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ABSTRACT     

 

The present work focuses on the microstructural and magneto-thermo-mechanical 

characterization of off-stoichiometric meta-magnetic shape memory alloys (MMSMAs) 

with the aim of identifying key material parameters to optimize their giant magneto- 

(MCE) and elastocaloric (ECE) effects. Several alloy compositions of NiFeGa, 

Ni(Co)MnIn, and Ni(Co)MnSn have been studied to quantify their solid state energy 

conversion performance, in particular the conversion of magnetic and mechanical energy 

into thermal energy, and to reveal how this performance is influenced by microstructural 

features tailored using carefully selected heat treatments. To identify how heat treatments 

influence the energy conversion performance of the selected alloys, a previously 

established thermodynamic framework, which defines the refrigerant capacity (RC) of 

non-shape memory alloys (SMAs), was employed with the thermodynamic relations 

describing first order martensitic phase transitions.  

Applying the RC framework to MMSMAs demonstrated that most of the key 

materials parameters relating to the martensitic transition can be combined to predict the 

magnetic field, or mechanical stress, needed to complete the transformation across a 

specific operating temperature range; reducing these driving force requirements was the 

primary focus of the experimental part of this work. Magnetometry, calorimetry, and 

specialized compression tests were performed on the heat treated SMAs.  

An experimental apparatus, called the magneto-thermo-mechanical 

characterization (MaTMeCh) device, was designed, constructed, and implemented to 
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reduce the magnetic field requirements needed for a complete field-induced martensitic 

transformation by simultaneous application of external stress and magnetic field. This 

device allows simultaneous control of temperature, magnetic field, and stress while 

measuring magnetization, strain, stress, and temperature. With the MaTMeCh device, 

uniaxial compressive stresses up to 200MPa, magnetic fields up to 9T, and temperatures 

between -100°C and 80°C can be applied to a compression specimen. Using the 

MaTMeCh device, cyclic stress-assisted magnetic field induced transitions demonstrated 

the full thermal energy conversion capabilities of cost effective meta-magnetic shape 

memory alloys. 

Prior to magneto-thermo-mechanical characterization, numerous SMA 

compositions were fabricated and heat treated to promote grain growth and a specific 

degree of long range crystallographic order. Studies, herein, indicated that minimizing the 

microstructural grain constraint, by producing a large grain size to thickness (GS/t) ratio 

in polycrystalline SMA ribbons, ultimately reduced the magnetic field levels needed to 

completely harness the SMA’s magnetocaloric effect.  Additionally, B2 crystallographic 

ordering in NiCoMnIn single crystals was found to offer a more efficient magnetic to 

thermal energy conversion efficiency than the typical L21 ordered alloys. Larger caloric 

effects were measured in the alloys exhibiting a higher martensitic transformation 

temperature, i.e. the B2 ordered alloys. As such, B2 ordered single crystals were 

characterized with the MaTMeCh device, thus lending the ability to measure their 

maximal magnetocaloric performance. 
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NOMENCLATURE 

 

A   Austenite 

M   Martensite 

M A  Martensite to Austenite transformation 

A M  Austenite to Martensite transformation 

iy   Generalized driving force 

P   Pressure 

T   Temperature 

0T   Thermodynamic equilibrium temperature 

   Uniaxial stress 

cr   Critical uniaxial stress 

tr   Transformation stress hardening 

req   Required uniaxial stress to initiate A M  

iso

comp   Uniaxial stress needed to complete an isothermal A M  

ad

comp   Uniaxial stress needed to complete an adiabatic A M  

H   Magnetic field 

crH   Critical magnetic field 

reqH   Required magnetic field to initiate M A  

iso

compH   Magnetic field needed to complete an isothermal M A  
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ad

compH   Magnetic field needed to complete an adiabatic M A  

iX   Generalized displacement; conjugate to iy  

M   Magnetization 

   Uniaxial strain 

el   Elastic uniaxial strain 

tr   Uniaxial transformation strain 

V   Volume 

0V   Molar volume 

S   Entropy 

irrS   Entropy production from irreversible processes 

   Transformation fraction 

   Mass density 

pC   Specific heat capacity 

U   Internal energy 

G   Gibbs free energy 

   Helmholtz free energy 

A MG   Difference in total free energy between A and M 

A M

chG   Chemical free energy difference between A and M 

A M

mechE   Mechanical free energy difference between A and M 

A M

elG   Elastic free energy difference between A and M 
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irrE   Irreversible free energy barrier due to dissipation 

A M

magG   Magnetic Zeeman energy  

A M

MAEG   Magnetocrystalline anisotropy energy 

Q   Work on control volume provided by heat 

W   Work on control volume that influences volume 

'W   Work on control volume that does not influence volume 

W   Work 

lQ    Work loss on control volume through heat leaks 

fQ    Frictional work 

S    Isothermal entropy change 

fM   Martensite finish temperature 

sM   Martensite start temperature 

sA   Austenite start temperature 

fA   Austenite finish temperature 

adT   Adiabatic temperature change 

elasT   Thermal transition range 

hysT   Thermal hysteresis 

D   Demagnetizing factor 

f   Hall sensor calibration factor 

0   Permeability of free space 
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RC  Refrigerant capacity 

latentRC  Refrigerant capacity from latent heat 

RCP   Relative cooling power 

workT   Maximum thermal work 

   Energy conversion efficiency ratio 

latent   Energy conversion efficiency ratio from latent heat 

E   Magnetostatic energy density 

    Diffusion coefficient 

0f   Local change in free energy 

   Order parameter 

   Mobility coefficient 
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CHAPTER I                                                                                                                          

INTRODUCTION* 

1.1 Motivation 

Meta-magnetic shape memory alloys (MMSMAs) are one of the next generation 

of active materials owing to their unique magneto-thermo-mechanical energy couplings. 

They exhibit large magnetic field driven deformations as a result of a solid to solid 

structural phase transition and their functionalities are useful in sensing, magneto-

resistance, refrigeration, and/or actuation. Recent discoveries have shown that these 

materials exhibit large magnetocaloric effects and can yield cooling capabilities 

comparable to existing state of the art calorific materials. While MMSMAs exhibit great 

promise for caloric applications, their implementation is hindered by the large magnetic 

fields needed to drive the martensitic transformation. It is believed, however, that this 

limitation can be overcome with the use of mechanical stress and a deeper understanding 

of the physical mechanisms that drive their solid-to-solid phase transformations. 

 Here, a clear distinction between the types of caloric effects is made, followed by a 

discussion of analysis techniques used for characterizing the refrigeration performance of 

solid calorific materials. Experimental apparatuses and characterization techniques are 
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proposed and implemented to probe the influence of thermomechanical processing on 

MMSMA’s energy conversion capabilities. Finally, a magneto-thermo-mechanical 

characterization apparatus is designed, built, and implemented to measure the influence of 

mechanical load on the giant magnetocaloric effect. 

1.2 A brief history of refrigeration 

1.2.1 Solid-state refrigeration 

Since the 19th century, refrigeration devices have been studied, commercialized, 

and optimized. In recent years there has been a shift in interest from typical liquid vapor-

compression type refrigerators to those that use a solid compound as the working medium. 

The solid-state refrigerant can be driven by either a magnetic, mechanical, or electric field. 

First measured in pure nickel by Weiss and Piccard [1, 2], the magnetic field induced 

temperature change, or magnetocaloric effect (MCE), offered a cooling mechanism 

whereby no moving parts or synthetically derived liquids were needed to produce heat 

flow. Rather, the MCE was achieved by simply applying or removing a magnetic field to 

some solid magnetic material. 

Following Weiss’s original work, for approximately 10 years the MCE was not 

studied, only to be rediscovered around 1926 concurrently by Debye and Giauque [3, 4]. 

Between 1926 and the early 1970s, only a few magnetocaloric refrigeration devices were 

built. The scientific community seriously began investigating the MCE around 1973 after 

the discovery of ozone depletion from synthetic refrigerants containing 

chlorofluorocarbons (CFCs) [5]. This discovery prompted the Montreal Protocol 
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organized by the United Nations (UN), which then resulted in several meetings, e.g. the 

Earth Summit of 1992, aimed at promoting environmentally sustainable technology in 

countries around the world [6]. CFCs were banned in UN participating countries and their 

phase-out was set to begin in 1991. As an immediate, but unsustainable solution, CFCs 

were chemically bonded with hydrogen, resulting in substances known as hydro-

chlorofluorocarbons (HCFCs). These do not decompose the ozone, but instead linger in 

the lower atmosphere and act as greenhouse gases. As shown in the timeline and inset in 

Figure 1-1, the phase-out of CFCs and HCFCs was followed by an increased interest in 

the MCE in the scientific community. This was partially due to the fact that 

environmentally harmful refrigerants were no longer available and a replacement 

technology was needed. One promising replacement to vapor-compression type 

refrigerators is solid-state refrigeration driven by the magnetocaloric effect. In fact, very 

large magnetocaloric effects can be measured in magnetic materials exhibiting a reversible 

first-order phase transformation (FOPT) as discussed in the next section.  

1.2.2 The giant magnetocaloric and elastocaloric effect 

In 1997, Gschneidner et al. demonstrated the potential of the giant MCE in a FOPT 

material, Gd5(SixGe1-x)4 [7, 8]. They showed that this alloy was capable of producing 

thermal energy transfer of about 2J/g across a wide temperature range (~40K). The MCE 

capability observed in Gd5(SixGe1-x)4 was caused by a first order magnetic field induced 

structural phase transformation. The alloy was also shown to exhibit a temperature change 

of 7K under the application of 2T [8]. Conveniently, these temperature changes were
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achieved near room temperature. When the capabilities of Gd5(SixGe1-x)4  were compared 

to those obtained around the magnetic Curie point of conventional second-order 

ferromagnetic refrigerants, it was clear that the concurrent structural and magnetic 

transitions resulted in a “giant MCE”. In literature, this term is used to distinguish between 

second order (magnetocaloric) and first order (giant-magnetocaloric) effects. 

 

 

 

 

Figure 1-1: A timeline of refrigeration technology and significant events that have 

affected its evolution. The bottom inset shows the number of publications containing the 

keyword “magnetocaloric” (blue) and “elastocaloric” (orange) in the title per year since 

1991 [3-9, 11, 12] determined using webofscience.com. 

 

 

 

As shown in Figure 1-1, shortly after the phase-out of conventional CFCs, the 

popularity of the MCE blossomed in the scientific community. Since then, new cost 

effective magnetic FOPT materials, such as NiMn-based meta-magnetic shape memory 

alloys (MMSMAs), were discovered [9]. These materials were shown to exhibit similar 
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caloric effects by applying a mechanical load, i.e. the elastocaloric effect. The structural 

transformation induced by applying a mechanical load generates a giant elastocaloric 

effect (ECE) [10]. It is believed that these novel MMSMAs may offer additional benefits 

over the archetype Gd5(SixGe1-x)4 alloy for solid-state cooling by combining the driving 

mechanisms for ECE and MCE and, therefore, further scientific investigations on their 

physical behaviors are needed.  

1.3 Thermodynamics of shape memory alloys 

The following section describes the thermodynamic behavior of shape memory 

alloys so that physical relations can be developed describing their behavior. These 

relations are then employed to quantify the solid-state refrigeration performance from first 

order martensitic transformations observed in SMAs. As mentioned above, Gd is a popular 

non-SMA magnetocaloric refrigerant, but when comparing the physical mechanisms 

driving the magnetocaloric effect in Gd to those of shape memory alloys, the two effects 

cannot be explained with the same physics. Therefore, the thermodynamics of first order 

phase transformations are described in detail, below, and are later employed to describe 

the caloric effects in shape memory alloys. 

1.3.1 The shape memory effect 

The thermoelastic martensitic transformations in shape memory alloys (SMAs) 

were first discovered by Chang and Read [13] in an Au-Cd alloy. Further investigations 

lead to the discovery of the Ti-Ni SMA [14] and shortly after, the shape memory effect 
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(SME) became a widely recognized and studied phenomenon. The SME can be described 

by a basic illustration shown in Fig. 1-2. 

 

 

 

 
Figure 1-2: The shape memory effect (SME) is illustrated on a stress-temperature phase 

diagram.  

 

 

 

Above a temperature known as the austenite finish temperature, 
fA , the SMA is 

characterized by an austenite (A) phase. In Fig.1-2, circles represent crystal lattice sites. 

On cooling from A, as shown by a black arrow, the SMA begins to transform from the 

cubic A to a non-cubic twinned martensite (M) at the martensite start, sM , temperature 

and completes the transformation at the martensite finish, 
fM , temperature. The 

martensite that forms on cooling, nearly occupies the sample volume in such a way that 
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the strain energy associated with the transition is minimized; this is referred to as self-

accommodation. When applying a mechanical load to self-accommodated martensite, 

martensitic variants reconfigure to their stress-preferred orientation giving rise to large 

“de-twinning” strain.  Upon removing the mechanical load, the now de-twinned M does 

not return to its self-accommodated state. However, heating the SMA above the austenite 

start, 
sA , temperature results in a transformation between the de-twinned martensite to 

austenite. Upon reaching the 
fA  temperature, the original shape of the material is 

recovered, thus the alloy is capable of ‘remembering’ its original austenitic shape.  

The A to M transition in SMAs is commonly referred to as the forward martensitic 

transformation (MT) and the M to A, the reverse MT. Shape memory alloys are capable 

of very large recoverable strains under a bias mechanical load, and therefore, are typically 

well suited for actuation [15]. Here, however, the martensitic transitions are studied for 

their thermal properties. As shown in Fig. 1-2, a latent heat is generated from the structural 

transition between M and A phases. This latent heat is an indication of the amount of 

energy needed for the martensitic phase transformation to occur and is specific to first 

order transitions, whereby a change in lattice symmetry occurs. As shown in Fig. 1-2, 

austenite is depicted as cubic with many planes of symmetry; martensite exhibits fewer 

symmetry planes. 

To better understand the thermodynamics of MTs, in Fig. 1-3a the free energies of 

the A and M phases are plotted as a function of temperature. Below some equilibrium 

temperature, 0T , the free energy of the M phase is lower than that of the A phase, thus, in 
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the ideal situation, the SMA transforms to M. Above 
0T , the A phase exhibits the lowest 

free energy. In the figure, the minimal free energy is depicted by a dash-dot-dot line. Here, 

we probe at the thermodynamics of the martensitic transition, and therefore, we must fully 

understand the energetic contributions to the free energy, G , in Fig. 1-3a. To quantify G  

in the SMA illustrated in Fig. 1-3a, the internal energy must first be considered.  

 

 

 

 

 

Figure 1-3: (a) The Gibbs free energy as a function of temperature across the 

thermoelastic martensitic transformation, (b) the MMSMA control volume, and (c) the 

measured thermomagnetization curve under 1T across the martensitic transformation in 

Ni43Co4Mn42Sn11 meta-magnetic shape memory alloy. 
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Consider the control volume of the SMA in Fig. 1-3b as shown by the dashed 

rectangle. The energy inside the control volume, U , is be defined as [16] 

  ( , , , )U u S M V                                               (1.1) 

where U  is a function of extensive properties (those depending on the size of the control 

volume) including strain,  , entropy, S , magnetization, M , and volume, V . Any change 

of the extensive properties in the control volume in turn generates a change in internal 

energy, dU , as defined by  

 

 

'.dU Q W W                                                    (1.2) 

In Eqn. (1.2), the change in internal energy is constrained by the first law of 

thermodynamics, i.e. conservation of energy, and is the sum of heat and work applied to 

the system through the control volume boundary. The amount of thermal energy 

transferred across the boundary is defined as 

Q TdS                                                    (1.3) 

where Q TdS   is temperature and dS  is the resulting entropy change. The internal 

energy can also be influenced by pressure-work applied to the control volume boundary. 

