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ABSTRACT

This study presents nonlinear and time-dependent analyses of ferroelectric mate-

rials and structures. Phenomenological constitutive models are considered for sim-

ulating macroscopic responses of materials undergoing various histories of electro-

mechanical inputs. When the electric field inputs are less than the coercive limit

(minor loop simulations), there will be no polarization switching and a nonlinear

time-dependent electro-mechanical constitutive model based on a single integral form

is considered for the piezoelectric materials undergoing small deformation gradients

and large electric field. The nonlinearity is accounted for by incorporating higher

order terms of the electric field and the effect of loading history is incorporated

through the time integrand. When the electric field inputs are above the coercive

limit (major loop simulations), the electro-mechanical coupling constants are ex-

pressed as functions of a polarization state and it is assumed that in absence of

the polarization, the material does not exhibit electro-mechanical coupling response.

The polarization state consists of time-dependent reversible and irreversible parts,

where the irreversible part is incorporated to account for polarization switching re-

sponses. This constitutive model is implemented at each material (Gaussian) point

within continuum FEs. A quasi-linear viscoelastic (QLV) model is adopted in or-

der to incorporate the time-dependent effect on the nonlinear electro-mechanical re-

sponse of piezoelectric ceramics. The recursive integration technique is used to solve

for the time-dependent constitutive model at each Gaussian point. Finite element

method is then used for analyzing behaviors of several piezoelectric structures and

structural components under various boundary conditions. Parametric studies are

also conducted to examine the effect of loading rates and coupled electro-mechanical

ii



boundary conditions on the overall performance of smart structures. The developed

FE model is also used for predicting the overall responses Active Fiber Compos-

ite (AFC). A unit cell of AFC, where different responses of the constituents (fiber,

matrix, electrode finger, kapton layer) are incorporated, is considered and time de-

pendent and nonlinear responses of AFC are determined. The overall responses of

AFCs at different frequencies and electric field amplitude determined from the FE

are compared with experiments. Reasonably good predictions are observed. Finally,

FE analyses are performed to simulate shape changing in smart truss structures.

An electro-active truss FE undergoing large deformations is formulated. Each truss

member is modeled as an active element with nonlinear time-dependent electro-

mechanical constitutive model. The desired shape is induced in the overall structure

by applying electric field to each truss member. The truss FE model can handle both

material and also geometric nonlinearities.
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1. INTRODUCTION

Discovery of electro-mechanical coupling effect which was first seen on natural

materials dates back to early days. For example, Quartz and Rochelle salt are shown

to exhibit electro-mechanical coupling behavior [45]. The ability of the materials

to generate electric displacement when subjected to a mechanical force or displace-

ment was called a direct effect. The reason was, that the direct electro-mechanical

coupling response was experimentally observed and quantified first. Curie brothers

have studied the direct piezoelectric response [20, 53] which is attributed to the crys-

tal structures of the materials. The inverse piezoelectric effect is observed when an

electric field input causes deformations in the materials. This phenomena was also

observed and mathematically quantified by Curie [20, 53]. The electro-mechanical

coupling effect in ceramics is due to electric polarization. Materials that have a spon-

taneous electric polarization that can be reversed by the application of an external

electric field are known as ferroelectric [45]. The piezoelectric ceramics considered

in this study are ferroelectric materials. Piezoelectric materials first found their

applications in sonar devices for emitting ultrasonic waves. Other applications of

piezoelectric ceramics, are for sensors and actuators. The sensing and actuation are

limited to small ranges of motion. Atomic force microscopy (AFM), and data reader

and recorder from electro magnetic hard disk drives are just some of these applica-

tions. Recently, piezoelectric materials are being used in energy harvester devices

[21].

Piezoelectric ceramics can undergo relatively small displacements that limit their

applications in mechanical systems. There have been innovations in production of

new amplification architectures for piezoelectric materials. The telescopic actuators
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[2, 4], piezo stack actuators [7], and active fiber composites [11] are devices utilizing

several actuation architectures. There have been applications and designs of piezo-

electric materials and devices in order to increase motion capability. The variable

geometry trusses are one of these possible applications that will be discussed and

considered in this dissertation. Prior to designing active structures made of piezo-

electric materials, there is a need to understand the electro-mechanical response of

active materials. This has been done through the development of constitutive models.

Consequently, analytical/numerical tools that allow for analyzing active structures

are also needed.

This section presents a brief literature review. The review focuses on the response

of electro-active ceramic based materials, electro-mechanical constitutive models and

numerical methods for analyzing electro-mechanical response of active materials and

structures. Motivation and research objectives are discussed at the end of this chap-

ter.

1.1 Literature Review

1.1.1 Material Response

In this study piezoelectric materials are being classified as hard and soft materials.

Stiff electro-active materials are typically made of ceramics, such as lead zirconate ti-

tanate (PZT) and barium titanate (BaTiO3). The polymeric based materials, such

as polyvinylidene fluoride (PVDF) and dielectric elastomer, are examples of soft

electro-active materials. This literature review focuses on the piezoelectric ceramics

based materials. Experimental studies on polarized piezoelectric materials, i.e. PZT,

and piezoelectric devices [19, 7, 6] shows nonlinear 1 electro-mechanical response, es-

pecially under large electric fields. Linear electro-mechanical constitutive equation is

1The nonlinear behavior is considered when the responses do not satisfy proportionality and super-
position conditions.
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only applicable when piezoelectric materials are subjected to relatively small stim-

uli. The large electric field applied will cause nonlinear response that does not follow

proportionality and superposition of the input. Therefore, linear electro-mechanical

constitutive equations, can lead to substantial error when large electric fields are

applied to electro active materials and devices [29]. There have been several studies

on understanding the nonlinear response of piezoelectric materials. These studies are

done by taking the coupling coefficient dependent on the electric fields [19]. Another

way to model the nonlinearity is by incorporating higher order electro-mechanical

coupling effect in the constitutive equations. There are examples of nonlinear consti-

tutive equation based on a higher order electro-mechanical coupling effect and their

finite element implementation. Some of these constitutive equations can be found

in [10, 71, 51, 55, 66], in which a linearized strain is considered. Therefore, these

models are applicable for materials undergoing small strains such as ceramics based

piezoelectric materials.

Another aspect that has been observed in experimental studies of piezoelectric

ceramics is their rate dependent responses [83, 82]. These effects are shown by

time and field dependent piezoelectric coupling coefficients and hysteresis electro-

mechanical coupling. Devices made of piezoelectric materials, such as actuators,

sensors and energy harvesters often to operate under oscillating stimuli, at various

frequencies. It has been observed that behaviors of piezoelectric materials, even under

relatively low input regimes, are history dependent [19, 6]. At higher amplitude of

electro-mechanical stimuli, piezoelectric materials experience pronounced nonlinear

time-dependent behaviors. It is then necessary to incorporate the nonlinear and

time-dependent electro-mechanical coupling responses for analyzing performance of

piezoelectric devices.

Several experimental studies have also been conducted on understanding response
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of ceramics based electro active materials under cyclic electric fields with amplitudes

higher than the coercive electric field limits of the materials. Under such loading

conditions, materials exhibit polarization switching. This Nonlinear effect has been

reported in Schmidt [62], Gookin et al. [26] and [16]. It was also shown that com-

pressive stresses that are applied along the poling axis of the ferroelectric materials

could induce depolarization of the poled ferroelectric materials [48, 17, 16]. Fang

and Li [16] experimentally studied changes in polarization and strain responses of a

PZT specimen under a cyclic electric field input. After several cycles, the saturated

polarization response converges to a constant value, which is slightly smaller than the

one measured in the first cycle. An experimental study on a polarized PZT specimen

under cyclic electric fields with the maximum amplitude of 85 percent of the coer-

cive electric field of the PZT, reported by Crawley and Anderson [19], also showed

nonlinear hystersis electro-mechanical response. They observed that the effects of

creep and loading rate on the piezoelectric constant were more significant at larger

strains and lower frequencies. The electrical and mechanical responses of ferroelec-

tric materials are time and frequency dependent. The experimental evidence of this

phenomena is shown by Fett and Thun [22], Schaeufele and Hardtl [61], Zhou and

Kamlah [81, 82], Ben Atitallah et al. [11]. Among others, Zhou and Kamlah [81, 82]

showed the creep response in a soft PZT under static electric fields and compressive

stresses, which were more pronounced at higher stresses and at electric fields near

the coercive electric field.

There have been constitutive models developed to predict nonlinear electro-

mechanical behaviors of electro-active ceramics undergoing polarization switching.

These models can be classified as phenomenological (macroscopic) model based on

continuum mechanics approach and micro-mechanics based models. In an analogy

to rate-independent plasticity theory, the macroscopic constitutive models have been
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formulated for predicting polarization switching response in ferroelectric materials

due to electric field inputs. In such cases, strains and electric displacements are

additively decomposed into reversible and irreversible components. The irreversible

component incorporates the switching mechanism. Examples of the macroscopic

models can be found in Bassiouny et al. [9, 10], Huang and Tiersten [31, 30], Kam-

lah and Tsakmakis [35], Linnemann et al. [46], Muliana [54]. Massalas et al. [50]

and Chen [18] presented nonlinear electro-mechanical constitutive equations for ma-

terials with memory-dependent (viz. viscoelastic materials). They also incorporated

the dissipation of energy due to the visco-elastic effect, which is converted into heat.

It is known that the macroscopic response of materials depends strongly upon their

micro-structural response, which occurs at various length scales. Microscopically

motivated constitutive models that take into account polarization response of each

crystal in predicting the overall nonlinear electro-mechanical response of ferroelectric

materials can be found in Chen and Lynch [17], Fan et al. [16], Li and Weng [43, 44],

Smith et al. [64, 63], Su and Landis [69].

Finite element (FE) method has been used for analyzing linear electro-mechanical

responses of piezoelectric materials and structures. Allik and Hughes [5] are among

the first authors to present FE formulation of piezoelectric materials which is used in

commercial FE codes. A review of various finite element formulations for simulating

linear electro-mechanical responses of piezoelectric materials is presented in Benjed-

dou, [13]. FE method has also been used for analyzing coupled piezo-electro-hygro

thermo viscoelasto-dynamic-problems [78] which focuses on linear viscoelastic and

field coupling response. FE analyses of nonlinear electro-mechanical and hysteresis

polarization switching responses of structures consisting of conductive and ferroelec-

tric materials are mainly available for time (rate)-independent behavior, e.g. Kamlah

and Bohle [34], Landis [40], Zeng et al. [79], Li and Fang [42], Zhang et al. [80],
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Klinkel [38], Wang and Kamlah [76], Linnemann et al. [46], Klinkel et al. [39],

and Muliana and Lin [55]. Macroscopic constitutive models where considered in

the above FE analyses. Zeng et al. [79] presented incremental and iterative solu-

tions for problems involving polarization switching due to high electric field and heat

generation from the dissipation of energy during the domain reversal process. FE

methods that also include the time (rate) - dependent effects are currently limited.

Kim and Jiang [37] presented FE algorithm for simulating macroscopic polarization

and strain responses in ferroelectric materials undergoing domain switching. They

also defined the functions for the rate of change of the mass fractions, which allow

for incorporating rate-dependent loading.

1.1.2 Structural Behavior

1.1.2.1 Active Composite Beams

Piezoelectric ceramics have been used in the form of layered composite beams.

Their applications can be found for structural health monitoring, actuators and,

recently energy harvesting devices. In the case of energy harvesting devices piezo-

electric materials offer large power generating capacity compared to other energy

harvesting sources [21]. However, the small strains in piezoelectric ceramics limits

their applications for motion generation. In order to overcome this restriction they

are normally used in the form of stacked beams, bimorph and multi-layer beams

which forms a composite structure. The piezo ceramics can be used in many dif-

ferent forms in order to magnify the displacement resulted from electromechanical

coupling. When large forces are expected in the device the stacked piezoelectric is

used, while, the bimorph configuration is preferred when the devices are intended

to achieve large displacements. Low and Guo [47] have formulated a mathematical

model for a three layer composite piezoelectric bimorph beam. A state variable was
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introduced in order to incorporate the hystersis response. An experimental set up

for an actuator consists of four bimorph beams, one moving plate, two guides, and

one base. Each pair of bimorph beams was connected with two small hinges at each

end so that the ends are free from moment and the only force acting on each end

is the reacting force. They applied electric field with amplitude of 100 V on the

beam with thickness of 0.0075 inch. This would result in 2620 V/m electric field

through the thickness of each piezo electric layer of the bimorph beam. They used

the data from the test to calibrate the material parameters in their mathematical

model. A mathematical model for bending of piezoelectric composite layered beam

was also developed by Raja et al. [57]. A sandwich beams was considered in their

research. They presented a closed form solution for bending of a composite piezoelec-

tric bimorph beam, and they compared the result from their analytical solution with

ABAQUS finite element analyses. They also examine the effect of PZT-5H patches

on bending of sandwich beam. They have shown that the transverse deflection of the

beam predicted by their method correlates with results available in literature and

also finite element analyses performed in ABAQUS.

Activation in shear mode for producing bending in a composite beam was studied

by Kheidar et al. [36]. They compared the bending behaviors in beam by utilizing

piezo electric patches for shear mode and extension mode. A first order beam theory

was presented for the composite piezoelectric beam. The effect of transverse shear

deformation was considered. They have shown that using piezo electric patches

in shear mode for actuation can lead to higher bending deflection. A comparison

between extension and shear actuations was also considered by Benjeddou et al.

[14]. They analytically investigated patched beam for static and dynamic responses.

They also performed finite element simulations for PZT-5H actuated beam and com-

pare the responses to those of the analytical model. Rakotondrabe et al. [59] used
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a piezoelectric unimorph system for controlling bending deformations of an active

beam. They have conducted experiments on the piezoelectric unimorph beam and

compensated vibration of piezoelectric unimorph. Using piezoelectric in controlling

vibration in the active beam is shown to be effective to reduce unwanted vibration.

The analytical results are shown to be in good agreement with their experiments

[58]. Utilizing a piezoelectric composite beam as an actuator for adaptive structures

has been considered by Correia et al. [24]. They treated the adaptive beam as a

multilayered composite and offered general properties of the beam. They compared

their work with experiments and other results from literature. They also offered

a comprehensive review on different piezoelectric models and experiments used in

multifunctional composites. Suleman and Venkayya [70] examined polymeric piezo

electric beams under bending. They used finite element for analyzing bending of a

PVDF beam. They considered PVDF bimorph beam for sensing and also actuation.

They showed that their finite element analyses is in a good agreement with the sens-

ing and actuation experiments using PVDF beam.

1.1.2.2 Active Trusses

Truss systems consist of relatively slender members connected by joints. The

joints connect the translations and allow the members to rotate with respect to each

others. Recent advances in active materials, such as shape memory and electro-active

materials, allow for generating autonomous compliant structures, in which the struc-

ture can change their shape from one configuration to another configuration. This

shape change is controlled by utilizing the multifunctional properties of active mate-

rials. Employing embedded piezoelectric actuation to actuate truss like system has

been proposed by Moored et al. [52]. They compared this type of actuation with
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other strategies such as tension wires for tensegrity truss like structures that aims

to mimic flapping of an artificial pectoral fin. They proposed that their approach

costs minimal power consumption and shows the simple design of a high perfor-

mance tensegrity-based artificial pectoral fin. There have been several studies on

understanding the geometry of these truss systems actuated by shape memory and

piezoelectric materials. Sofla et al. [65] studies morphing hinged truss structures,

where they used shape memory wires in order to activate their structure. They pre-

sented an experimental study of their prototype for different configurations. They

have used a truss structure made of tetrahedrons truss elements. Macareno et al. [49]

considered a linear truss made of 3D tetrahedral units for Variable Geometry Trusses

(VGTs). They discussed manufacturing of prototype and the actuation methodol-

ogy of the VGTs. They showed that their VGT configuration made of five-module

is quite capable for positioning purposes. They have presented the detailed design

of their joints and used finite element analyses in order to support the design and

motion control of VGTs. Aguirrebeitia et al. [1] applied optimization technique for

VGTs to modify their trusses. Aviles et al. [8] investigated the position problems

in the open-loop variable geometry trusses. An optimization scheme is designed [8]

in order to minimize the actuator’s displacement and consequently its energy. This

method has been applied to different truss architectures in specific to modular tetra-

hedral linear truss. Recently, Bilbao et al. [15] have considered dynamic analyses of

their previously designed modular configuration.

1.2 Motivation and Research Objectives

Experimental studies show that the electro - mechanical response of piezoelectric

materials is time- (and rate-) dependent. This time dependency is observed even

for ceramics based piezoelectric materials, subjected to electric fields and mechanical
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loadings. The electro-mechanical response of these materials also depends strongly

upon the applied electric fields and mechanical stresses. There have been constitutive

models derived for predicting nonlinear electro-mechanical response of piezoelectric

ceramics based materials. These models are focusing on time (rate) independent.

Modeling the time-dependent electro-mechanical response of piezoelectric and ferro-

electric ceramics based materials is still limited. The goal in this work is to capture

the nonlinear and time-dependent response of electro active materials, through for-

mulating constitutive material models and providing solutions methods. The solution

methods allows for analyzing coupled nonlinear electro-mechanical and time depen-

dent response in active structures. The analyses can support design of electro-active

structures.

The objectives of this study are to:

1) Formulate nonlinear time-dependent electro-mechanical constitutive models of

piezoelectric ceramics with small deformation gradients taking into account polar-

ization switching and minor hysteretic behaviors.

2) Develop FE methods for analyzing the nonlinear and time-dependent electro-

mechanical responses for piezoelectric ceramics.

