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ABSTRACT 

 

Reservoir operation and storage allocation are important duties for agencies and 

water management professionals in Texas and elsewhere responsible for supplying water 

for municipal, industrial, and agricultural uses, hydroelectric power generation, recreation, 

navigation, and maintenance of instream flow for fish and wildlife, and protecting human 

lives and properties from flooding. Flood control capabilities for alternative reservoir 

storage allocations are assessed in the thesis research using the Water Rights Analysis 

Package (WRAP) with a daily version of the WRAP input dataset for the Trinity River 

Basin from the Texas Water Availability Modeling (WAM) System expanded to 

incorporate flood control operations. Tradeoffs between flood control and water supply in 

multiple-purpose reservoirs are analyzed. A system of eight multiple-purpose reservoirs 

operated by the United States Army Corps of Engineers (USACE) in the Trinity River 

Basin serves as a case study for this research. 

WRAP/WAM capabilities for simulating reservoir system operations for flood 

control were tested and improved. Frequency analyses of maximum annual storage levels 

were performed for both actual observed storage and storage computed by the simulation 

model for alternative modeling premises and reservoir operating strategies. The frequency 

analyses focused on determining the probability of exceeding flood control storage 

capacities. The Hydrologic Engineering Center (HEC) Statistical Software Package (SSP) 

was used to apply the log-normal and log-Pearson type III probability distribution 
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functions. Various issues in simulating multiple-purpose reservoir systems and 

performing storage frequency analyses were investigated. 

Reallocations of storage capacity in the eight reservoirs from water supply to flood 

control can be implemented by raising the designated top of conservation pool. Impacts 

on flood control are evaluated in this study in terms of probability of overtopping the flood 

control pool. Impacts on water supply are quantified based on changes in reliability 

metrics. 

Alternative nine simulations are performed in WRAP for the eight Trinity River 

Basin Reservoirs. Three of the nine simulations are reallocation of storage capacities from 

flood control pool to conservation pool. Storage capacities, flood frequency analyses, and 

water supply reliabilities are compared and assessed for both actual observed storage 

capacities and simulation results.  
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NOMENCLATURE 

 

BRA Brazos River Authority 
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CHAPTER I  

INTRODUCTION 

 

The research focuses on assessing flood risk mitigation capabilities of reservoir 

systems with flood control pools controlled by gated outlet structures based on the results 

of a reservoir/river system simulation model. Flood control capabilities were analyzed 

within the broader framework of evaluating permanent or seasonal reallocation of storage 

capacity between flood control and conservation pools in multipurpose reservoirs. 

However, the research is also relevant to analyses of reservoirs operated solely for flood 

control. A system of eight multiple-purpose reservoirs in the upper Trinity River Basin 

owned by the U.S. Army Corps of Engineers (USACE) serves as a case study. These 

reservoirs are operated to reduce flood damages and supply water for the Dallas and Fort 

Worth Metropolitan Area. 

1.1 Background  

Population and economic growth place intensifying demands on limited water 

sources. Reservoir storage capacity becomes increasingly more important with increasing 

municipal, agricultural, industrial, and energy needs. According to the Texas Water 

Development Board (TWDB), the population of Texas will increase 82% from 2010 to 

2060 and population of growth will be 25.4 million to 46.3 million people. Growth rates 

are different across the states, with some areas more than doubling while others increase 

slightly or not at all. The TWDB (Vaughan et al. 2012) notes that current water sources 

are expected to decrease 10%  from 17.0 to 15.3 acre-feet between 2010 and 2060 
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respectively. Water needs exceed supplies during severe droughts. On the other hand, 

floods are another important issue that must be considered. Because of floods, people face 

difficulties such as losses of properties and lives. Increased impervious areas such as 

houses, roads, industrial places, increase runoff volume and cause flash floods. Therefore, 

water management plans and operations should consider both water needs and flood 

events. 

Numerous small flood control and stormwater detention structures with 

uncontrolled (ungated) outlet structures are found throughout Texas. However, most of 

the flood control storage capacities in the state are contained in 33 large federal reservoirs 

which include the multiple-purpose Amistad and Falcon Reservoirs on the Rio Grande 

operated by the International Boundary and Water Commission, Addicks and Barker 

Reservoirs in Houston operated by the USACE solely for flood control, and 30 multiple 

purpose reservoirs in several river basins operated by the USACE for water supply and 

flood control. The flood control pools of these federal reservoirs are controlled with gated 

outlet structures following specified operating rules. The thesis research dealt with this 

type of reservoir/river system operations. 

Reservoir operation is based on the conflicting objectives of maximizing the 

amount of water available for conservation purposes and maximizing the amount of empty 

space available for storing future flood waters to reduce downstream damages (Wurbs 

1996). Many reservoirs are operated either for only flood control or for only conservation 

purposes. Most of the reservoirs in Texas containing flood control capacity controlled by 

gated outlet structures are also operated for conservation purposes, with separate pools 
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designated for conservation and flood control. The conservation and flood control pools 

are defined by a designated top of conservation pool elevation, which also serves as the 

bottom of the flood control pool. Conservation pools may be shared by various purposes, 

such as municipal and industrial water supply, agricultural irrigation, hydroelectric power, 

recreation, and maintenance of environmental flow requirements. Converting portions of 

the large volumes of flood control storage capacity to conservation storage represents a 

potential strategy for meeting intensified demands for supplying water for human and 

environmental needs. Storage reallocations consist of permanent or seasonal raising or 

lowering of designated top of conservation pool elevations. 

The Texas Water Availability Modeling (WAM) System consists of the Water 

Rights Analysis Package (WRAP) simulation model and input datasets for the 23 river 

basins of Texas (Wurbs 2005). The WRAP/WAM System has been applied in Texas since 

about 2000 to support regional and statewide planning and water allocation activities 

focused on water supply for municipal, industrial, agricultural, and environmental needs. 

The WAM System is based on a monthly time step. Daily WRAP/WAM capabilities have 

recently been developed that include flow forecasting and routing, simulation of 

environmental high pulse flow requirements, and simulation of reservoir flood control 

operations (Wurbs and Hoffpauir 2013). 

The WRAP modeling system with a daily version of the WAM system dataset for 

the Trinity River Basin was applied in the thesis research to evaluate flood control 

capabilities and the effects of storage reallocations on flood control capabilities of eight 

multiple-purpose USACE reservoirs. WRAP/WAM simulation and flood control storage 



 

4 

 

frequency analysis capabilities are applied in the research to assess reallocations between 

flood control and conservation purposes. Water supply capabilities for alternative storage 

allocations were quantified in the study using conventional WRAP/WAM reliability 

metrics. The research was particularly concerned with investigating and improving 

capabilities for evaluating the risk of exceeding flood control capacity associated with 

alternative storage allocations. 

1.2 Dams and Reservoirs in the USA 

Tremendous variability in precipitation, seasonal and annual fluctuations in stream 

flows, long duration droughts, and severe floods are major problems in water 

management.  Reservoirs are essential to regulate streamflow fluctuations, develop 

reliable water supplies, decrease flood damages, and maintain instream flow requirements 

(Wurbs and James 2002). Dams, outlet structures, channel improvements canals, 

pipelines, pumping plants, hydraulic power plants, recreation facilities, fish ladders and 

various other structures constitute reservoir projects.  

Numerous reservoir projects were constructed during the period from 1900 

through the 1970s (Wurbs 1996).  These projects are operated by the United States Army 

Corps of Engineers (USACE), United States Bureau of Reclamation (USBR), state and 

regional agencies, water districts, cities, private industries and other agencies. After the 

1970s, optimization of the operation of existing reservoirs became more important than 

before. Public needs and objectives and many other factors subject to change impact 

reservoir operations.  
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Throughout the United States, numerous dam and reservoir projects regulate 

stream flows by storing water from small creeks to major rivers as shown in Table 1.  

Many of them not only store water for beneficial use but also prevent flooding by holding 

water in flood control pools. Lake Mead and Lake Powel, located on the Colorado River, 

are the largest reservoirs in the nation, owned by the USBR. Oahe, Fort Peck, and 

Sakakawea Reservoirs, located on the Missouri River, owned by the USACE are the 3nd, 

4th, and 5th largest in terms of total storage capacity (Wurbs 1996). In terms of power 

capacity, Grand Coulee (6180 megawatts), John Day (2160 megawatts), Chief Joseph 

(2069 megawatts) Dams, constructed on the Columbia River are the largest hydroelectric 

power projects on the Unites States.  

 

Table 1. Reservoirs in the United States by ranges of storage capacity 

 

Storage Capacity Range 

(acre-feet) 

Number Of 

Reservoirs 

Storage 

(acre-feet) (109 m3) 

Greater than 10,000,000 5 107,655,000 133 

100,000-10,000,000 569 322,852,000 398 

50,000-100,000 295 20,557,000 25 

25,000-50,000 374 13,092,000 16 

5,000-25,000 1411 15,092,000 19 

Total 2654 479,788,000 592 

Source: (Wurbs 1996) 

 

1.2.1 United States Bureau of Reclamation (USBR) Reservoirs  

The United States Bureau of Reclamation was founded in order to develop water 

projects needed to support and help economic growth in the arid western United States 
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(Wurbs 1996). As shown in Figure 1, 17 western states, divided into the 5 regions, have 

USBR projects. These projects include dams, dikes, channels, tunnels, pipelines, pumping 

plants, as well as hydroelectric power for various purposes. 

 

 

 

Figure 1. Bureau of Reclamation Region (USBR 2014) 

 

Throughout the nation, USBR involves 343 reservoir projects but some of them 

are turned over to local irrigation, water districts or other entities for operation, which 

leaves only 130 of them operated by the USBR. Most of these projects were constructed 

for multi-purposes; however, the main purpose is irrigation. 28% of them are for irrigation 

purposes. 
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1.2.2 United States Army Corps of Engineers (USACE) Reservoirs 

The United States Army Corps of Engineers (USACE) is one of the largest and 

oldest water management agency in the nation (Wurbs 1996). The main purpose of the 

agency has been to improve the nation`s rivers and harbors, flood control and navigation 

since 1800s.  The USACE`s work programs include planning, design, construction, 

operation, maintenance, water management and regulatory functions. The 516 USACE 

reservoirs, as shown in Table 2, have 272,100 million m3 total storage capacity. About 

117,100 million m3 (43%) of storage capacity was specifically designed for flood control. 

151,600 million m3 (56%) storage capacity is for multi-purpose usage. The remaining 

1.1% and 0.2% storage capacities were only designed for navigation and hydroelectric 

power respectively. The 330 reservoirs were solely designed for flood control purposes.  

 

Table 2. Storage capacity of the USACE reservoirs 

  

Storage Allocation Number of 

Reservoirs 

Storage Capacity 

(million m3) (acre-feet) 

Exclusive  flood control 330 117,100 94,950,000 

Exclusive navigation 135 2,900 2,354,000 

Exclusive hydropower 5 475 385,000 

Multi-purpose use 385 151,600 122,926,000 

Total storage in 516 

reservoirs 

 272,100 220,615,000 

Source: (Wurbs 1996) 

 

  The 237 reservoirs (46%) of the 516 reservoirs were constructed during the 

1950s and 1960s. These reservoirs` storage capacity constitutes 69% of the 516 USACE 
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reservoirs. Construction of the USACE dams decreased after the 1960s. Table 3 provides 

detailed information about construction dates. 

 

Table 3. USACE and USBR reservoirs completion dates in the US 

  

Construction 

Decade 

USACE USBR 

Reservoirs Percent (%) Reservoirs Percent (%) 

Before 1900 9 1.7 1 0.3 

1900-1909 3 0.6 6 1.8 

1910-1919 3 0.6 30 9 

1920-1929 8 1.6 20 6 

1930-1939 67 13 35 10.5 

1940-1949 58 11.2 31 9.3 

1950-1959 88 17.1 82 24.7 

1960-1969 149 28.9 74 22.3 

1970-1979 96 18.6 32 9.6 

1980-1989 35 6.8 18 5.4 

After 1989 - - 3 0.9 

Total 516 100 332 100 

Source: (Wurbs 1996) 

 

1.2.3 Reservoirs in Texas 

Reservoirs in Texas are owned and operated by variety of entities (Wurbs 1987). 

Texas has 6000 reservoirs with surface areas greater than 10 acres; however, as shown in 

Table 4, 189 of them constitute 95% of total storage capacity (Wurbs 1996). Total 

conservation and flood control storage capacity are 49,450 and 22,880 million m3 

respectively. As shown in Figure 2, the three largest reservoirs of Texas, located at its 

borders with Louisiana, Oklahoma, and Mexico have been operated by interstate compacts 

and the International Boundary and Water Commission. Toledo Bend Reservoir on the 

Sabine River, which has 4,477,000 acre-feet conservation pool, is the largest conservation 
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pool capacity in the southern United States. In terms of total storage capacity, Lake 

Texoma, owned by the USACE, on the Red River is the largest reservoir in Texas; 

capacities of the conservation and flood control pools are 2,772,000 and 2,660,000 acre-

feet respectively. One of the largest total controlled storage capacities is Amistad 

Reservoir, owned by the International Boundary and Water Commission, on the Red River 

that has 4320 and 2150 million m3 conservation and flood control storage capacities 

respectively. 

 

 

 
Figure 2. Major rivers in Texas (Wurbs 2013b) 
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Table 4. In terms of storage capacity, reservoirs in Texas 

 

Storage Capacity Range (acre-feet) Number of Reservoirs 

>5,000,000 2 

2,000,000-5,000,000 4 

1,000,000-2,000,000 7 

500,000-1,000,000 15 

100,000-500,000 39 

50,000-100,000 12 

5,000-50,000 110 

Total 189 

Source: (Wurbs 1996) 

 

 

 

1.3 Scope and Objectives 

The research focused on evaluating and improving capabilities for modeling flood 

control reservoir operations and quantifying the risk of exceeding flood control storage 

capacities. However, flood control operations were addressed in the research within the 

framework of comprehensive multiple-purpose reservoir/river system operations. The 

research was concerned with both reservoir/river system management and 

modeling/analysis thereof. The objectives of the research were to: 

1. Investigate and improve WRAP/WAM capabilities for simulating reservoir 

system operations for flood control. 

2. Investigate frequency analysis capabilities for analyzing the risk of exceeding 

flood control storage capacities based on observed storage in eight reservoirs 

in the Trinity River Basin. 
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3. Investigate frequency analysis capabilities for analyzing the risk of exceeding 

flood control storage capacities based on the results of a WRAP/WAM 

simulation. 

4. Formulate and apply methodologies for modeling and analysis of storage 

reallocation plans that provide meaningful quantitative information for 

assessing tradeoffs between flood control and conservation purposes. 

5. Assess the potential of permanent or seasonal storage reallocations between 

flood control and conservation purposes as a strategy for enhancing the 

operations of reservoirs in the Trinity River Basin and elsewhere. 

6. Assess the effects of flood control storage on water supply reliability and 

environmental flows and the effects of conservation storage operations on 

flood control capabilities. 

1.4 Literature Review 

A number of studies reported in the literature deal with modeling reservoir storage 

reallocations and other operational modifications, flood frequency analysis, reservoir 

storage analysis, long-term and short-term storage frequency analyses, failure of dams, 

and effects of climate change on flood analysis. Also, many studies were performed to 

assess causes of flood events, while other studies evaluated the results of flood events. 

According to the International Commission on Large Dams (ICOLD 1973), about 35% of 

all earth dam failures are caused by overtopping, while the rest of failure are caused by 

seepage, piping and other causes. Generally, failure of dams are triggered by flood events, 

which may possibly be accompanied by strong winds (Hsu et al. 2010). Several studies 
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related to storage reallocation and analysis of risk of overtopping flood control storage 

capacities are cited as follows. 

1.4.1 Reservoir Operations and Storage Reallocations  

Wurbs and Carriere evaluated storage reallocation strategies in conjunction with 

optimizing reservoir system operations in Texas (Wurbs and Carriere 1988). They 

modeled permanent and seasonal reallocation plans and other related modifications. 

Twelve reservoirs in the Brazos River Basin owned by the USACE served as a case study. 

The HEC-3 and HEC-5 software packages were used to simulate an 85-year period-of-

record sequence of monthly streamflows. System firm yield for the 12-reservoir system 

was found to be much greater than the summation of individual reservoir firm yield. 

Moreover, they found that after reallocating the storage capacity of flood control pool to 

the conservation pool, firm yield was significantly increased. However, because of 

diminished flood control storage capacity, the risk of exceeding flood control capacity 

significantly increased during an extreme flood event. 

Kim reports another study related to modeling reallocation of storage capacity 

between flood control pool and conservation pool that was previously performed at Texas 

A&M University (Kim 2009). The system of 12 reservoirs in the Brazos River Basin with 

storage reallocations involving tradeoffs between flood control and conservation purposes 

was simulated with the WRAP/WAM system (Kim 2009). This research also includes the 

conversion from a monthly to daily time step. 

Hui and Lund performed a flood control storage allocation study examining flood 

hydrograph effects on flood operation for parallel reservoirs (Hui and Lund 2014). 
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Oroville Reservoir and New Bullards Bar Reservoir in the Sacramento River Basin of 

California served as a case study. These reservoirs were built for multiple purposes. An 

uncertain storm and single flood data from 1977 were analyzed in the case study. They 

found that, for flood management, parallel reservoirs should be managed together in order 

to protect downstream from flood damages. Allocation of flood control pool storage 

capacity for parallel reservoirs minimizes peak inflows which are affected by hydrograph 

shape and timing, channel capacity, characteristics of damages, as well as flood duration. 

They defined two terms for their study; Flood Storage Efficiency (FSE) is reduction of 

peak flow per unit flood storage volume and Marginal Flood Storage Efficiency (MFSE) 

is the derivative of FSE which represents changes of peak flow reduction. For parallel 

reservoirs, the ideal allocation of total flood control storage capacity should have the same 

MFSEs. The main purpose of the study is minimizing damage of downstream caused by 

maximum flow by determining ideal allocation of flood control storage capacity for 

parallel reservoirs. In order to achieve this goal the worst case should be considered. 

1.4.2 Flood Frequency Analysis and Risk of Overtopping 

Dam overtopping probability induced by flood and wind was evaluated in Taiwan 

(Hsu et al. 2010). Their study constitutes a probability-based methodology to assess dam 

overtopping probability which has uncertainties from wind speed and peak flow. Their 

study based on maximum monthly and annual basis to calculate probability of 

overtopping. As a case study, they used Shihmen Dam on the Dahan River in Taiwan and 

they tested Log-normal, Pearson type III, Log-Pearson type III, Weibull and Gumbel 

distribution for 3-day average flow. However, they found that Gumbel, Log-normal, and 
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Log-Pearson type III which have better fit than others. They also found that maximum 

monthly flood data series are higher than annual maximum flood data except Gumbel 

distribution, because its right-end tail probability is much smaller than the other two. 

