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ABSTRACT 

Barrier island foredunes are key indicators of the rate of island transgression, in 

which small dunes exhibit rapid transgression through washover and breaching, and 

large dunes exhibit controlled transgression in response to sea level rise. Recent 

evidence suggests that the largest foredunes at Santa Rosa Island, Florida and Galveston 

Island, Texas exhibit sigmoidal recovery patterns over an approximately 10 year time 

period, and that high and low islands vary alongshore in a pattern that is reinforced if 

there is a sufficient recovery period. This study examines the resiliency of Assateague 

Island National Seashore, MD through its ability to return to its pre-storm condition 

following a hurricane. 

The primary hypothesis of this study is that the rate of recovery of each 

examined parameter at ASIS will exhibit a sigmoidal pattern as seen at Santa Rosa 

Island, and that recovery rates will vary alongshore due to high and low island areas. 

Foredune elevation data from 2000 and 2005 was compared and categorized into 

recovery periods based on the temporal difference between impactful storm surges and 

the 2005 elevation data. Morphometric parameters including dune crest, height, volume, 

and toe were extracted and used to characterize recovery. Logistic curves were modified 

to represent the growth patterns of each parameter and recovery was examined with 

respect to high and low island sections. The rates of recovery from this study were 

compared with the results of a previous at Santa Rosa Island, FL. Results from this study 

support recovery patterns identified in previous studies. Evidence also suggests that low 
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dunes at Assateague Island cease to recover and that there is a limit to the growth of the 

smallest dunes. Land managers can use this knowledge as a resource in the preparation 

for and response to hurricanes, specifically as it relates to varying levels of vulnerability 

alongshore.  
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CHAPTER I  

INTRODUCTION, BACKGROUND, AND STUDY SITE 

 

Introduction 

 In 2012, Hurricane Sandy displaced the residents of roughly 100,000 Long Island 

homes, significantly altering the lives of many and resulting in billions of dollars of 

damage (Crichton 2012). Major coastal storms, like superstorm Sandy, are often 

destructive to human lives and the mainland topography. This will be even more 

significant as storms are projected to continue to increase in frequency and magnitude 

(Goldenberg et al. 2001; Emanuel 2005). Barrier islands are critical landforms in the 

protection of a mainland by absorbing energy produced by hurricanes, such as erosive 

waves, overwash penetration, and wind (Coastal Barrier Resources Act; Leatherman 

1979b; Guo 2014). This protective role is evidenced through witnessing the deterioration 

of a barrier island. For example, the Chandeleur Islands in Louisiana continue to be 

reduced as a result of insufficient recovery time between storms, and lack of sediment 

supply. The impact caused by storms in the Gulf of Mexico are minimized for coastal 

communities in this area because waves are forced to break at the island rather than on 

the mainland, thus eroding and drowning the offshore landscape. Whereas this is not a 

typical barrier island system, it is an example of the destruction that can be caused by 

storms and the ability for coastal formations to be inundated in a short amount of time if 

not properly nourished. 
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Understanding the dynamics of these coastal features provides information for 

improved recovery plans and prediction of barrier island resiliency. This knowledge is 

valuable in the evaluation of future risk as it pertains to hurricanes and barrier islands. 

For example, information about the rate of recovery of foredunes may be used by land 

managers in the identification of areas that may be more easily breached during future 

storms or that require specific care as it relates to renourishment and growth of 

vegetation. Similarly, this information can be useful to homeowners when deciding 

where to purchase or build a house (Anderson 2013). The response and recovery patterns 

of a barrier island influence the long-term condition of the landscape. Slow recovery 

rates may result in degradation of the island as a whole after several storm occurrences, 

whereas a fast recovery rate may contribute to the lastingness of the site, even as storms 

continue to cause an impact. This variance can maintain the condition of varying 

portions of the island. Some areas with low dunes may continuously be impacted and 

overwashed, reinforcing its low island condition, whereas high island areas are less 

susceptible to overwash and have a greater ability to grow in both height and width. It is 

essential to gain knowledge about which area is most susceptible to damage and the 

timescale of recovery in that same area to preserve both human lives and wildlife.  

Remotely sensed data can be used to produce information about coastal processes 

and the causes for specific patterns of response. For instance, vegetation data can 

produce an idea about rates of growth and spatial variability, which is a contributing 

factor to dune growth. Current research demonstrates a need to quantify the volumetric 

and topographic characteristics to understand the resiliency of a barrier island. Whereas 
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many studies focus on quantifying one specific parameter as it relates to dune recovery, 

this study is an evaluation of a variety of variables and their pattern of change (Fisher et 

al. 1974; Psuty 1992; Roman and Nordstrom 1988; Hapke and Richmond 2000; Durán 

and Moore 2013; Houser 2013). Studies also indicate that knowledge of a variety of 

morphometric variables provides a better understanding of the rate of recovery in the 

complex situation of barrier islands protecting the mainland (Sallenger 2000; Roelvink et 

al. 2009; Houser 2013). To date, no study has accomplished the quantification of an 

array of geomorphometric parameters, aside from changing dune height, to achieve a 

detailed understanding of recovery patterns contributing to barrier island resiliency. This 

thesis addresses these items through an evaluation of Assateague Island National 

Seashore on the coast of Maryland. Results are compared to the recovery curve 

developed by Houser et al. (2015) in which the change in dune height was represented 

by a sigmoidal curve. This study quantifies the recovery rate of Assateague Island 

National Seashore, MD after a hurricane, using the following parameters: dune crest 

elevation, dune height, dune volume, and dune toe elevation. 

The primary hypothesis of this study is that the rate of recovery of each 

examined parameter will exhibit a sigmoidal pattern as seen in Houser et al. (2015). 

Recovery rates will vary alongshore at Assateague Island National Seashore, and high 

and low island areas will be evident, similar to the alongshore variability observed on 

Santa Rosa Island in northwest Florida. To test this hypothesis, two objectives must be 

completed: 

1. Identify study site and obtain multitemporal elevation data. 
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2. Quantify change in dune height, dune toe elevation, dune slope, and dune 

volume to identify the rate of recovery over a 5-year period. 

It remains unknown whether barrier islands in various geographic locations 

experience similar recovery patterns and timelines following storm events. This thesis 

will help determine whether a similar pattern exists compared to what is seen in previous 

studies. 

 

Background 

 Storm events are powerful enough to alter barrier island morphology through a 

variety of sediment transport processes. Hurricanes are categorized based on wind speed 

using the Saffir-Simspon Hurricane Scale, where 74-95 miles per hour represents a 

Category 1 hurricane and 157 miles per hour represents a Category 5 hurricane (Dolan 

and Davis 1992). These wind intensities contribute to changes in wave height, 

influencing the effect that the ocean has on a barrier island. Aeolian processes transport 

sediment and storm surges can breach the island or transport sand away from the 

shoreline. Where Ss is storm surge elevation and DC is dune elevation, overwash occurs 

when Ss > DC and has the potential to move sediment towards the part of the island 

closest to the mainland. This washover deposition contributes to island migration, which 

may eventually lead to the welding of the island to the mainland. Lateral, or longshore, 

transport of sediment is another function that is critical to erosion and accretion on a 

barrier island landscape. Assateague Island experiences a north to south longshore 

current in which sediment is both eroded and deposited; the jetty just south of Ocean 
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City restricts the deposition of sand at the northern end of the island, which is being 

eroded more quickly than the southern portion (Leatherman 1979a). Figure 1 shows a 

sample sediment budget demonstrating areas of sediment loss and gain on a barrier 

island. Offshore and alongshore resources provide nourishment while other features and 

processes, such as inlets and overwash, erode sediment from the island. This does not 

include cross-shore loss (eroding away from the shoreline), or any loss that is also 

sustained as a result of the alongshore current. However, overarching sediment budget 

interactions between the ocean and an island are demonstrated in this illustration. 

 
 
 

 

Figure 1 Example sediment budget along a barrier island chain in North Carolina, 
retrieved from Pierce (1968) 

 
 
 

Assateague Island National Seashore, MD is no exception to these processes, and 

is frequently affected by hurricanes of all categories in addition to tropical storms. Even 
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weak hurricanes can cause these damaging occurrences if dunes are small or absent, 

posing a threat to wildlife and human inhabitants through exposure to submerged areas, 

ecosystem devastation, economic damages, or destruction of infrastructure resulting in 

injuries or death (Pielke et al. 2008; Houser and Hamilton 2009). Barrier islands act as 

barricades to the mainland, and are often effective in the mitigation of disaster. 

Leatherman (1979a) emphasizes the effect of barrier island dune systems as a stabilizing 

effect that prevents overwash and breaching. When examining overwash patterns and 

effects at Assateague Island, it was found that this process is effective in maintaining 

island width “within the limits of 120-215 meters” (Leatherman1979a). However, severe 

storm events can result in significant storm surges causing damage to both the island and 

the mainland. 

Sallenger (2000) suggests four impact levels representing the magnitude of storm 

impact on barrier islands. Impact Level 1, the ‘swash’ regime, is representative of wave 

runup confined to the shore. Because this area erodes during the storm and recovers 

following the storm, there is assumed to be no net change in sediment supply associated 

with Level 1. Impact Level 2 is identified as the ‘collision’ regime. In this instance the 

waves force net erosion, resulting from runup that exceeds the threshold of the base of 

the foredune ridge. Impact Level 3 may contribute to landward sediment transportation, 

potentially causing landward migration of the island. This impact level, identified as the 

‘overwash’ regime, is characterized through wave runup that overtops the berm and/or 

foredune ridge. Finally, Impact Level 4, the ‘inundation’ regime, describes an instance in 

which the storm surge completely and continuously submerges the barrier island. 
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Sediment is transported net landward, and evidence suggests that the quantity and 

distance of this migration is greater than that seen in the ‘overwash’ regime. These scales 

of impact represent the erosive and depositional behavior of varying storm intensities, 

and provide information about what might occur as a result of these storms (Sallenger 

2000). Though the forces contributing to these regimes are dynamic, it is possible to 

parameterize them. Stockdon et al. (2006) notes that the magnitude of a swash regime is 

dependent only on offshore wave height and period, while runup (primarily related to the 

collision and overwash regimes) is dependent on significant wave height and time-mean 

setup processes. On Assateague it can be inferred that the gentle slope does not impact 

the swash regime and supports a greater runup magnitude. Assateague Island most 

typically experiences ‘swash’ and ‘collision’, in which case the storm surge does not 

breach the foredune. However, historic storm events and the permanent jetty just north 

of the island have influenced its landward migration. As overwash events continue to 

occur and the northern end of the island is starved of sediment, the island will continue 

to transgress through a positive feedback system.  

