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ABSTRACT

This dissertation contains two essays which examine the theory of model selection

in econometrics and its applications. In the first essay, we utilize a model average

approach to estimate a mixture copula. We average over the estimates of each indi-

vidual copula and their composite and select their associated weights by minimizing

a leave-one-group-out cross-validation criterion. We are able to prove that our model

average estimator is asymptotically optimal in the sense of achieving the infeasible

lowest possible squared estimation losses. Simulation results prove that our model

average estimators for mixture copula exhibit smaller estimation loss than some

benchmark methods. We empirically examine the dependence structures among the

stock markets in U.S., United Kingdom, Japan and Hong Kong, and we show that

our model average estimators give more reasonable estimations for the dependence

structures among these markets.

In the second essay, we implement a panel data approach to estimate the treat-

ment effect of the justice reform in Virginia in 1995. The fundamental idea behind

this method is to exploit the dependence among cross-sectional units to construct

the counterfactual analysis. This panel data method uses the outcomes of the control

units to simulate the path of the treated unit during the pre-treatment period and

then predict the counterfactual path of the treated unit during the post-treatment

period. In order to find the control units which simulate the pre-treatment path of

the treated unit best, model selection criterion such as Akaike Information Criterion

(AIC) and corrected Akaike Information Criterion (AICC) are used. We confirm that

both violent and property crime rates declined in Virginia after the justice reform.
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1. INTRODUCTION

Econometric methods for model selection have been extensively discussed in lit-

erature these days. To deal with the model uncertainty issue, estimation criteria

such as the Akaike information criterion (AIC; Akaike, 1970), corrected Akaike in-

formation criterion (AICC; Hurvich and Tsai, 1989) and Schwarz-Bayes information

criterion (SBC; Schwarz, 1978) have been introduced. Under these methods, for a

set of candidate model, we calculate the estimation criteria for each candidate model

and then select the one with the smallest value as the “optimal” one. However,

different criterion favors different model and the model selection procedure highly

relies on users’ subjective judgement and experiences. For example, SBC favors more

parsimonious models while AIC favors more heavily parameterized models.

Model averaging method is different from the previous methods as it handles

the model uncertainty issue by averaging a set of candidate models in a particular

manner rather than selecting an “optimal” one from the set. Hoeting et al. (1999)

propose a Bayesian model averaging method. Buckland et al. (1997), Hansen (2007)

and Wan et al. (2010) for frequentist method for model averaging. Under model

average framework, we select weights for each candidate model by minimizing a

cross-validation criterion function. For example, Hansen and Racine (2012) propose

a Jackknife model averaging method (JMA) and show that the whole computing

procedure is an application of the standard quadratic programming technique. They

further prove that JMA estimator is asymptotically optimal in the sense of achieving

the lowest possible expected squared estimation loss.

In this dissertation, I employ both the model selection criterion method and the

model averaging method to deal with the model uncertainty issue. In the first essay,
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I implement the Jackknife model averaging method to select the weight for each

individual copula in a mixture copula model. Weights are selected by minimizing

a leave-one-group-out criterion function and the standard quadratic programming

technique is employed. Simulation results show that our model averaging estimators

exhibit smaller estimation losses than the benchmark method especially the mixture

copula model is misspecified.

The second essay focuses on the model selection criterion method. We implement

the panel data approach proposed by Hsiao et al. (2012) to estimate the treatment

effect of the justice reform in Virginia in 1995. Specifically, we examine whether

the tougher punishment on violent criminals has successfully deterred the violent

crime rate in Virginia after 1995. Hsiao et al. (2012) use the outcome results in

the control units to simulate the pre-treatment path of the treated unit and propose

a two-step strategy the select the control units which could best simulate the pre-

treatment path of the treated unit. Model selection criteria such as AIC and AICC

are used to find out those most appropriate control units. By implementing Hsiao

et al. (2012) method, we find that the violent crime rate drops immediately after

the justice reform declines by 16% on average between 1995 and 2010. A series of

robustness tests further confirm that the treatment effect is not driven by statistical

coincidence. Non-violent property crime rate, even though declines four years after

the reform, also decreases on average during the 1995 - 2010 period.
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2. DETECTING FINANCIAL DATA DEPENDENT STRUCTURE BY

AVERAGING MIXTURE COPULA

In this article we propose to use a model average approach to estimate mix-

ture copula models, which is a linear combination of multiple individual copulas.

Nelsen (1999) provides a thorough introduction about copula and he defines copula

as “functions that join or couple multivariate distribution functions to their one-

dimensional marginal distribution function” (Nelsen, 1999, page 1). Specifically, let

X = (X1, ..., Xn)T be a random vector and the respective marginal cumulative dis-

tribution functions are defined as Fi, where i ∈ {1, ..., n}. Then there exists a copula

C : [0, 1]n → [0, 1] such that ∀ x = (x1, ..., xn) ∈ Rn, F (x) = C{F1(x1), ..., Fn(xn)}

(see Sklar, 1959). Therefore, copula is flexible as it does not constrain the selection

of marginal distributions so that one could always couple various margins together

via a copula.

Copula model is primarily used to study the dependence patterns among vari-

ables, e.g., the co-movements among the international equity markets. The empirical

application of copula in finance started from Li (2000), who proposes to use copula

to estimate default correlations. After that, copula models have been extensively

applied in many empirical studies such as examining the difference in dependence

structure between the developed and developing economies (Chollete, Peña and Lu,

2005, Chollete et al., 2009, and Aloui et al., 2010), the structure break in exchange

rates (Patton, 2006), financial contagion (Rodriguez, 2007), and the cross-state hous-

ing prices during the subprime mortgage crisis (Zimmer, 2012).

One fundamental issue for empirical studies is how to select an appropriate copula

to satisfactorily describe the dependence structure among variables. Almost all the
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the works mentioned above presumptively build a candidate set and rely on certain

statistical criterion to pin down one copula, and then estimate the parameter(s) asso-

ciated with the selection to evaluate the degree of dependence. For example, Zimmer

(2012) uses both Bayesian Information Criterion (BIC) and Vuong test to show that a

Clayton-Gumbel mixture copula provides a better estimate of dependence compared

with Gaussian, Clayton and Gumbel.1

In practice, the varieties of copula are large. Ideally, one might fit the data under

analysis to each existing copula family and pin down the most appropriate one. But

this strategy could be less efficient, especially considering that one can always create

a new copula by making certain transformations on an existed copula.2 Thus, most

empirical users only consider several commonly used copulas, e.g., Gaussian, Clayton

and Gumbel, to construct their candidate set. The argument is that the candidate

set should be general enough to capture most of the possible dependence patterns in

the real world. Even though this strategy becomes relatively easy to implement, its

cost is that one needs to assume that the observations are generated from one of the

copula included in the candidate set: One pins down the most “appropriate” copula

from the candidate set, estimates its parameter via maximum likelihood method,

and then describes the dependence pattern and evaluates the degree of dependence.

If one’s candidate set does include the true copula that generates the observations,

the estimating procedures discussed above should be effective and efficient. However,

the true data generating copula model is always unknown to econometricians and

in practice, it is highly probable that one’s candidate set fails to include the true

copula or all the candidates are far from the true dependence structure. Under this

1Other methods include comparing which copula gives the largest log-likelihood function value.
Interested readers are referred to Manner and Reznikova (2011), Patton (2012) and Fan and Patton
(2014) for details.

2For example, Patton (2006) introduce an symmetrized Joe-Clayton copula by taking a particular
Laplace transformation on the BB7 copula of Joe (1997).
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circumstance, the candidate copula that exhibits smallestr BIC may fail to provide

reasonable description about the true dependence structure.

To take advantage of different copula shapes, Chollete, Peña and Lu (2005) and

Hu (2006) introduce mixture copula models. In their analysis, a mixture copula is

formulated as a weighted average of several individual copulas with the weights con-

strained between 0 and 1 and the weights sum to 1. Comparing with the individual

copula model, mixture copula is more flexible as it nests various individual copu-

las that exhibit quite different dependence structures. As we shall see, a mixture

copula is able to generate dependence structures that do not belong to any existing

copulas. By combining several widely used individual copulas, one can build a par-

simonious but flexible mixture copula to capture various dependence patterns in the

financial data, e.g., zero and non-zero tail dependence, symmetric and asymmetric

tail dependence. In their analysis, Chollete et al. (2005) and Hu (2006) both con-

sider the mixture model including Gaussian, Gumbel and rotated Gumbel copula

to evaluate the dependence structures among stock indexes in developed economies.

They find strong left tail dependence as weight associated with the rotated Gumbel

copula tends to be non-zero, while Gumbel tends to be filtered out due to its small

weight. They thus conclude that stock markets in developed economies tend to go

down simultaneously. This finding is consistent with Longin and Solnik (2001) who

find that equity returns tend to take on joint negative extremes. In a more recent

work, Cai and Wang (2014) introduce a penalized likelihood with a shrinkage op-

erator method to estimate weighting and copula parameters simultaneously. This

data-driven method is similar to the Least Absolute Shrinkage and Selection Opera-

tor (LASSO) due to Tibshirani (1996) and the Smoothly Clipped Absolute Deviation

(SCAD) due to Fan and Li (2001) for variable selection in regression models. Cai and

Wang (2014) further establish the asymptotic theory for their method, and simula-
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tion results demonstrate that their proposed method gives satisfactory estimations

on both weighting and copula parameters. That is, different dependence structures

are captured well by this penalized likelihood method.

In this article we contribute to the literature by providing another method to

estimate mixture copula model. Specifically, we utilize a model average approach

to estimate a mixture model which could be flexibly constructed by any existing

copulas. Rather than pinning down one appropriate copula model by comparing

different criteria such as AIC or BIC, under mixture copula framework, one firstly fits

observations to each individual copula in the candidate set respectively. Sometimes

fitting the data to an individual copula could be quite poor, so we also consider

to fit the data to the composite of all the candidate copulas. We then average

over the estimates of each individual copula and their composite and select their

associated weights by minimizing a leave-one-group-out cross-validation criterion,

a manner similar to the Jackknife model average (JMA) proposed by Hansen and

Racine (2012). We obtain the solutions through a standard application of quadratic

programming technique, as the leave-one-group-out cross-validation criterion is a

quadratic function of weights. Under certain regularity conditions, we are able to

prove that our model average estimator is asymptotically optimal in the sense of

achieving the infeasible lowest possible squared estimation losses. The chosen weights

help us to construct the optimal combination of each candidate copula and their

composite that is able to satisfactorily describe the dependence structure among

variables, as the distance between the estimated mixture copula and the unknown

true model is asymptotically minimized. This is extremely important when one’s

working model is misspecified, i.e., when observations are generated from copulas

that are not included in our working mixture model. Cai and Wang (2014) argue that

when the working model is misspecified, their method will select copulas exhibiting

6



the same dependence patterns. For example, when observations are generated from a

combination of Gaussian and Clayton while in the working model Clayton is absent

but a rotated Gumbel, which also exhibits the left tail dependence, is included. In

this case, Cai and Wang (2014)’s method will assign certain weight on the rotated

Gumbel to guarantee that the left tail dependence patterns is captured by the mixture

copula model, and then they conclude that the “best” copula is chosen. However,

including another copula which exhibits similar tail dependence structure to the

true one does not necessarily guarantee that the distance between the estimated

model and the true model is asymptotically minimized. For example, even though

both Clayton and rotated Gumbel exhibit left tail dependence, the mathematical

forms of their respective CDFs/PDFs are quite different. Thus, our model average

method provides a more solid criterion for the best copula when working model is

misspecified: The optimal mixture model is constructed to minimize its distance

to the true model, or the estimation loss, so that it best describes the dependence

pattern among variables. Considering that our working mixture model is usually

quite parsimonious, misspecification problem should be common. Therefore, our

model average method should be viewed as a more reasonable alternative to estimate

mixture copula model so that the estimation loss is asymptotically minimized.

In the empirical part of the paper, we implement the model average approach on

the daily returns of equity indexes in four developed economies (UK, Hong Kong,

Japan and United States). Estimation results support the superiority of model aver-

age method in capturing the dependence structures among the international equity

markets. Last but not least, model average approach exhibits the smallest errors in

the out-sample predictions, comparing with the penalized likelihood method and the

standard copula selection method which chooses one most “appropriate” copula by

BIC. Since the financial press has rigorous requirement for models in prediction, the

7



model average approach on mixture copula should be an useful tool in risk manage-

ment.

The rest of this paper is organized as follows. In Section 2 we briefly introduce

mixture copula model. Section 3 specifies steps and procedures about how to imple-

ment model average approach on a mixture copula model. In Section 4, we compare

estimation losses under model average approach, Cai and Wang’s (2014) penalized

likelihood method, and the BIC method through Monte Carlo simulations. A real

data example is presented in Section 5. We give some concluding remarks in Section

6. Regularity conditions and proof of optimality are included in the Appendix.

2.1 Mixture Copula Model: A Brief Introduction

Suppose we have a series of independent p−dimensional vectors of random vari-

ables {Xt}Tt=1, where Xt = (Xt1, . . . , Xtp)
T. Denote F (x) and f(x) to be the joint

distribution and density function of X ∈ Rp, Fi(xi) and fi(xi) be the marginal

distribution and density function of Xi, respectively, where 1 ≤ i ≤ p.

According to Hu (2006) and Cai and Wang (2014), a mixture copula model is a

linear mixture of some copula families. Specifically, a mixture copula model can be

written as

C(u;θ,ω) =
L∑
l=1

ωlCl(u; θl) =
L∑
l=1

ωlCl(F1(x1;α1), ..., Fp(xp;αp); θl) (2.1)

where {C1(·), ..., CL(·)} is a set of candidate copulas with a vector of unknown as-

sociated parameters θ = (θ1, . . . , θL)T and p-dimension marginal distribution u =

(F1(·), . . . , Fp(·)), ω = (ω1, . . . , ωL)T denote the weight parameters with 0 ≤ ωl ≤ 1

and
∑L

l=1 ωl = 1, and α = (α1, . . . , αp)
T is the vector of parameters associated with

8



each of the marginal distribution. In equation (1), θ = (θ1, . . . , θL)T control the de-

pendence among the p-dimension variables and ω = (ω1, . . . , ωL)T control the shape

of the mixture copula’s dependence.

