sorted via the NondominatedSorting node inside the NSGA-II Function 

custom node. The top N solutions that belong to the best nondominated set are selected 

for the next iteration. The Generation Loop continues until the iteration counter is 

smaller than the number that is set by the designer. The Pareto Optimal Set will be 

created as an output of the optimization loop and the complete set of the initial solution 

list and the generated population lists during the optimization process are exported as a 

CSV file. The user can access the exported data for more detailed downstream processes. 
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4.3.2 Optimo Validation Study 

The Jmetal Metaheuristic Algorithms in Java are validated in a detailed study by 

Durillo and Nebro (2011). However the jmetal.NET , which is used as the background 

simulation engine of Optimo, is not validated yet. jMetal.NET is developed by the 

jMetal team with the goal of providing .NET implementation of jMetal. During the 

process of developing Optimo, the source code of jmetal.NET has been modified in 

many places especially in the way that objective functions are implemented. The change 

in implementing objective functions enables Optimo to accept external fitness functions, 

which greatly ease the model setup process by designers. In order to validate Optimo’s 

accuracy, the results are compared with the original test cases found in Deb et al. (2002) 

when they introduced the NSGA-II algorithm. In this section, we first describe 4 test 

problems used for comparison and then the Optimo results are compared with original 

NSGA-II algorithm study to show the accuracy of the calculation. 

Test Problems for Validation Study 

In applied mathematics, test problems are being used to validate optimization 

algorithms and evaluate their characteristics. In multi-objective optimization using 

evolutionary algorithms, researchers have used many different test problems with known 

Pareto Optimal sets to study the performance of optimization algorithms  (Veldhuizen, 

1999). The test problems in this research were chosen based on the original study of the 

NSGA-II algorithm to make the performance comparison possible. The list of the 4 test 

problems used for comparison and their specifications are provided in Table 1.  
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The table includes the problem names, the number of variables (n), the variable 

bounds, the objective functions, the Pareto Optimal solutions, and the nature of the 

Pareto Optimal front (the set of choices that are Pareto efficient) for each problem. As it 

can be seen from the table, all of the test problems have two objective functions and 

none of them have any constraints. The detailed descriptions of the test problems are 

described below. 

Schaffer Function Number 1 (SCH) 

Although simple, the SCH (Schaffer, 1985) problem – with a single variable and 

two objectives that need to be minimized – is the most used test problem in multi-

objective optimization. The definition of the SCH problem and the specifications of its 

Pareto Optimal set are provided in Table 1. SCH test function is a simple mathematical 

problem, which is easy to implement for optimization algorithms. Also, tracking the 

performance of the Multi-Objective Evolutionary Algorithms (MOEA) via the SCH test 

function is easily possible due to its known Pareto Optimal front. Figure 15 shows the 

decision variable and objective space for the SCH test case (left) as well as its Pareto 

Optimal Front and non-optimal solutions (right). As shown in this figure, both objectives 

of this problem are to be minimized. The SCH problem has Pareto Optimal set of 

  [   ]  Both fitness functions take values between 0 and 4 on the Pareto Optimal 

front. The Pareto Optimal set can be calculated as the following: 

  ( )   
       √  ( ) 

  ( )  (   )
       ( )  (√  ( )   )
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Figure 15. Decision variable and objective functions for SCH test case problem (top). Pareto 

Optimal front and non-optimal solutions (bottom) 

Figure 16 shows the SCH problem created in Dynamo using the Optimo package. 

The part with the grey background is the main dynamo graph and the part with yellow 

background shows the inside of custom nodes for fitness function-1 (  ( )   
 ) and 

fitness function-2 (  ( )  (   )
 ). As it can be seen, creating the fitness functions for 
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this problem is very simple using Optimo. For the other test cases in this study, the 

decision variables inputs and the fitness functions are the only parts that need to be 

updated. 

 

Figure 16. The SCH optimization problem and its fitness functions created in Dynamo using 

Optimo 

Figure 17 demonstrates the generated results for SCH problem using Optimo 

obtained after 250 generations with a population size of 100. The population size and the 

number of generations are derived from the original NSGA-II study to make the results 

consistent for comparison study. 
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Figure 17. The generated results for the SCH problem using Optimo obtained after 250 

generations with population size of 100 

Fonseca and Fleming Function (FON) 

Fonseca and Fleming (1995) created a two-objective optimization problem with 

n variables. The Pareto Optimal solution of this problem falls within the range of  

   [ 
 

√ 
 
 

√ 
] for             and when all of the      are equal. In this study the 

number of variables is selected to be 3 based on original study of NSGA-II algorithm. 

Therefore, the Pareto Optimal solution of this problem falls within the range of     

[ 
 

√ 
 
 

√ 
] and when         . Figure 18 demonstrates the Pareto Optimal front and 

the objective space for FON problem for n = 3. As it can be seen, the Pareto Optimal set 

is a continuous and nonconvex set. 
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Figure 18. Pareto Optimal front and objective space for FON problem for n = 3 

Figure 19 shows the FON problem graph created using Optimo package. In this 

figure, the part with grey background is the main dynamo graph and the part with yellow 

background shows the inside of custom nodes for fitness function-1 and fitness function-

2 (see the functions’ definitions in Table 1). As it can be seen there are three variables 

for this problem that are varying from –   to  . The fitness functions are appropriately 

changed to address this problem. This process is very simple and straight-forward which 

can be considered as a proof that Optimo is a user-friendly tool. 
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Figure 19. The FON optimization problem and its fitness functions created in Dynamo using 

Optimo package 

Figure 20 demonstrates the generated results using Optimo for the FON problem 

for n = 3, obtained after 250 generations with a population size of 100. As it can be seen 

from this figure, the results follow the same pattern shown in Figure 18. The accuracy of 

the results and how well the results are spread out on the Pareto Optimal front are 

discussed in the next section. 
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Figure 20. The generated results using Optimo for the FON problem obtained after 250 

generations with a population size of 100 

Poloni Function (POL) 

Poloni and his colleagues (2000) created a two-objective problem with two 

decision variables. This test problem has been used by many researchers afterwards. The 

objective functions and other specifications of this problem are provided in Table 1. This 

problem has a nonconvex and disconnected Pareto Optimal set as shown in Figure 21. 

Having disconnected Pareto Optimal set causes difficulty to many multi-objective 

optimization algorithms. Therefore the POL function is considered a good test function 

to control the accuracy of generated optimization algorithms. It should also be noted that 

the most part of region A (Figure 21) of the Pareto Optimal front are constituted by the 
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boundary solutions of the search space. Therefore, if the lower bound is relaxed, the 

Pareto Optimal front in region A gets wider and will be constituted with the new 

boundary limits. 

 

Figure 21. Pareto Optimal front for POL problem. The Pareto Optimal set of this problem is 

nonconvex and disconnected (regions A and B) 

Figure 22 shows the POL problem created in Dynamo using the Optimo package. 

The part with the grey background in this figure is the main dynamo graph and the part 

with yellow background shows the inside of custom nodes for fitness function-1 and 

fitness function-2 of the POL problem (see the functions in Table 1). As it can be seen 

there are two variables for this problem that are varying from –   to  . The fitness 
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functions are appropriately updated and inserted in the fitness function list for this 

problem. 

 

Figure 22. The POL optimization problem and its fitness functions created in Dynamo using 

Optimo. 

Figure 23 demonstrates the generated results for the POL problem using Optimo 

obtained after 250 generations with a population size of 100. The Pareto Optimal set is 

exported as a CSV file and is visualized using Microsoft Excel. 
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Figure 23. The generated results for POL problem using Optimo obtained after 250 generations 

with a population size of 100 

Figure 24 demonstrates the convergence of the results at the Pareto Optimal front 

after a few generations using Optimo (selected generations are shown in this figure to 

make the convergence of the results toward Pareto Optimal front clearer). 

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

F
it

n
es

s 
F

u
n
ct

io
n
-2

 

Fitness Function-1 



 

73 

 

 

Figure 24. Convergence of the results at Pareto Optimal front after a few generations using 

Optimo (selected generations are shown in this figure to make the convergence of the results 

toward Pareto Optimal front clearer). 

Kursawe Function (KUR) 

Kursawe (1991) created a fairly complex two-objective optimization problem. 

The definitions of the objective functions and the specifications of this problem are 

provided in Table 1. The Pareto Optimal set of this problem is nonconvex and 

disconnected (Figure 25). As it can be seen in this figure, there are 4 disconnected Pareto 

Optimal regions. The solution A is a Pareto Optimal solution with           . 