3) Perform large scale analyses of active structures undergoing various histories

of electro-mechanical stimuli.
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2. CONSTITUTIVE MODEL FOR POLARIZATION SWITCHING*

This chapter deals with macroscopic response of materials that possess electro-

mechanical coupling behaviors, focusing on piezoelectric ceramics of Perovskite struc-

tures. The macroscopic response of the materials strongly depends on their mi-

crostructural changes when they are subjected to external stimuli. A single crystal

of Perovskite undergoes a spontaneous polarization, indicating by a separation of

negative and positive charges, at temperatures below its Curie temperature. This

separation is quantified by a dipole moment and a dipole moment per unit volume

is known as polarization. The direction of the polarization in this crystal structure

is towards the positive charge. As bulk piezoelectric ceramics comprise of polycrys-

talline structures, the spontaneous polarization axes of all crystalites are randomly

distributed upon processing the piezoelectric ceramics. Therefore, net (macroscopic)

polarization is considered zero and the materials do not show macroscopic electro-

mechanical coupling response. Applying an electric field in certain direction would

align the poling directions of the crystallites towards the electric field direction so

that the net polarization of the materials is measurable, as illustrated in figure 2.1a,

where x3 is the direction of the electric field applied. Increasing the electric field

would increase the measured polarization untill it reaches the saturated value and

upon removal of the electric field, there exist a remanent polarization1. The net

poling axis of the piezoelectric materials can be reversed by applying an electric field

in the opposite direction to the current polarization. When the net polarization in

*Part of this chapter is reprinted with permission from ”Rate-dependent electro-mechanical coupling
response of ferroelectric materials: A finite element formulation” by Sohrabi, A., Muliana, A.,
(2013). Mechanics of Materials, 62, 44-59, Copyright 2013 Elsevier Ltd.
1The ability of materials to undergo spontaneous polarization and retain its polarized state after
removal of electric field is called ferroelectricity. The materials with ferroelectric behavior are
called ferroelectric materials.
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Figure 2.1: Major hysteresis loops in a piezoelectric sample: a) polarization response
and b) corresponding strain response

the materials is non-zero the materials have electro-mechanical coupling responses,

as shown by the corresponding nonzero strain in figure 2.1b, which shows a strain

response with respect to the applied electric field.

For practical application purposes, the materials need to be polarized/poled in

order to have an electro-mechanical coupling. This is done by applying a relatively

large electric field, greater than the coercive electric field (Ec) of the material, until it

reaches the saturated polarization, which is often done at elevated temperatures but

below the Curie temperature of the material [45], then the temperature is decreased

to room temperature prior to removing the electric field which results in a remanent

polarization. At this stage, the polarized material would have piezoelectric effects, as

shown by the minor loops in figure 2.2. By applying an electric field, the polarized

material would undergo mechanical deformations or experience stresses and when

a mechanical load is applied the polarized material would generate electric charge

or voltage difference. Typically, electric fields and/or mechanical stresses should be
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Figure 2.2: Minor hysteresis loops in a polarized piezoelectric sample: a) polarization
response and b) corresponding strain response

applied to the piezoelectric materials with their magnitude less than the coercive

limit so that they will not cause depolarization of the materials. Applying large

electric field or compressive stress in the poling direction to the polarized materials

would cause depolarization and consequently loss of the electro-mechanical coupling

properties. The stress and electric field threshold that causes depolarization are

called coercive stress and coercive electric field, respectively [67].

Polarization behaviors in the materials due to application of cyclic electric fields

show hysteretic responses (see figure 2.1 and figure 2.2). These responses also depend

on the frequencies of the electric field inputs, ambient temperatures, and existence

of mechanical loading.

2.1 Phenomenological Model

A time-dependent hysteretic polarization model is formulated to describe the

macroscopic polarization response of ferroelectric materials due to various histories

of external electric field inputs. The model is then modified to include the effect of the
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mechanical stress on the polarization response of the ferroelectric materials [54, 67].

Consider an electric field input in the x3 direction E3(s), s > 0, and E3(s) = 0,∀s < 0

, where s is the time history. The corresponding polarization response at current time

t is:

P t
3 ≡ P3[E3(t− s), t] = R[E3(t− s), t] +Q[E3(t− s), t] (2.1)

where R[E3(t − s), t] is the time-dependent reversible polarization response at cur-

rent time t ≥ 0 with R[0, t] = 0 and Q[E3(t − s), t] is the residual (irreversible)

polarization. The reversible polarization response is expressed as:

Rt ≡ R[E3(t− s), t] = R[E0
3 , t] +

∫ t

0+

∂R

∂E3

[Et
3, t− s]

dEs
3

ds
ds, t ≥ 0 (2.2)

R[E0
3 , t] = R0(E0

3) +R1(E0
3)
(
1− exp

[
− t

τ1

])
(2.3)

One may consider R[E0
3 , t] as the polarization at current time t due to a constant

electric field applied at s = 0. The superscript s and t denote the representative of the

previous time history and current time, respectively. Both R0(Es
3) and R1(Es

3) are

functions of Es
3. The characteristic time τ1 measures the speed that the polarization

changes with time. For a linear electric behavior R0(Es
3) and R1(Es

3) are considered

as follows:

R0(Es
3) = κ0E

s
3

R1(Es
3) = κ1E

s
3

(2.4)

where κ0 is the dielectric constant of a macroscopically non-polarized material (corre-

sponding to the second order permeability tensor in a multi-axial case) and κ1 is the
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time dependent dielectric constant; when κ1 = 0 , a time-independent polarization

behavior is considered. The state of polarization is defined through the following

polarization function:

f(P t
3, Pc) =

〈
P t

3
2 − P 2

c

〉
(2.5)

where Pc is the current polarization state, analogous to yield stress in an over stress

plasticity theory, and <> are the Macaulay brackets. It is assumed that the irre-

versible polarization is formed when f(P t
3, Pc) = 0 and Et

3P
t
3 > 0. The irreversible

polarization is defined as:

Qt ≡ Q[Et
3] =

∫ Et3

0+

dQs

dE3

dE3 (2.6)

dQt

dE3

=


λ|E

t
3

Ec
|n if |Et

3| ≤ Ec, f = 0

µ× exp[−ω(
|Et3|
Ec
− 1)] if |Et

3| > Ec, f = 0

0 if f ≤ 0

(2.7)

where Ec is the coercive electric field and λ, µ, ω, n are material parameters that are

calibrated from experiments. In a non-polarized sample, the current polarization

state Pc = 0, and once the ferroelectric sample is completely polarized, the current

polarization state is equal to the saturated polarization (Pc = Ps or Pc = −Ps) see

refrence [54]. Ferroelectric materials exhibit macroscopic electro-mechanical coupling

response when they are macroscopically polarized. This is shown by an elongation in

the material along the electric field line and a contraction in the transverse directions

when the electric field is applied in the poling direction. When the electric field is ap-

plied opposite to the poling direction, the material experiences shortening along the
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electric field line and expansion in the transverse directions and when the electric

field is applied perpendicular to the poling directions, the transverse shear defor-

mations are shown. The macroscopic strains due to the polarization are measured

through the piezoelectric constant g(Pt
3) whose magnitude depends on the polar-

ization state. The polarized ferroelectric material could experience depolarization

P t
3 = 0 when a sufficient electric field is applied in the opposite direction to its poling

axis. When the depolarization occurs, the materials loose their electro-mechanical

coupling effect, which is represented by g(0) = 0. Polarizing the ferroelectric mate-

rial by applying an electric field, while at the same time the ferroelectric material is

under a compressive stress along the electric field line, results in reductions of the

saturated and remanent polarizations and the coercive electric field. A nonlinear

electro-mechanical coupling constitutive model for ferroelectric ceramics undergoing

small deformations that incorporates changes in the polarization due to an electric

field while undergoing mechanical stresses is:

εtij=Sijklσ
t
kl+4gtnijκnmg

t
mklσ

t
kl+2gtkijP

t
k

Dt
i= 2κimg

t
mklσ

t
kl+P

t
i

(2.8)

where Sijkl is the scalar component of the elastic compliance tensor measured at

fixed electric field, σtij, D
t
i , P

t
i are the scalar components of the mechanical stress,

electric displacement and polarization, respectively, κij is the scalar component of the

permittivity constant of a polarized specimen measured at fixed stress and constant

(remanent) polarization Pr, and the small strain is defined as εij = 1
2

(ui,j + uj,i) ,

where ui is the scalar component of the displacement. The scalar component of the

piezoelectric constant gtijkl depends on the current polarization state P t
3:
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gtijk ≡ gijk(P
t
3) =

P t
3

Pr
e−|P t3|/C1grijk (2.9)

where Pr is the remnant polarization, C1 is the material parameter that needs to

be calibrated from experiment (see [54]), and grijk is the scalar component of the

piezoelectric constant measured at constant polarization. Thus, the constitutive

model in equation (2.8) is a nonlinear function of electric field and depends on time.

The third component of the polarization in equation (2.8) is given in equation (2.1),

while the other two components are

P t
1 = κ11E

t
1

P t
2 = κ22E

t
2

(2.10)

Experimental studies show that the coercive electric field of ferroelectric materials

depends on the compressive stress applied to the material along its poling direction,

while little is known about the effect of tensile stress on the polarization response

of ferroelectric ceramics. This is due to the fact that ceramics is brittle and has

a relatively low ultimate strength under tension. It then is necessary to have the

coercive electric field varies with the compressive stresses and we further assume

that the coercive electric field remains unaltered with the tensile stress:

Ec =


Ec (Eo

c , σ
t
33) σt33 < 0.0

Eo
c σt33 ≥ 0.0

(2.11)

where E0
c is the coercive electric field in absence of the mechanical stresses. The

existence of compressive stresses also influences the polarization response of ferro-

electric materials. When a compressive stress higher than the coercive stress σc is

applied to the polarized ferroelectric ceramics, the materials undergo the polariza-
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tion switching [42]. An attempt is made to incorporate the effect of polarization

switching due to a compressive stress on the overall electro-mechanical response. It

is assumed that the compressive stress that is higher than the coercive stress limit

affects the polarization state P t
3 and the piezoelectric constants:

gtijk ≡ gijk(P
t
3) =

P t
3

Pr
e−|P t3|/C1e−C2|σt33|/σcgrijk

C2 = 0,when, σt33 > −σc
(2.12)

where the material parameters σc, C2 have positive values and they need to be cali-

brated from the experimental tests.

2.2 User Element Subrouine for Abaqus/UEL

A three-dimensional (3D) continuum finite element for nonlinear time-dependent

electro-mechanical response is presented here. The following field variables: dis-

placements in the three directions of the Cartesian coordinate system and elec-

tric potential are sampled at each node within a finite element. Here {Un}T ={
u1

1, u
1
2, u

1
3, ..., u

Nd
1 , uNd2 , uNd3

}
and {Φn}T =

{
ϕ1, ϕ2, ..., ϕNd

}
are the nodal displace-

ment and electric potential vectors, respectively, in a single element with a number

of nodes Nd. The mapping of the field variables is done through the use of shape

functions
{
N1, N2, ..., NNd

}
:

uk =
Nd∑
i=1

N iuik k = 1, 2, 3

ϕ =
Nd∑
i=1

N iϕi

(2.13)

The corresponding strains and electric fields, which are sampled at the material
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integration points within the finite element, are obtained as:

εij =
1

2
(ui,j + uj,i) = Bu

ijmU
n
m ε = BuUn

Ei = − ∂ϕ
∂xi

= Bϕ
imϕ

n
m E = BϕΦn

(2.14)

where Bu and Bφ are the spatial derivative of the shape functions related to the

macroscopic strain and electric field, respectively. The stress and electric displace-

ment counterparts are determined using the constitutive relation discussed previ-

ously. The overall governing equations for the electro-mechanical deformation are

formed at the structural level by imposing the energy balance equations. In this

study, the nonlinear time-dependent electro-mechanical constitutive model is ex-

pressed in terms of the stress and electric field components as the independent field

variables, while the displacement based finite element formulation leads to strain

and electric field components as the independent variables. Thus, the constitutive

model in previous sections cannot be directly implemented in the finite element.

The nonlinear time-dependent response is solved incrementally by linearizing the re-

sponse and iteratively correcting the residual (error) from the linearized solutions.

It is necessary to define the consistent tangent stiffness, piezoelectric and dielectric

constants.

2.2.1 Time-Integration Algorithm at The Material Level

The electro-mechanical constitutive model, equation (2.8), depends on the polar-

ization state P t
3 , which is a function of the electric field input Es

3. A time-integration

algorithm is formulated based on a recursive method in order to approximate the
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current polarization state. At each time t, the polarization state is approximated as:

P t
3 ≈ Rt +Qt;Qt=Qt−∆t + ∆Qt

∆Qt ≡ dQt

dE3

∆Et
3; ∆Et

3 = Et
3 − Et−∆t

3

(2.15)

where the superscript t − ∆t denotes the previous time, ∆Qt is the incremental

irreversible polarizations, and ∆Qt−∆t is the history variable defining the irreversible

polarization at the previous converged time. The reversible polarization in equation

(2.3) is approximated as:

Rt = R0(Et
3) +R1(Et

3)

(
1− exp

[
− t

τ1

])
+

t∫
0+

{
∂R0(Es

3)

∂E3

+
∂R1(Es

3)

∂E3

(
1.− exp

[
−t− s

τ1

])}
dEs

3

ds
ds

= R0(Et
3) +R1(Et

3)−R1(E0
3) exp

[
− t

τ1

]
− qt

(2.16)

where the history variable related to the reversible polarization is:

qt =

t∫
0+

∂R1(Es
3)

∂E3

exp

[
−t− s

τ1

]
dEs

3

ds
ds

=

t−∆t∫
0+

∂R1(Es
3)

∂E3

exp

[
−t− s

τ1

]
dEs

3

ds
ds+

t∫
t−∆t

∂R1(Es
3)

∂E3

exp

[
−t− s

τ1

]
dEs

3

ds
ds

(2.17)

qt ≈ exp

[
−∆t

τ1

]
qt−∆t+[

∂R1(Et
3)

∂E3

∆Et
3

∆t
+ exp

[
−∆t

τ1

]
∂R1(Et−∆t

3 )

∂E3

∆Et−∆t
3

∆t

]
∆t

2

(2.18)
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At an initial time, qt = q0 = 0.0 and R0 = R0(E0). Once the polarization state is

determined the electro-mechanical response of the ferroelectric materials at current

time can be determined. Within an incremental time ∆t, the incremental nonlinear

constitutive relation in equation (2.8) can be expressed in a linearized form:

 ∆εt

∆Dt

 =

 S̃ d̃′T

d̃ κ̃


 ∆σt

∆Et

 =
[
Ãt
] ∆σt

∆Et

 (2.19)

The consistent tangent compliance , piezoelectric, and dielectric constants are defined

as:

S̃ijkl ≡
∂εtij
∂σkl

= Sijkl + 4gtnijκnmg
t
mkl d̃

′

kij ≡
∂εtij
∂Ek

=
∂gtkij
∂P t

3

∂P t
3

∂Et
m

P t
m + 2gtmij

∂P t
m

∂Et
k

d̃ikl ≡
∂Dt

i

∂σkl
= 2κimg

t
mkl κ̃ij ≡

∂P t
i

∂Ej
(2.20)

where the partial derivative of the nonlinear piezoelectric constant and polarization

in equation (2.20) are expressed as:

∂gtkij
∂P t

3

=

(
1

Pr
− P t

3

C1Pr

)
e
−
|Pt3|
C1 grkij

∂P t
1

∂Et
1

= κ11

∂P t
2

∂Et
2

= κ22

∂P t
3

∂Et
3

= κ0 + 0.5κ1 +
∂
(
dQt

dEt3

)
∂Et

3

(
Et

3 − Et−∆t
3

)
+
dQt

dEt
3

(2.21)

As mentioned above, the constitutive model is implemented in a displacement based

finite element framework, in which the strain and electric field variables are taken

as the independent variables obtained from equations (2.13) and the corresponding
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stresses and electric displacements need to be determined. The incremental strain

and electric field at current time are obtained from ∆εt = BuUn,t −BuUn,t−∆t and

∆Et = BϕUϕ,t−BϕUϕ,t−∆t respectively. For this purpose, the linearized constitutive

relation in equation (2.19) is rewritten as:

 ∆σt

∆Dt

 =

 C̃ −ẽ′T

ẽ κ̃′


 ∆εt

∆Et

 =
[
B̃t
] ∆εt

∆Et

 (2.22)

where the consistent tangent stiffness, piezoelectric constant, and dielectric constants

are:

C̃ = S̃−1ẽ′T = S̃−1d̃′T

ẽ = d̃S̃−1κ̃′ = κ̃− d̃S̃−1d̃′T
(2.23)

Finally, the stresses and electric displacements at current time are:

σt = σt−∆t + ∆σt

Dt = Dt−∆t + ∆Dt
(2.24)

The polarization state P t
3 is a function of the coercive electric field that depends on

the current compressive stress σt33. In the displacement based FE, the current value

of stresses need to be determined from the strain and electric field inputs. In this

study, during the incremental solution at the material level, the coercive electric field

at current time is obtained as:

Ec =


Ec
(
Eo
c , σ

t−∆t
33

)
σt−∆t

33 < 0.0

Eo
c σt−∆t

33 ≥ 0.0

(2.25)

Thus, the calculated consistent tangent stiffness, piezoelectric constant, and di-

electric constants in equation (2.24) depend on the current electric field Et
3 and
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stress from the previous time increment σt+∆t
33 . Instead of performing an iteration at

the material level, the correction due to a linearized stress is performed through an

iteration scheme at the structural level.