Previous studies have shown that beaches and dunes on barrier islands have 

demonstrated a sigmoidal curve in their rate of recovery in which the recovery gradient 

peaks in the middle of the time scale (Hugenholtz and Wolfe 2004; Houser et al. 2015). 

Overall recovery of dunes in returning to pre-storm conditions takes 10 years or more 

(Houser et al. 2008; Houser et al. 2015). Identified primarily by the regeneration of 

foredune elevation, recovery is dictated by the severity of the storm and the time interval 

between storms. Beach and dune quantification using LiDAR, bathymetry, and profiles 
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derived from these technologies, offers evidence of alongshore and across-shore 

variation (Houser and Hamilton 2009). Houser et al. (2015) identifies the vulnerability 

of a barrier island through the relationship between the water level and the coastal 

geometry, primarily as it relates to the height and extent of an island’s foredunes. This 

growth model, originally presented as a vegetation recovery model by Hugenholtz and 

Wolfe (2005), is: 

N! =
KN!

K− N! !! + N!
 

where N is a system attribute (i.e. dune height), t is the time elapsed since the last 

disturbance, n is the rate of growth (represented by r in this thesis), No is the initial 

position or height of the attribute (t = 0), and K is the upper boundary (asymptote) of 

dune growth (Hugenholtz and Wolfe 2005; Houser et al. 2015). This equation quantifies 

the condition of a specific attribute at a given point, and is applied in this study to the 

parameters DC (dune crest), DH (dune height), and DV (dune volume). The results of this 

equation when applied to dune recovery at Santa Rosa Island, FL contributed to a 

sigmoidal recovery curve seen in Figure 2 (Houser et al. 2015). 
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Figure 2 Logistic recovery curve results obtained from Houser et al. (2015) with data 
points from Morton et al. (1994) and Priestas and Fagherazzi (2010). 

 
 
 

Following the erosive impacts that a storm may cause, an island’s recovery rate 

is dependent upon the ability to return to its equilibrium state. Processes contributing to 

this recovery may include alongshore migration of sediment through waves, 

revitalization of dune vegetation, landward migration of nearshore bars, and aeolian 

sediment transfer from the beach to the recovering dunes (Houser et al. 2015). Barrier 

islands along the Gulf of Mexico and in the mid-Atlantic witness storm surge impact 

nearly every year, thus experiencing some level of vulnerability. This study examines a 

variety of parameters, including dune height, to quantify the rate of change, taking each 

of these recovery processes into consideration. 

Coastal fordunes vary over space and time as a result of the dynamic nature of 

the adjacent beach, which also contributes to the complexity of forms (Psuty 1992). 

Hesp (2002) discusses incipient foredunes as being formed primarily through aeolian 

forcing interacting with barriers such as vegetation, driftwood, or flotsam. Obstructions 
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such as these slow the wind transporting sediment, resulting in deposition of material. 

Different species, density, and distribution of vegetation contribute to variability in the 

morphology of foredunes along shore. Studies have shown that continuous beach 

propagation also contributes to the formation of multiple dunes. Aeolian transport rates 

vary based on beach type, resulting in dissipative beaches exhibiting large fordunes 

(Short and Hesp 1982; Durán and Moore 2013). Other influencing controls on sediment 

availability and transport to foredunes include beach width, seasonal variations, wind 

direction, and water table heights. Houser et al. (2008) identifies nearshore morphology 

as a key factor in the alongshore variability of dunes, particularly as it relates to 

transverse ridges and island width. Bathymetric features such as these strongly influence 

the interaction of waves with the beach, impacting the sediment supply to renourish the 

beach and dunes following a storm event. Figure 3 shows the dune-beach-ocean 

relationship in which the offshore bar nourishes the beach, the beach nourishes the dune, 

and vice versa (Psuty 2004). This fundamental morphological process is the basis of 

coastal sediment exchange and the formation of onshore and nearshore features. 

 
 
 

 
 

Figure 3 Dune-beach-bar relationship of sediment transport obtained from Psuty (2004). 
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The effectiveness and functionality of barrier islands are dependent upon dune 

ability to recover to pre-storm elevation following a disturbance. Elevation change is a 

fundamental identifier of barrier island recovery after a storm event, as analytical 

capabilities demonstrate the erosional and depositional patterns of an area (Houser and 

Hamilton 2009). Observation of pre- and post-storm conditions at a site allow for an 

understanding of the direction and magnitude of sediment movement. Several factors 

that affect dune formation in a coastal environment include vegetation and 

anthropogenic impact, which may alter the anticipated relaxation trend of an area. 

Vegetation has proved to be a critical component of dune recovery and stability, 

especially on barrier island landscapes in many studies (Fisher et al. 1974; Morton et al. 

1994; Hesp 2002; Houser et al. 2015). Durán and Moore (2013) discuss that foredune 

growth eventually becomes limited “by a negative feedback between wind flow and 

topography”. It is suggested that the amount of sand in a dune system, and thus the 

maximum size of a foredune, is controlled primarily by “plant zonation” (Durán and 

Moore 2013). Figure 4 demonstrates an island state using an equilibrium diagram, where 

there are two equilibrium states of “high island” and “low island”. The ball starts in the 

high island state of equilibrium, but moves to an unstable state as it crosses a threshold; 

in this case, the threshold is representative of a storm event. With a sufficient period of 

nearshore, beach, and dune recovery, the ball will move back towards the high island 

state. However, if the storm reduces the vegetation within a dune system and erodes the 

dune itself, or if there is insufficient time to recover before another storm event occurs, it 

will move into a low island state. Over time, the equilibrium state may return to high 
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island if overwash does not continue to affect the area, and if the revitalization of 

vegetation and sediment availability exists in the system. If overwash and storms 

continue to impact a low island area, the state of equilibrium will be reinforced over 

time. 

 
 
 

 
 

Figure 4 Equilibrium (ball and cup) diagram representing high and low island states as it 
relates to a threshold (obtained from Houser et al. 2015). 

 
 
 
Morton et al. (1994) discuss four stages of recovery as it pertains to beach 

resiliency (see Figure 5): (1) rapid forebeach accretion, (2) backbeach aggradation, (3) 

dune formation, and (4) dune expansion and vegetation recolonization. Stage 1 is 

characterized by a steep forebeach, and can last between several months to a year; this 

stage is common among sandy beaches and is relatively rapid in comparison to some 

other recovery stages. Stage 2 begins at the second post-storm summer because the 
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elevations “must exceed the limits of flooding produced by normal spring high tide” 

prior to the significant accumulation of sand (Morton et al. 1994). Stage 3 is dependent 

upon the amount of aeolian transport and the presence of back beach vegetation to limit 

the transport; this phase is characterized as taking several years. Stages 2, 3, and 4 are 

gradational because of these limiting factors. Stage 4 differs from stage 3 in that the 

dunes are “taller, wider, continuous, and more densely vegetated” (Morton et al. 1994). 

As the last phase, stage 4 can take more than 10 years to occur. Despite this model 

primarily relating to anthropogenic-limited sites, aspects can be applied to other beach 

locations in projecting recovery patterns. This recovery pattern was studied on Galveston 

Island, TX, and results showed that “only two of seven profile sites experienced 

complete recovery” in total sand volume as a result of the areas being undeveloped 

(Morton et al. 1994). Areas with anthropogenic forcing experienced forebeach recovery 

similar to undeveloped beaches, but backbeach and dune recovery was impeded due to 

infrastructure, especially houses and filled lots, restricting deposition (Morton et al. 

1994).  Assateague Island is mostly undeveloped, and thus allows for the backbarrier to 

become renourished. Volumetric data can produce a greater understanding of spatial 

variance within a coastal environment, and may offer information regarding the health of 

an island. Houser et al. (2015) supports this timeline, showing that recovery of large 

dunes on Santa Rosa Island, FL also takes approximately 10 years. 

Alongshore variability in dune response to storm events is reflected in current 

coastal geomorphology research. For example, narrower portions of Assateague 

experience more washover, resulting in a different recovery pattern than that of wider 
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portions. Furthermore, any significant morphological features offshore likely contribute 

to the variation identified along the island (Houser et al., 2008; Houser and Hamilton, 

2009; Weymer et al. 2013). Sediment shifted away from the island during a hurricane 

generally returns to the shoreline over the course of several years as a result of the 

complex system of longshore and cross-shore currents and oscillation, and contributes to 

the revival of the dunes and shoreline (Morton et al. 1994; Houser et al. 2008). This lag 

is controlled by nearshore bathymetric characteristics, the erosion of antecedent geology, 

and the presence of nearshore transgressive sand deposits (Schwab et al. 2014). 

Predominant factors contributing to the variability in the morphology of dunes at 

Assateague include anthropogenic activity and overwash. As a national seashore, 

Assateague Island experiences effects of visitors driving along the beach and promoting 

alterations in the beach and dune morphology. A recent study by Houser et al. (2013) 

examines the impacts of driving on Assateague’s beaches, based on more than 2 million 

visitors per year interacting with approximately 26 kilometers of drivable beach. Results 

suggest that while driving on the beach does not “lead to a loss of sediment from the 

beach-dune system,” this activity may contribute to the susceptibility of the scarping and 

overwash of foredunes. Additionally, driving on the beach following a storm event limits 

the ability of vegetation and foredune recovery (Houser et al. 2013). 
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Figure 5 Four stages of recovery, obtained from Morton et al. (1994). Stage 4 can take 

10 years or more to occur after a storm event. 
 

 



 

16 

 

Foredune vulnerability to overwash events is another significant variable in a 

barrier island’s morphology. Houser (2013) identifies successive overwash occurrences 

as the primary reinforcement of alongshore variation in dune morphology. The 

topography and near-shore bathymetry are complex variables that significantly influence 

the impact of a storm. Overwash is a critical component of the morphology on 

Assateague Island, and has been examined in multiple studies. Fisher et al. (1974) 

identifies the fan areas as being ultimately stable, but records the slight recession of the 

dune line at the northern end of the island after two years and at least four storms 

causing overwash. Overwash material is eroded and transported back to the beach by the 

predominant northwest winds. Studies on Assateague Island National Seashore have 

shown that non-vegetated areas act as “temporary reservoirs” for the overwashed 

sediment that will eventually be redistributed to the beach and dunes (Leatherman 1976). 