This pressure-work changes the volume, V , and is therefore defined as  

W PdV                                                  (1.4) 

where P  is hydrostatic pressure and W  is negative due to convention. The negative in 

Eqn. (1.4) indicates that increasing the volume dilutes the internal energy. All other work 

terms that do not influence the volume (isochoric work terms), are represented by the 'W  
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term in Eqn. 1.2. In general, when including elastic and magnetic energies that don’t 

substantially influence volume, the change in internal energy of a SMA can be expressed 

as  

0 .dU TdS PdV HdM V d                                      (1.5) 

where H  is magnetic field,   is uniaxial stress, and 
0V  is the molar volume.  

To then quantify the Gibbs free energy, G , represented by martensite and austenite 

solid curves in Fig. 1-3a, a Legendre transform is applied to the internal energy in Eqn. 

(1.1), denoted as 

                                             0 .G U PV ST MH V                                       (1.6) 

As such, G  is the difference in enthalpy (U PV ) and the isochoric work. As shown in 

Fig. 1-3a, the thermoelastic martensitic transformation occurs when the M and A phases 

exhibit the same free energy, i.e. 

0A M A MG G G                                                 (1.7) 

where superscripts indicate the free energy of A and M phases and A MG   is the 

difference in the free energy curves. The temperature 0T , in Fig. 1-3a, is said to be a point 

of thermodynamic equilibrium. However, martensitic transformations in SMAs exhibit 

dissipation through defect generation and microstructurally stored elastic energy that 

needs to be overcome to trigger the transformation, thus undercooling and overheating are 

needed to initiate and complete the martensitic transition; this is illustrated by the 

transformation temperatures on either side of 0T . 
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As mentioned above, the SMA only transforms above and below specific 

transformation temperatures defined as, 
fA , 

sA , 
sM , and 

fM . These temperatures are 

illustrated in Fig. 1-3c above and below 
0T , and indicate the amount of isochoric work 

needed to initiate or complete the transformation. In other words, the transformation 

temperatures deviate from the ideal thermodynamic equilibrium point, 
0T , as a result of 

microstructurally stored elastic energy [15] and microstructural dissipation [15]. The 

magnitude of the dissipation is typically indicated by 
f sA M  and is known as thermal 

hysteresis, 
hysT , illustrated in Fig. 1-3c.   

As shown by Eqn. (1.6), G  is a function of isochoric work applied to the SMA, 

thus A MG   (Eqn. 1.7) is also a function of this work. Eqn. (1.8) quantifies the influence 

of the applied work terms and energy barriers that drive the martensitic transformation. 

The driving force quantified by Eqn. (1.8), below, must be equal to or less than zero to 

trigger the martensitic transition. Above and below 0T , this driving force can be defined 

as [17, 18] 

3 5 61 2 4

0

0 .

A M A M A M A M A M A M

ch mech el irr mag MAE

M A M A M A M A M A M A

ch mech el irr mag MAE

G G E G E G G T T

G G E G E G G T T

     

     

        

        

     (1.8) 

In Eqn. (1.8), the first term on the right side of the equation is the difference in 

chemical free energy above and below 0T , the second is the mechanical contribution from 

externally applied forces, the third represents a combination of internal elastic energy 

stored across martensite plate boundaries and elastic deformations, the fourth represents 
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the irreversible energy dissipation generated through dislocations and microstructural 

defects, the fifth represents magnetic Zeeman energy, and the sixth, the magneto-

crystalline anisotropy energy. Terms 5 and 6 are only applied to some magnetic shape 

memory alloys, as discussed later. 

The ideal thermoelastic martensitic transition occurs at 0T  when 0A M

chG   . This 

can be seen by removing terms 2 through 6 in Eqn. (1.8). The A M

chG   on the forward 

MT (top expression) indicates the A to M transition is exothermic and releases heat. On 

the other hand, the M to A transition absorbs energy as shown by the M A

chG  . Thus, the 

latent heat of the M to A transition causes the SMA to cool, and can be utilized in 

refrigeration processes. 

1.3.2 Superelasticity 

The sign of some of the terms in Eqn. (1.8) depend on whether the SMA starts in 

austenite or martensite. When in austenite, the second term is negative which implies that 

applying a mechanical force will decrease the free energy difference between the A and 

M phases. Upon applying sufficient mechanical load, A MG   will eventually be driven 

to zero and the transformation from A to M will proceed at a temperature above 0T . This 

is known as a stress-induced martensitic transformation. Figure 1-4a depicts the relative 

changes in the Gibbs free energy when a mechanical load is applied and Fig. 1-4b, a 

superelastic stress-strain curve representative of the mechanical response across a stress-

induced martensitic transition. 
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In practice, applying a mechanical load to austenite results in increasing 
0T . 

Eventually, 
0T  will equal the superelastic test temperature, T  and the A to M 

transformation will occur. As discussed in subsequent sections, driving the martensitic  

 

 

 

 

 

Figure 1-4: (a) The Gibbs free energy as a function of temperature for superelasticity. 

Upon increasing the mechanical load, the free energy difference between austenite and 

martensite decreases above 0T , and (b) the measured stress-strain compressive response 

of NiCoMnIn [001] single crystals. 
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transition with mechanical load can be used in solid-state refrigeration applications. It is 

important to note, however, cooling will only be achieved by mechanically unloading 

the SMA from the stress-induced martensite to austenite (M to A) phase above 0T
. 

Heating is generated by applying the load and triggering the A to M transition. 

1.3.3 Magnetic field induced transformation 

Like stress-induced martensitic transformations, a magnetic field induced 

transformation (MFIT) in some meta-magnetic SMAs (MMSMAs) can be achieved. For 

this to occur, the M and A phases must exhibit a large difference in saturation 

magnetization. The high temperature austenite phase can be ferromagnetic when the 

martensite phase is non-magnetic. In other less common MMSMAs, the austenite phase 

is non-magnetic and martensite is ferromagnetic.  

The Zeeman energy (ZE), related to term 5 in Eqn. (1.8), is defined by 

mag applied
V

G M H dV  , where M  is magnetization and 
appliedH  is an applied magnetic 

field [20]. In ferromagnetic materials, the magnetization saturates with small 
appliedH . 

Term 5 is then the difference between the M and A Zeeman energies and can be 

approximated by  A M sat sat

mag austenite martensite appliedG M M H     where satM  is the saturation 

magnetization of the respective phase. This approximation assumes that both austenite and 

martensite phases magnetically saturate under small fields [18]. 

When austenite is ferromagnetic, the MFIT occurs from martensite to austenite 

rather than austenite to martensite as shown for superelastic loading. Fig. 1-5(a) depicts 

the relative shifts in Gibbs free energy when applying a magnetic field to MMSMAs in 
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which the high temperature austenite phase exhibits ferromagnetism as shown in Fig.1-

5(b). This is observed in NiMn-based MMSMAs. Here, the magnetic field is applied to 

martensite. Eventually, the MFIT occurs as shown by an increasing magnetization around 

30kOe up to the saturation level of the austenite phase. On releasing the field, the 

MMSMA transforms back to M at temperatures below 
fM . On the other hand, if the 

martensite phase is ferromagnetic, like in some CoMnGe [21], GdSiGe [7], and FeMnGa 

[22] alloys, the situation is reversed and the magnetic field induced structural phase 

transition is driven from austenite to martensite. 

Per Eqn. (1.6), applying a magnetic field to a MMSMA will result in a decrease in 

the Gibbs free energy of each independent phase. The decrease in G  of the martensite and 

austenite phases occur at different rates due to the difference in saturation magnetization 

of each phase. Upon decreasing at different rates,  M AG   also decreases at temperatures 

below 0T  depicted by solid arrows in 1-5a. These arrows are in in different directions 

when compared to the stress-induced martensitic transformations discussed earlier. 

Eventually, the difference in free energy is driven to zero and the martensite to austenite 

phase transformation occurs.  

All of the above discussions relate to martensitic transformations induced by a 

magnetic field or mechanical load. Here, it is important to note that martensitic solid-to-

solid transformations imply a change in crystal symmetry, as depicted in Fig. 1-1, and as 

a result, the expression for the minimum Gibbs free energy is discontinuous. This is 

illustrated at 0T  in Figs. 1-3, 1-4, and 1-5 as a thick dash-dot-dot line. The discontinuity 

in Gibbs free energy is referred to as a “cusp” or a singularity. In accordance with the laws 
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of calculus, G  is not differentiable at 
0T . The consequence of this, regarding the caloric 

effects, are thoroughly discussed in the next section. 

 

 

 

 

Figure 1-5: (a) The Gibbs free energy of meta-magnetic shape memory alloys during a 

magnetic field induced transformation (MFIT), and (b) a magnetic field induced 

transformation in Ni43Co4Mn42Sn11 meta-magnetic shape memory alloy. 
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1.4 Thermodynamic derivation of the caloric effects 

“Because man’s physical senses present volume, pressure, temperature, and work, 

in their non-thermodynamic aspects of [occupied] space, distributed force, degree of 

hotness, and motion-producing effort, man naturally inclines toward a distorted view of 

thermodynamics” [23]. However, with careful and appropriate considerations, man’s 

distorted view of thermodynamics can be overcome and thermodynamic ambiguity can be 

minimized. This section aims at making a clear distinction between second order and first 

order caloric effects. Both of these caloric effects can be independently observed and 

measured in shape memory alloys. Unfortunately, there has been much confusion over the 

years, in literature, on how to properly quantify the caloric effects from first order 

transitions. The cause of this is likely due to misinterpreting thermodynamic relations, or 

applying them without fully understanding the assumptions used in their derivation.  

1.4.1 Conventional caloric effects in shape memory alloys 

A caloric, or thermal, effect is defined by a materials entropy or temperature 

change in response to some stimulus. For the elastocaloric effect (ECE), this stimulus is 

mechanical load, and in the magnetocaloric effect (MCE) the stimulus is magnetic field. 

The reversible heat effect generated in a material can be caused by either a change in heat 

capacity or a latent heat of a structural transformation. 

The internal energy of a substance changes with an applied force, such as stress, 

temperature, and magnetic field. These forces do not depend on the size of the control 

volume in Fig. 1-3 and are known as intensive variables. Since we would like to determine 

the caloric effects resulting from a change in internal energy, we must consider the Gibbs 
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free energy which is independent of volume effects. The change in internal energy as a 

function of extensive properties has been defined in Eqn. (1.5). To then quantify the 

change in the MMSMAs internal energy as a function of intensive properties, a Legendre 

transform must be applied to U , as shown in Eqn. (1.6). The Gibbs free energy, G , in 

Eqn. (1.6) is the free energy of a single phase, such as martensite or austenite, and is 

depicted in Figs. 1-3, 1-4, and 1-5 as a line. G  is known as a functional, or a function of 

other functions, such as U . The change in free energy, dG , can then be derived by 

implicitly differentiating Eqn. (1.6), applying the product rule to the functional, and 

substituting Eqn. (1.5) into dU . The differential of Gibbs free energy, dG , is then defined 

as 

1

n

i i

i

dG VdP SdT d


  X y                                         (1.9) 

where iX  are extensive material properties, such as M , or  , and iy  are their 

thermodynamic conjugates, H , or  , respectively. Clearly, applying iy  will decrease G  

(see Eqn. 1.6) as shown by the negative sign in Eqn. (1.9). 

The entropy change defining the caloric effect can then be quantified using Eqn. 

(1.9). This is done by employing Maxwell relations assuming pressure and intensive forces 

are constant, i.e. 0idP d y . The entropy,  S , is then computed as 

 ,

.

n iP

dG
S

dT


 
   

  y

                                        (1.10) 
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The forces that are assumed constant in Eqn. (1.10) are denoted by subscripts. Similarly, 

other extensive properties can be solved from Eqn. (1.9) using the same approach. In this 

case, pressure and temperature are assumed constant. Here, 
iX  is computed as 

 , , n i

i

i P T

dG

d


 
   

  y

X
y

                                        (1.11) 

where P , T , and all other 
iy  are constant intensive forces. 

Next, Eqns. (1.10) and (1.11) are differentiated with respect to the other 

independent variable. In this case, Eqn. (1.10) is differentiated with respect to iy  resulting 

in 

 , n iPi i

dS d dG

d d dT


 
   

  yy y
                                   (1.12) 

and Eqn. (1.11) is differentiated with respect to T , resulting in 

      

 , ,

.

n i

i

i P T

d d dG

dT dT d


 
   

  y

X

y
                                (1.13) 

Assuming that the second partial derivative of G  is smooth and continuous, Schwarz’ 

mathematical theorem can be employed which states that partial derivatives are 

commutative, i.e. the order of differentiation does matter. As such, the right hand side of 

Eqns. (1.12) and (1.13) are identical and, therefore, the left hand sides are also 

mathematically equivalent. The incremental entropy change, dS , can then be denoted as 

,i i
i i

d d
dS d dS d

dT dT

   
     
   

 
X X

y y                           (1.14) 

which simplifies to 
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0

0

(0 ).
i

i i

i
i i

d
S S d S

dT

 
     

 

y

y y

X
y y                         (1.15) 

In Eqn. (1.15), the entropy change has been derived for any single phase exposed 

to the intensive force 
iy . For example, if a magnetic field, 

iH  y , is applied to austenite 

in a MMSMA around the magnetic Curie point, the resulting entropy change can be 

computed as 
0

H
dM

dH
dT

 
 
 
 , where iX  is the energetic conjugate of H  and is denoted as 

magnetization by M . Graphically, this MCE, or magnetic field induced entropy change, 

is illustrated in Figure 1-6. 

In Figure 1-6, the entropy versus temperature diagram of a ferromagnetic material 

is depicted. Mathematically, these curves are described in Eqn. (1.10). Under zero 

magnetic field (top curve), the magnetic Curie point, CurieT ,  is depicted as a cusp in the 

S T  curve. According to Eqn. (1.10), the entropy curve is defined by the derivative of 

the Gibbs free energy with respect to temperature. Clearly, the second temperature 

derivative of the free energy, i.e. 
dS

dT
 , exhibits a discontinuity at CurieT , thus making the 

ferromagnetic Curie point a second order magnetic transition. Interestingly, the 

assumption of commutativity, described above, no longer holds at CurieT . On either side of 

CurieT ,  Eqn. (1.15) is applicable for determining magnetic-field induced entropy changes.  

Upon applying a magnetic field to the ferromagnetic material depicted in Fig. 1-6, 

the entropy decreases as a result of a reduction in heat capacity. The entropy change, 

(0 )S H  , can be computed from the difference of the curves. (0 )S H   is typically 
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reported for isothermal conditions under a given applied magnetic field. On the other hand, 

the temperature change corresponding to the isothermal entropy change is illustrated by a 

red horizontal arrow labeled as (0 )adT H  . 

 

 

Figure 1-6: Entropy versus temperature diagram for a ferromagnetic material around the 

Curie point, CT . 

 

 

  

To compute (0 )ad iT  y , the total entropy, S , of the single phase is considered. 