2.2.2 Solution at the Structural Level

The governing equations for the electro-mechanical deformation under a quasi-

static loading and small-deformation gradients are formed at the structural level by

imposing the energy balance equations, which in absences of the body forces and

body charges are: ∫
V

σtijdε
t
ijdV =

∫
A

ttidu
t
idA∫

V

Dt
idE

t
idV =

∫
A

qtsdϕ
tdA

(2.26)

wheret t and qs are the surface traction and surface charge, respectively. Using

the strain and electric field defined in equations (2.13), respectively, the linearized

constitutive model in equation (2.19), and the principle of virtual work, the energy

balance equations for one element are:

∫
V

dUnTBuT
[
C̃BuUn − ẽ′TBϕΦn

]
dV =

∫
A

dUnTNT tdA∫
V

dΦnTBϕT [ẽBuUn + κ̃′BϕΦn] dV =
∫
A

dΦnTNT qsdA
(2.27)

Equation (2.27) can be rewritten as:

dUnT

∫
V

BuT C̃BudVUn −
∫
V

BuT ẽ′TBϕdVΦn = dUnT

∫
A

NT tdA→

KuuUn −KuϕΦn = FM

dΦnT

∫
V

BϕT ẽBudVUn +

∫
V

BϕT κ̃′BϕdVΦn = dΦnT

∫
A

NT qsdA→

KϕuUn + KϕϕΦn = FE

(2.28)
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In order to obtain solutions for the displacements and electric potential at the

element level the Gaussian quadrature method is used for the spatial integration. At

each time increment the linearized relations in equations (2.20)-(2.24) are used as a

starting point for obtaining trial solutions to the nodal displacements and electric

potential. The Newton-Raphson iterative method is then used to correct for the

errors from the linearization. After assembly over all elements the overall equilibrium

equation can be obtained with the residual vector at time t :

Rt =

 Ru,t

Rϕ,t

 =

 FM,t − (Kuu,tUn,t −Kuϕ,tΦn,t)

FE,t − (Kϕu,tUn,t + Kϕϕ,tΦn,t)

 (2.29)

The above equation is solved when the boundary conditions are prescribed to the

structures:

t = σ̄n ∂St

qs = D̄n ∂Sq

u = ū ∂Su

ϕ = ϕ̄ ∂Sϕ

(2.30)

where n is the unit outward normal vector on the boundaries ∂St and ∂Sq. It is also

necessary for the boundaries to satisfy the following conditions:

∂St ∪ ∂Su = ∂S ∂St ∩ ∂Su = 0

∂Sq ∪ ∂Sϕ = ∂S ∂Sq ∩ ∂Sϕ = 0

(2.31)

It is noted that at the element level, the nodal displacements and electric potentials

are taken as the independent field variables {Xt} =

{
Un,t Φn,t

}
and in order

to minimize the residual vector at each time due to the trial linearized solution, the

independent field variables need to be corrected. Let k be an iterative counter, the
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corrected field variables at time t is:

{
Xt,k+1

}
=
{
Xt,k

}
+

[
∂Rt,k

∂X

]−1

Rt,k (2.32)

and

K̃t,k ≡
[
∂Rt,k

∂X

]
=

 −Kuu,t,kKuϕ,t,k

−Kϕu,t,k −Kϕϕ,t,k

 (2.33)

The numerical algorithm at the structural and material levels within each time in-

crement is summarized as follows:

1. Input variables Un,t−∆t,Φn,t−∆t,FM,t−∆t,FE,t−∆t, K̃t−∆t, Qt−∆t, qt−∆t, Pc

2. Determine trial nodal variables at time t :Un,t,k,Φn,t,k; k = 0

3. Iterate for k=0,1,2,.. (k=iteration counter)

(a) Calculate Et,k, P t,k
3 ,gt,k, B̃t,k,∆σt,k,∆Dt,k, σt,k,Dt,k,FM,t,k,FE,t,k, K̃t,k

(b) Define residual (equation 2.29) Rt,k and check for
∥∥Rt,k

∥∥ ≤ Tol ; yes then

go to 4 else

(c) Correct the nodal displacement and electric potential (equation (2.30))

and go to 3.a

4. Output variables Un,t,Φn,t,FM,t,FE,t, K̃t and update history variablesQt, qt, Pc

2.3 Numerical Implementation

This section presents analyses of the electro-mechanical response of ferroelectric

materials and structural components undergoing coupled mechanical loading and

electric field. Experimental data on the polarization switching response of PZT 51,

reported by Fang and Li [42], are used to validate the constitutive model. Paramet-

ric studies on understanding the effects of different boundary conditions and loading
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Figure 2.3: Hysteresis polarization and butterfly strain responses for PZT51 at zero
stress

rates on the electro-mechanical response of the ferroelectric materials are presented.

Finally the FE method is used to perform time-dependent analyses of smart struc-

tural components undergoing various histories of mechanical loading and electric

fields.

2.3.1 Verification of the Constitutive Model

The electro-mechanical constitutive model in equation (2.8) is validated using the

experimental data of PZT51 reported by Fang and Li [42]. Figure 2.3a shows the

polarization hysteretic response (D3−E3) of PZT-51 subject to a cyclic electric field

at zero stress. The amplitude of the electric field is 1.2 MV/m with a frequency of 1

Hz. The test started from an unpolarized condition and with increasing the electric

field the polarization takes place. The loop in the first cycle is higher by about

0.03 C/m2. After several cycles, the saturated polarization converges to a constant

value, which shows a slightly smaller value than the one in the first cycle. The

material parameters for the time-dependent polarization in equations (2.3), (2.4), and

(2.8) are calibrated from this hysteretic polarization response. The time-dependent

polarization model is shown to be capable in capturing the hysteretic polarization
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Table 2.1: Material parameters for the time-dependent polarization of PZT-51

Eo
c κ0 κ1 τ1 λ n µ ω

MV/m pF/m pF/m sec µF/m µF/m µF/m
0.672 70 225 1 0.35 3 1.6 4

response. The material parameters of the PZT-51 used in the simulation are reported

in table 2.1. The corresponding butterfly hysteretic responses during the first and

saturated cycles at zero stresses are shown in figure 2.3b. It is seen from figure 2.3b

that at the coercive electric fields the strains from the experimental tests are nonzero,

which is about 500 µε higher. This might be due to the accumulated strain from the

first cycle loading.

In this study, the parameter C1 in equation (2.12) is calibrated from the satu-

rated butterfly curve in figure 2.4a after shifting the strain response obtained from

the simulation 500 µε higher. The piezoelectric constants measured at the rema-

nent polarization are obtained from Fang and [42] and the permittivity constantsat

the remanent polarization are taken from [54]. It is noted that the piezoelectric

constants at the remanent polarization used in equation (2.8) are determined from

gr = κr−1dr. Tables 2.2 and 2.3 report the electro-mechanical coupling parame-

ters and elastic constants, respectively, for PZT-51. The corresponding transverse

butterfly strain response is shown in figure 2.4b. The nonlinear electro-mechanical

coupling model is capable of simulating the hysteretic polarization switching electro-

mechanical response.

Next, the hysteretic responses due to a cyclic electric field at various constant

compressive stresses are simulated. Figures 2.5 and 2.6 illustrate the polarization

and butterfly strain responses under a cyclic electric field with amplitude of 1.2

MV/m and frequency of 1 Hz and various compressive stresses: 5-30 MPa. From
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Figure 2.4: Saturated strain responses for PZT51 at zero stress

Table 2.2: Electro-mechanical coupling parameters for PZT-51

dr333 dr311 κr11 κr33 Pr C1

(×10−12m/V ) (×10−9F/m) C/m2 C/m2

1520 3 570 38 42 0.194 0.19

Figure 2.5: Hysteresis polarization responses under constant compressive stresses

28



Figure 2.6: Butterfly strain responses under constant compressive stresses
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Table 2.3: Elastic constants for PZT-51 [54]

E11 = E22 E33 G12(GPa) G13 = G23 ν12 ν13 = ν23

34.48 33 13.19 12.37 0.307 0.334

Table 2.4: Material parameters above the coercive stress limit

σc(MPa) C2 λ(×106F/m) n µ(×10−6F/m) ω
25 0.3 0.4 3.0 1.1 4

the experimental evidences the coercive electric fields vary with the compressive

stresses, which can be described by the following function:

Ec = Eo
c − 0.0041

∣∣σt33

∣∣ (2.34)

The material parameters reported in tables 2.1 and 2.2 are used in the simulation.

Good model predictions are shown for the response up to 20 MPa compressive stresses

and at the compressive stress 30 MPa, the model over-predicts the polarization and

strain responses. The effect of compressive stresses in reducing the overall axial strain

and electric displacement is due to the electro-mechanical coupling 4gtn33κnmg
t
m33σ

t
33

and 2κ3mg
t
m33σ

t
33 , respectively, with indices m and n vary from 1 to 3. Fang and

Li [42] discussed that when the ferroelectric materials are subjected to compressive

stresses higher than the coercive stress σc of the materials, polarization switching

occurs, which can alter the material properties. Figures 2.5d and 2.6d indicate that

under a compressive stress of 30 MPa the polarization switching has occurred in PZT-

51 which is shown by a significantly low strain response. In order to incorporate the

effect of polarization switching due to high compressive stresses, the piezoelectric

constants in Eq. (2.12) is used. The hysteretic responses under compressive stresses
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Figure 2.7: Hysteresis polarization responses under constant compressive stresses
above the coercive stress

30-80 MPa are shown in (figures 2.7 and 2.8). Relatively good predictions of the

polarization and butterfly strains are observed.

This study used the hysteretic responses under a compressive stress 40 MPa

(figures 2.7b and 2.8b) to calibrate the material parameters when the polarization

switching occurs due to high compressive stresses. The coercive stress is taken as 25

MPa. In this study an attempt is made to recalibrate the parameters corresponding

to the irreversible polarization. Table 2.4 presents the calibrated material parameters

above the coercive stress limit.
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Figure 2.8: Butterfly strain responses under constant compressive stresses above the
coercive stress
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2.3.2 Structural Analyses

The PZT-51 is now used to induce deformations in a fiber reinforced laminated

composite plate. Consider a composite plate (host structure) of 100x50x1 mm3,

shown in figure 2.9, with four PZT patches. Each PZT patch has a dimension of

10x10x1 mm3. The properties of the PZT are given in tables 2.1-2.4, while the

composite plate is made of a glass fiber composite.

The composite plate is assumed linear elastic with the following elastic material

properties: E=36000MPa, ν=0.25 in the longitudinal fiber axis. The plate is clamped

along one of its 50 mm side surface and the PZT patches are bonded perfectly to the

host structure. The potential on the surfaces of the PZT patches that are in contact

to the host structure is grounded to zero. The PZT patches are uniformly subjected

to the potential gradient through their thickness E3(t) = 1.2 sin(2πft)MV/m so that

they experience expansion in their planar direction, thus inducing bending to the

composite plate. Figure 2.10 depicts the lateral displacement measured at the mid

section of the free end due to the input electric field applied uniformly to the four

PZT patches, which show vibration of the composite plate.

It is seen that the highest deformation occurs at the first quarter cycle, when

the electric field reaches 1.2 MV/m (point A). Upon removal of the electric field,

the remnant deformation is shown (point B) and when the electric field reaches the

coercive limit of the PZT patches no deformation is shown in the plate (point C) due

to depolarization of the PZT patches. Continuing applying the electric field until it

reaches the lowest peak -1.2 MV/m (point D) trigger bending in the composite plate.

It is also seen that due to the time-dependent effect, the highest displacement is at the

first quarter cycle and after several cycles, saturation in the butterfly displacement

loop is achieved. The corresponding deformed shapes of the composite plate at
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Figure 2.9: Active composite plate with PZT patches

several instant of times during the first cycle are illustrated in figure 2.11.

It is also possible to create different deformed shapes by considering various his-

tories of electric field inputs. For example, to induce twisting of the plate different

electric field inputs can be applied to the four patches. The tip-deflection, illustrated

in figure 2.12, is generated by prescribing the following electric field input to the

PZT patches 3 and 4, and to the patches 1 and 2.

The effect of time dependent response of a viscoelastic host structures with piezo-

electric patches on the overall mechanical deflection is examined. Figure 2.13 illus-

trate the lateral deflection in smart beams activated by applying electric field to

the patches. The patches are activated with the same time function with the fre-

quency of 0.1Hz. The elastic host materials is made of a linear elastic material with

E = 2710.03MPa and ν = 0.35. In the case of viscoelastic host structure the in-

stantaneous elastic modulus is taken as E = 2710.03MPa while the time dependent

material properties are given in table 2.5. It is seen that lateral deflections of the

elastic and visco-elastic host structure are quite different in these two different cases.
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Figure 2.10: Tip deflection of the cantilever plate due to uniform cyclic electric fields
applied to the piezoelectric patches

Figure 2.11: The corresponding deformed shape of an active cantilever plate due to
a uniform cyclic electric field applied to the piezoelectric patches
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Figure 2.12: Tip deflection of the twisting cantilever plate due to a non-uniform
cyclic electric field applied to the piezoelectric patches
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Table 2.5: Proney series for viscoelastic host structure

Jn λn
6 2.10E-05
1 2.16E-05

0.1 1.18E-05
0.01 1.59E-05
0.001 2.16E-05
0.0001 2.01E-05

1.00E-05 6.60E-05

This could be due to delay of of the host structure for responding to internal stresses.

This delay is caused by viscoelastic response of the host structure.

A loop can be observed in the response of beam as it is shown in figure 2.13. As

we pay close attention figure 2.13 we see small loops forming the top left of the curve.

This form of response is observable in the situation where there are more than one

source of hystersis response. A looping phenomenon is evident near the extremes

of the main hysteresis loop in Piezoelectric Microfiber Composite (MFC) actuators

[74]. The looping is also oserved as distorsion of hystersis loop while resistor is added

to actuation circuit of PZT (BaTiO3) as phase shift is introdueced to experiment

[32]. From observation of the experimental data and also the prediction of structural

response in the simulation in figure 2.13 it can be concluded that looping happens

due to superposition of two different hystersis phenomena. As an instance in the

case of tip displacement of Piezoelectric Microfiber Composite (MFC) actuators [74]

there are two source of hystersis. First is the hystersis due from electromechanical

coupling phenomena between electric field and mechanical responce. Second source

is the hystersis from mechanical response between stress and strain rate that happens

due viscoelasticity.
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3. MINOR LOOP CONSTITUTIVE MODE*

This chapter discusses a time-dependent constitutive model for polarized piezo-

electric materials with an intention to capture minor hysteretic response. The model

is suitable for piezoelectric ceramics, which experience small deformation gradient,

and can sustain large electric fields. It is assumed that the loading is within a

quasi-static condition so that we neglect the inertia effect on the electro-mechanical

response and ignore the energy dissipation effect. The constitutive model for a po-

larized ferroelectric ceramics is obtained from:

σij =
∂Ψe

∂εij
|Ek

Dk = −∂Ψe

∂Ek
|εij

Ψe = Ψ̂e(Ek, εij)

(3.1)

where Ψ̂e(Ek, εij) is the thermodynamics function expressed in terms of the electric

field vector Ek and strain tensor εij. The notations |Ek and |εij mean that the field

variables are evaluated at constant Ek and εij, respectively. The thermodynamics

potentials are often expressed in a Taylor series expansion of the independent field

variables that can include higher order terms. Following the constitutive model of

Tiersten [71] for active materials undergoing large electric fields and small strains,

the free energy Ψ̂e(Ek, εij) at an isothermal condition is then expressed as:

*Part of this chapter is reprinted with permission from ”Nonlinear and time dependent behaviors of
piezoelectric materials and structures” by Sohrabi, A., Muliana, A., (2015). International Journal
of Mechanical Sciences, 94, 1-9, Copyright 2015 Elsevier Ltd.

39



Ψ̂e =
3∑

i,j,k,l=1

1

2
Cijklεijεkl −

3∑
k,i,j=1

ekijεijEk −
3∑

k,j=1

1

2
κkjEjEk−

3∑
i,j,k,l=1

1

2
b̂klijEkElεij +

3∑
i,j,k,l=1

1

6
χkijEiEjEk +H.O.T

(3.2)

where Cijkl are the components of the elastic stiffness, ekij represents the compo-

nents of electro mechanical coupling tensor and κkj are the components of the elec-

tric permittivity tensor. The field variables are the stress σij, strain εkl, electric

displacement Dk, and electric field Ej. Moreover, b̂klij and χkij are the components

of the fourth-order electro-mechanical tensor and third-order electric permeability

tensor, respectively. Equation (3.2) can be further expanded to include fourth, fifth,

etc. order terms of electric field. In such case, additional material paramaters are

required. It is also possible to consider only the odd or even terms of electric field

in order to capture response of the material. Using equations (3.2) and (3.1) the

stress and electric displacement for piezoelectric materials undergoing small strain

and large electric field are written as:

σij =
3∑

k,l=1

Cijklεkl −
3∑

k=1

ekijEk −
3∑

k,l=1

1

2
b̂ijklEkEl

Dk =
3∑

i,j=1

ekijεij +
3∑
j=1

κkjEj +
3∑

i,j,l=1

b̂klijElεij +
1

2

3∑
i,j=1

χkijEiEj

(i, j, k = 1 . . . 3)

(3.3)

When the nonlinear terms are neglected, a linear electro-mechanical response of

piezoelectric material [41] is then obtained:
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σij =
3∑

k,l=1

Cijklεkl −
3∑

k=1

ekijEk

Dk =
3∑

i,j=1

ekijεij +
3∑
j=1

κkjEj

(i, j, k = 1 . . . 3)

(3.4)

In the above expression, strains and electric fields are chosen as the independent

field variables. In case of a finite element analysis, displacements ui and electric

potential Φ are defined at nodes within finite elements. The field variables in the

constitutive equations are obtained directly from the displacements ui and electric

potential Φ. The strain displacement relationship based on infinitesimal strain theory

is defined as:

εkl =
uk,l + ul,k

2
(3.5)

where subscript with comma (,l) means derivative with respect to xl ( ∂
∂xl

). The

electric field is defined as:

Ej = −Φ,j (3.6)

For a linear electro mechanical response given in equation (3.4) the derivatives of

the stress and electric displacement with respect to the independent field variabless

result in the following material parameters:
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∂σij
∂εkl

= Cijkl

∂σij
∂Ek

= −ekij

∂Dk

∂εij
= ekij

∂Dk

∂Ei
= κki

(3.7)

For the nonlinear electro-mechanical model such as in equation (3.3), the deriva-

tives of the stress and electric displacament with respect to the independent field

variables are:

∂σij
∂εkl

= Cijkl

∂σij
∂Ek

= −ekij −
3∑
l=1

b̂klijEl

∂Dk

∂εij
= ekij +

3∑
l=1

b̂klijEl

∂Dk

∂Ei
= κki +

3∑
m,n=1

b̂kimnεmn +
3∑
j=1

χkijEj

(3.8)

Tiersten [71] also discussed an alternative expression of the constitutive model

with nonlinear electric field and small strain when stress and electric field are taken

as the independent field variables

εij =
3∑

k,l=1

Sijklσkl +
3∑

k=1

dkijEk +
3∑

k,l=1

1

2
fijklEkEl

Dk =
3∑

i,j=1

dkijσij +
3∑
j=1

κσkjEj +
3∑

i,j,l=1

fklijElσij +
1

2

3∑
i,j=1

χσkijEiEj

(i, j, k = 1 . . . 3)

(3.9)

The elastic compliances, Sijkl, piezoelectric constant, dkij, and nonlinear electroe-
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lastic constants, fijkl are:

Sijkl = C−1
ijkl

dijk =
3∑

m,n=1

eimnSmnjk

fijkk =
3∑

m,n=1

b̂ijmnSmnkl

(3.10)

The second- and third-order electric permeability constants are measured at zero

or constant stresses:

κσij = κ̂ij +
3∑

m,n=1

eimndjmn

χσijk = χijk +
3∑

m,n=1

eimnfjkmn

(3.11)

In analogy to the time-dependent deformation of viscoelastic materials, the non-

linear electro-elastic model developed by Tiersten [71] is extended to include time-

dependent material parameters. There have been several integral models developed

to describe nonlinear viscoelastic behavior: modified superposition principle (Find-

ley and Lai, [23]), multiple integral model (Green and Rivlin [27]), finite strain

integral models (Pipkins and Rogers [56]; Rajagopal and Wineman [77]), single in-

tegral models (Pipkins and Rogers [56]; Schapery [60]), and quasi linear viscoelastic

model (Fung [25]). The work by Green and Rivlin [27] provides the fundamental

framework for nonlinear viscoelastic response based on continuum mechanics. It is

assumed that small changes in the input field variables cause only small changes in

the corresponding output field variables; this can be approximated by using con-

tinuous functions in order to express the output field variables in terms of history

of inputs and time-dependent material properties. For a nonlinear viscoelastic ma-
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terial, Green and Rivlin [27] formed a sum of multiple integrals of the polynomial

functions to incorporate history of input variables in predicting output at current

time. This study considers two integral approaches in modelling nonlinear time-

dependent electro-nechabical response of piezo electric, namely multiple integral and

single integral based on quasi linear viscoelastic representations.