Storm events causing overwash contribute to the transgression of the island, and will 

continue to do so as future storms impact the landscape. 

 

Identification of Study Site 

 Identifying a study site was the initial step of this research process. This step was 

heavily reliant on data availability; the scarcity of raw LiDAR data available to the 

public made it a challenge to find appropriate elevation data for multiple years at a 

sufficient resolution. Another limiting factor was finding barrier islands that have been 

recently affected by storms, but has also had a period of time to show some recovery 

patterns. Several locations considered include Fire Island, NY, Assateague Island, MD, 
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Matagorda Island, TX, the Outer Banks, NC, and Santa Rosa Island, FL. These barrier 

islands share characteristics including dune elevation, storm frequencies, and 

anthropogenic forcing. Assateague Island National Seashore was ultimately selected 

based on the availability of remotely sensed over a period of nearly 20 years, the 

frequency and magnitude of storms affecting the area, the availability of literature to 

establish a working knowledge of the morphology of the landscape, and the ability to 

collect storm surge data. 

 

Background 

 Established in 1962, Assateague Island National Seashore (ASIS) is a barrier 

island jointly managed by the National Park Service, the U.S. Fish and Wildlife Service, 

and the Department of Natural Resources. The purpose statement of this national park is: 

“Assateague Island National Seashore was established to protect and preserve 

Assateague Island and its surrounding waters, to give the public opportunities to enjoy 

outdoor recreation, and to appreciate and learn about associated natural and cultural 

resources.” (NPS 2002). The national seashore is located across two state boundaries 

(Maryland and Virginia), and is often associated with neighboring Chincoteague Island, 

Virginia.  Assateague Island is comprised of 48,000 acres of land just south of Ocean 

City, MD and is separated from the mainland by Newark and Chincoteague Bays.  Over 

2 million tourists visit the park every year to enjoy the scenery and explore the island, 

with more than 91 million visitors recorded since 1967; this number of visitors 

contributes to the funding eligibility of ASIS over time (Stats Report Viewer). At its 
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widest point, the island measures approximately 3 kilometers across.  The area being 

analyzed, shown in Figure 6, is less than 40 kilometers in length, and was selected based 

on data availability and extent. 

Hurricanes and tropical storms impact the mid-Atlantic coast nearly every year, 

and sometimes multiple times per year. In the 20th century, at least 12 high magnitude 

storms occurred and impacted Assateague Island through wind gusts, rain, and increased 

wave heights (Schwartz 2014). Frequency of these high magnitude coastal storms can 

vary from less than one year to greater than a decade. One large storm hit the area in 

1933, overwashing the area and creating an inlet between Assateague Island National 

Seashore and what is now Fenwick Island.  Wright and Short (1984) identify a 

relationship between beach state and environmental conditions, in which the breaker 

height, wave period, and sediment fall velocity are considered; over time, this 

relationship establishes an equilibrium condition. Storm magnitude and frequency 

influences this environmental beach state parameter and can describe the impact that the 

1933 storm had on Maryland’s shore (Wright and Short 1984). This impact resulted in a 

decision by land managers to develop a jetty just downdrift from Ocean City, MD that 

has been maintained since its completion in 1935 (Mackintosh 1982). Ultimately, the 

limited sediment availability to be deposited along the Assateague shoreline has resulted 

in the rapid transgression of the northern part of the island (Leatherman 1976). Since the 

establishment of this infrastructure, Assateague has migrated approximately 1 km to the 

west due to the lack of available material around the jetty to be transported southward 

(Houser et al. 2013). 
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Figure 6 Map of Assateague Island National Seashore (ASIS) study site with the 2010 
elevation dataset overlaid. ASIS is a barrier island off the coast of southern Maryland. 

The blue triangle north of ASIS represents Ocean City, MD. 
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Overwash and Sediment Budget 

 While the northern part of the island is transgressing rapidly, the entire length of 

Assateague is transgressing through the redistribution of sediment to the landward side 

of the island through washover. However, this movement landward has been somewhat 

stabilized through sediment renourishment, such as the establishment of a low foredune 

and one-time beach-widening project (Houser et al. 2013).  Fisher et al. (1974) discusses 

the fan areas as being ultimately stable, but records the slight recession of the dune line 

at the northern end of the island after two years and at least four storms causing 

overwash. Washover material is eroded and transported back to the beach by the 

predominant northwest winds.  Studies on Assateague Island National Seashore have 

shown that non-vegetated areas act as “temporary reservoirs” for the overwashed 

sediment that will eventually be redistributed to the beach and dunes (Leatherman 1976).  

Smaller particle sizes are transported from the nearshore bar or beach to the dune or 

backshore portion, and then captured by the vegetation in the area. Fisher et al. (1974) 

identifies the smallest grain size as the particles on the dune (0.20 mm), the second 

smallest as those on the overwash fan (0.25 mm), and the largest as those particles on the 

beach (0.30 mm). Storm events causing overwash contribute to the transgression of the 

island, and will continue to do so if storm magnitude and frequency increases 

(Goldenberg et al. 2001; Emanuel 2005). 

Assateague Island National Seashore cross-shore and alongshore profiles can 

change drastically in response to storm events.  The mean elevation of the island is 2 

meters above sea level, with dunes reaching up to 10 meters in elevation (Nature & 
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Science 2014). Overwash and aeolian processes, interaction with wildlife, and vegetation 

are several key characteristics that heavily influence dunes through sediment 

transportation, stabilization, deposition, and erosive forcing at ASIS. Beach state may 

vary temporally as a result of changes in each of these parameters (Wright and Short 

1984). According to the USGS, “tidal range is ranked microtidal (<1 m) coasts are very 

high vulnerability and macrotidal (>6 m) coasts are very low vulnerability” as it relates 

to sea-level rise (Pendleton et al. 2004, 5). Assateague is characterized by a 1-2 m tidal 

range, demonstrating a high vulnerability to inundation in respect to this natural hazard 

(Pendleton et al. 2004). Average yearly wind direction is predominantly South-

Southwest, and ranges from 10 to 40 miles per hour on a typical day, influencing 

sediment transport and the development of the beach and dunes. This is shown in Figure 

7, where the island is oriented from SW/SSW to NNE. Typical daily tide heights range 

from -1 to 0.5 feet relative to sea level (WindFinder 2015).  
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Figure 7 Wind direction data for Assateague Island (WindFinder 2015). 
 
 
 
Vegetation 

 A diversity of environments throughout the island results in less than 1% of the 

beach landscape being classified as vegetated (Nature & Science 2014).  Fleshy, thick-

skinned plants are located on the beach and low dunes, preventing erosion through 

aeolian influences. Roman and Nordstrom (1988) identify the dominant species on large 

dunes at the southern end of the island as Ammophila and Solidago sempervirens 

(Seaside Goldenrod); lower, discontinuous dunes are “sparsely vegetated” with 

Ammophila breviligulata (American Beachgrass), a stabilizing entity. Their study 

determines the presence of a critical threshold for erosion rates, “beyond which 

vegetation does not recover” (Roman and Nordstrom 1988). This suggests that past a 

certain point of overwash and/or scarping, the island will fail to achieve dune buildup as 

it was able to do in the past (Roman and Nordstrom 1988). These relationships can be 
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discussed in terms of “high” and “low” dunes, in which a high island is more likely to 

exhibit strong recovery patterns during a post-storm period and a low island cannot 

recover before it is impacted by another storm. Thus, it is typical that high islands and 

low islands maintain these characteristics over time (Houser and Hamilton 2009). In the 

case of a low island, the landscape may experience rapid transgression and eventually 

weld to the mainland beach. 

Vegetation and dune health on ASIS is also impacted by the island’s wildlife 

population. Assateague’s wild horse population is a unique element of the park that 

draws many visitors. However, the grazing by these horses has been documented as a 

significant influence on dune formation and erosion (De Stoppelaire et al. 2004). Results 

from this study suggest that “in order to maintain the natural processes that historically 

occurred on barrier islands”, the horse population must be reduced, or larger fenced 

areas must be established to prevent grazing (De Stoppelaire et al. 2004).  This wildlife 

population is one that does not commonly exist on other barrier islands, and thus poses a 

unique additional variable to consider in the maintenance and stability of the island. 

 

Wildlife and Recreation 

 In addition to being known by tourists for its 37 miles of beaches and population 

of feral horses, Assateague is also known for the wildlife and recreational activities 

supported in the area.  Occupants of this national seashore include snakes, rodents, crabs, 

deer, and seasonal birds.  Offshore wildlife includes seasonal fish and infamous 

Maryland blue crabs.  Tourists may visit the Maryland portion of the island year round 
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to enjoy the landscape.  Popular activities include bicycling, camping, hiking, canoeing 

and kayaking, and shell collecting.  Assateague Island also allows over-sand vehicles 

along 12 miles of beach in Maryland and a small stretch of beach in Virginia; the rest of 

the beach is undisturbed by vehicles. Results from Houser et al. (2013) suggest that 

driving on this beach ultimately increases the vulnerability of the island through 

decreased foredune crest elevations. This is primarily a result of vehicles crushing 

existing vegetation and limiting seaward growth of the vegetation (Houser et al. 2013). 

Many visitors also participate in swimming and surfing, surf fishing, and shellfishing 

(Plan Your Visit 2014).  The Assateague Island Visitor Center is located on the 

mainland, but transportation infrastructure extends to the island itself for the 

convenience of campers and hikers at the northern end. This influences the sediment 

budget and presence of vegetation at the end of the island, and is the area of ASIS that 

experiences the most anthropogenic forcing. 

 

Storm History 

Located on the east coast of the United States, Assateague Island’s shoreline is 

constantly reconstructed through storm events as well as everyday aeolian and wave 

dynamics.  Recent storm events include Hurricanes Sandy (2012), Irene (2011), Earl 

(2010), Hurricane Hanna (2008), Hurricane Ernesto (2006), and Tropical Storm Barry 

(2007).  Storm events such as these have the ability to significantly impact the 

distribution of sediment in an area based on pre-existing morphology. Table 1 shows the 
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dates and categories of the storms between datasets. The surge associated with these 

storms influence the recovery ability of the foredunes on ASIS. 