Like G  and U , S  is a thermodynamic functional. Employing Truesdell’s principle of 

equipresence [24], the total change in entropy, totaldS , is a function of all other 

thermodynamic quantities. As such, totaldS  is defined as 

1

.
n

total i

i i

dS dS dS
dS dP dT d

dP dT d

    
       
     

 y
y

                         (1.16) 

Entropy

Temperature

0H 

0H 

CurieT

(0 )S H 

(0 )adT H 
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According to Fig. 1-6, the (0 )adT H   is generated when 0totaldS  . Assuming 

isobaric ( 0dP  ) and isentropic ( 0totaldS  ) conditions, Eqn. (1.16)  can be reduced to 

0 .ad i

i

dS dS
dT d

dT d

  
    
   

y
y

                                     (1.17) 

Substituting the Maxwell relation from Eqn. (1.14) into (1.17) for 
i

dS

dy
 reduces to 

0 i
ad i

ddS
dT d

dT dT

  
    
   

X
y                                         (1.18) 

whereby the entropy change generated from applying the intensive force can be moved to 

the left side of the expression. This results in  

,i
i ad

d dS
d dT

dT dT

   
    

  

X
y                                       (1.19) 

where 
pCdS

dT T

 
 

 
 per the second law of thermodynamics, and thus 

.
pi

i ad

Cd
d dT

dT T

  
    
   

X
y                                       (1.20) 

Finally, the terms in Eqn. (1.20) are separated and integrated resulting in  

 
0

(0 ) ,
i

n i

i
ad i i

p

T
T d

C T


 
     

 


y

y

X
y y                         (1.21) 

where the adiabatic temperature change can be computed for any isochoric driving force, 

iy , if the isobaric heat capacity and iX  histories are known. Oftentimes, 
pC  is assumed 

to be independent of the driving force, iy , and adT  is approximated as  
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.ad

p

T
T S

C
                                                  (1.22) 

In summary, the conventional caloric effects generated from second order changes 

in heat capacity, can be quantified using the above thermodynamic framework. The 

entropy change can be computed from Eqn. (1.15) and the corresponding 

isentropic/adiabatic temperature change from Eqn. (1.21). In the context of the present 

work, these second order caloric effects can be computed and experimentally measured 

for austenite and martensite independently. That is, the above expressions and 

thermodynamic framework are not valid across the martensite to austenite, or austenite to 

martensite structural transitions because G  is discontinuous.  

The second order caloric effects of austenite and martensite can be computed using 

their free energy functions given in Eqns. (1.23) and (1.24), respectively. Here,  

A A A A AdG V dP S dT M dH d                                (1.23) 

and 

M M M M MdG V dP S dT M dH d                               (1.24) 

where the change in free energy of martensite (M) and austenite (A) are driven by pressure, 

temperature, applied magnetic field, and mechanical stress. Clearly, Eqns. (1.23) and 

(1.24) can take the place of the generalized dG  in Eqn. (1.9) for the following derivation 

of (0 )iS  y  and (0 )ad iT  y . 

1.4.2 Giant caloric effects 

As stated in the introduction, “giant” caloric effects are those generated by the 

latent heat of a first order structural transformation. These can be driven by superelasticity 
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or magnetic field induced transformations (MFITs). Here, the discussion relates to 

MMSMAs and the caloric effect across their martensitic transitions. Upon initiating the 

transformation, the free energies in austenite and martensite are equivalent (see Fig. 1-3a) 

and the result is a singularity point in G  (see Figs. 1-3a, 1-4a and 1-5a). At this singularity, 

the MMSMA exhibits a change in crystal symmetry. As a result, Eqns. (1.10) through 

(1.22) are not valid for quantifying these caloric effects as they were derived assuming 

that 
dG

dT
 is continuous.  

Instead, the Clausius-Clapeyron relations must be employed to characterize the 

caloric effects around a first order transition. Differentiating Eqn. (1.7) results in   

0A MdG dG                                              (1.25) 

and 

.A MdG dG                                                (1.26) 

The generalized form for dG  in Eqn. (1.23) and (1.24) are then substituted into (1.26) for 

both martensite and austenite phases, resulting in  

0 0

1 1

.
n n

A A A M M M

i i i i

i i

V dP S dT d V dP S dT d
 

     X y X y          (1.27) 

Assuming the martensitic transition is not driven by hydrostatic pressure, 0dP  , Eqn. 

(1.27) simplifies to  

0 0 .A M A M

i i i iS dT S dT d d   X y X y                             (1.28) 

Separating variables then results in  

   0 ,A M A M

i i iS S dT d   X X y                               (1.29) 
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where the final form of the Clausius-Clapeyron relation can be denoted as 

0

.M A M A i
i

d
S

dT

   
y

X                                         (1.30) 

In Eqn. (1.30) the entropy difference between the martensite, M, and austenite, A, 

phases is given. Clearly, if a change in magnitude of an extensive parameter is known 

across the martensitic transformation, M A

i

X , as well as the temperature dependence of 

its critical driving force, 
0

id

dT

y
, then the entropy change can be computed. The 

0

id

dT

y
 term 

is generally known as the Clausius-Clapeyron slope, or the slope of a coexistence line 

between two phases on a phase diagram. In the case of the MCE, i MX  and i Hy . It 

is important to note, however, that the value of 
0

dH

dT
 is somewhat obscured by elastic 

energy and dissipation generated through the martensitic transition (see terms 3 and 4 in 

Eqn. (1.8)). These irreversible thermodynamic quantities result in a non-singular 

transformation temperature interval around 0T  and are discussed later. 

As such, 
0

dH

dT
 is typically unknown, other related parameters that can be 

experimentally quantified and are often employed in its stead. For example, in Fig. 1-5a, 

0T  decreases with increasing applied magnetic field at a rate equal to 

1

0

dH

dT



 
 
 

. At the 

same time, the surrounding transformation temperatures decrease with 0T . The rates in 

which they decrease are not necessarily equal to that of 0T . The field sensitives of the 



 

 

 

26 

 

surrounding transformation temperatures, 
fM

dT

dH
, 

sM

dT

dH
, 

sA

dT

dH
, 

fA

dT

dH
, are easily 

quantifiable with simple experiments. Interestingly, each temperature exhibits its own 

field dependence. This indicates that the elastic energy stored across the transition and the 

structural dissipation (see terms 3 and 4 in Eqn. (1.8)) are not constant with field. This will 

be discussed in detail in a later chapter. 

 Nevertheless, Eqn. (1.30) is valid for determining the entropy changes across a 

first order transition where 
dG

dT
 is discontinuous. Eqn. (1.30) differs from Eqn. (1.15) as 

the temperature derivative with respect to iX  is not needed to compute S . If S  is 

determined using Eqn. (1.15) across FOPTs, a colossal caloric effect [25] will be found, 

simply as a mathematical artifact from differentiating a singularity.  

The entropy versus temperature diagram for thermoelastic martensitic phase 

transformation in a constant magnetic field is depicted in Figure 1-7. Immediately, a clear 

difference is observed distinguishing Fig. 1-7 from Fig. 1-6 as the curves look dissimilar. 

In Fig. 1-7 entropy vs. temperature curves are illustrated under zero magnetic field, 0H 

, and an applied magnetic field, 0H  . Under zero magnetic field (solid black curve) 

cooling from austenite produces the forward (A to M) thermoelastic transition at sM . This 

is illustrated by a decrease in entropy. On reaching 
fM , the transformation completes and 

the entropy continues to decrease with further undercooling. When heated, the reverse MT 

is generated at sA  and completes at 
fA . In Fig. 1-7, the conventional effects are ignored 

in M and A.  
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According to Fig. 1-5, applying a magnetic field to a MMSMA results in a decrease 

in 
0T . Thus, all of the aforementioned transformation temperatures decrease with 

0T  as 

the magnetic field is applied. Transformation temperatures in Fig. 1-7 under a magnetic 

field are denoted with superscripts, H .  As shown in Eqn. (1.8), M A

magG   is negative at 

0T T , and therefore, the martensitic transition can be triggered in martensite to austenite 

at the 
fM  temperature. The entropy change, (0 )S H  , in Fig. 1-7 is depicted by a 

vertical arrow at 
fM  and is that generated by completing the magnetic field induced M to 

A transition. (0 )S H   is the difference in entropy between the austenite and martensite 

phases at 
fM . 

Unlike the response in Fig. 1-6, the (0 )S H   across the martensitic phase 

transformation is positive. This is accompanied by a decrease in temperature as indicated 

by the direction of the (0 )adT H   vector. In fact, the MCE depicted in Fig. 1-7 is 

inverse to the conventional effect illustrated in Fig. 1-6. Thus, giant MCE materials that 

exhibit a higher magnetization in austenite than the martensite phase, generate what is 

known as an inverse giant magnetocaloric effect (inv. GMCE).  

To compute (0 )adT H   from Fig. 1-7, Eqns. (1.16) through (1.22) should not 

be employed as they were derived from the thermodynamic functional, S , specific to a 

single phase. Since a phase transformation is generated by applying a magnetic field, each 

term in Eqn. (1.16) is technically non-differentiable across first order transitions. Eqn. 

(1.22), however, is very commonly used in literature to predict the adiabatic temperature 

change in SMAs. Again, this is a common mistake resulting from misinterpreting the 
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underlying thermodynamics and not fully understanding the assumptions used when 

quantifying the above relations. 

 

Figure 1-7: Entropy versus temperature diagram for a thermoelastic martensitic 

transformation. 

 

 

  

Conveniently, there has been a recent development [26] whereby an empirical 

geometrical relation has been derived from entropy versus temperature diagrams to 

compute the (0 )adT H   of MMSMAs across MFITs. This method, although rarely 

reported, has been proven to be accurate within a reasonable degree [26] and will be briefly 

described, here. In [26], (0 )adT H   was derived using a diagram similar to that shown 

in Fig. 1-7, however only one leg of the hysteresis loop was considered.  
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In Figure 1-8, the entropy, S , versus temperature, T  diagram is shown for 

quantifying the (0 )adT H  . Only the heating curves are depicted. The solid curve 

represents the entropy-temperature history on heating to austenite under zero magnetic 

field and the dashed line represents heating to austenite under a constant magnetic field. 

The magnetic field, in this case, is not sufficient to complete the transformation at 
sA , as 

would be depicted by M AS   extending vertically all the way to the austenite phase, 

however, it is sufficient for quantifying the adiabatic temperature change. In addition, the 

entropy changes in A and M phases from the magnetic field dependence of heat capacity 

(conventional MCE) are neglected to simplify the discussion. 

 

 

 

 

Figure 1-8: Entropy, S , versus temperature, T , diagram on the heating leg of the 

martensitic transition under zero and constant magnetic field, H . 
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Using the figure above, Porcari et al. demonstrated that the adiabatic temperature 

change, 
adT , can be computed from the diagram using proportions of triangles. As such, 

the ratio of the isentropic legs equals the ratio of the isothermal legs, 

      Inv.GMCE
M A

ad

M A

T S

x S y





 

 

                        (1.31) 

where M AS   is the entropy change generated isothermally as computed from Eqn. 

(1.30). The distance x  equals the decrease in the sA  temperature from applying the 

magnetic field, H , and is expressed as 

       Inv.GMCE
s

H

s s A

dT
x A A H

dH
                        (1.32) 

where 
sA

dT

dH
 is the field sensitivity of the sA  temperature, mentioned above. Assuming 

the S T  response of martensite is linear and independent of magnetic field, then the 

parameter y  is defined as 

       Inv.GMCE

martensite

pC
y x

T
                            (1.33) 

where martensite

pC  is the isobaric heat capacity of martensite and T  is the temperature. 

Finally, solving Eqn. (1.31) for adT  and substituting Eqns. (1.32) and (1.33), 

       Inv.GMCE
M A

M
ad smartensite

pM A

M

S T
T T A

C
S T

T





 
  

  

           (1.34) 

where MT  is defined as 
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      Inv.GMCE
s

M A

dT
T H

dH

 
   

 
                             (1.35) 

and represents how far the 
sA  temperature has shifted by applying H . The uncertainty 

associated with Eqn. (1.34) has been reported to be as much as 30%-40% [26], but in this 

study, it will be used to predict the adiabatic temperature change of FOPTs due to its 

convergence with directly measured data [26]. It is important to note that Eqns. (1.31) 

through (1.35) are only valid for martensite to austenite magnetic field induced phase 

transformations, thus the equations are labeled “Inv. GMCE” to denote they are applicable 

only for computing  adT  for the inverse giant magnetocaloric effect. 

A similar derivation can be performed for MMSMA that exhibit a ferromagnetic 

martensite phase and a non-magnetic austenite phase. In this case, applying magnetic field 

to austenite generates a heating effect from the A M  transition. Here, 
0

dH

dT
 is positive 

and, therefore, terms 5 in Eqn. (1.8) are reversed in sign, resulting in an increase in 0T  

when applying a magnetic field. Using a similar diagram to Fig. 1-8, the proportions of 

triangles can be equated as 

      GMCE
A M

ad

A M

T S

x S y





 

 

                            (1.36) 

where GMCE indicates the giant MCE, x  is now dependent on the sM  temperature and 

sM

dT

dH
 field sensitivity resulting in 

      GMCE.
s

H

s s M

dT
x M M H

dH
                         (1.37) 
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In this case, y  is dependent on the isobaric heat capacity in austenite and is expressed as 

      GMCE.

austenite

pC
y x

T
                                   (1.38) 

Solving Eqn. (1.36) results in  

      GMCE
A M

M
ad saustenite

pA M

M

S T
T T M

C
S T

T





 
  

  

          (1.39) 

where 

      GMCE.
s

M M

dT
T H

dH

 
   

 
                               (1.40) 

The thermodynamics described above are implemented for the MCE and ECE case 

studies in Chapter 6. In superelastic ECE studies, 
sM

dT

dH
, should is replaced with 

sM

dT

d
, 

defined as the critical stress-temperature slope for initiating the transformation from A to 

M. Here, it is important to note that implementing the incorrect equation to quantify adT  

around a MFIT will result in large computational errors. For example, a MMSMA can 

exhibit typical values of 20J/kgKM AS    under 5T, 400J/kgKmartensite

pC  , at 

290fM K . The sA  field sensitivity is approximately 4K/T
sA

dT

dH
 . If Eqn. (1.22) is 

used, adT  is found to be as much as 14.5K . If Eqn. (1.34) is used, however, adT  is 

computed to equal a more reasonable value of 8.4K . Eqn. (1.34) yields more realistic 

approximation when compared to directly measured adiabatic temperature changes [27]. 
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Using the incorrect expression from Eqn. (1.21) results in an over approximation by 

almost a factor of 2. 

In recent years there has been so much confusion in the literature on how to 

properly compute the 
adT  in MMSMAs, some researchers only rely on direct 

temperature measurements to quantify the MCE/ECE in MMSMAs. Alas, these 

measurements are somewhat difficult to perform under the required adiabadicity. For 

example, a few direct measurements have been reported for NiMnIn alloys [27, 28]. In 

[28], a NiMnIn alloy was swept through 3T while its temperature was monitored. The 

initial temperature of the MMSMA was set to the sM  temperature of the given sample. 

Example results from [28] are reported in Figure 1-9.  

As shown in Fig. 1-9(a), the thermomagnetic response of the MMSMA shifts to 

the left under high magnetic fields. This is explained in the above sections with Fig. 1-5. 

Interestingly, a 1.4K temperature change was measured from applying 3T around sM , in 

this particular alloy as shown in Fig. 1-9(b). Subsequent field cycling resulted in 0.5K to 

0.7K temperature changes. As such, the reversibility in this alloy of achieving repeated 

temperature changes is poor due to the thermal hysteresis, mentioned earlier, and the 

stored elastic energy across the martensitic transition. Processing methods to improve the 

material response will be reported in a subsequent chapter.  
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Figure 1-9: (a) The thermomagnetic response of the NiMnIn sample shown in (a) under 

5T (circles) and 5mT (solid-circles) and (b) the temperature of a NiMnIn meta-magnetic 

shape memory alloy as a function of time during field ramping from 0T to 3T [28].  