One may want to include many existing individual copulas into the mixture model

to cover every possible dependent pattern. But in application this would make

the mixture model to be too complicated and the estimations to be less efficient,

leaving mixture model less desirable. In practice, we only consider a few candidate

individual copulas. We present the flexibility of mixture copula through scatter

plots. Figure 2.1 (a) - (c) display scatter plots of 1000 i.i.d. samples generated from

three types of widely-used copula model. For comparing purposes, each margin has

the standard normal distribution and the parameter for the corresponding copula is

calibrated to imply of Kendall’s τ of one-half. It could be observed that Clayton

copula displays strong dependence in the left tail while the Gumbel copula exhibits

strong right tail dependence. Unlike Clayton and Gumbel which exhibit asymmetric

dependence structure, Gaussian copula looks to be more symmetric and the stronger

dependence appears in the center. Figure 2.1 (d) - (f) present scatter plots of 1000

i.i.d. samples generated respectively from three mixture copulas with equal weights

on each component. Figure 2.1 clearly demonstrates that, after mixing with Clayton

and Gumbel, Gaussian copula begins to exhibit some asymmetric tail dependence.

Therefore, we can see that the flexibility of mixture copula stems from its ability of

nesting various copula shapes. Each individual copula is nested as a special case.

Fan and Patton (2014) summarize estimation methods for individual copula based

models. Rather than simply estimating parameters for copulas and marginal den-

sities, we need to further estimate a vector of weight parameter ω introduced by

mixture copula models. Chollete, Peña and Lu (2005) and Hu (2006) independently

propose a two-stage semiparametric method in estimating a mixture copula model.
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(a) Gaussian Copula
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(b) Clayton Copula
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(c) Gumbel Copula
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(d) Gaussian-Clayton Mix-
ture
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(e) Gaussian-Gumbel Mix-
ture
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Figure 2.1: Scatter plots for Gaussian, Clayton and Gumbel copula and their mixture.
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Specifically, in the first stage, the marginal distributions are estimated nonparametri-

cally to avoid misspecification of marginals. Then, in the second stage, the estimated

marginals or the empirical CDFs are plugged into the copula so that copula param-

eters are estimated by Maximum Likelihood. Finally, to facilitate the estimation

of weight parameters for each nested copula, iterative procedures, namely, the EM

algorithm, are implemented. However, both works do not establish the asymptotic

properties and lay theoretical foundations for the estimators. Cai and Wang (2014)

provide a theoretical support about mixture copula estimation. Specifically, they

discuss a data-driven copula selection method via penalized likelihood with a shrink-

age operator so that all the related parameters estimation and model selection are

achieved simultaneously. Their estimation procedure is similar to some variable selec-

tion strategies such as the Least Absolute Shrinkage and Selection Operator(LASSO)

and Smoothly Clipped Absolute Deviation (SCAD) proposed by Tibshirani (1996)

and Fan and Li (2001), respectively. In our work, the model average approach esti-

mates a mixture copula based on the criterion function that minimizes the estimation

losses. In the following section, we specify the estimating procedures and prove that

the model average estimator is asymptotically optimal.

2.2 Theoretical Model

Consider K − 1 candidate copulas

Ck(x) = Ck {F1(x1;α1), . . . , Fp(xp;αp);θk} , k = 1, . . . , K − 1.

When the data set {Xt}Tt=1 is thought to be from the kth copula, we can estimate

Ck(x) by maximizing the likelihood function. Denote the resulting estimator as

Ĉk(x) = Ck

{
F1(x1; α̂k,1), . . . , Fp(xp; α̂k,p); θ̂k

}
, k = 1, . . . , K − 1.
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Noting that using a candidate copula to estimate mixture copula can be very poor,

we also use maximum likelihood (ML) estimator of the mixture copula to construct

our model average estimator of mixture copula. Let

ĈK(x) =
K−1∑
k=1

ω̃kCk

{
F1(x1; α̃1), ..., Fp(xp; α̃p); θ̃k

}
,

where ω̃1, . . . , ω̃K−1, α̃1, . . . , α̃p and θ̃1, . . . , θ̃K−1 are estimators by ML estimation.

Note that ω̃ is constrained to be between 0 and 1 and summation equals to 1.

For each copula k, θ̃k also has its own constraint. For example, the parameter for

Gaussian copula should be between -1 and 1.

Write w = (w1, . . . , wK)T as weight vector, belonging to the set

W =
{
w ∈ [0, 1]K :

∑K

k=1
wk = 1

}
.

Then, the model average estimator of mixture copula can be written as

Ĉ(x,w) =
K∑
k=1

wkĈk(x).

Let C0(x) = C0 {G1(x1), . . . , Gp(xp);θ0} be the true copula. Note that C0(x) can

be out of candidate set {C1(x), . . . , CK−1(x)} and it may not be a mixture copula

based on {C1(x), . . . , CK−1(x)}. The goal of this work is to estimate C0(x) by model

average approach.

In this work we use the J-fold Cross-Validation (CV) to choose weights, which

is similar to Jackknife model average (JMA) method (Hansen and Racine, 2012).

Specifically, we divide the data set into J groups such that for each group, we have

M = T/J observations. In the jth group, we have observations X(j−1)M+1, . . . ,XjM ,
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where j = 1, ..., J . Write C̃
(−j)
k (x) as the estimator of Ck(x) with the jth group

removed from the sample. So the corresponding average estimator is

C̃(−j)(x,w) =
K∑
k=1

wkC̃
(−j)
k (x).

An empirical estimator of C0(x) is

C(j)(x) = M−1
M∑

m=1

I(X(j−1)M+m ≤ x),

where I(·) is an indicate function. We emphasize that the comparison between

X(j−1)M+m and x means the comparison of each component in these p-dimension

vectors. Then, it is straightforward to show that

E
{
C(j)(x)

}
= C0(x). (2.2)

So our J-fold CV criterion is formulated to be

CVJ(w) =
J∑

j=1

M∑
m=1

{
C̃(−j)(X(j−1)M+m,w)− C(j)(X(j−1)M+m)

}2

.

The resulting weight vector is

ŵ = argminw∈WCVJ(w),

and the model average estimator of the copula is Ĉ(x, ŵ).

To ease exposition, we introduce/summarize notations used in the paper.
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The true copula

C0 = {C0(X1), . . . , C0(XT )}T ,

the copula estimated by the kth candidate copula (when k = K, the candidate copula

is a composite of the candidate copulas)

Ĉk =
{
Ĉk(X1), . . . , Ĉk(XT )

}T

,

the copula estimated by model averaging

Ĉ(w) =
{
Ĉ(X1,w), . . . , Ĉ(XT ,w)

}T

,

the copula estimated by using the kth candidate copula and J-fold CV

C̃k =
{
C̃

(−1)
k (X1), . . . , C̃

(−1)
k (XM), C̃

(−2)
k (XM+1), . . . , C̃

(−J)
k (XT )

}T

,

the copula estimated by using model averaging and J-fold CV

C̃(w) =
{
C̃(−1)(X1,w), . . . , C̃(−1)(XM ,w), C̃(−2)(XM+1,w), . . . , C̃(−J)(XT ,w)

}T

,

and the empirical estimator of C0

C =
{
C(1)(X1), . . . , C(1)(XM), C(2)(XM+1), . . . , C(J)(XT )

}T
.

Let h̃k = C̃k−C and H̃ = (h̃1, . . . , h̃K). Now, we can rewrite the J-fold CV criterion

as

CVJ(w) =
∥∥∥C̃(w)−C

∥∥∥2 = wTH̃TH̃w,

14



which is a quadratic form of w. So the minimization of CVJ(w) with respect to w

can be implemented easily.

Define a quadratic loss function of the model average estimator Ĉ(w) as LT (w) =

‖Ĉ(w) − C0‖2. Like literature on model selection and model averaging such as

Shao (1997) and Hansen (2007), our goal is to reduce quadratic loss by using model

averaging. The following theorem shows that our method minimizes the quadratic

loss asymptotically.

Theorem 1. Under Conditions (C.1) — (C.3) presented in Appendix A,

LT (ŵ)

infw∈W LT (w)
→ 1 in probability (2.3)

as T →∞.

The result (2.3) means that our model average estimator C(ŵ) is asymptotically

optimal in the sense that the squared loss of C(ŵ) is asymptotically identical to

that by the infeasible best possible model average estimator. The detailed proof for

Theorem 1 is given in Appendix A.

2.3 Numerical Studies

We compare squared estimation losses of the proposed model average approach

on mixture copula model with two other methods: Cai and Wang (2014)’s penalized

likelihood method, and a BIC method which selects only one copula by comparing

each candidate’s BIC. Specifically, we consider two types of simulation. In Type I

simulation, data are generated from copulas which are included in the mixture copula

model. On the contrary, in Type II simulation, the working mixture copula model

is misspecified. That is, data are generated from copulas which are not constituents

of the working mixture model. We compare which method gives more reasonable
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description of dependence structure under the two types of settings.

2.3.1 Simulation Type I

Type I simulation considers the scenario that data are generated from copulas

which are constituents of our working model. The data generating process (DGP)

is a process that the bivariate joint distribution has a form of copula function, and

for simplicity, the two margins are normally distributed with marginal parameters

(µ1, σ1) = (0, 1) and (µ2, σ2) = (0, 1). Our working mixture model includes three

commonly used copulas: Gaussian, Clayton and Gumbel. One could always add in

more candidate copulas, but we believe this parsimonious model has the ability to

cover many possible dependence structure empirical researchers would encounter in

the real world. Characteristics of the three copulas have been discussed in Section 2

and the simulated scatter plots have been displayed in Figure 2.1. Particularly, our

presumed mixture copula could be formulated as:

C(u, v;θ,ω) = ωGaCGa(u, v; θ1) + ωClCCl(u, v; θ2) + ωGuCGu(u, v; θ3),

where CGa, CCl and CGu stand for Gaussian, Clayton and Gumbel copula, respec-

tively, and u, v denote the two margins. By fitting the data into Gaussian, Clayton

and Gumbel copula separately, one could obtain their ML estimates θ̂1, θ̂2 and θ̂3.

We have argued in Section 3 that it can be quite poor if we use any indi-

vidual copula to estimate series of data generated by mixture copula, since for

the mixture copula, any individual candidate copula is an “inappropriate” model.

We thus include a maximum likelihood (ML) estimator of the mixture copula into

our model average estimator. Specifically, let CML(u, v; θ̃, ω̃) = ω̃1CGa(u, v; θ̃1) +

ω̃2CCl(u, v; θ̃2) + ω̃3CGu(u, v; θ̃3), where ω̃1, ω̃2, ω̃3 and θ̃ = (θ̃1, θ̃2, θ̃3) are the ML

estimates. Our method then averages over the the four components: three individ-
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ual candidate copulas plus a ML estimator of their linear combination. We need to

choose wGa, wCl, wGu, wML in our working mixture copula model

C(u, v; θ̂,w) = wGaCGa(u, v; θ̂1)+wClCCl(u, v; θ̂2)+wGuCGu(u, v; θ̂3)+wMLCML(u, v; θ̃)

via model average method to minimize the estimation losses LT (w) defined in Section

3.

The simulation considers three sample sizes: T = 100, 200 and 500. Obser-

vations are simulated from different copulas by the following DGP and the model

averaging estimators are computed. All simulations are repeated 500 times. As we

concentrate on mixture copula situations, we simulate three mixture copulas with

two components and one mixture copula with three components. Specifically, we

have the following 4 cases for the setup of weights:

Case 1: ωGa = 1/2, ωCl = 1/2, ωGu = 0;

Case 2: ωGa = 1/2, ωCl = 0, ωGu = 1/2;

Case 3: ωGa = 0, ωCl = 1/2, ωGu = 1/2;

Case 4: ωGa = 1/3, ωCl = 1/3, ωGu = 1/3.

For each case of weight above, we consider three sets of copula parameters:

Parameter setting 1: θGa = 0.5, θCl = 5.8, θGu = 5.1;

Parameter setting 2: θGa = 0.6, θCl = 6.8, θGu = 6.1;

Parameter setting 3: θGa = 0.7, θCl = 7.8, θGu = 7.1.

Therefore, we will have 4× 3 = 12 groups of DGPs in total.
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Table 2.1: Mean of squared in-sample estimation losses for Type I simulation

Sample Size=100
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.6, θCl = 6.8, θGu = 6.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωGa = 0.5, ωCl = 0.5, ωGu = 0 1.0909 1.0948 1.1808 1.0919 1.0932 1.1951 1.1052 1.0903 1.1870
ωGa = 0.5, ωCl = 0, ωGu = 0.5 1.0063 0.9837 1.0514 1.0135 0.9845 1.0568 1.0288 0.9892 1.0553
ωGa = 0, ωCl = 0.5, ωGu = 0.5 1.1372 1.1047 1.2147 1.1265 1.1041 1.1969 1.1225 1.0963 1.1867
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 1.1057 1.0722 1.2030 1.1097 1.0664 1.2067 1.1085 1.0621 1.1843

Sample Size=200
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.6, θCl = 6.8, θGu = 6.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.5635 0.5651 0.6860 0.5618 0.5628 0.6866 0.5705 0.5598 0.6676
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.5137 0.5106 0.5675 0.5175 0.5168 0.5723 0.5242 0.5210 0.5714
ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.5627 0.5263 0.6389 0.5581 0.5234 0.6368 0.5575 0.5241 0.6341
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.5721 0.5559 0.7076 0.5733 0.5567 0.6950 0.5835 0.5570 0.6665

Sample Size=500
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.6, θCl = 6.8, θGu = 6.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.2245 0.2240 0.3499 0.2286 0.2251 0.3451 0.2270 0.2245 0.3315
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.2206 0.2133 0.2607 0.2218 0.2138 0.2623 0.2232 0.2141 0.2579
ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.2198 0.2075 0.3476 0.2226 0.2102 0.3528 0.2222 0.2079 0.3408
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.2169 0.2137 0.3619 0.2162 0.2134 0.3477 0.2198 0.2129 0.3165

Table 2.1 displays how close the estimated copula is to the true copula in terms of

mean squared estimation loss across the three methods we mentioned at the begin-

ning: our proposed model average approach (MA), Cai and Wang (2014)’s penalized

likelihood (CW), and the BIC method which selects one from a set of candidates

based on BIC (BIC). For expositional ease, the estimation loss in each case is mul-

tiplied by 1000.

