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ABSTRACT

The increase in global environmental concerns as well as advancement of
computational tools and methods have had significant impacts on the way in which
buildings are being designed. Building professionals are increasingly expected to
improve energy performance of their design. To achieve a high level of energy
performance, multidisciplinary simulation-based optimization can be utilized to help
designers in exploring more design alternatives and making informed decisions. Because
of the high complexity in setting up a building model for multi-objective design
optimization, there is a great demand of utilizing and integrating the advanced modeling
and simulation technologies, including BIM, parametric modeling, cloud-based
simulation, and optimization algorithms, as well as a new user interface that facilitates
the setup of building parameters (decision variables) and performance fitness functions
(design objectives) for automatically generating, evaluating, and optimizing multiple
design options.

This study presents an integrated framework for Building Information Modeling
(BIM)-based Performance Optimization (BPOpt). This framework enables designers to
explore design alternatives using a visual programming interface, while assessing the
environmental performance of the design models to search for the most appropriate
design alternatives. BPOpt integrates the rich information stored in parametric BIM with
building performance simulation tools to make performance optimization more

accessible in the process of design. This framework uses evolutionary multi-objective



optimization to explore the design space and provides a set of Pareto Optimal solutions
to the designers. Using this framework, multiple competing objective functions such as
construction and operation costs and environmental performance can be studied and a
potential set of solutions can be presented.

The BPOpt framework is developed by systematic integration of: 1) Parametric
BIM-based Energy Simulation (PBES); 2) Parametric BIM-based Daylighting
Simulation (PBDS); and 3) Optimo — an open-source Multi-Objective Optimization
(MOQOO) in a visual programming interface tool, developed as part of this research, to
provide efficient design space exploration for achieving high-performance buildings.
This dissertation describes the prototype development and validation of PBES, PBDS,
and Optimo, tools for BPOpt. Furthermore, the present document details the
development process of BPOpt and also demonstrates the usefulness of this framework
through multiple case studies. The case studies show the use of BPOpt in optimizing
multidisciplinary conflicting criteria such as minimizing the annual energy cost while

maximizing the appropriate daylighting level for the building models.
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1. INTRODUCTION

1.1. Research Problem

The building sector is the largest consumer of the United States primary energy
and accounted for 40% of carbon dioxide emission in the country in 2010 (US Dept. of
Energy 2012). On the other hand, the building sector has the greatest potential for carbon
reduction with the lowest cost (Sustainable Buildings and Climate Initiative, 2009). As a
result of the rising awareness of environmental issues and due to the considerable impact
of buildings on the environment, the demand for sustainable buildings with efficient
energy use and minimal environmental impact is growing (Azhar et al., 2009).
Consequently, building professionals are increasingly expected to improve the
environmental performance of their design.

However, high-performance building design is a multidisciplinary and complex
process (Wang et al., 2005; Wright et al., 2002) and architects mostly do not have
sufficient expertise and knowledge to deal with it (Bazjanac, 2008; Schlueter and
Thesseling, 2009). The complexity comes from the large number of interrelated
parameters involved in performance-based design such as building geometry, space
layout, construction materials, analytical properties, sites, weather data, user behaviors,
etc. as well as the complex natures of building simulation outputs (Nguyen et al., 2014).
As a result of this complexity and due to the lack of efficient tools to help architects
explore design alternatives and assess their efficiency, performance assessments are
typically performed during the later phases of design. Consequently, design practitioners

1



typically create and explore a very limited set of design alternatives before choosing the
final design, which leads to underperforming buildings (Hensen, 2004).

Applying individual sustainable strategies would help improving the
performance of the building to some extent. However, achieving high level of
performance requires an optimal combination of several strategies (Stevanovié, 2013).
Although improving building performance by applying separate strategies can be simple,
optimizing the design performance can become complicated and time intensive,
requiring multidisciplinary inputs to provide relevant feedback (Wang et al., 2005).

Multidisciplinary optimization for high performance building design is a method
with potentials to: 1) provide desired performance feedback for decision making during
the design process; 2) help designers with creative design space exploration and provides
an expanded set of design alternatives and the assessment of their impacts on the
performance; and 3) support designers in decision making by ranking design alternatives
according to multiple design criteria (Lin and Gerber, 2014a). Although optimization is
undoubtedly a promising method to achieve high performance building design, due to its
inherit complexity, it is not commonly used in the design practice yet and currently its
use is mainly limited to a few academic research studies. Because of the high
complexity in setting up a building model for multi-objective design optimization, there
is a great demand of utilizing and integrating the advanced modeling and simulation
technologies, including Building Information Model (BIM), parametric modeling, cloud-
based simulation, and optimization algorithms, as well as a new user interface that

facilitates the setup of building parameters (decision variables) and performance fitness



functions (design objectives) for automatically generating, evaluating, and optimizing
multiple design options.

A systematic integration of parametric BIM and building performance analysis
can provide a new workflow that will make the building performance optimization more
accessible for innovative energy-efficient building design. BIM delivers relevant
building information required for building energy performance analysis and if used
appropriately can save a significant amount of time and effort in preparing input data for
building performance simulation while reducing errors (Kumar, 2008). Though
parametric BIM-based performance optimization could significantly benefit high
performance building design, there are only a very limited number of research studies on
creating an integrated methodological framework for BIM-based multidisciplinary
performance optimization. Welle (2012) developed ThermalOpt, a multidisciplinary
design optimization (MDO) workflow for automated BIM-based thermal simulation.
ThermalOpt was the first reported research study to mitigate technical barriers to BIM-
based multidisciplinary performance optimization while integrating commercially
available technologies into a workflow. Welle at al. (2011) reported there are seven
modeling requirements for ThermalOpt that the designer needs to follow (most of them
are due to the limitations of the BIM tool, Digital Project) to conduct a successful
optimization. In addition, ThermalOpt uses ModelCenter® (Phoenix Integration, 2013)
as the MDO environment, which requires extensive training to define the trade study
strategy. More recently, Lin (2014) developed an Evolutionary Energy Performance

Feedback for Design (EEPFD) framework that enables complex geometric form



exploration via energy performance feedback in the early design stage using a BIM tool.
The EEPFD uses Microsoft® Excel for storing financial parameters and formulas, and
also a user interface proxy in which designers can set up design parameters. EEPFD is
designed for the parametric conceptual models in Autodesk® Revit mass family and as a
result does not fully utilize the detailed analytical properties of building objects (i.e.
thermal properties) in BIM for performance analysis.

Both of the abovementioned research studies introduce a successful
methodological framework to mitigate the technical barriers of the BIM-based thermal
simulation and design optimization and make them more accessible in the process of
design. In this dissertation, we introduce a BIM-based Performance Optimization
(BPOpt) framework that tries to overcome the limitations of the previous research
studies and provides an integrated, easy-to-setup, and expandable multidisciplinary
performance optimization tool on top of a widely-used BIM platform - Autodesk® Revit.
BPOpt uses a visual programming user interface for users to setup building parameters
and performance fitness functions, utilizing the significant benefits of visual
programming (Myers, 1990), especially in architecture (Boeykens and Neuckermans,
2009).

The BPOpt framework is developed by systematic integration of: 1) a Parametric
BIM-based Energy Simulation (PBES) tool that provides a systematic integration of
BIM, parametric modeling, and building energy simulation; 2) a Parametric BIM-based
Daylighting Simulation (PBDS) tool to integrate parametric BIM and building

daylighting simulation; and 3) an open-source, visual programming-based Multi-



Objective Optimization (MOO) tool for BIM - Optimo - that provides multidisciplinary
design space exploration and the analysis of tradeoffs for design decision. In this
dissertation we demonstrate the functionality of BPOpt, PBES, PBDS, and Optimo in
multiple case studies by optimizing the energy and daylighting performance of
residential buildings design. However, the applicability of BPOpt framework is not
limited to these two performance metrics and can be expanded to include other building

performance metrics as described in Sections 4 and 6.

1.2. Research Overview

1.2.1 Research Objectives

The investigation of the limitations and problems of building performance
optimization in the early design stage has motivated this research. In order to overcome
these limitations, the overall aim of this research is set to propose and develop a
framework to facilitate performance-based design and optimization using rich
information in BIM. This framework should be able to make building performance
optimization more accessible in the process of architectural design. The proposed
research is streamlined on the top of emerging technologies to provide a fast
performance evaluation feedback and improve parametric study of design performance
analysis for multiple design alternatives. In order to pursue this aim, the following three
specific objectives are defined for this research:

1. To study the literature and investigate the existing methods that can help

address the gap between architectural design and building performance



optimization and identify potential means by which this research goal can be
achieved.

2. To identify the requirements that the proposed framework needs to be
adopted by architects for high-performance building design.

3. To develop a prototype of the proposed framework, and through validation
and case studies, evaluate its components’ effectiveness as well as its overall

usefulness in improving the building performance.

1.2.2 Research Methodology

This research proposes developing a new system to optimize building
performance using the information stored in BIM as a response to the identified gap in
the literature. The proposed framework, BPOpt, is created by utilizing the development
of three component tools, PBES, PBDS, and Optimo, through an iterative testing and
evaluation process. Descriptions of the BPOpt framework as well as PBES, PBDS, and

Optimo tools are provided below.

Parametric BIM-based Energy Simulation (PBES)

Current building energy modeling tools, such as EnergyPlus developed by the
US Department of Energy (DOE), do not support comprehensive parametric relations
among building objects. For instance, if a wall is transformed in an energy model, none
of the related objects including windows, shading devices, rooms, roofs, and floors will
be updated automatically. In other words, parametric design intents that are embedded in

parametric BIM are not embedded in the energy models. As a result, a manual update of



the model data is needed before running the simulations, but this process is complex,
tedious, and error-prone.

Although many different approaches to design are becoming possible through the
rapidly developing technology of computers, appropriate tools to explore design
alternatives and assess their performance are not yet available in the early design process
(Rahmani Asl et al., 2013). In order to fulfill the requirements of low energy building
design, there is a need for an innovative design methodology and integrated design
process. The integration of parametric modeling and BIM is the new trend of building
modeling, which can greatly benefit sustainable building design. Parametric modeling
enables the creative exploration of a design space by varying parameters and their
relationships (Azhar and Brown, 2009). BIM delivers relevant building information
required for building energy performance analysis, and if used appropriately, can save a
significant amount of time and effort in preparing input data for building energy
simulation while reducing errors (Kumar, 2008).

In response to the observed need, PBES is developed as a framework that enables
designers to make parametric changes to the BIM model and simulate the energy
performance accordingly. The parametric runs of the energy simulation enable designers
to explore design alternatives and at the same time assess the building energy
performance to search for the most energy efficient design alternative. The design

criteria that are considered in developing PBES are as following:



1. rapid generation of design alternatives;

2. use of relevant building information stored in BIM for preparing the input file

for energy simulation;

3. automatic transfer of parametric changes of the BIM model to the energy

analytical model;

4. rapid evaluation of design alternatives by overcoming scalability barrier

using cloud computing;

5. adaptability to wide spectrum of design scenarios.

The designed framework uses Autodesk® Revit® as the BIM platform and
collects the geometrical information and the thermal properties of construction materials
stored in the model to create the energy analytical model. The parametric relationships
can be defined either through the Revit user interface, which has limited parametric
capabilities at the family level or with the use of Dynamo (“Dynamo BIM,” 2015),
which is an open-source visual programming application that interacts with Revit to
extend its parametric capabilities. The parametric connections help propagate parameter
changes throughout the BIM model during the optimization process.

PBES generates energy model data in Green Building eXtended Markup
Language (gbXML) open schema to transfer to an energy simulation tool using
Autodesk® Revit®s Application Programming Interface (API). An automatic link is
created between Revit and a web-based energy simulation engine - Autodesk® Green
Building Studio® (GBS). The interaction between Revit and GBS has been enabled using

Revit-API and GBS-API.



Parametric BIM-based Daylighting Simulation (PBDS)

Lighting Analysis for Revit is a cloud service that uses Autodesk® Rendering
Service to calculate electric lighting and daylighting results directly from the BIM
models during the process of the design. The daylighting simulation tools are accessible
in Dynamo through a few nodes. Using the Dynamo daylighting nodes, we have created
a flexible daylighting simulation package for calculation of hourly illuminance values to
enable automation of parametric daylighting analysis. This package calculates the
percentage of the area with the daylighting performance factor within the acceptable
range set by LEED Version-4 Daylight Option-2 (“U.S. Green Building Council,” 2013).
Based on LEED Version-4 Daylight Option-2 the building gets 1 point if the illuminance
level of 75% of the regularly occupied area lies between 300 lux and 3,000 lux for 9 a.m.
and 3 p.m., both on a clear-sky day at the equinox and it gets 2 points for more than 90%
within this illuminance range. The daylighting simulation package is designed to be

integrated into the performance optimization process as an objective function.

Multi-Objective Optimization Component (Optimo)

As a part of the BPOpt framework, Optimo, an open-source MOO package, is
developed to parametrically interact with Autodesk Revit for BIM-based optimization (
project URL at Rahmani Asl et al., 2015). It is developed as an application that can be
installed as a package for Dynamo and works based on the Nondominated Sorting
Genetic Algorithm-11 (NSGA-I11) (Deb et al., 2002). Optimo is branched from the

jmetal.NET open source code with the goal of providing C# implementation of


http://jmetalnet.sourceforge.net/

Metaheuristic Algorithms in Java (Durillo and Nebro, 2011). The source code of Optimo
is available to the public and it is published as an open-source package under GNU

Lesser General Public License.

BIM-based Performance Optimization (BPOpt)

To address the need to an integrated, easy-to-setup, and expandable
multidisciplinary performance optimization tool on top of a widely-used BIM platform ,
BPOpt framework is developed. The proposed framework uses parametric BIM and
building performance simulation tools along with evolutionary multi-objective
optimization to explore the design space and provides a set of optimal solutions to the
designers. Using BPOpt, multiple competing objective functions such as construction
and operation costs and environmental performance can be studied and a potential set of
solutions can be presented.

The process of implementing BPOpt to optimize building performance and
obtain feedback for design decisions can be described in six major steps:

1. Preparing the BIM model by implementing the necessary analytical

properties of building objects for performance analysis.

2. Defining parametric relationships among building objects.

3. Defining decision variables and their domains for the optimization process.

4. Defining fitness functions for the optimization process.

5. Performing optimization by feeding variables and fitness functions into the

optimization package.
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6. Making decisions - the main design task that can only be addressed by the

designers themselves.

The BPOpt framework is designed as an iterative loop to enable designers to
make design decisions and test their impact on the performance of the model. In the last
step of the framework, the designer evaluates the results and there are two ways to
proceed: 1) a design alternative is selected from the optimal solution set provided by this
framework and the design proceeds or; 2) based on the provided results the designer
makes changes in the optimization settings and parametric relationships and repeats the

same process till the desired design is achieved.

1.3. Research Significance

This research provides an integrated framework that enables designers to search a
larger design space more efficiently and provides them with an optimal set of solutions
towards higher performance of buildings. The proposed framework impacts the process
of building design by:

e enabling designers to investigate important criteria and helping them make

informed design decisions;

e discovering issues during the building design with a large number design
alternatives very quickly, which redefines the responsibilities of design team
members and helps them perform their tasks in a shorter amount of time;

e changing design process towards more accurate computation and

optimization-based methods.
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1.4. Overview of Dissertation

This dissertation includes 6 sections that are described below:

e Section 1- Introduction: This section describes the research problem and
provides an overview of the research. It explains the research objectives and
contains a brief overview on the proposed framework (BPOpt) and its
component tools (BPES and Optimo). The introduction section includes the
significance of the research as well as the dissertation outline.

e Section 2- Background: This section provides current literature about
parametric building performance analysis, BIM-based high performance
building design, and building performance optimization. The gap in the body
of knowledge is summarized at the end of this section.

e Section 3- Research Methodology: This section provides detailed description
of the methods used to conduct this research, and elaborates the process of
the development of the research components and their validation design.

e Section 4- Prototype Development and Validation: This section provides the
details on the development process of PBES, PBDS, and Optimo tools. The
validation studies of these component tools are elaborated in this section.

e Section 5- Experiment of the BPOpt Framework: This section describes the
BPOpt framework and provides the initial validation of this framework
through two experiments. These experiments demonstrate the successful use
of BPOpt in minimizing the energy use while maximizing the appropriate

daylighting level of two different building models.
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Section 6- Conclusion and Future Work: This section includes the
contribution of the research to the body of knowledge and research
limitations as well as future work. Also, strengths, limitations, current
adoption by academia and industry, and future improvements of BPOpt for

high-performance building design are discussed.
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2. BACKGROUND"

Based on the report developed by the United States Department of Energy (DOE)
(2012), the building sector is the largest consumer of the United States primary energy
(41%) and accounts for 40% of carbon dioxide emission in the country in 2010.
Meanwhile, the building sector has the greatest potential for carbon reduction with the
lowest cost (Ochsendorf, 2012). As a result of the rising awareness of environmental
issues and due to the considerable impact of buildings on the environment, the demand
for high performance buildings with minimal environmental impact is increasing.