 

 

 

In another study, magnetic fields from a custom Halbach array was employed to 

generate the giant inv. MCE in MMSMA a specimen under magnetic fields up to 2T. The 

apparatus used to control and monitor the MMSMAs temperature is shown in Fig. 1-10 

[27]. The experimental apparatus in Fig. 1-10 was pumped to high vacuum prior to being 

inserted into a liquid nitrogen dewar. Once in place, the temperature was controlled with 

the electric heaters to the desired set-point. Once the desired temperature was reached, the 

(b) 
(a) 

5T 

5mT 
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magnetic field was ramped to from 0 to 2T to -2T to 0 while the temperature was 

measured. Example 
adT  results from the custom instrument in Fig. 1-10 are shown in 

Fig. 1-11 from Ref. [29]. 

 

 

Figure 1-10: An experimental apparatus used for monitoring the adiabatic temperature 

change of a meta-magnetic shape memory alloy specimen. The sample is encased in 

pyrogel insulation and surrounded by electric heaters to control the temperature. Prior to 

insertion into a liquid nitrogen dewar, the sample housing was evacuated to 10-6 mbar. 

Once at the specified temperature, a Halbach array was used to ramp the magnetic field 

to 2T while monitoring the temperature [27] .

 

 

 

To measure the data in Fig. 1-11a, the MMSMA was set to the temperature 

indicated on the plot. Starting with 0adT   at 0 0H  , the field was positively ramped. 

This resulted in cooling of about 6K at 317K. On reducing the field back to 0, the sample 

exhibited minimal reversibility (heating) due to the thermal hysteresis shown in Fig. 1-

11(b). Subsequent cycles are represented by the negative field side of the adT  vs. 0H  

diagrams. At lower temperatures, 314, 310, and 307K, the 2T applied to the MMSMA was 

not sufficient to induce a structural transformation. Instead, a larger field is needed to shift 

the thermomagnetic response (shown in Fig. 1-11(b)) farther to the left. 
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Figure 1-11: The adiabatic temperature change of Ni45.2Co5.1Mn36.7In13 polycrystals 

measured using the experimental apparatus in Fig. 1-10 (a) and (b) the thermomagnetic 

response of the MMSMA specimens in (a). These results are from [27] .

 

 

 

The next chapter discusses direct measurements of the MCE and ECE in NiMn-

based MMSMAs with methods proposed by the author. Predictions of temperature 

changes computed by Eqn. (1.34) could be compared to the directly measured data. 

Experimental apparatuses were designed and retrofitted with existing instruments for 

MCE and ECE adT  measurements generated from magnetic field-induced and stress-

induced martensitic transformations, respectively.  

(b) (a) 
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1.5 Objectives 

As mentioned in the introduction, MMSMAs are promising for refrigeration 

applications. However, their biggest flaw is that they typically require magnetic fields 

larger than 2T to drive the M to A transition; the magnetic field induced transformation 

generates the magnetocaloric cooling and, therefore, must be driven with small magnetic 

fields. Permanent magnets are only capable of supplying up to 2T. Therefore, the main 

objective of this work is to fully transform a MMSMA under no more than 2T. This has 

never before been achieved, and if accomplished, will open the possibility of 

implementing cost effective MMSMAs in MCE applications. 

It is believed this can be realized in a few ways, however. The first is by tailoring 

the MMSMAs microstructure with heat treatments. In doing so, the terms in Eqn. (1.8) 

can be controlled and perhaps 2T will induce a complete transition. Another is by finding 

an optimal composition which, again, would influence the terms in Eqn. (1.8). Finally, it 

is believed that the MMSMA will transform under 2T if a mechanical load assists the 

procession of transformation as a result of magneto-mechanical couplings. This is referred 

to as a “stress-assisted magnetic field induced transition” (SAMFIT) and will be 

investigated in this work.  

These methods of achieving a complete transformation under 2T have driven the 

experimental work, herein. Therefore, this dissertation is separated into a few parts. First, 

the typical experimental procedures used to quantify the caloric effects in MMSMAs are 

discussed. These experiments will indicate whether the complete martensitic 

transformation has taken place under 2T. After careful review of these procedures, it was 
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found that magnetic and mechanical testing are typically performed separately on 

MMSMAs. Since MMSMAs exhibit magneto-thermo-mechanical coupling, one must 

measure a combination of material responses simultaneously across the martensitic 

transformation to fully understand their capabilities. Therefore, a materials test apparatus 

was designed and built to probe the multiferroic responses of MMSMAs. This test 

apparatus lends the ability to perform SAMFIT experiments. Subsequent chapters are 

intended to provide an analytical means of evaluating the MCE and ECE in MMSMA 

materials, improving their caloric behaviors through materials processing, and finally, 

some case studies are presented on the MCE and ECE in meta-magnetic and ferromagnetic 

SMAs. The final chapter is dedicated to explaining MMSMAs performance under 

simultaneously applied magnetic field and mechanical stress. 

 



 

 

 

 

 

*Part of this chapter is reprinted from Acta Materialia, 74, Bruno N. et al. The effect of 

heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic 

refrigeration, 66-84, Copyright (2014), with permission from Elsevier. 
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CHAPTER II                                                                                                                        

EXPERIMENTAL PROCEDURES* 

2.1 Alloy fabrication 

Three types of microstructures were studied in this work including bulk 

polycrystalline, single crystalline, and melt-spun polycrystalline. Initially, these alloys 

were arc-melted in an inert argon environment by collaborating researchers or personally 

by the author. During melting, they were flipped and re-melted at least three times to 

promote homogeneity. Bulk alloys and single crystals were simply removed from the arc-

melter after initial melting to be heat treated, however, those intended for melt spinning 

were suction cast into 5mm diameter rods.  

The suction cast rods were then placed in the quartz nozzle of a melt spinner. After 

removing the oxygen in the melt spinner, the 5mm diameter rod was induction melted in 

an inert environment and ejected through the quartz nozzle onto a rotating copper wheel. 

This procedure resulted in 30micron thick ribbon samples of various widths and lengths. 

Single crystal samples, on the other hand, were prepared from large ingots with 

the Bridgeman technique in Tomsk, Russia. Wire EDM was used to cut compression 

samples from the resulting large single crystals. Samples were then electropolished, or 

lightly mechanically polished, to remove any brass residue that may have remained on the 

surface. Compression samples were typically cut to 4mm   4mm   8mm nominal 

dimensions.
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Table 2-1 contains a list of the nominal compositions of the alloys in this study. 

They are separated into two groups, namely, NiMnIn and NiMnSn. The nominal 

composition in atomic percent (at.%) is tabulated on the left, and the measured, on the 

right. Compositions were measured using wavelength dispersive spectroscopy as 

discussed in a subsequent section. All alloy compositions in this dissertation are in atomic 

percent unless otherwise noted. 

 

 

Table 2-1: Nominal and measured compositions, sM  and CT  temperatures, and e/a ratios 

for homogenized meta-magnetic shape memory alloys. 

 
   Measured Composition (at.%) 

Nominal Composition (at.%) Ms Tc e/a Sn Mn Co Ni 

Ni43 Co4Mn42Sn11 Ribbon 216 340 8.02 11.7 41.2 4.1 43.1 

Ni43 Co4Mn42Sn11 Bulk 279 365 8.03 11.5 41.0 4.6 43.0 

Ni45Co2Mn43Sn10 343 - 8.06 10.7 43.0 1.9 44.5 

Ni45Co4Mn41Sn10 375 - 8.10 10.8 40.9 4.0 44.4 

Ni45Co5Mn40Sn10 406 - 8.12 10.8 39.8 5.1 44.4 

Ni45Co6Mn39Sn10 408 - 8.12 10.8 39.3 5.4 44.5 

Ni45Co5Mn38.5Sn11.5 340 366 8.10 12.3 37.2 5.0 45.5 

Ni45Co5Mn38Sn12 282 372 8.08 12.7 37.0 5.1 45.2 

     

Nominal Composition (at.%) Ms Tc e/a In Mn Co Ni 

Ni48Mn38In14 265 279 7.84 14.3 38.5 - 47.2 

Ni50Mn34.5In15.5 264 313 7.88 15.5 34.6 - 49.9 

Ni50Mn35In15 300 311 7.89 15.1 35.2 - 49.8 

Ni50Mn35.5In14.5 331 310 7.92 14.4 35.7 - 49.9 

Ni50Mn36In14 346 289 7.91 14.3 36.1 - 49.5 

Ni45Co5Mn36.6In13.4 260 390 7.92 13.6 36.2 4.7 45.5 
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2.2 Heat treatment procedures 

After alloy fabrication, the MMSMAs were solution heat treated (SHT) to promote 

homogeneity and remove any lingering second phases. To prevent oxidation during 

solutionizing, the specimens were sealed in quartz tubes under 13Torr of argon. Typically, 

SHTs were conducted at 1173K for 24 hours and were followed by water quenching (WQ). 

Alloys were often wrapped in a protective tantalum foil to prevent interaction between the 

MMSMA and quartz containment vessel at elevated temperatures. As discussed in 

subsequent chapters and sections, secondary heat treatments were often performed to 

modify grain size and crystallographic ordering. These secondary heat treatments were 

performed under the same environmental conditions as the SHT process, however, the 

temperature and times were either lower or higher than 1173K and 24hours. 

Secondary heat treatments for each base alloy in Table 2-1 are tabulated in Tables 

2-2 through 2-6. 
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Table 2-2: The composition of the Ni43Co4Mn42Sn11 base alloy and selected secondary 

heat treatments. RC and FC denote rapid cooling and furnace cooling, respectively.  

    Measured Composition (at.%) 

Nominal Composition (at.%) Ms Tc e/a Sn Mn Co Ni 

Ni43Co4Mn42Sn11 Ribbon 216 340 8.02 11.7 41.2 4.1 43.1 

 

Solution Heat Treatment + Secondary Heat Treatment 

Temperature (K) Time (hr) Cooling Method Crystal Type 

(SHT) 1173K 2 RC 

Ribbon 

+673K FC 1 FC 

+773K FC 1 FC 

+873K FC 1 FC 

+673K RC 1 RC 

+773K RC 1 RC 

+873K RC 1 RC 
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Table 2-3: The composition of the Ni45Co5Mn40Sn10 base alloy and selected secondary 

heat treatments. WQ and FC denote water quenching and furnace cooling, respectively. 

    Measured Composition (at.%) 

Nominal Composition (at.%) Ms Tc e/a Sn Mn Co Ni 

Ni45Co5Mn40Sn10 406 - 8.12 10.8 39.8 5.1 44.4 

 

Solution Heat Treatment + Secondary Heat Treatment 

Temperature (K) Time (hr) Cooling Mode Crystal Type 

(SHT) 1173K 2 WQ 

Polycrystal 

+1073K 0.5 FC 

+1073K 1 FC 

+1073K 1.5 FC 

+1073K 2 FC 

+1073K 10 FC 

+1173K 0.3 FC 

+1173K 0.7 FC 

+1173K 1 FC 

+1173K 1.3 FC 

+1173K 1.7 FC 

+1173K 1.7 FC 

+1173K 2 FC 

+1198K 0.5 FC 

+1198K 1 FC 

+1198K 2 FC 
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Table 2-4: The composition of the Ni48Mn38In14 base alloy and selected secondary heat 

treatments. WQ denotes water quenching. 

    Measured Composition (at.%) 

Nominal Composition (at.%) Ms Tc e/a In Mn Co Ni 

Ni48Mn38In14 265 279 7.84 14.3 38.5 - 47.2 

 

Solution Heat Treatment + Secondary Heat Treatment 

Temperature (K) Time (hr) Cooling Mode Crystal Type 

(SHT) 1173K 24 WQ 

Polycrystal 

+773K 3 WQ 

+873K 3 WQ 

+973K 3 WQ 

+1073K 3 WQ 

+1123K 3 WQ 

 

 

 

Table 2-5: The composition of the Ni50Mn36In14 base alloy and selected secondary heat 

treatments. WQ denotes water quenching. 

    Measured Composition (at.%) 

Nominal Composition (at.%) Ms Tc e/a In Mn Co Ni 

Ni50Mn36In14 346 289 7. 91 14.3 36.1 - 49.5 

 

Solution Heat Treatment + Secondary Heat Treatment 

Temperature (K) Time (hr) Cooling Mode Crystal Type 

(SHT) 1173K 24 WQ 

Polycrystal 

+573K 3 WQ 

+673K 3 WQ 

+873K 3 WQ 

+973K 3 WQ 

+1073K 3 WQ 
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Table 2-6: The composition of the Ni45Co5Mn36.6In13.4 base alloy and selected secondary 

heat treatments. WQ and FC denote water quenching and furnace cooling, respectively. 

    Measured Composition (at.%) 

Nominal Composition (at.%) Ms Tc e/a In Mn Co Ni 

Ni45Co5Mn36.6In13.4 260 390 7.917 13.6 36.2 4.7 45.5 

 

Solution Heat Treatment + Secondary Heat Treatment 

Temperature (K) Time (hr) Cooling Mode Crystal Type 

(SHT) 1173K 24 WQ 

Single Crystal 

(SHT) 1173K 24 FC 

+573K 3 FC 

+573K 3 WQ 

+573K 168 WQ 

+673K 3 WQ 

+673K 24 WQ 

+773K 0.08 WQ 

+773K 0.25 WQ 

+773K 0.50 WQ 

+773K 3 WQ 

+873K 3 WQ 

+873K 168 WQ 

+973K 3 WQ 

+998K 3 WQ 

+1023K 3 WQ 

+1048K 3 WQ 

+1073K 3 WQ 

+1098K 3 WQ 

+1123K 3 WQ 

 

 

 

2.3 Wavelength dispersive spectroscopy 

The compositions of the alloys were determined using a CAMECA SX-50 electron 

probe microanalyzer. The microprobe employed 4 double sided diffracting crystals for 
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wavelength dispersive spectroscopy (WDS). Samples were prepared by mechanically 

polishing to 0.05 micron grit in 1 inch diameter plastic ringform mounts. Samples were 

encased in non-conductive epoxy within the mount. To supply an electrical ground for the 

electron beam within the microprobe, the prepared samples were coated with a thin layer 

of carbon. Ni-Kα, Mn-Kα, and Co-Kα x-rays were counted using a lithium fluoride (LIF) 

diffracting crystal for 20s, 20s, and 50s, respectively. Sn and In-Lα x-rays were counted 

using a pentaerythritol (PET) diffracting crystal with a 90s counting time. WDS 

measurements were taken at about 3 locations on each sample in multiple grains (if 

available).  

2.4 Microscopy 

2.4.1 Optical microscopy  

Prior to compositional analysis with WDS, samples were mechanically polished 

and/or etched. Sample microstructures were observed and recorded with a digital 

microscope up to 1000X magnification.  

2.4.2 Scanning electron microscopy 

A FEI Quanta 600 field emission scanning electron microscope (SEM) was 

employed to obtain high resolution micrographs. The SEM housed an electron dispersive 

spectroscope (EDS), an electron backscatter diffractometer (EBSD), and an attachable 

backscatter electron (BSE) detector. The SEM lent the ability for quick compositional 

identification of microstructural inclusions and clearly visible compositional gradients or 
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second phases. The SEM was used for imaging, whereas the microprobe, mentioned 

above, mainly for compositional analysis due to its higher degree of accuracy.  

2.4.3 Transmission electron microscopy 

Single crystal samples were prepared for transmission electron microscopy 

(TEM). Plates were EDM cut such that the plate face was in the [011] austenite crystal 

direction, as discussed in subsequent chapters. Once cut into 400μm thick plates, samples 

were heat treated then mechanically ground to 100micon thickness. Thinned plates were 

then punched into 2mm diameter discs for TEM and twin jet polished using a 1:3 nitric 

acid to methanol electrolyte at 243K under 20V. Traditional dark field images were 

obtained from the TEM samples by diffracting the (111) reflection oriented along the 

[011] austenite zone axis. 