We make a few observations from Table 2.1. First, BIC gives the greatest mean

squared estimation losses in all cases compared with the other two approaches. This

implies that simply relying on one copula selected based on BIC comparison would

give rather bad estimation results, even though the observations are mixture by

copulas included in our candidate set and exhibit certain tail dependence structure.

A visual comparison between the mixture copula and one copula model could be

observed through boxplots in Figure 2.2: We calculate the ratio of estimation losses

obtained from MA, CW and BIC, respectively, in each simulation. For example,
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MA/CW represents the ratio of estimation losses between MA and CW, and MA

is superior to CW if the ratio is smaller than 1. To save space, we only present

the 12 cases when sample size equals to 500. Results for 100 and 200 sample size

are similar. In Figure 2.2, for all the four different setups of weight, on average

about 75% of the ratios obtained from MA/BIC and CW/BIC are smaller than 1,

indicating substantial superiority of mixture copula model estimated by MA and

CW. As argued before, the superiority of the mixture copula model stems from its

flexibility in nesting various dependence structures. Second, according to Table 2.1,

the difference of mean squared estimation loss obtained by CW and MA is tiny.

Figure 2.2 further supports this as the medians of the ratios of estimation losses

between MA and CW are close to 1 for all 12 cases. That is to say, when our working

mixture model is not misspecified, the two methods are not significantly superior to

each other in terms of minimizing estimation losses. Simulation results in Cai and

Wang (2014) demonstrate that, when data are generated from copulas included in

the mixture model, their method is able to locate these data-generating copulas

exactly and estimate their associated weights and parameters accurately. Thus, the

estimated mixture copula is quite close to the true model as the estimation losses

should be quite small. In this sense, the similarity between MA and CW in terms of

estimation loss provides support for the optimality of model average approach.

Table 2.2 displays the out-sample predicting performance of the three competing

methods. The number of out-sample observations is equal to the number of in-

sample observations. Hence, for 100, 200 and 500 in-sample observations, the out-

sample predictions include 100, 200 and 500 observations, respectively. The results

in Table 2.2 are quite similar to those we found in Table 2.1: Mixture copula model

still performs better than an individual copula. In the three competing methods,

BIC gives the largest predicting errors for all cases in the three competing methods,
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Table 2.2: Mean of squared out-sample predicting losses for Type I simulation

In-sample = 100; Out-sample = 100
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.6, θCl = 6.8, θGu = 6.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωGa = 0.5, ωCl = 0.5, ωGu = 0 1.0134 1.0277 1.0913 1.0232 1.0284 1.1074 1.0344 1.0304 1.1198
ωGa = 0.5, ωCl = 0, ωGu = 0.5 1.0117 0.9824 1.0861 1.0113 0.9825 1.0922 1.0276 0.9868 1.0813
ωGa = 0, ωCl = 0.5, ωGu = 0.5 1.1488 1.1096 1.2161 1.1390 1.1138 1.2126 1.1350 1.1048 1.1977
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 1.1108 1.0772 1.2490 1.1061 1.0685 1.2466 1.1055 1.0608 1.2208

In-sample = 200; Out-sample = 200
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.6, θCl = 6.8, θGu = 6.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.5523 0.5656 0.6763 0.5504 0.5643 0.6761 0.5597 0.5618 0.6623
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.5209 0.5155 0.5825 0.5244 0.5215 0.5891 0.5270 0.5250 0.5861
ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.5598 0.5280 0.6396 0.5591 0.5280 0.6386 0.5580 0.5286 0.6318
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.5727 0.5612 0.7049 0.5720 0.5624 0.6926 0.5799 0.5623 0.6666

In-sample = 500; Out-sample = 500
θGa = 0.5, θCl = 5.8, θGu = 5.1 θGa = 0.6, θCl = 6.8, θGu = 6.1 θGa = 0.7, θCl = 7.8, θGu = 7.1

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωGa = 0.5, ωCl = 0.5, ωGu = 0 0.2252 0.2252 0.3505 0.2284 0.2262 0.3465 0.2267 0.2255 0.3343
ωGa = 0.5, ωCl = 0, ωGu = 0.5 0.2212 0.2136 0.2660 0.2216 0.2141 0.2677 0.2220 0.2145 0.2634
ωGa = 0, ωCl = 0.5, ωGu = 0.5 0.2198 0.2076 0.3527 0.2229 0.2101 0.3562 0.2221 0.2080 0.3409
ωGa = 1/3, ωCl = 1/3, ωGu = 1/3 0.2158 0.2137 0.3672 0.2148 0.2138 0.3520 0.2188 0.2136 0.3197

while CW and MA are not superior to each other.

Above all, in terms of in-sample fitting losses and out-sample predicting errors,

Type I simulation demonstrates the superiority of mixture copula model over one

individual copula model. Furthermore, for the estimation of a mixture copula model,

our proposed model average approach performs similarly to Cai and Wang (2014)’s

method.

2.3.2 Simulation Type II

The working model is misspecified in Type II simulations. The purpose of Type

II simulation is to see how the proposed model average approach performs when

data are generated from copulas which are out of our candidate set, a situation

which should be common in empirical studies as the true model is always unknown

to econometricians.

Specifically, our working mixture model is still comprised by Gaussian, Clayton

and Gumbel copulas but the true observations are generated separately from Frank,

20



Survival Joe (SJ) and Joe copulas. These three copulas are also widely used in

empirical studies. Frank copula is similar to Gaussian copula as it also does not

exhibit tail dependence in both sides; but it has relatively stronger dependence in

the center of the distribution. Joe copula, like Gumbel copula, exhibits right tail

dependence. Survival Joe copula is a 180◦ rotation of Joe, so it exhibits left tail

dependence as the Clayton copula does. We consider three cases that the true copula

is generated from Frank, Joe and Survival Joe, respectively, plus their composite in

which each component has equal weights. For Frank, Joe and Survival Joe, as we

did in simulation Type I, we consider four weighting setups:

Case 1: ωFrank = 1/2, ωSJ = 1/2, ωJoe = 0;

Case 2: ωFrank = 1/2, ωSJ = 0, ωJoe = 1/2;

Case 3: ωFrank = 0, ωSJ = 1/2, ωJoe = 1/2;

Case 4: ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3,

and three different copula parameter settings:

Parameter setting 1: θFrank = 5.5, θSJ = 4.8, θJoe = 4.5;

Parameter setting 2: θFrank = 6.5, θSJ = 5.8, θJoe = 5.5;

Parameter setting 3: θFrank = 7.5, θSJ = 6.8, θJoe = 6.5.

Table 2.3 presents the mean of in-sample estimation losses of mixture copula

model for MA, CW and BIC with 500 simulations when the working model is mis-

specified. The most significant difference between Table 2.1 and Table 2.3 is that,

in Table 2.3, it exhibits that the estimation losses due to MA are uniformly smaller

than the other two competing methods, while in Table 2.1, the estimation losses
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Table 2.3: Mean of squared in-sample estimation losses for Type II simulation

Sample Size=100
θFrank = 5.5, θSJ = 4.8, θJoe = 4.5 θFrank = 6.5, θSJ = 5.8, θJoe = 5.5 θFrank = 7.5, θSJ = 6.8, θJoe = 6.5

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωFrank = 0.5, ωSJ = 0.5, ωJoe = 0 1.1163 1.2195 1.2837 1.1218 1.1888 1.3198 1.0988 1.1463 1.3073
ωFrank = 0.5, ωSJ = 0, ωJoe = 0.5 0.9837 1.0388 1.0012 0.9977 1.0629 1.0318 1.0137 1.0755 1.0571
ωFrank = 0, ωSJ = 0.5, ωJoe = 0.5 1.1315 1.2573 1.2052 1.1371 1.1959 1.2314 1.1450 1.1810 1.2614
ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3 1.0716 1.1696 1.1343 1.0716 1.1404 1.1698 1.0766 1.0964 1.1943

Sample Size=200
θFrank = 5.5, θSJ = 4.8, θJoe = 4.5 θFrank = 6.5, θSJ = 5.8, θJoe = 5.5 θFrank = 7.5, θSJ = 6.8, θJoe = 6.5

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωFrank = 0.5, ωSJ = 0.5, ωJoe = 0 0.5306 0.6352 0.7006 0.5425 0.6094 0.7220 0.5502 0.5917 0.7399
ωFrank = 0.5, ωSJ = 0, ωJoe = 0.5 0.5300 0.5864 0.5539 0.5401 0.6135 0.5801 0.5505 0.6241 0.6000
ωFrank = 0, ωSJ = 0.5, ωJoe = 0.5 0.5387 0.6324 0.5967 0.5498 0.6014 0.6248 0.5395 0.5636 0.6295
ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3 0.5280 0.6153 0.6038 0.5318 0.5819 0.6274 0.5325 0.5529 0.6456

Sample Size=500
θFrank = 5.5, θSJ = 4.8, θJoe = 4.5 θFrank = 6.5, θSJ = 5.8, θJoe = 5.5 θFrank = 7.5, θSJ = 6.8, θJoe = 6.5

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωFrank = 0.5, ωSJ = 0.5, ωJoe = 0 0.2516 0.3366 0.4312 0.2550 0.3107 0.4534 0.2578 0.2920 0.4672
ωFrank = 0.5, ωSJ = 0, ωJoe = 0.5 0.2699 0.3471 0.2796 0.2857 0.3684 0.3004 0.2929 0.3726 0.3177
ωFrank = 0, ωSJ = 0.5, ωJoe = 0.5 0.2385 0.3466 0.3139 0.2354 0.3024 0.3378 0.2346 0.2780 0.3517
ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3 0.2396 0.3328 0.3265 0.2403 0.2976 0.3558 0.2425 0.2727 0.3766

between MA and CW are tiny and there is no significant superiority of one method

over the other. But when the working mixture model is misspecified, MA yields

better performance than CW.

Like Figure 2.2, Figure 2.3 also gives a more straightforward way to compare the

estimation performance among MA, CW and BIC in each of the 500 simulations when

the sample size is 500. Comparing with the Simulation Type I, results presented in

Figure 2.2 demonstrate the significant superiority of MA over CW, since of all the 12

cases displayed, on average about 75% of the ratios between MA and CW obtained

in 500 simulations are smaller than 1. This implies the superiority of MA over CW

when the working model is misspecified.

We also present the out-sample predicting performance of the three competing

methods under Type II simulation in Table 2.4. Like Type I simulation, the number

of out-sample predictions is the same with the corresponding size of the in-sample

data. The patterns in Table 2.4 are similar to those in Table 2.3: MA exhibits more

accurate out-sample predictions than CW and BIC do, and mixture copula provides
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Table 2.4: Mean of squared out-sample predicting losses for Type II simulation

In-sample = 100; Out-sample = 100
θFrank = 5.5, θSJ = 4.8, θJoe = 4.5 θFrank = 6.5, θSJ = 5.8, θJoe = 5.5 θFrank = 7.5, θSJ = 6.8, θJoe = 6.5

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωFrank = 0.5, ωSJ = 0.5, ωJoe = 0 1.1125 1.2418 1.2835 1.1196 1.2087 1.3225 1.0992 1.1659 1.3120
ωFrank = 0.5, ωSJ = 0, ωJoe = 0.5 0.9642 1.0149 0.9920 0.9805 1.0399 1.0233 0.9958 1.0534 1.0488
ωFrank = 0, ωSJ = 0.5, ωJoe = 0.5 1.1212 1.2154 1.2117 1.1239 1.1596 1.2390 1.1315 1.1485 1.2667
ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3 1.0564 1.1419 1.1292 1.0807 1.1144 1.1652 1.0620 1.0735 1.1887

In-Sample = 200; Out-sample = 200
θFrank = 5.5, θSJ = 4.8, θJoe = 4.5 θFrank = 6.5, θSJ = 5.8, θJoe = 5.5 θFrank = 7.5, θSJ = 6.8, θJoe = 6.5

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωFrank = 0.5, ωSJ = 0.5, ωJoe = 0 0.5322 0.6472 0.6994 0.5422 0.6195 0.7209 0.5501 0.6009 0.7409
ωFrank = 0.5, ωSJ = 0, ωJoe = 0.5 0.5275 0.5787 0.5566 0.5377 0.6071 0.5834 0.5491 0.6183 0.6034
ωFrank = 0, ωSJ = 0.5, ωJoe = 0.5 0.5329 0.6135 0.6010 0.5443 0.5861 0.6291 0.5346 0.5505 0.6330
ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3 0.5264 0.6057 0.6083 0.5295 0.5734 0.6322 0.5301 0.5460 0.6502

In-sample = 500; Out-sample = 500
θFrank = 5.5, θSJ = 4.8, θJoe = 4.5 θFrank = 6.5, θSJ = 5.8, θJoe = 5.5 θFrank = 7.5, θSJ = 6.8, θJoe = 6.5

MA CW BIC MA CW BIC MA CW BIC
Mean Mean Mean Mean Mean Mean Mean Mean Mean

ωFrank = 0.5, ωSJ = 0.5, ωJoe = 0 0.2509 0.3419 0.4316 0.2542 0.3153 0.4548 0.2569 0.2961 0.4695
ωFrank = 0.5, ωSJ = 0, ωJoe = 0.5 0.2680 0.3431 0.2803 0.2841 0.3648 0.3013 0.2914 0.3693 0.3187
ωFrank = 0, ωSJ = 0.5, ωJoe = 0.5 0.2359 0.3394 0.3140 0.2332 0.2964 0.3382 0.2329 0.2730 0.3521
ωFrank = 1/3, ωSJ = 1/3, ωJoe = 1/3 0.2374 0.3262 0.3268 0.2382 0.2922 0.3563 0.2400 0.2680 0.3766

more robust estimates and relatively smaller predicting losses.

The simulation results show that our proposed model average method outper-

forms both CW and the BIC method when the working mixture copula is misspeci-

fied. This finding has important implications for empirical studies as the true copula

is always unknown to econometricians and the misspecification of one’s working mix-

ture model should be quite common. Given the great flexibility of mixture copula

model in nesting various dependence structures, the model average method is able to

provide a more accurate estimate of the dependence structure in terms of estimation

losses. We consider a real data example in the following section.