Most of the initial work on building performance simulation algorithms was
developed a few decades ago. Nevertheless, building performance simulation tools
became widely available to designers over the past few years with the advancement of
computational tools and methods. The U.S. DOE (2015) has been publishing the
“Building Energy Software Tools Directory” that provides information for over four
hundred software tools for evaluating energy efficiency, renewable energy, and
sustainability in buildings. Crawley et al. (2008) provided a report comparing the
features and capabilities of twenty major building energy simulation tools. Maile et al.,
(2007) provided a detailed description of 5 energy simulation tools and discussed their
strengths and weaknesses as well as data exchange capabilities. These resources have

provided detailed information about the widely used building energy simulation tools.

“Part of this section is reprinted with permission from “Towards BIM-based Parametric Building Energy
Performance Optimization” by Rahmani Asl, M., Zarrinmehr, S., Yan, W., 2013, Proceedings of the 33rd
Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Page
Range 101-108, Copyright 2013 by “ACADIA 2013 International Conference, Riverside Architectural
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The concurrent growth of the global environmental concerns and the availability
of building performance simulation tools have had a significant impact on the way in
which buildings are designed (Malkawi, 2004). Designers are increasingly expected to
consider energy performance of their design by exploring design alternatives that are
more promising to save energy. However, the traditional process of building
performance analysis in the design process is ineffective and must be improved.
Simulation of few number of design options rarely reaches optimal solutions and this
leads to underperforming buildings (Paoletti et al., 2011). Exploring design alternatives
parametrically and optimizing the performance at the early design stage are still a
challenge for design professionals (Lin and Gerber, 2014b). As a result, parametric
energy studies are rarely used due to the lack of appropriate tools. In order to be most
effective, a holistic and integrated approach to building design is necessary for
optimizing building performance (Welle et al., 2011). In recent years, an increasing
amount of literature on optimizing building performance has been published (De Boeck
et al., 2013) but BIM-based building performance optimization has only a few research
studies (Flager et al., 2012; Lin and Gerber, 2014a; Welle et al., 2011).

Many research studies focused on improving performance-based design process
consistency and mitigating technical barriers to the building performance optimization
process. In this section | review literature for (1) parametric performance-based design,
(2) recent studies on Building Information Modeling (BIM)-based building performance

analysis, and (3) the use of optimization methods in high performance building design.
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2.1. Parametric Building Performance Analysis

Parametric modeling and simulations are becoming fundamental parts of building
design. Parametric modeling enables generative form-making based on aesthetic and
performance metrics of buildings through the use of parametric rules between objects
and allows objects to automatically update based on the change in the context (Aish and
Woodbury, 2005). Performance-based design requires designers to explore potential
design alternatives parametrically and choose the best alternative for the project
(Mourshed et al., 2003; Welle et al., 2011).

Parametric studies show a significant potential contribution to improve building
environmental performance (Naboni et al., 2013; Pratt and Bosworth, 2011). While most
of the current parametric modeling-based designs are focused on the aesthetic form
generation, significant potential lies in the field of performance-based design (Caplan,
2011; Kensek, 2011). Designers can integrate parametric modeling into the process of
performance analysis in different fields of building design, including, but not limited to,
energy simulation (Paoletti et al., 2011; Pratt and Bosworth, 2011), structural analysis
(Shea et al., 2005), and acoustic simulation (Wu and Clayton, 2013). Benefiting from the
new technologies, current parametric design tools provide design iteration and
visualization.

Nonetheless, in practice, designers rarely use parametric building performance
analyses due to the difficulty in preparing the energy models as well as the long
simulation run time. In the literature, there are a few common approaches to address this

issue and achieve results in a timely manner, which are described in detail in the
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Building Energy Performance Optimization section of this section. Moreover, parametric
building performance analysis only results in limited improvement of building
performance due to the complex impacts of the input variables on building performance.
In order to achieve an optimal building energy performance, simulation-based

optimization methods are needed (Nguyen et al., 2014).

211 Visual Programming for Parametric Building Performance Analysis

Computer programming is often needed for designers to implement their
sophisticated design intent in parametric modeling (e.g. through the use of for-loop and
conditional statements). For instance, in existing BIM tools, certain design and
engineering knowledge can be directly embedded into geometry components of BIM
through tabular forms. However, for the large number of parameters across various
disciplines, the complexity increases and tracking the interrelationships of objects and
parameters gets very difficult. Consequently, designers have no way other than writing
scripts to create the design that they have in mind. Usually, however, architects do not
have computer programing or scripting expertise.

Visual programming interfaces can replace the elaborate code scripts with a
visual metaphor of connecting small blocks of independent functionalities into a whole
system or procedure (Boeykens and Neuckermans, 2009). Visual programming lets users
create computer programs by manipulating program elements graphically rather than
textually. Based on a survey of 50 visual programming languages (Myers, 1990), it is
clear that a more visual style of programming would be easier to understand for non-
programmers or novice programmers (architects normally fit into these categories).
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Examples of visual programming tools for architectural design are Bentley® Generative
Components, Grasshopper® for McNeel Rhinoceros®, and Dynamo for Autodesk®
Revit®.

As it has been noted, high-performance building design is a highly complex
process and thus can significantly benefit from visual programming interfaces. Visual
programming can help manage the complexity of high-performance building design by
making the programming process less dependent on strict syntax but more easily
adaptable. However, the use of visual programming tools in building energy simulation
and performance-based design is still new. A few tools have been created to make the
parametric performance-based building design more accessible using a visual
programming interface. Most of these tools are created on top of Rhinoceros® (Rhino), a
3D NURBS modeling program, because of its tightly integrated visual programming
editor, Grasshopper®, which is designed for parametric modeling. There are a few
studies trying to use these tools to enable designers to explore various design options and
access energy performance analysis results quickly. These studies try to create
workflows to integrate Rhino/Grasshopper with building performance analysis tools. For
instance, Lagios et al. (2010) created a workflow within Rhino/Grasshopper to export
scenes (geometry, material properties, and sensor grids) to Radiance/ DAY SIM to
calculate a series of daylighting performance indicators. Jakubiec and Reinhart (2011)
described a design workflow for integrating daylighting analysis using
Radiance/DAY SIM and thermal analysis using EnergyPlus within their plugin called

DIVA. Roudsari and Pak (2013) developed a free and open source plugin that connects

18



Grasshopper to EnergyPlus, Radiance, DAY SIM and OpenStudio for building energy
and daylighting analysis. They also created Ladybug to import EnergyPlus weather files
(.EPW) for better understanding the weather data and visualizing the building
performance analysis results (Roudsari et al, 2013). Some studies added existing
optimization tools to the process of parametric building energy simulation to help
designers in finding an optimal set of solutions for a specific project. For instance, Shi
and Yang (2013) created a performance driven workflow by integrating Ecotect with
Rhino/Grasshopper to obtain an optimal roof shape using a single objective optimization
algorithm. Aly and Nassar (2013) used DIV A along with Galapagos, an Evolutionary
Algorithm plugin in Grasshopper, to optimize urban daylight performance. Bechthold et
al. (2011) used DIVA to integrate environmental design and robotic fabrication for
shading systems. Although these studies created parametric architectural design
workflows with performance optimization available in Rhino/Grasshopper, they do not

have access to actual building assemblies and properties available in BIM.

2.2. BIM-based Performance-based Design

BIM is the process of generating and managing digital representations of the
building’s physical and functional characteristics to facilitate the exchange of
information (Eastman et al., 2011). It is a model-based process that provides methods
and tools for creating and managing building projects faster and more economically,
with the potential to reduce buildings’ environmental impact. BIM represents the

building as an integrated database of coordinated information that can be used for the
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analysis of the multiple performance criteria including architectural, structural, energy,
acoustical, lighting, etc. (Ahn et al., 2014; Fischer, 2006).

BIM-based high performance building design is increasingly being used in the
architectural design disciplines and allows practitioners to efficiently generate and
modify building models (Welle et al., 2011). The integration of BIM with energy
analysis tools has the potential to greatly facilitate the often cumbersome and difficult
energy simulation process (Azhar et al., 2009). To simulate building performance in the
early design stage, architects need to access the information of the building such as
geometry, materials, construction, and technical systems, which are available in the BIM
models (Schlueter and Thesseling, 2009).

The existing studies that consider BIM as the central data model for building
energy performance analysis are mainly focused on automatic preparation of the
building energy models for various energy simulation tools such as DOE-2 (Maile et al.,
2007), EnergyPlus (Bazjanac, 2008; Cormier et al., 2011; Maile et al., 2007), TRNSYS
(Cormier et al., 2011), Ecotect and Green Building Studio (Azhar et al., 2011, 2009), and
Modelica-based tools (Kim et al., 2015; Yan et al., 2013). The common approach among
most of these studies is to translate the BIM models to energy input files for solving
interoperability issues using Industry Foundation Classes (IFC) or to create an automatic

link between BIM authoring tools and building energy simulation engines.
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221 BIM-based Parametric Building Energy Simulation

The process of parametric building energy analysis can be much more effective if
integrated with BIM and automated parametric changes. As a matter of fact, BIM’s
information can quickly and accurately facilitate and support parametric energy
simulation analysis. The existing studies that consider BIM as the central data model to
automate the parametric energy analysis process can be classified into two main
categories:

1. Towards parametric design optimization — This category of research is
scoped to explore solutions that optimize the building performance by
utilizing a methodology that is composed of parametric modeling and
optimization algorithms (e.g. Gerber et al., 2012). This group of research uses
CAD software tools or only BIM mass models rather than the non-graphical
information embedded inside BIM. In other words, these studies focus on
form generation and do not benefit from the full capabilities of BIM.

2. Towards BIM-based parametric energy optimization - This group of studies
provides automated BIM-based parametric modeling to optimize the building
energy performance. For instance, Welle et al. (2011) created a thermal
optimization methodology (ThermalOpt) to enable designers to pre-process,
configure, execute, and analyze the energy performance of their design
during the early stage of the project by automating the whole process.
ThermalOpt is faster, more accurate, and more consistent than conventional

methods, which enables a larger number of design alternatives to be explored.
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2.2.2

The main issue is that those studies using third party optimization tools to
integrate the process have very complex procedures. For instance, in
ThermalOpt the whole process of integration is controlled by ModelCenter®
(Phoenix Integration, 2013) which is difficult to set up, lacks visual
parametric modeling capabilities, and needs an extensive level of expertise
and training, therefore is beyond the access of most architects. Rahmani Asl
et al. (2013) developed Revit2GBSOpt, a plug-in for a BIM platform
(Autodesk Revit®), which integrates parametric BIM and building energy
performance simulation and thus becomes one of the foundations for the

present study.

Interoperability Issues of BIM-based Performance-based Design

In the process of performance-based design the designer needs to interact with

various design tools and simulation engines to predict different performance aspects of

the design which makes the interoperability among different software tools a necessity.

A large and growing body of literature has reported that the seamless integration

between these software programs is typically lacking (Attia et al., 2012a; Lin and

Gerber, 2014b). Augenbroe (2002) reported that two major movements started in parallel

with similar goals in mind to address this issue:

1.

A collective effort by industry and governmental and research organizations
to establish data exchange standards for the building industry, such as IFC
(Bazjanac and Crawley, 1999) or Green Building eXtended Markup
Language (gbXML) (gbXML, 2014).
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2. Researchers and industry attempt to address the existing interoperability
issues across different software platforms by scripting interfaces between the
design and performance analysis domains (Attia et al., 2012b; Lin and
Gerber, 2014a; Welle et al., 2011).

The first effort tries to remove inefficiencies in data sharing by representing the
relevant data to a generic common data. The standard data model contains the required
information by all other software tools. The latter is aiming to functionally create a
connection among two or more design and performance simulation software to reach to

specific goals.

2. 3. Building Performance Optimization

Optimization studies are recently being used in building design after long being
computationally intractable on multi-scale systems in various topics, particularly
building environmental performance. As a result, simulation-based optimization has
been changed to an efficient process to satisfy several requirements of energy efficient
buildings (Nguyen et al., 2014). During the recent past years, computational
optimization methods applied to building performance analysis have become very
popular and have been applied to a wide range of problems such as building form,
envelope design, configuration and control of Heating, Ventilating, and Air Conditioning
(HVAC), and renewable energy generation (Evins, 2013; Malkawi, 2005). There are a
few comprehensive reviews published on research studies applying computational
optimization to building performance analysis. Evins (2013) published an inclusive
review of 74 significant research studies applying computational optimization to
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different fields of sustainable building design and speculated about future trends and
challenges. Stevanovi¢ (2013) gave a thorough review of the research studies of
simulation-based optimization of passive solar design strategies. Outlining potential
challenges, Nguyen et al. (2014) provided an overview on the advances and obstacles in
building energy performance optimization. Machairas et al. (2014) reviewed
performance-based design optimization methods and tools and studied their abilities and
performance issues, as well as the reasoning behind their selection. Moreover, they
identified the key characteristics of the future versions of design optimization methods.

In the process of design optimization there are many physical processes that lead
to multiple conflicting objectives. For many multi-objective optimization problems, it is
not always possible to find one optimal design solution that satisfies all design
objectives. In traditional optimization techniques a composite objective function is
defined by combining all of the individual objective functions. The composite objective
function can be determined with various methods, like using weighting factors.
Determining the composite objective function needs knowledge of the relationships
among individual objectives and their weighting factors (Konak et al., 2006).
Nevertheless, in building design these relationships are unknown in many cases.
Moreover, due to the difficulty of including factors such as aesthetics in the optimization
process, it is likely that any optimum result will be found to be unacceptable (Coley and
Schukat, 2002).

Another approach is to use the concept of Pareto optimality, which is a set of

promising solutions, known as the Pareto Optimal set (Fonseca and Fleming, 1993),
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given multiple objectives. Pareto Optimality supports decision making by finding the
equally optimal solutions such that it is not possible to improve a single individual
objective without causing at least one other individual objective to become worse off
(Hoes et al., 2011). Selecting the best solution from the Pareto set is not a trivial problem
as it depends on a number of aspects (Nguyen et al., 2014). A posteriori set of
preferences may be used to evaluate the optimal solutions and find the unique solution

by the designers (Gossard et al., 2013).

231 Computationally Expensive Simulation-based Optimizations

Simulation-based optimization for energy efficient building design can be very
time intensive and complicated since each design alternative evaluation requires input
from multiple disciplines as well as expensive simulation runs. In the literature, there are
4 common approaches to address this issue:

1. Use of surrogate models to approximate computationally expensive
simulation processes. The basic approach is to create a simplified
mathematical approximation of the computationally expensive simulation and
use it in place of the original simulation to facilitate parametric modeling
with multiple runs and multidisciplinary optimization (Ong et al., 2003;
Wetter and Polak, 2004). Since the approximation model works as a
surrogate for the original simulation process, it is often referred to as a
surrogate model (Simpson et al., 2004).

2. Use of computational algorithms to reduce the number of simulation runs.
There are various approaches to reduce the number of runs. For instance
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Coley and Schukat (2002) used a method to avoid duplicate fitness evaluation
of annual energy use calculation by keeping a list of all unique designs in
memory and checking new designs against this list.

Use of computational algorithms for model decomposition and recomposition
to reduce the size of runs (Welle et al., 2012). Decomposition has long been
recognized as a powerful tool for analysis of large and complex simulations.
Decomposition increases reliability and speed of simulation process, by
reducing complexity of the problem and enabling parallel and distributed
computation (Kusiak and Wang, 1993; Welle et al., 2012).

Use of increased computational power through multi-threading,
parallelization, and high performance computers. Using computer clusters for
process parallelization, dividing calculation across multiple processors or
multiple computers in a cluster, is a new approach for parametric building
energy simulation (Garg et al., 2010; Pratt and Bosworth, 2011; Zhang and
Korolija, 2010). However, due to the inherently high costs, dedicated high
performance computing resources are not available in every design company.
Cloud computing is an emerging technology of computing, in which services
to users are provided over the Web by managing a large number of
virtualized resources to resemble a single large scalable resource. This
approach dramatically improves productivity and cost effectiveness of
software solutions for large-scale computational problems (lorio and

Snowdon, 2011). Cloud computing enables access to a large amount of
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computing power that provides the ability to evaluate hundreds or thousands
of different design alternatives and their overall effects on the project
performance simultaneously. This would provide an opportunity for
simulation-based decision-making and for further confirmation of a design
choice made by a subject matter expert. Distributed databases have been
commonly used in cloud-based Web applications for some time. However,
the use of cloud infrastructures is still a novel approach (lorio and Snowdon,
2011; Naboni et al., 2013).