 
  
 
 

Table 1 This table shows the categories and dates of recent coastal storms affecting 
ASIS. Not all storms listed were incorporated in this study, due to small surge 

elevations. 
 

Date Storm or Data Category 
8/19-30/1998 Hurricane Bonnie 3 
8/24-9/7/1999 Hurricane Dennis 2 
9/7-19/1999 Hurricane Floyd 4 

10/13-24/1999 Hurricane Irene 2 
9/14-21/2000 Hurricane Gordon 1 
9/14-29/2002 Hurricane Isidore 3 
9/6-20/2003 Hurricane Isabel 5 

8/24-9/10/2004 Hurricane Frances 4 
9/2-24/2004 Hurricane Ivan 5 
9/13-29/2004 Hurricane Jeanne 3 
7/4-10/2005 Hurricane Dennis 4 

8/24- 9/1/2006 Hurricane Ernesto 1 
8/25-9/5/2010 Hurricane Earl 4 
8/21-30/2011 Hurricane Irene 3 

10/22-11/2/2012 Hurricane Sandy 3 
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CHAPTER II  

METHODOLOGY 

 

Introduction 

Light Detection And Ranging (LiDAR) elevation data was used to identify 

changes in foredune height and volume at Assateague Island National Seashore using 

cross shore transects at regular 20 m intervals alongshore, and GIS tools available 

through the USGS and ESRI ArcGIS ArcMap and ArcCatalog interfaces. A total of 

5,824 transects were extracted for the years 2000, 2005, 2008 and 2010. The 2000 and 

2005 datasets were interpreted in this study. 

 

Acquisition of Imagery 

While there is a variety of data viewers and datasets available for downloading 

online, not every system contains historical data, nor data for every coastal area. NOAA 

Digital Coast is a free resource available to the public that offers a multitude of 

multitemporal data formats for coastal areas in the United States. This online tool hosts 

benthic, demographic, economic, land cover, weather, and many other data types, and is 

encouraged to be used by coastal communities and land managers. LiDAR digital 

elevation models at Assateague Island National Seashore were downloaded for the years 

2000 and 2005 using NOAA Digital Coast; data for 2008, 2010, and 2012 was also 

available through this site, but not analyzed in this study. While the website called these 

files “LiDAR”, suggesting they were formatted in .las or .laz format, they were not raw 
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LiDAR files as expected. Rather, these DEMs were in .tif format and were DEMs 

already built from raw LiDAR by the organizations that had collected the data, including 

the U.S. Geological Survey (USGS, 2000 and 2008), the National Oceanic and 

Atmospheric Administration (NOAA, 2000), the National Aeronautics and Space 

Administration (NASA, 2000 and 2008), and the Army Corps of Engineers (USACE, 

2005, 2010, and 2012). Figure 8 shows the spatial extent for each dataset obtained and 

Table 2 shows the characteristics of each dataset including dates, technology, 

organization, and cell size. 

 

Pre-Processing 

Upon the acquisition of raster data from Digital Coast, the data was reprojected 

into the Maryland State Plane projection in ArcMap 10.2.2. Because there was no 

projection initially associated with the data, it was necessary to ensure that it would 

correspond to a basemap layer and typical Maryland projection for appropriate 

geographic display and any potential georeferencing purposes. Following the re-

projection, any years that had multiple tiles were mosaicked in ArcCatalog 10. 2.2, 

providing data continuity for the casting of transects. 
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2000 dataset. 

 

2005 dataset. 

 
 

2008 dataset. 

 
 

2010 dataset. 

Figure 8 Re-projected elevation datasets for years 2000, 2005, 2008, and 2010 collected 
from NOAA's Digital Coast. 
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Table 2 Display of dataset characteristics. 
 

Dates 
Collected Sensor Name Resolution Organization 

(s) Project Name 
Accuracy 

(Horizontal/ 
Vertical) 

9/20 -
11/2/2000 

Airborne 
Topographic 

Mapper 
(ATM) II 

3.089 m NOAA, 
USGS, NASA 

Airborne LiDAR 
Assessment of Coastal 

Erosion (ALACE) Project 
for the US Coastline 

+/- 0.8 / 
0.15 m 

8/24 -
11/26/2005 

SHOALS-
1000T 2.065 m USACE 

2005 US Army Corps of 
Engineers (USACE) 

National Coastal Mapping 
Program Topo/Bathy 

Lidar: Delaware, 
Maryland, 

New Jersey, New York, 
North Carolina and 

Virginia 

+/- 0.75 / 
0.2 m 

3/24 -
3/25/2008 

Experimental 
Advanced 
Airborne 
Research 

Lidar 
(EAARL) 

2.062 m USGS, NPS, 
NASA 

2008 USGS/NPS/NASA 
Experimental Advanced 
Airborne Research Lidar 
(EAARL): Assateague 

Island National Seashore 

+/- 1.0 / 
0.15 m 

9/23 -
9/25/2010 

Compact 
Hydrographic 

Airborne 
Rapid Total 

Survey 
(CHARTS) 

2.072 m USACE 

2010 US Army Corps of 
Engineers (USACE) Joint 

Airborne Lidar 
Bathymetry Technical 

Center of eXpertise 
(JALBTCX) Lidar: 

Maryland- September 
(Post-Hurricane Earl, 

Topo) 

+/- 0.75 / 
0.2 m 

11/9 -
11/11/2012 

Optech 
Gemini 
LiDAR 
Sensor 

1.030 m USACE 
2012 USACE Post 
Hurricane Sandy 

Topographic LiDAR: 
Virginia and Maryland 

+/- 0.304 / 
0.143 m 
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Casting Transects with DSAS 

Contours were cast in the cross shore direction using the ArcMap Digital 

Shoreline Analysis System (DSAS) extension developed by the USGS (Thieler et al. 

2009). The contours for this project are based on the 2008 data, in which ArcMap was 

used to derive contours and identify the 0 foot contour to establish sea level. This base 

contour was pulled 100 meters offshore from the 2008 dataset shoreline. A cross shore 

distance of 500 meters was established for each transect to ensure the collection of any 

bathymetry and foredune elevations. Transects were cast 20 meters apart, creating a total 

of 1,456 transects along the island (see Figure 9); the 2010 DEM was the limiting dataset 

because it had the shortest alongshore distance.  More than 5,800 elevation transects 

were manually extracted in ArcMap for 2000, 2005, 2008, and 2010. Approximately 220 

transects were selected at a time, plotted using the Profile Graph tool in the 3D Analyst 

toolbar, and exported as X and Y points in .xls format. 

 

Dune Extraction and Analysis 

Following the formatting of the 5,824 transects in Excel, dunes were extracted 

and the following dune parameters were identified: dune crest elevation (DC), dune toe 

elevation (DT), and dune height (DH). Sallenger (2000) defines DC as the “elevation of 

the highest part of the ‘first line of defense’”, or the maximum elevation of the foredune. 

DT is simply defined as the “elevation of the base of the dune” (Sallenger 2000). The 

difference between these two elevations is defined as DH. 
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To capture the dune in each profile, the dune toe and dune “heel” were identified. 

In most instances, the dune toe is identified at the first major inflection point. Each dune 

was evaluated by drawing a line from the dune crest to the berm and identifying the 

farthest point from that line (see Figure 10). Dune “heel” was identified using the same 

methodology on the landward side of the foredune. Following this manual extraction of 

each foredune, the dune toe and crest elevations were identified. 

 
 
 

	
  
 

Figure 9 Transects cast from offshore via DSAS tool (Thieler et al. 2009). While each 
transect was the same for each year alongshore, datasets varied in island width. 
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Figure 10 Sample profile from 2005 dataset showing parameter definitions dune toe, 
dune height, and dune crest (left to right). The dashed line and red arrow represent the 

extraction method of dune toe. 
 
 
 
Dune Classification and Recovery 

Upon completing the foredune extraction for every transect, each dune was 

classified into a regime (Sallenger 2000) based on the storm surge of each storm event 

where RHIGH is the elevation of the storm surge. Sallenger (2000) describes these impact 

regimes as incorporating swash, taking into account astronomical	
  tides,	
  storm	
  surge,	
  

and	
  vertical	
  height	
  of	
  wave	
  runup	
  values	
  (see Table 3; Figures 11 and 12). Because 

swash, runup, and tides were not incorporated in the storm surge data acquired in this 

study, the impact regimes used in this study are not direct representations, but rather 

modeled and named after those described by Sallenger (2000). The swash regime is 

characterized by a storm surge elevation less than or equal to the elevation of the dune 
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toe (RHIGH/DC = DT/DC) and is characterized by erosion of beach sediment and scarping 

along the dune toe area. The collision regime occurs when a surge elevation is greater 

than that of the dune toe, and less than or equal to that of the dune crest (RHIGH/DC > 

DT/DC). As a result, the dune slope can change drastically during a storm event, and may 

be scarped in this regime. In the overwash regime the surge elevation exceeds the 

foredune crest elevation (RHIGH > DC), where the critical threshold is RHIGH/DC = 1 

(Sallenger 2000). This regime is frequently seen at Assateague (Fisher et al. 1974), and 

contributes to washover fans and sediment deposition on the landward side of the dune.  

Storm surge was estimated from buoy data was from the Tide and Current 

database managed by NOAA (see Table 3); the data used was that collected by the buoys 

closest to ASIS. An active buoy at Ocean City captured data from a majority of storm 

surges under consideration, and is geographically the closest historical data available to 

Assateague Island National Seashore. In several instances, data was collected at both 

Ocean City, MD (north of the island) and Wachapreague, VA (south of the island), 

allowing for two data points to be used in the classification of transects via Excel; this is 

represented by a sloped line between the alongshore locations of these two buoys, rather 

than the otherwise horizontal line (representing data from a single buoy only) in Figures 

11 and 12.  
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Table 3 Hurricane dates, categories, and storm surges affecting ASIS. 
 