2.4 An Empirical Study

We consider a real data example to examine the performance of model average

approach in mixture copula model. Specifically, we consider daily returns of Morgan

Stanley Capital International (MSCI) equity indexes for four developed economies:

United Kingdom (UK), Hong Kong (HK), Japan (JP) and United States (US). The
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Table 2.5: Summary statistics for daily returns.

UK HK JP US
Mean 0.0091 0.0005 -0.0034 -0.0163

Median 0.0242 -0.0119 0.0180 0.0473
min -4.8860 -4.1028 -4.7666 -6.6120
max 4.1248 3.3496 3.6153 2.8370
S.D. 0.9993 1.0110 1.0136 0.9979

Skewness -0.2063 -0.2879 -0.2539 -0.4386
Kurtosis 3.9539 4.0051 3.8863 4.6069
J-B Stat 180.2803 195.9569 241.0026 359.7925

daily data span about 13 years from January 1, 2003 to July 31, 2014, for a total

of 3020 observations. We download these equity indexes from Datastream and then

calculate log returns of the four indexes. For comparing purposes, the currency for

the daily index in Japan, United Kingdom and Hong Kong is converted into US

dollar based on their respective contemporary exchange rates.

We split the data into two equal parts: The first 1510 observations (training set),

ranging from January of 2003 to October of 2008, are used to fit the mixture model,

and the remained 1510 observations (testing set) are used to examine the out-sample

predicting accuracy across the competing models. Table 2.5 displays the summary

statistics for daily log-returns of MSCI index for the four markets. Over the 5 years

between 2003 and 2008, UK market gave the highest average daily return while the

median of daily return was relative higher in the US market. The skewness is negative

for all, indicating higher probability in having extreme daily losses. Kurtosis for all

four cases is greater than 3, implying a deviation from Normality.

Table 2.6 demonstrates the linear correlation coefficients for each pair. The

strongest linear correlation is in HK-JP pair while the weakest one is in US-JP

pair. Figure 2.4 shows pairwise scatter plot for each pair. Daily returns in each pair
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Table 2.6: Linear correlation coefficients across four markets.

UK HK JP US
UK 1.0000 0.3436 0.2593 0.4186
HK 1.0000 0.4592 0.1620
JP 1.0000 0.0741
US 1.0000

appear to be positively correlated especially for US-UK, JP-HK and UK-HK pairs.

Figure 2.4 also displays a violation of the elliptical multivariate distributions: Differ-

ent mass in joint tails of the distribution, asymmetry and outliers could be observed

directly from each pair. Figure 2.4 further confirms the existence of large amount

of outliers in the lower left corner for UK-HK, JP-HK and JP-UK pairs. Simply

choosing one most “appropriate” copula from a candidate set may be only helpful in

covering one characteristic of the joint distribution. To fully take advantage of the

flexibility of copula theory, we consider mixture copula model.

Spurious regression results will be generated if a pair of time series data is pro-

cessed inappropriately (see Granger and Newbold 1974; Chen and Fan 2006). Hu

(2006) also argues that data with conditional heteroscedasticity lead to underes-

timation of the degree of dependence, due to the clustering of large volatilities.

Preliminary examination has indicated the existence of both autocorrelation effects

and conditional heteroscedasticity in the daily returns for the four economies. To

filter both effect, we specify an AR(1)-GARCH(1,1) model. The filtered monthly

percentage changes will be substituted into the working mixture copula model.

Statistics from Jarque-Bera test for each series list in Table 2.5 also confirm the

deviation from normality. To better capture the heavy tails on both sides, we follow

Cai and Wang (2014) and assume that marginal distributions follow the student

t-distribution.
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We then fit the filtered daily returns in the four economies into the mixture

copula model which includes Gaussian, Clayton and Gumbel. We implement the

model average method, Cai and Wang (2014)’s penalized likelihood method and

the BIC method to estimate the mixture copula model respectively. To compare

the estimating performance across the three methods, we follow procedures that are

similar in manner to Genest and Rivest (1993). As the true model is unknown to us,

the ultimate purpose of this comparison is to examine whether the mixture copula

model estimated via model average approach has relatively smaller estimation losses

and captures the dependence structure satisfactorily for the six pairs .

Specifically, following Genest and Rivest (1993), we construct four 5 × 5 cross-

classifications which are presented in Table 2.7.3 The cross-classifications in the

first column in Table 2.7 is for the observations and the other three are for the

competing methods. Genest and Rivest (1993) does not specify the dimension of a

cross-classification. The choice of this number should be a trade-off: one needs both

enough number of groups to test contingent dependence and sufficient observations

for each cell. Let G represents the table and G(i, j) be the cell in the ith row and jth

column, where i, j = 1, ..., 5. For cell G(i, j), let ui and vi be the lower bounds for

the cell, where ui and vi are defined as the i/5 and j/5 percentiles for the two series

of observations, respectively. The cell boundaries for the two variables were taken

as the order statistics of rank [1510 ∗ j/5] in the respective economy, for j = 1, ..., 4

and 1510 is the number of observations. Then a pair of observations (u, v) belongs

to the cell G(i, j) if ui < u ≤ ui+1 and vi < v ≤ vi+1. Thus, the number in G(i, j)

implies the number of times the daily return of market 1 is between the i/5 and the

(i+ 1)/5 percentile of its range, and that of market 2 is within the j/5 and (j+ 1)/5

3Genest and Rivest (1993) suggest to use 7× 7 cross-classifications. We have tried this and the
results are quite similar with the 5× 5 ones. The results for 7× 7 are available upon request.
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percentile of its range. For example, the figure recorded in the cell (3, 2) indicates

the number of times that daily percentage changes of the first economy is between

the 40th (2/5) and the 60th (3/5) percentile of its range, while that of the second

economy is within 20th (1/5) and 40th (2/5) percentile of its range. Thus, if the two

economies are perfectly positively correlated, we should see that most observations

lie on the principal diagonal. If they are perfectly negatively correlated, then most

observations should lie on the diagonal which is perpendicular to the principal one.

If they are independent to each other, then the number of observations in each cell

should similar to each other.

The observed and predicted frequencies are displayed in Table 2.7. We interpret

Table 2.7 by taking UK-HK pair as an example. For observed frequencies, the

cell at the top-left represents the number of times when indexes in UK and Hong

Kong market are both below the 20th (1/5) percentile of their respective ranges;

that is, the number of times when both markets face downturn risk simultaneously.

Correspondingly, the cell at the bottom-right shows the frequency that both daily

returns are between the 80th (4/5) and 100th (5/5) percentile. Of the total 1510

observations, there are 114 times that daily returns of MSCI indexes in UK and Hong

Kong are both lower than their 20th percentile. Correspondingly, during the period

between January 2003 and October 2008, there are 99 times that daily returns in UK

and Hong Kong market are both higher than their 80th percentile. Thus, UK and

Hong Kong stock markets exhibit higher probability to co-move downward than to

move up simultaneously. However, such a difference is not significant in the other 5

pairs: The difference between the up-left and the bottom-right cell, which represents

the difference between the number of extreme events in both tails, is no larger than

8, exhibiting similar dependence structures in both tails.

We then evaluate the fit of the estimated mixture copula models by comparing
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Pair Observed frequency MA predicted frequency CW predicted frequency BIC predicted frequency
UK-HK 114 69 52 38 29 134 72 47 31 18 155 68 39 24 15 136 77 49 29 11

62 64 66 69 41 72 77 66 52 35 68 81 66 51 36 77 78 67 52 29
45 57 71 74 55 47 66 71 67 51 39 66 72 68 57 49 67 70 67 49
44 56 69 55 78 31 52 67 78 73 24 51 68 79 80 29 52 67 78 77
37 56 44 66 99 18 35 51 73 125 15 36 57 80 114 11 29 49 77 136
Est.error: QMA = 148.24, QCW = 219.90, QBIC = 231.08

JP-HK 135 66 53 36 12 142 78 47 26 10 173 68 33 18 11 134 81 50 27 10
75 69 58 64 36 78 85 70 48 22 68 90 68 46 31 81 85 71 47 19
43 64 77 66 52 47 70 78 69 38 33 68 80 70 51 50 71 79 70 33
30 63 69 65 75 26 48 69 89 70 18 46 70 89 79 27 47 70 91 67
19 40 45 71 127 10 22 38 70 161 11 31 51 79 130 10 19 33 67 174
Est.error: QMA = 156.32, QCW = 181.42, QBIC = 227.84

JP-UK 96 74 50 46 36 122 69 49 37 25 137 65 42 32 26 141 65 42 30 23
81 61 48 54 58 69 71 64 55 43 65 76 65 53 43 65 71 63 55 48
45 57 78 74 48 49 64 67 65 57 42 65 69 67 59 42 63 67 66 64
43 65 58 66 70 37 55 65 73 73 32 53 67 75 75 30 55 66 73 78
37 45 68 62 90 25 43 57 73 103 26 43 59 75 99 23 48 64 78 89
Est.error: QMA = 110.15, QCW = 174.94, QBIC = 185.06

US-HK 80 70 57 53 42 85 70 60 50 36 85 70 60 50 36 85 70 60 50 36
80 75 54 50 43 70 68 64 57 44 70 68 64 57 43 70 68 64 57 43
49 47 70 70 66 60 64 64 63 52 60 64 65 63 51 60 64 64 62 51
35 55 65 68 79 50 57 63 67 65 50 57 63 68 64 50 57 62 68 64
58 55 56 61 72 36 44 52 65 106 36 43 51 64 107 36 43 51 64 107
Est.error: QMA = 180.89, QCW = 185.82, QBIC = 187.29

US-UK 120 89 46 28 19 140 77 47 27 12 135 80 49 27 10 132 81 51 28 10
66 73 63 52 48 77 83 69 49 25 80 84 70 48 20 81 84 70 48 19
49 55 83 72 43 47 69 76 69 42 49 70 78 69 35 51 70 78 69 34
43 47 64 72 76 27 49 69 86 71 27 48 69 89 68 28 48 69 90 67
24 38 46 78 116 12 25 42 71 152 10 20 35 68 169 10 19 34 67 171
Est.error: QMA = 155.10, QCW = 241.31, QBIC = 241.09

US-JP 68 71 60 56 47 76 67 61 54 44 76 67 61 54 44 76 67 61 54 44
76 65 54 58 49 67 65 62 58 49 67 65 62 58 49 67 65 62 58 49
52 51 68 60 71 61 62 63 62 55 61 62 63 62 55 61 62 63 62 55
48 58 60 68 68 54 58 62 64 63 54 58 62 65 63 54 58 62 64 63
58 57 60 60 67 44 49 55 63 91 44 49 55 63 91 44 49 55 63 91
Est.error: QMA = 67.49, QCW = 67.60, QBIC = 67.49

Table 2.7: Goodness-of-fit: comparison between observed and predicted frequencies.
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the three competing methods’ estimated frequencies with the observed frequencies

of all the cells. To compute the estimated frequencies, let Ĉ denote our estimated

copula. Then the estimated count in cell (u2, v2), for example, could be obtained

by multiplying the probability Ĉ(u2, v2) − Ĉ(u2, v1) − Ĉ(u1, v2) + Ĉ(u1, v1) to the

sample size 1510. Let Gi,j and GMA
i,j denote the frequency observed and the frequency

estimated by model average in cell (i, j) respectively. Then, we define the estimation

error as:

QMA =
1

k2

k∑
i=1

k∑
j=1

(Gi,j −GMA
i,j )2. (2.4)

In our case, k = 5. By the same manner, we could calculate estimating errors for

CW and the BIC method, which are respectively denoted as QCW and QBIC . The

estimation errors are displayed at the bottom of each pair in Table 2.7. For the first

five pairs, the model average method exhibits the smallest estimation errors, while

the BIC method which relies on the comparison of BIC among Gaussian, Clayton and

Gumbel copulas gives the largest estimation errors. In US-JP pair, the model average

and BIC methods exhibit the same estimation loss and the superiority of CW is tiny.

The empirical studies again show that the model average approach gives satisfactory

estimates of dependence structures comparing with other competing methods.

We further examine the predicting performance of the three competing methods

based on the daily observations between October 2008 and July 2014. We could

obtain a similar table as Table 2.7, and the estimated frequencies are based on our

estimated mixture copula model under MA, CW and BIC, respectively. The out-

sample predicting errors are calculated in the same way we used to calculate the

in-sample estimation losses. To save space, we only present the predicting errors of

each competing method for each pair. The results are displayed in Table 2.8. It is

obvious that model average method exhibits the smallest predicting errors compared
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Table 2.8: Mean of out-sample predicting errors based on MA, CW and BIC.

QMA QCW QBIC

UK-HK 70.8530 116.7931 130.1514
JP-HK 223.8020 246.5037 299.9155
JP-UK 171.5280 249.8285 247.5502
US-HK 80.7417 82.6520 83.6471
US-UK 61.0112 85.5270 102.5451
US-JP 96.1258 96.0680 96.1258

with CW and BIC methods, even though for the US-JP pair, these three methods

have quite similar predicting performance. Thus, the model average method also

provides relatively satisfactory predicting performance.

2.5 Conclusion

In this article we propose a model average method to estimate mixture copula

models due to Hu (2006). Unlike the BIC method which selects only one individual

copula based on the comparison of BIC, model average method estimates a mixture

copula model based on choosing the optimal weights associated to the components

in an averaging model. Simulation studies show that the model average method

performs similarly to the penalized likelihood method proposed by Cai and Wang

(2014) when observations are generated from copulas included in the working mixture

copula model. However, when the working mixture copula model is misspecified, or

observations are generated from copulas not included in the working mixture model,

the model average method significantly outperforms Cai and Wang (2014)’s penalized

likelihood method. In addition, mixture copula, no matter estimated by the model

average method or the penalized likelihood method, exhibits superior estimating

accuracy than the BIC method, indicating the flexibility of mixture copula model in

nesting various dependence structures. An empirical example shows that the model
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average method provides satisfactory estimates of the dependence structures among

four international stock markets. Thus, the model average method on mixture copula

can be utilized by practioners in financial industry for portfolio diversification and

risk management.
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(d) ωGaussian = 1/3, ωClayton = 1/3, ωGumbel = 1/3

Figure 2.2: Boxplots for ratio of estimation losses in Type I simulation.
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Figure 2.3: Boxplots for ratio of estimation losses in Type II simulation.
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Figure 2.4: Scatter plots for daily return of MSCI Index.
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3. ESTIMATING AVERAGE TREATMENT EFFECT OF THE JUSTICE

REFORM IN VIRGINIA

3.1 Introduction

This paper evaluates the treatment effect of the justice reform in Virginia. From

January 1, 1995, Virginia abolished discretionary parole for all violent crimes, re-

formed its sentencing systems by establishing the Truth-in-Sentencing (TIS) struc-

ture, and extensively enhanced the sentences on all violent offenders. Table 3.1

demonstrates the details: Punishment becomes tougher on repeat violent offenders

with prior conviction greater than or equal to 40 years. For example, the median

serving time for a first degree murder offender, who has prior conviction greater than

or equal to 40 years, has increased to about 80 years during 1999 - 2001 compared to

14 years during 1988 - 1992. Even for offenders without prior crime records, the me-

dian serving years have almost doubled (for rape) or tripled (for first/second degree

murder and robbery).