For detailed information on the Pareto Optimal characteristics of regions B, C, and D 

refer to (Deb et al, 2001). 
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Figure 25. Pareto Optimal front for KUR problem. The Pareto Optimal front of this problem is 

nonconvex and disconnected (Solution A and regions B, C, and D) (the image is recreated based 

on an image in Deb et al. (2001) book) 

Figure 26 shows the KUR problem created in Dynamo using Optimo. The part 

with grey background is the main dynamo graph and the part with yellow background 

shows the inside of custom nodes for fitness function-1 and fitness function-2 (see the 

functions in Table 1). As it can be seen there are three variables for this problem that are 

varying from –   to  . The fitness functions are appropriately changed to address this 

problem and are shown in the image below. 
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Figure 26. The POL optimization problem and its fitness functions created in Dynamo using 

Optimo package 

Figure 27 demonstrates the generated results for KUR problem using Optimo 

obtained after 250 generations with a population size of 100. 

 

Figure 27 .The generated results for KUR problem using Optimo obtained after 250 generations 

with a population size of 100 
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Performance Measures 

In Single-Objective Evolutionary Algorithms (SOEA) the performance metric is 

directly related to the objective functions. However, in MOO the performance metrics 

need to assess a set of solutions. In this set, each solution has its own set of objective 

values. As a result, having one performance metric directly related to the objective 

function, similar to SOEA, would not be efficient for MOEA. By understanding the two 

main functional goals of MOEA, Deb et al. (2002) introduced two metrics for MOO: 1) 

for measuring the convergence of solutions to the Pareto Optimal front (convergence 

metric); and 2) for measuring the diversity of solutions (diversity metric). The first 

metric measures the extent of the convergence to a known set of Pareto Optimal 

solutions. Calculating this metric is possible because the multi-objective algorithms 

tested on problems in the validation study have a known set of Pareto Optimal solutions. 

The second metric measures the extent of spread achieved among the obtained solutions 

and how they span through the entire Pareto Optimal region. 

In order to calculate the convergence and diversity metrics, first the Pareto 

Optimal sets are generated after 25,000 function evaluations for each of the 4 test 

problem functions. These were obtained by 250 generations with the population size of 

100. Figure 17, Figure 20, Figure 23, and Figure 27 demonstrate the generated results for 

SCH, FON, POL, and KUR problem respectively using Optimo. 

Then a set of 500 uniformly spaced solutions from the true Pareto Optimal front 

are created for each test problem. For each solution obtained from chosen solutions with 

the NSGA-II algorithm in Optimo, the minimum Euclidean distance of the solution to 
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the true Pareto Optimal front is computed. The convergence metric (ϒ) is defined as the 

average of these distances. The smaller the average and convergence metric, the better 

the convergence toward the Pareto Optimal front. 

Figure 28 demonstrates the process of calculation of convergence metric. The 

shaded region is the feasible search region of a hypothetical problem and the solid 

curved lines specify the true Pareto Optimal solutions. Solutions with open circles are 

chosen solutions on the Pareto Optimal front (500 uniformly spaced solutions generated 

in the previous step) for the calculation of the convergence metric, and solutions marked 

with dark circles are the solutions obtained by NSGA-II algorithm using Optimo. When 

all obtained solutions lie exactly on chosen solutions, this metric takes a value of zero. 

For all of the simulations performed in this study, we present the average and variance of 

this metric calculated for solution sets obtained in multiple runs similar to the original 

NSGA-II study. 

It should be noted that this metric has a drawback. Even if all the solutions 

created by the optimization algorithm converge to the Pareto Optimal solution, the value 

of this metric may not merge toward zero. The reason is that even if all of the solutions 

in the final solution list lie on the Pareto Optimal front, the shortest Euclidian distance to 

the 500 uniformly spaced solutions generated in the previous step may not be zero.The 

convergence metric yields zero only when all of the obtained solution lie exactly on the 

top of the chosen solutions. 
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Figure 28 .The process of calculation of convergence metric (the image is recreated based on an 

image in Deb et al. (2002) paper) 

For measuring the extent of spread achieved among the solutions (diversity of the 

solutions), the diversity metric ( ) is defined to measure the spread in solutions obtained 

by the NSGA-II algorithm using Optimo directly. To calculate the diversity metric, we 

calculate the average of Euclidian distance among consecutive solutions in the 

nondominated set of solutions from the last iteration results (Figure 29). Then, the 

extreme solutions in the objective space are calculated by fitting a curve parallel to that 

of the true Pareto Optimal front. Thereafter, the following equation (Deb et al. 2002) is 

used to calculate the diversity metric: 
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As it can be understood from this equation, for the most widely and uniformly 

spread-out set of solutions for MOO, the numerator of this equation would be zero, 

which makes the metric to take a value of zero. For any other distribution, the value of 

the metric would be greater than zero. For those distributions with identical values of     

and   , the value for   would be higher when the distributions of solutions within the 

extreme solutions get worse. 
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Figure 29 .The process of calculation of diversity metric (the image is recreated based on an 

image in Deb et al. (2002) paper) 

Discussion of the Results 

In this section the results of the diversity and convergence metrics for NSGA-II 

algorithm using Optimo are provided. The results from the validation study (the four test 

problems’ results) are compared with the original test cases provided by Deb et al. 

(2002). Table 2 shows the mean and variance of the convergence metric (ϒ) and 

diversity metric ( ) obtained using NSGA-II algorithm via Optimo for 20 times for each 
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test cases.  The original NSGA-II algorithm study results are provided side by side to the 

produced results in this study in Table 2. 

Table 2. The mean and variance of the convergence metric (ϒ) and diversity metric ( ) obtained 

using NSGA-II algorithm via Optimo 

 
 

SCH FON POL KUR 

  
Optimo 

Original 

NSGA-II 
Optimo 

Original 

NSGA-II 
Optimo 

Original 

NSGA-II 
Optimo 

Original 

NSGA-II 

Average 
ϒ 0.003077 0.003391 0.002722 0.001931 0.014388 0.015553 0.012039 0.028964 

Δ 0.464494 0.477899 0.440970 0.378065 0.478530 0.452150 0.404698 0.411477 

Variance 
ϒ 0 0 0 0 0.000002 0.000001 0.000001 0.000018 

Δ 0.001404 0.003471 0.000142 0.000639 0.001166 0.002868 0.000794 0.000992 

 

The results in Table 2, shows a better convergence to the Pareto Optimal front 

could be achieved by NSGA-II algorithm implemented in Optimo for SCH, POL, and 

KUR test problems. For these test problems, the average and variance of the 

convergence results for the NSGA-II implementation in Optimo are less than the same 

measures in the original NSGA-II study provided in Deb et al. (2002). The original 

NSGA-II study had a better convergence towards Pareto Optimal front in FON test 

problem. For illustration, we show one of the runs of the NSGA-II original study with an 

arbitrary run of NSGA-II generated by Optimo for SCH and FON test problem in Figure 

30 and Figure 31 respectively. 
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Figure 30 . One of the runs of NSGA-II original study with an arbitrary run of  Optimo on the 

SCH test problem (image for NSGA-II original study is from Deb et al. (2002) paper) 

 

Figure 31  One of the runs of NSGA-II original study with an arbitrary run of  Optimo on the 

FON test problem (image for NSGA-II original study is from Deb et al. (2002) paper) 
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Regarding the diversity metric, NSGA-II in Optimo shows better performance in 

the SCH and KUR test problems and NSGA-II original study had a better performance 

in the FON and POL test problems. Overall, it can be seen that we could achieve 

competitive results using Optimo, which means the performance of NSGA-II algorithm 

in Optimo is acceptable. For detailed comparison of NSGA-II algorithm and other MOO 

algorithms, refer to Deb et al. (2002) paper. 

4.3.3 Applications of Optimo 

Optimo has been published as an open-source package under GNU Lesser 

General Public License (2015) and is available to the public. The package has been 

downloaded more than 550 times as of May 2015 by Dynamo users and received good 

feedback. Some universities such as Georgia Institute of Technology, Stanford 

University, and University of California Berkeley have started teaching Optimo in their 

graduate level classes and implementing it in their research as well. Moreover, Optimo 

has been tried on real design projects in industry by Arup® and Autodesk Structural 

Analysis team in Europe. Optimo has many applications, for example, it has been used 

in optimizing the form generation process based on acoustic performance in the AU 

2014 Dynamo Hackathon winner project (“Dynamo BIM,” 2015). 
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5. EXPERIMENT OF THE FRAMEWORK
*
 

 

In this section we introduce the BIM-based Performance Optimization (BPOpt) 

framework and evaluate its performance using two case studies. First the general 

overview of the BPOpt framework is discussed and the implementation steps are 

explained. Then BPOpt framework implementation is shown in two separate case 

studies. These two experiments were performed on two residential buildings to validate 

the workflow and usefulness of the BPOpt framework. 