Furthermore, wind has crucial impact on overtopping probability that is 113-119% greater 

than the case without considering wind effect. Moreover, in Shihmen reservoir on the 

Tahan River, Lee and You  evaluated long-term overtopping and optimal termination time 

of the dam under climate change (Lee and You 2013). They developed a methodology to 

assess cause of sedimentation and hydrological condition and their impacts on dam failure, 

and in the meantime benefit-cost evaluation was done. They determined that the major 

source of risk is extreme hydrological condition while reservoir sedimentation is not very 

strong in most cases. 

Burn and Goel made a study on flood frequency analysis for the Red River at 

Winnipeg (Burn and Goel 2001).  Their study started after the spring of 1997 flood at parts 

of southern Manitoba, North Dakota, and Minnesota. There are also some historical 

records for floods from 1826, 1852, 1861, 1950, 1979, 1996, and 1997. Their goal was to 

determine return period of extreme flood events and quantify the uncertainty associated 

with flood quantile estimates on the Red River. Their first step was to evaluate flood series 

for nonstationarity by using Consolidated Frequency Analysis package. The second step 

was conducting a standard frequency analysis on the available data which includes 1826, 

1852, 1861 as flood events and the Rannie data. The last step was to examine impact of 

any dependencies on the extreme flow estimates by using a noise model (Booy and Lye 

1989). The result of statistical tests, which are the Spearman and Mann-Whitney tests, 
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indicated that nonstationarity flood occurs. As a second step, estimation of flood quantiles 

was done with three set of data which were recorded data (systematic gauged record) from 

1875 to1998 included 11 flood events, the Rannie Data (excluded the 11 flood data), and 

recorded data from 1875 to1998. These data were plotted in a box plot as a final step of 

the study data generation approach to create likely data. 5000 sets of data were created 

with lengths of 115 years. The mixed noise model generated normally distributed data 

which should be transformed to generalized extreme value (GEV) and log-Pearson III 

distribution. In this study, GEV fitted better than log-Pearson III distribution. In the last 

step, generated data gave larger mean and standard deviation than gauging record. As a 

conclusion of this study, they suggested that expected flood magnitude has uncertainty. 

These researches were inadequate to make a decision about new flood control 

infrastructure, so this issue required further study. 

Another study related to risk analysis for dam overtopping was completed by Kuo 

et al (Kuo et al. 2007). Risk and uncertainty analysis were performed in this study with 

three major steps: identifying and evaluating important factors such as reservoir routing 

and overtopping; data collection and analysis for reservoir routing and uncertainty 

analysis; evaluating uncertainty and risk analysis. Annual maximum peak discharge data 

were used to analyze five flood events of Feitsui Reservoir in northern Taiwan. They 

performed five uncertainty analysis methods which are Rosenblueth`s point estimation 

method, Harr`s point estimation method, Monte Carlo Simulation, Latin hypercube 

sampling, and mean-value first-order second-moment method. In order to perform FFA, 

70-year annual peak discharges were used from 1912 to 1981. Log-normal, Pearson Type 
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III, Log-Pearson Type III and Gumbel distribution were tested and it was determined that 

Gumbel distribution fits better than others. As a result of their study, they found that 

different methods of uncertainty analyses gave basically similar results for flood return 

period and overtopping risk. However, mean-value first-order second-moment 

overtopping risk was higher than those computed other methods. They assumed that the 

cause of the differences might be due to its inability to perform well for a nonlinear model. 

1.5 Water Availability Modelling (WAM) 

1.5.1 Texas Commission on Environmental Quality (TCEQ) WAM Datasets 

The WAM System maintained by the Texas Commission on Environmental 

Quality (TCEQ) consists of the WRAP modeling system and datasets containing 

hydrology and water rights input files for all of the river basins of Texas. WAM datasets 

are available for each of the river basins delineated in Figure 3 (Wurbs 2005). The TCEQ 

as lead agency, Texas Water Development Board (TWDB), Texas Parks and Wildlife 

Department (TPWD), and their contractors consisting of two universities and ten 

consulting engineering firms originally implemented the WAM system during 1997-2002. 

WRAP and the WAM System continue to be expanded and updated. 

The TCEQ WAM System supports regional and statewide planning, 

administration of water rights permit system with over 6000 active permits, and other 

water management activities. The WAM datasets include about 3,400 reservoirs, but most 

of the storage capacity is contained in the 200 largest reservoirs. 
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Figure 3. Texas WAM System river basins  

 

1.5.2 Water Rights Analysis Package (WRAP) 

The WRAP modeling system simulates water development, management, 

regulation, and use in a river basin or multiple-basin region under a priority-based water 

allocation system. The generalized model is designed for assessing hydrologic and 

institutional water availability and reliability for water supply diversions, environmental 

instream flows, hydroelectric energy generation, and reservoir storage. The original 

WRAP/WAM system is based on a monthly computational time step. A daily version of 

the modeling system was recently developed with capabilities for simulating reservoir 



 

18 

 

flood control operations. WRAP is documented in detail by a set of manuals (Wurbs 

2013a; Wurbs 2013b; Wurbs 2013c; Wurbs and Hoffpauir 2013). 

A simulation study of WRAP includes evaluating capabilities to meet specified 

water management and also uses requirements during historical hydrology`s hypothetical 

repetition. The overall modelling process involves the flowing tasks: 

1. Monthly naturalized flow sequences which cover the hydrologic period of 

analysis at chosen gauging stations are developed. 

2. Naturalized flows are distributed from gauged to appropriate ungauged 

locations. 

3.  The simulation of the water management system is executed, with water being 

allocated in priority order to each water right. 

4. Simulation results are organized and water supply reliability flow, storage 

frequency relationships and indices and also other summary statistics are 

calculated. 

Task 1 has been completed for all of the river basins in the state for monthly 

datasets. Daily datasets are currently being developed for selected river basins. Tasks 2 

and 3 occur each time when WRAP SIM is executed. Task 4 consists of various post-

simulation analyses of simulation results including reliability and frequency analyses. 

An expanded version of WRAP allows use of a daily time step and provides 

additional features for simulating flood control reservoir operations and environmental 

instream flow requirements. Future time steps extending over a forecast period are 

considered in the simulation model in determining both water availability from a supply 
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perspective and remaining flood control channel capacity (Wurbs and Hoffpauir 2013). 

Calibration methods for determining routing parameters are included in the WRAP 

package. 

Both gated and ungated outlet structures can be included in the WRAP simulation 

of flood control reservoirs. Operation of reservoirs with gated outlets may consider 

multiple reservoir system operations. Uncontrolled (ungated) storage pools are always 

operated individually. The WRAP simulation model includes features for modeling 

multiple-purpose, multiple-reservoir system operations. Flood control operations are 

based on minimizing the risk of flooding at downstream locations. Operation rules are 

based on emptying flood control pool expeditiously while making sure that water does not 

exceed flood flow limit at downstream control points. Reservoir operations are based on 

flow limits at downstream locations as long as flood control capacity is not exceeded 

(Wurbs and Hoffpauir 2013). When the water storage level at a reservoir exceeds the top 

of flood control pool, emergency releases are made as necessary to prevent dam 

overtopping and downstream flooding may occur. 

Post-simulation analysis capabilities include frequency analyses of annual peak 

naturalized flow, regulated flow, and reservoir storage volumes that may be performed 

based on the log-normal or log-Pearson type III probability distributions. Storage can be 

combined with spills from a full flood control pool. 

1.6 Research Methodology 

The research explored and improved capabilities for incorporating flood control 

operations in WRAP/WAM simulations, evaluating flood control capabilities, and 
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evaluating tradeoffs between flood control and conservation purposes for alternative 

storage reallocations. The simulation study of the Trinity River Basin provided an 

enhanced understanding of flood control and multiple-purpose water management. The 

simulation study addressed the following issues: flood control capabilities, effects of 

conservation pool on the flood control operation, effects of flood control operations on 

water supply, effects of water supply operations on flood control, and tradeoffs associated 

with storage reallocations and other modifications in operating procedures. 

The literature review presented in the thesis covers the following topics: multiple-

purpose reservoir system operations, flood control operations, storage reallocation and 

related operational modifications, simulation of reservoir system operations, flood risk 

analysis methods, and statistical and probability analysis methods applied reservoir 

storage. Information regarding water management and reservoir operations in the Trinity 

River Basin was obtained from publications websites, and other materials available from 

USACE, TCEQ, and TWDB. 

The system of eight reservoirs in the Trinity River Basin served as a case study. 

Research findings provide an enhanced understanding of reservoir system operations and 

associated modeling and analysis capabilities that also relevant to similar reservoir 

systems in other river basins in Texas and elsewhere. 

The recently developed daily WRAP modeling system was applied with a recently 

developed daily version of the Trinity River Basin dataset from the TCEQ WAM System. 

The new WRAP capabilities for simulating flood control operations were tested and 

refined. The daily WAM dataset for the Trinity River Basin was tested and improved. 
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The WRAP/WAM simulation model combines specified conditions of water 

resources development and management with historical natural hydrology. The simulation 

study was based on a 1940-2012 hydrologic period-of-analysis. Simulated stream flows 

and storage levels were analyzed to develop an understanding of flood characteristics and 

the effects of flood control system operations on flood flows. The sensitivity of stream 

flows and storage contents to various aspects of system operations were explored in the 

simulation study. 

Historically observed storage levels in the eight reservoirs were analyzed. 

Comparisons between observed and simulated storage levels contributed to analyses of 

the validity of the simulation model and the post-simulation storage frequency analyses. 

The annual exceedance probability for overtopping controlled flood control pool 

storage capacities were adopted as the primarily metric for assessing flood control 

capabilities. Other possible metrics for quantifying flood control capabilities also were 

investigated. Relative advantages of alternative probability distributions and frequency 

analysis methods were explored. 

The HEC-SSP Statistical Software Package (HEC 2010) available from the 

Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers was used to 

perform frequency analyses based on the log-normal and log-Pearson type III probability 

distributions. Conventional water supply reliability, flow frequency, and storage 

frequency analysis methods incorporated in the WRAP software were applied in 

evaluating alternative storage reallocation plans and other revisions to reservoir system 

operating procedures. 
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CHAPTER II 

TRINITY RIVER BASIN AND RESERVOIR OPERATION 

 

2.1 Overview of Trinity River Basin 

The Trinity River Basin extends 400 miles across Texas from north of the Dallas-

Fort Worth metropolitan area to Galveston Bay, east of the city of Houston, as shown in 

Figures 2 and 3. Average annual rainfall ranges from 53 inches near Galveston Bay to 29 

inches in the northwestern extreme of the upper basin (Hoffpauir et al., unpublished 

report., 2014). The Trinity River basin`s area is approximately 18,000 square miles. Major 

tributaries of the Trinity River are West Fork, Elm Fork, Cedar Creek, East Fork, Richland 

Creek, and Chamber Creek. Figure 4 shows Trinity River Basin`s tributaries, and 

reservoirs as well as cities where a river basin is located. 

The Trinity River Authority, Tarrant Regional Water District, North Texas 

Municipal Water District, Dallas Water Utilities, and several other cities have contracted 

with USACE for the conservation storage capacity of the eight USACE reservoirs adopted 

as the case study for the thesis research project. Several of these nonfederal agencies own 

their own reservoirs, as well as contracting for storage capacity in federal reservoirs. The 

conservation storage capacity is used primarily for municipal and industrial water supply. 

Recreation is popular at all eight federal reservoirs and most of the nonfederal reservoirs 

in the Trinity River Basin.  
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Figure 4. Trinity River Basin 

 

 A system of eight reservoirs owned and operated by USACE Fort Worth District 

served as a case study for the thesis research project. These are the only federally owned 

and only controlled (gated outlets) flood control reservoirs in the Trinity River Basin. All 

eight are located in the upper basin in or near the Dallas and Fort Worth Metropolitan 

Area. The USACE operates the flood control pools. Nonfederal sponsors have contracted 

for the conservation pool storage capacity. The following information describing each of 

the eight multiple-purpose reservoirs is gathered from the USACE Fort Worth District 

website and a Texas Water Development Board (TWDB) Report (Dowel and Petty 1973). 
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The TWDB also maintains a website with information regarding about 200 major 

reservoirs in Texas. 

2.2 The Eight USACE Reservoirs in the Trinity River Basin 

2.2.1 Benbrook Reservoir 

Location of the Benbrook Dam is 15.0 river mile on Clear Fork of Trinity River, 

10 miles southwest of Fort Worth, in Tarrant County near the City of Benbrook. Drainage 

area of the reservoir is 429 square miles and correspondingly one inch runoff is 22,880 

acre-feet.  The construction of the dam started on May, 27 1947 and completed in Dec 

1950. Deliberate impoundment began on Sept, 29 1952. The dam type is rolled earth fill. 

Length of dam including spillway, max height, and top width are 9130, 130, and 20 feet 

respectively.  Table 5 demonstrates technical features and Figure 5 shows daily observed 

storage elevation of Benbrook Dam. 

 

Table 5. Technical features of the Benbrook Dam 

  

Features Elevation 

(ft) 

Accumulative 

(ac-ft) 

Incremental 

(ac-ft) 

Spillway& 

Notch Cap. 

(cfs) 

Top of Dam 747    

Max. Design Water 

Surface 

741 410,000  172,000 

Spillway Crest 724 258,600 170,350 17,000 

Top of Flood Control pool 710 164,800 76,550  

Top of Conservation Pool 694 88,250 72,500  

Sediment Reserve   15,750  

Streambed 617    
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Figure 5. Benbrook Dam daily observed storage elevation 

 

2.2.2 Joe Pool Reservoir 

Location of the Joe Pool Dam is 11.2 river mile on Mountain Creek om Trinity 

River, 10 miles southwest of Dallas, in Tarrant and Ellis Counties. Drainage area of the 

reservoir is 232 square miles and correspondingly one inch runoff is 12,373 acre-feet.  The 

construction of dam started in 1977 and completed in 1985. Deliberate impoundment 

began in 1985. The dam type is rolled earth fill. Length of dam including spillway, max 

height, and top width are 24200, 108.5, and 30 feet respectively. The technical information 

about reservoir and reservoir storage data as a daily time step are available in the United 

States Army Corps of Engineer Fort Worth District website. Table 6 demonstrates 

technical features and Figure 6 shows daily observed storage elevation of Joe Pool Dam 
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Table 6. Technical features of the Joe Pool Dam 

 

 

 

 
 

Figure 6. Joe Pool Dam daily observed storage elevation 

2.2.3 Ray Roberts Reservoir 

Location of the Ray Robert Dam is 60 river mile on Elm Fork of Trinity River, 30 

miles upstream of Lewisville Dam, in Denton County. Drainage area of the reservoir is 691 
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Feature Elevation 

(Ft) 

Accumulative 

(ac-ft) 

Incremental 

(ac-ft) 

Spillway 

Cap. (cfs) 

 Top of Dam 564.5    

 Max. Design Water 559.5 642,400 279,700 11,900 

Spillway Crest 541 362,700 58,700  

Top of Flood Control Pool 536 304,000 123,100  

Top of Conservation Pool 522 176,900 142,900  

Sediment Reserve   38,000  

Streambed 456    
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square miles and correspondingly one inch runoff is 36,907 acre-feet.  The construction of 

the dam started on May, 31 1982 and completed on June, 30 1987. Deliberate impoundment 

began on June, 30 1987. The dam type is rolled earth fill. Length of dam including spillway, 

max height, and top width are 15250, 131, and 44 feet respectively. The technical 

information about reservoir and reservoir storage data as a daily time step are available in 

the United States Army Corps of Engineer Fort Worth District website. Table 7 

demonstrates technical features and Figure 7 shows daily observed storage elevation of 

Ray Roberts Dam. 

 

 

Table 7. Technical features of the Ray Robert Dam 

 

Feature Elevation 

(ft) 

Accumulative 

(ac-ft) 

Incremental 

(ac-ft) 

Outlet work 

Cap (cfs) 

Top of Dam 665    

Max. Design Water Surface 658.8 1,931,900  7,600 

Spillway Crest 645.5 1,261,000  7,100 

Top of Flood Control Pool 640.5 1,064,600 265,000 6,900 

Top of Conservation Pool 632.5 799,600 745,000 6,600 

Sediment Reserve  54,600 54,600  

Streambed 524    
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Figure 7. Ray Roberts Dam daily observed storage elevation 

 

2.2.4 Lewisville Reservoir 

Location of the Lewisville Dam is 30.0 river mile on Elm Fork of Trinity River, 

22 miles northwest of Dallas, in Denton County near the City of Lewisville. Drainage area 

of the reservoir is 1,660 square miles and correspondingly one inch runoff is 88,533 acre-

feet. The construction of dam started on Nov, 28 1948 and completed in Aug, 1955. 

Deliberate impoundment began on Nov, 1 1952. The dam type is rolled earth fill. Length 

of dam including spillway, max height, and top width are 33888, 125, and 20 feet 

respectively. The top of conservation pool elevation was raised 515.00 ft to 522.00 ft on 

November 30, 1988. Based on the sediment survey conservation and flood control pool 

capacity decreased from 640,986 to 618,400 ac-ft and 981,763 to 959,177 ac-ft 
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respectively. 22,586 ac-ft storage capacity has been decreased. Table 8 demonstrates 

technical features and Figure 8 shows daily observed storage elevation of Lewisville Dam. 

 

 

Table 8. Technical features of the Lewisville Dam 

 

Feature Elevation 

(ft) 

Accumulative 

(ac-ft) 

Incremental 

(ac-ft) 

Outlet 

Work Cap. 