2.5 SQUID magnetometry 

SQUID magnetometry was performed with a Quantum Design Superconducting 

Quantum Interference Device (SQUID) Magnetic Property Measurement System 

(MPMS3). The MPMS housed a vibrating sample magnetometer (VSM). For 

thermomagnetic measurements, the samples were heated to 400K, cooled to 10K, and then 

reheated to 400K under 0.05T (or 0.01T), 1T, 3T, 5T, and 7T at a rate of 5K/min as their 

magnetization was measured. Isothermal magnetization curves were collected by ramping 

the magnetic field at either 25Oe/s or 50Oe/s. 
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2.6 Differential scanning calorimetry and thermogravimetric analysis 

Heat flow in MMSMA samples was measured with a TA Instruments Q20 and 

Q2000 differential scanning calorimeter (DSC) between 93K and 450K. Samples were 

placed in aluminum pans during measurements and heated and cooled at 5-10K/min. 

Ribbons were stacked to generate larger heat signals in the Q20 DSC. Heat flow 

measurements provided a means to compute the latent heat of the martensitic 

transformation. Additionally, specific heat capacity measurements were obtained with the 

Q2000 DSC which employed a modulated pseudo-isothermal measurement technique. A 

sapphire standard was employed prior to any heat capacity measurement to verify the 

instrument calibration.  

High temperature heat flow measurements were achieved using a TA Instruments 

Q600 thermogravimetric analyzer (TGA). The TGA recorded heat flow up to 1400°C and 

provided cooling at a rate of at most 20°C/min. High temperature heat flow measurements 

were performed using an alumina pan to prevent melting. Heat flow signatures at high 

temperatures revealed crystallographic ordering temperatures in MMSMA single crystals. 

2.7 Mechanical testing 

A screw driven mechanical test system (MTS) was employed for the compression 

tests described in this work. The MTS provided compressive loads up to 30kN while 

compressing the specimen as slow as 0.004mm/s. The load was measured with a load cell 

and the sample displacement with a high temperature extensometer with alumina tips. 

Special compression rods were designed for maintaining the compression sample 

temperature between 300°C and -120°C as discussed later. Samples were heated and 
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cooled across their martensitic transformation under a constant compressive load while 

compressive strain was recorded or isothermal compression tests were performed. 

2.8 Direct magnetocaloric measurements 

In the present work, an attempt was made to measure the adiabatic temperature 

response of Ni45Co5Mn36.6In13.4 single crystals. The only experimental instrument 

available capable of applying large magnetic fields was the SQUID-VSM. The SQUID-

VSM is capable of providing magnetic fields up to 7T at 700Oe/s, and achieving a 

temperature set-point between 400K and 2K. The sample chamber can be evacuated 

during adiabatic temperature measurements to nearly 310 Torr .  

As such, a sample insertion rod for the SQUID-VSM was modified so that a T-

type thermocouple could be adhered to a MMSMA specimen during ramping of a 

magnetic field while under vacuum. The thermocouple was fed through the hollow sample 

rod and vacuum connections into a measurement computing data acquisition (DAQ) board 

as shown in Fig. 2-1. The sample was surrounded by pyrogel insulation during adiabatic 

temperature measurements. 

In Fig. 2-1, the standard sample rod configuration is shown on the left. Typically, 

the sample rod is magnetically adhered to the moving VSM head. An aluminum cap is 

placed on top so the sample chamber can be evacuated during magnetization 

measurements at low temperatures. In a Quantum Design SQUID-VSM, sample 

temperature is computed from a series of temperature measurements along the sample 

chamber wall. In the modified configuration, however, the sample temperature is reported 
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directly. This allows accurate direct temperature measurements to be obtained from the 

magnetized sample.  

The experimental test sequence used with the apparatus in Fig. 2-1 was as follows. 

The sample was first installed and the sample chamber was purged of air. In 5Torr He 

atmosphere, the temperature of the MMSMA was set to around 
fM . Once the MMSMA 

reached the desired temperature set-point, the temperature was held constant for 5 minutes 

to allow the specimen to reach a thermal equilibrium with its surroundings.  

 

 

 

 
 

Figure 2-1: The existing (left) and modified (right) configurations of the SQUID VSM 

sample mounting for adiabatic temperature change measurements. 
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After reaching equilibrium, the sample chamber was continuously purged during 

the adiabatic measurements with a mechanical pump. Vacuum levels reached 310 Torr .  

Nevertheless, the MMSMA sample was in contact with the SQUID-VSM rod, and 

therefore the adiabatic conditions were somewhat compromised. The actual adiabadicity 

of the sample was unknown during the temperature measurements. Example results of 

adiabatic temperature measurements with the configuration in Fig. 2-1 are shown in Fig. 

2-2 for a SHT Ni45Co5Mn36.6In13.4 single crystal.  

In Fig. 2-2, the NiCoMnIn single crystal exhibited a 
fM  temperature of about 

245K. Therefore, the sample was cooled to 245K and then the field was ramped. This 

should have allowed the sample to return to its martensitic state once the magnetic field 

was completely removed. As shown in Fig. 2-2, the sample was steady at 245K and the 

magnetic field was ramped (point 1) at 700Oe/s. At point 2, the sample had cooled 

approximately 2.5K.Upon removing the magnetic field, the MMSMA started to heat up 

to point 3. At point 3, the field was completely reduced to zero and the sample was allowed 

to rest for 200 seconds to return to 245K. Next, points 4, 5, and 6, indicate the latter for a 

subsequent cycle. 
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Figure 2-2: (a) The temperature vs. time history of a Ni45Co5Mn36.6In13.4 single crystal 

that had been homogenized at 1173K for 24hrs, (b) the magnetic field applied to the 

sample in (a), and, (c) the temperature versus applied field history of the sample in (a). 

 

 

 

These points are also represented on a temperature versus applied field plot in 2-

2(c). Ideally, the response in 2-2(c) should have looked like that in Fig. 1-11(a). The 

adiabadicity from the experimental setup in Fig. 2-1 was, unfortunately, not ideal. Over 

the course of 200sec the MMSMA had absorbed energy from the sample chamber. This 

may have been due to a poor vacuum or conduction between the sample and the sample 

rod. Nevertheless, some information can be extracted from the results in Fig. 2-2(c). 

From point 1 to 2, the MMSMA cooled by about 2.5K. At high magnetic fields, 

once the MFIT was completed, the MMSMA began to heat, slightly. This slight heating 

may have been generated by the conventional MCE in the austenite phase. On removing 

the field to point 3, the sample heated to a temperature greater than 245K, indicating it had 

absorbed some energy during the cooling process. Instead of returning to 245K the sample 

returned to 246.5K due to poor adiabatic conditions. Subsequent cycles resulted in similar 
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behaviors. Fig. 2-3 demonstrates the measured temperature changes at different initial 

conditions around the martensite transformation temperatures. 

As shown in Fig. 2-3, a 2K to 2.5K temperature change was measured by ramping 

up to 7T. It is believed that the actual temperature change was a few degrees larger than 

what was measured due to the poor adiabatic conditions provided by a rough vacuum. 

Nevertheless, these measurements are the directly measured MCE in MMSMAs. In the 

next section, indirect measurements are discussed which often provide a more accurate 

quantification of the MCE in these materials. Indirect MCE measurements are performed 

from isothermal experimental procedures in the rest of this work, rather than direct MCE 

adiabatic measurements. 

 

 

 

 

Figure 2-3: Adiabatic temperature change versus temperature for Ni45Co5Mn36.6In13.4 

single crystals that had been homogenized at 1173K for 24hrs.  
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2.9 Direct elastocaloric effect measurements 

Similarly, direct giant elastocaloric effect (ECE) measurements were made on 

NiFeGa single crystal magnetic shape memory alloys using custom rods with the MTS 

mentioned above. The giant ECE in NiFeGa magnetic shape memory alloys is generated 

by inducing a superelastic phase transformation. Custom compression rods were designed 

and fabricated for direct adiabatic temperature change measurements across martensitic 

transitions in MMSMAs. In addition, the compression rods, described here, were also used 

for indirect giant ECE measurements discussed later.  

Like the SQUID-VSM, controlling the sample temperature was very important in 

mechanical measurements. The compression rods, therefore, were used as heat exchangers 

for controlling the MMSMA temperature. The general assembly of the compression rods 

is shown in Fig. 2-4. 

The compression rod in Figure 2-4 was constructed from three components. The 

base was machined from 17-4PH stainless steel (SS) and a detailed schematic is shown in 

Fig. 2-5. A tungsten carbide (WC) rod (see Fig. 2-6) was shrunk fit into the 17-4PH SS 

base by cooling the WC or heating the 17-4PH SS. The dimensions reported in Figs. 2-5 

and 2-6 represent those which allow the entire compression rod assembly to be safely 

heated and cooled between 573K and 93K. Above 573K, the WC rod loses radial contact 

with the 17-4PH SS base due to the differences in thermal expansion between the two 

materials. The temperature limit, therefore, is 573K under zero mechanical load. 

Exceeding this temperature can safely be achieved, however, if a compressive load is used 

to hold the WC insert in place, i.e. during compression tests.  
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Around the WC rod, a copper jacket was press fit using a machine press. The 

copper jacket was drilled-out along a zig-zag pattern using a drill press. A schematic of 

the zig-zag pattern is shown in Fig. 2-7. A total of 14 holes were drilled through each 

copper jacket. Channels were milled to make connections between the holes. Finally, 

copper rings were brazed on either side of the copper jacket to seal the zig-zag radial 

channel. Copper tubes were then brazed to holes connecting inlets and outlets to the 

channels. Figures 2-8 (a) and (b) show the copper jackets before and after brazing the top 

ring.  

 

 

 

 
 

Figure 2-4: Custom compression rod assembly.  
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Figure 2-5: A detailed drawing of the 17-4PH stainless steel (SS) base in the custom 

compression rod shown in Fig. 2-4. 
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Figure 2-6: A detailed drawing of the tungsten carbide rod component in the custom 

compression rod in Fig. 2-4. 
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a CN8200 series OMEGA PID controller. The temperatures of the top and bottom 

compression rods were controlled independently.  

Temperature feedback was sent to the PID controller via K-type thermocouples 

encased in alumina rods shown in Fig. 2-8(b). Ram electro-discharge machining, (RAM 

EDM) was used to generate two holes in the WC rods shown in Fig. 2-6. These holes were 

intended for the heads of the K-type thermocouples. One thermocouple signal was sent to 

the CPU and written to a file, the other sent a signal for temperature feedback to the PID 

controller.  

 

 

Figure 2-7: A detailed schematic for the custom copper jacket that was press-fit around 

the WC rod in Fig. 2-6. Dimensions are in inches. 
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Figure 2-8: (a) custom compression rods for mechanical testing of magnetic shape 

memory alloy single crystals and (b) the completed rods. 

 

 

 

As shown in Fig. 2-8(b), a “slot” was cut into the flat side of the upper and lower 

compression rod. This slot was intended to align the high temperature extensometer 

(HTEX) used in measuring compressive strain. The HTEX was zeroed by separating the 

measurement forks by 12.7mm which had an allowable range of ±20% strain, i.e. ±2.5mm 

displacement. Compression measurements were typically performed on 8mm long 

specimens. Therefore, these slots were cut 2mm from the compression face to allow the 

HTEX to remain near zeroed strain when an 8mm long sample was measured.  This 

minimizes non-linearity errors in strain measurements. 

Figure 2-9 shows the assembled compression rods on the MTS. Copper tubes were 

wound around the compression rods for cycling cooling water. The water acted as a 

protective measure from overheating the load cell (above) and rod housing. A spring 

(b) (a) 
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loaded thermocouple configuration was used to monitor the temperature at the surface of 

the compression sample as shown in Fig. 2-9. Additionally, a Lexan polycarbonate 

insulating box (not shown) was designed and constructed to be placed around the 

compression rods. The box surrounds the compression rods from either side and is latched 

together around the rods. This permits quick assembly and removal of the surrounding 

insulation. The box, however, does not touch the upper pushrod or load cell nor generate 

any errors in mechanical measurements. 

Adiabatic temperature measurements were not performed with the quick insulating 

box. Instead, pyrogel was wound around the samples. NiFeGa, NiCoFeGa [29], and 

NiMnIn MMSMA compression samples were tested with the setup in Fig. 1-20. As 

discussed above, the A to M transition in these magnetic shape memory alloys can be 

driven using mechanical load above the 
sA  temperature. In the Ni54Fe19Ga27 (at.%) 

compression samples, the sA  temperature was measured to be 284K as discussed in a later 

section. Here, as an example, a single crystal compression sample was loaded at 0.01mm/s 

( 5125 10 / s ) along the cubic austenite [123] direction. The adiabatic temperature 

changes are reported in Fig. 1-21 for initial temperatures of 293K and 311K. 
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Figure 2-9: The completed custom compression setup for heating and cooling between 

573K and 98K. Copper tubing was wound around the compression rods to flow cooling 

water in an attempt to protect the load cell (not shown) and the shrink-fit connection 

between the tungsten carbide and stainless steel components.  

  

 

 

Figure 2-10: The directly measured adiabatic temperature change in Ni54Fe19Ga27 (at.%) 

single crystals from superelastic loading/unloading along the [123] austenite crystal 

direction.  
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As shown in Fig. 2-10, the NiFeGa single crystals were compressed in the A phase. 

The A to M transition (forward transformation –FT) is represented by the initial heating 

in Fig. 2-10. Once hot, the sample was unloaded. The temperature history was recorded. 

Between the hottest and coolest part of the test, the NiFeGa sample exhibited an 

approximate 4.5K temperature decrease. This value can be computed using a 

thermodynamic framework discussed later. Due to the difficulties that arise when 

attempting to generate adiabatic environments, oftentimes indirect measurements that 

quantify the isothermal entropy change (see Fig. 1-7) are more accurate to quantify the 

caloric effect and will be the subject of most of the measurements, herein. 

2.10 Indirect magnetocaloric effect measurements 

In Eqn. (1.15), a generalized form for the isothermal entropy change around a 

second order magnetic transition was derived. In the case of the magnetocaloric effect 

(MCE) around a magnetic Curie point, i MX  and  i Hy  in Eqn. (1.15), thus resulting 

in 

0

(0 ) .

H
dM

S H dH
dT

 
    

 
                                        (2.1) 

According to Eqn. (2.1) the isothermal entropy change shown in Fig. 1-6 can be 

quantified by measuring the thermomagnetic response ( ( )M T ) of a magnetic material 

under a constant magnetic field, H , and computing its derivative. Multiplying the applied 

field by the temperature derivative of the thermomagnetic response results in the entropy 

change, which then yields information on temperature changes around the second order 

transition per Eqn. (1.21). 
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On the other hand, the giant MCE is quantified with the Clausius-Clapeyron (CC) 

equation given in (1.30) across first order transitions. Substituting  
i MX  and 

i Hy , 

the magnetic CC equation (1.30) reduces to 

0

M A M A dH
S M

dT

                                             (2.2) 

where M AM   is the magnetization change from martensite to austenite, and 
0

dH

dT
 is the 

CC slope described in Chapter 1. The CC slope can be approximated as another directly 

measureable slope, such as 
sM

dH

dT
. Eqn. (2.2) will then give only a single M AS   value. 

In practice, the entropy change as a function of temperature ( ( )M AS T ) should be 

measured so that additional thermodynamic analysis can be performed. This analysis is 

described in detail later.  

 The ( )M AS T  can be measured with magnetic isotherms [30] from the 

expression  

1

0 0

1
( ,0 )

k k

H H

K T T

k

S T H M dH M dH
T 

 
    

  
                         (2.3) 

where 1kT   and kT  are test temperatures, 1kT  > kT , 1( )k k kT T T   , and 

1( ) / 2K k kT T T  . According to Eqn. (2.3), the entropy change caused by the field-

induced transformation can be quantified by finding the difference in the magnetostatic 

energy density between two different magnetic responses at different temperatures (with 

small temperature increments), divided by the temperature increment [30]. Essentially, 



 

 

 

64 

 

( ,0 )KS T H   is the difference in Zeeman energy of M and A divided by temperature 

as discussed earlier and defined by term 5 in Eqn. (1.8). A schematic representation on 

how to determine S  from isothermal measurements is shown in Figure 2-11. 