For the first case study, which was done at the earlier stage of this research, a 

sample model of Autodesk Revit 2013 was used to optimize the performance of the 

building for annual energy use and daylighting by studying the building geometry 

variables. In this case study the annual energy cost was calculated using hourly whole 

building energy simulation and the daylighting performance factor was calculated via 

simplified equations. The energy performance and daylighting performance indicators 

were used as fitness functions for the optimization process. The BPOpt workflow could 

address parametric changes of building forms within Revit for optimizing building 

performance. 

The second case study was implemented on the Stanford University Solar 

Decathlon 2013 house project BIM model (http://solardecathlon.stanford.edu/) with 

minor modifications (the Revit model of the building was kindly provided to us by the 

                                                 

*
 Part of this section is reprinted with permission from “BIM-based Parametric Building Energy 

Performance Multi-Objective Optimization” by Rahmani Asl, M., Bergin, M., Menter, A., Yan, W., 2014, 

The 32nd International Conference on Education and Research in Computer Aided Architectural Design in 

Europe., Page Range 455-464, Copyright 2014 by eCAADe. 

http://solardecathlon.stanford.edu/
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project team). In this case study it was tried to optimize building performance for annual 

energy use and daylighting as well, but this time the daylighting performance factor was 

simulated through an illuminance rendering engine. Moreover, in the new complete 

BPOpt workflow, which was used for the second case study, the parametric changes of 

construction thermal properties of building objects were enabled as well. The results of 

these two study showed that the building performance could be improved significantly 

using the BPOpt framework. 

5. 1. BPOpt Framework 

In response to the observed gaps in the literature BPOpt is developed as an 

integrated framework to establish multidisciplinary optimization in the process of 

performance-based design. This framework integrates the rich information stored in 

parametric BIM with building performance simulation tools to make performance 

optimization more accessible in the process of design. The BPOpt framework is 

integrated with Parametric BIM-based Energy Simulation (PBES) and Parametric BIM-

based Daylighting Simulation (PBDS) tools for energy and daylighting analysis in this 

research, but easily expandable to other performance analysis tools. The proposed 

workflow uses Optimo, an evolutionary multi-objective optimization (MOO) tool, to 

explore the design space and provide a set of Pareto optimal solutions to the designers. 

Using BPOpt, multiple competing objective functions such as construction and operation 

costs and environmental performance can be studied and a potential set of solutions can 

be presented. BPOpt provides the designer with a set of desirable solutions and gives the 
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option to the designer to choose the most promising alternative based on project 

requirements and objectives. 

The theoretical foundation of BPOpt is built upon integration of BIM, parametric 

modeling, visual programming, building performance analysis, and MOO through 

platform integration and automation on one hand, and the interaction between designers 

and the integrated system on the other hand. The process of implementing BPOpt to 

optimize building performance and obtain feedback for design decisions can be 

described in the six major steps demonstrated in Figure 32. 

design decisions, new design ideas, new set of problems

project information, building geometry, construction and material 

properties, energy analytical properties
   Prepare BIM Model1

parametric relationships among objects and properties  Define Parametric Relations2

variables, variable types, variables range (continuous variables), 

lists of alternatives (discrete variables)
  Define Variable Ranges3

single or multiple fitness functions  Define Fitness Functions4

generated population lists, optimal solution set (Pareto Optimal)  Evaluate Results 5

  Make Decisions6

 BPOpt Process Information Added 

 

Figure 32. The process of implementing BPOpt framework to optimize building performance 

The first step is modifying the BIM model and implementing the necessary 

analytical properties for performance analysis. BPOpt is designed to automatically use 

the information stored in the BIM model such as building project properties, building 



 

87 

 

geometry, and physical properties to create the analytical input file for performance 

simulation tools. The prototype created in the present research uses Autodesk® Revit® 

as the BIM tool and also as the central platform for the optimization process. In this step, 

the designer needs to modify the Revit project file and include all the necessary 

information for performance analysis. For instance, the designer needs to update the 

project location since the energy simulation process uses the Revit project location to 

access the appropriate weather file. 

In the second step the parametric relationships among building objects should be 

defined. This enables the system to automatically generate alternatives for analysis and 

evaluation of performance until the design optimization process is terminated. The 

parametric relationships can be defined either through the Revit Graphical User Interface 

(GUI), which is limited to parametric capabilities at the family (building component) 

level or with the use of Dynamo (2015), which is an open-source visual programming 

application that interacts with Revit to extend its parametric capabilities to the project 

level. The parametric connections help propagation of parameter changes throughout the 

BIM model during the optimization process. The parametric BIM model changes in 

response to the variable changes and then the corresponding analytical models, 

generated from the BIM model, get updated. 

In the third step, the designer defines the decision variables and their variation 

domains. Due to the large number of variables that the designer needs to consider in 

sustainable building design, the number of possible combinations created by varying 

each variable in its practical range is enormous (Coley and Schukat, 2002) and very 
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difficult to manage. In response to this issue, BPOpt is designed as an iterative process 

that provides the option for the user to re-define the variables and their domains to 

approach the most appropriate design in a more manageable process. The design 

parameters in BPOpt can be continuous variables (defined with lower and upper 

bounds), discrete variables (defined as a list of variables), or both. 

The user defines the fitness functions in the fourth step. The design process can 

have either a single fitness function (single objective optimization) or multiple fitness 

functions (multi-objective optimization). A fitness function can be defined as a simple 

function like the project cost based on area and cost per unit or as a complex function 

like the annual energy cost using hourly whole building energy simulation. For example, 

in the case studies of this research there are two fitness functions defined: one simulates 

the annual energy cost and the other simulates building daylighting performance. BPOpt 

is designed in a way that the user can add multiple fitness functions smoothly. The 

fitness functions can be created as external functions in stand-alone packages and be 

inserted to this workflow with a minimal amount of work. 

In the fifth step, the results will be generated by feeding variables and fitness 

functions into the optimization process. Optimo is used to implement optimization for 

BPOpt. At this step the BIM model changes according to the identified decision 

variables in the optimization process and at the time the transaction of all of the changes 

in the BIM model is complete, the analytical models are generated or regenerated. The 

analytical models will be sent to performance simulation engines and the values for the 

fitness functions will be calculated. Optimo generates the optimal solution list by 
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iterating through this process and improving the results by keeping the fittest alternatives 

in each generation. After the optimization process is over, a set of optimal solutions will 

be reported to the designer. A detailed description of the Optimo workflow is provided 

in Section 4 of this dissertation. 

The sixth step is decision making which is to be addressed by designers 

themselves. A designer evaluates the results based on project requirements and 

objectives as well as design aesthetics and proceeds in two ways: 1) a design option is 

selected from the optimal solution set provided by this workflow and the design 

proceeds; or 2) based on the provided results the designer makes changes in the 

optimization settings and parametric relationships and repeats the same process till 

desired design is achieved. 

The BPOpt framework for this research and its case studies was developed by 

systematic integration of PBES, Optimo, and PBDS tools to provide efficient design 

space exploration to achieve high-performance buildings. It should be noted that BPOpt 

is a dynamic system that can be integrated with other building performance fitness 

functions with a minimal amount of effort. For instance, this workflow has been used in 

optimizing the form generation process based on acoustic performance in the AU 2014 

Dynamo Hackathon winner project (“Dynamo BIM,” 2015). In this project, the 

designers were trying to design an acoustic performance space that could self-adapt to 

certain sound requirements. Figure 33 demonstrates the tools that can be used in BPOpt 

framework. Some of these tools were developed in this research as prototypes to be used 

as part of the BPOpt framework. 
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Figure 33. The tools that can be used in BPOpt framework 

As it can be seen in Figure 33, Autodesk Revit is used as the central BIM 

platform for BPOpt. Dynamo, which enhances the parametric capabilities of Revit, is 

used as a visual programming interface to enable integration of multiple performance 

analysis tools. After the building performance optimization process using Optimo, 

PBES, and PBDS, the results can be visualized in Autodesk Revit and Microsoft Excel. 

In the following sections, the integration of all these tools is demonstrated in two case 

studies for high performance building design. 

5. 2. Test Case Experiment-1 

In order to explore the applicability of the BPOpt framework for 

multidisciplinary high performance building design and also improve its functionality, a 
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case study was developed at the earlier phases of this research using the earlier version 

of the Optimo, PBES, and PBDS applications prototypes. In this case study BPOpt 

framework was tested on a residential building with multiple objectives from different 

disciplines to optimize performance in the early design process. 