(cfs) 

Top of Dam 560    

Max. Design Water Surface 553 2,082,800 1,101,037 12,300 

Spillway Crest 532 959,177   

Top of Flood Control Pool 532 959,177 340,777 11,000 

Top of Conservation Pool 522 618,400 618,400 10,200 

Streambed 435    

 

 

 
 

Figure 8. Lewisville Dam daily observed storage elevation 
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2.2.5 Grapevine Reservoir 

Location of the Grapevine Dam is 11.7 river mile on Denton Creek of Trinity 

River, 20 miles northwest of Dallas, in Denton and Tarrant Counties near the City of 

Grapevine. Drainage area of the reservoir is 695 square miles and correspondingly one 

inch runoff is 37,067 acre-feet.  The construction of the dam started in Jan, 1948 and 

completed in Jun 1982. Deliberate impoundment began on Jul, 3 1952. The dam type is 

rolled earth fill. Length of dam including spillway, max height, and top width are 12850, 

137, and 28 feet respectively.  Based on the sediment survey conservation and flood 

control pool capacity decreased from 181,100 to 162,500 ac-ft and 425,500 to 406,900 ac-

ft respectively. 18,600 ac-ft storage capacity has been decreased. The technical 

information about reservoir and reservoir storage data as a daily time step are available in 

the United States Army Corps of Engineer Fort Worth District website. Table 9 

demonstrates technical features and Figure 9 shows daily observed storage elevation of 

Grapevine Dam. 

 

Table 9. Technical features of the Grapevine Dam 

 

Feature Elevation 
(Ft) 

Accumulative 
(ac-ft) 

Incremental 
(ac-ft) 

Spillway 
Cap. (cfs) 

Top of Dam 588    
Max. Design Water 

Surface 
581.9 788,000 363,000 191,310 

Spillway Crest 560 406,900   

Top of Flood Control Pool 560 406,900 244,400  
Top of Conservation Pool 535 162,500 126,500  

Sediment Reserve   36,000  
Streambed 451    
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Figure 9. Grapevine Dam daily observed storage elevation 

 

2.2.6 Lavon Reservoir 

Location of the Lavon Dam is 55.9 river mile on East Fork of Trinity River, 22 

miles northeast of Dallas, in Collin County near the City of Benbrook. Drainage area of 

the reservoir is 770 square miles and correspondingly one inch runoff is 41.067 acre-feet.  

The construction of the dam started in Jan, 1948 and completed on Dec, 1 1975. Deliberate 

impoundment began on Sep, 14 1953. The dam type is rolled earth fill. Length of dam 

including spillway, max height, and top width are 19493, 81, and 30 feet respectively. The 

top of conservation pool elevation was raised 472 ft to 492 ft on December 01, 1975. The 

technical information about reservoir and reservoir storage data as a daily time step are 

available in the United States Army Corps of Engineer Fort Worth District website. Table 

420

440

460

480

500

520

540

560

580

3
-J

u
l-

5
2

3
-J

u
l-

5
5

3
-J

u
l-

5
8

3
-J

u
l-

6
1

3
-J

u
l-

6
4

3
-J

u
l-

6
7

3
-J

u
l-

7
0

3
-J

u
l-

7
3

3
-J

u
l-

7
6

3
-J

u
l-

7
9

3
-J

u
l-

8
2

3
-J

u
l-

8
5

3
-J

u
l-

8
8

3
-J

u
l-

9
1

3
-J

u
l-

9
4

3
-J

u
l-

9
7

3
-J

u
l-

0
0

3
-J

u
l-

0
3

3
-J

u
l-

0
6

3
-J

u
l-

0
9

3
-J

u
l-

1
2

El
ev

at
io

n
  F

ee
t

Time

Grapevine Dam Daily Observed Storage Elevation

Observed Storage Top Of Conservation Pool Top of Flood Control Pool



 

32 

 

10 demonstrates technical features and Figure 10 shows daily observed storage elevation 

of Lavon Dam. 

 

 Table 10. Technical features of the Lavon Dam 

 

Feature Elevation 
(ft) 

Accumulative 
(ac-ft) 

Incremental 
(ac-ft) 

Spillway 
Cap.(cfs) 

Top of Dam 514    

Max. Design Water 
Surface 

509 921,200  357,700 

Spillway Crest 503.5 748,200   

Top of Flood Control Pool 503.5 748,200 291,700  

Top of Conservation Pool 492 456,500 380,000  

Sediment Reserve   92,600  

Streambed 433    

 

 

 

 

 
 

Figure 10. Lavon Dam daily observed storage elevation 
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2.2.7 Navarro Mills Reservoir 

Location of the Navarro Mills Dam is 63.9 river mile on Richland Creek of Trinity 

River, 16 miles southwest of Corciscana, in Navarro County. Drainage area of the 

reservoir is 320 square miles and correspondingly one inch runoff is 17,067 acre-feet.  The 

construction of the dam started on Jun, 14 1960 and completed on Mar, 15 1963. 

Deliberate impoundment began on Mar, 15 1963. The dam type is rolled earth fill. Length 

of dam including spillway, max height, and top width are 7570, 81.7, and 20 feet 

respectively. The technical information about reservoir and reservoir storage data as a 

daily time step are available in the United States Army Corps of Engineer Fort Worth 

District website. Table 11 demonstrates technical features and Figure 11 shows daily 

observed storage elevation of Navarro Mills Dam. 

 

Table 11. Technical features of the Navarro Mills Dam 

 

Feature Elevation 
(ft) 

Accumulative 
(ac-ft) 

Incremental 
(ac-ft) 

Spillway 
Cap. (cfs) 

Top of Dam 457    

Max. Design Water 
Surface 

451.9 335,800  224,000 

Spillway Crest 443 212,200   

Top of Flood Control Pool 443 212,200 148,900  

Top of Conservation Pool 424.5 63,300 53,200  

Sediment Reserve   15,800  

Streambed 375.3    
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Figure 11. Navarro Mills Dam daily observed storage elevation 

 

 

2.2.8 Bardwell Reservoir 

Location of the Bardwell Dam is 5.0 river mile on Waxahachie of Trinity River, 5 

miles south of Corsicana, in Ellis County. Drainage area of the reservoir is 178 square 

miles and correspondingly one inch runoff is 9,493 acre-feet.  The construction of the dam 

started in Aug, 1963 and completed on Nov, 20 1965. Deliberate impoundment began on 

Nov, 20 1965. The dam type is rolled earth fill. Length of dam including spillway, max 

height, and top width are 15400, 82, and 20 feet respectively. The technical information 

about reservoir and reservoir storage data as a daily time step are available in the United 

States Army Corps of Engineer Fort Worth District website. Table 12 demonstrates 

technical features and Figure 12 shows daily observed storage elevation of Bardwell Dam. 
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Table 12. Technical features of the Bardwell Dam 

 

Feature Elevation 
(ft) 

Accumulative 
(ac-ft) 

Incremental 
(ac-ft) 

Spillway 
Cap. (cfs) 

Top of Dam 460    

Max. Design Water 
Surface 

455.9 268,400  78,000 

Spillway Crest 439 140,000   

Top of Flood Control pool 439 140,000 85,100  

Top of Conservation Pool 421 54,900 42,800  

Sediment Reserve   17,600  

Streambed 377.6    

 

 

 

 
 

Figure 12. Bardwell Dam daily observed storage elevation 
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2.3 Sedimentation 

Sediment transport causes decreases in reservoir storage capacity over time. 

Various factors such as reservoir site characteristics, flow rate, watershed canopy, 

sediment loads in creeks, rivers flowing into reservoirs, slope of watershed, and slope of 

streambed have an impact on sediment rate. During a flood event, sediment transportation 

reaches peak level. Decrease in velocity of upstream of reservoir ends up with deltas since 

there is not enough energy to carry sediment to downstream. For sediment reserve in 

reservoirs, as shown on Figure 13, inactive pool is allocated. Over time, capacity of an 

inactive pool decreases which then affects reservoir operation. Based on sediment surveys, 

Lewisville and Grapevine reservoirs storage capacities decreased 22,586 ac-ft and 18,600 

ac-ft respectively because of sedimentation. However, many big reservoir sediment 

reserves are unknown because of the difficulties and expenses of surveying bottom 

elevation. 

For federal and other large reservoirs for sediment reserve, inactive pools are 

designed to fill up within 50 to 100 years (Wurbs 1996). USACE and USBR agencies have 

methods to predict future sediment deposition while designing a reservoir. However, 

smaller local entities, such as farmers and private reservoirs do not have special provisions 

to design inactive pools. 

2.4 Reservoir Pools 

Reservoirs are operated based on storage capacity of designated zones. A typical 

large multi-purpose reservoir consists of vertical zones such as inactive pools, 
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conservation pools, flood control pools and surcharge storage as illustrated in Figure 13. 

Storage capacity of pools might be allocated either seasonally or permanently. 

 

 

              
Figure 13. Reservoir pools 

 

2.4.1 Inactive Pool 

Inactive pools, also known as a dead storage, are located at the bottom of the 

reservoirs. The purposes of inactive pools are sediment reserve, fish and wildlife, 

recreation, and head for hydroelectric power. Except for seepage and the natural process 

of evaporation, water cannot be withdrawn from dead storage. At the top of the dead 

storage, elevation level might be located an outlet structure or hydroelectric turbines for 

hydroelectric dams. For large multi-purpose federal dams, the top of the inactive pool level 

is the bottom of the conservation pool.  
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2.4.2 Conservation Pool 

Conservation pools are designed to meet municipal, irrigation, and industrial water 

demand, as well as hydroelectric power, navigation, instream flow maintenance, among 

other purposes. Conservation pools also serve recreational purposes. During operation of 

reservoirs, the level of the water in reservoirs is wanted to be as close possible as to the 

top of conservation pool in order to meet water demands.  For many multi-purpose federal 

large dams, the top of the conservation pool`s level is the bottom level of the flood control 

pool. 

2.4.3 Flood Control Pool 

Flood control pools are designed to store excessive water during high flows. 

Ideally, the flood control pool should remain empty except during a flood event. 

Generally, the top of the flood control pool is set by emergency spillways. When water 

exceeds the top of the flood control pool, uncontrolled emergency spillways withdraw 

water from dam and prevent overtopping and dam failure. Some dams have gated 

spillways before an ungated flood control pool. During an extreme flood event when water 

exceeds the top of the flood control elevation, ungated spillways automatically withdraw 

water. At that time, downstream might be under flood. In order to store water for the next 

flood, operation procedures should include the emptying of the flood control pool as 

quickly as possible without contributing to downstream flooding.   
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2.5 Reservoir Operation 

Estimating the probability of exceeding the storage capacity of the flood control 

pools of the eight reservoirs is a central focus of the research. Permanent or seasonal 

reallocation of storage capacity between flood control and conservation purposes is also a 

major topic addressed by the research. 

Reservoirs are divided into the following three vertical zones called pools: 

conservation, flood control, and surcharge (Wurbs 1996). Operations are based on 

maintaining reservoir contents at the elevation of the top of the conservation pool or as 

close thereto as feasible while supplying the needs of water users. Water use demands are 

supplied by releases or withdrawals from conservation storage. Flood control operations 

are activated whenever high inflows result in storage levels rising above the top of the 

conservation pool. USACE flood control operations are based on two sets of procedures 

referred to as regular and emergency. 

Regular flood control operations are in effect whenever the storage level is within 

the flood control pool. Releases are based on emptying flood control pools as 

expeditiously as feasible without contributing to flows at designated downstream gaging 

stations exceeding maximum non-damaging flow levels. Multiple reservoirs share the 

same downstream gaging stations and stream flow limits. In many cases, the maximum 

allowable non-damaging flow levels vary depending on storage contents of the flood 

control pools. 

Emergency procedures are activated only during extreme flood events when the 

flood control storage capacity is exceeded, with the storage level encroaching into the 
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surcharge pool. Emergency operations are based on assuring that the total surcharge 

capacity is never exceeded. Releases and uncontrolled spills from the surcharge pool, 

above the top of flood control pool, may contribute to flows at downstream locations 

exceeding non-damaging levels. 

The eight Trinity River Basin Dams all have flood control pools. These flood 

control pools are operated by USACE as a multiple-reservoir system. In the WRAP 

simulation model, a flood control pool is modeled as two components. First one is 

controlled (gated) pool. A gated flood control pool located between conservation pool and 

uncontrolled flood control pool. If water level is in the controlled flood control, release is 

made by taking into account downstream control points in order to keep water level under 

the max allowable level. Thus downstream areas are protected from floods. The system of 

the eight Trinity River Basin Reservoir release are made based on pertinent datasheet that 

is in Figure 14. 

An uncontrolled flood control pool is located between spillway and top of 

controlled pool if there is a gate system. Otherwise uncontrolled flood control pool starts 

after conservation pool. When water level in this pool, hydraulic structure makes release 

based on the dimension of notch, conduit, or spillway. People cannot manage uncontrolled 

pool. A top of uncontrolled flood control pool generally ends with a big spillway. 

Whenever water levels exceed top of uncontrolled pool, outflow is equal to inflow.  
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Figure 14. USACE flood control pertinent datasheet for Trinity River Basin (USACE 

2015) 
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CHAPTER III 

FREQUENCY ANALYSIS OF OBSERVED RESERVOIR STORAGE 

 

3.1 Overview of Flood Frequency Analysis 

Frequency analysis is performed for many types of planning, management, and 

design situations in hydrology and reservoir system management (Wurbs 1996). This 

research particularly focused on flood storage frequency analysis. The log-normal and log-

Pearson type III probability distribution functions were applied with the Hydrologic 

Engineering Center Statistical Software Package (HEC-SSP) to calculate annual 

exceedance probabilities and recurrence intervals for reservoir storage content volumes as 

outlined in this chapter. The results of frequency analyses of actual observed storage is 

presented in this chapter. The results of frequency analyses of simulated storage are 

presented in Chapter IV. Water supply reliability metrics are also computed as discussed in 

Chapter V. 

The annual exceedance probability (P) is probability that a specified storage 

magnitude will be equaled or exceeded in any year. The return period or the recurrence 

interval (T) is the mean interval, in years, between occurrence of flood events equaling or 

exceeding a specified storage magnitude.  The relationship of between annual exceedance 

probability (P) and recurrence interval (T) in years is 

 

𝑇 =
1

𝑃 
 𝑜𝑟 𝑃 =

1

𝑇
    (1) 
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3.2 Analytical Probability Distributions 

3.2.1 Log-normal Distributions  

The normal probability distribution, also known as the Gaussian distribution, has 

two parameters, the standard deviation and mean. The normal probability distribution 

function is bell-shaped and symmetrical to the mean. The sample standard deviation (S) 

and the sample mean (𝑋 ̅) are used to predict population standard deviation (σ) and 

population mean (μ).  The general formula for normal distribution is as follows; 

 

𝑋 = 𝜇 + 𝐾𝜎     (2) 

where  

K is standard variant from normal distribution table. 

 The log-normal probability distribution is transferring random variable X to 

logarithm and applying normal distribution. The logarithm transfer is convenient to reduce 

outlier effects on the calculation. The standard deviation (σ) and mean (μ) need to be 

transfer logarithm and K again, the same as the normal distribution table. The general 

formula for log-normal distribution is as follows:    

   

    log 𝑋 =  𝜇𝑙𝑜𝑔𝑋 + 𝐾𝜎𝑙𝑜𝑔𝑋   (3) 
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3.2.2 Log-Pearson Type III  

 The Pearson probability distribution, also known as Pearson type III distribution, 

has three parameters which are the skew coefficient, mean, and standard deviation.  

Equation 2 is used for Pearson type III calculation. K value is found from Pearson type III 

distribution table. Skew coefficient (G) can be calculated from observed annual max flow 

or reservoir storage, and called station skew in flood frequency analysis.  In order to 

perform Pearson type III probability distribution, adequate sample size should be used, 

otherwise, results might be inaccurate. When skew coefficient (G) is equal to zero, K value 

becomes exactly normal probability distribution.  

 Logarithmic transform of Pearson type III distribution is called log-Pearson type 

III distribution. The federal water agencies use log-Pearson type III distribution for 

performing FFA (Wurbs 1996).  The standard deviation (σ) and mean (μ) need to be 

transferred logarithm and K again, the same as the log-Pearson type III distribution table. 

In order to find right K value from table, skew coefficient (G) must be known. The 

Equation 3 formula is used for log-Pearson type III distribution. 

3.2.3 Expected Probability and Confidence Limits  

 The Hydrology Committee of the former U.S Water Resources Council developed 

a guideline that was published as Bulletin 17 in 1976 and revised as Bulletin 17B in 1982, 

for flood frequency analysis (Wurbs and James 2002). Bulletin 17B was developed for 

peak flows and adopted with log-Pearson type III distribution; however, in this research, 

it is used for reservoir storages. HEC-SSP provides an option that calculate expected 

probability and confidence limit for flood frequency analyses. The expected probability is 



 

45 

 

described as the average of all magnitude estimates’ true probabilities for any designated 

flood frequency which might be calculated from successive samples of a specified size 

(Miller et al. 1981). The expected probability is the representation of value, which tend to 

be in the central of the confidence limits. 

Confidence limit can be calculated with defined limits in the HEC-SSP. By default 

and in this research, confidence limit is the 90% confidence interval (5%-95% confidence 

limits). The frequency estimates depend on sample size. A large sample size provides 

lower confidence limit. Likewise, a small sample size provides higher confidence limit. 

There are always uncertainties for frequency analyses and confidence limits with log-

Pearson type III distribution. Confidence limits are calculated with the following equations 

in Bulletin 17B. 

 

𝑃 (𝑈𝑃,𝐶 ≥ 𝑋𝑃
∗) = 𝐶    (4)  

𝑃 (𝐿𝑃,𝐶 ≥ 𝑋𝑃
∗) = 𝐶     (5) 

where 

𝑋𝑃
∗   true or population discharge that has exceedance probability  

C  confidence level 

UP,C upper confidence limit 

LP,C lower confidence limit 

UP,C and LP,C are called one-sided confidence limits since only one side has limit. A two-

sided confidence interval is as follows. 
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𝑃(𝐿𝑃,𝐶 ≤ 𝑋𝑃
∗ ≤ 𝑈𝑃,𝐶) = 2𝐶 − 1    (6) 

Confidence limits are computed with the following equations. 