 

 

Figure 2-11: The magnetization response across a MFIT in a MMSMA [50]. 

 

 

 

Figure 2-11 depicts the isothermal magnetic response ( M H ) of a MMSMA 

during field-induced M A  transformation at five different temperatures, 1T , 
fM , sA , 

2T , and 3T . Here, 
1 2 3f sT M A T T     and as the sample resides at hotter temperatures 

the ferromagnetic austenite phase is more stable, thus requiring less magnetic field to 
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reqH . The entropy 
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M H  curves and dividing by the temperature increment responsible for the change (see 

area ‘A’).  

Looking closely at Fig. 2-11 it can be seen that dividing area ‘A’ by the 

temperature change responsible for shifting the magnetic response is equivalent to 

implementing the CC equation in (2.2). For instance, area ‘A’ in Fig. 2-11 is essentially a 

rectangle defined by M AM   as its height, and  
1( ) ( )req f reqH M H T dH   as its base. 

The change in 
reqH  is generated through 

1fM T dT  . 

It is important to note, however, that this method of computing the ( )M AS T  

breaks down when the area between isotherms is not rectangular. If the area is not 

rectangular, the MMSMA transforms between a mixed (austenite and martensite) 

microstructure to austenite. What percentage of the microstructure is austenite and 

martensite is unknown, and therefore, implementing this method must be done using 

extreme caution.   

The magnetic responses of MMSMAs when their initial microstructural state is 

mixed, i.e. containing both martensite and austenite phases, shown by the curves labeled 

2T  and 3T . It can be seen from the  M H  curves labeled 2T  and 3T  that when the material 

is at a temperature in the two-phase region, small temperature changes may result in 

predicted entropy changes (shaded regions) at magnetic fields smaller than 
reqH  (see area 

‘B’ for small fields) which should not be confused for an entropy change generated from 

the M to A transition.  
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For this reason, the MMSMA must always be magnetically charged from 100% 

martensite, which can be achieved using a special experimental procedure, termed the 

discontinuous heating protocol. The discontinuous heating protocol is carried out as 

follows: 

1. The samples were cooled to a temperature below 
fM  under zero magnetic 

field, resulting in a fully martensitic state. 

2. The samples were then heated under zero magnetic field to a temperature just 

below the austenite start temperature without overshooting the target 

temperature.  

3. Holding temperature constant, the magnetic field was ramped from zero to 7T 

and then back down to zero at a rate of 25 Oe/s, meanwhile, the magnetization 

was measured. 

4. The temperature was then decreased to below 
fM . 

5. Next, the temperature was increased to the previous temperature plus 3K 

(without overshoot) and then step 3 was repeated. 

6. Step 4 and 5 were repeated until the test temperature was very close to the 

austenite finish temperature.  

Using the above steps, an accurate M AS T   diagram can be generated as shown in a 

later chapter for various case studies. These M AS T   diagrams can be further analyzed 

to yield information on the refrigeration performance of MMSMAs and other calorific 

materials.  
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2.11 Indirect elastocaloric effect measurements 

Like the magnetocaloric effect, the elastocaloric effect (ECE) can be quantified 

indirectly under the assumption that uniaxial mechanical loading does not generate a 

volume change. In reality, this is not true unless Poisson’s ratio is 0.5 [31]. For the 

conventional ECE in a material deformed elastically the ECE is defined as 

0

1
(0 ) ,eld

S d
dT




 


 
    

 
                                         (2.4) 

where el  is elastic uniaxial strain,   is uniaxial applied mechanical load, and   is mass 

density. Similar to the MCE, the ECE should generate a decrease in the free energy, and 

therefore a decrease in entropy upon elastic loading. This will generate heating. The 

entropy change in (2.4) can be computed by finding the temperature derivative of uniaxial 

strain under a constant load, i.e. the coefficient of thermal expansion. 

 Using fictitious numbers to compute (2.4) one can compute the relative value of 

the conventional ECE compared to that of the MCE. Assuming a MMSMA with mass 

density of 8000kg/m3 exhibits a coefficient of thermal expansion, eld

dT


, along some 

crystal direction of austenite, let us say the [001], of 55.99 10 mm/mmK, then under 

200MPa of uniaxial stress the entropy change can be computed using Eqn. (2.4). Loading 

the austenite single crystal from 0 to 200MPa, an entropy change of 1.5 J/kgK would be 

generated. Using Eqn. (1.22) and assuming the MMSMA is loaded at room temperature 

with  400J/kgKpC  , the adiabatic temperature change from said loading generates 
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1KadT  . Oftentimes, 1K is the temperature accuracy of the thermocouple, and 

therefore, the conventional ECE is negligible in MMSMAs. 

On the other hand, superelastic mechanical loading through the martensitic 

transformation generates latent heat values similar to the MCE. As such, the CC equation 

in (1.30) can be expressed as  

0

M A
M A tr crd

S
dT

 




                                           (2.5) 

where the extensive property iX  from (1.30) has been replaced with the transformation 

strain, M A

tr
 , and the intensive force, iy , with uniaxial stress,  . It is important to note 

that Eqn. (2.5) defines the entropy change across the M to A transition upon releasing the 

mechanical load, i.e. the one that produces cooling per the above discussion. 

Interestingly, some shape memory alloys exhibit a multistage stress-induced 

superelastic response [32]. In such a case, the entropy change from the low temperature 

martensite, to high temperature parent phases can be computed as the sum of each 

contributing transformation. The entropy change for multistage transformations can be 

computed as 

,

1 0

M Pn
tr iM P cr

i

i i

d
S

dT

 









                                         (2.6) 

where n  represents the number of superelastic transitions in a the shape memory alloy, 

and superscript P  represents a parent phase from the preceding martensite. 

Eqn. (2.6) can then be represented by a set of integrals  
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1

0 0

1
( ,0 )

k k

M A

K T T

k

S T d d
T

 

    
 


 

    
  

                        (2.7) 

where 
1kT 
 and 

kT  are test temperatures, 
1kT 
> 

kT , 1( )k k kT T T   , and 

1( ) / 2K k kT T T  . It is important to note, however, that Eqn. (2.7) can only be integrated 

if the    relation is a function. By definition, a function is a special type of relation in 

which each value in the domain ( ) corresponds to exactly one value in the range ( ), 

i.e. :f   . Under some loading conditions for SMAs, however, the    response is 

not a function.  

For example, consider the illustrated superelastic    response in Fig. 2-12. 

Upon increasing the mechanical stress,  , a sudden drop is observed due to the rapid 

propagation of martensite after its nucleation. If one attempts to integrate the    

response in Fig. 2-12, rather than the    response, Eqn. (2.7) cannot be applied. As a 

solution, an alternative has been proposed, here, in which a Legendre transform is used to 

generate a free energy potential that is reciprocal to the Gibbs free energy. Effectively, 

this permits the analysis of the ECE across superelastic loading in reciprocal space, 

whereby the    response can be integrated to evaluate the entropy change. 
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Figure 2-12: An illustration of the stress-strain response in shape memory alloys. 

Mechanical unloading is illustrated for 1T  and 
2T , and both loading and unloading are 

illustrated at temperature 
3T . Shaded areas, B and C, represent different levels of entropy 

change generated by unloading to different strain levels. 

 

 

 

An alternative to the Gibbs free energy-derived CC (Gibbs-CC) relation shown in 

Eqn. (1.30), is the one that is derived from the Helmholtz free energy. For example, 

consider the internal energy U  of SMAs as a function of extensive process variables   

and S  like that in Eqn. (1.1). Instead of applying a Legendre transform to the Gibbs free 

energy, like Eqn. (1.6), only the heat work term is removed. This results in what is known 

as the Helmholtz free energy, 

and                                                     
U TS

d SdT PdV HdM d 

  

     
                                    (2.8) 

where the d   term is taken directly from dU  in Eqn. (1.5) after the chain rule is applied. 

Like Eqn. (1.7), the free energy of M and A phases is equivalent at the point of 
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transformation. Thus the differential of the free energies are also equivalent at the point of 

transformation. This is expressed as 

            .Martensite Austenited d                                          (2.9) 

Substituting Eqn. (2.8) into (2.9) for the A and M phases, and solving for M A

iS 

, results in the CC equation, 

        
,

1 0 ,

M An
tr iM A tr

i

i tr i

d
S

dT

 









 
   

 
                                (2.10) 

where from M to A the M A

iS   must be positive, the reverse transformation hardening, 

,

M A

tr i  , must be negative, and the CC slope, 
0

trd

dT


, must also be negative. Note, the 

0

trd

dT


 

is not the coefficient of thermal expansion, but instead it represents how a critical strain 

level changes with temperature. 

In practice, Eqns. (2.6) and (2.10) should compute the same entropy change of 

transformation for a MMSMA across superelastic loading. Both give only a single value. 

As mentioned before, it is important to characterize M A

iS   across a wide range of 

temperatures for thermodynamic analysis. Therefore, Eqn. (2.10) can be expressed as 

 

1

1

1
( , )

M P M Pi i
finish finish

i i

k k
M P M Pi i
start start

n
M P M PM A

K start finish T T

i k

S T d d
T

 

 

     


 


 

 



 
    

  
 

                (2.11) 

where iM P

start   is the strain level at the start of the ith reverse transition, iM P

finish   is the strain 

level at the finish of the ith transformation, 1kT   and kT  are test temperatures, 1kT  > kT , 
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1( )k k kT T T   , and 
1( ) / 2K k kT T T  . Eqn. (2.10) assumes the austenite modulus of 

elasticity AE  exhibits a negligible temperature dependence. Using Eqn. (2.11) the 

superelastic    response of a MMSMA can be integrated to quantify the ECE across a 

first order transformation. 

In Chapter 4, the entropy changes computed with the above Maxwell and Clausius-

Clapeyron relations serve as inputs to additional thermodynamic analytic tools which are 

then used to compare solid-state calorific materials. Unfortunately, directly comparing the 

entropy change that is generated by MCE/ECE materials is a poor indicator of 

refrigeration performance. In second order MCE and ECE materials, applying and 

removing the intensive driving force iy , mentioned above, will result in a repeatable 

entropy or temperature change. In first order caloric materials, especially those exhibiting 

a structural hysteresis around a phase transformation, this reversibility can only be 

achieved under special circumstances. Due to the ability to attain different degrees of 

repeatability on field cycling, additional thermodynamic criteria are needed to quantify 

performance in MMSMAs. 

2.12 The missing experimental link 

When comparing capabilities and couplings of MMSMAs from section 1.3, it 

becomes apparent that the experimental procedures, in the above chapter, are lacking. 

Specifically, mechanical test instruments only probe at mechanical behavior and magnetic 

instruments probe only at magnetic behavior. In order to fully understand the magneto-
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thermo-mechanical couplings of the MMSMA, a more robust test apparatus is needed that 

measures a combination of multiferroic responses.  

The next chapter is dedicated to developing one such apparatus. The machine 

discussed below was intended to quantify the caloric effects in MMSMAs under mixed 

loading conditions, i.e. simultaneous field and stress. In following chapters, this test frame 

is used to investigate the influence of magnetic field on the superelastic behavior and 

caloric effects surrounding the martensitic transformation. Additionally, the test apparatus 

can be used to reduce the magnetic field requirement for cyclic martensitic transformation 

under a 2T applied magnetic field as mentioned in the Objectives section. 
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CHAPTER III                                                                                                                                             

THE DESIGN OF A MAGNETO-THERMO-MECHANICAL TEST FRAME FOR 

CHARACTERIZING MAGNETIC MATERIALS 

3.1 Test frame design 

Modern day materials engineering is faced with increasingly complex 

requirements for the characterization of advanced and active materials. One particular 

group of active materials, namely meta-magnetic shape memory alloys (MMSMAs), 

exhibit many scientifically interesting phenomena [33-35] that can be studied by 

measuring the thermal, mechanical, and magnetic histories across their ferroic transitions 

[30]. Elaborate experimental methods are needed to analyze some of these effects and, 

therefore, such studies are rarely reported in literature [18, 36]. These measurements, 

however, are becoming increasingly sought after to test theoretical frameworks [18] or to 

calibrate novel constitutive models [19, 37, 38] and thereby improve the active material 

response. 

MMSMAs undergo simultaneous thermoelastic (martensitic) and magnetic phase 

transitions. The martensitic phase transformation is the result of a change in crystal 

structure and is accompanied by a large recoverable strain. At temperatures above a critical 

point, the MMSMA transforms to the austenite (A) phase. Upon lowering the temperature, 

martensite (M) nucleates and propagates resulting in what is known as a forward (A to M) 

martensitic transformation [15]. On heating the alloy above the critical temperature from 

M, however, the A phase is recovered by the reverse transformation (M to A).  
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Interestingly, in MMSMAs the M and A phases exhibit different magnetic 

ordering. It has been posited that this behavior is controlled by Mn-Mn interatomic spacing 

[39] and its change across the phase transformation. In NiMnX (X=Sn, In, Sb), for 

example, the austenite phase is usually ferromagnetic [9] and the martensite phase is non-

magnetic. On the other hand, in compounds such as FeMnGa [22], CoMnGe [21], and 

Gd5(Si1-xGex)4 [7], the martensite phase is ferromagnetic and the austenite phase is non-

magnetic. The complex nature of the thermal, magnetic, and mechanical couplings 

exhibited by these unique alloys lends the possibility for their implementation in numerous 

sensing and actuation applications, mentioned above. 

3.1.1 The shape memory effect in meta-magnetic shape memory alloys 

The reversible and diffusionless thermoelastic transformation observed in 

MMSMAs can be induced by sweeping their temperature across a critical point. On 

cooling from the A phase, martensite begins to nucleate at the martensite start temperature, 

sM , and finishes propagating through the microstructure at the martensite finish 

temperature, 
fM . On heating, austenite starts to form at the austenite start temperature, 

sA , and finishes its transformation at the austenite finish temperature, 
fA . A thermal 

hysteresis, defined here as 
f sA M , is typically observed across the transformation and is 

produced by dissipation generated during the crystallographic change. Unfortunately, this 

structural hysteresis poses significant limitations in implementing engineering 

applications for shape memory alloys [18].  
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Often, the austenite phase in NiMnX (X=Sn, In, Sb) has a cubic Heusler lattice in 

which the Mn-Mn interatomic spacing results in ferromagnetic interactions. On cooling, 

the cubic phase transforms to a tetragonal, orthorhombic, or monoclinic martensite phase 

[18, 40] with lattice parameters different from those of the parent A phase. As a result, a 

transformation strain as large as 6.5% along certain crystal directions can be measured 

[18]. 

 During the transformation process, a latent heat (or enthalpy of transformation) 

can be measured. It is this latent heat, as well as magnetic interactions, that lends the ability 

of solid-state refrigeration. The MaTMeCh device described in this work was designed to 

quantify the caloric effects of MMSMAs under mixed loading conditions, i.e. the 

magnetocaloric (magnetic field driven transformation) and the elastocaloric (stress 

induced transformation) effects. Superelasticity (stress induced transformations) and 

magnetic field driven transformations (MFIT) are briefly described below as an aid in 

developing the design constraints for the MaTMeCh device. 