Table 3.1: Median Years Violent Offenders Served in Virginia

FY 1988 - FY 1992 FY 1999 - FY 2001

No Prior Prior<40 Prior>40 No Prior Prior<40 Prior>40

1st Degree Murder 12.4 14.1 14.7 35.3 51.5 80.3
2nd Degree Murder 4.9 6.6 7.2 13.6 22.7 20.0

Rape 5.6 6.7 6.7 9.0 13.5 34.3
Robbery 1.4 2.2 2.3 3.7 6.2 7.3

Even though there are voluminous literatures about the relationship between in-

carcerating time and crime rate, the conclusions are far from consensus. For example,
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Myers (1980) argues that tougher punishment does not necessarily lead to substan-

tial rehabilitative effect. Marvell and Moody (1996) also do not find convincing

evidence to support the argument that the determinate sentencing laws (DSL) and

abolition of parole significantly suppress the growth of prison population, because

the estimated impacts on commitments vary state by state and there is little or no

evidence that DSL affect crime rate. In a more related research, Sridharan, Vujic

and Koopman (2003) use time series intervention analysis on the violent crime rates

in Virginia. Using ARIMA and structural time series models and controlling the

serial dependence between adjacent error terms, Sridharan, Vujic and Koopman find

evidence that the parole abolition and TIS laws only had deterring effects on rape

and murder, while the deterring effect for property crimes and aggravated assaults

is not statistical significant.

In contrast to the findings above, McPheters et. al (1984) examine the deterrent

response of robbery with a firearm in Arizona as penalties became tougher for using

firearms. They conclude that offenders reduce the number of robberies with a firearm

and the response is abrupt rather than gradual. Levitt (1996) argues that the elastic-

ity is -0.4 for changes in violent crime with respect to changes in prison population,

after controlling various covariates such as economics factors, percent changes in po-

lice staffing, racial composition and the age distribution. Kuziemko (2013) focuses

on micro-data from Georgia and exploits the 1981 mass release in Georgia, a rare

event, as a quasi-experiment to estimate how the elimination of discretionary prison

release affects the social cost of crime. Similar to Levitt (1996), Kuziemko (2013)

finds that “longer prison terms decrease recidivism. . . . the benefits of parole (the

ability to ration prison resources based on recidivism risk and the creation of incen-

tive) outweight the costs (lost incapacitation due to shorter prison terms).” She also

argues that severely limiting the discretion of parole boards may leave some valu-
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able information unused because parole boards “have access to information revealed

after sentencing and therefore may be better than judges at forecasting inmates’ ex-

pected recidivism risk.” Shepherd (2002) checks the effect of TIS laws in deterring

violent crimes using county level data. The empirical results demonstrate that TIS

laws could deter violent crimes through increasing both the probability of arrest and

the maximum imposed prison sentences. He specifies that TIS laws decrease rates

of murder by 16%, rape by 12%, robbery by 24%, aggravated assault by 12%, and

larceny by 3%. He also finds that under the TIS framework offenders tend to sub-

stitute to commit more property crimes such as burglaries and auto thefts for less

severe punishments. Ross (2011) evaluates the impact of spatial variation in crime

prevention policies on the migration of criminal activities into nearby locations. He

uses the panel data approach and finds some deterring impact on crimes in states

which adopt TIS laws and migration of crimes to neighboring states which do not

establish TIS laws.

In this paper, we contribute to the literature by measuring how much the justice

reform deters violent crimes in Virginia. We use a panel data approach proposed by

Hsiao, Ching and Wan (2012, HCW hereafter) to conduct a counterfactual analy-

sis. Unlike the popular Difference-in-Difference (DID) approach, HCW method does

not suffer from sample selection bias problem since the method does not require the

treatment unit and the control units follow parallel paths over time in the absence

of treatment (Abadie, 2005, and Athey and Imbens, 2006). HCW suggest using

outcomes of control units which do not receive treatment effects to predict the coun-

terfactual path for the treated unit. The idea behind HCW method is that some

common factors (they may be unobservable) drive both treatment units and control

units over time so that cross-sectional units are correlated with each other.

The rest of the paper is organized as follows. In Section 2 we briefly review
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the history of parole system in the U.S. In Section 3 we describe HCW’s method for

estimating average treatment effects. Section 4 reports the empirical results obtained

through HCW method. We conclude the paper in section 5. Formal definitions for

violent/property crimes is given in Appendix A. We collect more detailed estimation

results in Appendix B which is available from the authors upon request.

3.2 Parole and Truth-in-Sentencing in U.S.

Parole was introduced into U.S. in the 1800s and was mainly used to efficiently

manage the population in prisons and prepare inmates for release.1 By 1942, both

the state and the federal governments have established their parole systems run by

parole boards, whose discretionary power of releasing inmates was huge during the

1970s, a period in which judges only provided indeterminate sentences reflecting a

range of minimum and maximum incarcerating years. Through structured decision-

making process, a parole board might release an inmate as long as he/she served the

minimum convicted sentence after evaluating his/her potential recidivism risk. For

example, in Alaska, where the discretionary power of parole board still exists, the

discretionary parole is defined as the following:

According to Alaska Stat. S33.16.900, “discretionary parole” means the release

of a prisoner by the board before the expiration of a term, subject to conditions

imposed by the board and subject to its custody and jurisdiction; “discretionary

parole” does not include “special medical parole”.

The percentage of U.S. prisoners released on parole reached a high level of 69% in

1977.2 As shown in Figure 3.1, even in the early 1980s, the discretionary paroles

still account for more than half of all the prisoners released in the United States. To

1For details, the first chapter of Parole: Then & Now by Texas Senate Research Center provides
an excellent reference.

2Trends in State parole, 1990-2000, Bureau of Justice Statistics, 2001.
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control the number of release on parole, in 1984, The United States Federal Sentencing

Guidelines abolished parole for those committed federal crimes and limited early

release from prison for good behavior on the federal level, as more and more states

moved to determinate sentencing system and mandatory supervised release during

the 1980s. This abolition narrowed the discrepancy between the sentenced years

and the actual years served. Consequently, as shown in Figure 3.1, the percentage

of discretionary parole continue to decline after 1980 while mandatory parole began

to account for a larger fraction.3 Correspondingly, there was an enhancement in

punishment for offenders. In 1990, the mean value of the maximum sentenced years

for the most serious offense was 99 months and the actual mean serving time is 43.8%

of the sentenced terms. By 1999, this percentage has increased to 55%. Also, in 1990,

the percentages of served sentence for violent crimes (murder, manslaughter, rape

and robbery) are all less than 46%. But in 1999, all violent offenders have to serve

more than 50% of their sentenced terms.4

To assure that felons serve a substantial portion of their sentences, the fed-

eral government launched Violent Offender Incarceration and Truth-in-Sentencing

(VOI/TIS) Incentive Formula Grant Program. This program funds states to build

or expand current correctional facilities for confinement of persons convicted of vio-

lent crimes, and the funded states should warrant violent felons to serve at least 85%

of their sentenced terms. These measures led to a sharp decline in the percentage of

discretionary paroles in the 1980s. The percentage of discretionary paroled prisoner

declined to 38% in 1989 from 55% in 1980, while mandatory paroles increased from

3According to Virginia Department of Correction, mandatory parole is “ the automatic release
of an offender six months before completion of his or her sentence.” Unlike discretionary parole,
parole board members might impose some special conditions for this type of parole but will not
make the parole decision through voting.

4Table 5 of Trends in State Parole, 1990-2000, Bureau of Justice Statistics, 2001.
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Figure 3.1: Percentage of Releases from State Prison by Forms: 1980 - 2000

19% to 30%.5 The percentage of mandatory paroles surpassed that of discretionary

paroles in 1994 and continued to increase. For Virginia, Figure 3.2 compares the

actual serving percentages of sentenced terms by various types of offenders before

and after the justice reform. Before 1995, except for those who convicted of rape or

forcible sodomy, offenders on average served less than 40 percent of their sentences

before being eligible for parole. After 1994, all offenders had to serve at least 85

percent of their sentences due to the TIS laws. We will then estimate whether en-

hancement in punishment and longer incarceration would effectively decrease violent

crimes in Virginia.

5Trends in State parole, 1990-2000, Bureau of Justice Statistics, 2001.
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Figure 3.2: Percentage of Prison Sentence Served in Virginia

3.3 The Estimation Method

In this section we briefly review the estimation method proposed by Hsiao et al.

(2012). Let yit denotes the state i’s violate crime rate at time t and the justice reform

happens at time T1. In the absence of any treatments, Hsiao et al. (2012) consider

the case that

yt = a+Bft + ut, (3.1)

for t = 1, ..., T1, where yt = (y1t, ..., yNt)
′, a = (a1, ..., aN)′, ft is a K × 1 vector of

common factors (they may be unobservable) that affect crime rates, B is a N ×

K matrix of factor loading, ut = (u1t, ..., uNt)
′ is a vector of idiosyncratic error.

Following Hsiao et al. (2012), we assume that only the first unit, Virginia, receives

the justice reform at time T1, and all other units are not affected by the Virginia’s
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policy intervention. Let y11t and y01t denote the violent crime rates of Virginia with

and without the treatment, respectively. Given that there is an intervention at time

T1, we are interested in estimating the average treatment effects ∆1 = E(y11t − y01t).

The difficulty is that we can not observe y01t for t ≥ T1+1. Hsiao et al. (2012) suggest

using control group’s yjt, j ≥ 2, to estimate y01t. This can be done by replacing ft by

ỹt = (y2t, ..., yNt)
′ in the first unit’s equation y1t = a1 + b′1ft + u1t to obtain

y1t = γ1 + ỹ′tγ + v1t (3.2)

for t = 1, ..., T1, where v1t satisfies E(v1t) = 0 and E(v1tỹt) = 0. Let γ̂1 and γ̂ denote

the least square estimators of γ1 and γ based on (3.2) using the pre-treatment period

data, then we estimate the counterfactual outcome of y01t by

ŷ01t = γ̂1 + ỹ′tγ̂ (3.3)

for t = T1 + 1, ..., T . The average treatment effect is estimated by

∆̂1 =
1

T2

T∑
t=T1+1

(
y1t − ŷ01t

)
, (3.4)

where T2 = T − T1.

Under quite mild conditions including that rank(B) = K, Li and Bell (2014)

derive the asymptotic distribution of ∆̂1 as follows:

√
T2(∆̂1 −∆1)

d→ N(0,Σ),

where Σ = Σ1 + Σ2 + Σ3. Σ1 = ηE(xt)
′V E(xt), η = limT1,T2→∞ T2/T1, Σ2 and Σ3 are

the asymptotic variances of T
−1/2
2

∑T
s=T1+1 v1s and T

−1/2
2

∑T
s=T1+1 (∆1s − E(∆1s)),
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respectively.

In our case, HCW method is more appropriate than the popular DID approach for

two reasons. First, DID approach assumes that there is no sample selection bias issue

while HCW method does not need to do so. Sample selection bias is a big concern in

the program evaluation literature (e.g., Heckman and Hotz, 1989). As mentioned at

the beginning of the paper, in Virginia the public safety deteriorated after mid-1980s

and the violent crime rate reached its historical high in 1993. The severe situation

called for tougher punishment to deter violent crimes. The justice reform in Virginia

thus should not be regarded as a random arrangement among all the other states.

Hence, HCW method is more appropriate for our analysis. Second, the fundamental

assumption for DID approach is the common trend for both treatment and control

groups. HCW method does not require such an assumption, while a violation of this

assumption would make DID approach invalid. Simulation results from Li and Bell

(2014) compare the MSEs of DID and HCW in predicting the average treatment

effect and show that when the common trend assumption is violated, the ratio of

MSE for DID and HCW is uniformly greater than 1 at various levels of T1 and T2,

indicating that HCW outperforms DID in estimating the treatment effect.

One can also use the synthetic control method proposed by Abadie, Diamond

and Hainmueller (2010, ADH hereafter) which usually give similar estimation result

as that of HCW when the treatment and the control units are drawn from a random

sample. However, when the sample are not randomly selected, ADH method can

suffers sample selection bias problem. This is because the weights attached to the

control units are restricted to adding up to one.

Nevertheless, we still would like to stress that the comparison between DID and

HCW method discussed above should be interpreted with caution. Even though

more flexible, HCW method also has limitation: it requires longer time series data to
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estimate the counterfactual outcomes. When there are many units in both treatment

and control groups or the pre-treatment period is quite short, HCW method would

not be applicable while DID is still likely to work well. Hence, HCW method should

be viewed as a complement to DID.

3.4 Empirical Results

3.4.1 Data

Sabol et al. (2002) summarize different states’ policies for parole and early re-

lease.6 According to their discussions, 17 states — Alabama, Arkansas, Colorado,

Hawaii, Maryland, Massachusetts, Nebraska, Nevada, New Hampshire, New Mexico,

South Dakota, Rhode Island, Texas, Utah, Vermont, West Virginia, and Wyoming

— still keep parole system for certain offenders and have not established stringent

TIS laws.7 Some of them require certain minimum incarcerating periods. For exam-

ple, Texas and Maryland demand all felons to serve at least 50% of their sentences

while Arkansas requires certain offenders to serve 70%. Colorado separates violent

offenders by the number of time for prior violent convictions: felons with two prior

violent convictions to serve 75% and with one prior violent conviction, 56%. Some

even still keep discretionary power of correctional committee for parole. For example,

Rhode Island still grants discretionary parole on inmates who have been imprisoned

for more than six months and who have served no less than one-third of sentenced

terms.