𝑈𝑃,𝐶 = �̅� + 𝑆𝐾𝑃,𝐶
𝑈     (7) 

𝐿𝑃,𝐶 = �̅� + 𝑆𝐾𝑃,𝐶
𝐿     (8) 

𝐾𝑃,𝐶
𝑈 =

𝐾𝑝+(𝐾𝑃
2−𝑎𝑏)0.5

𝑎
    (9) 

𝐾𝑃,𝐶
𝐿 =

𝐾𝑝−(𝐾𝑃
2−𝑎𝑏)0.5

𝑎
    (10) 

𝑎 = 1 −
𝑍𝐶

2

2(𝑁−1)
    (11) 

𝑏 = 𝐾𝑃
2 −

𝑍𝐶
2

𝑁
     (12) 

where 

P specified annual exceedance probability 

C specified confidence level 

ZC standard normal deviate from normal probability table 

UP,C upper confidence limit 

LP,C lower confidence limit 

𝐾𝑃,𝐶
𝑈  upper confidence limit coefficient  

𝐾𝑃,𝐶
𝐿  lower confidence limit coefficient 

�̅�  mean of annual peak flows or storage 

S standard deviation of logarithms annual peak flows or storage 

KP frequency factor from K values table 

N record length   
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3.3 Hydrologic Engineering Center Statistical Software Package (HEC-SSP) 

 The Statistical Software Package (HEC-SSP) was developed by the USACE 

Hydrologic Engineering Center (HEC 2010). The software package allows users to 

perform hydrologic statistical analysis. It has capabilities to perform flow frequency 

analysis (Bulletin 17B), general frequency analysis, volume frequency analysis, duration 

analysis, coincident frequency analysis as well as curve combination analysis. In order to 

perform one of these analysis, a few steps must be followed. 

 First of all, data must be added to perform frequency analysis. The software 

package provides various ways to input data. The HEC-SSP allows users to input data 

from HEC-DSS, USGS website, Microsoft Excel, text file, and manually. In this study, 

annual maximum reservoir storage data was added to software packages from a Microsoft 

Excel file.    

 Next, after data is available to perform frequency analysis, frequency analysis 

could be performed under the analysis tab. Several methods are available under the 

analysis tab, allowing it to perform statistical analysis for different probability 

distributions. In this study, log-normal and log-Pearson type III distributions were 

employed and compared to find the best fit. After frequency analysis results were plotted 

with observed values, 5% and 95% confidence limit, computed curves, and expected 

probability curves for both log-normal and log-Pearson type III distributions were plotted. 

3.4 Flood Frequency Analysis for Trinity River Basin Reservoirs 

 In this research, risk of the exceedance probability of the flood control pool 

capacity of the Trinity River Basin dams were analyzed based on observed annual 
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maximum reservoir storage. The data for this study is available on the USACE Fort Worth 

District website as a daily measurement. From observed reservoir storage data, annual 

maximum storage values were found for each year and each reservoir. Afterwards, the 

data was added to the HEC-SSP software and frequency analyses were performed.  

After obtaining the report of analyses, interpolation was done in order to find the 

exact risk of exceedance probability based on reservoirs` flood control storage capacity. 

After obtaining the percent chance of exceedance values, Equation 1 was used to calculate 

recurrence time for exceeding flood control pool capacity in years. Wurbs (1996) noted 

that for federal reservoirs, flood control storage capacities typically were designed for at 

least 50-year recurrence interval; in addition to that, most projects` flood control pools 

were sized for 100-year recurrence interval. For each reservoirs, detailed results and plots 

are as follows. 

3.4.1 Benbrook Reservoir FFA Based on Observed Annual Storage 

 A frequency analysis for peak annual storage contents of Benbrook Reservoir was 

performed in HEC-SSP alternatively applying the log-normal and log-Pearson type III 

probability distributions. The total storage capacity of Benbrook Reservoir below the top 

of flood control pool is 164,800 acre-feet, which can be to the storage-frequency 

relationships presented in Tables 13 and 14 and Figures 15 and 16. 
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Table 13. Benbrook Reservoir FFA log-normal probability distribution  

 

Computed Curve 

(ac-ft) 

Expected 

Probability 

 (ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

226,597 235,244 0.2 262,153 202,948 

209,852 215,901 0.5 239,725 189,637 

196,970 201,409 1 222,717 179,275 

183,797 186,908 2 205,567 168,552 

165,670 167,426 5 182,422 153,544 

151,070 152,077 10 164,231 141,181 

135,103 135,571 20 144,920 127,266 

109,106 109,106 50 115,334 103,215 

88,112 87,808 80 93,538 82,144 

78,799 78,277 90 84,319 72,485 

71,855 71,101 95 77,530 65,257 

60,437 59,105 99 66,402 53,450 

 

 

 
 

Figure 15. Benbrook Reservoir FFA log-normal probability distribution 
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Table 14. Benbrook Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability 

 (ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

290,532 311,578 0.2 350,631 252,474 

253,354 266,527 0.5 298,667 223,901 

227,566 236,324 1 263,461 203,713 

203,545 209,127 2 231,371 184,578 

174,101 176,798 5 193,116 160,565 

153,195 154,613 10 166,850 142,998 

132,979 133,563 20 142,406 125,376 

105,485 105,485 50 111,442 99,682 

87,792 87,579 80 93,217 81,813 

81,174 80,845 90 86,654 74,955 

76,728 76,277 95 82,289 70,329 

70,347 69,703 99 76,060 63,689 

 

 

 
 

Figure 16. Benbrook Reservoir FFA log-Pearson type III probability distribution 
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3.4.2 Joe Pool Reservoir FFA Based on Observed Annual Storage 

A frequency analysis for peak annual storage contents of Joe Pool Reservoir was 

performed in HEC-SSP alternatively applying the log-normal and log-Pearson type III 

probability distributions. Annual observed maximum reservoir storage data was used in 

order to perform flood frequency analysis which are available USACE Fort Worth 

website. The total storage capacity of Joe Pool Reservoir below the top of flood control 

pool is 304,000 acre-feet, which can be to the storage-frequency relationships presented 

in Tables 15 and 16 and Figures 17 and 18. 

 

Table 15. Joe Pool Reservoir FFA log-normal probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

295,971 309,601 0.2 334,038 273,518 

284,748 294,550 0.5 317,942 264,812 

275,808 283,173 1 305,294 257,796 

266,361 271,661 2 292,110 250,289 

252,793 255,909 5 273,550 239,300 

241,319 243,173 10 258,267 229,750 

228,120 229,023 20 241,293 218,337 

204,847 204,847 50 213,721 196,341 

183,948 183,222 80 192,190 173,905 

173,887 172,561 90 182,642 162,476 

165,994 163,973 95 175,354 153,398 

152,142 148,185 99 162,773 137,448 
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Figure 17. Joe Pool Reservoir FFA log-normal probability distribution 

 

Table 16. Joe Pool Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability 

 (ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

332,121 360,468 0.2 387,348 300,956 

310,778 329,387 0.5 355,618 284,858 

294,965 307,969 1 332,587 272,743 

279,341 288,070 2 310,273 260,578 

258,755 263,300 5 281,647 244,163 

242,954 245,490 10 260,419 231,129 

226,497 227,617 20 239,263 216,892 

201,663 201,663 50 210,247 193,083 

183,595 183,069 80 191,849 173,509 

176,247 175,384 90 184,851 165,176 

171,076 169,837 95 180,032 159,250 

163,240 161,301 99 172,836 150,222 
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Figure 18. Joe Pool Reservoir FFA log-Pearson type III probability distribution 

 

3.4.3 Ray Roberts Reservoir FFA Based on Observed Annual Storage 

The frequency analysis for peak annual storage contents of Ray Roberts Reservoir 

was performed in HEC-SSP alternatively applying the log-normal and log-Pearson type 

III probability distributions. Annual observed maximum reservoir storage data was used 

in order to perform flood frequency analysis which are available USACE Fort Worth 

website. The total storage capacity of Ray Roberts Reservoir below the top of flood control 

pool is 1,064,600 acre-feet, which can be to the storage-frequency relationships presented 

in Tables 17 and 18 and Figures 19 and 20. 
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Table 17. Ray Roberts Reservoir FFA log-normal probability distribution 

 

Computed 

Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

1,320,245 1,395,437 0.2 1,532,155 1,198,126 

1,258,927 1,312,454 0.5 1,441,834 1,151,380 

1,210,479 1,250,365 1 1,371,594 1,113,965 

1,159,670 1,188,126 2 1,299,091 1,074,192 

1,087,428 1,103,944 5 1,198,299 1,016,465 

1,027,026 1,036,744 10 1,116,469 966,792 

958,357 963,031 20 1,026,893 908,046 

839,521 839,521 50 884,486 796,843 

735,421 731,852 80 776,168 686,338 

686,250 679,817 90 729,005 631,272 

648,131 638,435 95 693,380 588,164 

582,246 563,672 99 632,691 513,852 

 

 

 

 
 

Figure 19. Ray Roberts Reservoir FFA log-normal probability distribution 
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Table 18. Ray Roberts Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedence 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

1,309,392 1,380,625 0.2 1,516,058 1,189,897 

1,250,890 1,301,964 0.5 1,430,111 1,145,205 

1,204,407 1,242,680 1 1,362,866 1,109,243 

1,155,408 1,182,859 2 1,293,066 1,070,827 

1,085,287 1,101,364 5 1,195,357 1,014,730 

1,026,244 1,035,748 10 1,115,426 966,138 

958,651 963,253 20 1,027,267 908,304 

840,473 840,473 50 885,546 797,798 

735,683 732,059 80 776,425 686,629 

685,771 679,208 90 728,554 630,733 

646,898 636,985 95 692,236 586,768 

579,346 560,216 99 630,030 510,603 

 

 

 
 

Figure 20. Ray Roberts Reservoir FFA log-Pearson type III probability distribution 
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3.4.4 Lewisville Reservoir FFA Based on Observed Annual Storage  

A frequency analysis for peak annual storage contents of Lewisville Reservoir was 

performed in HEC-SSP alternatively applying the log-normal and log-Pearson type III 

probability distributions. Annual observed maximum reservoir storage data was used in 

order to perform flood frequency analysis which are available USACE Fort Worth 

website. The total storage capacity of Lewisville Reservoir below the top of flood control 

pool is 959,177 acre-feet, which can be to the storage-frequency relationships presented 

in Tables 19 and 20 and Figures 21 and 22. 

 

Table 19. Lewisville Reservoir FFA log-normal probability distribution 

 

Computed Curve         

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

1,429,681 1,570,231 0.2 1,831,081 1,218,466 

1,323,698 1,420,303 0.5 1,658,496 1,142,641 

1,242,185 1,312,177 1 1,528,893 1,083,289 

1,158,846 1,207,304 2 1,399,434 1,021,514 

1,044,203 1,071,123 5 1,226,930 934,311 

951,895 967,144 10 1,093,438 861,635 

850,971 857,982 20 954,261 778,550 

686,748 686,748 50 748,628 629,983 

554,217 549,689 80 605,770 494,228 

495,457 487,645 90 547,358 431,321 

451,658 440,307 95 504,781 384,393 

379,672 359,420 99 435,362 308,473 
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Figure 21. Lewisville Reservoir FFA log-normal probability distribution 

 

Table 20. Lewisville Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve         

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

1,294,355 1,380,292 0.2 1,611,515 1,121,387 

1,224,742 1,288,255 0.5 1,501,535 1,070,457 

1,168,179 1,216,803 1 1,413,771 1,028,493 

1,107,415 1,142,865 2 1,321,200 982,749 

1,018,579 1,040,003 5 1,189,350 914,391 

942,267 954,952 10 1,079,831 853,894 

853,531 859,733 20 957,689 780,718 

696,276 696,276 50 759,693 639,205 

557,006 551,946 80 608,597 497,194 

491,728 482,762 90 543,710 427,318 

441,757 428,636 95 495,217 373,835 

357,545 333,450 99 413,962 285,651 
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Figure 22. Lewisville Reservoir FFA log-Pearson type III probability distribution 

 

 

3.4.5 Grapevine Reservoir FFA Based on Observed Annual Storage 

A frequency analysis for peak annual storage contents of Grapevine Reservoir was 

performed in HEC-SSP alternatively applying the log-normal and log-Pearson type III 

probability distributions. Annual observed maximum reservoir storage data was used in 

order to perform flood frequency analysis which are available USACE Fort Worth 

website. The total storage capacity of Grapevine Reservoir below the top of flood control 

pool is 406,900 acre-feet, which can be to the storage-frequency relationships presented 

in Tables 21 and 22 and Figures 23 and 24. 
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Table 21. Grapevine Reservoir FFA log-normal probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

573,600 602,236 0.2 693,347 496,982 

519,086 538,634 0.5 617,201 455,006 

478,025 492,086 1 560,857 422,935 

436,864 446,508 2 505,341 390,330 

381,671 386,943 5 432,617 345,738 

338,511 341,449 10 377,364 309,973 

292,728 294,049 20 320,694 270,837 

221,683 221,683 50 238,281 206,241 

167,881 167,127 80 181,450 153,241 

145,175 143,926 90 158,541 130,228 

128,759 127,005 95 142,141 113,596 

102,805 99,868 99 116,196 87,622 

 

 

 

 
 

Figure 23. Grapevine Reservoir FFA log-normal probability distribution 
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Table 22. Grapevine Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

683,862 734,157 0.2 851,506 580,143 

593,785 625,656 0.5 721,904 512,370 

530,429 551,907 1 632,923 463,794 

470,693 484,531 2 550,895 417,163 

396,368 403,214 5 451,773 357,723 

342,731 346,338 10 382,695 313,512 

290,012 291,517 20 317,407 268,466 

216,431 216,431 50 232,524 201,218 

167,107 166,475 80 180,662 152,459 

147,882 146,879 90 161,253 132,975 

134,553 133,164 95 147,922 119,457 

114,436 112,264 99 127,846 99,192 

 

 

 
 

Figure 24. Grapevine Reservoir FFA log-Pearson type III probability distribution 
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3.4.6 Lavon Reservoir FFA Based on Observed Annual Storage 

A frequency analysis for peak annual storage contents of Lavon Reservoir was 

performed in HEC-SSP alternatively applying the log-normal and log-Pearson type III 

probability distributions. Annual observed maximum reservoir storage data was used in 

order to perform flood frequency analysis which are available USACE Fort Worth 

website. The total storage capacity of Lavon Reservoir below the top of flood control pool 

is 748,200 acre-feet, which can be to the storage-frequency relationships presented in 

Tables 23 and 24 and Figures 25 and 26. 

 

Table 23. Lavon Reservoir FFA log-normal probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

1,080,481 1,143,310 0.2 1,294,885 950,938 

1,003,639 1,047,445 0.5 1,183,846 892,438 

944,364 976,440 1 1,099,700 846,673 

883,591 906,034 2 1,014,917 799,080 

799,685 812,330 5 900,644 732,006 

731,844 739,087 10 811,006 676,271 

657,352 660,721 20 716,134 612,873 

535,313 535,313 50 572,027 500,956 

435,932 433,709 80 467,569 400,149 

391,559 387,722 90 423,736 353,339 

358,342 352,764 95 391,473 318,173 

303,443 293,475 99 338,455 260,581 
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Figure 25. Lavon Reservoir FFA log-normal probability distribution 

 

Table 24. Lavon Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

927,871 955,698 0.2 1,076,537 833,828 

890,349 911,888 0.5 1,024,267 804,409 

858,533 875,846 1 980,434 779,230 

823,025 836,239 2 932,081 750,846 

768,633 777,219 5 859,277 706,690 

719,555 724,849 10 795,075 665,993 

659,774 662,505 20 719,150 614,980 

546,824 546,824 50 584,877 512,072 

439,731 437,089 80 471,381 404,128 

387,481 382,725 90 419,757 349,020 

346,713 339,720 95 380,234 305,895 

276,776 263,722 99 312,605 233,087 
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Figure 26. Lavon Reservoir FFA log-Pearson type III probability distribution 

 

3.4.7 Navarro Mills Reservoir FFA Based on Observed Annual Storage 

Total storage volumes associated with specified exceedance probabilities for 

Navarro Mills Reservoir were likewise estimated with the HEC-SSP program based on 

both the log-normal and log-Pearson type III probability distribution functions. Annual 

observed maximum reservoir storage data was used in order to perform flood frequency 

analysis which are available USACE Fort Worth website. The flood control capacity of 

Navarro Mills Reservoir is 212,200 acre-feet which can be to the storage-frequency 

relationships presented in Tables 25 and 26 and Figures 27 and 28. 
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Table 25. Navarro Mills Reservoir FFA log-normal probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

255,572 270,758 0.2 315,223 218,851 

230,991 241,320 0.5 279,743 200,298 

212,497 219,907 1 253,568 186,124 

193,979 199,048 2 227,850 171,712 

169,183 171,943 5 194,287 151,998 

149,824 151,357 10 168,897 136,179 

129,323 130,010 20 142,981 118,854 

97,592 97,592 50 105,605 90,188 

73,648 73,258 80 80,135 66,612 

63,570 62,926 90 69,940 56,391 

56,296 55,392 95 62,661 49,022 

44,821 43,311 99 51,172 37,561 

 

 

 
 

Figure 27. Navarro Mills Reservoir FFA log-normal probability distribution 
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Table 26. Navarro Mills Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability 

 (ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

213,763 221,150 0.2 255,345 187,101 

200,785 206,300 0.5 237,242 177,036 

190,131 194,437 1 222,573 168,686 

178,598 181,788 2 206,904 159,546 

161,618 163,592 5 184,272 145,868 

146,969 148,143 10 165,223 133,806 

129,936 130,514 20 143,740 119,383 

100,050 100,050 50 108,353 92,514 

74,368 73,914 80 80,871 67,340 

62,763 61,990 90 69,130 55,572 

54,136 53,048 95 60,503 46,845 

40,238 38,381 99 46,543 33,080 

 

 

 

 
 

Figure 28. Navarro Mills Reservoir FFA log-Pearson type III probability distribution 
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3.4.8 Bardwell Reservoir FFA Based on Observed Annual Storage  

Total storage volumes associated with specified exceedance probabilities for 

Bardwell Reservoir were likewise estimated with the HEC-SSP program based on both 

the log-normal and log-Pearson type III probability distribution functions. Annual 

observed maximum reservoir storage data was used in order to perform flood frequency 

analysis which are available USACE Fort Worth website. The flood control capacity of 

Bardwell Reservoir is 140,000 acre-feet which can be to the storage-frequency 

relationships presented in Tables 27 and 28 and Figures 29 and 30. 