3.1.2 Superelasticity in meta-magnetic shape memory alloys 

The phase transition in MMSMAs can also be triggered by applying a mechanical 

load at temperatures above sA . The transformation strains can be completely recoverable 

when applying such loads at a temperature above 
fA , temperature. These stress-induced 

transformations are known as superelasticity. Interestingly, the structural hysteresis 

mentioned above will manifest as a stress- or thermal history dependence (hysteresis) 

depending on the method used to transform the MMSMA. When the transformation is 
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driven by changes in temperature vs. mechanical load, the resulting martensite crystal 

structure may be different, and therefore the magnitude of the hysteresis across the 

martensitic transformation is a function of the method used to drive the transformation. 

This is caused by the differences in the martensite crystal structure that forms in stress-

free conditions versus that which forms under a mechanical load.  

Furthermore, in some alloys the structural dissipation is known to be anisotropic 

[15], thus additional complexity arises when characterizing the shape memory response in 

single crystals. For example, mechanical tests on CoNiGa MSMA single crystals [41] 

demonstrate that the [011] austenite crystal direction exhibits the largest stress hysteresis 

(~147MPa), in [001] the smallest (~42MPa), and in the [123] an intermediate between the 

other two (~119MPa). Clearly, stress hysteresis is dependent on the crystal orientation 

with respect to the mechanical loading. In the MMSMA materials studied, here, the 

dissipation anisotropy has been unclear and, therefore, the MaTMeCh device will allow 

us to probe at the transformation behaviors under isothermal and isofield conditions. 

3.1.3 Magnetic field induced phase transformation 

Finally, the M to A phase transition, specifically in MSMAs, can be driven by 

applying a magnetic field at temperatures below sM  [18]. A completely reversible 

magnetic field induced transformation (MFIT) can be achieved at temperatures below 
fM  

[42]. The MFIT is analogous to heating the martensite phase to austenite. On removing 

the field, if no mechanical load is applied, martensite will self-accommodate to preserve 

the shape of austenite and minimize the internal elastic strain energy [18].  It is important 
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to note, when characterizing the MFIT in MMSMAs, that an applied mechanical stress 

has the potential of reducing structural hysteresis, as releasing the field from a MFIT with 

stress will transform the MMSMA to a stress-preferred martensite, rather than a self-

accommodated one. Studies probing this behavior are rarely reported due to the difficulty 

of experimentation. Upon mechanically loading a MMSMA prior to MFITs, the lattice 

parameters change in the martensite phase. This is believed to be one of the mechanisms 

responsible for the mechanical load dependence of the structural hysteresis. Additionally, 

magnetostriction may influence lattice parameters, and influence the transformation 

behaviors [43]. The MaTMeCh device will allow measurement and comparison of the 

dissipation generated while transforming the MMSMA by different applied forces. 

3.1.4 Magnetized bars 

In conventional magnetometry, magnetization measurements rely on a changing 

magnetic flux. Either the magnetic field applied to the sample is pulsed, or the measured 

sample is vibrated, or extracted, through a set of inductive pickup coils. The voltage in the 

pickup coils is then used to measure magnetization. In the case of MMSMAs, however, 

the applied magnetic field is static and, during mechanical loading, the sample is unable 

to be vibrated or extracted from the magnetic field. 

In a previous study [36], it was shown that the volume average magnetization can 

be determined by measuring the DC stray magnetic field surrounding a rectangular 

sample. Soft magnetic materials (such as MMSMAs) will demagnetize in the absence of 

a magnetic field. In the presence of a magnetic field, a demagnetizing field is generated 

surrounding the sample. A fully demagnetized rectangular sample is depicted in Fig. 3-1a. 
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Here, magnetic domains within the demagnetized bar, as shown by dashed lines, are 

oriented such that the magnetostatic energy is minimized. Arrows within the magnetic 

domains represent local magnetization. The stray field surrounding the sample is also at a 

minimum, and therefore, no magnetic flux lines are depicted.  

In Fig. 3-1b, a uniform magnetic field is applied to the bar in the longitudinal 

direction. Upon applying the field, magnetic domains in the same direction of the applied 

field grow at the expense of the neighboring magnetic domains. In the case of Fig. 3-1b is 

we neglect any crystallographic defects that serve as pinning sites for the magnetic domain 

wall motion. The growth of the magnetic domain causes magnetic flux lines to appear 

surrounding the sample as a result of the north (N) and south (S) poles generated by the 

now partially magnetized sample. Upon applying a large enough longitudinal magnetic 

field, as in Fig. 3-1c, the magnetization of the bar is uniform. If the applied field was then 

rotated to a different direction, the magnetization vector would then rotate away from the 

longitudinal direction to co-align with the field, as long as the sample is short. In the case 

of Fig. 3-1c, there is no such rotation and the field is applied vertically. The configuration 

in Fig. 3-1c matches the proposed configuration used in the MaTMeCh device. The top 

surface of the sample is defined as the N end of the magnetic dipole and the bottom surface 

is the S pole. In this case there is a large stray field generated outside the sample due to 

the demagnetization of the bar. The stray field is depicted as blue arrows.  
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Figure 3-1: A demagnetized (a), partially magnetized (b), and uniformly magnetized (c) 

bar in the y direction. Internal dashed lines indicate magnetic domain walls, blue 

external lines represent stray magnetic field, internal solid arrows indicate 

magnetization, and the dashed internal arrow indicates the internal demagnetizing field. 

The externally applied field is represented as H . A uniformly magnetized austenite 

MMSMA (d), mixed austenite and martensite (e), and fully martensite (c) magnetized 

bars depict superelasticity in constant magnetic field, H . Solid arrows at either edge of 

the rectangle represent compressive stress denoted as  . 

 

 

 

Upon uniformly magnetizing the specimen along the longitudinal direction, a 

demagnetizing field can be measured. Qualitatively, this field is defined as that which 

opposes the applied field in an attempt to demagnetize the sample to its lower energy state 
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experiences a smaller field than what is externally applied. Analytically, the field 

experienced at a material point, effectiveH , is defined as 

effective applied dH H H                                            (3.1) 

where appliedH  is the applied magnetic field, H  in Fig. 3-1,  and 
dH  is the internal 

demagnetizing field. 

Quantitatively, the average demagnetizing field is defined as  

dH M D                                                    (3.2) 

where D  is the volume average demagnetizing factor dependent on sample geometry and 

M  is the uniform specimen magnetization. It has been shown that for non-ellipsoidal 

geometries, rectangular bars for example, D  can be computed analytically [44]. The 

demagnetizing factor is a tensor  

0 0

0 0

0 0

xx

yy

zz

D

D

D

 
 


 
  

D                                             (3.3) 

where xxD  corresponds to the [001] crystal direction in the macroscopic single crystal 

shown in Fig. 3-1d, 
yyD  to the [010] crystal direction, and the zzD  to the longitudinal 

direction. The diagonal of D  always sums to unity. In this study, the nominal dimensions 

of the MMSMAs are 4mm   4mm   8mm, and therefore, our volume average 

(magnetometric) demagnetizing factors were computed to be approximately 0.19zzD  , 

0.4xx yyD D   using the analytical approach in [44]. 
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In the case where zero mechanical stress is applied to the MMSMA, the sample 

will magnetize as shown in Fig. 3-1d in a uniform applied field. Per the discussion above, 

the meta-magnetic transition in MMSMAs consists of a concurrent magnetic and 

structural transition. Figures 3-1(d-f) depict the stress-induced meta-magnetic transition 

under a constant magnetic field, H , and varying mechanical load,  , represented by large 

solid arrows at the N and S poles. Essentially, the magnetized austenite (Fig. 3-1d) begins 

to structurally transform to martensite upon mechanical loading. The temperature of the 

specimen is above 
fA , thus superelasticity can be achieved. The magnetization of the 

sample is decreased as a result of the A to M transition, and is shown by fewer magnetic 

flux lines surrounding the specimen (Fig. 3-1e) as well as the martensite plates that form 

within the sample. Finally, when the stress-induced A to M transition is completed (Fig. 

3-1f), the magnetic flux lines are virtually non-existent because the martensite phase in 

MMSMAs is non-magnetic [45]. Also note, the length of the sample is smaller in the 

loaded case when compared to the unloaded case. This is a result of applying a uniaxial 

strain which is decomposed into a transformation strain, tr , and an elastic strain, el . 

These fundamental assumptions are used in quantifying the average sample magnetization 

of a uniformly magnetized MMSMA specimen during isothermal/isofield compression 

tests and they will be discussed more in subsequent sections. 
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3.2 Testing principles and test frame capabilities 

3.2.1 General description 

A magneto-thermo-mechanical characterization (MaTMeCh) device was designed 

and constructed to analyze and measure the multiferroic responses explained above. The 

completed test rig was capable of applying 200MPa of uniaxial compressive stress to a 

4mm4mm8mm sample along its longitudinal direction. Magnetic field levels between 

0-9T were generated collinear to the mechanical load by an external NMR magnet 

surrounding the mechanical load frame. The NMR magnet was a vertical field 

Cryomagnetics NMR solenoid housed in a KD-601 Series LHe dewar on an 18 inch tall 

tripod along with a Cryomagnetics magnet controller power supply. Within the 

mechanical loading rig, the specimen temperature could be swept or set anywhere between 

-100°C and 80°C. Additionally, to prevent icing around the test rig’s critical components 

and sensors, the sample chamber was evacuated to rough vacuum prior to experimentation. 

Figure 3-2a is a cross section of the experimental apparatus and surrounding 

magnet dewar. The MaTMeCh device housing, labeled as “1” was of grade 2 titanium 

construction for its strength, machinability, and non-magnetic behavior. Three windows 

were cut via electro-discharge machining (EDM) at the top of the housing intended for 

sample installation and adjustment of sensors. Parts “2” and “3” are the bottom and top 

pushrods, respectively, machined from grade 2 Ti and beryllium-Copper (BeCu) for 

thermal conductivity and strength. A BeCu snap ring and a custom titanium spring 

configuration (see parts 7 and 8 in Fig. 3-2a) were used to apply a bias upward force of 

about 6lbf (~25N) on the MMSMA sample located in the section labeled “Detail A”. This 
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bias force was intended to keep the MMSMA stationary during complete mechanical 

unloading under high magnetic field levels. Ideally, the test frame was designed so that 

the sample would be located in the field center and no body force was generated, however, 

the actual uniformity of the field was only roughly measured using our magnetic sensors 

as discussed later. Thus, as a safety measure, the bias force was implemented. 

Above and below the sample were high strength non-magnetic ceramic inserts 

which were employed due to the large local stress concentration generated by compressing 

a small rectangular sample. Non-magnetic metals would have mechanically failed if 

implemented, here, due to their low yield strengths. Preliminary finite element simulations 

predicted approximately 200 kPSI (1.4GPa) of local stress at the sample interface when 

200MPa was applied to the sample by the surrounding push rods. The bottom ceramic 

insert (custom sized Al2O3 bar) is more visible in Fig. 3-2b. Each component labeled in 

the schematic of Fig. 3-2a is described in the figure caption.   

Individual parts of the test frame were designed using AutoCAD 2014 and 3D 

models were uploaded and converted to SolidWorks files to be analyzed with the 

SolidWorks finite element analysis software. The von Mises stress of each load bearing 

piece was determined under the maximum design load of 1200lbf and the computed 

stresses were compared with selected material yield stresses. A factor of safety of 1.5 was 

used in the design and sizing of the load bearing components.  

A USB-2408 DAQ system with onboard cold-junction compensation was used to 

log temperature, mechanical load, uniaxial displacement, stray magnetic field, and applied 

magnetic field with a custom LabVIEW program. The actuator supplying the mechanical 
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compressive load communicates with the CPU via a USB-RS485 converter and is 

controlled with the same custom LabVIEW program. Two programs were written; one 

was intended for superelastic loading up to a specified load limit and the other was used 

to hold the mechanical load constant during temperature sweeps or field ramping. The 

constant load LabVIEW sequence was programmed with displacement limits in the case 

of sample failure. 

 

 

 

 
 

Figure 3-2: A cross-sectional view of the magneto-thermo-mechanical characterization 

(MaTMeCh) device (a). Parts are labeled as 1: grade 2 titanium housing, 2: bottom push-

rod, 3: upper push-rod, 4: ceramic inserts, 5: MMSMA specimen, 6: O-rings, 7: BeCu 

snap ring, 8: titanium spring, 9: acme threaded tension rod, 10: brass nut, 11: spherical 

Ti-6-4 connection rod, 12: flat Ti-6-4 connecting rod, 13: load cell, 14: actuator thrust 

arm. Detail A from (a) is depicted in (b) to illustrate the specimen stage area during 

testing. 
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The sections below describe thermal, mechanical, and magnetic control and 

measurements, respectively, in more detail. Additionally, calibration is briefly discussed 

and, finally, a few sample results of the MaTMeCh device are presented. 

3.2.2 Thermal control and measurements 

To measure the shape memory effect (SME) explained above, thermal sweeps of 

the compression samples were achieved via conduction through the compression rods. 

Non-magnetic polyimide ultra-thin heater sheets with adhesive backings were wrapped 

around to the top and bottom compression rods. The top and bottom heaters were wired in 

parallel such that activation/deactivation of the heaters occurred simultaneously via a 

CN8200 series OMEGA Inc. PID controller. Heaters were wired using a 12-Cu lead 

vacuum feedthrough threaded into the bottom housing of the test rig.  

Conax Technologies vacuum feed-throughs constructed of 316SS were employed 

to make electric connections within the sample vacuum chamber. One feed-through was 

used for wiring the heaters and other sensors, and the other housed 6-T-type thermocouple 

wire pairs. Thermocouple pairs were welded and then placed at various points in the 

sample chamber to monitor temperature, as well as directly on the sample surface using a 

Teflon string and GE varnish.  

Around the strip heaters aluminum tubing was wound. Liquid nitrogen was flowed 

through a connection at the bottom of the sample chamber, which in turn cooled the 

compression rods and conducted heat away from the sample. Rubber tubing was used for 

connections between aluminum windings. The surrounding environment was evacuated 

to rough vacuum during testing. An external cryogenic solenoid valve with 304SS 
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construction was implemented to flow pressurized (~50psi) liquid nitrogen through the 

aluminum tubing and was opened and closed via the same PID controller that activated 

the heaters. Nitrogen liquid/gas was channeled out the top of the test frame after cooling 

the internal parts. PID controllers were auto-tuned to identify integral and derivative 

parameters. A set-point was then programmed into to the PID controllers for isothermal 

tests with the T-type thermocouple on the specimen supplying the temperature feedback. 

Additionally, a program was written in the PID controller between a lower and upper set-

point such that the controller activated/deactivated the heaters and solenoid valve at 

appropriate times to achieve the temperature sweeps at a specified rate. 

3.2.3 Mechanical measurements 

Uniaxial stress-strain was measured using an Interface WMC sealed stainless-steel 

mini load cell and a Capacitec HPC-40 series capacitive sensor, respectively. The load cell 

was limited to a maximum load of 2000lbf and the capacitive sensor was capable of 

measuring distances up to 1.2mm from the target plate. The load cell (part 13 in Fig. 3-

2a) was located outside of the strong stray field generated by the NMR magnet (part 15 in 

Fig. 3-2a). The small stray field on the load cell generated by the magnet (~0.2T), when 

charged from 0 to 9T, generated a small body force on the load cell determined by 

observations once the system was assembled. This produced errors in uniaxial stress 

measurements no larger than 5MPa during field sweeping. Uniaxial displacement was 

measured with the capacitive sensor next to the sample as shown in Fig. 3-2b. This 

configuration employed the top compression plate as the sensor electrical “ground” target 

plate. This configuration negated any additional strains developed along the load train. It 
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is important to note that capacitive sensors are immune to magnetic fields over a wide 

range of temperatures, but they are not immune to icing. At low temperatures ice will form 

at the capacitive sensing tip and influence displacement readings. This problem was 

addressed by evacuating the sample chamber with a roughing pump prior to testing and 

flushing the chamber with dry nitrogen gas. 