3.1 Multiple Time Integral Method

The constitutive equations (3.3) and (3.9) is expressed in terms of polynomial

functions of independent field variables. In analogy to the correspondence between

elastic and viscoelastic materials, the nonlinear electro-elastic equations of Tiersten

([71]) is modified to include the time-dependent effect (for non-aging materials):

εij(t) =

∫ t

s=0−

3∑
k,l=1

Sijkl(t− s)
dσkl
ds

ds+

∫ t

s=0−

3∑
k=1

dkij(t− s)
dEk
ds

ds

+

∫ t

s1=0−

∫ t

s2=0−

3∑
k,l=1

1

2
fijkl(t− s1)(t− s2)

dEk
ds1

dEl
ds2

ds1ds2

Dk =

∫ t

s=0−

3∑
i,j=1

dkij(t− s)
dσkl
ds

ds+

∫ t

s=0−

3∑
j=1

κσkj
dEk
ds

ds+

+

∫ t

s1=0−

∫ t

s2=0−

3∑
i,j,l=1

fklij(t− s1)(t− s2)
dEl
ds2

dσij
ds2

ds1ds2

+

∫ t

s1=0−

∫ t

s2=0−

3∑
k,l=1

1

2
χσkij(t− s1)(t− s2)

dEi
ds1

dEj
ds2

ds1ds2

(i, j, k = 1 . . . 3)

(3.12)

It is also possible to include higher order terms of the electric field. In order

to graphically visualize the linear and nonlinear kernel functions of time, a one-
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Figure 3.1: The comparison between viscoelastic and elastic materials as host struc-
ture

dimensional multiple integral forms (up to the second order) is considered:

R(t) =

∫ t

s=0−
ψ1(t− s)dI(s)

ds
ds

+

∫ t

s1=0−

∫ t

s2=0−
ψ2(t− s1, t− s2)

dI(ds1)

ds1

ds1
dI(s2)

s2

ds2

(3.13)

where R(t) is the corresponding output at current time t, I(s) is the input history

prescribed at 0 ≤ s ≤ t, ψ1(t) and ψ2(t, t) are the two kernel functions. When the

kernels are assumed to increase with time, figure 3.1 illustrates the linear and second

order kernel functions of time (see Findley et al. [23] for a detailed explanation).

It is also assumed that the material response is unaltered by an arbitrary shift

of the time scale, so that the following functions can be used for the two kernels in

equation (3.13)

ψ1(t− s) =A0 + A1(1− e(−(t−s)/τ1))

ψ2(t− s1, t− s2) =B0 +B1

(
2− e−(t−s1)/λ1 − e−(t−s2)/λ2

)
+

B2

(
1− e(−(t−s1)/λ1))(1− e(−(t−s2)/λ2)

) (3.14)
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where A0, A1, B0, B1, τ1, λ1, λ2 are the material parameters that need to be deter-

mined from experiments. A set of experiments may be performed by applying the

input variables at different times, say at t = 0 and t = s1. The main disadvantage

of the multiple integral forms is in difficulties characterizing the material parameters

from experiments, even when only up to the second order kernel function is consid-

ered. The characterization of material parameters becomes even more complicated

for the anisotropic and nonlinear time-dependent case, which is the case for piezo-

electric ceramics. In case of the third order term is included, the following third

order kernel function can be considered.

ψ3(t− s1, t− s2, t− s3) =C0 + C1

(
3− e−(t−s1)/η1 − e−(t−s2)/η2 − e−(t−s2)/η3

)
+

C2

(
1− e(−(t−s1)/η1)

) (
1− e(−(t−s2)/η2)

) (
1− e(−(t−s3)/η3)

)
(3.15)

It is also necessary that ψ3(t, t, t − s1) = ψ3(t − s1, t, t) = ψ3(t, t − s1, t). Detailed

description of this method and its implementation for numerrical method is discussed

in Sohrabi and Muliana [66].

3.2 Time Integration Method for Multiple Integral Form

A numerical algorithm for determining time-dependent response from the mul-

tiple integral moduli is presented here. Let R [I(t− s), t] be the time-dependent

response at current time t ≥ 0 due to an input history Is ≡ I(s)

A general single integral representation for the response is:

Rt ≡ R[Is, t] = R[I0, t] +

∫ t

0+

∂R

∂I
[Is, t− s]dI

s

ds
ds; (t ≥ 0) (3.16)

where

R[I0, t] = R0(I0) +R1R(I0)

(
1− exp

[
− t

τ1

])
(3.17)
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and

∂R

∂I
[Is, t− s] =

∂R0(Is)

∂I
+
∂R1(Is)

∂I

(
1− exp

[
−t− s

τ1

])
(3.18)

Here a superscript is used to denote the time-dependent variables. A recursive

method is used for solving the above integral form. Substituting equations (3.17)

and (3.18) into equation (3.16) yields:

Rt = R0(I t) +R1(I t)−R1(I0)exp

[
− t

τ1

]
− qt (3.19)

where

qt =

∫ t

0+

∂R1(Is)

∂I
exp

[
−t− s

τ1

]
dIs

ds
ds (3.20)

is the history variable, which can be approximated as:

qt ≈ exp

[
−−∆t

τ1

]
qt−∆t +

[∂R1(I t)

∂I

dI

ds
|t +exp

[
−∆t

τ1

]
∂R1(I t−∆t)

∂I

dI

ds
|t−∆t

]∆t

2

(3.21)

The superscript t−∆t denotes the previous time history. At initial time, qt = q0 = 0.0

and R0 = R0(I0). Equations (3.19) and (3.20) give the corresponding output due to

an arbitrary input I(s). For the multi-axial constitutive relation, the approximate

solution in equation (3.19) can be applied independently to each scalar component

of constirutive equation. The numerical algorithm for the multiple integral models

(one-dimensional representation) with the kernels defined in equation (3.14) can be

approximated by applying the recursive method as discussed above. The linear kernel

is approximated as:
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∫ t

s=0−
ψ1(t− s)dI(s)

d
ds ≈ [A0 + A1] It − A1I(0+)exp

[
− t

τ1

]
− qt1

qt1 ≈ exp

[
−∆t

τ1

]
qt−∆t

1 + A1
∆t

2

[
dI

ds
|t +exp

[
−∆t

τ1

]
dI

ds
|t−∆t

]
t ≥ 0

(3.22)

The second order kernel in equation (3.13) is rewritten as:

∫ t

s1=0−

∫ t

s2=0−
ψ2(t− s1, t− s2)

dI(s1)

ds1

ds1
dI(s2)

ds2

ds2 =

[B0 +B1(2.− e−t/λ1 − e−t/λ1) +B2(1− e−t/λ2)(1− e−t/λ2)]I(0+)I(0+)+∫ t

s1=0−

∫ t

s2=0−

(
B0 +B1

(
2− e−(t−s1)/λ1 − e−(t−s2)/λ2

)
+

B2

(
1− e(−(t−s1)/λ1))(1− e(−(t−s2)/λ2)

) )dI(s1)

ds1

ds1
dI(s2)

ds2

ds2

(3.23)

It can be approximated by:

∫ t

s1=0−

∫ t

s2=0−
ψ2(t− s1, t− s2)

dI(s1)

ds1

ds1
dI(s2)

ds2

ds2 =

[B0 +B1(2.− e−t/λ1 − e−t/λ1) +B2(1− e−t/λ2)(1− e−t/λ2)]I(0+)I(0+)+

(B0 + 2B1)(I(t) + I(0+))2 −B1(I(t) + I(0+))(f t1 + gt1)+

b2((I(t) + I(0+))2 − f t2(I(t) + I(0+))− gt2(I(t) + I(0+)) + f t2g
t
2)

(3.24)
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where the history variables f t1, f
t
2, g

t
1, g

t
2 at t > 0.0 are given as:

f t1 ≈ exp

[
−−∆t

λ1

]
f t−∆t

1 +
∆t

2

[
dI

s1

|t +exp

[
−∆t

λ1

]
dI

s1

|t−∆t

]
gt1 ≈ exp

[
−−∆t

λ1

]
gt−∆t

1 +
∆t

2

[
dI

s2

|t +exp

[
−∆t

λ1

]
dI

s2

|t−∆t

]
f t2 ≈ exp

[
−−∆t

λ2

]
f t−∆t

2 +
∆t

2

[
dI

s1

|t +exp

[
−∆t

λ2

]
dI

s1

|t−∆t

]
gt2 ≈ exp

[
−−∆t

λ2

]
gt−∆t

2 +
∆t

2

[
dI

s2

|t +exp

[
−∆t

λ2

]
dI

s2

|t−∆t

]
(3.25)

It is noted that at initial time f 0
1 = f 0

2 = g0
1 = g0

2 = 0.0 and R(0) = A0I(0+) +

B0I(0+)I(0+). Thus, the corresponding response due to an arbitrary input obtained

from the multiple integral model is approximated as:

R(t) ≈ [A0 + A1] I(t)− A1exp

[
− t

τ1

]
− qt1[

B0 +B1(2− e−t/λ1 − e−t/λ1) +B2(1− e−t/λ2)(1− e−t/λ2)
]
I(0+)I(0+)+

(B0 + 2B1)(I(t)− I(0+))2 −B1(I(t)− I(0+))(f t1 + gt1)+

B2

[
(I(t)− I(0+))2 − f t2(I(t)− I(0+))− gt2(I(t)− I(0+)) + f t2g

t
2

]
(3.26)

For the multi-axial constitutive relation, the approximate solution in equation

(3.26) can be applied independently to each scalar component.

3.2.1 Multiple Integral Model

This section presents a multiple integral model to simulate hysteretic response of

a piezoelectric ceramics subject to a sinusoidal electric field. We consider up to the

third order kernel function and we examine the effect of these kernel functions on

the overall nonlinear hysteretic curve. The following material parameters are used
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for the simulation:

A0 = 200 · 10−12m/V ;A2 = 100 · 10−12m/V

τ1 = 2sec

B0 = B1 = B2 = 20 · 10−18m2/V 2

C0 = C1 = C2 = 50 · 10−24m3/V 3

η1 = 2sec; η2 = 5sec

(3.27)

When only the first and third kernel functions are considered, the nonlinear hysteretic

response at steady state under positive and negative electric fields is identical as

shown by an anti-symmetric hysteretic curve in figure 3.2a. The hysteretic response

under the amplitude of electric field of 0.25 MV/m shows nearly linear response.

Including the second order kernel function allows for different response under positive

and negative electric fields as seen in figure 3.2b. At low amplitude of applied electric

field, nearly linear response is shown; however this hysteretic response does not show

an anti-symmetric shape with respect to the strain and electric field axes. The

contribution of each order of the kernel function depends on the material parameters.

For example the material parameters in equation (3.27) yield to more pronounced

contribution of the first order kernel function; while the contributions of the second

and third order kernel functions are comparable.

Intuitively, the corresponding strain response of a piezoelectric ceramics when

an electric field is applied in the poling direction (positive electric field) need not

be the same as when an electric field is applied opposite to the poling direction

(negative electric field), especially for nonlinear response due to high electric fields.

Depoling could occur in the piezoelectric ceramics when a negative electric field

with a magnitude greater than the coercive electric field is considered. Thus, to
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Figure 3.2: The effect of the higher order terms on the hysteretic response (f=0.1
Hz)

incorporate the possibility of the depoling process, the even order kernel functions can

be incorporated in the multiple time-integral model. In order to numerically simulate

the depolarization in the piezoelectric ceramics we apply a sinusoidal electric field

input with amplitude of 1.5 MV/m. We consider the first and second order kernel

functions and use the following material parameters so that the contributions of the

first and second order kernel functions on the strain response are comparable:

A0 = 200 · 10−12m/V ;A2 = 100 · 10−12m/V

τ1 = 2sec

B0 = B1 = B2 = 100 · 10−18m2/V 2

η1 = 2sec; η2 = 5sec

(3.28)

Figure 3.3 illustrates the corresponding strain response from the multiple integral

model having the first and second kernel functions. The response shows an un-

symmetric butterfly-like shape. The un-symmetric butterfly-like strain-electric field

response is expected for polarized ferroelectric materials undergoing high amplitude

of sinusoidal electric field input. The nonlinear response due to the positive electric
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Figure 3.3: The butterfly-like shape of the electro-mechanical coupling response

field is caused by different microstructural changes than the microstructural changes

due to polarization switching under a negative electric field.

3.3 Quasi Linear Viscoelastic (QLV) Model [68]

In an analogy to a time-dependent deformation of visco-elastic materials [77],

a single integral representation for formulating time dependent electro-mechanical

constitutive equations is also considered. The time dependent electromechanical

model is:
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σij(t) =

∫ t

0−

3∑
k,l=1

∂σij
∂εkl

(t− s, εkl(s))ε̇kl(s)ds−
∫ t

0−

3∑
k=1

∂σij
∂Ek

(t− s, Ek(s))Ėk(s)ds

Dk(t) =

∫ t

0−

3∑
i,j=1

∂Dk

∂εij
(t− s, εij(s))ε̇ij(s)ds+

∫ t

0−

3∑
i=1

∂Dk

∂Ei
(t− s, Ei(s))Ėi(s)ds

(3.29)

where the overdot indicates the time derivative, t denotes the present time and s is

indicates the time history. It is assumed that all field variables at t < 0 are zero,

and loading starts at initial time 0. It is assumed that the time and field dependent

parts can be separated by multiplicative decomposition1. Following the Quasi Linear

Viscoelastic (QLV) model, the constitutive relation in equations (3.29) can be further

expressed in terms of the normalized time-dependent function [72, 25], where it is

written as:

σij(t) =

∫ t

0−

3∑
k,l=1

KC
ijkl(t− s)

∂σij
∂εkl

(εkl(s))ε̇kl(s)ds+

∫ t

0−

3∑
k=1

Ke
kij(t− s)

∂σij
∂Ek

(Ek(s))Ėk(s)ds

Dk(t) =

∫ t

0−

3∑
i,j=1

Ke
kij(t− s)

∂Dk

∂εij
(εij(s))ε̇ij(s)ds+

∫ t

0−

3∑
i=1

Kκ
ki(t− s)

∂Dk

∂Ei
(Ei(s))Ėi(s)ds

(3.30)

where KC
ijkl, K

e
kij and Kκ

ki are the normalized time-dependent tensors corresponding

to the elastic, electromechanical coupling, and permittivity tensor, respectively. The

stresses σij, and electric displacements Dk, are evaluated at time t and the input

history is prescribed at 0− < s < t. For the time-dependent constitutive relation, the

1The separation of variables between the time and field dependent parts was adopted from the quasi
linear viscoelastic (QLV) model proposed by Fung [25], which is used in many biological materials.
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kernel functions can be chosen to be general functions of time that are in accordance

with the time-dependent behaviors, e.g., relaxation or creep like behaviors, of the

materials. In this study a series of discrete exponential functions, often called Prony

series, is used for each time dependent kernel function. The nonlinear time-dependent

response discussed in this section can be used to model hysteresis electro-mechanical

response of polarized piezoelectric ceramics under a cyclic electric field. The kernel

functions are expressed as:

KC
ijkl(t) =

NP∑
I=0

IKC
ijklexp(−IλCijklt)

Ke
ijk(t) =

NP∑
I=0

IKe
ijkexp(−Iλeijkt)

Kκ
ki(t) =

NP∑
I=0

IKκ
kiexp(−Iλκkit)

(3.31)

where IKC
ijkl,

IKe
ijk,

IKκ
ki , Iλijkl,

Iλeijk, and Iλκki are the material parameter related

to I th component of Prony series of KC
ijkl(t), K

e
ijk(t), and Kκ

ki(t). Equation (3.31)

defines the time dependent functions, corresponding to the electro-mechanical prop-

erties. The chosen time-dependent functions for material properties, either creep

or relaxation function, are determined based on the experimental data. It is also

possible that some terms in the properties experience relaxation and other terms

experience creep responses. Zhou and Kamlah [81] and Anderson [6] performed ex-

periment on PZT ceramics. They have shown that the electric displacement in the

tested piezoelectric ceramics increases with time when a constant electric field is

prescribed. In such cases, the time-dependent electric permittivity constants should

follow creep functions. It has also been shown that piezoelectric ceramics experience

creep deformation due to constant stress, or they undergo stress relaxation when

constant strain is prescribed.
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When mathematical models with rather simple forms are considered for the in-

put history and time-dependent material properties, it is possible to obtain exact

analytical solutions for the nonlinear time dependent constitutive equation. Laplace

transform method [77] is often used to determine the corresponding time-dependent

field variables for the linear response of materials. Piezoelectric ceramics exhibit

nonlinear electro-mechanical response under a relatively large magnitude of electric

field. In dealing with nonlinear responses, numerical methods are considered for

obtaining solutions to the governing equations. Recursive integration technique has

been shown to be very effective in solving the nonlinear integral problem. In this

study, a numerical method based on the recursive approach is adopted for solving

the nonlinear time-dependent electro-mechanical coupling response. This numerical

technique will be integrated into FE analyses that is explained in following sections.