Date Storm Events Datasets Category Storm Surge (m) 

8/19-30/1998 Hurricane Bonnie  3 1.05 

8/24-9/7/1999 Hurricane Dennis  2  

9/7-19/1999 Hurricane Floyd  4  

10/13-24/1999 Hurricane Irene  2  

9/14-21/2000 Hurricane Gordon  1  

9/20-11/2/2000  LiDAR Data Set 2000 -  

9/14-29/2002 Hurricane Isidore  3 1.10 

9/6-20/2003 Hurricane Isabel  5 1.10 – 2.16 

8/24-9/10/2004 Hurricane Frances  4 1.60 

9/2-24/2004 Hurricane Ivan  5 1.73 

9/13-29/2004 Hurricane Jeanne  3 1.73 

7/4-10/2005 Hurricane Dennis  4 1.63 

8/24-9/8/2005  LiDAR Data Set 2005 -  
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Figure 11 Extracted dune toe and dune crest elevation on ASIS in 2000. Storm surges 
shown are associated with all storms between 2000 and 2005, affecting the recovery 

period of each transect. 
 

 
 

	
  
 

Figure 12 Extracted dune toe and dune crest elevation on ASIS in 2005. Storm surges 
shown are associated with the single storm occurring between the 2005 and 2008 

datasets, affecting the recovery period of each transect. 
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Recovery periods were identified as the amount of time since a Collision or 

Overwash regime impacted a given profile. Transects with a greater DH elevation in 

2000 than in 2005 were not analyzed because they represented profiles in which dunes 

did not recover; this left a total of 370 transects to analyze. The maximum recovery 

period possible between 2000 and 2005 is 5 years, which is shown if transects that 

experienced a Swash regime for each storm event. A Collision or Overwash regime is 

representative of a transect experiencing some type of disturbance, and thus the recovery 

period may be “reset” if either regime occurs. If Collision or Overwash occurred over a 

transect during Hurricane Dennis in July 2005 before the 2005 LiDAR dataset was 

collected (in August), the recovery period was less than one year. Alternatively, if a 

transect experienced one of these damaging regimes during an earlier storm but 

experienced a Swash regime in 2003, 2004, or 2005, other values would be assigned to 

the recovery period of the transect. Specifically, the dates of each storm event were 

compared to the 2005 LiDAR; a calculation of the difference in months was conducted, 

resulting in the following possibilities for recovery period: 0.083 years (1 month), 0.917 

(11 months) years, 1.917 years (23 months), and 5 years. 

Dune height (DH = DC– DT) was calculated for transects in years 2000 and 2005 

and then subtracted to show the change in DH between the two LiDAR dates. These 

values ranged between approximately -2.5 feet and more than 8 feet. Each recovery 

timeframe was then broken into quartiles and grouped to analyze recovery patterns of 

differing dune types; thus the first quarter of each recovery period created the First-

Quartile, or lowest values in each section, and so on. Dune volume was calculated by 
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finding the area under each dune profile and multiplying that value by a width of 1 m; 

these values were also displayed in quartiles. 
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CHAPTER III 

RESULTS 

 

Introduction 

 Dune morphometry extraction was successfully completed for the years 2000 and 

2005 using elevation profiles captured using the DSAS tool as described in Chapter II: 

Methodology. A total of 1,086 transects had no dune, or the dune crest elevation 

decreased or exhibited no change during the recovery period. These profiles were not 

included in the analysis because there was no vertical growth or recovery to analyze in 

these cases and this study is not examining erosion. Rather it is identifying growth in DC 

and changes in DH, and DV, and DT where growth exists. The remaining 370 transects 

that were evaluated varied in location across the island. Logistic curves were created for 

the change in parameters seen in the 370 transects using the equation used by Houser et 

al. (2015) and presented in Chapter I. This allowed the comparison of the recovery 

curves for ASIS to those developed in previous studies. Because of the time between 

LiDAR dataset, the options for the number of years of observed recovery are 0.08 (1 

month), 0.92 (11 months), 1.92 (23 months), and 5.00 (5 years), represented by Y0, Y1, 

Y2, and Y5 respectively. 

 

Changes in Parameters 

 Between 2000 and 2005, average dune elevation (DC) across Assateague Island 

increased from 3.8 m to 4.4 m, while average dune toe elevation (DT) decreased, from 
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1.9 m to 1.8 m. Average recovery of dune height (DH) over the span of Assateague 

Island during this time period was approximately 0.71 m, but varied in magnitude 

alongshore. Minimum values of change in DH fall around -0.75 m, with maximum values 

of approximately 3 m. Changes in DC range from slightly greater than 0 m to 

approximately 2 m of growth. Volumetric change for the 370 transects under 

consideration is nearly all positive, with less than 10 negative values due to varying dune 

width and dune height; DV values range from -200 m3 to more than 1,000 m3.  

Quartiles were used to identify rates differences in recovery rates between large 

height and small height dunes. The first quartile demonstrates the smallest values within 

each recovery period, while the fourth quartile exhibits the largest values. Greater dune 

height corresponds to greater dune elevation, and a greater change in dune height 

between 2000 and 2005 appears to relate to a greater dune height. Thus, Quartile 1 is 

representative of low island areas, while Quartile 4 is representative of high island areas. 

Each parameter under consideration was split into quartiles to determine whether growth 

rates aligned with the sigmoidal curve equation. When evaluating change in DV, the 5-

year recovery averages are less than the 2-year recovery averages, which may suggest a 

loss in dune extent. Changes in dune crest elevation over time at each transect shows a 

similar logistic recovery pattern to the dune height parameter discussed in Houser et al. 

(2015), especially in the rate of change in the third and fourth quartiles. In general, 

recovery in early years is limited, but the gradient of recovery dramatically increases 

between 3 and 5 years before reaching a point of diminishing return. Logistic curves 

were developed through the modification of variables in this equation and applying the 
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equation to each quartile to understand the rate of recovery for each dune height variety. 

Thus, four logistic curves exist for each parameter (see Table 4). The variables adjusted 

for each curve include: initial point, rate of change, and maximum recovery point. This 

logistic curve was modified for parameters DC, DH, and DV (see Figures 13, 14, and 15).  

Sigmoidal patterns vary between these parameters, particularly when comparing 

maximum growth rate periods. DC recovery (Figure 13) shows the greatest growth rate 

between 2 and 3 years, where the slowest growth rate is between 0 and 1 year. The 

recovery curve for DH (Figure 14) appears to have a gentler increase over time when 

compared to the logistic recovery curve representing change in dune crest elevation. This 

curve demonstrates a maximum growth rate between 1 and 3 years of more than 1 m. In 

comparison to the recovery curves of DC and DH, DV (Figure 15) exhibits a much gentler 

logistic pattern over time. With a maximum growth rate between 0 and 2 years, each 

quartile reaches its 5-year growth extent at least one year before other parameters. DT 

values (see Figure 16) indicate an inverted sigmoidal pattern for each quartile that cannot 

be represented by the logistic recovery rate equation applied to the other parameters. 

However, it appears that the maximum rate of change occurs between 1 and 2 years, 

suggesting a period where the dune is developing in extent. 
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Table 4 Recovery rates (r) for dune crest, dune height, and dune volume, represented by 
n in the equation used by Houser et al. (2015). 

 

 

 
 
 

 

 
Figure 13 Change in DC represented by quartiles and years of recovery with modified 

logistic curves overlaid. 
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Figure 14 Change in DH represented by quartiles and years of recovery, with modified 
logistic curves overlaid. 

 
 
 

 

Figure 15 Change in DV represented by quartiles and years of recovery, with modified 
logistic curves overlaid. 
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Figure 16 Change in DT represented by quartiles and years of recovery. 
 
 
 

Ensemble Averaging 

 Ensemble averages of transects from each period were calculated for each 

quartile to better characterize the processes behind the recovery observed at ASIS 

between 2000 and 2005. This analysis offers a general explanation for the characteristics 

of dune growth in each quartile (see Figure 17). Quartile 1 demonstrates sediment 

accretion on both the seaward and landward side of the dune, and exhibits some vertical 

dune growth of approximately 0.2 m. Quartile 2 shows a similar pattern of sediment 

accumulation, but with less erosion along the backbeach portion. Quartile 3 depicts 

nearly 0.5 m of vertical growth in some areas, with greater accretion along the 

backbeach than what is seen on the seaward side of the dune. Quartile 4 demonstrates a 

great amount of change, with nearly 1 m of accumulation in some areas. This average of 
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transects shows little sediment buildup on the seaward side of the dune, a large vertical 

increase, and great backbeach growth. Each representation of recovery for a given 

quartile differs from the others, with an overall increase in both DC and DV. Average DT 

varies among quartiles as well. The morphological changes seen in each quartile 

between 2000 and 2005 suggest that a variety of processes contribute to dune 

redevelopment through accretion and erosion. 

 
 
 

 

Figure 17 Ensemble average of transects in each quartile for years 2000 and 2005, 
where A) is Quartile 1, B) is Quartile 2, C) is Quartile 3, and D) is Quartile 4. 

 
 
 

In addition to the ensemble averages of quartiles, transects within each DH quartile 

were organized by recovery period, based on the date and magnitude of storm surges. 

For example, Quartile 1, Year 0 (Q1Y0) represents an ensemble average of transects that 
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were relatively low change in height over less than one year of recovery. Conversely, 

Quartile 4, Year 5 (Q4Y5) transects represent recovery of more developed “5 year” 

dunes with a large growth in DH. 

 

Quartile 1 

The highest dune seen in the first quartile, or average of low island profiles, is 

about 4 m in elevation in Q1Y2. Dunes of this size exhibited an overall decrease in DH 

between 2000 and 2005. Transects categorized in Q1Y0 represent areas of the island that 

were impacted most recently by a storm event in comparison to other years of recovery 

(Figure 18). These profiles exhibit accretion on the seaward side of the dune. A greater 

2005 DT value was observed for both Q1Y0 and Q1Y1 by approximately 1 m and 0.5 m 

respectively. Transects in this category show an average dune that transgressed landward 

with minor vertical growth, and an extended seaward dune slope in comparison to the 

shorter, steeper dune slope seen in 2000. A similar recovery pattern is seen profile 

Q1Y2, which shows accretion on the backshore, and a slight landward migration of the 

dune crest. Transects with the greatest recovery period, Q1Y5, demonstrate volumetric 

growth through the accumulation of sediment along the backshore area of the dune, 

between 50 and 100 m cross-shore. The cross-shore distance of each set of 2000 

transects ranges between 20 and 30 m while the location of the 2005 recovery curves 

show dunes at approximately 18 m (Q1Y0), 43 m (Q1Y1), 42 m (Q1Y2), and 20 m 

(Q1Y5). 
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Figure 18 Quartile 1 recovery for Year 0 (A), 1 (B), 2 (C), and 5 (D). Values along each 
Y axis represent Elevation (m), and the X axis represents Cross-shore Distance (m). 
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Quartile 2 

Several morphological changes between 2000 and 2005 in the second quartile 

average profiles show similarities to those in Quartile 1 (Figure 19). Specifically, Q2Y0 

also shows approximately 0.5 m of sediment accretion sediment on the seaward side of 

the profile, which differs from what is seen in the in Q1Y0 ensemble average of nearly 1 

m between 2000 and 2005. Q2Y1 shows a landward migration of the dune and a vertical 

increase of approximately 0.2 m, similar to that seen in the Q1Y1 average transect; 

Q2Y2 exhibits some of these characteristics as well. While the change in DC for 23 

months is not as large as that seen in recovery time of 11 months, the transgression of 

the dune results in a gentler seaward slope than what is reflected in the 2000 dataset. 