5.2.1 Introduction of the Case Study Model 

This case study was implemented on the basic sample model of Autodesk Revit 

2013 (Figure 34). The geographic location of this residential building is in the city of 

Indianapolis, Indiana, USA. The climate is dominated by heating loads with 5892 

Heating Degree Days on a yearly basis. 

 

Figure 34. Autodesk Revit 2013 basic sample file that is used as the building model for Test 

Case Experiment-1 

The residential home has six rooms at level one and two rooms at the second 

level that are included as part of the daylighting calculation. The whole building is 



 

92 

 

included for hourly energy simulation. Due to site constraints, the long-axis orientation 

of the structure is fixed at 15 degrees west of true north (Figure 7). 

5.2.2 Objective Functions 

The objectives of the optimization routine for this case study was to maximize 

the number of rooms of the residential unit that satisfy the requirements of the LEED 

IEQ Credit 8.1-Option2 for Daylighting while minimizing the expected energy use. The 

two objective functions of this case study can be formulaically expressed as follows: 

             

             

Where: 

                                           

                                                

                       

                                        

The simulation and calculation of the energy consumption using PBES requires 

building information stored in BIM, for example geometry information, physical 

material information, and location data embedded within the model. In this study, the 

energy analytical model is created from BIM in the Green Building eXtended Markup 

Language (gbXML) (gbXML, 2014) open schema format from BIM using Autodesk® 

Revit®’s Application Programming Interface (API). The gbXML files are uploaded to 

Autodesk Green Building Studio (GBS) website for cloud-based whole building energy 
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simulation using the integration of Revit API and GBS API. The annual energy cost has 

been reported as the fitness function value for energy performance of the building in the 

optimization process. 

For calculating the LEED daylighting performance factor, LEED IEQ Credit 8.1-

Option2 was used which is a simple approximation method to calculate the daylighting 

performance factor. According to LEED IEQ Credit 8.1-Option2 for side lighting zones, 

the product of the visible lighting transmittance (VLT) and window-to-floor area ratio 

needs to be between 0.15 and 0.18. 

                     

In this approach, the geometry information of the building such as the room area 

and the window geometry has been collected form the BIM model to calculate the 

daylighting performance factor of the building. The calculation process of the LEED 

IEQ 8.1-Option2 daylighting performance factor is translated into a parametric 

computational code using Python programming to enable parametric analysis. The 

percentage of the area of the rooms that satisfy the LEED requirements is reported as the 

fitness function value for daylighting performance. According to LEED, this percentage 

needs to be more than 75% for new construction buildings to qualify for 1 LEED credit. 

5.2.3 Decision Variables 

The residential building has six rooms at level one and two rooms at the second 

level that are regularly occupied and included as a part of the daylighting calculation. 

The entire building is included in the whole building energy simulation. The light 

admitted to the building can enter via two fixed curtain walls and 7 casement windows. 
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The rooms separated from the main living space by interior partitions are lit naturally by 

casement windows with a visual transmission coefficient of 0.9. The width and height of 

the windows are identified as free parameters. The two curtain systems light the main 

living space in the first floor and the balcony in second floor. The fixed curtain systems’ 

properties are not included as free parameters in the design optimization. The list of 

decision variables, their acceptable ranges, and the variable types are given in Table 3. 

Table 3. Optimization decision variables, their acceptable ranges and types 

Geometry Variables Lower Limits (ft) Upper Limits (ft) Variable Type Defined Type 

Casement Windows Width  0.5 7.0 Continuous  Double 

Casement Windows Height  0.5 7.0 Continuous  Double 

 

5.2.4 Optimization Algorithm Encoding and Process 

Figure 35 shows the general overview of the BPOpt framework for this case 

study. The top part of this graph illustrates the main workflow for BPOpt. As it can be 

seen, the Population Size, Variable Ranges, and other variables are inserted as user input 

into BPOpt framework. The Initial Population Set is generated based on the user input 

and evaluated using LEED Daylight and GBS packages. The GBS runs are created based 

on the PBES tool that enables the cloud-based whole building energy simulation on the 

Autodesk GBS website. The LEED Daylight package uses the geometry information of 

rooms and windows along with windows’ VLT information to calculate the daylighting 

performance factor. The NSGA-II package performs the iterative optimization process 
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and reports the optimal solution set. The bottom part (with gray background) shows the 

components inside the LEED Daylight, GBS, and NSGA-II packages. 

 

Figure 35. General overview of the BPOpt framework for test case experiment-1 

The NSGA-II optimization algorithm is implemented with the input of a 

population size of 100 for each generation, with the maximum evaluations set at 1000 

for a total of 10 generations for this case study. The mutation probability is set at 0.01. 

The crossover probability is set at 0.9 and both the mutation distribution index and 

crossover distribution index are set at 20.0. 

Figure 36 shows the earlier version of the BPOpt framework and its 

implementation for Test Case Experiment-1 in Dynamo to optimize daylighting and 
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energy use of the building. This graph uses the earlier versions of PBES, PBDS and 

Optimo to create BPOpt workflow to optimize the building performance.  The node 

NSGA-II in Dynamo, which is a part of Optimo’s older version, includes a package of 

nodes and plays the main loop role for population generation in MOO to get to the 

optimal solution. The node Initial Solution Set generates the initial set of random 

variables within the provided range and with the size of population defined by user. The 

output of this node is a list of variables’ and the objective’ values. The objective values 

are initially null and they are assigned by Population Evaluate node, which gets 

objective values as input parameters. 

 

Figure 36. NSGA-II algorithm created in Dynamo (Test Case Experiment-1) 

This workflow enables the BPOpt framework to accept external objective 

functions as nodes or packages of nodes. For instance, in this study the LEED 

Daylighting node is created as a package of nodes to calculate the LEED daylight values 
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based on LEED Reference Guide for Green Building Design and Construction (“U.S. 

Green Building Council,” 2009) as an objective function. 

Using Revit API, the node gbXMLExport in Dynamo generates energy model 

data in the gbXML format, which contains the necessary information for energy 

simulation. The GBSProject node is designed to create a new project in GBS by 

extracting the project information from a BIM model such as the project location and the 

building type using Revit API, GBS API, and the Representational State Transfer 

(REST) protocol. GBSRun is designed to create multiple runs in the GBS project and 

upload the exported gbXML files to GBS for whole building energy analysis. When the 

simulations are done, GBSRun retrieves the energy simulation results for further 

analysis, optimization, and visualization (Figure 37). 

 

Figure 37. Parametric BIM and whole building energy simulation integration in Dynamo (first 

version of the PBES tool) 
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The presented system enables designers to explore design alternatives and at the 

same time assess the building performance to search for the most appropriate design. 

5.2.5 Results 

The Pareto Optimal set from the optimization process is shown in Figure 38. The 

fitness functions for the optimization process are defined as follows: 

 Energy performance factor: Annual energy cost in Dollar 

 Daylighting performance factor: 100 % subtracting the percentage of the area 

with the illuminance level within the LEED 

Daylighting acceptable range (described in 

detail in the section Objective 

Functions)daylighting performance factor 
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Figure 38. Scatterplot showing the Pareto Frontier with model thumbnails superimposed on the 

plot to illustrate the association between the calculated optimal solutions and the building forms. 

(the energy performance factor is the annual energy cost in dollar and the daylighting 

performance factor is 100% subtracting the percentage of the area within the acceptable 

daylighting range) 

In Figure 39, the optimum solution is at the lower left corner of the graph where 

the annual energy consumption is at its minimum and the percentage of the area within 

the acceptable daylighting threshold is at its maximum value. This graph shows the 

result for 1000 runs for this experiment which took about 3 hours overall. The results 

show that the performance optimization process is able to improve the building 

performance and find the optimal or near optimal solutions in the design space. This 

graph indicates that the optimization routine begins to converge on the optimal solution 

for each variable after a few generations the third generation onward. 
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Visualizing the results in an interactive parallel coordinates plot allows the 

various iterations to be evaluated by the designer. From the graph in Figure 39 it can be 

seen that the windows of various Widths from 1’ to 7’ meet the LEED Daylight 

requirements for more than 80% of the rooms, correlating with about $200 in variation 

for the yearly energy cost. In this instance, the windows between the sizes of 3’ and 4’ in 

Height are evaluated, as this parameter is preferred for the reason of style to fit with 

horizontal datum elements. For design variations within the bottom 30% of the energy 

cost and the full satisfaction of the daylighting metric, the smallest glazing Width is 

specified at 2’ 8”. 

 

Figure 39. Interactive parallel coordinates plot for the constraint and analysis of design 

parameters. 