Based on the provided literature in this section it can be understood that high
performance building design can highly benefit from the integration of BIM-based
building performance analysis, parametric building energy simulation, and building
performance optimization. However, most of the precedent studies consider only one or
the integration of two of these domains for improving building performance. Moreover,
the proposed systems in the literature usually require extensive experience in tools that
architects are not usually familiar with. In particular, the use of building information
stored in BIM for building performance optimization in the process of design has not
been fully addressed, and therefore remains inaccessible.

In order to address this gap in the body of knowledge and move toward high
performance building design, this research proposes a BIM-based multidisciplinary
performance optimization workflow that uses parametric BIM coupled with multi-
objective optimization. This workflow can serve as a potential workflow for designers to

efficiently explore design space and improve their design performance. The proposed
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workflow enables designers to work in the design platform and search the optimal set of
high performance building design alternatives in a timely manner. In the next sections

the process of research, design, development, and validation of the proposed workflow is

provided in detail.
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3. METHODOLOGY

3.1. Design Science Research Methodology

The research methodology that was used in conducting this research can be
described by the Design Science Research Methodology (DSRM) process proposed by
Peffers et al. (2007). Design in this domain is defined as the act of creating an explicit
and applicable solution to a problem. The DSRM was proposed to incorporate
principles, practices, and procedures required to carry out applied research including
system development research. The research methodology for system development was
initially proposed by Nunamaker and Chen (1990) and modified in DSRM to deliver a
commonly accepted framework. In the proposed system development research
methodology, the integration of system development is advocated into the research
process, by proposing a multi-methodological approach that would include theory
building, systems development, experimentation, and observations (Nunamaker and
Chen, 1990; Peffers et al., 2007). The research methodology of this dissertation was

formed from this methodological approach and is illustrated in Figure 1.
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DSRM Research Methodology for System Development

5 » Define specific research problem
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Literature review is conducted for the following purposes of understanding/learning

» the existing gaps in the field of high perfoermance building design

» the impact of buildings on the environment and the missing workflows and tools
necessary to improve building efficiency

»  the system building processiprocedures

» relevant disciplines for new approaches and ideas

The objectives for the BPOpt system are defined based on problem definition and
the knowledge of what is feasible as follows:
»  the ability to provide a solution space with an improved performance, across
the multiple competing objective functions
the ability to be adaptable to a wide spectrum of design scenarios
* be easy to be implemented by architects

The BPOpt system desired functionalities are defined as follows

the ability to provide rapid generation of design alternatives and rapid evaluation
the ability to provide trade-off analysis for competing criteria

»  the ability to sort design alternatives and highlight most appropriate design

The architecture of BPOpt system includes:

»  Parametric BIM-based Energy Simulation (PBES) tool
»  Multi-objective Optimization tool (Optimo)
»  Parametric BIM-based Daylighting Simulation (PBDS) tool

There are 3 case studies developed to demonstrate the usefulness of the proposed
system

» PBESistested in a case study and presented at ACADIA 2013

»  The integration of PBES and Optimo is tested and presented at eCAADe 2014

»  The integration of PBES, PBDS, and Optimo is tested and presented as a journal
paper

The components of the BPOpt system are validated in separate studies and the
usefulness of BPOpt is validated via a case study:

+ PBES - validated via a case study to improve building performance using
parametric design

+  Optimo - validated using standard test cases for multi-objective optimization
algorithms

+ PBDS - validated via 2 case studies to optimize building performance
+ BPOpt- validated via 2 case studies to optimize building performance

The problem is communicated with the community in the following methods
Published 5 journal and conference papers based on the results of this study

+  The applications developed in this study are published as open-source tools and
are being used in the community

+  The developed applications are being taught in a few universities

Figure 1. DSRM research methodology is adopted in this research

The BPOpt framework was developed as a system based on the DSRM research

methodology in an iterative process with six steps (Peffers et al., 2007):

1. Identifying Problem: The specific research problem is defined at this step and

the importance and value of the solution is justified as well. Justifying the

value of a solution motivates the researcher and the audience.
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Resources required: knowledge of the state of the problem and the
importance of its solution.

Defining Objectives: At this step the objectives of the research and the
criteria of the ideal system that would be able to address the identified
problems and gaps are defined.

Resources required: knowledge of the problems and current solutions.
Design and Development: The system is designed based on the defined
objectives from step 2. Then, a prototype is developed to test the general
usefulness and accuracy of the designed system. The system prototype can be
used for testing and validation in the next steps.

Resources required: knowledge of theory that can be implemented in a
solution.

Demonstration: At this stage, the developed system prototype is used to solve
a few samples of the problem to demonstrate the usefulness of the designed
system.

Resources required: knowledge of how to use the developed system to solve
the problem.

Evaluation: At this step the researcher observes and measures how well the
proposed system and the developed prototype solve the problems identified
in the first step.

Resources required: 1) knowledge of relevant metrics and analysis

techniques; and 2) the study domain.
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6. Communication: At this step, the researcher communicates the problem and
its importance and the proposed solution to other researchers, the community,
and other relevant audience.

Resources required: knowledge of the disciplinary culture.

Since multiple methods and activities are followed simultaneously during the
research process, the order of these steps and their related activities are not an indication
of the chronological order of the process for this research. Figure 2 illustrates the overall
DSRM research methodology for system development steps and the chronological order

of the steps taken for this research.
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Figure 2. The overall DSRM research methodology and process adopted in this work and their
chronological order (Steps 1-6 are in the white boxes and their accompanying research methods
are in grey boxes)
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The in-depth description of each step that was taken for this research is

introduced as follows:

3.11 Literature Review

A comprehensive study regarding the existing building performance optimization
approaches was conducted in the early phase of this research by reviewing the literature.
The literature review helped us understand the existing issues and gaps in this field and
the potential solutions and methods that could be used in the system design and
prototype development process in the next steps. As Figure 2 shows, the literature
review started at the beginning of the project and was updated continuously throughout
the whole project. A review of literature on the subject of this research provides the
knowledge of the problems and current solutions during the whole project period.

In this research we reviewed the literature for building energy performance
simulation tools very briefly by introducing resources that provided detailed information
about the widely used building energy simulation tools. We provided the detailed
literature review for:

a) Parametric performance-based design.

b) Recent studies on Building Information Modeling (BIM)-based building

performance analysis.

c) The use of optimization methods in high performance building design.

These three topics are directly related to the BPOpt framework designed and

were developed in this research.
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3.1.2 System Design

In the system design stage, the objectives of the BPOpt workflow were defined
based on gathered knowledge in the literature review. The objectives were defined to
address the identified problem considering the available methods. The BPOpt objectives
were defined as follows:

a) the ability to provide a solution space with an improved performance across

the multiple competing objective functions using stored information in BIM,;

b) the ability to be adapted to a wide spectrum of design scenarios;

c) easily implemented by architects in the design platform.

The BPOpt framework was designed to address these objectives in this step as
well. The framework design was improved many times in the prototype development
and demonstration phases based on the feedback that we received. The BPOpt system’s
desired functionalities are defined as following:

a) the ability to provide rapid generation of design alternatives and rapid

evaluation;

b) the ability to provide trade-off analysis for competing criteria;

c) the ability to sort design alternatives and highlight the most appropriate

design.

The theoretical foundation of BPOpt is built upon the integration of BIM,
parametric modeling, visual programming, building performance analysis, and MOO
through platform integration and automation on one hand, and the interaction between

designers and the integrated system on the other hand. The process of implementing
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BPOpt to optimize building performance and obtain feedback for design decisions can
be described in terms of the six major steps illustrated in Figure 3. The detailed

descriptions of these steps are provided in Section 5 of this dissertation.

‘ BPOpt Framework ‘ ‘ Information Added ‘ ‘ Tools and Applications ‘
Project Information, Building Geometry, Construction ,
—|
‘ d ‘ Prepare BIM Model H and Material Properties, Energy Analytical Properties Az
P tricRelati hips A Object d
‘ 2 ‘ Define Parametric Relations H arame_rlc lationships Among Objectsan H Autodesk Revitand Dynamo ‘
Properties
. . Variables, Variable Types, Variables Range (Continues .
‘ b ‘ DefineVariable Ranges H Variables), Lists of Alternatives Discrete Variables) By ad e
. . . . . . . Dynama, Optimo, ParametricEnergy and Daylighting
‘ 4 ‘ Define Fitness Functions H Single or Multiple Fitness Functions )—‘ simulation, Other Performance Analysis Tools
5 Evaluate Results Generated Population Lists, Optimal Solution Set Dynama, Optimo, ParametricEnergy and Daylighting
(Pareto Optimal) Simulation, Other Performance Analysis Tools
3 Make Decisions Design Decisions, New Design Ideas, New Setof e —
Problems

Figure 3. The process of implementing BPOpt to optimize building performance and the tools
and applications that are used in the process

3.1.3 Prototype Development

In order to explore the applicability of BPOpt framework in the design process, 3
prototype tools were developed and utilized as part of this study:
a) Parametric BIM-based Energy Simulation (PBES);
b) Parametric BIM-based Daylighting simulation (PBDS);
c) Optimo - a Multi-objective Optimization (MOO) in visual programming
interface.
The BPOpt framework was developed by systematic integration of these tools to

provide efficient design space exploration and achieve high-performance buildings. As
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demonstrated in Figure 2, the developed prototypes were improved based on the

feedback from the demonstration and evaluation steps.

3.14 Case-based Experiments

There were 2 case studies developed to demonstrate the usefulness of the
proposed system in solving instances of problems:
a) The BPOpt framework with the integration of PBES and Optimo was tested
in a case study and presented at eCAADe 2014 (Rahmani Asl et al., 2014).
b) The of BPOpt framework with the integration PBES, PBDS, and Optimo was

tested and presented as a journal paper (Rahmani Asl et al. 2015a).

There were some test experiments that are done at Stanford University and
Georgia Institute of Technology in two graduate level classes as well. In the Stanford
University project, the student used Optimo with two internal spreadsheet-based tools
for energy and structural performance optimization. At Georgia Institute of Technology,
students used Optimo with PBES and some other internal tools to optimize building

performance design.

3.15 Evaluation Process

The components of the BPOpt system were validated in separate studies:

a) PBES was validated via a case study to improve building performance using
parametric design at ACADIA 2013 (Rahmani Asl et al., 2013).

b) Optimo was validated using standard test cases for multi-objective
optimization algorithms (Rahmani Asl et al, 2015b).
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c) PBDS was validated in the same two case experiments designed for BPOpt
framework mentioned above in the process of optimizing building
performance.

The detailed explanations of validation studies and case studies are provided in

Sections 4 and 5.

3.1.6 Communication with the Community

The developed framework and the results of this research were communicated

with the community in the following ways:

a) Published 5 journal and conference papers (Rahmani Asl et al. 2013,
Rahmani Asl et al. 2014, Rahmani Asl et al. 2015a, Rahmani Asl et al.
2015b, Rahmani Asl et al. 2015c¢) based on the results of this study.

b) The applications developed in this study were published as open-source tools
and are being used in the community.

c) The developed applications are being taught in a few universities.

d) The published application is used in the building industry in companies such

as Arup and Autodesk internal projects for structural performance analysis.
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4. PROTOTYPE DEVELOPMENT AND VALIDATION

In order to explore the applicability of Building Information Modeling (BIM)-
based Performance Optimization (BPOpt) framework in the design process, 3 prototype
tools were developed and utilized as part of this study. Figure 4 shows the overview of
BPOpt and the optimization and performance simulation tools that were developed and

used in this research.

, — |

Building Information Modeling (BIM) .” ‘}
) i BIM-based Performance Optimization i
i | : (BPOpt) :
~ L !
Building Performance Simulation B !
N
Energy Simulation
Optimo (Multi-objective
Daylighting Simulation Optimization Tool)
Structural Analysis
. /
L Visual Programming Interface (Dynamo) )

Figure 4. The overview of the BPOpt framework

" Part of this section is reprinted with permission from “Towards BIM-based Parametric Building Energy
Performance Optimization” by Rahmani Asl, M., Zarrinmehr, S., Yan, W., 2013, Proceedings of the 33rd
Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Page
Range 101-108, Copyright 2013 by “ACADIA 2013 International Conference, Riverside Architectural
Press, Cambridge, Canada”.
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The BPOpt framework was developed by systematic integration of: 1) Parametric
BIM-based Energy Simulation (PBES); 2) Parametric BIM-based Daylighting
Simulation (PBDS); and 3) Optimo - a Multi-Objective Optimization (MOO) in a visual
programming interface tools to provide efficient design space exploration for achieving
high-performance buildings. This framework is developed on the top of a widely used
BIM tool, Autodesk Revit®, and its visual programming tool, Dynamo (2015), to
integrate the rich information stored in parametric BIM with building performance
simulation tools and make performance optimization more accessible in the process of
design. Dynamo is an open-source visual programming application that interacts with
Revit to extend its parametric capabilities to the Revit project level. It also provides an
environment to create customized packages using scripting and sharing it with other
users. BPOpt, containing Optimo, energy simulation, and daylighting simulation
packages, is created by utilizing Revit Application Programming Interface (API) and
Dynamo. BPOpt is compatible to user defined building performance simulation
packages (energy and daylighting simulation packages for the case study of this research
paper). Other simulation packages can be easily added into the BPOpt framework, e.g. a
structural analysis package is created and used following the BPOpt framework by an
industry user to optimize structural performance of the building (Vermeulen, 2015). The
following sub-sections describe the details of Optimo, energy analysis, and daylighting
analysis. This section describes the prototype development and validation of PBES,
Optimo, and PBDS tools for BPOpt. The detailed description about the BPOpt

framework is provided in Section 5 of this dissertation.
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4.1. Parametric BIM-based Energy Simulation (PBES)

The traditional process of building energy performance analysis is ineffective
and must be improved. Design practitioners typically create and explore very few design
alternatives before choosing a final design, which leads to underperforming buildings.
Parameterizing design and developing automated methods to evaluate the performance
of design open an opportunity to search for optimized solutions. In response to the
observed need for a parametric energy simulation and also the necessity of having access
to this tool, PBES was developed as an automatic routine that enables designers to make
parametric changes to the BIM models and simulate the energy performance
accordingly. Simulating the parametric energy runs enables designers to explore design
alternatives and at the same time assess the building energy performance to search for
the energy efficient building design.

PBES was developed both as a plugin for Autodesk® Revit® (Revit) and as a
package of nodes for Dynamo (2015), an open-source visual programming application
that interacts with Revit to extend its parametric capabilities. BPES, integrated with
Revit and Autodesk® Green Building Studio® (GBS), enables architects to
parametrically study the energy performance in the early phase of design. GBS is a web-
based energy simulation service with DOE2.2 as the background engine. GBS was
evaluated and met the criteria under ANSI/ASHRAE Standard 140, the standard method
of test for the evaluation of building energy analysis computer programs, certified by the
U.S. Department of Energy as a qualified computer software program for federal tax

incentive requirements.
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The necessary development process of PBES can be broken down into the eight

steps as illustrated in Figure 5 and described below:

A 4

PBES System Design

Y

' ™
Connecting GBS and Revit for

Parametric Energy Simulation

L Using Revit-APl and GBS-API )

I
I Improving the Efficiency Creating Visual Enabling Parametric |
_>| by Simulation Programming Package Change of Thermal |
[ Parallelization for Dynamo Properties |
| |
e l ______________ a

' ™

Finalizing the PBES Design

h 4

Evaluation and Process
Demonstration
\ J

Figure 5. The development process of parametric BIM-based Energy Simulation (PBES)

e PBES System Design: The high level characteristics and the architecture of
this application were determined in this step. It was decided to have this
application as a Revit plugin at the beginning and as a package of nodes in
Dynamo later in the process.

e Connecting GBS and Revit for Parametric Energy Simulation: The existing
connection between Revit and GBS in Revit user interface does not support

full parametric energy performance studies. For example, the parametric
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changes of building geometry are important for architectural design, but not
possible with the existing Revit to GBS interface. In this step the connection
between Revit and GBS for parametric energy simulation was created. Also,
the automatic access to the simulation results from GBS was enabled. In
order to integrate parametric BIM models in Revit and GBS, an application
plugin was developed using Autodesk Revit’s Application Programming
Interface (API) and the GBS-API.

Improving the Efficiency by Simulation Parallelization: The process of
creating simulation runs in PBES was updated at this step to maximize the
benefit of parallel simulation on the cloud. The updated version of parametric
energy simulation was designed to overcome the barrier of the simulation
being time consuming and explore the building performance using parallel
simulation on the GBS cloud. This was enabled by modifying the simulation
job creation process and submitting a batch of runs to the GBS web before
querying the simulation results. The simulation results were queried using
GBS runs’ Globally Unique [Dentifiers (GUIDs) after all of the alternative
runs were submitted. This approach improved the performance of the PBES
about 50 times faster in this study based on available computing resource in
the cloud. This improvement could benefit the integration of this system with
optimization process as well.