Between the 2000 and 2005, Q2Y5 shows a decreased DT of more than 0.3 m and a very 

similar average dune shape at a slightly greater magnitude represented by accumulation 

of sediment along the backshore side of the dune. Each ensemble average in Quartile 2 

migrated landward between 2000 and 2005. Specifically, dune crest position moved 

from 40 to 60 m (Q2Y0), 30 to 50 m (Q2Y1), 25 to 45 m (Q2Y2), and 40 to 46 m 

(Q2Y5). 
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Figure 19 Quartile 2 recovery for Year 0 (A), 1 (B), 2 (C), and 5 (D). Values along each 
Y axis represent Elevation (m), and the X axis represents Cross-shore Distance (m). 
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Quartile 3 

Recovery transects in quadrant three vary from what is observed in Quartiles 1, 

2, and 4 (Figure 20). Q3Y0 demonstrates more than 1 m of accretion of sediment in the 

backshore, reflecting dune transgression since 2000. Additionally, there is nearly 0.5 m 

of accumulation along the seaward portion of the dune. DT increases by approximately 

0.4 m between elevation datasets in both Q3Y0 and Q3Y1 profiles. With this increase in 

dune elevation on each side of the dune, an increase in DV also occurred between 2000 

and 2005. Nearly one year of recovery results in an average dune that has grown 

volumetrically both seaward, developing a berm, and landward. Sediment deposition on 

the landward side of the dune caused a gentler slope, with the crest of the 2005 dune 

located landward of the 2000 dune position. Q3Y2 exhibits an overall vertical increase 

in dune elevation and the development of a stoss slope. Finally, Q3Y5 displays a slightly 

eroded DT and accumulation along the backshore section, resulting a wider spatial 

distribution of sand along the average transect. This distribution shows one dune rather 

than two features, located at approximately 12 and 40 m cross-shore, seen in the 2000 

ensemble average transect. Similar to those average profiles in Quartile 2, the crest 

positions in 2005 are landward from those in 2000 in all but Q3Y2. These migrations are 

represented by changes in cross-shore position from approximately 20 to 53 m (Q3Y0), 

20 to 15 m (Q3Y1), 25 to 45 m (Q3Y2), and 12 to 20 m (Q3Y5). 
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Figure 20 Quartile 3 recovery for Year 0 (A), 1 (B), 2 (C), and 5 (D). Values along each 
Y axis represent Elevation (m), and the X axis represents Cross-shore Distance (m). 

 



 

51 

 

Quartile 4 

The fourth quartile, or high island transects, represents dunes that have had the 

greatest change in dune height (Figure 21). Ensemble averages of DC in this quartile 

reach more than 4 m in elevation, with changes in DH of more than 2 m. When compared 

with the average of transects in 2000, Q4Y0 demonstrates the development of a berm on 

the seaward side of the dune. Q4Y1 shows similar accretion landward of the 2000 dune, 

and small vertical growth. This average transect also shows some erosion on the seaward 

side of the dune, with DT at a nearly identical elevation in each year. Nearly 2 years of 

recovery show a landward migration of the dune as landward growth and a well-

developed stoss slope. The average of transects with the greatest period of recovery, 

Q4Y5, shows a slightly decreased DT and a large volumetric increase, particularly 

between 15 and 30 m cross-shore. This growth is seen landward of the seaward-most 

feature in the 2000 dataset. Recovery patterns in this quartile are similar to those seen in 

others, with greater volumetric increase seen in transects with long-term recovery 

periods. In respect to the cross-shore location movement in DC, between 2000 and 2005 

positions have shifted from 31 to 17 m (Q4Y0), 40 to 55 m (Q4Y1), 25 to 38 m (Q4Y2), 

and 10 to 20 m (Q4Y5). 
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Figure 21 Quartile 4 recovery for Year 0 (A), 1 (B), 2 (C), and 5 (D). Values along each 
Y axis represent Elevation (m), and the X axis represents Cross-shore Distance (m). 
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Alongshore Variability 

 In addition to examining transects based on DH quartiles, spatial variability was 

also considered. Specifically, high and low island areas (Quartiles 1 and 4) were mapped 

to gain a better understanding of the types of processes that might be affecting these 

different sections of Assateague Island. Groups were characterized by identifying areas 

within Quartiles 1 and 4 with 10 to 30 consecutive points where less than one-third of 

the points outside of the quartile under consideration are present. High and low islands 

were found to be grouped and alternating alongshore as seen in Figure 22. This map 

shows the change in dune height and the corresponding locations along Assateague 

Island National Seashore of each identified cluster. Transects in groups A, C, and E (low 

island areas) demonstrate a smaller change in dune height of -1.0 to -0.5 m, while 

transects in groups B and D (high island areas) exhibit a larger change between 1 and 3 

m in dune height. Groups A and B are spatially dense (approximately 30 transects in 

each group over 1 km) towards the northern end of the island, while group C consists of 

17 transects that span nearly 10 km across the middle of the study section. Groups D and 

E, located at the southern end of the island, are more sparsely distributed than A and B, 

but are considerably more condensed than group C, at alongshore areas of approximately 

1.5 and 2.0 m respectively. 
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Figure 22 High and low island areas along ASIS. This graphic shows the location 
alongshore of first and fourth quartile groups as it relates to change in dune height. 
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CHAPTER IV 

DISCUSSION 

 

Coastal resilience is defined as “a measure of the [coastal] system’s capacity to 

respond to the consequences of perturbation” (Klein et al. 1994). Barrier island recovery 

from disturbances such as elevated storm surge is a key indicator of the island’s 

resiliency, and thus its ability to adjust to changes in sea-level through moderated 

transgression, as well as protect the mainland and provide a habitable environment to 

flora and fauna (NPS 2002; Leatherman 1979b; Durán and Moore 2013; Guo 2014). 

Moreover, these changes alter what has been identified as the natural state of the 

nearshore morphology. Foredunes are particularly important in the discussion about 

barrier island resiliency because they control the rate of island transgression and are the 

first line of defense to beach and nearshore disturbances, both anthropogenic and natural. 

Controlled transgression is characteristic of areas with high dunes, while rapid 

transgression through washover and breaching occurs in areas of low dunes. High and 

low island areas alongshore have shown iterative patterns on Santa Rosa Island, FL, in 

which processes impacting the morphology of the landscape promote a consistent spatial 

variability between spaces with high and low dunes (Morton 2002; Houser et al. 2008; 

Houser and Hamilton 2009). Specifically, Weymer et al. (2013) suggests that storm 

impact varies because of the pre-existing morphology and that beach-dune recovery 

“may represent a reinforced process” where high island areas remain large and low 
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island areas remain small over time. Therefore, the inability for a dune to recover may 

force it from a high to a low dune. 

Previous studies have shown that the recovery of a barrier island to its pre-storm 

state is sigmoidal, showing peak growth rates around 3 or 4 years, during the backbeach 

and dune restoration phase (Houser et al. 2015). The primary hypothesis of this study is 

that the rate of recovery of each examined parameter at ASIS will exhibit a sigmoidal 

pattern as seen in Houser et al. (2015), and that recovery rates will vary alongshore due 

to high and low island areas. Whereas previous studies have examined changing dune 

height, this present study is an assessment of a wider range of morphometric parameters. 

Furthermore, in comparison to Houser et al (2015), most recovery values in this study 

did not begin at a 0 value because elevation data from 2000 was not collected 

immediately following a hurricane with a large storm surge as observed in Florida 

(Houser et al. 2015). This factor increased the complexity of the research design and 

interpretation of results, because a sequence of changes for individual dune profiles is 

not available and each transect on ASIS was disturbed as apparent in the recovery. 

Results of this thesis suggest that not all parameters demonstrate the same 

recovery rates or patterns, and that variability of recovery alongshore exists. Recovery 

rates at Assateague Island were evaluated by four dune parameters: dune crest (DC), 

dune height (DH), dune volume (DV), and dune toe (DT). Parameters were obtained 

through the manual extraction of dunes from 1,456 cross shore transects and elevation 

data from the years 2000 and 2005. Results suggest that a variety of processes are 

responsible for the redistribution of sediment leading to incipient dune growth and 
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backshore and berm development. There is also evidence of high and low island 

recovery variability alongshore, contributing to the idea that large dunes exhibit a faster 

rate of recovery than smaller dunes; raw values of this change show a recovery period of 

approximately 0.4 m change over 2 years for small dunes in Q2, whereas large dunes 

(high island transects) show a 4-year recovery period to grow more than 1 m. This is 

supported by the variation in r-values for DC, where low island areas had a recovery rate 

of 0.65 and high island areas had a recovery rate of 0.8. 