Using the time dependent constitutive equations that were presented in equation

(3.30) and the time kernel function that is expressed as series of exponential functions

as equation (3.31) with Iλijkl = 0, Iλeijk = 0, and Iλκki = 0, the expanded constitutive

equations are written as:

σij(t) =
3∑

k,l=1

0KC
ijkl

∂σij
∂εkl

(εkl(t))εkl(t) +
3∑

k=1

0Ke
ijk

∂σij
∂Ek

(Ek(t))Ek(t)+

∫ t

0−

3∑
k,l=1

NP∑
I=1

IKC
ijklexp(−IλCijkl[t− s])

∂σij
∂εkl

(εkl(s))ε̇kl(s)ds+

∫ t

0

3∑
k=1

NP∑
I=1

IKe
ijkexp(−Iλeijk[t− s])

∂σij
∂Ek

(Ek(s))Ėk(s)ds

(3.32)
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Dk(t) =
3∑

i,j=1

0Ke
ijk

∂Dk

∂εij
(εij(t))εij(t) +

3∑
i=1

0Kκ
ki

∂Dk

∂Ei
(Ei(t))Ei(t)+

∫ t

0−

3∑
i,j=1

NP∑
I=1

IKe
ijkexp(−Iλeijk(t− s))

∂Dk

∂εij
(εij(s))ε̇ij(s)ds+

∫ t

0−

3∑
i=1

NP∑
I=0

IKκ
kiexp(−Iλκki[t− s])

∂Dk

∂Ei
(Ei(s))Ėi(s)ds

(3.33)

Equations (3.32, 3.32) are rewritten with the definition of history variables as

follows:

σij(t) =
3∑

k,l=1

0KC
ijkl

∂σij
∂εkl

(εkl(t))εkl(t) +
3∑

k,l=1

NP∑
I=1

IqσCijkl(t)+

3∑
k=1

0Ke
ijk

∂σij
∂Ek

(Ek(t))Ek(t) +
3∑

k=1

NP∑
I=1

Iqσeijk(t)

Dk(t) =
3∑

i,j=1

0Ke
ijk

∂Dk

∂εij
(εij(t))εij(t) +

3∑
i,j=1

NP∑
I=1

IqDekij(t)+

3∑
i=1

0Kκ
ki

∂Dk

∂Ei
(Ei(t))Ei(t) +

3∑
i=1

NP∑
I=1

IqDκki (t)

(3.34)

where the variables IqσCijkl(t),
Iqσeijk(t),

IqDekij(t) and IqDκki (t) are defined to incorporate

the history in the time integral constitutive equations. The time integral functions

are split into two parts, the first part carries the integral from the beginning to the

time (t−∆t) and the second part incorporates the integral within an incremental time

∆t. The recursive method is used for all the integrations. Consider a simple integral

with an exponential function such as q(t) =
∫ t

0
exp(−λ[t − s])f(s)ds. This integral

can be approximated as q(t) ≈ exp(−λ∆t)q(t−∆t)+ ∆t
2

[f(t)+exp(−λ∆t)f(t−∆t)].

This recursive scheme is used for solving the time dependent constitutive equations.

Using the recursive integral, the history variables are given as:
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IqσCijkl(t) =exp(−IλCijkl[∆t])Iq
σC
ijkl(t−∆t)+∫ t

t−∆t

IKC
ijklexp(−IλCijkl[t− s])

∂σij
∂εkl

(εkl(s))ε̇kl(s)ds

Iqσeijk(t) =exp(−Iλeijk[∆t])Iqσeijk(t−∆t)+∫ t

t−∆t

IKe
ijkexp(−Iλeijk[t− s])

∂σij
∂Ek

(Ek(s))Ėk(s)ds

IqDeijk(t) =exp(−Iλeijk[∆t])IqDeijk(t−∆t)+∫ t

t−∆t

IKe
ijkexp(−Iλeijk[t− s])

∂Dk

∂εij
(εij(s))ε̇ij(s)ds

IqDκki (t) =exp(−Iλκki[∆t])IqDκki (t−∆t)+∫ t

t−∆t−

IKκ
kiexp(−Iλκki[t− s])

∂Dk

∂Ei
(Ei(s))Ėi(s)ds

(3.35)

The above equations only need to be integrated within a time increment ∆t. An

approximate form of the time derivatives of field variables is taken as: ε̇kl ≈ ∆εkl
∆t

and

Ėk ≈ ∆Ek
∆t

. Upon solving the integrals in equation (3.35) the history variables are:

IqσCijkl(t) =exp(−IλCijkl[∆t])Iq
σC
ijkl(t−∆t)+

IKC
ijkl

2

(
exp(−IλCijkl[∆t])

∂σij
∂εkl

(εkl(t−∆t))∆εkl(t−∆t)+

∂σij
∂εkl

(εkl(t))∆εkl(t)
)

Iqσeijk(t) =exp(−Iλeijk[∆t])Iqσeijk(t−∆t)+

IKe
ijk

2

(
exp(−Iλeijk[∆t])

∂σij
∂Ek

(Ek(t−∆t))∆Ek(t−∆t)+

∂σij
∂Ek

(Ek(t))∆Ek(t)
)

(3.36)
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IqDeijk(t) =exp(−Iλeijk[∆t])IqDek (t−∆t)+

IKe
ijk

2

(
exp(−Iλeijk[∆t])

∂Dk

∂εij
(εij(t−∆t))∆εij(t−∆t)+

∂Dk

∂εij
(εij(t))∆εij(t)

)
IqDκki (t) =exp(−Iλκki[∆t])IqDκk (t−∆t)+

IKκ
ki

2

(
exp(−Iλκki[∆t])

∂Dk

∂Ei
(Ei(t−∆t))∆Ei(t−∆t)+

∂Dk

∂Ei
(Ei(t))∆Ei(t)

)

(3.37)

Equations (3.34) and (3.36, 3.37) give an approximate solutions of nonlinear-time-

dependent constitutive equations. In the above equations the strain and electric field

at each time increment are the independent variables that will be determined from

structural analyses.

3.4 Finite Element Implementation of QLV Model

This section briefly presents a FE formulation for analyzing the nonlinear time-

dependent electro-mechanical responses of piezoelectric devices. At structural scale,

displacement and electric potential are taken as independent field variables, which

are sampled at nodes in finite elements. At the material scale (Gaussian integra-

tion points), strains and electric fields are the independent field variables, which

are determined from equations (3.5) and (3.6), respectively. At material points the

constitutive model discussed in the previous section is used to determine the corre-

sponding stress and electric displacements. General FE formulations for linear and

time-independent electro-mechanical response of piezoelectric materials can be found

in [13]. This study focuses on nonlinear time dependent electro-mechanical responses

of piezoelectric materials and structures.

Consider a 3D continuum element placed in a Cartesian coordinates x1, x2, x3.
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Let [u]T = [u1, u2, u3, φ]T be the element field variables (displacements and electric

potential). The nodal displacement and electric potential on the element are:

[d]T = [u1
1, u

1
2, u

1
3, φ

1 . . . unne1 , unne2 , unne3 , φnne] (3.38)

where nne is the number of nodes in an element. The field variables in the element

ui are at the nodes di are related by the shape function matrix ϕip as follows:

ui =

ndfe∑
p=1

ϕipdp, (i = 1 . . . nne) (3.39)

where ndfe is number of degrees of freedom in each node. The same shape func-

tions are used for the displacement and electric potential field variables. To solve

the nonlinear equation, the analyses start with trial linearized relations, followed

by an iteration at each time increment in order to minimize error from linearizing

the nonlinear equations. At each time increment and at each material point, the

constitutive relations in equation (3.30) are implemented. The incremental solution

method given in equations (3.34)-(3.36, 3.37) is used. The finite element analysis

based on variational principle is considered for solving the equilibrium equations

and determining the field variables. The virtual work for the electro-mechanically

coupled system is [13, 71]:

δπ =

∫
V

3∑
i,j=1

σijδεijdV −
∫
V

3∑
i=1

DiδEidV−

∫
∂V

3∑
i=1

Tiδuid∂V +

∫
∂V

Qδφd∂V

(3.40)

where Ti and ui denote the components of the surface traction and mechanical dis-

placement vector, respectively. Moreover, Q and φ are the surface charge and scalar
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potential, respectively. Definition of strain in equation (3.5) and electric field in

equation (3.6), are used in the virtual work in equation (3.40). The virtual work

is now presented as a function of degrees of freedom and their variation, which are

[u1, u2, u3, φ]T and [δu1, δu2, δu3, δφ]T . In forming the equilibrium equations, the

derivative of the virtual work with respect to the degrees of freedom is taken and set

equal to zero:

Rk =
∂δπ

∂δdk
= 0, (k = 1 . . . ndf) (3.41)

where Rk is residual. Equation (3.41) represents a system of nonlinear equations with

respect to degrees of freedom whose solution is obtained at each time increment. By

substituting the virtual work in equation (3.40) into the residual in equation (3.41)

we have:

Rk =

∫
V

3∑
i,j=1

σij
∂εij
∂δdk

dV −
∫
V

3∑
i=1

Di
∂δEi
∂δdk

dV−

∫
∂V

3∑
i=1

Ti
∂δui
∂δdk

d∂V +

∫
∂V

Q
∂δφ

∂δdk
d∂V

(3.42)

The derivative of strain and electric field that appears in the above equation

contain the derivatives of the shape functions. Using the approximation functions

in equation (3.39) for the field variables and definition of strain and electric field in

equations (3.5) and (3.6) we have:

∂δεij
∂δdk

=
ϕik,j + ϕjk,i

2
∂δEi
∂δdk

= ϕ4k,i

(3.43)

This system of equations is solved iteratively. In this study, the Newton-Raphson

iterative method is used to determine the field variables by satisfying ‖Rk‖ ≤ ε0 for

the entire structure (ε0 is the convergence tolerance). The corrected field variables
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from the Newton-Raphson iterative methods for solving the nonlinear equation (3.41)

are obtained from:

Rr
k = −∂R

r−1
k

∂dr−1
k

(drk − dr−1
k ) (3.44)

where r is the iteration counter and drk is degrees of freedom vector for the entire

structure. From equation (3.44), the Newton-Raphson method requires finding the

tangent matrix
∂Rrk
∂drk

in each iteration and at each time increment. The consistent

tangent matrix is defined as:

Kkl =
∂Rk

∂dl
=

∂

∂dl

∂δπ

∂δdk
=

3∑
i,j=1

∂Rk

∂εij

∂εij
∂dl

+
3∑
i=1

∂Rk

∂Ei

∂Ei
∂dl

(l, k = 1 . . . ndf)

(3.45)

where ndf is the number of degrees of freedom. The derivative terms in the above

equation are defined:

∂Rk

∂εij
=

∫
V

3∑
m,n=1

∂σmn
∂εij

∂δεmn
∂δdk

dV −
∫
V

3∑
p=1

∂Dp

∂εij

δEp
∂δdk

dV

∂Rk

∂Ei
=

∫
V

3∑
m,n=1

∂σmn
∂Ei

∂δεmn
∂δdk

dV −
∫
V

3∑
p=1

∂Dp

∂Ei

δEp
∂δdk

dV

(k = 1 . . . ndf)

(3.46)

For the nonlinear and time dependent electro-mechanical response, the material

derivatives in equations (3.8) and time representation of stress and electric field

are used in the above equation.
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3.5 Numerical Implementation

3.5.1 Analyses of Nonlinear Electro-Mechanical Response

The experimental data of piezoelectric ceramics reported in [19] are first used to

validate the constitutive model. Calibrating the material properties is a rather non

trivial task. The first guess starts with the linear and time independent response.

In order to calibrate the material parameter in proposed constitutive model, we

use the coupling coefficient dijk in the constitutive equation, ε11 = −d311E3. The

coupling coefficients dijk are related to the stress coupling coefficients eijk [41]. The

experiment was conducted on G-1195 PZT where the sample was excited with electric

field at frequency 0.1Hz and three different amplitudes: 250V/mm, 500V/mm and

750V/mm.

In case a linear and time independent model is considered for the piezoelectric

response of this material there will not be any hysteresis response, as shown in figure

3.4. The material constant d311, is taken to be 340pm/V in order to match the strain

at 500V/mm. In order to compare the piezoelectric constant d311 of G-1195 PZT

with other testing data under small electric field (linear range), the d311 value of

180pm/V [47] is alo plotted in figure 3.4.

We use the model in equation (3.32, 3.32) [72] to include the effect of loading

history. The time kernel function with K(t) = 1.0 − 0.6exp(−t/1.2) in considered

within the integral representation for the strain ε11(t) =
∫ t

0
K(t− s)∂ε11

∂E3

∂E3(s)
∂s

ds with

∂ε11
∂E3

= −d311 taken to be 340pm/V and the model shows a better result compared to

the experiment under amplitude of 250V/mm as seen in figure 3.5. It is clear from

these results that the response of this material, even for small strain, is nonlinear,

therefore taking ∂ε11
∂E3

as a constant leads to some error when large electric field is con-

sidered. As it is suggested in the literature [6, 19] the piezoelectric coefficient should
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Figure 3.5: Linear and history dependent model compared with experimental strain
(ε11) response under electric field (E3) with frequency 0.1 Hz in [19]

be defined as a function of applied electric field (they showed that d311 changes lin-

early with strain and also electric field). In this analysis we include the quadratic

function of electric field. Following the same procedure as [72] we define a nonlinear

response function ε11(E3) = −d0
311E3 − d1

311|E3|E3. Here we take d0
311 = 340pm/V

and2 d1
311 = 0.71fm2/V 2 the result from this calibration is shown in figure 3.6. It

is seen that the hysteresis strain and electric field curves under several amplitude

of electric field at frequency 0.1 Hz determined from the model are in good corre-

lation with experimental data. As discussed previously, it is possible to consider

only odd terms in the higher order terms of the nonlinear constitutive relation. An-

other nonlinear model incorporating first and third order terms is considered, e.g.

2f here stands for femto i.e. 10−15
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Figure 3.6: Nonlinear time dependent strain (ε11) response under electric field (E3)
with frequency 0.1 Hz compared with experiment [19].

ε11(E3) = −d0
311E3− d2

311E
3
3 with d0

311 = 340pm/V and d2
311 = 0.55zm/V 3 using the

time dependent parameter discussed above (K(t) = 1.0− 0.6exp(−t/1.2)), the non-

linear and time dependent model can capture the hystersis response under different

amplitude of electric fields, as shown in figure 3.7.

In order to examine the rate (frequency) dependent response, parametric studies

are presented by applying electric fields at various frequencies. Different frequency

inputs are applied to the same material constitutive model presented in this section.

The electric field amplitude input is chosen to be 750V/mm. The corresponding

strains response of the model under three different frequencies are shown in figure

3.8. It is apparent from the results that higher frequency of loading reduces time-

dependent (hysteresis) effect. This is due to the fact that the material does not have

3z here stands for Zepto i.e. 10−21
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enough time to exhibit time-dependent effect. Fast loading reduces the creep-like or

relaxation-like behavior and the area inside the hysteresis curve becomes smaller.

3.5.2 Structural Analyses

Piezoelectric telescopic actuators are used to amplify displacements by utilizing

the piezoelectric coupling effect. Using the 3D continuum elements discussed in sec-

tion 3.4, time-dependent nonlinear electro-mechanical coupling response of telescopic

actuators is studied. Detailed discussion of manufacturing of the piezoelectric actu-

ators and experimental tests are given by Alexander et. al. [4, 2, 3]. The actuators

are poled in the radial direction and an electric field is applied in such a way that it

causes elongation or contraction in the axial direction of the telescopic actuators.

The first actuator to be considered for simulation is PZT-568 that is formed by

acrylate polymerization method. The geometry of the actuator is shown in figure
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Figure 3.9: Geometry of PZT-586 telescopic actuator (dimensions are in mm)

3.9. In order to activate it and obtain the overall axial deflection, each wall was

subjected to electric field in the radial direction.

The alternating electric potential with amplitude of 300[V] and -300[V] with

frequency of 0.1Hz is applied. The way that the electric potential is distributed in

the actuator is illustrated in figure 3.10.