Creating the PBES Visual Programming Package for Dynamo: PBES was

originally developed as a plugin for Revit. When the feasibility of the process
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was tested as a Revit plugin, to increase its capabilities and to make it more
accessible for designers, a package of nodes was created for Dynamo
(version 0.6.3).The updated version enables users to create parametric
relationships in Dynamo’s visual programming interface and assess the
energy performance using PBES package.

Enabling Parametric Change of Thermal Properties: After testing the
usefulness of BPES using geometry related parameters, the capabilities were
enhanced to address parametric changes of construction thermal properties of
building objects. Using this option, the user can create various types of
building objects with different thermal performances and add them into a list
for parametric study. During the parametric performance analysis process, the
appropriate object type would be selected for energy simulation. Hence, the
PBES workflow was able to parametrically change both form and thermal
properties of objects in the BIM model and assess the energy performance of
the building model accordingly.

Improving the PBES Design: The overall design and performance of the
PBES dynamo package was reviewed in an iterative process to make any
necessary changes to the tool and make it compatible with the BPOpt
workflow.

Evaluation and Process Demonstration: The overall usefulness of the PBES

was tested using a case study on a residential house building. Detailed
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information is provided in the section Evaluation and Process Demonstration
Using a Case Study.

The PBES uses the project information, the geometry data, and the thermal
properties of construction materials stored in the BIM model to create an energy
analytical model. This workflow generates energy model data in the Green Building
eXtended Markup Language (gbXML) open schema from BIM using Revit-API. An
automatic link is created between Revit and GBS using Revit-APl, GBS-API, and the

Representational State Transfer (REST) protocol (Figure 6).
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Revit-API
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Kr b gbXML Revit-AP Green Building
Energy Analytical Model in GBS-API Studio
gbXML Format
/// o
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Figure 6. Parametric BIM-based Energy Simulation (PBES) Overview

PBES is able to automatically propagate the changes based on the user defined
parameters and generate new models inside Revit. It creates gbXML files with changes
uploads these files for parametric energy analysis runs to the GBS cloud through the
web. It retrieves the energy simulation results and finds the optimum solution for the
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project. The generated gbXML files include all of the energy analysis related
information and display it in the BIM model. Some of the required information for
energy simulation in GBS such as project location, building type, and building operating
schedule are exposed in the Revit interface as Energy Settings. These properties can also
be modified through Revit API for parametric analysis. Additional inputs that are
necessary for the energy analysis are set as defaults based upon ASHRAE Standards by
GBS. The description of the defaults is provided in the Autodesk GBS help manual
(Building Performance Analysis Help, 2015). The details of the input assumption can be

viewed in the GBS project as well.

4.1.1 PBES Evaluation and Process Demonstration Using a Case Study

In order to evaluate the performance of PBES a case study has been developed to
demonstrate the capability of creating BIM-based parametric runs and accessing the
building performance analysis results inside Revit in a tightly coupled feedback loop.
This case shows how the tool enables design professionals and architecture students to
parametrically study the building performance during the early stages of design.

In this case study, a sample model of Autodesk Revit 2013 was used (Figure 7).
The geographic location of the home is in the city of Indianapolis, Indiana, USA. The
climate is dominated by heating loads with 5892 Heating Degree Days on a yearly basis.
Due to site constraints, the long-axis orientation of the structure is fixed at 15 degrees

west of true north.

45



Figure 7. Case study building site and floor plans

The energy and daylighting performance of this building were considered as
metrics to parametrically improve the combined performance of the model. The goal of
this parametric study was set to find the optimized window size which resulted in
minimizing the building energy consumption and at the same time achieving the LEED
IEQ Credit 8.1 Option2 daylight credit (“U.S. Green Building Council,” 2009). LEED
IEQ Credit 8.1 Option2 requires the project achieve a minimum glazing factor of 2% in
a minimum of 75% of all regularly occupied areas of the building.

BIM-based simulation requires some forethought, as to specific modeling
requirements to adhere to, in order to successfully transfer the BIM data for the
downstream analysis (Bazjanac and Kiviniemi, 2007). Any failure in doing the required
process may result in an interoperability issue which requires the designer to go back to
the BIM tool, troubleshoot, and redo the process to solve the issue. Therefore, designers
must follow some specific rules in preparing the BIM model to be able to use PBES

appropriately.
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As the first step of building energy simulation for this case study, the building is
divided into 9 thermal zones based on their functionalities and conditions. In order to
define thermal zones in the energy analytical model “Room” objects must be added to
the Revit file and the volume computation for “Room & Area” needs to be set to
calculate room volumes. The user can change the wall properties to be either room
bounding or not room bounding in order to achieve desired zones. Room separator lines
can also be used to separate zones. Figure 8 shows zones and analytical surfaces created

for this step.

Figure 8. Building zoning (Left) and building analytical surfaces-gbXML (Right)

In order to create design alternatives, a parametric window family was created
with “Width” and “Height” instance parameters. PBES takes a range of values for each
of these two parameters based on user input and creates various alternative designs. The
window height range was set between 1ft to 6ft and the window width ranged from1ft to
oft. In this case, by changing these two parameters of the window, 54 design options

were created (Figure 9).
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Figure 9. The BIM model of the case study with different window sizes that can be
parametrically changed by PBES

PBES created the gbXML files for all of the design alternatives. A new project
was created in GBS with the project information gathered from the BIM model such as
building location, building type, etc. For each alternative design option, a base run was
created on GBS and its gbXML file was uploaded through the web. PBES retrieved the
results of building energy analysis from GBS website and Revit. The results, including
window areas and building energy simulation output for the parametric runs, are
exported to a comma-separated values (CSV) file.

Using the building energy costs and LEED daylight results (automatically
created in GBS and gathered from GBS website for each base run), the optimum size of
the window is calculated (Figure 10) with a simple algorithm. In this case, with the

increase in the windows’ area the building energy cost increased. Therefore, the design
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option with minimum window size that gets the LEED credit was the desired solution.
PBES automatically updates the BIM model with the optimum window size. Using
PBES, the user can access the energy analysis results directly inside a single user
interface (Revit) to explore the other available options. Also, the impact of any small

change on the building performance profile during the design phase can be explored.
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Figure 10. Parametric optimization of windows sizes to get LEED credit and minimized energy
use
The current study shows that higher efficiency in energy consumption could be
achieved using parametric BIM-based energy analysis. This case study also shows that
highly complex tasks, which architects have to perform in order to evaluate the
sustainability of their designs, can also be significantly simplified. Though simple, the
case study demonstrated the great potential of making complex parametric simulation

seamlessly integrated with architectural modeling.
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In the design process designers are occasionally equipped with evolutional
processes that are complex and convoluted. Energy performance analysis is an example
of this kind. To design a building, however, we need to make design suggestions beyond
evaluating potential alternatives. When utilizing optimization algorithms the evaluation
processes will transform to suggestion processes. Evidently, the new parametric BIM
technology (PBES) coupled with multi-objective optimization (MOO) algorithms
(Optimo) can tackle the boundaries of sustainable design and design in the general sense

which are detailed in the following sections of this dissertation.

4.2. Parametric BIM-based Daylighting Analysis

Lighting Analysis for Revit is a cloud service that uses Autodesk Rendering
Service to expose electric lighting and daylighting results directly on the BIM models.
The daylighting simulation tools are accessible in Dynamo as a built-in functionality
through a few nodes.

Using the Dynamo daylighting nodes and Python scripting, we have created a
flexible daylighting simulation package for calculation of hourly illuminance values to
enable automation of parametric daylighting analysis. This package uses the Perez sky
model and calculates the percentage of the area with the illuminance level within the
acceptable range set by LEED Version-4 Daylight Option-2 (“U.S. Green Building
Council,” 2013) Based on LEED Version-4 Daylight Option-2 the building gets 1 point
if the illuminance level of 75% of the regularly occupied area lies between 300 lux and
3,000 lux for 9 a.m. and 3 p.m., both on a clear-sky day at the equinox and it gets 2
points for more than 90% area within this illuminance range. The daylighting simulation
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package is designed to be integrated into the performance optimization process as an
objective function which aims to maximize the occupied area of the building (or a part of
the building) within the illuminance range between 300 lux and 3,000 lux. In other
words, LEED daylighting requirements are used as a reference for creating one of the
objective functions in the present study (the other being minimizing the annual energy
cost described in the previous section.). Figure 11 shows the Daylighting package

workflow in Dynamo.
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The package requires a user input for the building floor levels that the designer
intends to include in daylighting simulation. The created daylighting package
automatically finds the floors and the rooms assigned to the defined levels using Revit
API via Python scripting in Dynamo (Figure 12). The floor is used to define the desk
level and sensors needed for daylighting simulation and the room properties are used to
check if the room is regularly occupied. The package tracks whether the rooms are
regularly occupied by reading the room properties from the Revit project. Other
necessary project information for glazing and opaque construction materials are
automatically collected from the BIM model as well. Then the daylighting simulation

jobs are created and uploaded to the cloud.
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Figure 12. The created daylighting package automatically finds the floors and the rooms
assigned to the defined levels using Revit API via Python scripting in Dynamo
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The developed package creates multiple daylighting analysis and sends them for
simulation to the cloud in order that they are created in the package. After all of the
daylighting analysis are submitted to the Autodesk cloud simulation engine, the package
starts collecting the results back from the cloud. This process can overcome the
scalability barrier and reduce the simulation time using parallel simulation (However,
the current Autodesk rendering and daylighting analysis server limits the number of
parallel runs to 4 simultaneous runs for the education rendering accounts which limits
the simulation time saving). When all of the simulations are done, the daylighting results
are collected from the server. The simulation results include a list of illuminance values
for sensor points and the sensors’ positions in the 3D environment. The developed
Python script parses the results and calculates the percentage of regularly occupied area
with the illuminance level within the LEED-acceptable range. This parametric
daylighting analysis is integrated with parametric energy simulation and Optimo to

conduct building performance optimization.

4.3. Optimo

In conventional building design, once the simulation model is created, the
designer changes design variables to improve the building performance. Though
applying various individual changes to the design variables may help improve the
building performance to some extent, achieving high performance building design
requires the application of the optimal variable combinations (Stevanovié, 2013). The
demand of multidisciplinary optimization in the process of design is growing and the use
of optimization has the potential to provide desired real-time or fast performance
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feedback for decision-making during the design process. However, there is a lack of
easy-to-use tools that integrate both advanced building design models, i.e. BIM, and
efficient multidisciplinary optimization for helping designers explore design alternatives
across multiple competing design criteria.

In response to the observed need, Optimo - a BIM-based multi-objective
optimization tool - was developed to enable rapid building performance optimization in
the process of design. Optimo is an open-source application for parametrically
interacting with BIM models for design optimization. Optimo provides the option to
optimize multiple objective functions with respect to multiple parameters and works
based on the Nondominated Sorting Genetic Algorithm-11 (NSGA-I1) (Deb et al., 2002).
The design parameters can be continuous variables (defined with lower and upper
bounds), discrete variables (defined as a list of variables), or both. One of the major
features of Optimo is that its user interface is a visual programming environment, which
greatly facilitates sophisticated parametric modeling and simulation studies by architects
and engineers, who may have a limited computer programming background.

This section details the development process of Optimo and also provides the
initial validation of the results through a comparison experiment with original test cases

found in Deb et al. (2002) when introducing the NSGA-I1I algorithm.

4.3.1 Creating a Working Prototype

As a part of the BPOpt workflow, Optimo, an open-source MOO package, was
developed to parametrically interact with Autodesk Revit for BIM-based optimization
(Rahmani Asl et al., 2015). Optimo was developed as an application that can be installed
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as a package for Dynamo and works based on NSGA-II. It uses jmetal. NET open source
code whose goal is to provide C# implementation of the Metaheuristic Algorithms in
Java (Durillo and Nebro, 2011).

As demonstrated in Figure 13 and described below, Optimo structure can be

divided into 5 main parts:
Initial Population Generation and

User Inputs
(Population Size, Number
of Objectives, Variables'
Range List)
List Sorting Loop

User Inputs
(Fitness Functions List)

Figure 13. Optimo Structure

Exporting
Optimization Results

e User Inputs (Population Size, Number of Objectives, and Variables’ Range
List): This part gathers the user input on specifications of the optimization
algorithm and decision variables’ ranges. The population size (N) should be
an even number that is equal or larger than 2 (N > 2). Overall, there is no
limitation on how large the population size can be. We have internally run a
test with the population size of N = 5000 without any problem. The number
of objectives (NO) defines the number of fitness functions that are included

in the optimization process. This number should be equal to the number of
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fitness functions. Optimo accepts the lower limits and upper limits for
variable ranges as a list, which gives the user an option to be able to
manipulate the number of variables and their domains.

User Inputs (Fitness Functions List): Optimo can be used during the design
process for optimizing the objective functions that may be evaluated as
external functions containing performance simulation results as function
arguments. Therefore, the user can insert the fitness functions as external
functions (using custom nodes in Dynamo) without having to make any
changes to the optimization source code. Otherwise it would require a lot of
experience and programming expertise to change the source code. The
number of fitness functions (NF) should be equal to the NO (i.e. NO = NF).
Initial Population List: The initial random population list and the fitness
values are generated at this part of the Optimo structure. Optimo uses
variable ranges to generate random decision variables in the ranges,
calculates the fitness functions for the design options using these variables,
and assigns the fitness values to the population list.

Generation and Sorting Loop: This is the main optimization loop in Optimo,
which iterates till its counter reaches the completion check that is defined by
the user. The loop gets the user inputs as well as the initial solution list and
generates the crossover population. Then it sorts the combined population

(parent population and crossover population) using the nondominated sorting
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algorithm and selects a list of the best nondominated solutions with the size
of N.

e Exporting Optimization Results: The population of all iterations and the
final Pareto optimal set can be exported in a Comma Separated Values (CSV)
format for further analysis. The Pareto Optimal Set includes equally optimal
solutions such that for each of the solutions in the set it is not possible to
improve a single objective without also causing at least one other objective to
become worse off than before the change.

Figure 14 shows an overview of Optimo in Dynamo version 0.7.5. The
population size (N) is set to be 500 in this case. The number of the objectives (NO) is set
to be 3 and there are two decision parameters varying in the domains of [-10, 10] and [-
20, 20], respectively. The upper limits and lower limits for the decision variables are
listed separately using the List.Create node as required by Optimo. There are 3 fitness
functions defined for this case which are gathered in a list using the List.Create node. In
the InitialSolutionList node a random parent population of size N is created which
includes the values of the decision variables. The fitness function results are calculated
by applying the fitness functions to the initial population using the Function.Apply node.
The fitness function result values are assigned to the initial population list in the
AssignFitnessFuncResults node by matching and joining the initial solution list of
decision variables and the fitness function results.

In the GenerationAlgorithm node the initial population list is sorted based on the

assigned fitness values using the nondominated sorting method. Then the usual binary
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tournament selection, crossover, and mutation operators are used to create an offspring
population list. The fitness values of the offspring population list are calculated and
assigned in the same way as the initial population list. Then a combined population list
with the size of 2N is generated with the current offspring population list and the
previously found best nondominated solutions to ensure elitism. The combined
population is sorted via the NondominatedSorting node inside the NSGA-11 Function
custom node. The top N solutions that belong to the best nondominated set are selected
for the next iteration. The Generation Loop continues until the iteration counter is
smaller than the number that is set by the designer. The Pareto Optimal Set will be
created as an output of the optimization loop and the complete set of the initial solution
list and the generated population lists during the optimization process are exported as a

CSV file. The user can access the exported data for more detailed downstream processes.
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4.3.2 Optimo Validation Study

The Jmetal Metaheuristic Algorithms in Java are validated in a detailed study by
Durillo and Nebro (2011). However the jmetal.NET , which is used as the background
simulation engine of Optimo, is not validated yet. jMetal.NET is developed by the
JMetal team with the goal of providing .NET implementation of jMetal. During the
process of developing Optimo, the source code of jmetal. NET has been modified in
many places especially in the way that objective functions are implemented. The change
in implementing objective functions enables Optimo to accept external fitness functions,
which greatly ease the model setup process by designers. In order to validate Optimo’s
accuracy, the results are compared with the original test cases found in Deb et al. (2002)
when they introduced the NSGA-I1I algorithm. In this section, we first describe 4 test
problems used for comparison and then the Optimo results are compared with original

NSGA-II algorithm study to show the accuracy of the calculation.

Test Problems for Validation Study

In applied mathematics, test problems are being used to validate optimization
algorithms and evaluate their characteristics. In multi-objective optimization using
evolutionary algorithms, researchers have used many different test problems with known
Pareto Optimal sets to study the performance of optimization algorithms (Veldhuizen,
1999). The test problems in this research were chosen based on the original study of the
NSGA-II algorithm to make the performance comparison possible. The list of the 4 test

problems used for comparison and their specifications are provided in Table 1.
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The table includes the problem names, the number of variables (n), the variable
bounds, the objective functions, the Pareto Optimal solutions, and the nature of the
Pareto Optimal front (the set of choices that are Pareto efficient) for each problem. As it
can be seen from the table, all of the test problems have two objective functions and
none of them have any constraints. The detailed descriptions of the test problems are
described below.