The change in DC is consistent with the pattern and magnitude of points 

identified by Houser et al. (2015). Values captured by the Santa Rosa study primarily 

align with the third and fourth quartile logistic curves from this thesis. Specifically, the 

average Santa Rosa value for zero years of recovery falls along both the third and fourth 

quartile curves for ASIS, one year of Santa Rosa recovery falls along the fourth quartile 

ASIS curve, two years of recovery at Santa Rosa intersects with the second quartile 

ASIS curve, and finally, the average value of five years of recovery at Santa Rosa falls at 

1.3 m, intersecting the fourth quartile ASIS dataset (see Figure 23). In both studies the 

peak rate of recovery (r) occurs between 3 and 4 years after a storm event. This suggests 

that Assateague Island National Seashore dunes recover at approximately the same rate 

as Santa Rosa Island, FL. Initial recovery is limited due to a lack of sediment available 

for dispersal, after a storm event erodes material away from foredunes, the beach, and 

the bar. Recovery of the foredune primarily relies on availability of sediment for the 

beach and backshore, as well as the ability for vegetation along the backshore to be 

renourished (Leatherman 1979a; Houser and Hamilton 2009). Dune recovery on 
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Assateague between 2000 and 2005 may be a result of  “the landward migration of the 

nearshore bars and recovery of the profile volume” (Houser et al. 2015). According to 

Houser et al. (2008), high island areas experience a faster rate of sediment return to the 

beachface as a results of landward migration of the nearshore bars. However, without 

ASIS bathymetric data, it is unknown what nearshore mechanisms influence the 

recovery on this barrier island. Houser et al. (2015) identified more rapid recovery 

(approximately 2 years) for small dunes in comparison to large dunes (approximately 6 

years); initial results from this thesis exhibit a small dune recovery around 2 years and a 

large dune recovery of about 5 years. 

Because the current dataset does not provide pre-storm elevation values to 

determine the presence of a relationship between dune height and recovery period at 

ASIS, values describing the initial condition must be obtained. De Stoppelaire et al. 

(2004) presented dune elevations between 1997 and 2000 at Assateague Island, ranging 

from 1.55 m to 3.36 m above mean sea level. Specifically, elevations were collected 

from several unfenced plots in locations representative of this study’s high island dunes. 

These elevations in 2000 were 1.57 m, 2.74 m, 2.83 m, 1.84 m, and 1.55 m from north to 

south at Plots 1 to 5 respectively (De Stoppelaire et al. 2004). This suggests that the 

fourth quartile values may not represent the maximum height of the foredunes, and that 

the period of recovery may extend past 5 years at some areas. Figure 24 demonstrates a 

modified logistic curve, using average point values from Quartile 4 and assuming a 

maximum dune elevation of 2.1 m, averaged from the values provided by De Stoppelaire 

et al. (2004). While a range of hurricanes impacted Maryland between 1990 and 2000, 
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Hurricane Bob was the most impactful in August of 1991, with storm surges of 

approximately 3.7 m (Beyers and Jordan 1991). As a result, elevation data from 2000 is 

assumed to be a 9-year recovery. This modified curve has an r value of 0.28, and is very 

similar to the curve observed by Houser et al. (2015), from Pensacola, FL. Figure 25 

demonstrates this curve in comparison to several other studies from Texas and Florida 

(Morton et al. 1994; Priestas and Fagherazzi 2010; Houser et al. 2015). 

 
 
 

 

Figure 23 Logistic curves with Houser et al. (2015) data from Santa Rosa Island, Fl. 
The recovery rate (r) for Quartile 4 is 0.8. 



 

60 

 

 
 

Figure 24 Logistic curve showing average Quartile 4 recovery values at ASIS, assuming 
a maximum DC value of 2.11 m (averaged from De Stoppelaire et al. 2004) and r = 0.26. 

 
 
 

 

Figure 25 Combination of data points from this study (ASIS), Houser et al. (2015), 
Priestas and Fagherazzi (2010), and Morton et al. (1994). 
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 Dune volume did not demonstrate a sigmoidal response as hypothesized and 

observed for the dune height. Rather, the distribution across years of recovery and 

quartiles was a lower magnitude logistic curve that was nearly linear. This suggests that 

the development of dune width proceeds at a different growth rate than DC and DH. 

Assateague’s volume curve (see Figure 15 in Chapter III) is similar to that seen at Santa 

Rosa, where a relationship between vegetation growth and DV is identified (Houser et al. 

2015). However, the volume curve developed in this thesis represents a change of 

volume while Houser et al. (2015) offers a curve demonstrating total volume. More 

specifically, results from Houser et al. (2015) show that as vegetation reaches its 

maximum, the volume growth slows, suggesting that vegetation revitalization relies on 

sediment deposition. This buildup of vegetation contributes to growth in DH, which 

shows logistic growth. The inverted sigmoidal curve representing DT also contributes to 

the growth in DH, such that as DT decreases, DH increases. 

Results show a redistribution of sediment that leads to incipient dune growth and 

backshore and berm development, caused by a variety of processes. Assateague is 

susceptible to “sediment-charged surges” and overwash deposition during storm events 

(Leatherman 1976). In a 1974 field study of ASIS, overwash and storm surge were 

found to be the most significant factors in data transport during a storm and in some 

instances the washover values matched the amount of eroded sediment from the berm 

(Leatherman 1976). Additionally, it is argued that the backshore and dunes supply the 

material for washover, contributing to the landward migration of foredune elevation 

profiles (Leatherman 1976). This pattern is visible in the 11-month recovery period in 
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quartiles 1, 2, and 3, as seen in Chapter III. Additionally, as described by Morton et al. 

(1994), the initial recovery stage is forebeach accretion, and is apparent in Y0 profiles, 

less than 1 month after Hurricane Dennis where each quartile, except Quartile 3, shows 

seaward deposition. Quartile 3 instead shows landward migration, possible as a result of 

washover. Following this stage, the backbeach and dune are restored primarily as a result 

of aeolian forces and the development of vegetation. Finally, dune expansion and 

vegetation recolonization exhibits taller dunes with greater extents and more surrounding 

vegetation; in this study, this stage is indicative of 5-year dunes (Morton et al. 1994). 

Results also show high and low island recovery variability alongshore, including 

measurements of dunes with a large DH exhibiting a slower rate of recovery than dunes 

with a smaller height. This pattern is characteristic of form reinforcement through 

process (Houser et al. 2008; Weymer et al. 2013; Houser et al. 2015). Growth rates also 

varied between parameters and between quartiles. 

 

Profile Recovery 

Forebeach Accretion 

 Recovery patterns were identified using ensemble averaging, supporting an 

understanding of the processes behind the quantitative changes discussed above. With 

the exception of the average profile in the third quartile, one month of recovery (Y0) 

across transects exhibited sediment deposition seaward of the dune from a storm event. 

Specifically, this accretion was likely a result of the storm surge associated with 

Hurricane Dennis of 1.6 m, which impacted Assateague Island just over a month prior to 
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the collection of the 2005 LiDAR dataset. This suggests the deposition of material 

through storm events with little time for redistribution before the 2005 elevation data 

was captured. Similar post-storm profiles have been characterized by seaward accretion, 

documented in previous studies at Galveston Island, TX and Santa Rosa and St. George 

Islands, FL (Morton et al. 1994; Houser and Hamilton 2009; Priestas and Fagherazzi 

2010). The changes between 2000 and 2005 profiles reflect the presence of sand deposits 

on the landward side of the dune for the same reason of limited time for sediment 

transport. For example, in Q4Y0 (see Figure 21, panel a), the backshore portion of the 

dune profile was developed due to this accumulation of sand. This backshore accretion 

also suggests overwash, transporting sediment over the dune, pushing material landward. 

Meanwhile, for the same recovery period, Quartile 3 (see Figure 20) demonstrates 

evidence of seaward erosion of the dune and landward transport of material where some 

points have increased in elevation by more than 1 m, also suggesting washover. 

 

Backbeach and Dune Restoration (Y1) 

Approximately one year (Y1) following a hurricane, transects in each quartile 

showed landward migration of the dune suggesting that aeolian influences impacted the 

sediment originally deposited seaward of the dune towards the backshore (Morton et al. 

1994). In addition to the transportation of material, there is also volumetric growth of the 

profiles. This is as a result of the elevation increasing on both the seaward and landward 

side of the 2000 dune. Quantitative and spatial changes observed in profiles of 11 and 23 

months of recovery in Quartile 2 (Q2Y1 and Q2Y2) suggest an increase in the presence 
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of vegetation along the backshore at each set of transects, similar to what is exhibited in 

Q1Y1 and Q1Y2 average profiles. It can be argued that dunes in this area may not have 

been severely impacted by the Hurricane Dennis storm surge, because overwash and 

scarping will limit the ability of the establishment of vegetative cover (Leatherman 

1979a). Less than one year of recovery showed an increase in DT elevation by 

approximately 0.3 m in Quartiles 1, 2, and 3. DT in Quartile 4 did not change, but shows 

the development of a berm. This increase in dune height (decrease in DT and growth of 

DC) may be a result of overwash or scarping and the redistribution of sediment along the 

seaward portion of the dune over time (Houser 2013).  

 

Backbeach and Dune Restoration (Y2) 

Nearly two years of recovery is associated with the development of smooth and 

gentle stoss slopes that have migrated landward signifying the recovery of vegetation on 

the dune and backshore (Morton et al. 1994). Dune migration seen in each quartile from 

approximately 30 to 40 m cross-shore (see panel B in Figures 18, 19, 20, and 21 in 

Chapter III) suggests a revitalization of the vegetative population on the dune and 

backshore area, similar to that seen after nearly one year of recovery. This vegetation 

acts as a blockade and slows wind enough to deposit any sediment being transported, 

contributing to the accumulation of sediment and the growth of dune extent and volume. 

An increased accumulation of sediment caused by the presence of vegetation, also 

observed in “Year 1”, is consistent with previous coastal dune studies at other locations 

in Texas and Florida (Morton et al. 1994; Morton 2002; Houser and Hamilton 2009; 
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Priestas and Fagherazzi 2010; Houser et al. 2015) . Dune toe elevation decreased in 

Quartiles 2, 3, and 4 by approximately 0.1 m; Quartile 1 DT increased by approximately 

0.1 m. These slight changes suggest further redistribution of sediment to the dune and 

backshore areas of the profile. 

 

Dune Expansion and Vegetation Recolonization (Y5) 

Transects experiencing the longest recovery period of 5 years demonstrate well-

developed dunes that exhibit growth in extent, height, and volume. It can also be 

assumed that dunes observed by De Stoppelaire et al. (2004) exhibited similar 

characteristics. Despite an absence of vertical growth in Q1Y5, the landward expansion 

of the average dune profile suggests the presence of vegetation, resulting in considerable 

development over the course of 5 years (Morton et al. 1994). This recovery period in 

Quartile 4 also shows a sizeable change of approximately 1 m in DC between the years 

2000 and 2005. Because these dunes have experienced limited overwash events, it is 

likely that aeolian influence is the primary force in the development of “5-year” dunes. 