We collect both violent crime rates and property crime rates per 100,000 popula-

tion from FBI’s Uniform Crime Report. The data, collected by the Uniform Crime

Report, cover the period between 1960 and 2010. The violent crime includes murder,

6For details, see page 20, Chapter 2 of The Influences of Truth-in-Sentencing: Reforms on
Changes in States’ Sentencing Practices and Prison Populations.

7Utah does not have Truth-in-Sentencing statutes but received federal grant funding on the basis
of its Truth-in-Sentencing practices.
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Table 3.2: Descriptive Statistics: Violent/Property Crimes Rates (1960 - 2010)

Aggregated Violent Crime Rates Aggregated Property Crime Rates

min max mean S.D min max mean S.D

U.S. 72.48 324.81 209.60 70.08 1726.3 5353.3 3896.61 1028.98
Virginia 42.47 182.38 126.66 37.70 1469.20 4349.10 3144.75 792.60

Alabama 38.36 228.66 141.82 55.23 985.50 4521.40 3276.42 1117.66
Arkansas 36.64 191.36 114.34 42.37 926.40 4581.70 3113.49 1079.20
Colorado 74.15 223.01 149.06 41.47 2035.10 6821.40 4601.98 1438.82

Hawaii 15.85 233.65 117.77 55.32 2276.50 7182.80 5010.10 1282.62
Maryland 49.99 491.42 316.29 117.07 1518.80 5777.70 4143.38 1085.49

Massachusetts 26.71 301.96 161.75 70.42 1170.30 5635.30 3460.32 1217.11
Nebraska 22.01 113.91 80.24 26.21 1177.80 4162.50 3151.82 882.39

Nevada 95.35 547.79 305.23 111.14 2774.70 7996.00 5142.41 1419.44
New Hampshire 7.09 80.68 46.42 22.15 676.40 4499.80 2452.77 986.28

New Mexico 55.60 237.42 157.98 51.66 2062.40 6053.20 4593.11 1174.94
Rhode Island 15.38 157.47 103.74 40.59 1833.30 5524.10 3778.88 1091.71
South Dakota 14.97 91.11 45.63 19.78 1065.20 3116.30 2179.93 572.42

Texas 48.03 355.17 199.60 77.65 1970.50 7365.10 4596.80 1426.20
Utah 28.63 118.26 84.27 25.07 2047.90 5762.00 4297.66 1013.13

Vermont 4.87 72.19 35.60 15.50 796.70 5115.00 2793.35 1169.34
West Virginia 20.49 80.67 55.95 17.02 599.20 2639.90 1914.02 642.95

Wyoming 24.93 82.72 50.54 13.80 1564.70 4701.80 3285.44 822.14

rape and robbery. The property crime includes burglary, larceny and motor vehicle

theft. Table 3.2 displays descriptive statistics for both national level and state level

violent crime rate and property crime rate. We find that, even though lower than

the national average level, the average violent crime rate in Virginia is only lower

than that of seven states — Alabama, Colorado, Maryland, Massachusetts, Nevada,

New Mexico and Texas, but significantly higher than that of other ten states in the

control group. For property crime, Virginia has lower average property crime rate

during 1960 - 2010: Only Arkansas, New Hampshire, South Dakota, Vermont and

West Virginia have lower average property crime rates.
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3.4.2 Aggregated Violent Crime

We check the treatment effect on the aggregated violent crime rates first. Im-

plementing the method by Hsiao et al. (2012), we regress the violent crime rates in

Virginia before 1995 on violent crime rates of various combinations of the 17 states

in the control group. For the 17 states, there are 217 − 1 = 131071 different com-

binations. We categorize these combinations into 17 groups by the number of the

control states selected, and then pick up one “optimal” model from each of the 17

groups by comparing their adjusted R2 coefficient. For the 17 selected models, we

finally choose the one gives the smallest AICC value.8

Based on HCW approach, the AICC method selects 8 states (as the control

group): Alabama, Arkansas, Colorado, Maryland, Nevada, Rhode Island, Utah and

West Virginia. These states are geographically scattered. The detailed estimation

result is given in Table 3.3. The OLS coefficients for all selected states are significant

at 5% level. The adjusted R2 under this specification is about 0.98, indicating that

the unobserved common factors which impact all the 8 selected states as well as Vir-

ginia could explain about 98 percent of the variation in violent crime rates in Virginia

between 1960 and 1994. In fact, the 8 selected states, as well as Virginia, have simi-

lar evolving patterns of violent crime rates to the nation’s. In the book “The Crime

Drop In America”, Blumstein gives some specifications about these patterns: (i) The

remarkable increase in violent crime from 1960 to the mid-1970s is “a result of the

decline in perceived legitimacy of America social and governmental authority during

this turbulent period, which contained the civil rights movement and the strident

opposition to the war in Vietnam.” (ii) The uptrend during late 1970s to early 1980s

8We have also used the AIC standard for state selections and actually get quite similar results.
AICC is a more conservative model selection standard and prefers more parsimonious model. Thus,
in the remaining part of the paper, the optimal models are all selected under AICC.
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and the small decline to 1985 are due to “the movement of the baby-boom generation

into and then out-of the high-crime ages of the late teens and early twenties.” (iii)

Violent crime rate became stabilized during the mid-1980s, but increased again due

to drug-dealings. Based on these argument, Blumstein compiles some factors such

as changing demographics, policing and community policing, growth in prison ex-

pansion and expanding economy as factors that impact every state. Based on Hsiao

et al. (2012), we assume that the impact of the factors has been mirrored by the

variations of violent crime rates in these states.

Table 3.3: Aggregated Violent Crime Rates: Weights for control group

Panel A (no time trend) Panel B (with time trend)

Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.9183 4.8417 2.67 0.0130 13.2864 5.0506 2.63 0.0144
AL 0.6232 0.1440 4.33 0.0002 0.6402 0.1553 4.12 0.0004
AR -0.2975 0.1364 -2.18 0.0384 -0.2898 0.1407 -2.06 0.0500
CO 0.1437 0.0514 2.79 0.0096 0.1327 0.0619 2.14 0.0420
MD 0.1058 0.0257 4.11 0.0004 0.1076 0.0267 4.02 0.0005
NV -0.1497 0.0323 -4.63 0.0001 -0.1487 0.0330 -4.50 0.0001
RI 0.2094 0.0684 3.06 0.0050 0.2294 0.0920 2.49 0.0196

UT 0.8250 0.1931 4.27 0.0002 0.8008 0.2097 3.82 0.0008
WV -0.6003 0.2879 -2.08 0.0471 -0.5789 0.3000 -1.93 0.0651

Trend -0.1967 0.5938 -0.33 0.7433

Figure 3.3 gives a visual demonstration about how good the selected 8 states

simulate the actual path of the violent crime rate in Virginia between 1960 and

1994. The black line represents the actual path of the violent crime rate per 100,000

population in Virginia. Comparing with the actual path, we find that our synthetic

path (in red line) almost perfectly matches the actual one especially for periods

during 1960 – 1975 and 1984 – 1994. For the period between 1976 and 1983, our

synthetic path also captures the general patterns of the actual one.
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Figure 3.3: Violent Crime Rates in Virginia: Actual Path and Predicting Path

The actual path and the synthetic path begin to diverge abruptly after 1994.

Figure 3.3 shows that synthetic path jumps at 1995 and is above the actual path

uniformly from then on. Overall, the average treatment effect over the 16 years from

1995 to 2010 is -23.83 (a 16% drop), indicating that the violent crime rate would have

been on average 23.83 per 100,000 population higher in the absence of the reform.

The calculated t statistic is −9.27, which is significant at any conventional level. The

estimated yearly treatment effects are documented at Table 3.4.

3.5 Robustness Test

To check the robustness of the treatment effect, we conduct several robustness

tests. Similar to Abadie and Gardeazabal (2003) and Abadie, Diamond and Hain-

mueller (2010), we firstly conduct a placebo test by choosing a state randomly from
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Table 3.4: Aggregated Violent Crime Rates: Treatment effect between 1995 - 2010

Panel A (no time trend) Panel B (with time trend)

Year Actual Prediction Trt.Effect Actual Prediction Trt.Effect

1995 166.52 193.51 -26.99 166.52 192.89 -26.37
1996 156.76 186.51 -29.74 156.76 184.86 -28.10
1997 158.76 174.15 -15.39 158.76 172.17 -13.41
1998 138.46 163.79 -25.33 138.46 160.65 -22.19
1999 131.81 154.55 -22.74 131.81 151.65 -19.84
2000 117.43 160.25 -42.82 117.43 157.47 -40.04
2001 124.97 156.53 -31.56 124.97 153.44 -28.46
2002 126.07 158.56 -32.49 126.07 155.37 -29.29
2003 121.33 161.88 -40.55 121.33 158.42 -37.09
2004 121.70 148.91 -27.21 121.70 144.96 -23.26
2005 128.45 148.50 -20.06 128.45 144.91 -16.47
2006 130.50 135.84 -5.34 130.50 132.42 -1.92
2007 128.21 140.19 -11.98 128.21 136.60 -8.39
2008 123.59 142.49 -18.90 123.59 139.04 -15.46
2009 105.09 119.84 -14.74 105.09 115.68 -10.59
2010 94.46 109.83 -15.37 94.46 104.44 -9.98

Mean 129.63 153.46 -23.83 129.63 150.31 -20.68
S.D 18.66 21.71 10.27 18.66 22.72 10.62

the control group instead of using Virginia. We also consider the exogeneity of the

states in the control group by removing Virginia’s neighboring states. Finally, we

explicitly introduce a time trend variable on the right hand side of equation (2) to

reduce the near multicollinearity concern and examine whether a time trend would

affect our conclusion.

3.5.1 Placebo Tests

We firstly carry out a series of placebo studies by conducting the HCW approach

iteratively. In each iteration, we take Virginia as a control unit and assume that

one of the 17 states in the control group introduces the justice reform on January 1,

1995. We then calculate the “treatment effects” in each placebo run for those states
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where no treatment actually takes place.

Figure 3.4(a) gives the results of the placebo tests. Instead of plotting both the

actual and the synthetic paths respectively, we draw the differences (gap lines) of

violent crime rates between the actual paths and the synthetic counterparts. Fig-

ure 3.4(a) suggests that the violent crime rate drops immediately after 1994 and the

justice reform had a significant and uniform treatment effect on the violent crime

rates in Virginia. The fit for the period before 1995 is also very good with mean

squared prediction error (MSPE) approximately equals to 25, while the median of

MSPE of all the 18 iterations is about 33. This indicates that Virginia has better

pre-treatment fit than half of the control units. However, Figure 4(a) also suggests

that some states have bad pre-treatment fit. Of all the 17 states in the control unit,

Maryland has the worst fit for the pre-treatment period, with a MSPE of 788. Since

1964, Maryland’s violent crime rate has been uniformly higher than the national

rate and “a very likely explanation for Maryland’s high violent crime rate may be

its sentencing system that is too lenient, especially for violent crimes.”9

If the pre-treatment synthetic path deviates significantly from the actual one, the

gap between the two paths after 1995 should be interpreted as the lack of fit and

would not give much valuable information about the robustness of the results. For

this reason, as Abadie et al. (2010) do, in Figure 3.4(b) we exclude those states

which have pre-treatment MSPE greater than 5 times of Virginia’s MSPE. It is

clear that the Virginia gap line is almost the lowest for the entire post-treatment

period compared with the 11 remained states. In Figure 3.4(c) we further lower

the threshold to exclude states with pre-treatment MSPE that is 1.5 times greater

than Virginia’s MSPE. Figure 3.4(c) displays that Virginia’s gap line is obviously the

9Why Maryland Needs Truth-in-Sentencing, Statement before the Judiciary Committee of the
Maryland House of Delegates Senate, David B. Muhlhausen.
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lowest compared with the remained 7 states. This unusual gap line provides solid

evidence that the drop in violent crime rates in Virginia after 1995 is not driven by

statistical coincidence.

3.5.2 Out-of-Sample Prediction

We assume that the justice reform happened 10 years earlier and re-run the

regression model specified in equation (2) using the new pre-treatment data. If the

results are robust, we should not observe significant treatment effect between 1985

- 1994. Figure 3.5 indicates that a remarkable deviation between the actual and

the synthetic paths still emerges only after 1994, even though we assume that the

treatment happens 10 years earlier. According to Figure 3.5, we still obtain a good

fit during the pre-1985 period. During the 1985 - 1994 period, the synthetic path

follows the pattern of the actual path, and the mean value of the estimating errors

during this period is -0.29. After 1994, there is an abrupt jump in the synthetic path

and it is uniformly above the actual path during the post-1994 period, with the mean

of the estimated treatment effect equals to -32.92. Again this result supports that

the decline of violent crime in Virginia is not a statistical coincidence. The detailed

regression results and the specific treatment effect information are demonstrated at

Table 3.5 and Table 3.6.

3.5.3 Exogeneity of the States in Control Group

Controlling for urban area-year fixed effects, Ross (2011) finds some migrating

effects of violent/property crimes from the state which adopts TIS laws to its neigh-

boring non-adopting states. This is intuitive since potential offenders would tend to

commit crimes at the lowest “expenses”. Under HCW’s settings, all states included

in the control group are assumed to be exogenous to the treatment. For a robustness

check, we remove two neighboring states of Virginia — Maryland and West Virginia
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Table 3.5: Robustness Test: Weights for Control Group Based on Truncated Data

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.3449 3.3928 2.16 0.0449

AL 0.6774 0.1499 4.52 0.0003
NM 0.2095 0.0649 3.23 0.0049
AR -0.4823 0.1546 -3.12 0.0062
CO 0.1132 0.0518 2.19 0.0431
MD 0.1332 0.0181 7.36 0.0000
NV -0.1883 0.0255 -7.37 0.0000
UT 0.6423 0.1887 3.40 0.0034

— from the control group and re-run the model. This time, the selected optimal

model includes 5 states: Alabama, Colorado, Nevada, Rhode Island and Utah. The

estimated treatment effect now shows that, on average, the violent crimes would de-

crease by about 32 per 100,000 population, or 20% drop. This result is in line with

the previously obtained 16% drop. Thus, our estimated mean of the treatment effect

of the reform in Virginia is between 16 and 20%. See Table 3.7 and Table 3.8 for

details.