In Figure 40, the chart shows the samples of design variations that meet 100% of 

the LEED Daylighting requirements. Of these the lowest energy use calculated is $4,265 

and the smallest window size is specified as 5’ in width and 3.5’ in height. 
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Figure 40. Illustration of a bi-directional association between parallel coordinates and 3D model 

views 

5.2.6 Conclusion 

The use of the earlier version of BPOpt framework was demonstrated on the 

present case study. This case study showed the benefit of efficient large design space 

exploration to find optimal or near optimal solutions. It showed how the framework can 

be used to optimize multiple objectives including energy performance and daylighting 

performance using simulation and/or approximation in different disciplines and improve 

the overall building performance. The optimization results presented as a Pareto Optimal 
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set provided an option for the designer to trade-off among multiple alternatives and 

choose the most appropriate design. 

This case study is developed to validate the overall usefulness of BPOpt 

framework at the earlier stage of this project. The variables in this case study were 

limited to the geometry variables only. In addition to geometry related variables such as 

window dimensions variations, this system is capable of studying thermal properties. 

Also the system is capable of producing design options considering building geometries 

such as the footprint, the form of the roof, and the interior layouts. These design options 

are considered often by architects and engineers in the design process. The next case 

study demonstrates that how the geometry and thermal properties of objects can be 

included in the process of building energy optimization using BPOpt. Also, the use of 

discrete variables in the BPOpt framework is explained in the next case study. 

5. 3. Test Case Experiment-2 

The prior case study included parametric changes of building object form. In this 

case study the parametric changes of construction thermal properties of building objects 

were addressed as well. In this study various types of building objects with different 

thermal performances were created and added into a list for parametric study. During the 

optimization process, the appropriate object type was selected for energy simulation. 

Hence, the updated workflow in this case study was able to parametrically change both 

form and thermal properties of objects in the BIM model and assess accordingly the 

energy and daylighting performance of the building model through simulation. In 

addition, the method of evaluating daylighting performance is different from Test Case 
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Experiment-1. In Test Case Experiment-1 an approximation method was used to 

calculate the daylight factor, but in the Test Case Expreiment-2 the daylight factor was 

calculated using detailed simulation through Autodesk Rendering Service and post-

processing the results. 

5.3.1 Introduction of the Case Study Model 

This case study was implemented on the Stanford University Solar Decathlon 

2013 house project BIM model (http://solardecathlon.stanford.edu/) with minor 

modifications (the Revit model of the building was kindly provided to us by the project 

team). It is a single story residential building with a net floor area of 1018 ft
2
. Figure 41 

shows the floor plan, and northwest and southwest 3D views of the house. The building 

has clearstory windows on the north wall (Figure 41-b) and the curtain panel windows 

on the south wall (Figure 41-c). 

 

Figure 41. (a) Floor plan of the Stanford Solar-decathlon 2013 house (b) Northwest isometric 3D 

view shows the clearstory windows on the north wall; and (c) Southwest isometric 3D view 

showing the curtain panel windows on the south wall. (Source of images: Stanford University 

Solar Decathlon 2013 project team. http://solardecathlon.stanford.edu) 

 

 

http://solardecathlon.stanford.edu/
http://solardecathlon.stanford.edu/
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5.3.2 Objective Functions 

In order to evaluate the performance of the BPOpt workflow with multiple 

performance simulation tools, the objectives of the optimization routine for this case 

study are defined from two different disciplines of energy performance and daylighting 

performance. The objective functions are set to minimize the expected annual energy use 

while maximizing the regularly occupied area of the residential unit that lies between 

300 lux and 3,000 lux for 9 a.m. and 3 p.m. at the equinox to get maximum LEED 

daylighting credit. Based on LEED Version-4 Daylight Option-2 the building gets 1 

point if the illuminance level of 75% of the regularly occupied area and it gets 2 points 

for more than 90% within the illuminance range. 

The two objective functions of this case study can be formulaically expressed as 

follows: 

             

             

Where: 

                                           

                                                

                       

                                        

The fitness function for energy performance is calculated by hourly simulation of 

whole building energy consumption using PBES tool.  The fitness function for 

daylighting is calculated by illuminance rendering of the building model using PBDS 
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tool. The illuminance rendering results are parsed and the daylight percentage of the area 

with the Daylighting performance factor within the LEED-acceptable range is calculated 

by a Python script, which was developed by the author. 

The energy simulation process collects the required information stored in BIM 

such as geometry information, physical material information, and location data for 

energy analysis. This workflow generates energy model data in the gbXML open schema 

from BIM using Autodesk® Revit API. The daylighting simulation requires building 

information for geometry, glazing properties, and reflectivity of opaque materials 

defined in the BIM model. The PBDS package gets the user input for the building floor 

levels that the designer intends to include in daylighting simulation. Then PBDS 

automatically finds the floors and the rooms assigned to the defined levels using Revit 

API via Python scripting in Dynamo. Other necessary project information for 

daylighting analysis is automatically collected from the BIM model and the daylighting 

simulation jobs are created also automatically in the cloud. The workflows developed in 

this case study can identify parameters from elements within the BIM model and explore 

a set of scenarios for energy performance and daylighting adequacy. 

5.3.3 Decision Variables 

Windows are critical components of building facades for energy and daylight 

performance (Shen and Tzempelikos, 2010). Glazing form, size, and type should be 

jointly considered in order to effectively control the heat and light transfer through the 

building. The optimal glazing size and type are unique for each building and should be 

calculated by taking into account the glazing geometrical and analytical properties for 
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heat gain and loss and lighting requirements. In this case study glazing size and 

analytical properties are selected as parametric variables to study their effect on the 

building performance. The goal of this study is set to find the optimum windows size 

and glazing material that result in an energy-efficient model with a maximum level of 

acceptable daylighting. 

In this study, 7 parameters related to windows and curtain panels of the Stanford 

University Solar Decathlon 2013 model are considered as optimization variables. The 

list of these variables, their acceptable ranges, and the variable types are given in Table 

4. There are two types of variables: 1) glazing geometry variables that relate to the size 

and shape of the windows; 2) performance analytical variables that relate to energy and 

daylighting performance of glazing. It should be mentioned that BPOpt is not limited to 

geometry and performance analytical variables and can handle other variables such as 

those that result in topological changes. The size of casement windows (height and 

width) on the south, east, west, and north sides of the building are considered as 

geometry variables. In the northern hemisphere, north-facing windows hardly get any 

direct sunlight. The only time the sun imposes on them is early in the morning or late in 

the afternoon during the summer and most of the time is blocked or reflected from the 

window glass. Therefore, the variable ranges for height and width of the casement 

windows on the north side of the building are different from the variable ranges for 

height and width of the casement windows on the south, east, and west sides. The 

analytical properties of all windows (casement windows and clearstory windows) and 

curtain panel windows on the south wall are studied as performance analytical variables. 
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Table 4. Optimization variables, their acceptable range and types 

Geometry Variables 
Lower 

Limits (ft) 

Upper 

Limits (ft) 
Variable Type Defined Type 

Casement Windows Width (South-East-West) 4 8 Continuous  Double 

Casement Windows Height (South-East-West) 1 5 Continuous  Double 

Casement Windows Height (North) 1 5 Continuous  Double 

Casement Windows Width (North) 1 5 Continuous  Double 

Performance Analytical Variables Index Min Index Max Variable Type Defined Type 

Casement Windows Material 0 20 Discrete List 

Clearstory Windows Material 0 20 Discrete List 

Curtain Panels Windows Material 0 20 Discrete List 

 

To enable the parametric change of the glazing properties, both for energy 

simulation and daylighting analysis, 21 glazing types are created for this case study 

(Table 5) and considered as discrete variables in the optimization process. The specific 

glazing types available to this research are limited to those available in Revit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

108 

 

Table 5. Available glazing types for this project and their analytical properties 