The displacement due to this applied electric field is obtained from the FE simu-

lation. The corresponding displacement contour at applied electric fields are shown

in figure 3.10. The comparison between the time-dependent hysteresis response from

current simulation and experiment are shown in figure 3.11. The nonlinear hysteresis

response is captured effectively by taking the electro-mechanical coupling coefficients

to be a nonlinear function of applied electric field. The material data are calibrated to

fit the experimental data presented in [4, 2]. The rest of electro-mechanical properties

are taken to be same as PZT and presented in table 3.1. The nonlinear coefficients

are defined with respect to the applied electric field in the radial direction. Another

actuator, MSI-53, is considered in order to examine performance of FE model. The
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Figure 3.10: Electric potential and deflection contour of PZT-586 telescopic actuator
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Table 3.1: Material properties of PZT-586 actuator [4]

Young’s Modulus 62 GPa
Poisson’s Ratio 0.3

e212 -32.51 C/m2

e122 13.77 C/m2

e111 -16.92 C/m2

κ11 = κ22 4 pF/m
κ33 2 pF/m

b̂1122 3.35× 10−5 N/V 2

b̂1111 −3.35× 10−5 N/V 2

κ11 = κ22 4 pF/m
κ33 2 pF/m

0Ke
ijk 1.0

1Ke
ijk -0.4

0λeijk 0
1λeijk 0.5

geometry of this actuator is shown in figure 3.12. The distribution of electric po-

tential in the actuator is shown in figure 3.13. The material properties of MSI-53

that are used for the FE analysis are given in table 3.2. It is noted that frequency

of applied electric field is taken to be 0.1Hz. The nonlinear coefficients are defined

with respect to the applied electric field in the radial direction. The distribution of

the axial displacement and electric field distribution for this actuator is shown in

figure 3.14. The tip deflection response of this actuator is simulated using the pre-

sented electro-mechanical model and it is compared with experimental result shown

in figure 3.14. There is a good agreement between experiment and the model. The

nonlinear coefficient have a very small effect on the result, which could be due to a

small amplitude of the electric field applied.
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Table 3.2: Material properties of MSI-53 actuator [4]

Young’s Modulus 60.06 GPa
Poisson’s Ratio 0.3

e111 -20.92 C/m2

e122 17.06 C/m2

e212 -45.74 C/m2

κ11 = κ22 4 pF/m
κ33 2 pF/m

b̂1122 3.35× 10−5 N/V 2

b̂1111 −3.35× 10−5 N/V 2

κ11 = κ22 4 pF/m
κ33 2 pF/m

0Ke
ijk 1.0

1Ke
ijk -0.4

0λeijk 0
1λeijk 0.5

Figure 3.12: Geometry of MSI-53 (dimensions are in mm)

71



300 [V]

0 [V]

-300 [V]

Emax=300 [V] Emin=-300 [V]

20 [  m]

  10 [  m]

0 [  m]

Electric Potential

Axial Deformation

-20 [  m]

  -10 [  m]

0 [  m]
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4. STRUCTURAL ANALYSES

This chapter presents analyses of electro-active structures under several loading

histories. The constitutive equations that were introduced in the previous chapters

are used for the active materials. Two types of smart structures are studied, which

are smart multi-layered beams and active fiber composites. The smart beams consist

of layers of piezoelectric and inactive materials. Through thickness electric fields are

prescribed in order to create bending in the beams. Analytical solutions of the de-

flections of smart beams with time dependent and electro-mechanical coupling effect

are presented. The analytical solutions are also compared to the results obtained

from finite element analyses and experiments. The active fiber composite comprises

of unidirectional fibers placed in a polymeric matrix. Electrode fingers are attached

to the top and bottom surfaces of the composite. In this study, a representative

unit cell model is considered for the active fiber composite and the overall electro-

mechanical response of the composite is examined.

4.1 Analyses of Smart Beams

Analytical and numerical solutions of the time-dependent electro-mechanical cou-

pled deformations of piezoelectric multi-layered composite beams are presented. The

Laplace transform method is used to obtain the analytical solutions while finite ele-

ment method is considered for the numerical solutions. The results from the analyt-

ical solutions are compared with the experimental data and finite element solutions.

Several parametric studies are also conducted in order to study the time-dependent

electro-mechanical behavior of the composites.
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Figure 4.1: Substrated bimorph beam geometry

4.1.1 Governing Equation for Electro-Active Beams

The analyses presented here are suitable for multi-layered slender beams undergo-

ing small deformation gradients. Figure 4.1 illustrates an example of a multi-layered

active beam. This beam has three layers, two active layers at the top and bottom

and one substrate (inactive) layer in the center. There are electrodes on the surfaces

of active layer. An electric field is obtained to these active layers by applying an

electric potential difference to the electrodes. In order to describe the various beam

theories, the following coordinate system is introduced. The x1-coordinate is taken

along the length of the beam, x2-coordinate is taken along the width of the beam,

and the x3-coordinate along the thickness (the height) of the beam. According to

this coordinate system the loading and geometry are such that the displacements

(ū1, ū2, ū3) along the coordinates axis (x1, x2, x3) are independent of x2. Moreover,

it is assumed that displacements in the width of the beam ū2 is zero. For the beam

analyses, the field variables are: stress σ11 and strain ε11 along the longitudinal axis of

the beam, electric field E3 and electric flux (displacement) D3 through the thickness

of the beam. Strain and electric field are taken as the independent variables. The
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corresponding stress and electric displacement field for a linear electro-mechanical

response is expressed as:

σ11 = C1111ε11 − e311E3

D3 = e311ε11 + κε33E3

(4.1)

where C1111 is the elastic stiffness measured at constant electric field, e311 is the

piezoelectric constant, and κε33 is the dielectric coefficient at constant strain.

The above constitutive model is used for the static response of piezoelectric ma-

terial. This study deals with time dependent response of active composite beams

with nonlinear electro-mechanical behavior. The following constitutive relations for

the time-dependent-electro-elastic deformation of solids (see chapter 3) is used for

the piezoelectric composite beams shown in figure 4.1:

σ11(t) =

∫ t

0−
KC(t− s)∂σ11

∂ε11

(ε11(s))
∂ε11(s)

∂s
ds+∫ t

0−
Ke(t− s)∂σ11

∂E3

(E3(s))
∂E3(s)

∂s
ds

D3(t) =

∫ t

0−
Ke(t− s)∂D3

∂ε11

(ε11(s))
∂ε11(s)

∂s
ds+∫ t

0−
Kκ(t− s)∂D3

∂E3

(E3(s))
∂E3(s)

∂s
ds

(4.2)

This is a one dimensional version of the 3D constitutive equation that is suitable

for beam analyses. Kκ(t), Ke(t), KC(t) are the normalized time dependent kernels.

The time kernels in this constitutive equation can be expressed in terms of Prony

series as discussed in chapter 3. A beam is defined as a structural element that is

predominantly under bending. Three beam theories are considered which are the

classical Euler-Bernoulli beam theory, Timoshenko beam theory, and higher order

beam theory. The Euler-Bernoulli beam theory is followed, in which the deformation
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due to the transverse shear is ignored. The displacements fields are defined in terms of

only two unknown variables, for the transverse displacement and axial displacement:

ū1(x1, x2, x3, t) = u1(x1, t)− x3
∂u3(x1, t)

∂x1

ū2(x1, x2, x3, t) = 0

ū3(x1, x2, x3, t) = u3(x1, t)

(4.3)

where (u1, u3) are the displacements along the coordinates axis (x1, x3) measured

at the neutral axis. The Euler-Bernoulli beam theory is valid when the beams are

slender enough. On the other hand if the shear stress in the thickness direction of

the beam contributes to the lateral deflection, Timoshenko beam theory is used. The

Timoshenko beam theory assumes a constant shear stress in the thickness of beam

and the normal axis to the neutral axis of the beam can rotate with respect to the

center line. This will introduce a new degree of freedom and a new unknown function

due to the additional rotation:

ū1(x1, x2, x3, t) = u1(x1, t) + x3ψ2(x1, t)

ū2(x1, x2, x3, t) = 0

ū3(x1, x2, x3, t) = u3(x1, t)

(4.4)

In the Timoshenko beam theory, the unknown function ψ2(x1, t) is a measure of

rotation of the beam. The axial beam displacement u1 and transverse displacement

field of the beam u3 have the same meaning as equation (4.3). It can be shown by

the elasticity solution that the through thickness stress of the beam is quadratic with

respect to the transverse coordinate x3 while the Timoshenko beam theory assumes

a constant shear stress through the thickness. In order to correct this inconsistency

the shear energy of beam is related to the shear energy of the Timoshenko beam by
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a constant called shear correction factor. This constant depends on the geometry of

the cross section of the beam and it affects the accuracy of the solutions. The higher

order beam theory is introduced to account for the quadratic distribution of the shear

through the thickness of the beam and relax the need for the shear correction factor.

The higher order beam theory uses the same number of degrees of freedom as the

Timoshenko beam and therefore, the same number of unknowns of the displacement

field. Using the fact that, the shear stress is zero in the upper and bottom surface of

the beam, the quadratic distribution of the shear stress in the thickness is defined.

The displacement field of the theory is defined based on three unknown as in the

Timoshenko beam theory:

ū1(x1, x2, x3, t) = u1(x1, t) + x3φ2(x1, t) + αx3
3(φ2(x1, t) +

∂u3(x1, t)

∂x1

)

ū2(x1, x2, x3, t) = 0

ū3(x1, x2, x3, t) = u3(x1, t)

(4.5)

By applying stress free conditions on the top and bottom surface of the beam

value of α is found to be −4/(3h2) [75]. Here φ2(x1, t) is defined as the slope of the

normal line measured from the neutral axis. It can be seen that the normal line in

the beam is not straight anymore and it is defined as a cubic function. The non zero

strain component for the displacement defined in the beam equations (4.3-4.5) are:

ε11(x1, x3, t) =
∂ū1(x1, x3, t)

∂x1

− x3
∂2ū3(x1, x3, t)

∂x2
1

2ε13(x1, x3, t) =
∂ū3(x1, x3, t)

∂x1

+
∂ū1(x1, x3, t)

∂x3

(4.6)

This strain formulation can be used for each of the above beam theories. It is worth
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noting that for the Euler-Bernoulli beams theory ε13 is zero. The higher order beam

theories can incorporate the effect of shear in the thickness of the beam. In the

case of active composite beams are subjected to electric field through thickness with

no transverse mechanical loading, the transverse shear deformation is insignificant.

As a result, using the Timoshenko or higher order beam theories for predicting the

deflection gives the same result as the Euler-Bernoulli beam theory. Therefore, in

this study the Euler-Bernoulli beam theory is used for for the smart beams.

Using the variational method, the equilibrium equations for the beam model are

determined. The external axial force N11(x1, t) and bending moment M11(x1, t) are

given as:

N11(x1, t) =

∫
x2,x3

σ11(x1, x3, t)dx2dx3

M11(x1, t) =

∫
x2,x3

x3σ11(x1, x3, t)dx2dx3

(4.7)

The equilibrium equations for the beam bending are:

∂N11(x1, t)

∂x1

= f(x1, t)

− ∂2M11(x1, t)

∂x2
1

= q(x1, t)

(4.8)

where f(x1, t) and q(x1, t) are the distributed axial and transverse loads respectively.

4.1.2 Responses of 3-Layered Active Beam Under Constant Electric Field

This section presents solution for the analyses of 3-layered active beams using the

Euler-Bernoulli beam theory. First, the response of the beam neglecting the time

dependent effect is obtained. This result is used to verify the finite element formu-

lation and also used to develop the time dependent solution by using the Laplace

transform method. The analytical method that is discussed here is then extended to
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time dependent and nonlinear electro-mechanical formulation.

Consider a bimorph beam with a thickness h as shown in figure 4.1. The beam

consists of two layers of piezoelectric materials with thickness hp/2 each. A substrate

layer between these two layers of piezoelectric has a thickness hs. In practice there

are electrodes placed between layers and also on the top and bottom parts of the

beam in order to prescribe electric field inputs. If the electric potential V is applied to

top and bottom electrodes, the piezoelectric layers will be subjected to electric field

E3 = 2V/hp. The applied electric field in each layer can be either positive or negative

depending on the direction of electric potential applied. Regardless of the sign of the

applied potential the direction of the formed electric fields on the top and bottom

layers are opposite to each other in order to create bending. Since the electrode layer

is very thin, its effect on the overall response of the beam is disregarded. The total

thickness of the beam is h = hp + hs as shown in figure 4.1. Using the equilibrium

equation in (4.8), and the linear electro-mechanical constitutive model presented in

equation (4.1) the axial force and bending moments are:

N11(x1) = (wCphp + wCshs) u1

M11(x1) =
(
−Cphp2hs/4− Cphphs2/4− Cph3

p/12− Cshs3/12
)
w
∂2u3(x1, t)

∂x2
1

−

weE3(hphs/2− hp2/4)

(4.9)

where w is the width of the beam. A simplified notation for the material parameters

is considered here. For the piezoelectric layer the stiffness and piezoelectric constants

are C1111 = Cp, e311 = e respectively. For the elastic substrate the properties are

C1111 = Cs and e311 = 0. The effect of the electric displacement on the strain is

ignored. If the beam shown in figure 4.1 is clamped at the left end, the boundary
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conditions are as follows:

u1(0) = u3(0) =
∂u3(0)

∂x1

= 0 (4.10)

Then, for a beam with no transverse loading the deflection of the beam is:

u3(x1) =
1

2

3eEhp(hp + 2hs)

Cph3
p + 3Cph2

phs + 3Cphph2
s + Csh3

s

x2
1 (4.11)

The above analyses is extended for the time dependent constitutive equation of

active composite beams. The time dependent electro-mechanical constitutive piezo-

electric layers and linear visco-elasticity is considered for the substrate. A closed-form

solution for the deformations of the active beam is presented. The time dependent

response of the beam is obtained by using the Laplace transform method. Consider

the beam geometry as shown in figure 4.1, with the constitutive equation (4.2) for the

piezoelectric layers of the beam. The stress in the piezoelectric layers is additively

decomposed into the mechanical and electro-mechanical stresses:

σ11 = σm11 + σe11 (4.12)

where

σm11 =

∫ t

0−
KC(t− s)∂σ11

∂ε11

(ε11(s))
∂ε11(s)

∂s
ds

σe11 =

∫ t

0−
Ke(t− s)∂σ11

∂E3

(E3(s))
∂E3(s)

∂s
ds

(4.13)

The mechanical stress is considered to be linear and elastic, which for the host

structure and active layer are σm11 = Csε11 and σm11 = Cpε11. The stress due to the

electro-mechanical coupling is defined as a polynomial function of the electric field

in order to include the effect of high electric fields.
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The Laplace transform is used to transform the equations from time domain to

the Laplace variable domain. The derivatives with respect to time will be expressed

as polynomials with respect to the Laplace variable. The constitutive equation (4.13)

for beam is presented in the Laplace form as:

L [σ11(t)] = aCpL
[
KC(t)

]
L [ε11(t)] (4.14)

where L is the Laplace transform and a is the transform variable. In the same manner

the Laplace transform for the electro-mechanical stress σe11 is defined.

L [σe11(t)] = L
[∫ t

0−
Ke(t− s)∂σ11

∂E3

(E3(s))Ė3(s)ds

]
(4.15)

Since the electric field is known, the explicit definition of the electro-mechanical

coupling stress in the Laplace domain is obtained using equation (4.15). The Laplace

transform turns the time dependent integral equation into an algebraic equation.

The differential equation for the displacement with respect to spatial variables

are given in equations (4.8) and (4.7). The axial force and bending moment in the

Laplace domain are:

N̄11(x1, a) =

∫
x2,x3

σ̄11(x1, x3, a)dx2dx3

M̄11(x1, a) =

∫
x2,x3

x3σ̄11(x1, x3, a)dx2dx3

(4.16)

where the upper bar means the function in Laplace domain. The equilibrium equa-

tions are:

∂N̄11(x1, a)

∂x1

= f̄(x1, a)

− ∂2M̄11(x1, a)

∂x2
1

= q̄(x1, a)

(4.17)
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Figure 4.2: Bimorph PVDF beam geometry and placement of electrodes

It is noted that the applied transverse and axial boundary conditions should be

defined in the Laplace domain. The Laplace transform should also be performed for

the time dependent boundary conditions. Solving the differential equations presented

in equation (4.17) will result in transverse deflection in Laplace space ū3(x3, a). The

inverse of the Laplace transform gives the function in time domain:

u3(x3, t) = L−1 [ū3(x3, a)] (4.18)

4.1.3 Numerical Validation

This section compares the result from the analytical solutions to the finite element

analyses. The objective of this study is to validate the results from finite element

analyses. The experimental data published in literature are also used to validate the

analytical and finite element solutions.

An experiment that has been done on a PVDF bimorph is first simulated. The

bimorph beam is subjected to a constant electric field input. The PVDF layer is

polarized through its thickness direction. The configuration of the beam is illustrated

in figure 4.2. This beam is modeled with the results from equation (4.11) with hs = 0
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and hp = h/2. Figure 4.2 also illustrates the electrodes that are placed on the top,

bottom and middle layers of the beam. The electric potential is applied to the

central electrode, and the top and bottom electrodes are grounded. This actuation

architecture guarantees that the two PVDF layers will be under electric field in the

opposite direction, inducing opposite axial stresses to the top and bottom layers and,

allowing for the beam to bend. The distribution of the electric potential through the

thickness of the beam from the finite element analyses is shown in figure 4.3. The

bending deformation of the bimorph beam is predicted using a linear piezoelectric

constitutive equation. Experimental data reported by [73] and analytical solutions

[16, 24, 70] of the tip deflection of the bimorph beam are used for comparisons.

The material properties used for the PVDF are taken from [70] and also [24]. The

Young’s modulus Cp or Ey is considered to be 2GPa and the shear modulus is

taken 1GPa. The electro-mechanical constant for PVDF, in this case, is taken as

e311 = e = 0.046C/m2. The dielectric constant or electric dielectric coefficient is

taken to be kε = 0.1062 × 10−8F/m. The bonding between the different layers in

the bimorph beam is assumed perfect; thus the traction and displacement continuity

conditions are imposed at the interface layers. The beam has a length L of 100mm,

width of 5mm and the thickness of the beam is 1mm. The middle layer is under

0.5 V. This results in 1000V/m electric field to each PVDF layer. The result from

the current model is compared with the experiment and also other computational

methods, which are presented in table 4.1. Good comparisons are observed among

the results.

The time-dependent behavior of active beams are presented here. The Laplace

transform method is used for obtaining analytical solutions of the time-dependent

electro-elastic beams. A bimorph beam shown in figure 4.1 is subjected to a sinusoidal

voltage. The time dependent kernel function for the electro-mechanical properties in
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Table 4.1: Numerical result from present model for deflection of PVDF bimorph

Method Detail Tip deflection ×10−7m
Experiment [73] 3.15

Analytical solution w(x) = 345x2 3.45
Plate FEM [24] 3.45

Beam Finite Difference 41 nodes 3.4
2D FEM present C2D9 in 10x4y 3.15

3D FEM ABAQUS C3D8E in 162x10y4z 2.99
3D FEM ABAQUS C3D20QE in 10x1y4z 3.4414

3D FEM present C3D20 in 5x2y2z 3.455

Figure 4.3: Bimorph PVDF beam electric potential distribution
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Figure 4.4: Tip deflection of bimorph beam, comparing Laplace solution with nu-
merical recursive method

equation (4.2) is chosen as Ke(t) = 1 + exp(−t). A sinusoidal electric field is applied

with frequency of 1 Hz and the amplitude 1 V/mm. The electro-mechanical coupling

effect is considered to be linear, ∂σ11
∂E3

= e311 = .046.