Furthermore, the nearshore morphology of one or more bars may also strongly affect the 

build-up of sediment on the beach, and, as a result, on the foredune (Houser et al. 2015). 

Although these dunes demonstrate patterns of substantial recovery, it is unknown 

whether additional recovery time would result in further growth of DH and DV, or 

whether a 5-year recovery period is the time needed for the island to return to its pre-

storm equilibrium state. 
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 The recovery seen at ASIS can be described using the model presented by 

Morton et al. (1994), and is consistent with the current understanding of high and low 

islands (Houser et al. 2008; Houser et al. 2015). As evidenced by the results of this study 

and by conclusions within the current literature, high dunes recover at a slower rate than 

low dunes and maintain that variability over time. The cause of this variation is based on 

presence of vegetation, nearshore bathymetry and sediment availability, pre-existing 

morphology (equilibrium state of the dunes), and storm surge heights (Morton et al. 

1994; De Stoppelaire et al. 2004; Houser et al. 2008; Houser and Hamilton 2009; Durán 

and Moore 2013; Houser et al. 2015). Many of these factors are dependent upon the 

others; for example, the presence of vegetation is controlled by the frequency and 

magnitude of overwash events, which is linked to the pre-existing morphology. Because 

overwash is a fundamental process at ASIS, the reiteration of high and low island areas 

is especially apparent (Leatherman 1976; Leatherman 1979a). Small island areas are 

continuously susceptible to breaching and overwash; as a consequence, elevation stays 

small. However, high island areas are at risk of erosion and a reduction in elevation; a 

reduction in elevation can increase the vulnerability and decrease the resiliency of large 

dunes. As suggested in Houser et al. (2015), if the frequency and magnitude of storm 

increase, thereby reducing the amount of time for dunes to recover, a barrier island has 

the potential to become a low island, representing a new state of equilibrium. At 

Assateague, this state might be characterized by washover channels or a reduction of 

dune size from approximately 2.0 m to 1.0 m or less. If tourism continued in its current 

capacity, Assateague would became a low island as a result of the impact of driving on 
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the beach. This activity causes loosening sediment and destruction of vegetation, and 

would in turn promote erosion and eventually island inundation during a storm (Houser 

et al. 2013). Additionally, the current rate of transgression caused by the Ocean City 

jetty would greatly increase due to increased washover and the transport of sediment 

from the north end of the island to the south end. A transition of ASIS from a high island 

to low island state would result in significant implications have as it relates to resiliency 

and storm impact on the mainland.  

 

Alongshore Variability 

 Previous studies have argued that dunes aligned with transverse ridges are supply 

limited, while those aligned with swales are transport limited; however, washover 

potential and storm frequency may be as important as the nearshore morphology because 

of the loss of sediment in the backbeach, limiting supply (Houser and Hamilton 2009; 

Houser et al. 2015). Results from a recent study at Santa Rosa Island, FL indicate that 

areas with small dunes demonstrate slow recovery as a result of moisture from overwash 

and a lag in sediment availability, as opposed to locations with well-developed dunes 

where sediment is transported to the shoreface during a storm. Thus, subsequent storm 

surges will impact these low island areas and may reinforce alongshore variability in 

dune type and recovery (Morton 2002; Houser et al. 2008). Similarly, a correlation 

between beach type and foredune size has been observed, where small dunes are found 

on steep, reflective beaches, and foredunes nearly 10 times the height of those found on 

reflective beaches are located on dissipative beaches; variation in beach type is another 
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characterizing factor of alongshore variability in high and low islands and the recovery 

of those locations (Durán and Moore 2013). 

In this study, large DH values occur in transects with a large DC; quartiles used in 

the ensemble averages were broken up by magnitude of change in DH. High island 

(Quartile 4) areas and low island (Quartile 1) areas varied in groups alongshore, with 

three low island areas and two high island groups, as seen in Figure 22 in Chapter III. 

First quartile values showed a change in dune height of approximately 0.5 m or less, and 

fourth quartile values under consideration changed 1 m or more. This suggests that the 

1.6 m storm surge from Hurricane Dennis impacted low island dunes by either eroding 

the dune crest or depositing sediment around the dune toe. Ensemble averages (see 

Figure 17) show increased DT values for the first quartile, contributing to the negative, or 

small positive, DH values between 2000 and 2005. Conversely, Quartile 4 values 

represent large increases in DH. Also as a result of the storm surge associated with 

Hurricane Dennis at ASIS, these larger dunes experienced erosion of the dune toe, seen 

in ensemble averages C and D in Figure 21. Previous studies suggest that the alongshore 

variability present on Assateague Island will be reinforced over time, especially if 

hurricanes increase in frequency and magnitude (Goldenberg et al. 2001; Houser et al. 

2008; Houser and Hamilton 2009; Priestas and Fagherazzi 2010; Houser et al. 2015). 

Figure 22 exhibits several areas where high dunes are adjacent to low dunes. This may 

be a result of lateral erosion where overwash decreases dune height within a space over 

time. Low island areas that have been breached may continue to expand alongshore 
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because of this erosive process, affecting high island areas and potentially resulting in 

the entire island to become low. 

 

Implications and Future Work 

 Results from this study can be used to produce predictive models for other barrier 

islands along the Atlantic coast, especially as climate change discussion continues to be 

at the forefront of the scientific community. While it is disputed whether or not hurricane 

magnitude and frequency will rise in the coming years, recent studies have modeled an 

increase in the frequency and magnitude of storms by the end of the 21st century 

(Goldenberg et al. 2001; Pielke et al. 2005; Knutson et al. 2008; Bender et al. 2010). As 

a result, mitigation and preparatory strategies should be considered; evaluating the 

response and recovery of barrier islands is a critical aspect when considering how this 

change will affect coastlines in the United States and elsewhere (Goldenberg et al. 2001; 

Pielke et al. 2005). Other disturbances, such as driving on the beach and the presence of 

wild horses on the landscape, also present an opportunity for dune recovery studies such 

as this (De Stoppelaire et al. 2004; Houser et al. 2013).  

This study creates the opportunity for further research to be conducted both at 

Assateague Island National Seashore and elsewhere regarding barrier island recovery 

following hurricanes. As a result of limited elevation data available publicly and the 

effect of storm surges over time at ASIS, this thesis only examines recovery of up to 5 

years. In order to fully understand the recovery rate of this island in comparison to what 

has been identified at Santa Rosa Island, FL, a study should be conducted with 10 years 
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or more of elevation data. Other variables should also be considered, including dune 

width and fetch length. Additionally, raw LiDAR data would benefit future work on this 

topic, in order to apply algorithms for effectively and practically extracting 

morphometric parameters. Furthermore, bathymetric data should be obtained and 

compared to features onshore to enhance the information surrounding the mechanisms 

that contribute to the recovery rate of the island. Specifically, the integration of onshore 

and nearshore elevation data would produce new knowledge regarding high and low 

islands, as well as spatial and temporal variation in reaction and relaxation. Such a study 

would enhance the understanding of reinforced patterns, and would be valuable in 

predicting future storm impact both at Assateague and along the Atlantic coast. 

This thesis is only the second study to develop a recovery curve, providing a 

basis for further morphometric research as it relates to barrier island recovery. An 

understanding of the one-dimensional morphometry on this landscape is required before 

a two-dimensional tactic is introduced. For example, additional parameters may be 

considered in respect to both the longshore and cross shore, and onto the beach. 

Furthermore, the results from this study support previous literature and suggest that 

foredune morphometry is a fundamental representative of island growth. Using this 

thesis and previous research as a basis to understanding post-storm barrier island 

recovery, a more sophisticated multi-dimensional approach could be utilized in the 

future to incorporate additional surficial and subsurface data. A more composite analysis 

may produce information, not only about spatial recovery patterns, but also about the 

mechanisms behind this recovery. This analysis may be especially relevant when 
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evaluating recovery at different barrier islands. When comparing the results of this study 

to those from Houser et al. (2015) and Morton et al. (1994), some variation can be seen 

where Santa Rosa Island recovered slower than Assateague Island, which recovered 

slower than Galveston Island. One hypothesis for these differences in recovery rate is 

beach type. Specifically, because Galveston is a dissipative beach, the recovery curve 

suggests a rapid recovery of a wide beach with a gentle slope, providing sediment 

nourishment to the dune system. Santa Rosa Island and Assateague Island are both 

characterized by intermediate beaches, demonstrating alongshore variability in recovery 

and a variety of wave heights and energies (Short and Hesp 1982). A study evaluating a 

reflective beach would likely show a different recovery curve based on the morphology 

of the beach, dunes, and nearshore features. This additional context could provide an 

understanding about how other barrier islands recover from storm impacts throughout 

the Atlantic region of the U.S. and the Gulf of Mexico. 



 

72 

 

CHAPTER V 

CONCLUSION 

 

As barrier islands transgress with sea level rise through storm impacts, there is a 

need for sediment and vegetation to recolonize so that dunes can recover in height and 

extent (see Figure 7). This thesis examines storm impact and recovery, and the 

information can be used to aid land managers and coastal engineers in making decisions. 

The primary conclusions of this thesis are: 

• Dune recovery on Assateague Island National Seashore follows the model 

described by Morton et al. (1994), where forebeach accretion occurs post-storm, 

followed by backbeach and dune restoration, and concludes with dune expansion 

and vegetation recolonization. 

• Quartile 4, representative of high dunes, demonstrate average recovery rates at 

ASIS comparable to those observed at Santa Rosa Island, FL by Houser et al. 

(2015). With an estimated pre-storm dune elevation of approximately 2.1 m, a 

sigmoidal curve with an r-value of 0.26 is representative of foredune growth at 

Assateague, as shown in Figure 25. 

• Sigmoidal patterns between 1 month and 5 years of recovery characterized DC 

and DH, and an inverted sigmoidal curve characterized DT. Change in DV was 

represented by very small r-values, showing a logistic curve very different from 

those observed for the other parameters. 
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• High and low island areas were identified and exhibited recovery characteristics 

representative of alongshore variability seen in previous studies (Houser et al. 

2008; Houser and Hamilton 2009; Durán and Moore 2013; Weymer et al. 2013; 

Houser et al. 2015). Specifically, high island portions of ASIS experienced a 

longer recovery period, while low island areas had a greater potential for 

overwash and recovered quickly. 
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