Schaffer Function Number 1 (SCH)

Although simple, the SCH (Schaffer, 1985) problem — with a single variable and
two objectives that need to be minimized — is the most used test problem in multi-
objective optimization. The definition of the SCH problem and the specifications of its
Pareto Optimal set are provided in Table 1. SCH test function is a simple mathematical
problem, which is easy to implement for optimization algorithms. Also, tracking the
performance of the Multi-Objective Evolutionary Algorithms (MOEA) via the SCH test
function is easily possible due to its known Pareto Optimal front. Figure 15 shows the
decision variable and objective space for the SCH test case (left) as well as its Pareto
Optimal Front and non-optimal solutions (right). As shown in this figure, both objectives
of this problem are to be minimized. The SCH problem has Pareto Optimal set of
x € [0,2]. Both fitness functions take values between 0 and 4 on the Pareto Optimal

front. The Pareto Optimal set can be calculated as the following:
filx) =x* - x = +yf1(x)

@) =@=27 > f,00= (VARG -2)

63



A
N
P N
7 &N
i\ —
R -2 Il
™ )
&
<
11
1 2 3
24
20 4
(o]
& 16
o
i3]
| o
T 12 A
a
@
£
i 8
Pareto-optimal Front
4 (
0 , : : : : :
0 4 8 12 16 20 24

Fitness Function-1
Figure 15. Decision variable and objective functions for SCH test case problem (top). Pareto

Optimal front and non-optimal solutions (bottom)
Figure 16 shows the SCH problem created in Dynamo using the Optimo package.
The part with the grey background is the main dynamo graph and the part with yellow
background shows the inside of custom nodes for fitness function-1 (f; (x) = x?2) and

fitness function-2 (f,(x) = (x — 2)?). As it can be seen, creating the fitness functions for
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this problem is very simple using Optimo. For the other test cases in this study, the
decision variables inputs and the fitness functions are the only parts that need to be

updated.

| | Fitness Function 2 |

- | Code Block
| w(lst[e]-2,2 double !
|

Figure 16. The SCH optimization problem and its fitness functions created in Dynamo using
Optimo
Figure 17 demonstrates the generated results for SCH problem using Optimo
obtained after 250 generations with a population size of 100. The population size and the
number of generations are derived from the original NSGA-II study to make the results

consistent for comparison study.
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Figure 17. The generated results for the SCH problem using Optimo obtained after 250
generations with population size of 100
Fonseca and Fleming Function (FON)
Fonseca and Fleming (1995) created a two-objective optimization problem with

n variables. The Pareto Optimal solution of this problem falls within the range of
xX; € [— \/iﬁx/iﬁ] fori =1,2,3,...,n and when all of the x;'s are equal. In this study the

number of variables is selected to be 3 based on original study of NSGA-I11 algorithm.

Therefore, the Pareto Optimal solution of this problem falls within the range of x; €

[— \%\%] and when x; = x, = x5. Figure 18 demonstrates the Pareto Optimal front and
the objective space for FON problem for n = 3. As it can be seen, the Pareto Optimal set

is a continuous and nonconvex set.
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Figure 18. Pareto Optimal front and objective space for FON problem for n =3

Figure 19 shows the FON problem graph created using Optimo package. In this
figure, the part with grey background is the main dynamo graph and the part with yellow
background shows the inside of custom nodes for fitness function-1 and fitness function-
2 (see the functions’ definitions in Table 1). As it can be seen there are three variables
for this problem that are varying from - 4 to 4. The fitness functions are appropriately
changed to address this problem. This process is very simple and straight-forward which

can be considered as a proof that Optimo is a user-friendly tool.
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Figure 19. The FON optimization problem and its fitness functions created in Dynamo using
Optimo package
Figure 20 demonstrates the generated results using Optimo for the FON problem
for n = 3, obtained after 250 generations with a population size of 100. As it can be seen
from this figure, the results follow the same pattern shown in Figure 18. The accuracy of
the results and how well the results are spread out on the Pareto Optimal front are

discussed in the next section.
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Figure 20. The generated results using Optimo for the FON problem obtained after 250
generations with a population size of 100
Poloni Function (POL)

Poloni and his colleagues (2000) created a two-objective problem with two
decision variables. This test problem has been used by many researchers afterwards. The
objective functions and other specifications of this problem are provided in Table 1. This
problem has a nonconvex and disconnected Pareto Optimal set as shown in Figure 21.
Having disconnected Pareto Optimal set causes difficulty to many multi-objective
optimization algorithms. Therefore the POL function is considered a good test function
to control the accuracy of generated optimization algorithms. It should also be noted that

the most part of region A (Figure 21) of the Pareto Optimal front are constituted by the
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boundary solutions of the search space. Therefore, if the lower bound is relaxed, the
Pareto Optimal front in region A gets wider and will be constituted with the new

boundary limits.

N
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Figure 21. Pareto Optimal front for POL problem. The Pareto Optimal set of this problem is
nonconvex and disconnected (regions A and B)

Figure 22 shows the POL problem created in Dynamo using the Optimo package.
The part with the grey background in this figure is the main dynamo graph and the part
with yellow background shows the inside of custom nodes for fitness function-1 and

fitness function-2 of the POL problem (see the functions in Table 1). As it can be seen

there are two variables for this problem that are varying from - rr to 7. The fitness
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functions are appropriately updated and inserted in the fitness function list for this

problem.

Figure 22. The POL optimization problem and its fitness functions created in Dynamo using
Optimo.

Figure 23 demonstrates the generated results for the POL problem using Optimo
obtained after 250 generations with a population size of 100. The Pareto Optimal set is

exported as a CSV file and is visualized using Microsoft Excel.
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Figure 23. The generated results for POL problem using Optimo obtained after 250 generations
with a population size of 100

Figure 24 demonstrates the convergence of the results at the Pareto Optimal front
after a few generations using Optimo (selected generations are shown in this figure to

make the convergence of the results toward Pareto Optimal front clearer).
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Figure 24. Convergence of the results at Pareto Optimal front after a few generations using
Optimo (selected generations are shown in this figure to make the convergence of the results
toward Pareto Optimal front clearer).

Kursawe Function (KUR)

Kursawe (1991) created a fairly complex two-objective optimization problem.
The definitions of the objective functions and the specifications of this problem are
provided in Table 1. The Pareto Optimal set of this problem is nonconvex and
disconnected (Figure 25). As it can be seen in this figure, there are 4 disconnected Pareto
Optimal regions. The solution A is a Pareto Optimal solution with x; = x, = x3 = 0.

For detailed information on the Pareto Optimal characteristics of regions B, C, and D

refer to (Deb et al, 2001).
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Figure 25. Pareto Optimal front for KUR problem. The Pareto Optimal front of this problem is
nonconvex and disconnected (Solution A and regions B, C, and D) (the image is recreated based
on an image in Deb et al. (2001) book)

Figure 26 shows the KUR problem created in Dynamo using Optimo. The part
with grey background is the main dynamo graph and the part with yellow background

shows the inside of custom nodes for fitness function-1 and fitness function-2 (see the

functions in Table 1). As it can be seen there are three variables for this problem that are

varying from -5 to 5. The fitness functions are appropriately changed to address this

problem and are shown in the image below.

74



Fitness Function 1

|
i
Math. SGrt(Math. Pow(1St[@],2) sMath.Pou(15t[1],2))); | > bmgx Mz dotie | |

Sart(Math.Pou(lst[1],2)+Math. Pou(lst[2],2))); > ¥

Figure 26. The POL optimization problem and its fitness functions created in Dynamo using

Optimo package

Figure 27 demonstrates the generated results for KUR problem using Optimo

obtained after 250 generations with a population size of 100.
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Figure 27 .The generated results for KUR problem using Optimo obtained after 250 generations

with a population size of 100
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Performance Measures

In Single-Objective Evolutionary Algorithms (SOEA) the performance metric is
directly related to the objective functions. However, in MOO the performance metrics
need to assess a set of solutions. In this set, each solution has its own set of objective
values. As a result, having one performance metric directly related to the objective
function, similar to SOEA, would not be efficient for MOEA. By understanding the two
main functional goals of MOEA, Deb et al. (2002) introduced two metrics for MOO: 1)
for measuring the convergence of solutions to the Pareto Optimal front (convergence
metric); and 2) for measuring the diversity of solutions (diversity metric). The first
metric measures the extent of the convergence to a known set of Pareto Optimal
solutions. Calculating this metric is possible because the multi-objective algorithms
tested on problems in the validation study have a known set of Pareto Optimal solutions.
The second metric measures the extent of spread achieved among the obtained solutions
and how they span through the entire Pareto Optimal region.

In order to calculate the convergence and diversity metrics, first the Pareto
Optimal sets are generated after 25,000 function evaluations for each of the 4 test
problem functions. These were obtained by 250 generations with the population size of
100. Figure 17, Figure 20, Figure 23, and Figure 27 demonstrate the generated results for
SCH, FON, POL, and KUR problem respectively using Optimo.

Then a set of 500 uniformly spaced solutions from the true Pareto Optimal front
are created for each test problem. For each solution obtained from chosen solutions with

the NSGA-I11 algorithm in Optimo, the minimum Euclidean distance of the solution to
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the true Pareto Optimal front is computed. The convergence metric (Y) is defined as the
average of these distances. The smaller the average and convergence metric, the better
the convergence toward the Pareto Optimal front.

Figure 28 demonstrates the process of calculation of convergence metric. The
shaded region is the feasible search region of a hypothetical problem and the solid
curved lines specify the true Pareto Optimal solutions. Solutions with open circles are
chosen solutions on the Pareto Optimal front (500 uniformly spaced solutions generated
in the previous step) for the calculation of the convergence metric, and solutions marked
with dark circles are the solutions obtained by NSGA-I1 algorithm using Optimo. When
all obtained solutions lie exactly on chosen solutions, this metric takes a value of zero.
For all of the simulations performed in this study, we present the average and variance of
this metric calculated for solution sets obtained in multiple runs similar to the original
NSGA-II study.

It should be noted that this metric has a drawback. Even if all the solutions
created by the optimization algorithm converge to the Pareto Optimal solution, the value
of this metric may not merge toward zero. The reason is that even if all of the solutions
in the final solution list lie on the Pareto Optimal front, the shortest Euclidian distance to
the 500 uniformly spaced solutions generated in the previous step may not be zero.The
convergence metric yields zero only when all of the obtained solution lie exactly on the

top of the chosen solutions.
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Figure 28.The process of calculation of convergence metric (the image is recreated based on an
image in Deb et al. (2002) paper)

For measuring the extent of spread achieved among the solutions (diversity of the
solutions), the diversity metric (A) is defined to measure the spread in solutions obtained
by the NSGA-I11 algorithm using Optimo directly. To calculate the diversity metric, we
calculate the average of Euclidian distance among consecutive solutions in the
nondominated set of solutions from the last iteration results (Figure 29). Then, the
extreme solutions in the objective space are calculated by fitting a curve parallel to that
of the true Pareto Optimal front. Thereafter, the following equation (Deb et al. 2002) is

used to calculate the diversity metric:
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o Gt At B d - d]
de + dj+ (N —1)d

dy: Euclidean distances between the first solution and the first boundary solution (Figure 29)
d;: Euclidean distances between the last solution and the last boundary solution (Figure 29)
d: The average of all distances d;, for i = 1,2, ...(N — 1)

assuming that there are N solutions on the nondominated front

As it can be understood from this equation, for the most widely and uniformly
spread-out set of solutions for MOO, the numerator of this equation would be zero,
which makes the metric to take a value of zero. For any other distribution, the value of
the metric would be greater than zero. For those distributions with identical values of d
and d;, the value for A would be higher when the distributions of solutions within the

extreme solutions get worse.
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Figure 29 .The process of calculation of diversity metric (the image is recreated based on an
image in Deb et al. (2002) paper)

Discussion of the Results

In this section the results of the diversity and convergence metrics for NSGA-II
algorithm using Optimo are provided. The results from the validation study (the four test
problems’ results) are compared with the original test cases provided by Deb et al.
(2002). Table 2 shows the mean and variance of the convergence metric (Y') and

diversity metric (A) obtained using NSGA-II algorithm via Optimo for 20 times for each
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test cases. The original NSGA-I1 algorithm study results are provided side by side to the

produced results in this study in Table 2.

Table 2. The mean and variance of the convergence metric (Y') and diversity metric (A) obtained
using NSGA-I11 algorithm via Optimo

SCH FON POL KUR
Original Original Original Original
Optimo Optimo Optimo Optimo
NSGA-II NSGA-II NSGA-II NSGA-II
Y | 0.003077 0.003391 0.002722 0.001931 0.014388 0.015553 0.012039 0.028964
Average
A | 0.464494 0.477899 0.440970 0.378065 0.478530 0.452150 0.404698 0.411477
Y|o 0 0 0 0.000002 0.000001 0.000001 0.000018
Variance
A | 0.001404 0.003471 0.000142 0.000639 0.001166 0.002868 0.000794 0.000992

The results in Table 2, shows a better convergence to the Pareto Optimal front
could be achieved by NSGA-II algorithm implemented in Optimo for SCH, POL, and
KUR test problems. For these test problems, the average and variance of the
convergence results for the NSGA-I1 implementation in Optimo are less than the same
measures in the original NSGA-I11 study provided in Deb et al. (2002). The original
NSGA-II study had a better convergence towards Pareto Optimal front in FON test
problem. For illustration, we show one of the runs of the NSGA-II original study with an
arbitrary run of NSGA-I11 generated by Optimo for SCH and FON test problem in Figure

30 and Figure 31 respectively.
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Figure 30. One of the runs of NSGA-II original study with an arbitrary run of Optimo on the
SCH test problem (image for NSGA-I1I original study is from Deb et al. (2002) paper)
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Figure 31 One of the runs of NSGA-II original study with an arbitrary run of Optimo on the
FON test problem (image for NSGA-II original study is from Deb et al. (2002) paper)
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Regarding the diversity metric, NSGA-II in Optimo shows better performance in
the SCH and KUR test problems and NSGA-I1 original study had a better performance
in the FON and POL test problems. Overall, it can be seen that we could achieve
competitive results using Optimo, which means the performance of NSGA-II algorithm
in Optimo is acceptable. For detailed comparison of NSGA-I1I algorithm and other MOO

algorithms, refer to Deb et al. (2002) paper.

4.3.3 Applications of Optimo

Optimo has been published as an open-source package under GNU Lesser
General Public License (2015) and is available to the public. The package has been
downloaded more than 550 times as of May 2015 by Dynamo users and received good
feedback. Some universities such as Georgia Institute of Technology, Stanford
University, and University of California Berkeley have started teaching Optimo in their
graduate level classes and implementing it in their research as well. Moreover, Optimo
has been tried on real design projects in industry by Arup® and Autodesk Structural
Analysis team in Europe. Optimo has many applications, for example, it has been used
in optimizing the form generation process based on acoustic performance in the AU

2014 Dynamo Hackathon winner project (“Dynamo BIM,” 2015).
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5. EXPERIMENT OF THE FRAMEWORK"

In this section we introduce the BIM-based Performance Optimization (BPOpt)
framework and evaluate its performance using two case studies. First the general
overview of the BPOpt framework is discussed and the implementation steps are
explained. Then BPOpt framework implementation is shown in two separate case
studies. These two experiments were performed on two residential buildings to validate
the workflow and usefulness of the BPOpt framework.

For the first case study, which was done at the earlier stage of this research, a
sample model of Autodesk Revit 2013 was used to optimize the performance of the
building for annual energy use and daylighting by studying the building geometry
variables. In this case study the annual energy cost was calculated using hourly whole
building energy simulation and the daylighting performance factor was calculated via
simplified equations. The energy performance and daylighting performance indicators
were used as fitness functions for the optimization process. The BPOpt workflow could
address parametric changes of building forms within Revit for optimizing building
performance.

The second case study was implemented on the Stanford University Solar

Decathlon 2013 house project BIM model (http://solardecathlon.stanford.edu/) with

minor modifications (the Revit model of the building was kindly provided to us by the

" Part of this section is reprinted with permission from “BIM-based Parametric Building Energy
Performance Multi-Objective Optimization” by Rahmani Asl, M., Bergin, M., Menter, A., Yan, W., 2014,
The 32nd International Conference on Education and Research in Computer Aided Architectural Design in
Europe., Page Range 455-464, Copyright 2014 by eCAADe.
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project team). In this case study it was tried to optimize building performance for annual
energy use and daylighting as well, but this time the daylighting performance factor was
simulated through an illuminance rendering engine. Moreover, in the new complete
BPOpt workflow, which was used for the second case study, the parametric changes of
construction thermal properties of building objects were enabled as well. The results of
these two study showed that the building performance could be improved significantly

using the BPOpt framework.