Using these values in equations (4.13)-(4.18) and taking inverse of the Laplace

transform, the analytical solution for the time dependent deflection of the beam is:

u3(x1, t) =
A(t)

B(t)
(4.19)

where A(t) and B(t) are the solutions of time dependent deformation that is obtained
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Table 4.2: Coefficients for close form time dependent solution of PVDF beam

n An Bn λAn λBn
0 −4.462664015× 1019 8.333333335× 1017 -1.0 0.0
1 5.678974503× 1020 1.326291193× 109 1.0 1.0
2 4.462664015× 1019 0 1.0 0.0

by a commercial computer algebra system, Maple. For the present case study with

the material properties for PVDF and the kernel function that is defined above, are

forms for A(t) and B(t) are:

A(t) = A0e
−λA0

t + A1sin(2πλA1t) + A2cos(2πλA2t)

B(t) = B0e
−λB0

t +B1sin(2πλB1t) +B2cos(2πλB2t)

(4.20)

where the constants for this equation are presented in table 4.2. The analytical

solution is compared with the numerical solution from the recursive finite element

analyses. A 3D quadratic element with 20 nodes is used for finite element. It is noted

that quadratic elements shown to be more accurate in dealing with bending. The

result from analytical solution and finite element analyses are compared in figure

4.4. A good match between the Laplace transform method and numerical solution

is observed. This validates the recursive integration algorithm for the linear time-

dependent electro-mechanical responses, which are implemented in finite elements.

The nonlinear electro-mechanical deflection of an active beam has been experi-

mentally observed by Lin et al. [42]. This experiment is used to validate the nonlinear

and time dependent closed form solution. The beam has three layers, two piezoelec-

tric and one metal substrate. A metallic layer is placed in the middle of the beam

with thickness of hs = 0.0075in. The substrate is made of stainless steel and its

elastic modulus is taken to be Es = Cs = 180GPa. Two piezoelectric active layer
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are placed on the top and bottom of the substrate with thickness of hp = 0.005in.

These layers are activated by electric potential. The frequency of the excitation is

1Hz and the electric potential is applied with amplitude of 100 V. The beam’s length

is L = 1.5in. The beam’s width is b = 0.375in. The stiffness of piezoelectric layers

in the longitudinal and transverse direction are reported as EL
p = Cp = 63GPa and

ET
p = 49GPa, respectively. The electro-mechanical coupling stress is considered to

be a nonlinear cubic function of electric field.

σe11(E3) = e0
311E3 + e2

311E
3
3 (4.21)

where the constants are taken to e0
311 = 14.5C/m2 and e2

311 = −6pC/m2. Moreover,

the time dependent kernel function is taken as

Ke(t) = Ke
0 +Ke

1exp(−λ1t) (4.22)

where the Prony constants are taken as: Ke
0 = 1.7, Ke

1 = −0.7 and λ1 = −0.7. The

beam is constrained to be simply supported. The result from the deflection produced

by the actuator along with the applied voltage is reported in [42]. This comparison

is shown in figure 4.5. The cubic approximation of the electro-mechanical coupling

is close enough to the experimental data.

4.1.4 Effect of Frequency on the Hysteresis Responses of Active Beams

The effect of different histories of electric potential inputs is also analyzed. Con-

sider a bimorph beam consisting of two layers of polarized piezoelectric ceramics and

an elastic layer, as shown in figure 4.1. In order to produce a bending deflection in

the beam, the two piezoelectric layers should undergo opposite tensile and compres-
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Figure 4.6: Tip deflection of bimorph beam, comparing observing effect of frequency
of applied electric field

sive strains. The beam is fixed at one end and the other end is left free; the top and

bottom surfaces are under a traction free condition. A potential is applied at the top

and bottom surfaces of the beam and the corresponding displacement is monitored.

A bimorph beam without an elastic layer placed in between the piezoelectric lay-

ers is studied as it is shown in figure 4.2. It is assumed that the beam is relatively

slender so that it is sensible to adopt Euler-Bernoulli beam theory in finding the cor-

responding displacement of the bimorph beam. Since a uniform voltage is prescribed

on the top and bottom surfaces of the beam, the problem reduces to a pure bending

problem. The beam has a length of 100mm, width of 1mm and the thickness of each

piezoelectric layer is 1mm. The following time-dependent properties of PZT5A are

used for the bending analyses.
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Cp(t) = 90KC(t)GPa KC(t) = 1 + exp(−0.02t)/3

e(t) = −5.35Ke(t)C/m2 Ke(t) = 1 + exp(−0.2t)/4

(4.23)

A sinusoidal input of an electric potential with various frequencies are applied.

figure 4.6 illustrates hysteresis response of the bending of the bimorph beam. The

displacements are measured at the free end (x1 =100mm). When the rate of loading

is comparable to the characteristics time, the effect of time-dependent material prop-

erties on the hysteretic response becomes significant, as shown by the response with

frequencies of 0.05Hz and 0.1Hz. When the rate of loading is relatively fast (or slow)

with regards to the characteristics time, i.e. f=0.01Hz and 1Hz, insignificant (less

pronounced) time-dependent effect is shown, indicated by narrow ellipsoidal shapes.

4.2 Active Fiber Composites

Active Fiber Composite (AFC) is an active material that is designed to amplify

the deflection due to piezo-electric effect. In AFCs PZT5A fibers are embedded in the

epoxy matrix and are aligned along the longitudinal direction. The electric field is

applied to PZT5A fiber through the aluminum electrode fingers that are placed on the

top and bottom of the fibers. Aluminum electrode fingers are aligned perpendicular

to the longitudinal axis of fiber in the width direction of AFCs. Electrodes that are

placed on the top and bottom surfaces of the AFC have the same electric potential.

Therefore, the electric field on the central plane of the AFC is zero. Electrodes that

are adjacent to each other in the longitudinal direction of the AFC have the opposite

electric potentials. As a result, an electric field is formed along the longitudinal

direction of fibers and the electric field is not uniformly distributed along the fibers.

The electric field in the gap between electrodes is directly proportional to the value

of applied potential and inversely proportional to the distance between electrodes.
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Figure 4.7: Active fiber composite and applying electric potential

An example of AFCs is shown in figure 4.7. A schematic of the placement of fibers

and electrodes is shown in figure 4.8 [33].

The configuration of AFC patch is symmetric with respect to its thickness direc-

tion. Moreover, there is a periodic pattern in the placement of fibers, electrodes and

matrix in the longitudinal direction of AFC. Due to this symmetry and periodic con-

figuration, a unit cell model for AFC is defined as a representative microstructure.

This unit cell is used to determine the overall electro-mechanical behavior of AFC.

4.2.1 Unit Cell of an Active Fiber Composite

The smallest possible unit cell of AFC is considered in order to determine its

overall behavior. This unit cell contains one quarter of fiber in the space between

two electrodes as shown in figure 4.9. The unit cell has dimensions of L1×L2×L3 =

140µm × 175µm × 750µm. A PZT5A fiber with the radius of 125µm is embedded

in epoxy matrix as shown in figure 4.9 (right). Two aluminum electrodes are seen

in the unit cell under the fiber with thickness of 10µm. Each aluminum electrode

finger is 250µm long and due to periodicity of the microstructure only half of each
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Figure 4.8: Schematic for placement of fibers and electrodes in the epoxy matrix*
[33]

electrode is considered in the unit cell. There is 500µm gap between two electrodes

that is filled with epoxy. Moreover, there is 4µm vertical threshold between the

electrodes and PZT5A fiber that is filled with epoxy. The electric potential applied

to the aluminum electrodes induces electric field inside the epoxy and also inside the

PZT5A fiber.

The mechanical response of epoxy is considered to be linear viscoelastic. The

epoxy has very small electro-mechanical coupling that can be neglected in the anal-

yses. The electric potential is transferred from the electrodes to fibers through the

epoxy. Therefore, the dielectric properties of epoxy have a significant effect on the

overall electro-mechanical properties of AFC [12]. The electric potential is applied

to the two aluminum electrodes, which are shown in the unit cell in figure 4.9. The

embedded aluminum electrodes have 10µm thickness. It is noted that only half of
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Figure 4.9: Geometry of AFC unit cell (dimensions are in µm)

each electrode is considered in this unit cell. The length of each electrode is 250µm.

Two electrodes that are considered in the unit cell are charged with electric poten-

tials with opposite signs. The response of aluminum fingers embedded in the AFC

is assumed linear elastic.

The periodic and symmetric boundary conditions are prescribed to the unit cell

in order to model the effective behavior of AFC. The boundary conditions prescribed

on the unit cell of AFC are given as follows:

x1 = −L1

2
, u1 = 0 ,

∂φ

∂x1

= 0 ; x1 =
L1

2
,u1 = ū1 ,

∂φ

∂x1

= 0

x2 = −L2

2
, u2 = 0 ,

∂φ

∂x2

= 0 ; x2 =
L2

2
,u2 = ū2 ,

∂φ

∂x2

= 0

x2 = −L3

2
, u2 = 0 ,

∂φ

∂x3

= 0 ; x3 =
L3

2
,u3 = ū3 ,

∂φ

∂x3

= 0

(4.24)

where the geometry of the unit cell shown in figure 4.9 is defined in x1 ∈ [−L1/2, L1/2], x2 ∈

[−L2/2, L2/2], x3 ∈ [−L3/2, L3/2].

The matrix, electrodes and fibers are bonded together with adhesive. It is as-

sumed that the adhesive has the same mechanical and electrical properties as the

epoxy. Only the piezoelectric fiber experiences electro-mechanical coupling due to
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Table 4.3: Material properties of AFC

PZT5A epoxy Aluminum
Young’s Modulus 60.06 1.5 69 GPa
Poisson’s Ratio 0.3 0.35 0.33

e113 -59.5 C/m2

e311 8.00 C/m2

e333 -27.196 C/m2

κ11 = κ22 4 8.854 pF/m
κ33 2 8.854 pF/m

0Ke
ijk 1.0

1Ke
ijk -0.45

0λeijk 0 s
1λeijk 1.5 s

0Kc
ijkl 1.0

1Kc
ijkl 0.4

0λcijkl 0 s
1λcijkl 0.8 s

the applied electric field. The strain induced inside the fiber causes deformations of

the unit cell. The viscoelastic properties of the epoxy and the time dependent electro-

mechanical response of piezo electric fiber can affect the overall deflection of the unit

cell. The finite element analyses for the nonlinear time-dependent electro-mechanical

response are used to simulate and predict the behavior of AFC.

The electric potential is applied to the electrodes in the unit cell. The material

properties that are considered for PZT5A fiber, epoxy matrix and aluminum elec-

trodes are presented in table 4.3. The distribution of electric potential is shown in

figure 4.10. In this picture the positive and negative electric potentials applied to

the unit cell are shown.

4.2.2 Validating The AFC Model with Experiment Data

Finite element analyses for AFC unit cell are validated with the existing exper-

imental results. The detailed experimental procedure is discussed in [11]. In order
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Figure 4.10: Distribution of electric potential in its unit cell of AFC (Electrode
Voltage is 380V)
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Figure 4.11: Electro-mechanical hysteresis at 1Hz compared with experiment
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to calibrate the properties of PZT, line between two peaks of the hysteresis curve

from experimental data is used to find the linear and time independent material

properties. The material properties for the epoxy and aluminum are taken from

[12]. Aluminum is considered elastic. Then, the width of hysteresis curve is used to

determine the time-dependent coefficient presented in table 4.3.

The comparison between experimental data and the results from FE analyses with

linear time dependent electro-mechanical coupling for PZT is shown in figure 4.11.

The hysteresis response shown in the deflection of this unit cell is due to the time

dependent response of the epoxy matrix and also time dependent electro-mechanical

coupling of piezo-electric fiber. There is good comparison between the experiments

and FE analyses. The distribution of displacement field in the unit cell is shown

in figure 4.12. As expected the value of displacement in the longitudinal (X3-axis)

direction is significantly larger than the other two directions.

At higher amplitudes of electric field, AFC shows nonlinear and time dependent

response due to nonlinear electromechanical coupling. This effect is simulated using

the QLV model that has been discussed in the previous chapters. A polynomial for

the nonlinear electric field is considered. The material parameters for this model

are presented in table 4.4. It can be seen that model shows some deviation from

experimental results. The deviation between the experimented and numerical results

at higher amplitude of electric field could be due to effect of polarization switching

in some parts of piezoelectric fiber. It is noted that in the AFC and distribution

of electric potential inside the fiber is not uniform. In some part of fiber where

the intensity of electric field is larger than the coercive field, which could cause

polarization switching. This effect will cause large deviation between the result from

the current analyses and experiment.
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(a) Displacement in x1 (x) direction

(b) Displacement in x2 (y) direction

(c) Displacement in x3 (z) direction

Figure 4.12: Displacement field distribution in unite cell of AFC in mm (Electrode
Voltage is 380V)
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Table 4.4: Nonlinear material properties of AFC

PZT5A Epoxy Aluminum
Young’s Modulus 60.06 1.5 69 GPa
Poisson’s Ratio 0.3 0.35 0.33

e113 -18.9 C/m2

e311 9.82 C/m2

e333 -8.0 C/m2

κ11 = κ22 4 8.854 pF/m
κ33 2 8.854 pF/m

0Ke
ijk 1.0

1Ke
ijk -0.6

0λeijk 0 s
1λeijk 1.5 s

0Kc
ijkl 1.0

1Kc
ijkl 0.1

0λcijkl 0 s
1λcijkl 0.8 s

b̂3333 1.5× 10−5 N/V 2
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Figure 4.13: Nonlinear electro-mechanical hysteresis for different electric fields at
1Hz compared with experiment
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4.2.3 The Effect of Scale Time on Electro Mechanical Response of AFC

It can be shown that at higher intensity of electric field the piezoelectric mate-

rials respond faster to the change in electric field. We use the same analogy with

thermorheologically simple materials that have widely used for mechanical response

of polymers [28, 72]. The time scale factor is defined as an exponential function with

respect to the electric field intensity |E|. Then the reduced time is defined as:

φ(t) =

∫ t

0

ds

a(|E|)
(4.25)

where a(|E|) is the time shift factor that is defined in terms of then electric field

vector:

a|E| = e−γE×|E| (4.26)

where γ is the material constant.

Figure 4.14 shows the result of time-dependent analyses, including the time shift

concept for piezoelectric materials. The shift material constant is taken as γE =

1.75m/MV . Rests of the material properties are same as table 4.4. Except that for

linear time dependent response of PZT5A b̂3333 = 0 and 1Ke
ijk = −0.6 are taken.

Better predictions of the experimental data are observed.

In order to examine the rate (frequency) dependent response, parametric studies

are presented by applying electric fields at various frequencies. The corresponding

strains response of the model under different frequencies and amplitudes are shown

in figure 4.15. It is apparent from the results that higher frequency and also very

low frequency of loading reduces time-dependent (hysteresis) effect. This is because

the process time (or duration of loading) in case of lower frequency loading is much
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longer than the characteristic creep/relaxation time in the material, while for high

frequency loading, the process time is much faster than the characteristic time of the

materials. In such situation, the effect of time associated with the creep/relaxation

behavior is less significant.

Finally, responses of AFC at different frequencies are compared with available ex-

perimental data from Ben Atitallah [11]. Figure 4.16 shows the electro-mechanical re-

sponses of AFC at frequencies 0.2, 1, and 5 Hz under applied electric field 0.6MV/m,

compared with experiment [11]. Four Prony terms are used for electromechanical

coupling coefficients of PZT fiber to capture response of model at different frequen-

cies. The mechanical and electrical properties of the constituents of AFC are shown

in table 4.5. Reasonable response predictions are shown for the three frequencies

considered.
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(b) Frequency 0.2 Hz
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Figure 4.15: Effect of frequency of applied electric field on strain response of AFC
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Figure 4.16: Mechanical response of AFC model to different frequencies of applied
electric field, compared with experiment [11]
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Table 4.5: Material properties of AFC with four Prony series

PZT5A Epoxy Aluminum
Young’s Modulus 60.06 1.5 69 GPa
Poisson’s Ratio 0.3 0.35 0.33

e113 -12.7764 C/m2

e311 10.3935 C/m2

e333 -24.5388 C/m2

κ11 = κ22 4 8.854 pF/m
κ33 2 8.854 pF/m

0Ke
ijk 1.0

1Ke
ijk -0.13

2Ke
ijk -0.30

3Ke
ijk -0.10

4Ke
ijk -0.26

0λeijk 0 s
1λeijk 0.2 s
1λeijk 1.0 s
1λeijk 10 s
1λeijk 60 s

0Kc
ijkl 1.0

1Kc
ijkl 0.1

0λcijkl 0 s
1λcijkl 0.8 s
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5. ACTIVE TRUSSES

Simulations of shape changing in active truss structures are discussed in this

chapter. Finite element analyses of 3D truss system are presented and both material

and geometric nonlinearities are considered in the analyses. Two truss systems with

cubical and tetrahedral arrangements of trusses as building blocks are considered in

order to generate planar truss and longitudinal (beam like) truss systems, respec-

tively. Shape changing in these truss systems is controlled by an actuation of each

truss component using a piezoelectric actuation.

5.1 Deformed Shapes

Consider a 3D continuum object in a reference configuration Xi. This continuum

object changes its shape from the reference Xi configuration to current configuration

xi. In the case of Lagrangian description, the current configuration is defined as a

function of reference configuration:

xi = χ(Xi) (5.1)

Since the new configuration is decided a priori, the mapping function χ(Xi) is defined

and the gradient of deformation is known:

Fij =
∂xi
∂Xj

(5.2)

The strain corresponding to the induced deformation in the truss system is easily

calculated. The Green-St. Venant strain is given as:

EKL =
1

2

(
∂xj
∂XK

∂xj
∂XL

− δKL
)

(5.3)
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In order to induce the desired strain in each truss member associated with the shape

change, an electric field is prescribed to the truss member. The deformation in each

truss member is considered only along the longitudinal axis of each truss. Thus,

strain transformation from the global coordinate to the local orientation of each truss

member is needed in order to determine amount of strain in the longitudinal axis

of each truss. Discussion on the strain transformation is presented below. Once the

amount of longitudinal strain for each member has been determined, the constitutive

relation is used in order to calculate the magnitude and direction of external stimuli

that should be prescribed:

E11 = f1(S11) + f2(E3) (5.4)

where E11 is the axial strain along the longitudinal axis of each truss member, f1(S11)

is the strain due to the mechanical stress along the longitudinal axis of the truss S11

and f2 is the strain due to the electric field input, prescribed through the thickness

of the truss, E3. In order to achieve desired shapes in the truss system, either stress

or electric field, or both stress and electric field can be prescribed.