Index 

Number 
Analytical Construction 

Visual 

Lighting 

Transmittance 

Solar Heat 

Gain 

Coefficient 

Thermal 

Resistance-

R 
(h.ft2.°F)/BTU 

0 1/8 in Pilkington single glazing 0.9 0.86 0.8466 

1 1/4 in Pilkington single glazing 0.9 0.86 0.8473 

2 3/8 in Pilkington single glazing 0.88 0.81 0.8478 

3 1/2 in Pilkington single glazing 0.88 0.81 0.9096 

4 Double glazing - 1/4 in thick-bluegreen/low-E (e = 0.05) 0.45 0.27 2.8573 

5 Double glazing - 1/4 in thick - clear/low-E (e = 0.1) 0.45 0.39 2.8573 

6 Double glazing - 1/4 in thick - clear/low-E (e = 0.2) 0.45 0.45 2.8573 

7 Double glazing - 1/4 in thick - gray/low-E (e = 0.05) 0.35 0.24 2.8573 

8 Double glazing - 1/4 in thick - gray/low-E (e = 0.1) 0.37 0.34 2.8573 

9 Double glazing - 1/4 in thick - gray/low-E (e = 0.2) 0.37 0.39 2.8573 

10 Double glazing - 1/4 in thick - green/low-E (e = 0.05) 0.6 0.31 2.8573 

11 Double glazing - 1/4 in thick - green/low-E (e = 0.1) 0.61 0.36 2.8573 

12 Double glazing - 1/4 in thick - green/low-E (e = 0.2) 0.61 0.41 2.8573 

13 Double glazing - 1/4 in thick - low-E/clear (e = 0.05) 0.7 0.3 2.8573 

14 Double glazing - 1/8 in thick - clear/low-E (e = 0.1) 0.57 0.48 2.8573 

15 Double glazing - 1/8 in thick - clear/low-E (e = 0.2) 0.58 0.57 2.8573 

16 Double glazing - 1/8 in thick - low-E/clear (e = 0.05) 0.72 0.41 2.8573 

17 Single glazing SC=0.2 0.08 0.19 0.8473 

18 Single glazing SC=0.4 0.3 0.39 0.8473 

19 Single glazing SC=0.6 0.76 0.6 1.1803 

20 Single glazing SC=0.8 0.88 0.81 1.1803 

 

The analytical properties for glazing in Revit are not automatically set when the 

glazing type is selected and the user needs to define them for performance analysis. The 

glazing thermal properties can be modified in the Type Properties, Analytical Properties 

section, under Analytical Construction. The glazing Analytical Construction can be 

selected from a prepopulated list in Revit (Figure 42). 
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Figure 42. The glazing Analytical Construction can be selected from a prepopulated list in 

Autodesk Revit 2015 

The Visual Light Transmittance, Solar Heat Gain Coefficient, Thermal 

Resistance (R), and Heat Transfer Coefficient (U) are assigned automatically based on 

the selected Analytical Construction for the glazing (Figure 43). 
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Figure 43. The Visual Light Transmittance, Solar Heat Gain Coefficient, Thermal Resistance 

(R), and Heat Transfer Coefficient (U) are assigned automatically based on the selected 

Analytical Construction for the glazing in Autodesk Revit 2015 for creating energy analytical 

model 

It should be mentioned that these properties are used for creating the energy 

analytical model for the energy performance analysis and are not considered for the 

daylighting analytical model. The glazing properties for daylighting analysis can be set 

in the glass pane material’s Appearance Properties under Material and Finishes section 

of glazing Type Properties (Figure 44). 
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Figure 44. The glazing properties for daylighting analysis can be set in the glass pane material’s 

Appearance Properties under Material and Finishes section of glazing Type Properties 

In the Material Browser dialog box, Appearance tab, Glazing Section, the Color 

property must be set to Custom and the RGB (Red, Green, and Blue) values needs to be 

inserted (Figure 45). 
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Figure 45. The Color property must be set to Custom and the RGB (Red, Green, and Blue) 

values needs to be inserted 

The RGB values are available in a table (Table 6) provided in Autodesk Building 

Performance Analysis (BPA) help manual (Autodesk BPA Help, 2015) based on the 

window type, glass thickness, and visible transmittance (TVis) value of the glass. The 

illuminance simulation results also depend on how much light bounces off the interior 

surfaces of the model. Therefore, the reflectivity of opaque materials of interior surfaces 
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should be defined in Revit as well. For details about the process of defining the glazing 

and opaque materials surfaces, please refer to Autodesk BPA help. 

Table 6. The RGB values provided in Autodesk BPA help (Autodesk BPA Help, 2015) based on 

window type, glass thickness, and visible transmittance (TVis) value of the glass. 

 
 

 

Each glazing type is then assigned with an index (Table 5). The glazing indices 

are used in the optimization process as performance analytical parameters, which are 

discrete variables. In the BPOpt workflow, the corresponding glazing types to the 

indices are selected to be applied to the family instances in the BIM model to create the 

energy and daylighting analytical models for performance simulation. 

5.3.4 Optimization Algorithm Encoding and Process 

The availability of the visual programming environment allows the design space 

to be quickly, interactively, and accurately specified. Figure 46 shows the BPOpt 
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workflow of this case study in Dynamo. This workflow uses Optimo nodes (Initial 

Solution List, Assign Fitness Function Results, Generation Algorithm, and 

Nondominated Sorting) and custom nodes, which are the packages of multiple nodes 

(NSGA Function BPOpt, Loop Completion Check, Energy Analysis Fitness Function, 

and Daylighting Analysis Fitness Function) for the optimization process. Daylighting 

and energy analysis fitness functions are packages of multiple nodes that implement the 

parametric performance analysis through BIM for the optimization process. The Energy 

Analysis Fitness Function node uses the designed PBES tool to interact with Green 

Building Studio (GBS) website for cloud-based whole building energy simulation. The 

Daylighting Analysis Fitness Function node uses the designed PBDS tool to send the 

rendering jobs to the Autodesk Rendering Service for illuminance renderings and parses 

the results inside Dynamo using the developed Python script package to calculate the 

fitness function results. 
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Figure 46. BPOpt workflow graph. The user inputs (population size, number of objectives and 

variable domains) are inserted on the left side of the graph. The InitialPopulationList node 

generates initial population list. The inserted fitness functions evaluate fitness values for the 

initial population list and the results are assigned to the population in the 

AssignFitnessFunctionResults node. The LoopWhile node iterates the NSGA-II Function node 

to generate offspring populations and the best nondominated solutions. 

The Generation Loop runs the generation and sorting processes in a loop till the 

run iteration counter reaches the limit that the designer defines in the Loop Completion 

Check node. The last section of the Dynamo code writes all of the decision variables in 

the whole optimization process and their corresponding performance analysis results to a 

CSV file for further analysis and visualization of the results. It should be noted that the 

BPOpt workflow is not limited to using daylighting and energy simulation fitness 

functions, which are developed for this research. The fitness functions and their related 

decision variables’ ranges and types can be easily modified by users to apply the BPOpt 

framework to other performance optimization problems. For instance, Vermeulen (2015) 



 

116 

 

used the BPOpt framework to optimize building structural performance and Hudson and 

Vannini (2015) used BPOpt to optimize a space design by its acoustic performance. 

Figure 47 shows the detailed description of the NSGA-II algorithm in Optimo 

designed for this case study. As it is shown in this image, the random population list is 

generated first and the fitness function are calculated and assigned for the initial 

population first. Then the results transfer to the generation loop to improve the values in 

each generation. The generation loop ends when the iteration number reaches the limit 

that the user defines. At the end the optimal results are reported. The NSGA-II algorithm 

is implemented with the input of a population size of 75 for each generation. The 

mutation probability is set to 0.01. The crossover probability is set to 0.9 and both the 

mutation distribution index and crossover distribution index are set to 20.0. 



 

117 

 

 

Figure 47. The process of using Optimo in BPOpt workflow for the test case experiment to 

optimize the energy and daylighting performance of the Solar Decathlon Building 

For this experiment the total generation number is set to 15 (not including the 

initial solution set) which results in the total number of 1200 (75 from the initial solution 

set and 1125 from generation process) energy simulation runs. Since LEED Version-4 

Daylight Option-2 requires demonstrating that the illuminance levels for 9 a.m. and 3 

p.m. at the equinox for the regularly occupied floor area, the total number of lighting 

analyses is 2400 simulation runs. The availability of cloud-based energy (GBS) and 

daylighting (Rendering as a Service - RAAS) simulation tools enable the quick 
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evaluation of a large number of design options. However, because Autodesk daylighting 

simulation service is limited to 4 simultaneous runs for education accounts (this is a type 

of account that is available to students and educators for free), the total optimization 

process took more than what was expected. The total simulation time for each generation 

was 3.5 hours and the whole optimization process took about 56 hours for 1200 energy 

simulation runs and 2400 daylighting simulation runs. When more simultaneous runs are 

allowed (e.g. for professional use), the time can be significantly reduced. 