 

Table 27. Bardwell Reservoir FFA log-normal probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

148,308 154,975 0.2 173,750 131,974 

137,537 142,197 0.5 158,922 123,549 

129,241 132,659 1 147,677 116,977 

120,746 123,142 2 136,338 110,162 

109,040 110,392 5 121,038 100,597 

99,595 100,370 10 109,018 92,689 

89,246 89,607 20 96,266 83,752 

72,349 72,349 50 76,781 68,174 

58,652 58,415 80 62,499 54,375 

52,557 52,151 90 56,473 48,014 

48,004 47,417 95 52,034 43,246 

40,501 39,458 99 44,748 35,445 
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Figure 29. Bardwell Reservoir FFA log-normal probability distribution 

 

 

Table 28. Bardwell Reservoir FFA log-Pearson type III probability distribution 

 

Computed Curve        

(ac-ft) 

Expected 

Probability  

(ac-ft) 

Percent Chance 

Exceedance 

Confidence Limits 

0.05 0.95 

(ac-ft) (ac-ft) 

146,708 153,066 0.2 171,532 130,729 

136,384 140,854 0.5 157,350 122,640 

128,389 131,685 1 146,532 116,298 

120,164 122,484 2 135,567 109,691 

108,758 110,079 5 120,675 100,363 

99,495 100,256 10 108,893 92,605 

89,282 89,638 20 96,309 83,783 

72,457 72,457 50 76,898 68,278 

58,679 58,440 80 62,527 54,403 

52,509 52,096 90 56,426 47,964 

47,884 47,286 95 51,917 43,120 

40,236 39,169 99 44,490 35,172 
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Figure 30. Bardwell Reservoir FFA log-Pearson type III probability distribution 

 

 

3.5 Discussion of the Frequency Analysis Results 

 Total storage volumes associated with specified annual exceedance probabilities 

are presented in the preceding Tables 13-28 and Figures 14-32 for each of the eight 

reservoirs. HEC-SSP was applied alternatively using the log-normal and log-Pearson type 

III probability distribution for comparison. The frequency analyses are based on the 

maximum actual observed storage volume for each year since the reservoir initially filled 

after construction. 

 The estimated probability of overtopping the top of flood control pool shown in 

Table 29 for each of the eight reservoirs is based on linear interpolation of the storage 
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volume versus exceedance probability columns of Tables 13 through 28. The total storage 

capacity below the top of flood control pool is tabulated in the third column of Table 29. 

 Although the reservoirs are in the same river basin and operated by the same 

agency, results of the frequency analyses of observed annual maximum storage are 

significantly different between the reservoirs. These differences might be the cause of 

different reservoir operation strategies. As shown in the Table 29, return periods vary 

between 10 to 1,000 years and 11 to 416 years based on log-normal and log-Pearson type 

III distributions, respectively. According to Wurbs, federal dams are typically designed 

for at least a 50-year recurrence interval (Wurbs 1996). Unfortunately, as these results 

show us, in reality, return period is as low as 10 years for log-normal and 11 years for log-

Pearson type III probability distributions for Lewisville Dam. On the other hand, some of 

them have over 100-year return periods.   

 The log-normal and log-Pearson type III yield similar results for six of the results. 

However, the two alternative probability distributions result in very different probability 

estimates for Joe Pool and Navarro Mills Reservoirs. The return periods shown in Table 

29 for Joe Pool and Navarro Mills Reservoirs are 1,000 years and 98 years based on the 

log-normal distribution and are 140 years and 416 years based the log-Pearson type III 

distribution, respectively. The plots of Figures 15 through 30 show that the log-Pearson 

type III probability distribution fits the data better than the log-normal probability 

distribution. Samples are generally between confidence intervals in the log-Pearson type 

III probability distribution. Different periods-of-analysis (sample sizes) might cause large 

differences between the log-normal and log-Pearson type III distributions. The analyses 
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for Benbrook, Joe Pool, Ray Roberts, Lewisville, Grapevine, Lavon, Navarro Mills, and 

Bardwell Reservoirs have periods-of-analyses of 58, 26, 26, 25, 58, 38, 50, 49 years.  

 Storage reallocations have been implemented in the past for Lewisville and Lavon 

Reservoirs. Flood control pool capacity was transferred to conservation purposes by 

raising the designated top of conservation pool elevations. The top of conservation pool 

for Lewisville Reservoir was raised from 515 feet to 522 feet on November 30, 1988. 

Likewise, Lavon Dams` top of conservation pool elevation was raised from 472 feet to 

492 feet on December 1, 1975. The flood frequency analyses for these reservoirs are based 

on storage data for the periods after the reallocations. 

 

 

Table 29. Recurrence interval of exceeding top of flood control pools  

 

N

o Reservoirs 

Top of 

Flood 

Control 

(ac-ft) 

Percent 

Chance 

Exceedance                    

(log-

normal) 

Return 

Period 

(log-

normal) 

(year) 

Percent 

Chance 

Exceedance 

(log-Pearson 

Type III) 

Return 

Period (log-

Pearson 

Type III) 

(year) 

1 Benbrook 164,800 5.30 18.87 7.22 13.85 

2 Joe Pool 304,000 0.10 1000.00 0.71 140.85 

3 

Ray 

Roberts 1,064,600 6.89 14.51 6.75 14.81 

4 Lewisville 959,177 9.60 10.42 8.89 11.25 

5 Grapevine 406,900 3.63 27.55 4.57 21.88 

6 Lavon 748,200 8.79 11.38 7.08 14.12 

7 

Navarro 

Mills 212,200 1.02 98.04 0.24 416.67 

8 Bardwell 140,000 0.43 232.56 0.39 256.41 
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CHAPTER IV  

 THE WRAP SIMULATIONS AND STORAGE REALLOCATIONS FOR TRINITY 

RIVER BASIN RESERVOIRS  

 

4.1 Water Availability Model (WAM) for the Trinity River Basin 

The Texas Commission on Environmental Quality (TCEQ) maintains a Water 

Availability Modeling (WAM) system that consists of the generalized Water Right 

Analysis Package (WRAP) modeling system and WRAP input datasets for all the river 

basins of Texas. The WRAP input dataset for the Trinity River Basin from the TCEQ 

WAM system is called the Trinity WAM. The original WRAP and WAM datasets are 

based on a monthly computational time step. WRAP has been expanded to include daily 

modeling capabilities, and several WAM datasets including the Trinity WAM have been 

converted to daily. Flood control operations have been added to the daily models.  

The WRAP input dataset for the Trinity River Basin used in this study has a 

hydrologic period-of-analysis of 1940-2012.  Naturalized flows at 40 primary control 

points are included in the dataset. With the exception of control point 8TRGB on Trinity 

River at Galveston Bay which represents the basin outlet, all of the primary control points 

are located at USGS gaging stations. Naturalized flows at secondary control points are 

calculated within the simulation model based on watershed parameters and primary 

control point stream flow data. During the execution of simulation, naturalized flows for 

over 1,300 secondary control points are computed. Figure 31 is a map showing the 40 

primary control points. 
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Figure 31. Map of primary control points in the Trinity WAM (Hoffpauir et al., 

unpublished report., 2014) 
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The Trinity WAM has 697 reservoirs which includes 32 major reservoirs with 

permitted storage capacities exceeding 5,000 acre-feet. The total permitted conservation 

pool capacity of the 697 reservoirs is 7,596,677 acre-feet. The 32 major reservoirs contain 

7,447,970 acre-feet of conservation storage capacity, which is 98 percent of the total in 

the Trinity WAM. The United States Army Corps of Engineers (USACE) Fort Worth 

District (FWD) operates the eight reservoirs that have flood control pools. 

In the original WAM dataset, Ray Roberts, Lewisville, Lavon, Grapevine, and 

Benbrook Reservoirs are modeled as component reservoirs representing multiple owners 

as shown in Table 30. The USACE has more than one contract between different cities or 

agencies on each reservoir. Thus, reservoir storage capacities are modeled as divided pools 

and named multiple-owner reservoirs. Three of eight reservoirs Joe Pool, Navarro Mills 

and Bardwell, are single-owner and modeled as undivided storage capacity.   

 

 

Table 30. Multiple-owner reservoirs 

  

Reservoir Control Point Identifier for Component Reservoirs 

Ray Roberts B2335A ROBDEN, ROBDAL 

Lewisville B2456A LEWDE1, LEWDE2, LEWDA1, LEWDA2, LEWDA3  

Lavon B2410A LAVON0, LAVON1, LAVON2, LAVON3 

Grapevine B2362A GPVGP1, GPVGP2, GPVDPC. GPVDAL 

Benbrook B5117P BENBRK, BENBR1, BENBR2, BENBR3, BENBR4 

 

 

The system of eight reservoirs in the Trinity River Basin originally was designed 

as multiple-owner (component) reservoirs. Multiple-owner reservoirs system constrains 

usage of extra water for permits. Thus, each water right can withdraw water from reservoir 

that specified in the contract. However, in daily time step with flood control operation, 
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component reservoirs did not work in WRAP. Because of that, component reservoirs were 

changed as single-owner reservoirs. Each reservoir has single conservation pool and flood 

control pool. By changing this, flood control simulation and flood frequency analysis were 

performed accurately. This change might affect water reliability for some water rights in 

the simulation. Table 31 shows single-owner reservoirs on the Trinity River Basin. 

 

Table 31. Single-owner reservoirs on the Trinity River Basin 

 

Reservoir Reservoir 

Identifier 

Control Point Storage (acre-feet) 

Conservation Flood Control 

Benbrook BENBRK B5157P 88,250 76,550 

Joe Pool JOPOOL B3404A 176,900 127,100 

Ray Roberts ROBDEN B2335A 799,600 265,000 

Lewisville LEWDE1 B2456A 618,400 340,777 

Grapevine GPVGP1 B2362A 162,500 244,400 

Lavon LAVON0 B2410A 456,500 291,700 

Navarro Mills NAVARO B4992A 63,300 148,900 

Bardwell BARDWL B5021A 54,900 85,100 

 

 

The TCEQ WAM system involves variation of datasets for alternative scenarios. 

Full authorized water use (run 3) and current water use (run 8) are two scenarios that were 

simulated for water usage. Full authorized scenario (run 3) are performed based on all 

water right permit holders which withdraw full amount of water that they authorized in 

their permit and there is not return flow. On the other hand, current water use (run 8) are 

performed based on water right permit holders which withdraw less amount of water than 

authorized.  
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4.2 Simulation of Flood Control Operations in WRAP 

Within WRAP, flood control reservoirs operations are processed as a form of water 

rights in the SIMD file.  Flood control rights are activated by FR and WS records, they are 

simulated with all other water and instream flow rights in a multiple-reservoir operation 

system. FR record, flood flow (FF) record and flood volume and outflow (FV/FQ) records 

are specifically for flood control operations. In addition to that SIMD creates an optional 

output named AFF with annual series peak flows, excess flows and storages. The SIMD 

AFF file is read by the WRAP program TABLES and performs flood frequency analyses 

controlled by a 7FFA record in TIN file.  

Flood control rights are junior to all other water rights. Decisions about water 

storing and releasing are made in priority order in FR record fields 3-4 as shown in Table 

32. In order to set up a multiple reservoir system, reservoirs share the same priority 

numbers to store and release water. Thus, reservoirs work as a system. The rank index 

(Equation 13) is computed to make a decision to store or release water. At the beginning 

of the each day, rank index is calculated and decision is made for multiple reservoirs. In 

making decision to store water, the reservoir with the smallest rank index is considered 

first. In contrast, in making decision to release water, the reservoir with the largest rank 

index is considered first. The multiplier factor and the addition factor are 1.0 and 0.0 by 

defaults respectively. 

 

𝑟𝑎𝑛𝑘 𝑖𝑛𝑑𝑒𝑥 = (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟) [
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝐹𝐶 𝑝𝑜𝑜𝑙

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝐹𝐶 𝑝𝑜𝑜𝑙 
] + 𝑎𝑑𝑑.  𝑓𝑎𝑐𝑡𝑜𝑟  (13)     
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A flood control pool is modeled as two section, controlled (gated) flood pool and 

uncontrolled (ungated) flood control pool as shown in Figure 32. Controlled means that 

water releases are done by opening and closing gates at the same time without contributing 

to downstream flooding. Uncontrolled means that releases are controlled by hydraulic 

design of outlet structures and there are not any gates operated by people. When water 

level exceed the top of gated flood control pool, downstream control points are not taken 

into consideration to release. The zones are defined in the FR record by entering storage 

capacity values into field 8, 9, and 10. 

 

 

Table 32. Flood control reservoirs FR record 

 

 

 

In WRAP terminology, flood control operation is made by defining zones in FR 

record in DAT file as shown in Table 32. Field 8 of FR record is defined as FCTOP which 

is cumulative storage volume that correspond maximum allowable water level on the 
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dams.  Field 9 of FR record is defined as FCGATE which is cumulative storage volume 

that correspond to top of the controlled flood control pool level. FCGATE value separates 

gated and ungated flood control pool. Field 10 of FR record is defined as FCBOTTOM 

which is top of conservation (bottom of gated flood control pool). 

 

 
Figure 32. Reservoir pools 

 

 

 

 When the water level is between FCBOTTOM and FCGATE, which is the 

controlled (gated) flood control pool, FF and FV/FQ records are applied in order to release 

water. Table 33 and 34 show FF and FV/FQ records. FF record defines maximum release 

limit at downstream control points in order to prevent flooding at downstream. FV/FQ 

records define maximum release that can be made based on the outlet structures. When 

water is in that level, SIMD calculates both FF and FV/FQ record and makes release by 

choosing minimum of them. Thus, release is made by checking downstream control points 

and hydraulic structure capacity.  However, when water level is between FCGATE and 
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FCTOP, which is uncontrolled (ungated) flood control pool, only FV/FQ records are 

calculated to release water.  

 The excess flow can be defined as; a max daily flow volume release in a year from 

the reservoir at which water level above the FCGATE (top of controlled flood control 

pool) level. In the last column of the AFF file, excess flows are tabulated. If the excess 

flow is zero that means in that year water has never exceeded the controlled flood control 

capacity. 7FFA record in the TIN file reads to AFF file and flood frequency tables can be 

created. Flood frequency tables can be performed only for reservoir storage and also can 

be performed for summation of storage and excess flow.  

 A storage volume and surface area relationship is required for evaporation 

computations. The storage-area relationship is created with SV/SA records as shown in 

Table 35. Coefficients can be associated in WS records. The maximum number of storage 

volume and surface area points in SV/SA record can be set in JD record in the field 11. 

For Trinity WAM, it was defined as 13 points.  

 

Table 33. Flood flow limit FF records 
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Table 34. Flood control reservoir storage volume-outflow FV/FQ records 

 

 

 

 

Table 35. Storage volume-surface area (SV/SA) records for flood control reservoirs 
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4.3 Types of Storage Reallocation 

Reservoir storage reallocation and operation of dams are becoming more important 

than before because of increasing population, water demands, global warming as well as 

flood events. Reservoir reallocation between purposes might be categorized as follows: 

first, reallocation between flood control pool and conservation pool, second, reallocation 

between different conservation purposes, and lastly, temporary use of sediment reserve 

(Wurbs and Carriere 1988). The most common reallocation is reallocation between 

conservation pool and flood control pool. This research particularly focused on 

reallocation from flood control pool to conservation pool.  

Reallocation between conservation pool and flood control pool is implemented by 

raising or lowering the existing top of conservation pool level. Frequent flood events, flash 

floods, or extra water in the conservation might lead reallocation from storage capacity 

conservation pool to flood control pool. Physically, lowering top of conservation pool 

automatically increase storage capacity of flood control pool. During a flood event, more 

water can be stored and downstream flooding risk decreases. On the other hand, increase 

of water demand, extreme droughts, less frequent flood events might lead reallocation 

from flood control pool to conservation pool. In order to increase water reliability, more 

water must be stored in the conservation pools.  

 Reallocation between flood control and conservation pool also affects recreation 

facilities and roads around lakes. By increasing top of conservation pool level, some 

facilities might be under water. Also, it might affect roads around lakes. Likewise, 
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lowering top of conservation pool elevation might affect dockside, natural habitat for fish 

as well as other recreational facilities. 

 Storage reallocations between conservation and flood control pool can be 

permanent or seasonal. A permanent reallocation between conservation pool and flood 

control pool is raising or lowering top of conservation level for good. Permanent 

reallocation might be needed for high water demand for all seasons. Moreover, if 

precipitation time is various and has different intensity among seasons for each year, 

permanent reallocation works better. In this research, permanent reallocations from flood 

control pool to conservation pool for different capacity were simulated. 

 Seasonal reallocation between flood control and conservation pool is temporary 

raising or lowering top of conservation elevation. In other words, in a year, top of 

conservation pool changes based on water demand and flood threat. To illustrate, if 

summers or certain period of time has drought in a year and spring has a flood threat, 

during the flood months, top of conservation pool elevation stays lower in order to protect 

downstream by storing water. Beginning of drought season, top of conservation pool is 

raised that helps to store more water.  To determine seasonal reallocation, observed flows 

or storage levels of reservoirs should be closely monitored for each month in a year and 

they should be compared same month with previous year`s level. In this research 

seasonality study was analyzed in the following pages.        

4.3.1 Alternative Permanent Reallocation Simulation Plans and Runs 

The simulations were performed with WRAP for Trinity WAM. This research 

includes three alternative permanent reallocations from flood control storage capacity to 
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conservation storage capacity simulations. Reallocation simulations were executed by 

converting 10%, 20%, and 50% of the flood control pool to the conservation pool. The 

current storage capacities and alternative reallocated storage capacities are shown in the 

Table 36. Simulation time step was daily and simulation period was from 1940 to 2012. 

The flood control and conservation storage capacity frequency analyses were performed. 

In the following pages, simulation runs are explained in details. Post simulation studies 

provided water reliability tables and flood frequency analyses tables.  

 

Table 36. Reservoirs storage capacity with alternative reallocations 

 
Reservoirs   Benbrook  Joe Pool  Ray 

Roberts 

Lewisville Grapevine  Lavon Navarro 

Mills 

Bardwell 

Reservoir Identifier BENBRK JOPOOL ROBDEN LEWDE1 GPVGP1 LAVON0 NAVARO BARDWL 

Control Point B5157P B3404A B2335A B2456A B2362A B2410A B4992A B5021A 

Existing 

Capacity 

(D1)  

(ac-ft) 

Conserv

ation 

88250 176900 799600 618400 162500 456500 63300 54900 

Flood 

Control 

76550 127100 265000 340777 244400 291700 148900 85100 

Total 164800 304000 1064600 959177 406900 748200 212200 140000 

10 % S. 

Reallocat

ion (D4) 

(ac-ft) 

Conserv

ation 

95905 189610 826100 652478 186940 485670 78190 63410 

Flood 

Control 

68895 114390 238500 306699 219960 262530 134010 76590 

Total 164800 304000 1064600 959177 406900 748200 212200 140000 

20 % S. 