5.1. BPOpt Framework

In response to the observed gaps in the literature BPOpt is developed as an
integrated framework to establish multidisciplinary optimization in the process of
performance-based design. This framework integrates the rich information stored in
parametric BIM with building performance simulation tools to make performance
optimization more accessible in the process of design. The BPOpt framework is
integrated with Parametric BIM-based Energy Simulation (PBES) and Parametric BIM-
based Daylighting Simulation (PBDS) tools for energy and daylighting analysis in this
research, but easily expandable to other performance analysis tools. The proposed
workflow uses Optimo, an evolutionary multi-objective optimization (MOO) tool, to
explore the design space and provide a set of Pareto optimal solutions to the designers.
Using BPOpt, multiple competing objective functions such as construction and operation
costs and environmental performance can be studied and a potential set of solutions can

be presented. BPOpt provides the designer with a set of desirable solutions and gives the
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option to the designer to choose the most promising alternative based on project
requirements and objectives.

The theoretical foundation of BPOpt is built upon integration of BIM, parametric
modeling, visual programming, building performance analysis, and MOO through
platform integration and automation on one hand, and the interaction between designers
and the integrated system on the other hand. The process of implementing BPOpt to
optimize building performance and obtain feedback for design decisions can be

described in the six major steps demonstrated in Figure 32.

BPOpt Process Information Added
o 1 | Prepare namodel || priscfomaon g seomet, corsucion an el
v
2 Define Parametric Relations | parametric relationships among objects and properties
v
3 | Defie varae Ranges || ot e e s e oinos )
v
4 Define Fitness Functions H single or multiple fitness functions
v
5 Evaluate Results | generated population lists, optimal solution set (Pareto Optimal)
v
— 6 Make Decisions H design decisions, new design ideas, new set of problems

Figure 32. The process of implementing BPOpt framework to optimize building performance

The first step is modifying the BIM model and implementing the necessary
analytical properties for performance analysis. BPOpt is designed to automatically use

the information stored in the BIM model such as building project properties, building
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geometry, and physical properties to create the analytical input file for performance
simulation tools. The prototype created in the present research uses Autodesk® Revit®
as the BIM tool and also as the central platform for the optimization process. In this step,
the designer needs to modify the Revit project file and include all the necessary
information for performance analysis. For instance, the designer needs to update the
project location since the energy simulation process uses the Revit project location to
access the appropriate weather file.

In the second step the parametric relationships among building objects should be
defined. This enables the system to automatically generate alternatives for analysis and
evaluation of performance until the design optimization process is terminated. The
parametric relationships can be defined either through the Revit Graphical User Interface
(GUI), which is limited to parametric capabilities at the family (building component)
level or with the use of Dynamo (2015), which is an open-source visual programming
application that interacts with Revit to extend its parametric capabilities to the project
level. The parametric connections help propagation of parameter changes throughout the
BIM model during the optimization process. The parametric BIM model changes in
response to the variable changes and then the corresponding analytical models,
generated from the BIM model, get updated.

In the third step, the designer defines the decision variables and their variation
domains. Due to the large number of variables that the designer needs to consider in
sustainable building design, the number of possible combinations created by varying

each variable in its practical range is enormous (Coley and Schukat, 2002) and very
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difficult to manage. In response to this issue, BPOpt is designed as an iterative process
that provides the option for the user to re-define the variables and their domains to
approach the most appropriate design in a more manageable process. The design
parameters in BPOpt can be continuous variables (defined with lower and upper
bounds), discrete variables (defined as a list of variables), or both.

The user defines the fitness functions in the fourth step. The design process can
have either a single fitness function (single objective optimization) or multiple fitness
functions (multi-objective optimization). A fitness function can be defined as a simple
function like the project cost based on area and cost per unit or as a complex function
like the annual energy cost using hourly whole building energy simulation. For example,
in the case studies of this research there are two fitness functions defined: one simulates
the annual energy cost and the other simulates building daylighting performance. BPOpt
is designed in a way that the user can add multiple fitness functions smoothly. The
fitness functions can be created as external functions in stand-alone packages and be
inserted to this workflow with a minimal amount of work.

In the fifth step, the results will be generated by feeding variables and fitness
functions into the optimization process. Optimo is used to implement optimization for
BPOpt. At this step the BIM model changes according to the identified decision
variables in the optimization process and at the time the transaction of all of the changes
in the BIM model is complete, the analytical models are generated or regenerated. The
analytical models will be sent to performance simulation engines and the values for the

fitness functions will be calculated. Optimo generates the optimal solution list by
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iterating through this process and improving the results by keeping the fittest alternatives
in each generation. After the optimization process is over, a set of optimal solutions will
be reported to the designer. A detailed description of the Optimo workflow is provided
in Section 4 of this dissertation.

The sixth step is decision making which is to be addressed by designers
themselves. A designer evaluates the results based on project requirements and
objectives as well as design aesthetics and proceeds in two ways: 1) a design option is
selected from the optimal solution set provided by this workflow and the design
proceeds; or 2) based on the provided results the designer makes changes in the
optimization settings and parametric relationships and repeats the same process till
desired design is achieved.

The BPOpt framework for this research and its case studies was developed by
systematic integration of PBES, Optimo, and PBDS tools to provide efficient design
space exploration to achieve high-performance buildings. It should be noted that BPOpt
is a dynamic system that can be integrated with other building performance fitness
functions with a minimal amount of effort. For instance, this workflow has been used in
optimizing the form generation process based on acoustic performance in the AU 2014
Dynamo Hackathon winner project (“Dynamo BIM,” 2015). In this project, the
designers were trying to design an acoustic performance space that could self-adapt to
certain sound requirements. Figure 33 demonstrates the tools that can be used in BPOpt
framework. Some of these tools were developed in this research as prototypes to be used

as part of the BPOpt framework.
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BPOpt Framework Tools and Applications
—= 1 Prepare BIM Model Autodesk Revit
2 Define Parametric Relations Autodesk Revit and Dynamo
3 Define Variable Ranges Dynamo and Optimo
D Opti PBES, PBDS, Other Perf Analysi
4 Define Fitness Functions SIS L S r UINEr Ferrormance Anatyss
Tools and Applications
5 Evaluate Results Dynama, Ophnj{:—, EBES, PBDS, Other Performance Analysis
Tools and Applications
— 6 Make Decisions Autodesk Revit

Figure 33. The tools that can be used in BPOpt framework

As it can be seen in Figure 33, Autodesk Revit is used as the central BIM

platform for BPOpt. Dynamo, which enhances the parametric capabilities of Revit, is

used as a visual programming interface to enable integration of multiple performance

analysis tools. After the building performance optimization process using Optimo,

PBES, and PBDS, the results can be visualized in Autodesk Revit and Microsoft Excel.

In the following sections, the integration of all these tools is demonstrated in two case

studies for high performance building design.

5.2. Test Case Experiment-1

In order to explore the applicability of the BPOpt framework for

multidisciplinary high performance building design and also improve its functionality, a
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case study was developed at the earlier phases of this research using the earlier version
of the Optimo, PBES, and PBDS applications prototypes. In this case study BPOpt
framework was tested on a residential building with multiple objectives from different

disciplines to optimize performance in the early design process.

521 Introduction of the Case Study Model

This case study was implemented on the basic sample model of Autodesk Revit
2013 (Figure 34). The geographic location of this residential building is in the city of
Indianapolis, Indiana, USA. The climate is dominated by heating loads with 5892

Heating Degree Days on a yearly basis.

@G- QP 2L OA G2 E BB Autodesk Revi 2013 - Educational Version -~ rac_basic_sample_project-10.rv - 3D View: {30} B e o keyword or phase B E Y L signin + X - -0X

Clickto seect, TAB for atemates, CTRL adds, SHIT unselects. & s BA 4 [Press&Dag 7

Figure 34. Autodesk Revit 2013 basic sample file that is used as the building model for Test
Case Experiment-1

The residential home has six rooms at level one and two rooms at the second

level that are included as part of the daylighting calculation. The whole building is
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included for hourly energy simulation. Due to site constraints, the long-axis orientation

of the structure is fixed at 15 degrees west of true north (Figure 7).

522 Objective Functions

The objectives of the optimization routine for this case study was to maximize
the number of rooms of the residential unit that satisfy the requirements of the LEED
IEQ Credit 8.1-Option2 for Daylighting while minimizing the expected energy use. The
two objective functions of this case study can be formulaically expressed as follows:
E,pj = Min. AEC
Dopj = Max.LDF

Where:

Eonj = Energy Performance Objective Function

D,pj = Daylighting Performance Objective Function

AEC = Annual Energy Cost
LDF = LEED Daylighting Performance Factor

The simulation and calculation of the energy consumption using PBES requires
building information stored in BIM, for example geometry information, physical
material information, and location data embedded within the model. In this study, the
energy analytical model is created from BIM in the Green Building eXtended Markup
Language (gbXML) (gbXML, 2014) open schema format from BIM using Autodesk®
Revit®’s Application Programming Interface (API). The gbXML files are uploaded to

Autodesk Green Building Studio (GBS) website for cloud-based whole building energy
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simulation using the integration of Revit APl and GBS API. The annual energy cost has
been reported as the fitness function value for energy performance of the building in the
optimization process.

For calculating the LEED daylighting performance factor, LEED IEQ Credit 8.1-
Option2 was used which is a simple approximation method to calculate the daylighting
performance factor. According to LEED IEQ Credit 8.1-Option2 for side lighting zones,
the product of the visible lighting transmittance (VLT) and window-to-floor area ratio
needs to be between 0.15 and 0.18.

0.150 < VLT X WFR < 0.180

In this approach, the geometry information of the building such as the room area
and the window geometry has been collected form the BIM model to calculate the
daylighting performance factor of the building. The calculation process of the LEED
IEQ 8.1-Option2 daylighting performance factor is translated into a parametric
computational code using Python programming to enable parametric analysis. The
percentage of the area of the rooms that satisfy the LEED requirements is reported as the
fitness function value for daylighting performance. According to LEED, this percentage

needs to be more than 75% for new construction buildings to qualify for 1 LEED credit.

5.2.3 Decision Variables

The residential building has six rooms at level one and two rooms at the second
level that are regularly occupied and included as a part of the daylighting calculation.
The entire building is included in the whole building energy simulation. The light
admitted to the building can enter via two fixed curtain walls and 7 casement windows.
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The rooms separated from the main living space by interior partitions are lit naturally by
casement windows with a visual transmission coefficient of 0.9. The width and height of
the windows are identified as free parameters. The two curtain systems light the main
living space in the first floor and the balcony in second floor. The fixed curtain systems’
properties are not included as free parameters in the design optimization. The list of

decision variables, their acceptable ranges, and the variable types are given in Table 3.

Table 3. Optimization decision variables, their acceptable ranges and types

Geometry Variables Lower Limits (ft) Upper Limits (ft) Variable Type | Defined Type
Casement Windows Width 0.5 7.0 Continuous Double
Casement Windows Height 0.5 7.0 Continuous Double

524 Optimization Algorithm Encoding and Process

Figure 35 shows the general overview of the BPOpt framework for this case
study. The top part of this graph illustrates the main workflow for BPOpt. As it can be
seen, the Population Size, Variable Ranges, and other variables are inserted as user input
into BPOpt framework. The Initial Population Set is generated based on the user input
and evaluated using LEED Daylight and GBS packages. The GBS runs are created based
on the PBES tool that enables the cloud-based whole building energy simulation on the
Autodesk GBS website. The LEED Daylight package uses the geometry information of
rooms and windows along with windows’ VLT information to calculate the daylighting

performance factor. The NSGA-II package performs the iterative optimization process
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and reports the optimal solution set. The bottom part (with gray background) shows the

components inside the LEED Daylight, GBS, and NSGA-I1 packages.

Population Size
B ——

Variables
Variable Range LEED Daylight
Variable Range .
Initial Solution Set itial Ofp;ITatl' Set
nitia 0 olutions
Variable Range. Variables Population NSGAI 3
. GBS Runs
GBS Project [5BS Project
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Area E :% E] :%
Calculate Percentage ® i% LR
of Rooms in LEED |— ! i
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Variables | | Get Windows i i
?| Area & VT | i LEED
W W Daylight
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[FOPUISTON Generation oputatior] NSEAI
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Figure 35. General overview of the BPOpt framework for test case experiment-1

The NSGA-II optimization algorithm is implemented with the input of a
population size of 100 for each generation, with the maximum evaluations set at 12000
for a total of 10 generations for this case study. The mutation probability is set at 0.01.
The crossover probability is set at 0.9 and both the mutation distribution index and
crossover distribution index are set at 20.0.

Figure 36 shows the earlier version of the BPOpt framework and its

implementation for Test Case Experiment-1 in Dynamo to optimize daylighting and
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energy use of the building. This graph uses the earlier versions of PBES, PBDS and
Optimo to create BPOpt workflow to optimize the building performance. The node
NSGA-II in Dynamo, which is a part of Optimo’s older version, includes a package of
nodes and plays the main loop role for population generation in MOO to get to the
optimal solution. The node Initial Solution Set generates the initial set of random
variables within the provided range and with the size of population defined by user. The
output of this node is a list of variables’ and the objective’ values. The objective values
are initially null and they are assigned by Population Evaluate node, which gets

objective values as input parameters.
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Figure 36. NSGA-II algorithm created in Dynamo (Test Case Experiment-1)

This workflow enables the BPOpt framework to accept external objective

functions as nodes or packages of nodes. For instance, in this study the LEED

Daylighting node is created as a package of nodes to calculate the LEED daylight values
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based on LEED Reference Guide for Green Building Design and Construction (“U.S.
Green Building Council,” 2009) as an objective function.

Using Revit API, the node gbXMLExport in Dynamo generates energy model
data in the gbXML format, which contains the necessary information for energy
simulation. The GBSProject node is designed to create a new project in GBS by
extracting the project information from a BIM model such as the project location and the
building type using Revit API, GBS API, and the Representational State Transfer
(REST) protocol. GBSRun is designed to create multiple runs in the GBS project and
upload the exported ghXML files to GBS for whole building energy analysis. When the
simulations are done, GBSRun retrieves the energy simulation results for further

analysis, optimization, and visualization (Figure 37).
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Figure 37. Parametric BIM and whole building energy simulation integration in Dynamo (first
version of the PBES tool)
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The presented system enables designers to explore design alternatives and at the

same time assess the building performance to search for the most appropriate design.

5.25 Results

The Pareto Optimal set from the optimization process is shown in Figure 38. The

fitness functions for the optimization process are defined as follows:

Energy performance factor:

Daylighting performance factor:

Annual energy cost in Dollar

100 % subtracting the percentage of the area
with the illuminance level within the LEED
Daylighting acceptable range (described in
detail in the section Objective

Functions)daylighting performance factor

98



Total Annual Energy Cost ($)
3900 3950 4000 4050 4100 4150 4200 4250 4300 4350 4400

60

70
x Generation 01
+ Generation 02

+ Generation 03

80
OGenearation 10

S0

Percentage of Building Area with LEED Daylight Factor in the Range

100

Figure 38. Scatterplot showing the Pareto Frontier with model thumbnails superimposed on the
plot to illustrate the association between the calculated optimal solutions and the building forms.
(the energy performance factor is the annual energy cost in dollar and the daylighting
performance factor is 100% subtracting the percentage of the area within the acceptable
daylighting range)

In Figure 39, the optimum solution is at the lower left corner of the graph where
the annual energy consumption is at its minimum and the percentage of the area within
the acceptable daylighting threshold is at its maximum value. This graph shows the
result for 1000 runs for this experiment which took about 3 hours overall. The results
show that the performance optimization process is able to improve the building
performance and find the optimal or near optimal solutions in the design space. This

graph indicates that the optimization routine begins to converge on the optimal solution

for each variable after a few generations the third generation onward.
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Visualizing the results in an interactive parallel coordinates plot allows the
various iterations to be evaluated by the designer. From the graph in Figure 39 it can be
seen that the windows of various Widths from 1’ to 7° meet the LEED Daylight
requirements for more than 80% of the rooms, correlating with about $200 in variation
for the yearly energy cost. In this instance, the windows between the sizes of 3” and 4’ in
Height are evaluated, as this parameter is preferred for the reason of style to fit with
horizontal datum elements. For design variations within the bottom 30% of the energy
cost and the full satisfaction of the daylighting metric, the smallest glazing Width is

specified at 2’ 8”.

Figure 39. Interactive parallel coordinates plot for the constraint and analysis of design
parameters.

In Figure 40, the chart shows the samples of design variations that meet 100% of
the LEED Daylighting requirements. Of these the lowest energy use calculated is $4,265

and the smallest window size is specified as 5” in width and 3.5’ in height.
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Figure 40. lllustration of a bi-directional association between parallel coordinates and 3D model
views

5.2.6 Conclusion

The use of the earlier version of BPOpt framework was demonstrated on the
present case study. This case study showed the benefit of efficient large design space
exploration to find optimal or near optimal solutions. It showed how the framework can
be used to optimize multiple objectives including energy performance and daylighting
performance using simulation and/or approximation in different disciplines and improve

the overall building performance. The optimization results presented as a Pareto Optimal
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set provided an option for the designer to trade-off among multiple alternatives and
choose the most appropriate design.