5.2 Nonlinear Truss Finite Element

Truss systems consist of relatively slender members connected by pin joints. The

pin joints allow the members to rotate with respect to each other. Each truss element

is specified by two joints in the space and the shortest distance connects these two

joints. Let us consider two joints P1 and P2. The locations of these two joints in the

reference configuration are defined by two vectors namely XP1 and XP2 . The vector

that connects these two joints in the reference configuration is defined as:

V12 = XP2 −XP1 (5.5)

106



and the base vector in the longitudinal direction of each truss member that connects

these two joints is:

N12 = V12/‖V12‖ (5.6)

The base vector in the longitudinal direction of each truss member N12 is used to

define a transformation matrix between local and global coordinates. The longitu-

dinal strain in each truss member is related to the global strain of the truss system

by a transformation Q = N12 ⊗N12. This transformation is used to determine the

magnitude of strain along the longitudinal axis of the truss. The constitutive relation

for the truss is discussed later in this chapter.

The displacement in the truss systems is defined in terms of a displacement of

each node with respect to the reference configuration:

uP1
i = xP1

i −X
P1
i ;uP2

i = xP2
i −X

P2
i ; (5.7)

If linear test functions are used for the finite element approximation, the displacement

at each point on the truss can be interpolated as a linear function. The same shape

function is used to interpolate the geometry of the truss. The master shape function

of the isoparametric element ζ ∈ [−1, 1] is introduced as:

ψ1 = 0.5(1 + ζ);ψ1
,ζ = 0.5

ψ2 = 0.5(1− ζ);ψ2
,ζ = −0.5

(5.8)

The mapping must be defined from each truss element into this master element. The

global deformation gradient is:

∂ui
∂Xj

=
∂ui
∂ζ

∂ζ

∂Xj

(5.9)
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For the truss element in 3D the gradient of deformation is:

∂Xj

∂ζ
=

NPE=2∑
i=1

ψi,ζX
Pi
j (5.10)

where NPE is the number of joints in an element. It is noted that the integration

is done on the member that connects two joints of the truss element. Then the

deformation gradient at a point on the truss is defined as:

Fij = δij +
∂ui
∂Xj

; (5.11)

5.2.1 Space Filler Truss Configuration

The first example considered is a planar truss. The truss is formed by cubical

elements. Figure 5.1 provides an example for one of these elements. Each of the

elements consists of 12 side and 4 diagonal truss members. Deformation of the

members can be controlled by various stimuli, including electric fields. Changes in

the length of each member will cause change of shape of each single cubical element

and consequently change in shape of the structure that is made of these members.

As an example, consider a planar domain that is in the form of a plate structure.

The domain is defined as follows:

X1 ∈[−L1/2, L1/2]

X2 ∈[−L2/2, L2/2]

X3 ∈[−h/2, h/2]

(5.12)

Let us first consider [L1, L2, h] = [1, 1, 0.1] unit is in meter, and fill the domain

with 20x20 elements in X1 and X2 directions and 1 element in X3 direction. The

planar truss is shown in figure 5.2. If the truss system is intended to have a shape as
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Figure 5.1: One element of space filler truss
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is shown in figure 5.3 the mapping between the reference and current configurations

for X3 = X1X2 surface is defined as follows.

x1(X1, X2, X3) =X1

x2(X1, X2, X3) =X2

x3(X1, X2, X3) =X3 +X1X2

(5.13)

The deformation gradient for this above mapping function is defined as:

F =


1 0 0

0 1 0

X2 X1 1

 (5.14)

Then the stretch tensor C = FTF and Green-St. Venant strain tensors are:

C =


X2

2 + 1 X1X2 X2

X1X2 X2
1 + 1 X1

X2 X1 1

 ; E =


X2

2 X1X2 X2

X1X2 X2
1 X1

X2 X1 0

 (5.15)

The transformation from the above-calculated strain to the local strains along the

longitudinal axes for all members in the truss system is done by Etruss = E ·Q. The

transformation matrix is obtained from the base vector of each truss and is discussed

in the previous section.

In order to induce the shape changes shown in figure 5.3, electric field is prescribed

to each truss members. To determine the amount of strains along the longitudinal

axes of the truss members, the strain tensor given in equation (5.15) is transformed

to the local orientation for the truss members following the strain transformation

in Section 5.1. Figure 5.4 shows the deformed shape of the planar truss due to
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Figure 5.2: Planar truss in reference configuration

Figure 5.3: The desired current configuration for the planar truss
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Figure 5.4: Shape changing in the planar truss

Figure 5.5: The deformed configuration for the planar truss under electric field
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applications of electric field, and the amount of electric field prescribed in shown

in figure 5.5. Linear electro-mechanical constitutive relation is considered and the

following piezoelectric constant is used d0
311 = 340pmV . It is seen that the amount

of electric field required to activate the truss is high, which might be beyond the

tolerance of the materials. The main reason is due to the use of linear electro-

mechanical relation for the piezoelectric materials. It will be shown later, when

a nonlinear constitutive relation is considered, shape changes in the truss systems

can be achieved with reasonable values of electric field input, which is within the

operating condition of piezoelectric ceramics.

It is shown in figure 5.5 that the application of electric stimuli to each truss

member can induce desired shape. The space filler truss that has been discussed in

the previous chapter can offer good flexibility for planar shapes.

Another shape that is considered for the planar truss is the saddle point surface.

The shape X3 = X2
1 − X2

2 is induced in the planar truss with the same procedure

that is already described.

The strain induced in each truss for this truss configuration in shown in figure

5.6. If we assume that truss member are made of electro active materials with

overall electromechanical coupling coefficient as d0
311 = 340pm/V . The corresponding

required electric field contour for each truss will be as in figure 5.7.

5.2.2 Tetrahedral Beam Like Truss

Using a tetrahedral shape as a building block for truss configurations it is possible

to form the longitudinal truss elements to take a beam like form. The building block

of the tetrahedral beam like truss is shown in figure 5.8 that contains 3 tetrahedral.

The beam like truss is formed by arranging these tetrahedral units in one direc-

tion. An example of truss with 150 tetrahedral units is shown in figure 5.9.
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Figure 5.6: The strain contour of planar space filler truss for the X3 = X2
1 − X2

2

shape (displacement are scaled 20 times)

Figure 5.7: The electric field contour of planar space filler truss for the X3 = X2
1−X2

2

shape (displacement are scaled 20 times)
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Figure 5.8: The building block of tetrahedral beam like truss

Figure 5.9: Tetrahedral beam like truss with 150 units that is used as reference
configuration
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It can be seen form the cross section view of the beam in figure 5.10 that none

of the truss members crosses the center line. Therefore, this configuration behaves

like a hollow beam. Several examples of bending deformations are considered for the

truss system. The bending can be induced by creating normal strain in the axial

direction of the truss members along the longitudinal axis of the beam. In the simple

bending case and disregarding the thought thickness shear of the beam, along the

axis normal strain of the beam is defined with respect to the radius of curvature of

the beam rcurvature:

rcurvature =
Lbeam

2θ

E11 = X3/rcurvature

(5.16)

where X3 is the direction normal to the longitudinal axis of the beam like truss

and X1 is defined along longitudinal axis of the beam like truss. The remaining

strain components are taken as zero. θ is the curvature angle (for full circle it is

2π) and Lbeam is the length of the beam made of tetrahedral units. The strain

E11 = X3/rcurvature causes lateral deformation in the X3 direction with positive

curvature.

We try to produce the shape of an arc with a curvature angle π. The result is

shown is figure 5.11. As can be seen the shape is quite different from the real arc.

The reason of the difference between the produced shape and desired shape is due to

disregarding the normal strain in the thickness direction of beam that is produced

in bending of a beam. Increasing the curvature in the tetrahedral beam like truss

will cause a sinusoidal like shape in the truss as it is shown in figure 5.12. The strain

that is induced in this truss is taken from equation (5.16) with θ = 2π.

In order to get a shape closer to the actual bending of a beam we then apply the

normal strain in the thickness direction. This will cause a strain of the field closer to
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Figure 5.10: Cross section view of tetrahedral beam like truss (perspective view)

Figure 5.11: Arc shape produced in the tetrahedral beam like truss
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Figure 5.12: Cyclic shape produced in the tetrahedral beam like truss

the strain beam made of continuous solid members. We modify the bending strain

defined in equation (5.16) with the through thickness normal strain as follows:

E11 = X3/rcurvature + κv

E22 = −X3/(2rcurvature) + κv

E33 = −X3/(2rcurvature) + κv

(5.17)

where κv is the dilation that is added to mimic the effect of change in volume in the

beam. The remaining strain components are taken as zero. It is observed that if

κv = 2.0 there will be an arc forming in the beam like truss. This arc is shown in

figure 5.13.

In the last example we will try to apply a shape in the beam in the way that it

passes four specific points. Consider bending of a tetrahedral beam like truss in the

way that it passes through three points as follows:

X1 = (0, 0, 0)

X2 = (Lbeam/4, 0, Lbeam/8)

X3 = (3Lbeam/4, 0,−Lbeam/8)

X4 = (Lbeam, 0, Lbeam/8)

(5.18)
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Figure 5.13: Shape produced in the tetrahedral beam like truss including the all
normal strains

In this case it can be found that the following strain should be applied, the

remaining strain components are taken as zero:

E11 = X3

(
329

36Lbeam
− 220X1

L2
beam

+
280X1

3L3
beam

)
(5.19)

The desired shape and the final shape of the linear truss the case that it passes

through three specific points as are shown in figure 5.14.

5.2.3 Effect of Nonlinear and Time Dependent Constitutive Equation on Active

Truss

By prescribing the above calculated strain field to the truss structure, the desired

shape is attained. The corresponding strain in each truss element is achieved through

applications of electric field to the piezoelectric materials in the truss members. In

the case of piezoelectric patch with the electro-mechanical coupling factor d311 the

electric field that should be applied to each truss E3 can be found from the following

equation:
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Figure 5.14: Shape of tetrahedral beam that passes through four specific points

Etruss
11 =

3∑
i=1

3∑
j=1

EijN
truss
i N truss

j

Etruss
11 = E3d311

(5.20)

where N truss
i are the componenst of the base vector in the longitudinal direction of

each truss member N12 that is defined in equation (5.6). E3 is the electric field that

should be applied to each truss element to induce the deformation. When a nonlinear

electro-mechanical constitutive equation is considered, the strain in the longitudinal

axis of each truss is a nonlinear equation. The relationship between the strain and

electric field can also be taken as time dependent to include hystersis response of

piezoelectric materials.

The effect of nonlinear and time dependent electro-mechanical response of each

truss member on the overall deformation of truss structure is examined. The time

dependent constitutive equation based on quasi linear viscoelastic model that was
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Figure 5.15: The strain distribution in a beam like tetrahedral truss in the arc
configuration

Figure 5.16: The electric field distribution in a beam like tetrahedral truss in the arc
configuration

introduced in previous chapters is used. The tetrahedral truss system is used for

these analyses and the desired shape is taken to be an arc with arc angle of π/2.

The strain distribution for this configuration is shown in figure 5.15. If we take the

electromechanical coupling factor as d0
311 = 340pm/V the corresponding required

electric field contour for each truss shape is shown in figure 5.16.

At first the analyses is conducted for a linear constitutive model for the truss. The
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Figure 5.17: Linear and time independent model for deflection under frequency 1Hz

coupling between the stimuli and strain in the truss members are taken to be linear

and independent of time. The relationship between the input stimuli and maximum

deflection in the middle of beam like tetrahedral beam in this analyses is shown in

figure 5.17. The stimulus is applied to each truss member with the frequency of 1Hz.

The nonlinear relationship between the deflection and input stimuli that is shown in

figure 5.17 is mainly due to geometric nonlinearity.

In case the time dependent electro-mechanical response, a cyclic electric field

input with frequency 1Hz is prescribed. The time kernel function with K(t) =

1.0 − 0.6exp(−t/1.2) is considered within the integral representation for the strain
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Figure 5.18: Linear and time dependent response for deflection under frequency 1Hz

ε11(t) =
∫ t

0
K(t − s)∂ε11

∂E3

∂E3(s)
∂s

ds with ∂ε11
∂E3

= −d311 taken to be 340pm/V . The

hysteresis between the input stimuli and deflection is shown in figure 5.18.

We follow the same approach as previous chapters and assume the nonlinear and

time dependent response for the constitutive equation in each truss element. We

define a nonlinear response function ε11(E3) = −d0
311E3 − d1

311|E3|E3. Here we take

d0
311 = 340pm/V and1 d1

311 = 0.02fm2/V 2. The results from taking a nonlinear

and time dependent electric coupling between electric stimuli and resulting strain

is shown in figure 5.19. The hysteresis curve shown in figure 5.19 combines the

1f here stands for femto i.e. 10−15
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Figure 5.19: Nonlinear and time dependent response for deflection of beam like truss
under frequency 1Hz

nonlinear response both from the large geometry and also from the nonlinear electro-

mechanical constitutive in each truss. In figure 5.20 the configurations of the truss

corresponding to four different values of electric stimuli are shown.

As it can be seen from figures 5.15 and 5.16 the applied strain and therefore

electric field can be beyond the limits of material. With a little investigation on

the location of the maximum strain, it has been shown that even with the limiting

amount of strain it is still possible to get the same shape.

The 1% strain is chosen as maximum applicable strain. As a result of limiting
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Figure 5.20: The snapshots of linear tetrahedral truss in configurations labeled in
figure 5.19

strain the resulting shape will change slightly. The resulting shape with this limiting

strain is shown in figure 5.21. Moreover, less electric field will be needed for the

actuation as it is shown in figure 5.22. Application of limiting strain in the model

will decrease the maximum overall deflection of truss. This will also change the shape

of hysteresis curve as shown in figure 5.23.

In order to examine the rate (frequency) dependent response, parametric studies

are presented by applying electric fields at various frequencies. Different frequency

inputs are applied to the same material constitutive model presented in this sec-

tion. The corresponding strains response of the truss under different frequencies and

amplitudes are shown in figure 5.24. It is apparent from the results that higher fre-

quency of loading reduces time-dependent (hysteresis) effect. This is due to the fact

that the material does not have enough time to exhibit time-dependent effect. In

higher frequency the response is very similar to the instantaneous responses.
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Figure 5.21: The strain distribution in a beam like tetrahedral truss in the arc
configuration with limiting strain 1%

Figure 5.22: The electric field distribution in a beam like tetrahedral truss in the arc
configuration with limiting strain 1%
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Figure 5.23: Nonlinear and time dependent response for deflection of beam like truss
under frequency 1Hz with limiting strain
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(b) Frequency 0.2 Hz
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(c) Frequency 0.5 Hz
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(d) Frequency 2.0 Hz
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(e) Frequency 5.0 Hz
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(f) Frequency 10.0 Hz

Figure 5.24: Effect of frequency of applied electric field on strain response of tetra-
hedral truss
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6. CONCLUSION

This study presents nonlinear and time-dependent electro-mechanical analyses of

piezoelectric based materials and structures. Ceramics based piezoelectric materials,

such as lead zirconate titanate (PZT), are considered, and their hysteretic behav-

iors under various magnitude of electric-field stimulus are studied. Phenomenological

constitutive models have been formulation in order to capture minor and major loops

of piezoelectric ceramics under cyclic electric field inputs. A quasi-linear viscoelastic

(QLV) model is adopted in order to incorporate the time-dependent effect on the

nonlinear electro-mechanical response of piezoelectric ceramics. These phenomeno-

logical models are implemented in continuum 3D finite elements, which are useful for

analyzing behaviors of several piezoelectric structures and structural components un-

der various boundary conditions. A time-integration algorithm, based on linearized

predictor and corrector schemes, has been developed to solve for the nonlinear time-

dependent electro-mechanical response at the material and structural levels. The

nonlinear time-dependent electro-mechanical models have been validated with ex-

perimental data on PZT materials and structural components such as telescopic

actuators and bimorph beams.

The integrated time-dependent electro-mechanical material model and finite ele-

ment analysis is also used to study the overall electro-mechanical responses of active

fiber composites (AFCs). AFCs comprise of long unidirectional piezoelectric fibers

embedded in polymeric matrix and placed in between two electrode fingers on the

top and bottom surfaces of the AFCs. Electric fields are prescribed through the

electrode fingers in order to actuate the AFCs. AFCs form flexible piezoelectric

ceramics based actuators suitable for morphing, bending, and/or twisting type of
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deformations. In this study, a unit-cell model of AFCs comprising of a segment of

quarter fibers, epoxy matrix, and metallic electrode fingers is considered in order

to reduce computational cost. The overall nonlinear electro-mechanical hysteretic

responses of the unit-cell model are comparable to the ones of experimental data.

The presented study on AFCs is useful in designing electro-active composites with

various microstructural architectures and properties of constituents as it can give

an estimate of the overall electro-mechanical responses of electro-active composites

prior to manufacturing them.

Finally, the nonlinear time-dependent electro-mechanical constitutive model is

integrated to 3D truss finite element and used to analyze shape changing behav-

iors of active truss systems. The active truss system consists of arrangements of

truss elements, and some of the elements are integrated with active materials such

as piezoelectric, in which shape changing in the entire truss systems is generated

by activating some or all of the active elements. In this study, two types of truss

arrangements are considered and deformed shapes of a truss structures are controlled

by the application of electric stimuli. Parametric studies on the effect of time depen-

dent and nonlinear constitutive equation in controlling the shapes of truss structures

are conducted.
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