Reallocat

ion (D5) 

(ac-ft) 

Conserv

ation 

103560 202320 852600 686555 211380 514840 93080 71920 

Flood 

Control 

61240 101680 212000 272622 195520 233360 119120 68080 

Total 164800 304000 1064600 959177 406900 748200 212200 140000 

50 % S. 

Reallocat

ion (D6) 

(ac-ft) 

Conserv

ation 

126525 240450 932100 788789 284700 602350 137750 97450 

Flood 

Control 

38275 63550 132500 170389 122200 145850 74450 42550 

Total 164800 304000 1064600 959177 406900 748200 212200 140000 
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4.3.2 Evaluation of Seasonal Reallocation   

The system of eight USACE Reservoirs on the Trinity River Basin was assessed 

in this research. Kim and Wurbs and Carriere  investigated seasonal operation for Brazos 

River Basin in Texas (Kim 2009; Wurbs and Carriere 1988). They simulated by raising 

top of conservation pool elevation in summer and fall and lowering top of conservation 

pool elevation in winter and spring in order to store more water to use in drought seasons. 

As first step, daily observed storages were assessed to decide seasonality. To 

determine drought and rainy months, daily observed storage values were split up each year 

and plotted to compare reservoir storage elevation each month for all years and reservoirs.  

Figure 33-40 provide a better understanding of seasonality. According to plots, the 

Trinity River Basin reservoirs storage levels were above the top of conservation pool at 

least one year except for Benbrook Reservoir. Benbrook Reservoir`s water levels are very 

close to top of conservation pool elevation from July to October and there was not any 

release because of flood. In other words, flood control storage has not been used to store 

water. However, the seven reservoirs` water level passed to top of conservation level and 

flood control pool stored water. 

All in all, plots of reservoirs` elevations clearly show that flood can occur any time 

of the year in the Trinity River Basin. The seven of eight reservoirs` flood control pools 

were used all months in different years. Only Benbrook Reservoir was convenient to raise 

top of conservation pool elevation between July and October. Also return period of 

exceeding flood control pool values were as low as 10-year for some dams. Therefore, in 

this study, seasonal reallocation was not suggested for these reservoirs.     
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Figure 33. Benbrook Reservoir daily observed storage elevation (monthly comparison) 
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Figure 34. Joe Pool Reservoir daily observed storage elevation (monthly comparison) 
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Figure 35. Ray Roberts Reservoir daily observed storage elevation (monthly comparison) 
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Figure 36. Lewisville Reservoir daily observed storage elevation (monthly comparison) 
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Figure 37. Grapevine Reservoir daily observed storage elevation (monthly comparison) 
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Figure 38. Lavon Reservoir daily observed storage elevation (monthly comparison) 
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Figure 39. Navarro Mills Reservoir daily observed storage elevation (monthly comparison) 
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Figure 40. Bardwell Reservoir daily observed storage elevation (monthly comparison) 
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4.4 Alternative Simulation Runs  

 The objective of the WRAP simulation study was to assess impact permanent 

storage reallocation between flood control and conservation pool on the flood frequency 

analyses and water supply reliabilities. The Trinity WAM data set was modeled in WRAP 

and developed for flood control operation in daily time step. The WRAP post simulation, 

which are tables and graphs, provided basic data for output such as, reservoir storage 

levels, regulated flows, flood frequency tables and water reliability tables.  

 The thesis research involved nine alternative simulation runs in order to enhance 

understanding impacts on permanent storage reallocation on water supply and flood 

frequency analysis and confirm its validity. Daily and monthly time step simulations` 

hydrologic period-of-analysis were 1940 through 2012. Alternative simulation runs, as 

shown in Table 37, include six daily time step and three monthly time step. Daily time 

step simulations have flood control operation, although monthly time step simulations 

don’t have flood control operation. Some of reservoirs were simulated as component 

(multiple-owner) reservoirs while rest of them were simulated as single owner reservoirs. 

Also, simulations included current water use and full authorized water use scenarios. 

Three of six daily time step runs were performed for storage reallocation.  Permanent 

reallocations simulations involved three alternative scenarios which were allocating 

reservoir storage from flood control pool to conservation pool with amount of 10%, 20%, 

and 50% for eight reservoirs in the Trinity River Basin. 

Alternative simulation runs are defined as follows. 
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 Table 37. Alternative simulation runs 

 

Simulation 

Label 

Time 

Step 

Water Use 

Scenario 

Flood Control  

Operation 

Component 

Reservoir 

Reallocation 

D1 Daily Authorized Yes No No 

D2 Daily Authorized Yes Yes No 

D3 Daily No Withdrawn Yes No No 

D4 Daily Authorized Yes No Yes (10%) 

D5 Daily Authorized Yes No Yes (20%) 

D6 Daily Authorized Yes No Yes (50%) 

M1 Monthly Authorized No Yes No 

M2 Monthly Authorized No No No 

M3 Monthly Current No Yes No 

 

 

 

Simulation D1: Simulation D1 was performed in daily time step and water use scenario 

was full authorized. There was flood control operation and designed as single owner 

reservoirs for eight Trinity River Basin Reservoirs. 

Simulation D2: Simulation D2 was performed in daily time step and water use scenario 

was full authorized. There was flood control operation and designed as multiple-owner 

(component) reservoirs for eight Trinity River Basin Reservoirs. 

Simulation D3: Simulation D3 was performed in daily time step and there was not water 

use scenario, water rights for eight reservoirs, were changed to zero. There was flood 

control operation and designed as single owner reservoirs for eight Trinity River Basin 

Reservoirs. 

Simulation D4: Simulation D4 was performed in daily time step and water use scenario 

was full authorized. There was flood control operation and designed as single owner 

reservoirs for eight Trinity River Basin Reservoirs. In addition, there was storage 
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 reallocation from flood control pool to conservation pool the amount of 10% of flood 

control storage capacity for eight reservoirs. 

Simulation D5: Simulation D5 was performed in daily time step and water use scenario 

was full authorized. There was flood control operation and designed as single owner 

reservoirs for eight Trinity River Basin Reservoirs. In addition, there was storage 

reallocation from flood control pool to conservation pool the amount of 20% of flood 

control storage capacity for eight reservoirs.  

Simulation D6: Simulation D6 was performed in daily time step and water use scenario 

was full authorized. There was flood control operation and designed as single owner 

reservoirs for eight Trinity River Basin Reservoirs. In addition, there was storage 

reallocation from flood control pool to conservation pool the amount of 50% of flood 

control storage capacity for eight reservoirs. 

Simulation M1: Simulation M1 was performed in monthly time step and water use 

scenario was full authorized. There was not flood control operation and designed as 

multiple-owner (component) reservoirs for eight Trinity River Basin Reservoirs. 

Simulation M2: Simulation M2 was performed in monthly time step and water use 

scenario was full authorized. There was not flood control operation and designed as single-

owner reservoirs for eight Trinity River Basin Reservoirs. 

Simulation M3: Simulation M3 was performed in monthly time step and water use 

scenario was current use. There was not flood control operation and designed as multiple-

owner (component) reservoirs for eight Trinity River Basin Reservoirs. 
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 CHAPTER V 

EVALUATION OF SIMULATION RESULTS 

  

 

The nine alternative simulation runs were evaluated by comparing simulation 

results and observed data in order to enhance understanding the impact of alternative 

permanent storage reallocations on water reliabilities and flood frequency analyses for the 

system of eight reservoirs in the Trinity River Basin. In Section 4.4 alternative simulation 

runs were described in detail. Simulation D1 is main run which was in daily time step, 

modeled as full authorized water use, set up as existing storage allocation, has flood 

control operation and designed as single-owner reservoirs. Simulation D2 is identical with 

D1 except reservoirs were modeled as multiple-owner. D3 is identical with D1 except 

water rights were entered as zero in order to see flood frequency changes when 

conservation pool is full.  Three of six daily time step simulations, D4, D5, and D6 were 

only for alternative permanent storage reallocation for eight reservoirs. Simulation M1, 

M2, and M3 are monthly time step runs and include current water use and full authorized 

water use; however, there is not flood control operation in monthly time step simulations.  

 The main D1 simulation`s results were compared with all other daily time step 

simulations and M1 simulation`s results in order to show effects of alternative simulation 

changes. Likewise, Simulation M1`s results were compared with all other monthly time 

step simulations` results. Comparisons were made based on storage level of reservoirs, 

flood frequency analyses, return period of flood event, and water reliabilities.  Flood 
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 frequency analyses and return period of floods also were compared with actual observed 

reservoirs data and HEC-SSP results.  

5.1 Simulation D1 versus Observed Annual Maximum Reservoirs Storage 

The simulation D1 represents existing reservoir storage, full authorized water use, 

daily time step, single-owner, and has flood control operation. The simulation D1 was 

considered as base simulation and compared with other alternative simulation runs. In 

order to check it`s validity, D1 storage capacity, flood return periods were compared with 

observed values. In addition to that, water reliability summary table was developed to 

compare with other simulations result in order to show differences. 

Flood control reservoir operations are processed as water rights and activated by 

FR and WS records in WRAP. As described in the Chapter 4, if FR record shares same 

priority number, reservoirs become multiple-reservoir system to store and release water. 

Then, rank indices make decision to release and store water. If rank indices are same, first 

FR record order in DAT file has priority. In the simulation D1, reservoirs were listed from 

upstream to downstream in DAT file. Alternatively, order of FR records were changed 

and simulations were run. As a result, original simulation D1 and alternative simulations 

changed around 1% in reservoir storages. The reason for this little change was, each day 

rank index was calculated and priority of the reservoir was changed to store and release 

water. The changes were very small because one day simulation time step was short 

enough to keep reservoirs water level in balance.         
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 5.1.1 Comparison of Reservoirs Storage 

The system of eight Trinity River Basin reservoirs storage capacities for simulation 

D1 were compared with maximum annual observed storage capacities. As shown in 

Figures 41-48, straight blue line represents D1 likewise, red points and green lines 

represent annual maximum observed storage levels and top of controlled flood control 

pool level respectively. As a result of this comparison, Benbrook, Joe Pool, Lavon, 

Navarro Mills and Bardwell Reservoirs storage levels matched with D1 and annual 

maximum observed data. However, simulation results of Ray Roberts, Lewisville, and 

Grapevine Reservoirs` storage levels were lower than observed values. Reason for these 

differences might be simulation duration (1940-2012) longer than observed data. Another 

reason might be, D1 simulation represents full authorized scenario, and contractors do not 

use all water that they authorized.    

 

 
Figure 41. Benbrook Reservoir simulation D1 versus max annual observed storage 
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Figure 42.  Joe Pool Reservoir simulation D1 versus max annual observed storage 

 

 
Figure 43. Ray Roberts Reservoir simulation D1 versus max annual observed storage 
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Figure 44. Lewisville Reservoir simulation D1 versus max annual observed storage 

 

 

 
Figure 45. Grapevine Reservoir simulation D1 versus max annual observed storage 
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Figure 46. Lavon Reservoir simulation D1 versus max annual observed storage 

 

 

 
Figure 47. Navarro Mills Reservoir simulation D1 versus max annual observed storage 
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Figure 48. Bardwell Reservoir simulation D1 versus max annual observed storage 

 

 

 

5.1.2 Comparison of Flood Frequency Analyses 

 Flood frequency analyses and return periods were performed with HEC-SSP and 

WRAP for observed data and simulation D1 respectively for the eight reservoirs. WRAP 

post simulation has capabilities to perform flood frequency analysis based on only for 

reservoir storage and summation of reservoir storage and excess flow. Excess flow 

represents maximum daily flow volume for each year whenever flows exceed the top of 

controlled flood control pool. 

 Flood frequency analyses were performed by employing both log-normal and log-

Pearson type III probability distributions for simulation D1 and observed reservoir storage. 
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 Tables 38-40 were created by using log-normal distribution and compared with observed 

data and only reservoir storage, and summation of reservoir and excess flow. Likewise, 

Tables 41-43 were created by using log-Pearson type III distribution and compared with 

observed data, only reservoir storage, and summation of reservoirs and excess flows.  

 Return period of observed storage for both log-normal and log-Pearson type III 

distribution were close to each other except Joe Pool and Navarro Mills. Return period of 

D1 simulation storage for both log-normal and log-Pearson type III distribution were far 

away from each other for only reservoir and summation of reservoir storage and excess 

flow. Log-normal distribution`s results for simulation D1 were closer to observed 

reservoir storage return period than log-Pearson type III distribution. However, 

specifically, Ray Roberts, Lewisville, and Grapevine Reservoirs’ simulation D1 storage 

levels were lower than observed storage level. Although, for these reservoirs, simulation 

D1 storage levels were low, return period for flood event was very frequent for log-normal 

distribution. Log-normal probability distribution did not reflect storage level`s value for 

flood frequency analysis. Because of that, log-Pearson type III distribution exceedance 

probability of controlled flood control pool fit better than log-normal probability 

distribution. 

 Joe Pool and Ray Roberts Reservoirs were completed after 1980 and their periods-

of-analysis are shorter than for the other reservoirs. Fewer years of record means a smaller 

sample size for the statistical analyses. Also, for Lewisville and Lavon Reservoirs, storage 

reallocations were made in 1989 and 1976 respectively. Because of reallocation, flood 

frequency analyses were performed by maximum storage level after reallocation was 
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 done, so sample size was low for these reservoirs. However, in the all simulation, 

hydrologic period was from 1940 to 2012. This difference affected return period. In 

addition to that as mentioned before, D1 was performed for full authorized water use 

scenario.   

 

Table 38. Comparison of observed storage and simulation D1 exceedance probability of 

top of controlled flood control pool log-normal distribution 

 
N

o 

Reservoir Control 

Point 

Top of 

Flood 

Control 

(ac-ft) 

Observed Sim D1 (Res. Sto.) Sim D1 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedance 

Return 

Period  

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period  

(year) 

1 Benbrook B5157P 164800 5.30 18.87 10.73 9.32 17.38 5.75 

2 Joe Pool B3404A 304000 0.10 1000.00 9.32 10.73 9.32 10.73 

3 Ray 

Roberts 

B2335A 1064600 6.89 14.51 7.84 12.76 7.84 12.76 

4 Lewisville B2456A 959177 9.60 10.42 8.04 12.44 8.04 12.44 

5 Grapevine B2362A 406900 3.63 27.55 11.46 8.73 11.55 8.66 

6 Lavon B2410A 748200 8.79 11.38 11.28 8.87 12.09 8.27 

7 Navarro B4992A 212200 1.02 98.04 3.38 29.59 3.44 29.07 

8 Bardwell B5021A 140000 0.43 232.56 1.90 52.63 1.90 52.63 

 

 

 

Table 39. FFA for reservoir storage log-normal distribution for D1  

 

 



 

104 

 

 Table 40. FFA for summation of reservoir storage and excess flow log-normal 

distribution for D1 

 

 

 

Table 41. Comparison of observed storage and simulation D1 exceedance probability of 

top of controlled flood control pool log-Pearson type III distribution 

 
N

o 

Reservoir Control 

Point 

Top of 

Flood 

Control 

(ac-ft) 

Observed Sim D1 (Res. Sto.) Sim D1 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedance  

Return 

Period  

(year) 

Percent 

Chance 

Exceedanc

e 

Return 

Period 

(year) 

Percent 

Chance 

Exceedanc

e 

Return 

Period 

(year) 

1 Benbrook B5157P 164800 7.22 13.85 0.10 1000.00 16.68 6.00 

2 Joe Pool B3404A 304000 0.71 140.85 0.10 1000.00 0.10 1000.00 

3 Ray 

Roberts 

B2335A 106460

0 

6.75 14.81 0.01 10000.00 0.01 10000.00 

4 Lewisville B2456A 959177 8.89 11.25 3.52 28.41 3.52 28.41 

5 Grapevin

e 

B2362A 406900 4.57 21.88 0.23 434.78 0.40 250.00 

6 Lavon B2410A 748200 7.08 14.12 0.10 1000.00 0.10 1000.00 

7 Navarro B4992A 212200 0.24 416.67 1.26 79.37 1.43 69.93 

8 Bardwell B5021A 140000 0.39 256.41 0.10 1000.00 0.10 1000.00 
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 Table 42. FFA for reservoir storage log-Pearson type III distribution for D1 

 

 

 

Table 43. FFA for summation of reservoir storage and excess flow log-Pearson type III 

distribution for D1 

 

 

 

5.1.3 Water Supply Reliability for D1 

 The water supply reliability table was developed for control points located at dams 

for simulation D1 as shown in Table 44. Benbrook, Lavon, Navarro Mills, and Bardwell 

Reservoirs water diversion target 100% met in terms of simulation duration and diversion 

amount. On the other hand, Joe Pool, Ray Roberts, Lewisville, Grapevine Reservoirs have 

water shortage. Joe Pool water reliability was almost 100%. However, Ray Roberts 

Reservoir had very low water reliability in terms of period and volume.  One of the 
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 research objectives is how reallocation affects water reliability. Simulation D4, D5, and 

D6 were compared in the following pages to show differences for water reliability. 

 

Table 44. Water supply reliability for D1 

  

 
 

 

5.2 Simulations D1 versus D2 

The simulation D2 represents existing reservoir storage, full authorized water use, 

daily time step, has flood control operation, and was developed as component reservoir 

system. Component (multiple-owner) reservoir system means, for same reservoir, 

different agencies have water right contracts. To protect their water rights from other 

contractor, reservoirs were split up as components. Thus, contractor cannot withdraw 

much water that they were authorized. Because of that, conservation and flood control 

pools were divided based on contract proportion for Benbrook, Ray Roberts, Lewisville, 

Grapevine, and Lavon Reservoirs. However, flood control operation for component 

reservoirs did not work out. Component reservoir system for some years, even if water 

level in reservoir was lower than top of controlled flood control pool (FCGATE), in AFF 

file, there was excess flow. That was not supposed to be occurred. Excess flow was 
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 supposed to be only occurred when water level exceeded the top of controlled flood 

control pool.  The reason for excess flow for component reservoir might be that one of the 

components in the same reservoir might overtop to top of flood control pool while others 

had low water level. Even if one of components was exceed flood control pool, it would 

cause excess flow.    

Originally, Trinity WAM was designed as component reservoir for water 

allocation. However, the research focused on flood control operation, because of that, 

reservoirs were converted to single owner reservoir and base simulation (D1) was single 

owner reservoir. Simulation D1 and D2 were compared for water storages and water 

reliabilities to check how single-owner simulation make changes.  