This case study is developed to validate the overall usefulness of BPOpt
framework at the earlier stage of this project. The variables in this case study were
limited to the geometry variables only. In addition to geometry related variables such as
window dimensions variations, this system is capable of studying thermal properties.
Also the system is capable of producing design options considering building geometries
such as the footprint, the form of the roof, and the interior layouts. These design options
are considered often by architects and engineers in the design process. The next case
study demonstrates that how the geometry and thermal properties of objects can be
included in the process of building energy optimization using BPOpt. Also, the use of

discrete variables in the BPOpt framework is explained in the next case study.

5.3. Test Case Experiment-2

The prior case study included parametric changes of building object form. In this
case study the parametric changes of construction thermal properties of building objects
were addressed as well. In this study various types of building objects with different
thermal performances were created and added into a list for parametric study. During the
optimization process, the appropriate object type was selected for energy simulation.
Hence, the updated workflow in this case study was able to parametrically change both
form and thermal properties of objects in the BIM model and assess accordingly the
energy and daylighting performance of the building model through simulation. In
addition, the method of evaluating daylighting performance is different from Test Case
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Experiment-1. In Test Case Experiment-1 an approximation method was used to
calculate the daylight factor, but in the Test Case Expreiment-2 the daylight factor was
calculated using detailed simulation through Autodesk Rendering Service and post-

processing the results.

53.1 Introduction of the Case Study Model

This case study was implemented on the Stanford University Solar Decathlon

2013 house project BIM model (http://solardecathlon.stanford.edu/) with minor

modifications (the Revit model of the building was kindly provided to us by the project
team). It is a single story residential building with a net floor area of 1018 ft?. Figure 41
shows the floor plan, and northwest and southwest 3D views of the house. The building
has clearstory windows on the north wall (Figure 41-b) and the curtain panel windows

on the south wall (Figure 41-c).
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(a)

Figure 41. (a) Floor plan of the Stanford Solar-decathlon 2013 house (b) Northwest isometric 3D
view shows the clearstory windows on the north wall; and (¢) Southwest isometric 3D view
showing the curtain panel windows on the south wall. (Source of images: Stanford University
Solar Decathlon 2013 project team. http://solardecathlon.stanford.edu)
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5.3.2 Objective Functions

In order to evaluate the performance of the BPOpt workflow with multiple
performance simulation tools, the objectives of the optimization routine for this case
study are defined from two different disciplines of energy performance and daylighting
performance. The objective functions are set to minimize the expected annual energy use
while maximizing the regularly occupied area of the residential unit that lies between
300 lux and 3,000 lux for 9 a.m. and 3 p.m. at the equinox to get maximum LEED
daylighting credit. Based on LEED Version-4 Daylight Option-2 the building gets 1
point if the illuminance level of 75% of the regularly occupied area and it gets 2 points
for more than 90% within the illuminance range.

The two objective functions of this case study can be formulaically expressed as
follows:

E,pj = Min. AEC

Dopj = Max.LDF
Where:

Eopj = Energy Performance Objective Function

D,pj = Daylighting Performance Objective Function

AEC = Annual Energy Cost

LDF = LEED Daylighting Performance Factor

The fitness function for energy performance is calculated by hourly simulation of
whole building energy consumption using PBES tool. The fitness function for

daylighting is calculated by illuminance rendering of the building model using PBDS
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tool. The illuminance rendering results are parsed and the daylight percentage of the area
with the Daylighting performance factor within the LEED-acceptable range is calculated
by a Python script, which was developed by the author.

The energy simulation process collects the required information stored in BIM
such as geometry information, physical material information, and location data for
energy analysis. This workflow generates energy model data in the gbXML open schema
from BIM using Autodesk® Revit API. The daylighting simulation requires building
information for geometry, glazing properties, and reflectivity of opaque materials
defined in the BIM model. The PBDS package gets the user input for the building floor
levels that the designer intends to include in daylighting simulation. Then PBDS
automatically finds the floors and the rooms assigned to the defined levels using Revit
API via Python scripting in Dynamo. Other necessary project information for
daylighting analysis is automatically collected from the BIM model and the daylighting
simulation jobs are created also automatically in the cloud. The workflows developed in
this case study can identify parameters from elements within the BIM model and explore

a set of scenarios for energy performance and daylighting adequacy.

5.3.3 Decision Variables

Windows are critical components of building facades for energy and daylight
performance (Shen and Tzempelikos, 2010). Glazing form, size, and type should be
jointly considered in order to effectively control the heat and light transfer through the
building. The optimal glazing size and type are unique for each building and should be
calculated by taking into account the glazing geometrical and analytical properties for
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heat gain and loss and lighting requirements. In this case study glazing size and
analytical properties are selected as parametric variables to study their effect on the
building performance. The goal of this study is set to find the optimum windows size
and glazing material that result in an energy-efficient model with a maximum level of
acceptable daylighting.

In this study, 7 parameters related to windows and curtain panels of the Stanford
University Solar Decathlon 2013 model are considered as optimization variables. The
list of these variables, their acceptable ranges, and the variable types are given in Table
4. There are two types of variables: 1) glazing geometry variables that relate to the size
and shape of the windows; 2) performance analytical variables that relate to energy and
daylighting performance of glazing. It should be mentioned that BPOpt is not limited to
geometry and performance analytical variables and can handle other variables such as
those that result in topological changes. The size of casement windows (height and
width) on the south, east, west, and north sides of the building are considered as
geometry variables. In the northern hemisphere, north-facing windows hardly get any
direct sunlight. The only time the sun imposes on them is early in the morning or late in
the afternoon during the summer and most of the time is blocked or reflected from the
window glass. Therefore, the variable ranges for height and width of the casement
windows on the north side of the building are different from the variable ranges for
height and width of the casement windows on the south, east, and west sides. The
analytical properties of all windows (casement windows and clearstory windows) and

curtain panel windows on the south wall are studied as performance analytical variables.
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Table 4. Optimization variables, their acceptable range and types

Geometry Variables LiIFnoi\'ge(rft) LilEJnFi)tF; e(rﬂ) Variable Type | Defined Type
Casement Windows Width (South-East-West) | 4 8 Continuous Double
Casement Windows Height (South-East-West) | 1 5 Continuous Double
Casement Windows Height (North) 1 5 Continuous Double
Casement Windows Width (North) 1 5 Continuous Double
Performance Analytical Variables Index Min Index Max | Variable Type | Defined Type
Casement Windows Material 20 Discrete List
Clearstory Windows Material 20 Discrete List
Curtain Panels Windows Material 0 20 Discrete List

To enable the parametric change of the glazing properties, both for energy

simulation and daylighting analysis, 21 glazing types are created for this case study

(Table 5) and considered as discrete variables in the optimization process. The specific

glazing types available to this research are limited to those available in Revit.
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Table 5. Available glazing types for this project and their analytical properties

Index _ _ \'/isu_al Solar _Heat R-gsr,]iigr]zle-
Number Analytical Construction nght_lng Gain R
Transmittance | Coefficient (W2 F)/BTU
0 1/8 in Pilkington single glazing 0.9 0.86 0.8466
1 1/4 in Pilkington single glazing 0.9 0.86 0.8473
2 3/8 in Pilkington single glazing 0.88 0.81 0.8478
3 1/2 in Pilkington single glazing 0.88 0.81 0.9096
4 Double glazing - 1/4 in thick-bluegreen/low-E (e = 0.05) | 0.45 0.27 2.8573
5 Double glazing - 1/4 in thick - clear/low-E (e = 0.1) 0.45 0.39 2.8573
6 Double glazing - 1/4 in thick - clear/low-E (e = 0.2) 0.45 0.45 2.8573
7 Double glazing - 1/4 in thick - gray/low-E (e = 0.05) 0.35 0.24 2.8573
8 Double glazing - 1/4 in thick - gray/low-E (e = 0.1) 0.37 0.34 2.8573
9 Double glazing - 1/4 in thick - gray/low-E (e = 0.2) 0.37 0.39 2.8573
10 Double glazing - 1/4 in thick - green/low-E (e = 0.05) 0.6 0.31 2.8573
11 Double glazing - 1/4 in thick - green/low-E (e = 0.1) 0.61 0.36 2.8573
12 Double glazing - 1/4 in thick - green/low-E (e = 0.2) 0.61 0.41 2.8573
13 Double glazing - 1/4 in thick - low-E/clear (e = 0.05) 0.7 0.3 2.8573
14 Double glazing - 1/8 in thick - clear/low-E (e = 0.1) 0.57 0.48 2.8573
15 Double glazing - 1/8 in thick - clear/low-E (e = 0.2) 0.58 0.57 2.8573
16 Double glazing - 1/8 in thick - low-E/clear (e = 0.05) 0.72 0.41 2.8573
17 Single glazing SC=0.2 0.08 0.19 0.8473
18 Single glazing SC=0.4 0.3 0.39 0.8473
19 Single glazing SC=0.6 0.76 0.6 1.1803
20 Single glazing SC=0.8 0.88 0.81 1.1803

The analytical properties for glazing in Revit are not automatically set when the
glazing type is selected and the user needs to define them for performance analysis. The
glazing thermal properties can be modified in the Type Properties, Analytical Properties
section, under Analytical Construction. The glazing Analytical Construction can be

selected from a prepopulated list in Revit (Figure 42).
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Figure 42. The glazing Analytical Construction can be selected from a prepopulated list in
Autodesk Revit 2015

The Visual Light Transmittance, Solar Heat Gain Coefficient, Thermal
Resistance (R), and Heat Transfer Coefficient (U) are assigned automatically based on

the selected Analytical Construction for the glazing (Figure 43).
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Figure 43. The Visual Light Transmittance, Solar Heat Gain Coefficient, Thermal Resistance
(R), and Heat Transfer Coefficient (U) are assigned automatically based on the selected
Analytical Construction for the glazing in Autodesk Revit 2015 for creating energy analytical
model
It should be mentioned that these properties are used for creating the energy
analytical model for the energy performance analysis and are not considered for the
daylighting analytical model. The glazing properties for daylighting analysis can be set

in the glass pane material’s Appearance Properties under Material and Finishes section

of glazing Type Properties (Figure 44).
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Figure 44. The glazing properties for daylighting analysis can be set in the glass pane material’s
Appearance Properties under Material and Finishes section of glazing Type Properties

In the Material Browser dialog box, Appearance tab, Glazing Section, the Color
property must be set to Custom and the RGB (Red, Green, and Blue) values needs to be

inserted (Figure 45).
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Figure 45. The Color property must be set to Custom and the RGB (Red, Green, and Blue)
values needs to be inserted
The RGB values are available in a table (Table 6) provided in Autodesk Building
Performance Analysis (BPA) help manual (Autodesk BPA Help, 2015) based on the
window type, glass thickness, and visible transmittance (TVis) value of the glass. The
illuminance simulation results also depend on how much light bounces off the interior

surfaces of the model. Therefore, the reflectivity of opaque materials of interior surfaces
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should be defined in Revit as well. For details about the process of defining the glazing

and opaque materials surfaces, please refer to Autodesk BPA help.

Table 6. The RGB values provided in Autodesk BPA help (Autodesk BPA Help, 2015) based on
window type, glass thickness, and visible transmittance (TVis) value of the glass.

RG,B Tuvis
Thickness  90% 80% 0% 60% 50% 0% 30% 20% 10%
single  3.0mm__ 171 24 2 0 0 0 0 0 0
40 mm 189 43 1 0 0 0 0 o
5.0mm 201 61 16 3 0 0 0 0 o
6.0 mm__ 209 78 25 7 1 0 0 0 o
8.0 mm 219 105 45 17 5 1 0 0 1]
10.0 mmy 226 125 64 29 11 3 0 0 0
12,7 mmy 232 146 86 47 22 3 3 0 ']
254 mm 243 193 148 109 76 49 27 12 3
28.6 mm_ 244 199 157 120 87 59 35 17 5
dual 3.0 mm - 154 S0 14 3 0 0 0 1]
4.0 mm - 175 76 29 9 2 0 0 o
5.0 mm . 189 96 44 18 5 1 0 o
6.0 mm - 198 113 59 28 11 3 0 o
8.0 mm - 211 139 86 43 24 9 2 1]
triple 3.0 mm - 137 58 21 & 1 0 o
4.0 mm . - 150 34 39 15 4 0 o
5.0 mm . - 175 105 57 27 10 2 o
6.0 mm . - 186 121 73 39 17 5 o
quad 3.0 mm - - 224 113 55 21 [ 1 1]
4.0 mim . - 232 143 81 40 16 4 o
5.0 mim . - 236 160 101 58 28 10 1
6.0 mim . - 239 173 118 74 40 17 4

Each glazing type is then assigned with an index (Table 5). The glazing indices
are used in the optimization process as performance analytical parameters, which are
discrete variables. In the BPOpt workflow, the corresponding glazing types to the
indices are selected to be applied to the family instances in the BIM model to create the

energy and daylighting analytical models for performance simulation.

534 Optimization Algorithm Encoding and Process

The availability of the visual programming environment allows the design space

to be quickly, interactively, and accurately specified. Figure 46 shows the BPOpt
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workflow of this case study in Dynamo. This workflow uses Optimo nodes (Initial
Solution List, Assign Fitness Function Results, Generation Algorithm, and
Nondominated Sorting) and custom nodes, which are the packages of multiple nodes
(NSGA Function BPOpt, Loop Completion Check, Energy Analysis Fitness Function,
and Daylighting Analysis Fitness Function) for the optimization process. Daylighting
and energy analysis fitness functions are packages of multiple nodes that implement the
parametric performance analysis through BIM for the optimization process. The Energy
Analysis Fitness Function node uses the designed PBES tool to interact with Green
Building Studio (GBS) website for cloud-based whole building energy simulation. The
Daylighting Analysis Fitness Function node uses the designed PBDS tool to send the
rendering jobs to the Autodesk Rendering Service for illuminance renderings and parses
the results inside Dynamo using the developed Python script package to calculate the

fitness function results.
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Figure 46. BPOpt workflow graph. The user inputs (population size, number of objectives and
variable domains) are inserted on the left side of the graph. The InitialPopulationList node
generates initial population list. The inserted fitness functions evaluate fitness values for the
initial population list and the results are assigned to the population in the
AssignFitnessFunctionResults node. The LoopWhile node iterates the NSGA-II Function node
to generate offspring populations and the best nondominated solutions.

The Generation Loop runs the generation and sorting processes in a loop till the
run iteration counter reaches the limit that the designer defines in the Loop Completion
Check node. The last section of the Dynamo code writes all of the decision variables in
the whole optimization process and their corresponding performance analysis results to a
CSV file for further analysis and visualization of the results. It should be noted that the
BPOpt workflow is not limited to using daylighting and energy simulation fitness
functions, which are developed for this research. The fitness functions and their related

decision variables’ ranges and types can be easily modified by users to apply the BPOpt

framework to other performance optimization problems. For instance, Vermeulen (2015)
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used the BPOpt framework to optimize building structural performance and Hudson and
Vannini (2015) used BPOpt to optimize a space design by its acoustic performance.
Figure 47 shows the detailed description of the NSGA-I1 algorithm in Optimo
designed for this case study. As it is shown in this image, the random population list is
generated first and the fitness function are calculated and assigned for the initial
population first. Then the results transfer to the generation loop to improve the values in
each generation. The generation loop ends when the iteration number reaches the limit
that the user defines. At the end the optimal results are reported. The NSGA-I11 algorithm
is implemented with the input of a population size of 75 for each generation. The
mutation probability is set to 0.01. The crossover probability is set to 0.9 and both the

mutation distribution index and crossover distribution index are set to 20.0.
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Figure 47. The process of using Optimo in BPOpt workflow for the test case experiment to
optimize the energy and daylighting performance of the Solar Decathlon Building
For this experiment the total generation number is set to 15 (not including the
initial solution set) which results in the total number of 1200 (75 from the initial solution
set and 1125 from generation process) energy simulation runs. Since LEED Version-4
Daylight Option-2 requires demonstrating that the illuminance levels for 9 a.m. and 3
p.m. at the equinox for the regularly occupied floor area, the total number of lighting
analyses is 2400 simulation runs. The availability of cloud-based energy (GBS) and

daylighting (Rendering as a Service - RAAS) simulation tools enable the quick
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evaluation of a large number of design options. However, because Autodesk daylighting
simulation service is limited to 4 simultaneous runs for education accounts (this is a type
of account that is available to students and educators for free), the total optimization
process took more than what was expected. The total simulation time for each generation
was 3.5 hours and the whole optimization process took about 56 hours for 1200 energy
simulation runs and 2400 daylighting simulation runs. When more simultaneous runs are

allowed (e.g. for professional use), the time can be significantly reduced.