3.5.4 Time Trend

Bai, Li and Ouyang (2013) extend Hsiao et al. (2012) to I(1) process and prove

that HCW’s approach still gives consistent estimates for weights. If both y1t and ỹt

in equation (2) are I(1) process and ν1t is I(0), y1t and ỹt are cointegrated. However,

since some or all components in ỹt may contain drift terms, these series will be

dominated by their non-zero drift terms. One way to estimate the cointegrated model

is to add a time trend regressor to capture the time trend components of the I(1)

regressors. We show the regression results with an explicitly time trend term in Panel

B of Table 3.3. Comparing with the results in Panel A, the OLS estimated weights

are almost the same. The coefficient for time trend is not significantly different from
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Table 3.6: Treatment Effect of Violent Crime Rates Based on Truncated Data

Year Actual Prediction Trt.Effect

1985 134.53 147.39 -12.87
1986 139.31 148.92 -9.61
1987 139.19 134.17 5.02
1988 147.40 129.29 18.11
1989 141.23 143.12 -1.89
1990 163.01 167.00 -3.99
1991 176.79 161.97 14.82
1992 178.12 188.29 -10.17
1993 182.38 178.34 4.03
1994 170.07 176.43 -6.36
1995 166.52 202.71 -36.19
1996 156.76 198.23 -41.46
1997 158.76 184.51 -25.75
1998 138.46 177.06 -38.60
1999 131.81 167.63 -35.82
2000 117.43 170.05 -52.63
2001 124.97 162.17 -37.20
2002 126.07 161.57 -35.49
2003 121.33 161.76 -40.43
2004 121.70 158.71 -37.01
2005 128.45 158.25 -29.81
2006 130.50 147.80 -17.30
2007 128.21 150.97 -22.76
2008 123.59 153.30 -29.72
2009 105.09 134.31 -29.22
2010 94.46 111.77 -17.31

Mean 140.24 160.61 -20.37
S.D 22.86 21.20 18.81

zero. The adjusted R2 is still very high. Similarly, in Panel B of Table 3.4, the

estimated treatment effects are documented and the estimated average treatment

effect is around −20, which is also very close to −23 of the result in Panel A. Thus,

our results are robust even after considering the time trend explicitly.
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Table 3.7: Robustness Test: Weights for Control Group (excluding WV, MD)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5100 5.1831 0.29 0.7729

AL 0.2814 0.0746 3.77 0.0007
CO 0.1521 0.0676 2.25 0.0322
NV -0.1893 0.0300 -6.32 0.0000
RI 0.2603 0.0705 3.69 0.0009

UT 1.2292 0.2059 5.97 0.0000

Table 3.8: Robustness Test: Treatment effect between 1995-2010 (excluding WV,
MD)

Year Actual Prediction Trt.Effect

1995 166.52 184.05 -17.53
1996 156.76 182.05 -25.28
1997 158.76 181.92 -23.16
1998 138.46 173.66 -35.20
1999 131.81 158.21 -26.41
2000 117.43 166.60 -49.17
2001 124.97 164.87 -39.89
2002 126.07 162.48 -36.41
2003 121.33 167.65 -46.32
2004 121.70 162.17 -40.47
2005 128.45 156.65 -28.20
2006 130.50 144.27 -13.77
2007 128.21 153.38 -25.16
2008 123.59 155.51 -31.92
2009 105.09 144.13 -39.03
2010 94.46 138.80 -44.34

Mean 129.63 162.27 -32.64
S.D 18.66 13.69 10.38

3.5.5 Violent Crime In Details

We check the treatment effects on murder, rape and robbery separately. The

formal definitions of each kind are given in the Appendix B. Figure 3.6 implies that

there are clear treatment effects on the three types of violent crime. It is notable
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that the projected paths closely follow the actual ones for rape and robbery (with

adjusted R2 = 0.97 and 0.98 respectively) before the justice reform in 1995. For

rape, Table 3.11 shows that five states — Alabama, Hawaii, Maryland, Nebraska

and West Virginia — are selected and except for the coefficient of Alabama, which

is significant at 10% level, all the others are significant at 5% level. The average of

the actual rape rate per 100,000 population from 1995 to 2010, shown in Table 3.12,

is 24.14 while the estimated average of rape rate per 100,000 population without the

1995 justice reform is 25.88, which is a 7% decline.

As for robbery, Table 3.13 shows that six states are included: Alabama, New

Mexico, Maryland, Nevada, Utah and Vermont. The adjusted R2 coefficient is 0.98,

implying a nearly perfect fit to the actual path. Table 3.14 demonstrates that the

average treatment effects are −13.01, or a 12% decline.

Gap between the actual and the synthetic paths for murder from 1995 to 2010

could also be observed in Figure 3.6. Table 3.9 documents the estimated coefficients.

Five states are selected: Alabama, Maryland, Rhode Island, South Dakota and Utah.

The mean value of estimated treatment effect, shown in Table 3.10, is −1.69, or a

23% decline. However, the adjusted R2 is only 0.59, which is significantly smaller

than that in rape and robbery. Figure 3.6(a) displays that the main variation is from

the first 10 years. During this period, the unobserved common factors should impact

these 5 states and Virginia in quite different manners. But after 1970, the fitted path

generally follows the true path of murder rate and obvious deviations become fewer.
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Table 3.9: Murder: Weights for Control Group

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1411 1.1171 2.81 0.0087

AL 0.4536 0.0875 5.18 0.0000
MD 0.2609 0.1020 2.56 0.0160

RI -0.4735 0.2029 -2.33 0.0268
SD 0.2867 0.1587 1.81 0.0812
UT -0.4450 0.2486 -1.79 0.0839

Table 3.10: Murder: Treatment Effect between 1995 - 2010

Year Actual Prediction Trt.Effect

1995 7.60 8.52 -0.92
1996 7.50 8.44 -0.94
1997 7.20 8.36 -1.16
1998 6.20 7.75 -1.55
1999 5.70 7.15 -1.45
2000 5.70 5.99 -0.29
2001 5.10 6.38 -1.28
2002 5.30 6.39 -1.09
2003 5.60 6.74 -1.14
2004 5.20 6.78 -1.58
2005 6.10 7.61 -1.51
2006 5.30 8.29 -2.99
2007 5.40 8.87 -3.47
2008 4.70 8.14 -3.44
2009 4.70 7.25 -2.55
2010 4.60 6.29 -1.69

Mean 5.74 7.43 -1.69
S.D 0.96 0.93 0.93
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Figure 3.4: Placebo Test
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Figure 3.5: Robustness Test: Actual Path and Projected Path Based on the Trun-
cated Data
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Table 3.11: Rape: Weights for Control Group

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4284 0.7267 7.47 0.0000

AL 0.1839 0.1044 1.76 0.0888
HI 0.1382 0.0516 2.68 0.0121

MD 0.2305 0.0595 3.87 0.0006
NE 0.3473 0.1076 3.23 0.0031

WV -0.3063 0.0997 -3.07 0.0046

Table 3.12: Rape: Treatment Effect between 1995 - 2010

Year Actual Prediction Trt.Effect

1995 27.20 25.14 2.06
1996 26.70 27.37 -0.67
1997 27.00 26.44 0.56
1998 26.70 26.30 0.40
1999 25.00 25.72 -0.72
2000 22.80 25.46 -2.66
2001 24.60 25.12 -0.52
2002 25.20 25.97 -0.77
2003 24.50 26.73 -2.23
2004 24.30 28.10 -3.80
2005 23.30 26.48 -3.18
2006 23.80 25.04 -1.24
2007 23.20 24.62 -1.42
2008 23.00 25.36 -2.36
2009 19.90 24.09 -4.19
2010 19.10 26.16 -7.06

Mean 24.14 25.88 -1.74
S.D 2.32 1.03 2.18

3.6 Property Crimes

Even though the justice reform in Virginia targets on violent offenders, it is also

meaningful to examine the response of non-violent or property crime offenders. Levitt
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Table 3.13: Robbery: Weights for Control Group

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1770 2.9759 0.06 0.9530

AL 0.2701 0.0613 4.41 0.0001
NM 0.1915 0.0748 2.56 0.0161
MD 0.1336 0.0200 6.67 0.0000
NV -0.0727 0.0295 -2.47 0.0200
UT 0.6831 0.1617 4.22 0.0002
VT -0.3560 0.1892 -1.88 0.0704

Table 3.14: Robbery: Treatment Effect between 1995 - 2010

Year Actual Prediction Trt.Effect

1995 131.70 154.82 -23.12
1996 122.60 148.12 -25.52
1997 124.50 141.30 -16.80
1998 105.60 122.44 -16.84
1999 101.10 112.88 -11.78
2000 88.90 109.93 -21.03
2001 95.30 108.21 -12.91
2002 95.50 103.81 -8.31
2003 91.10 104.42 -13.32
2004 92.20 102.80 -10.60
2005 99.10 103.17 -4.07
2006 101.50 102.84 -1.34
2007 99.60 110.07 -10.47
2008 95.80 106.74 -10.94
2009 80.50 91.69 -11.19
2010 70.70 80.56 -9.86

Mean 99.73 112.74 -13.01
S.D 15.73 19.87 6.44

(1998) decomposes the reduction in crime rate into two channels. The first one is in-

capacitation: Tougher punishment leads to fewer crimes due to longer imprisonment.

We have observed such an incapacitation effect in violent crimes as all murder, rape

and robbery rate declined abruptly after 1994. The second one is deterrence: Severe
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punishment on one kind of crime will lead to a rise in another crime as offenders

substitute away from the former. Table 3.15 compares the medians of actual serving

time for burglary, larceny and motor vehicle theft in the year 1993 and in the period

of 1999 - 2001. Changes in punishment for the three kinds of property crimes are

relatively small compared with that for violent crimes.

Table 3.15: Median Years Property Offenders Served in Virginia

FY 1993 FY 1999 - FY 2001

Prior > 40 No Prior Prior < 40 Prior > 40

Burglary 2.2 1.8 3.6 5.4
Larceny 1.3 1.1 1.8 2.3

Motor Vehicle Theft 1.3 1.3 1.8 2.7

Literatures have some evidence about the substitution from severely punished vi-

olent crimes to less stringently penalized property crimes. Using data on all counties

in the United States, Shepherd (2002) finds that burglaries and auto thefts increase

by 20% and 15% respectively after the enactment of TIS laws. As a matter of fact,

sociological evidence (see Shafer, 1999) shows that for those who have experienced

the sentencing system, many have learned from the path and thus realized that the

less severe punishments on property crimes would not deter them from committing

the same crimes in the future. However, when we impose more severe punishments

on felons who also plan to engage in property crimes, we might also see a decline in

property crimes as a by-product. Thus, the overall anticipated effect of the justice

reform on property crimes is not clear in literatures.

Table 3.16 displays the weights for the five selected states, and Figure 3.7 demon-

strates that property crime rate declines after the introduction of the justice reform.
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Figure 3.7: Property Crime Rates in Virginia: Actual Path and Synthetic Path

However, the story is not that straightforward: At least during the four years between

1996 and 1999 after the enactment of the justice reform, the actual property crime

rates in Virginia are not significantly different from their predicting counterfactual

counterparts. Specifically, according to Table 3.17, in the first 5 years after 1994,

the property crime rates per 100,000 population have increased by about 19.43 on

average, which is consistent with the theory of substitution to less severely penalized

property crimes proposed by Levitt (1998) and Shepherd (2002). But we further find

that even though violent offenders do not change their behaviors drastically after the

reform in 1995, as time goes by, felons who plan to commit property crimes are inca-

pacitated to do so due to the longer serving time in jails. This indicates some lagged

treatment effect of the justice reform on property crimes, so that the actual property
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crime rate becomes uniformly lower than it should have been in the absence of the

justice reform.

Table 3.16: Aggregated Property Crime Rates: weights of control group

Estimate Std. Error t value Pr(>|t|)
(Intercept) 339.0815 102.9194 3.29 0.0026

AL 0.3524 0.0598 5.89 0.0000
MA 0.5650 0.0505 11.20 0.0000
NH -0.2927 0.0592 -4.94 0.0000
NM -0.1466 0.0546 -2.68 0.0119
UT 0.2672 0.0872 3.06 0.0047

Table 3.17: Aggregated Property Crime Rates: Treatment effect between 1995 - 2010

Year Actual Prediction Trt.Effect

1995 3627.70 3863.08 -235.38
1996 3627.00 3517.84 109.16
1997 3530.90 3461.72 69.18
1998 3334.70 3121.97 212.73
1999 3059.30 3118.16 -58.86
2000 2746.40 2979.39 -232.99
2001 2883.30 2952.10 -68.80
2002 2851.10 3119.66 -268.56
2003 2721.50 3149.70 -428.20
2004 2678.20 3016.65 -338.45
2005 2649.00 2927.00 -278.00
2006 2479.60 2834.74 -355.14
2007 2480.00 2893.24 -413.24
2008 2523.30 2844.94 -321.64
2009 2461.40 2683.71 -222.31
2010 2327.20 2612.55 -285.35

Mean 2873.79 3068.53 -194.74
S.D 435.53 320.20 191.76
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3.7 Conclusion

In this paper we employ a panel data approach to evaluate the average treat-

ment effect of Virginia’s 1995 justice reform on violent/porperty crimes. Empirical

results show that the average treatment effect of the justice reform on violent crimes

is abrupt and significant. The robustness tests further confirm our findings. A closer

examination on three types of violent crime — murder, rape and robbery — shows

that the incapacitation effect is especially significant on murder and robbery. Treat-

ment effect on property crime becomes significant four years later after 1994. This

delay is consistent with criminological theories, which indicate that some violent

offenders substitute to less severely penalized property crimes.
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4. CONCLUSION

Model selection becomes a popular topic in econometrics and this dissertation

contributes to the literature by proposing a model averaging approach to estimate the

dependence structures among international stock markets. By averaging some well-

known individual copulas, we prove that our model average estimates provide more

realistic estimation about the dependence structures among the financial market in

U.S., United Kingdom, Japan and Hong Kong. Model selection technique could also

be employed to estimate the treatment effect of the justice reform in Virginia in 1995.