5.2.1 Comparison of Reservoirs Storage 

 Simulation D1 storage capacities were compared with simulation D2 storage 

capacities. As shown in Figures 49-56, straight blue line represents D1 likewise, dark red 

straight line represents D2 and green line represents top of controlled flood control pool 

level. As a result of this comparison, Joe Pool, Navarro Mills and Bardwell Reservoirs 

storage levels were almost same for D1 and D2, However, for rest of them, storage 

capacities had differences for D1 and D2.  

 The difference between simulation D1 and D2 caused by in a same reservoir, 

contractors used other contractor`s water when they had no water that they were 

authorized. Because of that usage of water storage levels and water reliabilities have 

changed. Joe Pool, Navarro Mills and Bardwell Reservoirs had same water storage levels 

because in both D1 and D2 simulation they were single reservoir.      
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Figure 49. Benbrook Reservoir simulations D1 versus D2 

 

 
Figure 50. Joe Pool Reservoir simulations D1 versus D2 
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Figure 51. Ray Roberts Reservoir simulations D1 versus D2 

 

 
Figure 52. Lewisville Reservoir simulations D1 versus D2 
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Figure 53. Grapevine Reservoir simulations D1 versus D2 

 

 
Figure 54. Lavon Reservoir simulations D1 versus D2 
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Figure 55. Navarro Mills Reservoir simulations D1 versus D2 

 

 
Figure 56. Bardwell Reservoir simulations D1 versus D2 
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 5.2.2 Water Supply Reliabilities for D2  

 The water supply reliability table was developed for control points located at dams 

for simulation D2 as shown in Table 45. Navarro Mills and Bardwell Reservoirs water 

diversion target is 100% met in terms of simulation duration and diversion amount. On 

the other hand, Benbrook, Joe Pool, Ray Roberts, Lewisville, Grapevine Reservoirs had 

water shortage. Joe Pool water reliability was almost 100% and simulation D1 and D2 

were almost same. However, Ray Roberts Reservoir had very low water reliability in 

terms of period and volume.   

 

 

Table 45. Water supply reliability for D2 

 

 

 

 

5.3 Simulations D1, D3 versus Observed Annual Maximum Reservoirs Storage 

 The simulation D3 represents existing reservoir storage, no water withdrawn from 

the eight reservoirs, daily time step, has flood control operation, and was developed as 

single-owner reservoir system. Simulation D3 was executed in order to show how 

conservation pool affected flood frequency analysis. After a severe drought conservation, 
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 pool becomes empty and after drought season ends, at first conservation pool becomes full 

then starts to fill flood control pool. In other words, at the beginning of flood event, 

conservation pool behaves as flood control pool and stores water. In order to see how 

conservation pool affect flood control operation, simulation D3 was developed by 

changing water rights values as zero thus conservation pool remain full for the eight 

reservoirs.  

5.3.1 Comparison of Reservoirs Storage  

Simulation D1 storage capacities were compared with simulation D3 storage 

capacities. As shown in Figure 57-64, straight blue line represents D1 likewise, dark red 

straight line represents D3, red points represent observed annual maximum storage and 

green line represents top of controlled flood control pool level. As a result of simulation 

D3, all of the reservoirs storage levels increased as expected. Especially, Ray Roberts, 

Lewisville, Grapevine, Lavon Reservoirs` storage level increased dramatically.  
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Figure 57. Benbrook Reservoir simulations D1, D3 versus max annual observed storage 

 

 
Figure 58. Joe Pool Reservoir simulations D1, D3 versus max annual observed storage 
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Figure 59. Ray Roberts Reservoir simulations D1, D3 versus max annual observed 

storage 

 

 
Figure 60. Lewisville Reservoir simulations D1, D3 versus max annual observed storage 
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Figure 61. Grapevine Reservoir simulations D1, D3 versus max annual observed storage 

 

 
Figure 62. Lavon Reservoir simulations D1, D3 versus max annual observed storage 
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Figure 63. Navarro Mills Reservoir simulations D1, D3 versus max annual observed 

storage 

 

 
Figure 64. Bardwell Reservoir simulations D1, D3 versus max annual observed storage 
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 5.3.2 Comparison of Flood Frequency Analyses 

 Exceedance probability of top of controlled flood control for simulation D3 was 

performed for log-normal and log-Pearson type III distribution, compared with simulation 

D1 and observed flood frequency analysis. For both distributions, simulation D3 return 

period values were expected lower than simulation D1 because there was not withdrawn 

for simulation D3 and water levels were higher than simulation D1. 

 Return period and statistical tables were developed for log-normal distribution as 

shown in Tables 46 and 47. However, return period values for simulation D3 was higher 

than simulation D1 except for Ray Roberts and Lewisville Reservoirs. The result for log-

normal distribution was not expected since D3 simulation return period should have been 

lower than D1. Log-normal distribution did not work well. 

 Return period and statistical tables were developed for log-Pearson type III 

distribution as shown in Tables 48 and 49. Return period for simulation D3 values were 

lower than Simulation D1 and observed flood frequency analysis as expected. Simulation 

D1 flood return periods were significantly higher than simulation D3. For this study, log-

Pearson Type III distribution fit better. Because of that, rest of the simulation was 

evaluated only with log-Pearson type III distribution.  

  These results show that conservation pools have great impact on flood control 

operation and flood frequency analysis. Especially after a severe drought like 1950-1957 

drought, there was a flood event. The simulation D3 showed that in 1957 controlled flood 

control pools were overtopped for most of reservoirs. Consequently, conservation pools 

reduce flood events when they have water storage place. 
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 Table 46. Comparison of observed storage, D1 and D3 exceedance probability of top of 

flood control pool log-normal distribution 

 
N

o 

Reservoir Control 

Point 

Top of 

Flood 

Control 

(ac-ft) 

Observed Sim D1 (Res. Sto. 

+Excess Flow) 

Sim D3 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance  

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

1 Benbrook B5157P 164800 5.30 18.87 17.38 5.75 16.83 5.94 

2 Joe Pool B3404A 304000 0.10 1000.00 9.32 10.73 1.49 67.11 

3 Ray 

Roberts 

B2335A 1064600 6.89 14.51 7.84 12.76 12.13 8.24 

4 Lewisvill

e 

B2456A 959177 9.60 10.42 8.04 12.44 9.07 11.03 

5 Grapevin

e 

B2362A 406900 3.63 27.55 11.55 8.66 3.17 31.55 

6 Lavon B2410A 748200 8.79 11.38 12.09 8.27 8.81 11.35 

7 Navarro B4992A 212200 1.02 98.04 3.44 29.07 2.31 43.29 

8 Bardwell B5021A 140000 0.43 232.56 1.90 52.63 0.70 142.86 

 

 

 

Table 47. FFA for summation of reservoir storage and excess flow log-normal 

distribution for D3 
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 Table 48. Comparison of observed storage, D1 and D3 exceedance probability of top of 

flood control pool log-Pearson type III distribution 

 
N

o 

Reservoi

r 

Contr

ol 

Point 

Top of 

Flood 

Contro

l (ac-

ft) 

Observed Sim D1 (Res. Sto. 

+Excess Flow) 

Sim D3 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedanc

e 

Return 

Period 

(year) 

Percent 

Chance 

Exceedanc

e 

Return 

Period 

(year) 

Percent 

Chance 

Exceedanc

e 

Return 

Period 

(year) 

1 Benbrook B5157P 16480

0 

7.22 13.85 16.68 6.00 16.53 6.05 

2 Joe Pool B3404A 30400

0 

0.71 140.85 0.10 1000.00 0.10 1000.00 

3 Ray 

Roberts 

B2335A 1064600 6.75 14.81 0.01 10000.00 12.28 8.14 

4 Lewisville B2456A 95917

7 

8.89 11.25 3.52 28.41 9.87 10.13 

5 Grapevine B2362A 40690

0 

4.57 21.88 0.40 250.00 5.66 17.67 

6 Lavon B2410A 74820

0 

7.08 14.12 0.10 1000.00 9.62 10.40 

7 Navarro B4992A 21220

0 

0.24 416.67 1.43 69.93 3.13 31.95 

8 Bardwell B5021A 14000

0 

0.39 256.41 0.10 1000.00 1.14 87.72 

 

 

 

Table 49. FFA for summation of reservoir storage and excess flow log-Pearson type III 

distribution for D3 
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 5.4 Simulations D1, D4 versus Observed Annual Maximum Reservoirs Storage 

 The simulation D4 represents 10% flood control reservoir storage converted to 

conservation pool capacity, full authorized water use, daily time step, has flood control 

operation, and was developed as single-owner reservoir system. Simulation D4 was 

executed in order to show how 10% storage reallocation from flood control pool to 

conservation pool affects flood frequency analysis and water reliability.  

5.4.1 Comparison of Reservoirs Storage 

 Simulation D1 storage capacities were compared with simulation D4 storage 

capacities. As shown in Figures 65-72, straight blue line represents D1 likewise, dark red 

straight line represents D4 and green line represents top of controlled flood control pool 

level. As a result of this comparison, all of reservoirs storage level increased in simulation 

D4 except Ray Roberts and Lewisville Reservoirs. Also, Grapevine Reservoir increased 

little for some days. Increase of reservoir storage was expected and aimed for all 

reservoirs.  Ray Roberts, Lewisville, and Grapevine water level did not increase because 

they already had empty conservation place to store water in simulation D4.  
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Figure 65. Benbrook Reservoir simulations D1, D4 versus max annual observed storage 

 

 
Figure 66. Joe Pool Reservoir simulations D1, D4 versus max annual observed storage 
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Figure 67. Ray Roberts Reservoir simulations D1, D4 versus max annual observed 

storage 

 

 
Figure 68. Lewisville Reservoir simulations D1, D4 versus max annual observed storage 

1940 1950 1960 1970 1980 1990 2000 2010

A
C

-F
T

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

B2335A D1 CP 6STO B2335A D4 CP 6STO

  MAX ANNUAL OBSERVED STO RAY ROBERTS TOP OF FLOOD CONTROL POOL  

1940 1950 1960 1970 1980 1990 2000 2010

A
C

-F
T

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

B2456A D1 CP 6STO B2456A D4 CP 6STO

  MAX ANNUAL OBSERVED STO LEWISVILLE TOP OF FLOOD CONTROL POOL  



 

124 

 

 

 
Figure 69. Grapevine Reservoir simulations D1, D4 versus max annual observed storage 

 

 
Figure 70. Lavon Reservoir simulations D1, D4 versus max annual observed storage 

1940 1950 1960 1970 1980 1990 2000 2010

A
C

-F
T

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

B2362A D1 CP 6STO B2362A D4 CP 6STO

  MAX ANNUAL OBSERVED STO GRAPEVINE TOP OF FLOOD CONTROL POOL  

1940 1950 1960 1970 1980 1990 2000 2010

A
C

-F
T

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

B2410A D1 CP 6STO B2410A D4 CP 6STO

  MAX ANNUAL OBSERVED STO LAVON TOP OF FLOOD CONTROL POOL  



 

125 

 

 

 
Figure 71. Navarro Mills Reservoir simulations D1, D4 versus max annual observed 

storage 

 

 
Figure 72. Bardwell Reservoir simulation D1, D4 vs max annual observed storage 
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 5.4.2 Comparison of Flood Frequency Analyses 

Exceedance probability of top of controlled flood control for simulation D4 was 

performed for log-Pearson type III distribution for summation of reservoir storage and 

excess flow, then compared with simulation D1 and observed flood frequency analysis.  

The simulation D4 return period values were expected lower than simulation D1 return 

period because conservation storage capacity increased and flood control storage capacity 

decreased in simulation D4 and water levels were higher than simulation D1. 

 Return period table was developed for log-Pearson type III distribution as shown 

in Table 50. Return period for simulation D4 for values were lower than simulation D1 as 

expected. Joe pool, Lavon and Bardwell Reservoirs, return periods look like same but 

when Table 43 and Table 51 (frequency tables) were compared, decrease of return period 

can be seen. These results show that storage reallocation from flood control pool to 

conservation pool have impact on flood control operation and flood frequency analysis.  

 

Table 50. Comparison of observed storage, D1 and D4 exceedance probability of top of 

flood control pool log-Pearson type III distribution 

 
N

o 

Reservoir Control 

Point 

Top of 

Flood 

Control 

(ac-ft) 

Observed Sim D1 (Res. Sto. 

+Excess Flow) 

Sim D4 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

1 Benbrook B5157P 164800 7.22 13.85 16.68 6.00 19.68 5.08 

2 Joe Pool B3404A 304000 0.71 140.85 0.10 1000.00 0.10 1000.00 

3 Ray 

Roberts 

B2335A 1064600 6.75 14.81 0.01 10000.00 0.01 10000.00 

4 Lewisville B2456A 959177 8.89 11.25 3.52 28.41 3.75 26.67 

5 Grapevine B2362A 406900 4.57 21.88 0.40 250.00 1.79 55.87 

6 Lavon B2410A 748200 7.08 14.12 0.10 1000.00 0.10 1000.00 

7 Navarro B4992A 212200 0.24 416.67 1.43 69.93 2.50 40.00 

8 Bardwell B5021A 140000 0.39 256.41 0.10 1000.00 0.10 1000.00 
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 Table 51. FFA for summation of reservoir storage and excess flow log-Pearson type III 

distribution for D4 

 

 

 

5.4.3 Water Supply Reliability for D4 

 Water supply reliability table was developed for control points that located at dams 

for simulation D4 as shown in Table 52. Benbrook, Lavon, Navarro Mills, and Bardwell 

Reservoirs water diversion target is 100% met in terms of simulation duration and 

diversion amount. There were little increase of water reliabilities for Joe Pool, Ray 

Roberts, Lewisville, and Grapevine Reservoirs in simulation D4 than simulation D1. Joe 

Pool water reliability was almost 100%. However, like simulation D1, Ray Roberts 

Reservoir had very low water reliability in terms of period and volume.   
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 Table 52. Water supply reliability for D4 

 

 

 

5.5 Simulations D1, D5 versus Observed Annual Maximum Reservoirs Storage 

 The simulation D5 represents 20% flood control reservoir storage allocated to 

conservation pool capacity, full authorized water use, daily time step, has flood control 

operation, and was developed as single-owner reservoir system. Simulation D5 was 

executed in order to show how 20% storage reallocation from flood control pool to 

conservation pool affects flood frequency analysis and water reliability. 

5.5.1 Comparison of Reservoirs Storage 

Simulation D1 storage capacities were compared with simulation D5 storage 

capacities. As shown in Figures 73-80, straight blue line represents D1 likewise, dark red 

straight line represents D5 and green line represents top of controlled flood control pool 

level. As a result of this comparison, all of reservoirs storage level increased in simulation 

D5 except Ray Roberts Reservoir. Also, Lewisville Reservoir increased little for some 

days. Increase of reservoir storage was expected and aimed for all reservoirs.   
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Figure 73. Benbrook Reservoir simulations D1, D5 versus max annual observed storage 

 

 
Figure 74. Joe Pool Reservoir simulations D1, D5 versus max annual observed storage 
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Figure 75. Ray Roberts Reservoir simulations D1, D5 versus max annual observed 

storage 

 

 
Figure 76. Lewisville Reservoir simulations D1, D5 versus max annual observed storage 
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Figure 77. Grapevine Reservoir simulations D1, D5 versus max annual observed storage 

 

 
Figure 78. Lavon Reservoir simulations D1, D5 versus max annual observed storage 
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Figure 79. Navarro Mills Reservoir simulations D1, D5 versus max annual observed 

storage 

 

 
Figure 80. Bardwell Reservoir simulations D1, D5 versus max annual observed storage 
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 5.5.2 Comparison of Flood Frequency Analyses 

 Exceedance probability of top of controlled flood control for simulation D5 was 

performed for log-Pearson type III distribution for summation of reservoir storage and 

excess flow, then compared with simulation D1 and observed flood frequency analysis.  

The simulation D5 return period values were expected lower than simulation D1 and D4 

return period because conservation storage capacity increased and flood control storage 

capacity decreased in simulation D5 and water levels were higher than simulations D1 and 

D4. 

 Return period and statistical tables were developed for log-Pearson type III 

distribution as shown in Table 53 and 54. Return period for simulation D5 for values were 

lower than simulation D1 as expected. Joe pool, Ray Roberts, Lavon and Bardwell 

Reservoirs, return periods look like same but when Table 43 and Table 53 (frequency 

tables) were compared, decrease of return period can be seen. Benbrook Reservoir had 

very low return period as low as 4 years. Benbrook, Lewisville, Grapevine, and Navarro 

Mills Reservoirs` return flood control return period lower than 50 years in simulation D5. 

These results show that storage reallocation from flood control pool to conservation pool 

have impact on flood control operation and flood frequency analysis.  
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 Table 53. Comparison of observed storage, D1 and D5 exceedance probability of top of 

flood control pool log-Pearson type III distribution 

 
N

o 

Reservoir Control 

Point 

Top of 

Flood 

Control 

(ac-ft) 

Observed Sim D1 (Res. Sto. 

+Excess Flow) 

Sim D5 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

1 Benbrook B5157P 164800 7.22 13.85 16.68 6.00 24.26 4.12 

2 Joe Pool B3404A 304000 0.71 140.85 0.10 1000.00 0.10 1000.00 

3 Ray 

Roberts 

B2335A 1064600 6.75 14.81 0.01 10000.00 0.01 10000.00 

4 Lewisville B2456A 959177 8.89 11.25 3.52 28.41 4.03 24.81 

5 Grapevine B2362A 406900 4.57 21.88 0.40 250.00 2.13 46.95 

6 Lavon B2410A 748200 7.08 14.12 0.10 1000.00 0.10 1000.00 

7 Navarro B4992A 212200 0.24 416.67 1.43 69.93 3.73 26.81 

8 Bardwell B5021A 140000 0.39 256.41 0.10 1000.00 0.10 1000.00 

 

 

Table 54. FFA for summation of reservoir storage and excess flow log-Pearson type III 

distribution for D5 
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 5.5.3 Water Supply Reliability for D5 

 Water supply reliability table was developed for control point that located at dams 

for simulation D5 as shown in Table 55. Benbrook, Lavon, Navarro Mills, and Bardwell 

Reservoirs water diversion target 100% met in terms of simulation duration and diversion 

amount. There were little increase of water reliability for Joe Pool, Ray Roberts, 

Lewisville, and Grapevine Reservoirs in simulation D5 than simulation D1. Joe Pool water 

reliability was almost 100%. However, like simulation D1, Ray Roberts Reservoir had 

very low water reliability in terms of period and volume.   