5.35 Results

The optimization results of this case study are reported in Figure 48. This figure
is created in Microsoft Excel using the optimization results that are automatically

exported as a CSV file. The fitness functions for the optimization process are defined as

follows:
e Energy performance factor: Annual energy cost in Dollar
e Daylighting performance factor: 100 % subtracting the percentage of the

area with the illuminance level within
the LEED Daylighting performance
factor acceptable range (described in
detail in the section Objective

Functions)
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Figure 48. Scatterplot showing the building performance multi-objective optimization results
using Optimo (the energy performance factor is the annual energy cost in dollar and the
daylighting performance factor is 100% subtracting the percentage of the area with the

illuminance level within the LEED daylighting acceptable range)

The optimum solution is at the lower left corner of the graph where the annual
energy consumption is at its minimum and the percentage of the area within the
acceptable daylighting threshold is at its maximum value (the daylighting performance
factor is the reciprocal of the area meeting LEED requirements). The results show that
the performance optimization process is able to improve the building performance and
find the optimal or near optimal solutions from the design space. As one can see, the
initial randomly generated solution set is distributed at the upper side of the graph (blue

diamonds) throughout the graph, while the results of later generations are more and more

getting clustered towards the lower left corner (the optimum solution). In this particular
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sample, every solution in the initial population is dominated by some solutions in the
final population, i.e. every solution of the final population is better than each solution of
the initial population in both energy and daylighting performance. This shows that the
BPOpt workflow was successful in exploring the design space automatically and
converging toward optimum results during the optimization process.

Based on LEED Version-4 Daylight Option-2 (described in the section Objective
Functions), and as Figure 48 shows, very few alternatives of the initial population set
satisfy the LEED requirement to get 1 point for daylighting, while those which satisfy
this requirement are not very efficient in energy performance. However, all of the final
population set alternatives satisfy the minimum LEED requirement and perform more
efficiently in energy use. Moreover, based on the results in the same figure, none of the
alternatives could satisfy LEED requirements to get 2 points for daylighting. At this
point, in case the project needs to get 2 LEED points, the designer can make some
changes in the model geometry and windows configuration on the model to try the
optimization again as shown in Step 6 of the BPOpt process in Figure 32. This procedure
is an informed decision making process, which is important for sustainable high
performance building design.

Using the same procedure, as this experiment shows, the proposed framework
can be used to optimize many other performance-based problems with different variables
and simulations processes.

Figure 49 shows the Pareto Optimal set obtained within the process time and

visualized using the exported CSV results. The figure can help designers understand the
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relationship between conflicting performance objectives. In this figure, three sample
alternatives are highlighted and their decision variable values are provided. Alternative-1
has the highest daylighting performance but is not very energy efficient. Alternative-2 is
moderate in both energy and daylighting performance and alternative-3 has the best
energy performance but the worst in daylighting performance among all Pareto Optimal
alternatives. Looking at the Pareto Optimal set, the designer has an option to choose any
of the alternatives which satisfies more comprehensive design objectives, including, e.g.

functions and aesthetics.
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Figure 49. Scatterplot showing the Pareto Optimal set with decision variable values for three
alternatives to illustrate the association between the calculated optimal solutions and the variable
values.
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Visualizing the results in an interactive parallel coordinates plot (Figure 50)
allows the various iterations to be evaluated by the designer. The above chart highlights
the sample design variation with the best energy efficiency that meets the LEED
daylighting requirement (1 LEED point). Using the interactive parallel charts the user
can limit the range of decision variables and find the design that suits the project

specifications the best.

\/j\:
Figure 50. Interactive parallel coordinates plot for the constraint and analysis of design
parameters.
5.3.6 Conclusions, Discussions, and Future Work

The use of the BPOpt workflow on the present case studies has demonstrated the
benefit of efficient large design space exploration to find optimal or near-optimal
solutions. This case study shows how the framework can be used to optimize multiple
objectives including energy performance and daylighting performance using simulation

in different disciplines and improve the overall building performance. The optimization
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results presented as a Pareto Optimal set provides an option for the designer to trade-off
among multiple alternatives and choose the most appropriate design. The new
framework can easily accommodate other building performance factors with the same
mechanism. Through the continued development of similar projects to enable fast BIM-
based simulation and representation of solutions and their trade-offs, designers can better
understand the dependencies of design options on the decision variables at the early
design stage even without substantial expertise in energy modeling and daylighting
analysis. Therefore, the present framework facilitates an informed design decision-

making process.
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6. CONCLUSION AND FUTURE WORK

Building performance optimization based on performance simulation shows a
great potential in high performance building design. Incorporating a broader variety of
simulations from different domains into the design process will lead to a more
comprehensive exploration of the solution space and provide better decision support for
the designers. Due to the green building design requirements and the advancement of
computational methods and tools, there is a clear growth in popularity of building
performance optimization methods. Thus, in this research, the Building Information
Modeling (BIM)-based Performance Optimization (BPOpt) framework was developed
as a response to the lack of an integrated framework utilizing a visual programming user
interface on the top of a widely-used BIM platform to facilitate sustainable and high
performance building design. The detailed contributions of this research to the body of

knowledge, research limitations, and future work are provided in the following sections.

6.1. Contribution to the Body of Knowledge

6.1.1 BPOpt

In response to the observed gaps in the literature, BPOpt was developed as an
integrated framework to establish multidisciplinary optimization in the process of
performance-based design. The proposed framework uses evolutionary multi-objective
optimization to explore the design space and provides a set of Pareto optimal solutions to

the designers. Using BPOpt, multiple competing objective functions such as construction
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and operation costs and environmental performance can be studied and a potential set of
solutions can be presented.

The BPOpt framework aims to help designers both with and without extensive
parametric modeling and computer programming experience to use a novel BIM-based
visual programming interface to perform a broad variety of simulation-based analyses
for design optimization. BPOpt integrates the rich information stored in parametric BIM
with building performance analysis to make design exploration and performance
optimization more accessible in the process of design. By early adoption of Green
Building Studio (GBS)-Application Programming Interface (API), BPOpt enables
parametric BIM-based building energy simulation, which provides quick energy
performance feedback using the power of cloud-based simulation in the process of
design. Parametric daylighting simulation is enabled by creating a visual programming
package that can simulate multiple runs in parallel on the cloud for the optimization
purpose. The parametric energy and daylighting simulation tools are used as a part of the
case study in this paper to show the effectiveness of the BPOpt framework. However, it
should be noted that the functionality of BPOpt framework is not tied to these two
performance simulation metrics. The fitness functions and decision variables of the
BPOpt framework can be modified to optimize the performance of the building design
for other metrics and with other tools available to the designer. For instance, Vermeulen
(2015) used the BPOpt framework in optimizing structural performance of a building
and Hudson and Vannini (2015) implemented it in optimizing acoustic performance of a

space.
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The use of the BPOpt framework on the presented case studies in Section 5 of
this dissertation has demonstrated the process of using visual programming and
parametric BIM-based design space exploration to find optimal solutions. The case
studies showed how the framework can be used to optimize multiple objectives
including energy performance and daylighting performance in different disciplines and
improve the overall building performance. The optimization results presented as a Pareto
Optimal set provides an option for the designer to trade-off among multiple alternatives
and choose the most appropriate design. The BPOpt framework can easily accommodate
other building performance factors with the same mechanism. Through the continued
development of similar projects to enable fast BIM-based simulation and representation
of solutions and their trade-offs, designers can better understand the dependencies of
design options on the decision variables at the early design stage without the need of

substantial expertise in energy modeling and daylighting analysis.

6.1.2 Optimo

Optimo was developed as the first BIM-based visual programming package for
Multi-Objective Optimization (MOO). It works with BPOpt to enable fast building
performance optimization in the process of design. It provides the option to optimize
multiple objective functions with respect to multiple parameters among the rich data
stored in BIM.

One of the major benefits of Optimo is that its user interface is a visual
programming environment, which greatly facilitates sophisticated parametric modeling
and simulation studies by architects and engineers, who may have a limited computer
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programming background. Optimo has many applications, for example, it has been used
in optimizing the form generation process based on acoustic performance in the
Autodesk University 2014 Dynamo Hackathon winner project (“Dynamo BIM” 2015).
Moreover, Optimo has been tried on real design projects in industry by Arup®. Some
universities have started teaching Optimo in their graduate level classes and
implementing it in their research as well:
1. Georgia Institute of Technology: Design Space Construction, a graduate level
course taught by John Haymaker
2. Stanford University: Multidisciplinary Design and Simulation of Building
Envelopes, a graduate level course taught by Jordan Brandt and Forest Flager
3. Stanford University: Parametric Design and Optimization, an undergraduate level
class taught by Glen Katz.
4. University of Padua: Algorithmic Modeling, a graduate level class taught by
Marco Pedron
e Optimo has been published as an open source package available to the public.
The package has been downloaded more than 550 times as of May 2015 by users
and received good feedback. As an example, Vannini and Hudson (2015) used
Optimo to optimize the form of a space using its acoustic performance and won

the first place in AEC Hackathon (Acoustamo, 2014).
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6.1.3 Parametric BIM-based Energy Simulation (PBES)

The traditional process of building energy performance analysis is ineffective
and must be improved. Design practitioners typically create and explore very few design
alternatives before choosing a final design, which leads to underperforming buildings.
Parametric BIM-based Energy Simulation (PBES) was developed in this research as an
automated method to evaluate the performance of design using rich data stored in BIM
and search for optimized solutions. The availability of a cloud-based energy analysis tool
(GBS) in PBES enables the quick evaluation of hundreds of design variations.

PBES was developed and the first paper about it was published first in 2013
(Rahmani Asl et al., 2013). Autodesk redesigned an advanced version of it in 2014
(“Dynamo BIM,” 2015). The tool was published end of 2014 and has been used by many
users in their projects. We provided some consulting to the developers of the tool based

on our experience in this research.

6.1.4 Parametric BIM-based Daylighting Simulation (PBDS)

Using the Dynamo daylighting nodes, we have created a flexible daylighting
simulation package for the calculation of hourly illuminance values to enable automation
of parametric daylighting analysis. This package calculates the percentage of the area
with the illuminance level Daylighting performance factor for daylighting within the
acceptable range set by LEED Version-4 Daylight Option-2. BPDS connection to a
visual, parametric programming environment allows the design space to be quickly and

accurately specified. The daylighting simulation package is designed to be easily
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integrated into performance optimization process as an objective function. The created
package is published as a Dynamo package and a part of the BPOpt workflow. It has

been downloaded and used by Dynamo users.

6. 2. Limitations

One of the significant challenges of creating the BPOpt framework was the
interoperability among the various purpose-built software applications, including BIM
(Revit), energy simulation (Green Building Studio), daylighting simulation (Autodesk
Rendering Service), and optimization (the new Optimo implementing NSGA-II). The
project provided two case studies of interoperability that utilized the Application
Programming Interfaces (Reivt APl and GBS-API) in a visual programming
environment, which contributed to the existing study of interoperability, in which IFC
and gbXML and their related programming interfaces play an important role, as seen in
current literature. Some limitations inherent in these tools and platforms were
experienced during the implementation process. These limitations existed at the time that
this research was conducted and might be removed in future by developers of these tools
and platforms. These limitations included but were not limited to:

1. The use of the BPOpt framework is presented using two successful case studies
in Section 5 to optimize building energy and daylighting performance. However,
due to that Autodesk daylighting simulation service is limited to 4 simultaneous
runs for our education account, the total optimization process took more than
what was expected. The total simulation time for each generation was 3.5 hours
and the whole optimization process took about 56 hours. About one hour of the
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56 hours was spent on the parametric changes, model regeneration to export
energy and daylighting files, and uploading the models to the cloud engine for
simulation. The time that spent for energy simulation was about 2 hours and the
time that spent on daylighting simulation was about 3.5 hours. However, the
energy and daylighting simulations were performed in parallel, which means the
overall simulation time was about 3.5 hours. The rest and majority of the 56
hours was spent on the cloud run queues due to the limitation of the education
account that was used for this study. When more simultaneous runs are allowed
(e.g. for professional and subscription use), the total time for optimization can be
significantly reduced.

In order to use the BPOpt framework and its integrated tools, the user needs to be
familiar with multiple disciplines and the tools to be able to set the framework
and optimization routine correctly and take the most benefit out of the results.
Since BPOpt is using multiple tools and methods such as BIM (Autodesk Revit),
visual programming (Dynamo), parametric modeling (Autodesk Revit and
Dynamo), performance analysis tools, and the optimization process, the user
needs to have a good understanding of the following concepts:

a. BIM: the user needs to be familiar with BIM and the way that data is
stored in building information models. For instance, the user needs to
manage transactions in the optimization process and make sure that all the
parametric changes are propagated in the model before simulating its

performance. Moreover, using BPOpt would require the user to be
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familiar with parametric and constraint modeling in BIM to setup the
parametric studies.

Visual Programming: the user needs to have a good understanding of the
way data is transferred in visual programming tools (in this case
Dynamo). Dynamo is an open-source visual programming application
that interacts with Revit to extend its parametric capabilities. Since
Dynamo interacts with Autodesk Revit, all of the BIM related restrictions
and concepts should be considered in parametric modeling using Dynamo
for problems that interact with Reuvit.

Parametric Modeling: the user needs to be familiar with parametric
modeling concept to be able to define variables and the related
connections to create alternative models with the necessary changes for
performance studies.

Parametric Performance Analysis: the user should be familiar with the
BIM-based performance analysis workflows as well as how to
parametrically control BIM-based performance simulation.

Optimization Process: the user needs to have a minimum level of
understanding of optimization process to be able to set the decision
variables and fitness functions. The more the user knows about the
optimization process, the better he/she can use the tool and benefit the

results.
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The required level of expertise makes the adoption level of BPOpt framework
limited to BIM experts with a good understanding of parametric building
performance analysis, however, while it’s challenging for a single user to have
the expertise in all the above fields of study, a team of users consisting of
architects and engineers are expected to use the framework well.

. The available list of glazing types in Revit is prepopulated and limited. It is not
an option for the user to modify the list or add to it. Therefore, the specific
properties of glazing types available to this research were limited by those
available through Reuvit.

. The construction properties of objects for daylighting and energy performance
were controlled in two different places inside Revit. Therefore, the user has to
define the thermal properties and appearance properties for objects separately
and make sure that they match, which is an error prone and time consuming
process.

. Very few decision variables for energy simulation in GBS are exposed in Revit
GUI - Energy Settings. Most of the inputs are set as defaults based upon
ASHRAE Standards by GBS. This limits the parameters that the user may want
to study in the optimization process to optimize building performance.

. Autodesk GBS API was still under development at the time that this research was
conducted and it did not provide full access to all the results generated on the

GBS cloud.
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7. Dynamo was at the very first stage of development and the author had to do a lot
of programming in Dynamo source-code to be able to make this project happen.
Most of these limitations were reported to Dynamo developers and they are being
addressed.

8. Since Dynamo did not provide timer functionality, the optimization steps could
not be visualized during the process. This feature would be added to Dynamo in

recent future.

6.3. Future Work

The BPOpt framework was developed based on open-source applications. It is
available to the public and can be improved by users or developers. Based on comments
from the users, as well as our own experience with the developed workflow and tools,
the following items were identified as potential improvements and would benefit further
development (some of these features have been added to the system recently):

1. For parametric analysis, large changes in global building geometry can lead to
alterations in structural requirements and mechanical systems as well.
Incorporating a broader variety of simulations in different domains into the
BPOpt framework will lead to a more comprehensive exploration of the solution
space and provide better decision support for the stakeholders of building
construction.

2. Expanding the optimization algorithms included in Optimo: Currently, Optimo
includes only one optimization algorithm (NSGA-II) for MOO, but in the coming
release two other metaheuristic optimization algorithms (Multi-Objective
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Evolutionary Algorithm Based on Decomposition (MOEA/D) and Speed-
constrained Multi-objective Particle Swarm Optimization (SMPSO)) will be
added into the tool.

Immediate constraints handling: The current version of Optimo can translate
constraints to parametric relationships in the optimization process. However, it
does not support direct constraint handling which will be addressed in the future
releases as well.

. Adding discrete optimization: The current version of Optimo uses lists and
indices to manage discrete optimization. In future releases, discrete optimization
handling should be verified and improved.

Interface update: As it is mentioned by a few users, there is a need for improving
Optimo interface in and adding new features to Optimo to better serve designers’
needs in the process of performance optimization. The latest version of Optimo
has a new interface, which provides more settings to the user and it is much
easier to setup. The process of improving interface is an ongoing process and it
will be improved in the future.

. Visualizing the optimization results within the same BIM platform to help
designers navigate through the results quickly and make design decisions in a
single design platform that is easy to use.

Exploring more real project test cases (including both residential and commercial
buildings) to test the usefulness of the BPOpt workflow with larger projects and

wider ranges of variables within a design studio classes and in the industry.
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These studies can be used to propose a list of best practices for building

performance optimization process.
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