5.3.5 Results 

The optimization results of this case study are reported in Figure 48. This figure 

is created in Microsoft Excel using the optimization results that are automatically 

exported as a CSV file. The fitness functions for the optimization process are defined as 

follows: 

 Energy performance factor: Annual energy cost in Dollar 

 Daylighting performance factor: 100 % subtracting the percentage of the 

area with the illuminance level within 

the LEED Daylighting performance 

factor acceptable range (described in 

detail in the section Objective 

Functions) 
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Figure 48. Scatterplot showing the building performance multi-objective optimization results 

using Optimo (the energy performance factor is the annual energy cost in dollar and the 

daylighting performance factor is 100% subtracting the percentage of the area with the 

illuminance level within the LEED daylighting acceptable range) 

The optimum solution is at the lower left corner of the graph where the annual 

energy consumption is at its minimum and the percentage of the area within the 

acceptable daylighting threshold is at its maximum value (the daylighting performance 

factor is the reciprocal of the area meeting LEED requirements). The results show that 

the performance optimization process is able to improve the building performance and 

find the optimal or near optimal solutions from the design space. As one can see, the 

initial randomly generated solution set is distributed at the upper side of the graph (blue 

diamonds) throughout the graph, while the results of later generations are more and more 

getting clustered towards the lower left corner (the optimum solution).  In this particular 
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sample, every solution in the initial population is dominated by some solutions in the 

final population, i.e. every solution of the final population is better than each solution of 

the initial population in both energy and daylighting performance. This shows that the 

BPOpt workflow was successful in exploring the design space automatically and 

converging toward optimum results during the optimization process. 

Based on LEED Version-4 Daylight Option-2 (described in the section Objective 

Functions), and as Figure 48 shows, very few alternatives of the initial population set 

satisfy the LEED requirement to get 1 point for daylighting, while those which satisfy 

this requirement are not very efficient in energy performance. However, all of the final 

population set alternatives satisfy the minimum LEED requirement and perform more 

efficiently in energy use. Moreover, based on the results in the same figure, none of the 

alternatives could satisfy LEED requirements to get 2 points for daylighting. At this 

point, in case the project needs to get 2 LEED points, the designer can make some 

changes in the model geometry and windows configuration on the model to try the 

optimization again as shown in Step 6 of the BPOpt process in Figure 32. This procedure 

is an informed decision making process, which is important for sustainable high 

performance building design. 

Using the same procedure, as this experiment shows, the proposed framework 

can be used to optimize many other performance-based problems with different variables 

and simulations processes. 

Figure 49 shows the Pareto Optimal set obtained within the process time and 

visualized using the exported CSV results. The figure can help designers understand the 
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relationship between conflicting performance objectives. In this figure, three sample 

alternatives are highlighted and their decision variable values are provided. Alternative-1 

has the highest daylighting performance but is not very energy efficient. Alternative-2 is 

moderate in both energy and daylighting performance and alternative-3 has the best 

energy performance but the worst in daylighting performance among all Pareto Optimal 

alternatives. Looking at the Pareto Optimal set, the designer has an option to choose any 

of the alternatives which satisfies more comprehensive design objectives, including, e.g. 

functions and aesthetics. 

 

Figure 49. Scatterplot showing the Pareto Optimal set with decision variable values for three 

alternatives to illustrate the association between the calculated optimal solutions and the variable 

values. 
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Visualizing the results in an interactive parallel coordinates plot (Figure 50) 

allows the various iterations to be evaluated by the designer. The above chart highlights 

the sample design variation with the best energy efficiency that meets the LEED 

daylighting requirement (1 LEED point). Using the interactive parallel charts the user 

can limit the range of decision variables and find the design that suits the project 

specifications the best. 

 

Figure 50. Interactive parallel coordinates plot for the constraint and analysis of design 

parameters. 

5.3.6 Conclusions, Discussions, and Future Work 

The use of the BPOpt workflow on the present case studies has demonstrated the 

benefit of efficient large design space exploration to find optimal or near-optimal 

solutions. This case study shows how the framework can be used to optimize multiple 

objectives including energy performance and daylighting performance using simulation 

in different disciplines and improve the overall building performance. The optimization 
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results presented as a Pareto Optimal set provides an option for the designer to trade-off 

among multiple alternatives and choose the most appropriate design. The new 

framework can easily accommodate other building performance factors with the same 

mechanism. Through the continued development of similar projects to enable fast BIM-

based simulation and representation of solutions and their trade-offs, designers can better 

understand the dependencies of design options on the decision variables at the early 

design stage even without substantial expertise in energy modeling and daylighting 

analysis. Therefore, the present framework facilitates an informed design decision-

making process. 
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6. CONCLUSION AND FUTURE WORK 

 

Building performance optimization based on performance simulation shows a 

great potential in high performance building design. Incorporating a broader variety of 

simulations from different domains into the design process will lead to a more 

comprehensive exploration of the solution space and provide better decision support for 

the designers. Due to the green building design requirements and the advancement of 

computational methods and tools, there is a clear growth in popularity of building 

performance optimization methods. Thus, in this research, the Building Information 

Modeling (BIM)-based Performance Optimization (BPOpt) framework was developed 

as a response to the lack of an integrated framework utilizing a visual programming user 

interface on the top of a widely-used BIM platform to facilitate sustainable and high 

performance building design. The detailed contributions of this research to the body of 

knowledge, research limitations, and future work are provided in the following sections. 

6. 1. Contribution to the Body of Knowledge 

6.1.1 BPOpt 

In response to the observed gaps in the literature, BPOpt was developed as an 

integrated framework to establish multidisciplinary optimization in the process of 

performance-based design. The proposed framework uses evolutionary multi-objective 

optimization to explore the design space and provides a set of Pareto optimal solutions to 

the designers. Using BPOpt, multiple competing objective functions such as construction 
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and operation costs and environmental performance can be studied and a potential set of 

solutions can be presented. 

The BPOpt framework aims to help designers both with and without extensive 

parametric modeling and computer programming experience to use a novel BIM-based 

visual programming interface to perform a broad variety of simulation-based analyses 

for design optimization. BPOpt integrates the rich information stored in parametric BIM 

with building performance analysis to make design exploration and performance 

optimization more accessible in the process of design. By early adoption of Green 

Building Studio (GBS)-Application Programming Interface (API), BPOpt enables 

parametric BIM-based building energy simulation, which provides quick energy 

performance feedback using the power of cloud-based simulation in the process of 

design. Parametric daylighting simulation is enabled by creating a visual programming 

package that can simulate multiple runs in parallel on the cloud for the optimization 

purpose. The parametric energy and daylighting simulation tools are used as a part of the 

case study in this paper to show the effectiveness of the BPOpt framework. However, it 

should be noted that the functionality of BPOpt framework is not tied to these two 

performance simulation metrics. The fitness functions and decision variables of the 

BPOpt framework can be modified to optimize the performance of the building design 

for other metrics and with other tools available to the designer. For instance, Vermeulen 

(2015) used the BPOpt framework in optimizing structural performance of a building 

and Hudson and Vannini (2015) implemented it in optimizing acoustic performance of a 

space. 
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The use of the BPOpt framework on the presented case studies in Section 5 of 

this dissertation has demonstrated the process of using visual programming and 

parametric BIM-based design space exploration to find optimal solutions. The case 

studies showed how the framework can be used to optimize multiple objectives 

including energy performance and daylighting performance in different disciplines and 

improve the overall building performance. The optimization results presented as a Pareto 

Optimal set provides an option for the designer to trade-off among multiple alternatives 

and choose the most appropriate design. The BPOpt framework can easily accommodate 

other building performance factors with the same mechanism. Through the continued 

development of similar projects to enable fast BIM-based simulation and representation 

of solutions and their trade-offs, designers can better understand the dependencies of 

design options on the decision variables at the early design stage without the need of 

substantial expertise in energy modeling and daylighting analysis. 

6.1.2 Optimo 

Optimo was developed as the first BIM-based visual programming package for 

Multi-Objective Optimization (MOO). It works with BPOpt to enable fast building 

performance optimization in the process of design. It provides the option to optimize 

multiple objective functions with respect to multiple parameters among the rich data 

stored in BIM. 

One of the major benefits of Optimo is that its user interface is a visual 

programming environment, which greatly facilitates sophisticated parametric modeling 

and simulation studies by architects and engineers, who may have a limited computer 
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programming background. Optimo has many applications, for example, it has been used 

in optimizing the form generation process based on acoustic performance in the 

Autodesk University 2014 Dynamo Hackathon winner project (“Dynamo BIM” 2015). 

Moreover, Optimo has been tried on real design projects in industry by Arup®. Some 

universities have started teaching Optimo in their graduate level classes and 

implementing it in their research as well: 

1. Georgia Institute of Technology: Design Space Construction, a graduate level 

course taught by John Haymaker 

2. Stanford University: Multidisciplinary Design and Simulation of Building 

Envelopes, a graduate level course taught by Jordan Brandt and Forest Flager 

3. Stanford University: Parametric Design and Optimization, an undergraduate level 

class taught by Glen Katz. 

4. University of Padua: Algorithmic Modeling, a graduate level class taught by 

Marco Pedron 

 Optimo has been published as an open source package available to the public. 