 

 

Table 55. Water supply reliability for D5 

 

 

 

5.6 Simulations D1, D6 versus Observed Annual Maximum Reservoirs Storage 

 The simulation D6 represents 50% flood control reservoir storage allocated to 

conservation pool capacity, full authorized water use, daily time step, has flood control 

operation, and was developed as single-owner reservoir system. Simulation D5 was 
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 executed in order to show how 50% storage reallocation from flood control pool to 

conservation pool affects flood frequency analysis and water reliability. 

5.6.1 Comparison of Reservoirs Storage 

 Simulation D1 storage capacities were compared with simulation D6 storage 

capacities. As shown in Figures 81-88, straight blue line represents D1 likewise, dark red 

straight line represents D5 and green line represents top of controlled flood control pool 

level. As a result of this comparison, all of reservoirs storage level increased in simulation 

D6 except Ray Roberts Reservoir. Also, Lewisville Reservoir increased little for some 

days. Increase of reservoir storage was expected and aimed for all reservoirs.  Ray 

Roberts’s storage level did not increase because it already had empty conservation place 

to store water in simulation D6. 

 

 
Figure 81. Benbrook Reservoir simulations D1, D6 versus max annual observed storage 
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Figure 82. Joe Pool Reservoir simulations D1, D6 versus max annual observed storage 

 

 
Figure 83. Ray Roberts Reservoir simulations D1, D6 versus max annual observed 

storage 
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Figure 84. Lewisville Reservoir simulations D1, D6 versus max annual observed storage 

 

 
Figure 85. Grapevine Reservoir simulations D1, D6 versus max annual observed storage 
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Figure 86. Lavon Reservoir simulations D1, D6 versus max annual observed storage 

 

 
Figure 87. Navarro Mills Reservoir simulations D1, D6 versus max annual observed 

storage 
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Figure 88. Bardwell Reservoir simulations D1, D6 versus max annual observed storage 

 

 

5.6.2 Comparison of Flood Frequency Analyses 

 Exceedance probability of top of controlled flood control for simulation D6 was 

performed for log-Pearson type III distribution for summation of reservoir storage and 

excess flow, then compared with simulation D1 and was observed flood frequency 

analysis.  The simulation D6 return period values were expected lower than simulations 

D1, D4 and D5 return period because conservation storage capacity increased and flood 

control storage capacity decreased in simulation D6 and water levels were higher than 

simulations D1, D4 and D5. 
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  Return period table was developed for log-Pearson type III distribution as shown 

in Table 56. Return period for simulation D6 for values were lower than simulation D1 as 

expected. Joe pool and Ray Roberts Reservoirs, return periods look like same but when 

Table 43 and Table 57 (frequency tables) were compared, decrease of return period can 

be seen. Benbrook and Lavon Reservoir had very low return period as low as 2 and 4 year 

respectively. All of reservoirs` return flood control return period were lower than 50 years 

except Joe Pool and Ray Roberts in simulation D6. These results show that storage 

reallocation from flood control pool to conservation pool have great impact on flood 

control operation and flood frequency analysis. 

 

Table 56. Comparison of observed storage, D1, and D6 exceedance probability of top of 

flood control pool log-Pearson type III distribution 

 
N

o 

Reservoir Control 

Point 

Top of 

Flood 

Control 

(ac-ft) 

Observed Sim D1 (Res. Sto. 

+Excess Flow) 

Sim D6 (Res. Sto. 

+Excess Flow) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

Percent 

Chance 

Exceedance 

Return 

Period 

(year) 

1 Benbrook B5157P 164800 7.22 13.85 16.68 6.00 38.63 2.59 

2 Joe Pool B3404A 304000 0.71 140.85 0.10 1000.00 0.10 1000.00 

3 Ray 

Roberts 

B2335A 1064600 6.75 14.81 0.01 10000.00 0.01 10000.00 

4 Lewisville B2456A 959177 8.89 11.25 3.52 28.41 5.19 19.27 

5 Grapevin

e 

B2362A 406900 4.57 21.88 0.40 250.00 4.38 22.83 

6 Lavon B2410A 748200 7.08 14.12 0.10 1000.00 24.50 4.08 

7 Navarro B4992A 212200 0.24 416.67 1.43 69.93 15.88 6.30 

8 Bardwell B5021A 140000 0.39 256.41 0.10 1000.00 7.86 12.72 
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 Table 57. FFA for summation of reservoir storage and excess flow log-Pearson type III 

distribution for D6 

 

 

 

5.6.3 Water Supply Reliability for D6 

 Water supply reliability table was developed for control points that located at dams 

for simulation D6 as shown in Table 58. Benbrook, Joe Pool, Lavon, Navarro Mills, and 

Bardwell Reservoirs water diversion target 100% met in terms of simulation duration and 

diversion amount. There were little increase of water reliability for Ray Roberts, 

Lewisville, and Grapevine Reservoirs from in simulation D6 than simulation D1. 

However, like simulation D1, Ray Roberts Reservoir had very low water reliability in 

terms of period and volume.  Storage reallocations increased water reliability but it was 

not much. However, return period of flood event increased especially simulation D6 was 

much than water reliability increase. 
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 Table 58. Water supply reliability for D6 

 

 

 

5.7 Simulations D1 versus M1 

The simulation M1 represents existing reservoir storage, full authorized water use, 

monthly time step, component reservoir system, and there is not flood control operation. 

The simulation M1 was considered as base simulation for monthly basis and compared 

with other alternative monthly simulation runs and simulation D1. In order to show 

differences between monthly and daily time step, simulation M1 was compared with 

simulation D1. In addition to that, water reliability summary table was developed to 

compare with other simulations results in order to show differences. 

5.7.1 Comparison of Reservoirs Storage 

 The system of eight Trinity River Basin reservoirs storage capacities for simulation 

D1 were compared with simulation M1 storage capacities. As shown in Figures 89-96, 

straight blue line represents D1 likewise, dark red straight and green line represent 
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 simulation M1 and top of controlled flood control pool level respectively. As a result of 

this comparison, daily and monthly simulation matched very good. There were some 

differences on storage level for some reservoirs because D1 was designed as single owner 

and M1 was component reservoir. Also, daily time step showed storage value that was at 

the end of day. Likewise, monthly simulation showed storage value that was at the end of 

month. Because of that, daily simulation is more sensitive than daily. In a month, reservoir 

storage value might be higher than last day in a month, so simulation D1 storage level was 

going up and down more in the graphs. 

 

 

 
Figure 89. Benbrook Reservoir storage simulations D1 versus M1  
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Figure 90. Joe Pool Reservoir storage simulations D1 versus M1 

 

 
Figure 91. Ray Roberts Reservoir storage simulations D1 versus M1 
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Figure 92. Lewisville Reservoir storage simulations D1 versus M1 

 

 
Figure 93. Grapevine Reservoir storage simulations D1 versus M1 
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Figure 94. Lavon Reservoir storage simulations D1 versus M1 

 

 
Figure 95. Navarro Mills Reservoir storage simulations D1 versus M1 
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Figure 96. Bardwell Reservoir storage simulations D1 versus M1 

 

5.7.2 Water Supply Reliability for M1 

 Water supply reliability table was developed for control points that located at dams 

for simulation M1 as shown in Table 59. In monthly time step, water reliability values 

were lower than daily time step in terms of volume and period for eight reservoirs. 

 

Table 59. Water supply reliability for M1 
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 5.8 Simulations M1 versus M2 

The simulation M2 represents existing reservoir storage, full authorized water use, 

monthly time step, there is not flood control operation, and was developed as single-owner 

reservoir system. Simulation M1 and M2 were compared in order to show how component 

reservoir affects water storages and water reliability for dams in the Trinity River Basin. 

5.8.1 Comparison of Reservoirs Storage 

Simulation M1 storage capacities were compared with simulation M2 storage 

capacities. As shown in Figures 97-104, straight blue line represents M1 likewise, dark 

red straight line represents M2 and green line represents top of controlled flood control 

pool level. As a result of this comparison, Joe Pool, Navarro Mills and Bardwell 

Reservoirs storage levels were almost same for M1 and M2. However, rest of storage 

capacities had differences between simulations M1 and M2.  

 The difference between simulations M1 and M2 caused by in a same reservoir, 

contractors used other contractor`s water when they had no water that they were 

authorized. Because of that, usage of water storage levels and water reliabilities have 

changed. Joe Pool, Navarro Mills and Bardwell Reservoirs had same water storage levels 

because in both simulations M1 and M2, they were single reservoir.      
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Figure 97. Benbrook Reservoir storage simulations M1 versus M2 

 

 
Figure 98. Joe Pool Reservoir storage simulations M1 versus M2 
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Figure 99. Ray Roberts Reservoir storage simulations M1 versus M2 

 

 
Figure 100. Lewisville Reservoir storage simulations M1 versus M2 
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Figure 101. Grapevine Reservoir storage simulations M1 versus M2 

 

 
Figure 102. Lavon Reservoir storage simulations M1 versus M2 
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Figure 103. Navarro Mills Reservoir storage simulations M1 versus M2 

 

 
Figure 104. Bardwell Reservoir storage simulations M1 versus M2 
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 5.8.2 Water Supply Reliability for M2 

 Water supply reliability table was developed for control points that located at dams 

for simulation M2 as shown in Table 60. Benbrook, Joe Pool, Ray Roberts Navarro Mills, 

and Bardwell Reservoirs` mean shortage values for water reliability in simulation M2 were 

higher than simulation M1. On the other hand, Lewisville, Grapevine, and Lavon 

Reservoirs` mean shortage values for water reliability in simulation M2 were lower than 

simulation M1. 

 

Table 60. Water supply reliability for M2 

 

 
 

 

5.9 Simulations M1, M3 versus Observed Annual Maximum Reservoir Storage 

 The simulation M3 represents existing reservoir storage, current water use, 

monthly time step, there is not flood control operation, and was developed as component 

reservoir system. Simulation M1 and M3 were compared in order to show how current use 

and full authorized water use affects water storage level and water reliability. 
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 5.9.1 Comparison of Reservoirs Storage 

 The reservoirs storage capacities for simulation M1 were compared with 

simulation M3 and observed maximum storage level. As shown in Figures 105-112, 

straight blue line represents M1, red points represent observed maximum annual water 

level, and dark red straight and green line represent simulation M3 and top of controlled 

flood control pool level respectively. As a result of this comparison, for all reservoir water 

level in simulation M3 were higher than M1 because contractors didn’t use all water that 

they were authorized. Especially, Ray Roberts Reservoirs water level was higher than 

before. 

 Simulation M1 and M3 also were compared with observed annual maximum water 

storage level. For some years, they matched well for some years. However, some of them 

were far away than each other because M1 and M3 were monthly simulation and red points 

were annual maximum storage values.  
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Figure 105. Benbrook Reservoir simulations M1, M3 versus max annual observed storage 

 

 

 
Figure 106. Joe Pool Reservoir simulations M1, M3 versus max annual observed storage 
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Figure 107. Ray Roberts Reservoir simulations M1, M3 versus max annual observed 

storage 

 

 
Figure 108. Lewisville Reservoir simulations M1, M3 versus max annual observed 

storage 
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Figure 109. Grapevine Reservoir simulations M1, M3 versus max annual observed 

storage 

 

 
Figure 110. Lavon Reservoir simulations M1, M3 versus max annual observed storage 
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Figure 111. Navarro Mills Reservoir simulations M1, M3 versus max annual observed 

storage 

 

 
Figure 112. Bardwell Reservoir simulations M1, M3 versus max annual observed storage 
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 5.9.2 Water Supply Reliability for M3 

 Water supply reliability table was developed for control points that located at dams 

for simulation M3 as shown in Table 61. All of the reservoirs` mean shortage were in 

simulation M3 lower simulation M1 except for Lavon Reservoir as expected. Water 

reliability was higher in simulation M3 than M1 in terms of period and volume. 

 

Table 61. Water supply reliability for M3 
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 CHAPTER VI 

 SUMMARY AND CONCLUSIONS  

 

 The system of eight multiple-purpose reservoirs in the Trinity River Basin is 

representative of USACE reservoir systems throughout the United States. The USACE 

owns these federal reservoirs and is responsible for flood control operations. Non-federal 

water supply entities contract for the conservation storage capacity. Storage is allocated 

between flood control and conservation purposes in each reservoir by a designated top of 

conservation pool elevation. Flood control pools are maintained empty except during and 

immediately following flood events. Operations are based on empting flood control pools 

as expediently as feasible without contributing to stream flows exceeding specified non-

damaging flooding levels at downstream gaging stations. Multiple reservoirs are operated 

for the same multiple downstream sites. Surcharge storage above the top of flood control 

pool is spilled through emergency spillways. 

This thesis investigates issues in estimating the flood control capacities of these 

reservoirs. The analyses presented in the thesis are based on historical observed storage 

and storage sequences computed in WRAP simulations with alternative modeling 

premises and storage allocations. Storage frequency analyses are performed with HEC-

SSP alternatively based on the log-Pearson type III and log-normal probability 

distributions. The log-Pearson III is concluded to be the more appropriate distribution, but 

the log-normal results are also included in the thesis for comparison. The frequency 

analyses are performed for data series consisting of the maximum peak storage volume in 
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 each year of the period-of-analysis, which is 1940-2012 for the simulated storage and the 

period extending from filling of currently designated conservation pool capacity to 2013 

for actual observed storage. 

 Nonhomogeneities occur due to the datasets used the frequency analyses reflecting 

conservation pool operations, flood control pool operations, and spills from surcharge 

storage above the top of flood control pool. The WRAP modeling system includes an 

option that combines relevant surcharge spills, called excess flows, from storage above 

the top of flood control pool to the peak storage volume. 

 The probability of storage exceeding the top of flood control pool provides a 

concise metric for quantifying flood control capabilities. The recurrence interval 

computed as the reciprocal of this exceedance probability also provides a convenient 

storage capacity metric. Recurrence intervals associated with filling flood control pools 

are tabulated in Table 62. The recurrence interval estimates in Table 62 are based on the 

frequency analyses of observed storage covered in Chapter 3 and the base simulation D1 

presented in Chapters 4 and 5. 
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 Table 62. Comparison of recurrence intervals for overtopping flood control pools based 

on applying the log-Pearson type III (LP) and log-normal (LN) distributions to observed 

storage, simulated storage, and simulated storage plus excess flow 

 

Reservoir Storage (ac-ft) at Top of Observed Simulation Excess Flow 

 Conservation Fld Control LP LN LP LN LP LN 

Benbrook 88,250 164,800 13.9 18.9 1,000 9.32 6.00 5.75 

Joe Pool 176,900 304,000 141 1,000 1,000 10.7 1,000 10.7 

Ray Roberts 799,600 1,064,600 14.8 14.5 10000 12.8 10000 12.7 

Lewisville 618,400 959,177 11.3 10.4 28.4 12.4 28.4 12.4 

Grapevine 162,500 406,900 21.9 27.6 435 8.73 250 8.66 

Lavon 456,500 748,200 14.1 11.4 1,000 8.87 1,000 8.27 

Navarro 63,300 212,200 417 98.0 79.4 29.6 69.9 29.1 

Bardwell 54,900 140,000 256 233 1,000 52.6 1,000 52.6 

  

 

 The recurrence intervals shown in Table 62 vary greatly between reservoirs, vary 

greatly between observed and simulated storage, and vary significantly between the log-

Pearson III (LP) and log-normal (LN) distributions. The recurrence interval estimates are 

unrealistically high is some cases and too low in other cases. 

In addition to the base daily simulation (D1) included in Table 62, eight other 

simulations are presented in the preceding Chapters 4 and 5 to explore the effects of 

various factors on storage levels. Various issues affecting storage contents are addressed 

in the preceding chapters. Key issues are highlighted as follows. 

 Analyses based on observed flows are appealing but reflect significant 

shortcomings. The sample size of the annual frequency analyses is limited by the number 

of years in the period-of-record of observed storage. Impoundment of flows in Benbrook, 

Joe Pool, Ray Roberts, Lewisville, Grapevine, Lavon, Navarro Mills, and Bardwell 

Reservoirs began in 1952, 1985, 1987, 1952 (1989), 1952, 1952, 1953 (1975), 1963, and 
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 1965. Several years were required to initially fill the conservation pools. Storage 

reallocations raising the top of conservation pools of Lewisville and Lavon Reservoirs 

occurred in November 1989 and December 1975, respectively. The years required to 

initially fill the conservation pools and the years before the storage reallocations at 

Lewisville and Lavon were not included in the frequency analyses. The simulation model 

has a consistent 73-year 1940-2012 period-of-analysis. The simulation model also applies 

a constant specified water management scenario and reservoir operating rules throughout 

the 1940-2012 hydrologic period-of-analysis. 

 Storage draw-downs in conservation pools provide additional storage of flood 

waters reducing the storage contents of flood control pools. For example, the 1950-1957 

most severe drought on record ended with a major flood in April-May 1957, with much 

of the flood waters captured in conservation pools. The WAM dataset adopted for this 

research incorporates the authorized use scenario which is based on the premise that all 

water users use the full amounts authorized in their water right permits. Simulations 

presented in the preceding chapters show the significant increases in storage contents of 

flood control pools that result from adopting the current water use scenario or no water 

use in the simulations. 

 Simulation results are presented in Chapter 5 for alternative hypothetical storage 

relocation plans consisting of converting 10%, 20%, and 50% of the flood control pool 

storage capacity in each of the eight reservoirs to water supply by raising the designated 

top of conservation pool. Simulations D4, D5, and D6 described in Chapter 4 are identical 

to simulation D1 except for the reallocation of storage capacity. The volume reliability for 
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 the aggregated totals of all water supply diversions from the eight reservoirs for the 

alternative storage allocations are tabulated in Table 63 along with the recurrence intervals 

for overtopping the flood control pools. 

 

 

Table 63. Water supply reliabilities and flood control pool recurrence intervals for 

alternative storage allocations 

 

 D1 D4 D5 D6 

 0% 10% 20% 50% 

Reliability 56.81% 57.77% 59.08 62.44% 

Recurrence Interval (years) for Overtopping FC Pool 
     

Benbrook 6.00 5.08 4.12 2.59 

Joe Pool 1,000 1,000 1,000 1,000 

Ray Roberts 10,000 10,000 10,000 10,000 

Lewisville 28.4 26.7 24.8 19.3 

Grapevine 250 55.9 48.0 22.8 

Lavon 1,000 1,000 1,000 4.08 

Navarro 69.9 40.0 26.8 6.30 

Bardwell 1,000 1,000 1,000 12.7 
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