We show that both the violent and property crime rates declines after the justice

reform, based on the optimal model selected by some criteria.
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APPENDIX A

First, we define that

β̂ =
(
α̂T

1,1, . . . , α̂
T
1,p, θ̂

T

1 , . . . , θ̂
T

K−1, ω̃1, . . . , ω̃K−1, α̃
T
1 , . . . , α̃

T
p , θ̃

T

1 , . . . , θ̃
T

K−1

)T
.

We assume K to be fixed and denote the fixed dimension of β̂ by κ. Assume that

there exists a vector β∗ such that β̂ → β∗ in probability as T → ∞. Let C∗(w) =

Ĉ(w) |β̂=β∗ , νt(w) = ∂Ĉ(Xt,w)/∂β̂|β̂=β̃t
for t = 1, . . . , T where β̃t is between

β̂ and β∗, Q(w) = {ν1(w), . . . ,νT (w)}T, L∗T (w) = ‖C∗(w) − C0‖2, and ξT =

infw∈W L
∗
T (w). We assume J to be fixed and M →∞ as T →∞.

For proving the asymptotic optimality, we need the regularity conditions as the

following:

Condition (C.1). Uniformly for w ∈ W, T−1/2‖Q(w)(β̂ − β∗)‖2 = Op(1) and

T−1/2{C∗(w)−C0}TQ(w)(β̂ − β∗) = Op(1).

Condition (C.2). Uniformly, w ∈ W, T−1/2‖Ĉ(w)−C̃(w)‖2 = Op(1), T−1/2{Ĉ(w)−
C̃(w)}T{Ĉ(w)−C} = Op(1), and T−1/2{Ĉ(w)− C̃(w)}T(C0 −C) = Op(1).

Condition (C.3). There exists a sequence cT → 0 such that Tξ−2T ≤ cT almost

surely.

Condition (C.1) constrains the convergence rate of β̂ to its limit β∗. Consider a

general case with β̂ − β∗ = Op(T
−1/2). When the elements of T × κ matrix Q(w)

are uniformly up-bounded, we obtain that uniformly for w ∈ W ,

T−1/2
∥∥∥Q(w)(β̂ − β∗)

∥∥∥2
≤ T−1/2

∥∥∥β̂ − β∗∥∥∥2 λmax

{
QT(w)Q(w)

}
= T−1/2Op(T

−1)Op(T )

= Op(T
−1/2),
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where λmax(·) denotes the maximum eigenvalue of a matrix, and

T−1/2 {C∗(w)−C0}T Q(w)(β̂ − β∗) = T−1/2Op(T
1/2) = Op(1),

where we also used the elements of vector |C∗(w) −C0| are uniformly up-bounded

by 2.

Condition (C.2) needs that as T → ∞, the difference between the loss of the

regular and leave-M out estimators decrease at some rate, is similar to the condition

(A.10) of Andrews (1991) and the condition (A.5) of Hansen and Racine (2012).

When the elements of vector Ĉ(w) − C̃(w) are O(T−1/2) uniformly, by the truth

that the elements of vectors |Ĉ(w) − C| and |C0 − C| are uniformly up-bounded

by 2, we obtain that uniformly for w ∈ W , T−1/2‖Ĉ(w) − C̃(w)‖2 = Op(T
−1/2),

T−1/2{Ĉ(w)− C̃(w)}T{Ĉ(w)−C} = Op(1), and T−1/2{Ĉ(w)− C̃(w)}T(C0−C) =

Op(1).

Condition (C.3) imposes a limitation on the situation to apply our asymptotic

results. It requires that ξT grow at a rate no slower than T 1/2, and implies all

candidate copulas are misspecified. The condition (7) of Ando and Li (2014) is

similar to our Condition (C.3).

We present a Lemma which will be useful in proving Theorem 1.

Lemma 1. Write CVJ(w) = LT (w) + aT (w) + bT , where the term bT has nothing

to do with w. As T →∞, if

sup
w∈W

|aT (w)|
L∗T (w)

= op(1), (A1)

sup
w∈W

∣∣∣∣LT (w)

L∗T (w)
− 1

∣∣∣∣ = op(1), (A2)

and there exists a positive constant c such that

ξT ≥ c almost surely, (A3)

then (2.3) holds.
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Proof. From (A2), we know that

inf
w∈W

LT (w)

L∗T (w)
= inf

w∈W

(
LT (w)

L∗T (w)
− 1

)
+ 1

≥ − sup
w∈W

∣∣∣∣LT (w)

L∗T (w)
− 1

∣∣∣∣+ 1

→ 1, (A4)

in probability as T → ∞. In addition, it is seen that there exists a non-negative

sequence νT and a sequence of vectors w(T ) ∈ W such that as T →∞, νT → 0 and

inf
w∈W

LT (w) = LT {w(T )} − νT . (A5)

Thus, by (A2) and (A3), we have

inf
w∈W

|LT (w)− νT |
L∗T (w)

≥ inf
w∈W

LT (w)− νT
L∗T (w)

≥ inf
w∈W

LT (w)

L∗T (w)
− νT

infw∈W L∗T (w)

≥ − sup
w∈W

∣∣∣∣LT (w)

L∗T (w)
− 1

∣∣∣∣+ 1− νT
infw∈W L∗T (w)

→ 1, (A6)

in probability as T →∞. In addition, by the definition of ŵ, we have

inf
w∈W
{LT (w) + aT (w)} = LT (ŵ) + aT (ŵ). (A7)

Now, from (A1), (A3), (A4), (A5), (A6), (A7), and νT → 0, we obtain that, for any

δ > 0,

Pr

{∣∣∣∣ infw∈W LT (w)

LT (ŵ)
− 1

∣∣∣∣ > δ

}
= Pr

{
LT (ŵ)− infw∈W LT (w)

LT (ŵ)
> δ

}
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= Pr

{
infw∈W (LT (w) + aT (w))− aT (ŵ)− infw∈W LT (w)

LT (ŵ)
> δ

}
≤ Pr

{
LT {w(T )}+ aT {w(T )} − aT (ŵ)− LT {w(T )}+ νT

LT (ŵ)
> δ

}
≤ Pr

{
|aT {w(T )} |
LT (ŵ)

+
|aT (ŵ)|
LT (ŵ)

+
νT

LT (ŵ)
> δ

}
≤ Pr

{
|aT {w(T )} |

infw∈W LT (w)
+
|aT (ŵ)|
LT (ŵ)

+
νT

LT (ŵ)
> δ

}
= Pr

{
|aT {w(T )} |

LT {w(T )} − νT
+
|aT (ŵ)|
LT (ŵ)

+
νT

LT (ŵ)
> δ

}
≤ Pr

{
sup
w∈W

|aT (w)|
LT (w)− νT

+ sup
w∈W

|aT (w)|
LT (w)

+ sup
w∈W

νT
LT (w)

> δ

}
≤ Pr

{
sup
w∈W

|aT (w)|
L∗T (w)

sup
w∈W

L∗T (w)

|LT (w)− νT |
+ sup

w∈W

|aT (w)|
L∗T (w)

sup
w∈W

L∗T (w)

LT (w)

+ sup
w∈W

νT
L∗T (w)

sup
w∈W

L∗T (w)

LT (w)
> δ

}
= Pr

{
sup
w∈W

|aT (w)|
L∗T (w)

[
inf
w∈W

|LT (w)− νT |
L∗T (w)

]−1
+ sup

w∈W

|aT (w)|
L∗T (w)

[
inf
w∈W

LT (w)

L∗T (w)

]−1
+

νT
infw∈W L∗T (w)

[
inf
w∈W

LT (w)

L∗T (w)

]−1
> δ

}
→ 0,

which implies (2.3).

It could be seen that

CVJ(w) =
∥∥∥C̃(w)−C

∥∥∥2
=

∥∥∥{Ĉ(w)−C0

}
−
{
Ĉ(w)− C̃(w)

}
+
(
C0 −C

)∥∥∥2
= LT (w) +

∥∥∥Ĉ(w)− C̃(w)
∥∥∥2 +

∥∥C0 −C
∥∥2

−2
{
Ĉ(w)− C̃(w)

}T (
C0 −C

)
−2
{
Ĉ(w)− C̃(w)

}T {
Ĉ(w)−C0

}
+ 2

{
Ĉ(w)−C0

}T (
C0 −C

)
= LT (w) +

∥∥∥Ĉ(w)− C̃(w)
∥∥∥2 − 2

{
Ĉ(w)− C̃(w)

}T {
Ĉ(w)−C

}
+2
{
Ĉ(w)− C̃(w)

}T

(C0 −C) + 2C̃(w)T(C0 −C)
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−2(C0 + C)T(C0 −C)

≡ LT (w) + ΞT (w)− 2(C0 + C)T(C0 −C),

where the last term has nothing to do with the weight vector w, and

LT (w) =
∥∥∥Ĉ(w)−C0

∥∥∥2
=

∥∥∥{Ĉ(w)−C∗(w)
}

+ {C∗(w)−C0}
∥∥∥2

=
∥∥∥Ĉ(w)−C∗(w)

∥∥∥2 + ‖C∗(w)−C0‖2

+2 {C∗(w)−C0}T
{
Ĉ(w)−C∗(w)

}
= L∗T (w) +

∥∥∥Ĉ(w)−C∗(w)
∥∥∥2

+2 {C∗(w)−C0}T
{
Ĉ(w)−C∗(w)

}
≡ L∗T (w) + ΠT (w).

From Condition (C.3), we can obtain (A3). Hence, from Lemma 1, Theorem 1 is

valid if the following hold:

sup
w∈W

|ΞT (w)|
L∗T (w)

= op(1) (A8)

and

sup
w∈W

|ΠT (w)|
L∗T (w)

= op(1). (A9)

Using Taylor expansion,

Ĉ(w)−C∗(w) = Q(w)(β̂ − β∗). (A10)

From (A10), Conditions (C.1) and (C.3), and the truth that any element of vector
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|C∗(w)−C0| is up-bounded by 2, we have

sup
w∈W

|ΠT (w)|
L∗T (w)

≤ ξ−1T sup
w∈W

∥∥∥Ĉ(w)−C∗(w)
∥∥∥2 + 2ξ−1T sup

w∈W

∣∣∣{C∗(w)−C0}T
{
Ĉ(w)−C∗(w)

}∣∣∣
=

T 1/2

ξT
T−1/2 sup

w∈W

∥∥∥Q(w)(β̂ − β∗)
∥∥∥2

+2
T 1/2

ξT
T−1/2 sup

w∈W

∣∣∣{C∗(w)−C0}T Q(w)(β̂ − β∗)
∣∣∣

= op(1),

which is (A9). Similarly, from Conditions (C.2) and (C.3), we have

sup
w∈W

∣∣∣∣∥∥∥Ĉ(w)− C̃(w)
∥∥∥2 − 2

{
Ĉ(w)− C̃(w)

}T {
(Ĉ(w)−C) + (C0 −C)

}∣∣∣∣
L∗T (w)

= op(1). (A11)

For any x, from Central Limit Theory and (2.2), we have

C0(x)− C(j)(x) = C0(x)−M−1
M∑

m=1

I(X(j−1)M+m ≤ x) = Op(M
−1/2),

which, along with the fact that X1, . . . ,XT are i.i.d., implies that, uniformly for

t ∈ {1, . . . , T},

C0(Xt)− C(j)(Xt) = Op(M
−1/2). (A12)

From cT → 0, (A12), and the truth that any element of vectors |Ĉk| are up-bounded

by 1, we obtain that for any j ∈ {1, . . . , J},

c
1/2
T M−1/2

∣∣∣∣∣
M∑

m=1

C̃
(−j)
k (X(j−1)M+m)

{
C0(X(j−1)M+m)− C(j)(X(j−1)M+m)

}∣∣∣∣∣
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≤ c
1/2
T M−1/2

M∑
m=1

∣∣∣C̃(−j)
k (X(j−1)M+m)

{
C0(X(j−1)M+m)− C(j)(X(j−1)M+m)

}∣∣∣
≤ c

1/2
T M−1/2

M∑
m=1

∣∣C0(X(j−1)M+m)− C(j)(X(j−1)M+m)
∣∣

= op(1),

which, along with Condition (C.3) and the assumption that K and J are fixed,

implies that

ξ−1T sup
w∈W

∣∣∣C̃(w)T(C0 −C)
∣∣∣

= ξ−1T sup
w∈W

∣∣∣∣∣
K∑
k=1

wkC̃
T
k (C0 −C)

∣∣∣∣∣
≤

K∑
k=1

T 1/2

ξT
T−1/2

∣∣∣C̃T
k (C0 −C)

∣∣∣
= op(1), (A13)

where the second ‘≤’ holds almost surely. From (A11) and (A13), we obtain (A8).

This completes the proof.
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APPENDIX B

Criminal homicide: a.) Murder and nonnegligent manslaughter: the willful (non-

negligent) killing of one human being by another. Deaths caused by negligence,

attempts to kill, assaults to kill, suicides, and accidental deaths are excluded. The

program classifies justifiable homicides separately and limits the definition to: (1) the

killing of a felon by a law enforcement officer in the line of duty; or (2) the killing of

a felon, during the commission of a felony, by a private citizen. b.) Manslaughter by

negligence: the killing of another person through gross negligence. Deaths of persons

due to their own negligence, accidental deaths not resulting from gross negligence,

and traffic fatalities are not included in the category Manslaughter by Negligence.

Forcible rape: The carnal knowledge of a female forcibly and against her will.

Rapes by force and attempts or assaults to rape, regardless of the age of the victim,

are included. Statutory offenses (no force used — victim under age of consent) are

excluded.

Robbery: The taking or attempting to take anything of value from the care, custody,

or control of a person or persons by force or threat of force or violence and/or by

putting the victim in fear.

Burglary (breaking or entering): The unlawful entry of a structure to commit

a felony or a theft. Attempted forcible entry is included.

Larceny-theft (except motor vehicle theft): The unlawful taking, carrying,

leading, or riding away of property from the possession or constructive possession

of another. Examples are thefts of bicycles, motor vehicle parts and accessories,

shoplifting, pocketpicking, or the stealing of any property or article that is not taken

by force and violence or by fraud. Attempted larcenies are included. Embezzlement,

confidence games, forgery, check fraud, etc., are excluded.

Motor vehicle theft: The theft or attempted theft of a motor vehicle. A motor

vehicle is self-propelled and runs on land surface and not on rails. Motorboats,

construction equipment, airplanes, and farming equipment are specifically excluded

from this category.
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