The package has been downloaded more than 550 times as of May 2015 by users 

and received good feedback. As an example, Vannini and Hudson (2015) used 

Optimo to optimize the form of a space using its acoustic performance and won 

the first place in AEC Hackathon (Acoustamo, 2014).  
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6.1.3 Parametric BIM-based Energy Simulation (PBES) 

The traditional process of building energy performance analysis is ineffective 

and must be improved. Design practitioners typically create and explore very few design 

alternatives before choosing a final design, which leads to underperforming buildings. 

Parametric BIM-based Energy Simulation (PBES) was developed in this research as an 

automated method to evaluate the performance of design using rich data stored in BIM 

and search for optimized solutions. The availability of a cloud-based energy analysis tool 

(GBS) in PBES enables the quick evaluation of hundreds of design variations. 

PBES was developed and the first paper about it was published first in 2013 

(Rahmani Asl et al., 2013). Autodesk redesigned an advanced version of it in 2014 

(“Dynamo BIM,” 2015). The tool was published end of 2014 and has been used by many 

users in their projects. We provided some consulting to the developers of the tool based 

on our experience in this research. 

6.1.4 Parametric BIM-based Daylighting Simulation (PBDS) 

Using the Dynamo daylighting nodes, we have created a flexible daylighting 

simulation package for the calculation of hourly illuminance values to enable automation 

of parametric daylighting analysis. This package calculates the percentage of the area 

with the illuminance level Daylighting performance factor for daylighting within the 

acceptable range set by LEED Version-4 Daylight Option-2. BPDS connection to a 

visual, parametric programming environment allows the design space to be quickly and 

accurately specified. The daylighting simulation package is designed to be easily 
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integrated into performance optimization process as an objective function. The created 

package is published as a Dynamo package and a part of the BPOpt workflow. It has 

been downloaded and used by Dynamo users. 

6. 2. Limitations 

One of the significant challenges of creating the BPOpt framework was the 

interoperability among the various purpose-built software applications, including BIM 

(Revit), energy simulation (Green Building Studio), daylighting simulation (Autodesk 

Rendering Service), and optimization (the new Optimo implementing NSGA-II). The 

project provided two case studies of interoperability that utilized the Application 

Programming Interfaces (Reivt API and GBS-API) in a visual programming 

environment, which contributed to the existing study of interoperability, in which IFC 

and gbXML and their related programming interfaces play an important role, as seen in 

current literature. Some limitations inherent in these tools and platforms were 

experienced during the implementation process. These limitations existed at the time that 

this research was conducted and might be removed in future by developers of these tools 

and platforms. These limitations included but were not limited to: 

1. The use of the BPOpt framework is presented using two successful case studies 

in Section 5 to optimize building energy and daylighting performance. However, 

due to that Autodesk daylighting simulation service is limited to 4 simultaneous 

runs for our education account, the total optimization process took more than 

what was expected. The total simulation time for each generation was 3.5 hours 

and the whole optimization process took about 56 hours. About one hour of the 
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56 hours was spent on the parametric changes, model regeneration to export 

energy and daylighting files, and uploading the models to the cloud engine for 

simulation. The time that spent for energy simulation was about 2 hours and the 

time that spent on daylighting simulation was about 3.5 hours. However, the 

energy and daylighting simulations were performed in parallel, which means the 

overall simulation time was about 3.5 hours. The rest and majority of the 56 

hours was spent on the cloud run queues due to the limitation of the education 

account that was used for this study. When more simultaneous runs are allowed 

(e.g. for professional and subscription use), the total time for optimization can be 

significantly reduced. 

2. In order to use the BPOpt framework and its integrated tools, the user needs to be 

familiar with multiple disciplines and the tools to be able to set the framework 

and optimization routine correctly and take the most benefit out of the results. 

Since BPOpt is using multiple tools and methods such as BIM (Autodesk Revit), 

visual programming (Dynamo), parametric modeling (Autodesk Revit and 

Dynamo), performance analysis tools, and the optimization process, the user 

needs to have a good understanding of the following concepts: 

a. BIM: the user needs to be familiar with BIM and the way that data is 

stored in building information models. For instance, the user needs to 

manage transactions in the optimization process and make sure that all the 

parametric changes are propagated in the model before simulating its 

performance. Moreover, using BPOpt would require the user to be 
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familiar with parametric and constraint modeling in BIM to setup the 

parametric studies. 

b. Visual Programming: the user needs to have a good understanding of the 

way data is transferred in visual programming tools (in this case 

Dynamo). Dynamo is an open-source visual programming application 

that interacts with Revit to extend its parametric capabilities. Since 

Dynamo interacts with Autodesk Revit, all of the BIM related restrictions 

and concepts should be considered in parametric modeling using Dynamo 

for problems that interact with Revit.  

c. Parametric Modeling: the user needs to be familiar with parametric 

modeling concept to be able to define variables and the related 

connections to create alternative models with the necessary changes for 

performance studies.  

d. Parametric Performance Analysis: the user should be familiar with the 

BIM-based performance analysis workflows as well as how to 

parametrically control BIM-based performance simulation. 

e. Optimization Process: the user needs to have a minimum level of 

understanding of optimization process to be able to set the decision 

variables and fitness functions. The more the user knows about the 

optimization process, the better he/she can use the tool and benefit the 

results.  
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The required level of expertise makes the adoption level of BPOpt framework 

limited to BIM experts with a good understanding of parametric building 

performance analysis, however, while it’s challenging for a single user to have 

the expertise in all the above fields of study, a team of users consisting of 

architects and engineers are expected to use the framework well. 

3. The available list of glazing types in Revit is prepopulated and limited. It is not 

an option for the user to modify the list or add to it. Therefore, the specific 

properties of glazing types available to this research were limited by those 

available through Revit. 

4. The construction properties of objects for daylighting and energy performance 

were controlled in two different places inside Revit. Therefore, the user has to 

define the thermal properties and appearance properties for objects separately 

and make sure that they match, which is an error prone and time consuming 

process. 

5. Very few decision variables for energy simulation in GBS are exposed in Revit 

GUI - Energy Settings. Most of the inputs are set as defaults based upon 

ASHRAE Standards by GBS. This limits the parameters that the user may want 

to study in the optimization process to optimize building performance. 

6. Autodesk GBS API was still under development at the time that this research was 

conducted and it did not provide full access to all the results generated on the 

GBS cloud. 
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7. Dynamo was at the very first stage of development and the author had to do a lot 

of programming in Dynamo source-code to be able to make this project happen. 

Most of these limitations were reported to Dynamo developers and they are being 

addressed. 

8. Since Dynamo did not provide timer functionality, the optimization steps could 

not be visualized during the process. This feature would be added to Dynamo in 

recent future. 

6. 3. Future Work 

The BPOpt framework was developed based on open-source applications. It is 

available to the public and can be improved by users or developers. Based on comments 

from the users, as well as our own experience with the developed workflow and tools, 

the following items were identified as potential improvements and would benefit further 

development (some of these features have been added to the system recently): 

1. For parametric analysis, large changes in global building geometry can lead to 

alterations in structural requirements and mechanical systems as well. 

Incorporating a broader variety of simulations in different domains into the 

BPOpt framework will lead to a more comprehensive exploration of the solution 

space and provide better decision support for the stakeholders of building 

construction. 

2. Expanding the optimization algorithms included in Optimo: Currently, Optimo 

includes only one optimization algorithm (NSGA-II) for MOO, but in the coming 

release two other metaheuristic optimization algorithms (Multi-Objective 
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Evolutionary Algorithm Based on Decomposition (MOEA/D) and Speed-

constrained Multi-objective Particle Swarm Optimization (SMPSO)) will be 

added into the tool.  

3. Immediate constraints handling: The current version of Optimo can translate 

constraints to parametric relationships in the optimization process. However, it 

does not support direct constraint handling which will be addressed in the future 

releases as well. 

4. Adding discrete optimization: The current version of Optimo uses lists and 

indices to manage discrete optimization. In future releases, discrete optimization 

handling should be verified and improved.   

5.  Interface update: As it is mentioned by a few users, there is a need for improving 

Optimo interface in and adding new features to Optimo to better serve designers’ 

needs in the process of performance optimization. The latest version of Optimo 

has a new interface, which provides more settings to the user and it is much 

easier to setup. The process of improving interface is an ongoing process and it 

will be improved in the future.  

6. Visualizing the optimization results within the same BIM platform to help 

designers navigate through the results quickly and make design decisions in a 

single design platform that is easy to use. 

7. Exploring more real project test cases (including both residential and commercial 

buildings) to test the usefulness of the BPOpt workflow with larger projects and 

wider ranges of variables within a design studio classes and in the industry. 
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These studies can be used to propose a list of best practices for building 

performance optimization process. 
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