Finally, since MMSMAs can exhibit a significant elastocaloric effect (~8K) from 

the stress-induced phase transformation [10], mechanical testing is often performed 

slowly, for isothermal tests, or quickly, for “adiabatic” tests [10]. Typically, mechanical 

tests involving shape memory alloys were considered isothermal when loaded at strain 

rates no faster than 45 10
s

 . In this study, specimen were strained no faster than 

42.5 10
s

  to ensure the measured response was isothermal. 

A custom actuator was designed by Mechatronic Techniques, LLC under the given 

design constraints to supply the compressive force. The finished actuator is capable of 

applying a maximum of 2000lbf and 1200lbf of continuous force at every actuation 

velocity of interest and exhibits a 3.5in (90mm) stroke length to assist in positioning the 

MaTMeCh device to the appropriate height within the NMR magnet. A Nanotec PD4-N 

stepper motor drives a 1:100 gearbox reducer which then rotates the spindle drive via a 

belt. The gearbox slows the drive speed to rates acceptable for isothermal measurements 

as discussed later in the calibration section. As shown in Fig. 3-2a, a spherical compression 

fitting (part 11) was designed and threaded to the load train such that the bottom pushrod 

only exhibited one contact point with the mating actuator. This minimized asymmetry in 
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the compressive load and ensured proper parallelism with the compression sample’s edge 

and the compression plate as well as prevented premature fracture of the specimen. 

3.2.4 Magnetic measurements 

In the introduction, the physical mechanisms describing uniformly magnetized 

rectangular bars were outlined. To measure the volume average magnetization of the 

MMSMA in our apparatus, during a compression test, the stray field was analyzed with 

the use of Hall sensors. A correlation between the horizontal field along the [001] direction 

(pictured in Fig. 3-1d) and a vertical magnetization in the [100] direction can be quantified 

for an ideal case using finite elements. This correlation can then be used for computing 

magnetization. Here, the magnetostatic module of COMSOL Multiphysics 4.3a was 

employed for magnetic simulations.  

The magnetic simulations consisted of a rectangular bar in free space that was 

uniformly magnetized along the longitudinal direction at 120emu/g, i.e. 960,000A/m 

assuming a mass density of 8000kg/m3. The 3D simulation geometry is illustrated in Fig. 

3-3a. No magnetic fields were applied in the simulation, but rather a uniform 

magnetization in the sample geometry was applied in the ‘y’ direction. Only the stray field 

resulting from the magnetization was computed in the simulations. 

 Circles representing the active area of the Hall element were drawn at various 

distances from the sample edge, such that the centerline of the circles corresponded to the 

mid-plane in Z, i.e. the middle of the bottom edge, of the magnetized bar. These are also 

illustrated in Fig. 3-3a. Assuming the sample is uniformly magnetized in the positive y 

direction, a stray field is generated in the x direction as shown by the red arrows in Fig. 3-



 

 

 

90 

 

3b. Here, the demagnetizing field at the mid-plane (in Z) is plotted and white lines 

represent example locations of the simulated hall sensor elements. As shown by the red 

arrows, some stray field passes perpendicularly through the Hall element. This magnetic 

field, 
XB ,was then integrated (see Fig. 3-3c) over the circular areas at various distances 

from the sample edge and the ratio between the measured field and the magnetization was 

computed as [36] 

0

.X

y

B
f

M
                                                    (3.4) 

In Eqn. (3.4), XB  is the average magnetic field over the simulated circular area 

shown in Fig. 3-3c, 
yM  was the average sample magnetization in A/m, and 0  is the 

permeability of free space. Interestingly, for a given distance from the sample surface, f  

remains constant no matter the magnetization level of the magnetized bar. In other words, 

the horizontal field measured in the hall elements varies linearly with sample 

magnetization at a constant location in space. The ratios computed with Eqn. (3.4) are 

plotted in Fig. 3-3d as a function of distance from the sample edge for different specimen 

geometry. In practice, the 
yM  is unknown and XB  is measured at a set distance from the 

sample edge. The magnetization can then be computed using the simulated f  values. 

As shown in Fig. 3-3d, the slope of f  decays with increasing distance from the 

sample edge. This implies that minor errors in placement of the hall sensors will result in 

large errors in the computed magnetization [36]. In this study, this error is minimized in 

three ways. First, an opposing hall sensor configuration is employed, as discussed in [36], 
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where it was shown that taking the average magnetization measurements from two hall 

sensors equally spaced from the sample edge minimizes the error from misplacing a probe 

during experimentation. Secondly, the Hall elements were placed at 2.1mm from the 

sample edge. As shown in Fig. 3-3c, the slope of f  is near a minimum at this distance. 

Finally, gauge tools, i.e. positioning forks, were cut from aluminum stock via wire EDM 

to ensure the Hall sensors were placed with an accuracy of 0.1mm from the sample edge. 

These positioning forks are shown in Fig. 3-2b. 

Additionally, the thickness of the ceramic coating on the cryogenic hall sensor was 

considered when designing the thickness of the positioning forks. During compression, 

however, the MMSMA will strain laterally. The lateral strain was measured using a 

micrometer when the MMSMA was strained uniaxially up to 5%. The lateral strain was 

measured to be only 0.25% (0.01mm displacement), thus resulting in a negligible change 

in D  or  f  during the compression tests in this study. 

Here, two Lakeshore HGCT-3020 Hall cryogenic hall sensors were employed with 

a Lakeshore model 460 3-channel gaussmeter. The change of magnetic sensitivity of the 

sensors was approximately 0.1% across -100°C to 80°C. The active area of the Hall 

sensors was reported to be 0.817mm2 through personal communication with Lakeshore 

Cryotronics. An analog voltage was sent from the gaussmeter to the DAQ board which 

was then translated to stray field. The gauss meter applied a linear calibration curve of 

±10V to -300mT to 300mT or -3T to 3T as defined by the user settings. 
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Figure 3-3: The 3D simulation geometry (a) is illustrated. Blue lines indicate magnetic 

flux and discs drawn with faces parallel to the sample surface represent the active hall 

sensor element. The normal direction of the Hall elements is indicated along the 

centerline as n̂ . The bar is magnetized vertically in the finite element simulation. No 

magnetic fields are applied. Magnetic field lines are represented as red arrows along a 

mid-plane slice of the sample in (b). White lines near the south pole of the magnetized 

sample in (b) represent cross-sections of the discs illustrated in (a). The magnetic field 

was integrated over these discs, as shown in (c). The ratio of the x-direction integrated 

magnetic field over the disk areas in (c) with uniform vertical magnetization is plotted as 

a function of distance to the sample edge (see Eqn. (3.4)) in (d). 
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3.3 Calibration 

3.3.1 Magnetic calibration 

To ensure that accurate magnetic measurements were collected with the 

MaTMeCh device, the field uniformity was first verified with the above mentioned Hall 

sensors. To measure the field, the sample was removed from the test rig and the hall sensor 

was fixed (with Kapton tape) on the Al2O3 sample seat to measure the vertical field.  

NMR magnets are capable of producing highly uniform fields, and in this case, the 

test rig was designed to be extended within the bore up to a limit, such that the compression 

sample was within the uniform field. Not only does this ensure the field generated by the 

magnet matches that which is applied to the sample, but it also ensures that no body forces 

are generated by magnetic field gradients that could potentially move the sample during a 

test or generate additional stresses. In Fig. 3-4, the measured magnetic field within the 

bore of the magnet is plotted as a function of test frame extension. At 0, the test frame was 

fully extended. For all the tests conducted, described herein, the sample was located at -

1.5 inches from full extension. This corresponded to approximately mid-stroke extension 

of the custom spindle drive actuator. 
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Figure 3-4: Measured vertically applied magnetic field within the superconducting NMR 

magnet up to the full extension of the test frame. Field begins to significantly deviate at -

2.5 inches from the full extension. All tests were conducted at -1.5 inches of the full 

extension to ensure proper uniformity. 

 

 

 

Next, the magnetization of whole compression specimens (~1g in mass) were 

measured in a Quantum Design magnetic property measurement system (MPMS) 

vibrating SQUID magnetometer (SQUID VSM).  Measurements were collected at room 

temperature (~293K) under 0.01T. Longitudinally magnetizing the compression samples 

resulted in a measured magnetic moment of approximately 4.5emu/g. This number served 

as a baseline for magnetic measurements. Before starting MaTMeCh tests, the field in the 

superconducting NMR magnet was set to 0.01T and the LabVIEW-computed-

magnetization was corrected by modifying f  to match that reported by the SQUID VSM 

measurements. 
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3.3.2 Mechanical calibration 

 Calibration of the load cell was conducted using a set of Instron calibration 

weights, however, the capacitive displacement sensor used for measuring uniaxial 

displacement was not re-calibrated from factory conditions. Since the linear actuator was 

a custom build from Mechatronic Techniques LLC, manual calibration was needed. 

To determine a calibration curve for the spindle drive, a capacitive displacement 

sensor was attached to the drive head of the actuator and a conductive steel plate was 

mounted above the sensor to serve as the target. The Nanotec motor was then activated at 

different frequencies and the displacement of the drive head was recorded in time. The 

calibration curve of the linear actuator is shown in Fig. 3-5. As mentioned above, a typical 

strain rate employed for isothermal mechanical measurements of MMSMAs is 

approximately 45 10
s

 . For an 8mm long specimen, this translates to approximately 

0.005mm/s. According to the calibration curve in Fig. 3-5, this corresponds to a rotation 

speed of 65Hz. However, we chose to use only 30Hz in the compression experiments, 

described in the next section, which corresponded to approximately 0.002mm/s and 

42.5 10
s

 . 
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Figure. 3-5: The calibration curve for the custom spindle drive actuator from 

Mechatronic Techniques LLC.  

 

 

 

3.4 Example results 

3.4.1 SME in heating/cooling 

Figure 3-6 shows the measured shape memory effect of a Ni45Co5Mn36.6In13.4 

(at.%) single crystal under 25MPa compressive stress and 1T applied field along the [100] 

austenite direction. The 
fA  temperature of this sample was tuned by annealing [46] to be 

18°C under zero stress and field conditions. The sample is heated and cooled at 2°C/min 

and was initially heated to 30°C. At 30°C it was assumed the sample exhibited zero 

compressive strain and the magnetization was measured to be approximately 81emu/g. 

This is comparable to SQUID measurements of a sample with similar heat treatment and 

composition [27].  Upon cooling, the MMSMA transforms to its martensitic phase below 

10°C and exhibits approximately 5.7% transformation strain. The change in magnetization 
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of 92emu/g compares well with SQUID measurements under zero mechanical load. The 

small increase in magnetization from 30°C to 10°C, on cooling, is attributed to cooling 

below the Curie point of austenite. The thermal hysteresis across the transformation was 

measured to be approximately 11°C. Further testing will allow the shape memory effect 

(SME) to be measured under different fields and mechanical loads to study the influence 

of the hysteresis and transformation strain. 

 

 

Figure 3-6: The simultaneously measured uniaxial compressive strain and average 

magnetization from heating and cooling at 2°C/min through the martensitic 

transformation in a Ni45Co5Mn36.6In13.4 single crystal. During heating and cooling, the 

compressive load was held constant at 25MPa and the magnetic field was 1T collinear to 

the [001] austenite crystal direction. 
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Figure 3-7(a) shows the measured superelastic responses of a Ni45Co5Mn36.6In13.4 

single crystal at 18°C under 0, 5, and 9T applied along the [100] austenite direction. In 
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this particular material system, the 
fA  temperature in zero stress or field has been 

identified as 18°C. Upon compressing the sample, the elastic response of austenite is 

measured as a 9.5GPa modulus of elasticity. At critical stress levels 40MPa, 87MPa, and 

138MPa, martensite begins to nucleate in the microstructure, respectively. Under normal 

conditions, the MMSMA can be loaded beyond the transformation strain limit to observe 

the elastic response of the stress-induced martensite. In this study, however, we did not 

strain the material beyond 7% to protect its microstructural integrity. Loading the 

MMSMA into the elastic martensite regime will produce dislocations and cause premature 

brittle failure. This is well documented in other studies [47]. Nevertheless, the modulus of 

elasticity of martensite can be extracted from the data obtained during mechanical 

unloading and was determined to be 17.2GPa. 

 

 

Figure 3-7: The superelastic curves for Ni45Co5Mn36.6In13.4 single crystals compressed 

along the [001] austenite crystal direction under 0, 5, and 9T fields; the test was 

conducted at a constant 18°C (a). The superelastic response and simultaneously 

measured stress-induced demagnetization behavior is plotted in (b) for the same single 

crystal under 1T at 15°C. 
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As expected, when large magnetic fields are applied to the specimen, larger 

mechanical loads are needed to induce superelasticity. This phenomenon is caused by the 

fact that the magnetic field stabilizes, or favors the ferromagnetic phase (austenite). In 

practice, applying magnetic fields to MMSMAs reduces the transformation temperatures. 

Since the temperature of this isothermal test was a constant 18°C, but a magnetic field was 

applied to the MMSMA, more energy needed to be overcome by the applied mechanical 

energy to initiate the transformation. This is known as magnetostress and is related to the 

difference in Zeeman energy between austenite and martensite [18]. From the data in Fig. 

3-7a, the magnetostress was determined to be about 12.8MPa/T, only half of what was 

previously reported for a similar composition [18].  The small level of magnetostress was 

unexpected and may have been a result of the thermal treatment applied to the MMSMA 

to move the transformation temperature to 18°C. 

Additionally, the increase in stress hysteresis with increasing magnetic field was 

not expected. Under 0T, the stress hysteresis was measured to be 25MPa. From increasing 

the field from 5T to 9T, the stress hysteresis increased from 38MPa to 47MPa. This 

increase could be due to a mechanical training effect from cyclic mechanical loads, or due 

to the selection of martensite variants produced by applying magnetic fields in the [001] 

direction. More studies are needed to identify the cause of increasing stress hysteresis with 

larger applied magnetic fields. 

Finally, to demonstrate the magnetization measurement capabilities of the 

MaTMeCh device during isothermal/isofield compression, Figure 3-7b shows the 

superelastic and magneto-structural coupling of the same compression sample at 15°C 
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under 1T applied collinear to load. The mechanisms defining this type of test are illustrated 

in Figs. 3-1(d-f). Again, the sample was only compressed to 7% strain to prevent 

premature failure. Since 1T was applied, the transformation temperatures of the MMSMA 

experienced a decrease, thus, the sample transforms from A to M at 50MPa at 15°C rather 

than 40MPa (in 0T) at 18°C as illustrated in Fig. 3-7a. The magnetization is measured to 

drop approximately 90emu/g across the stress-induced martensitic transformation.  

3.4.3 Magnetic field induced strain 

The completely reversible magnetic field induced transformation under 52MPa 

constant load is shown in Figure 3-8. Prior to field ramping, at 18°C, the MMSMA was 

compressed to its martensitic state from austenite. Once the sample was completely 

comprised of martensite, the field was ramped from zero to 6T at approximately 50Oe/s 

(0.3T/min). This is comparable to the field ramping rates used in the above mentioned 

SQUID magnetometer for isothermal measurements. Under about 4.1T the stress-induced 

M to A transition began and it finished around 5.3T. On removing the field, the A to M 

transition began slightly below 2T and completed around 0T. The magnetic hysteresis 

under 52MPa was measured to be about 4.0T and the reversible MFIS was measured to 

be about 5.4%.  Further studies will be conducted using the MaTMeCh device to identify 

the role of mechanical load on the magnetic hysteresis observed in MFIT experiments. 
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Figure 3-8: The fully recoverable magnetic field induced strain (MFIS) of a 

Ni45Co5Mn36.6In13.4 single crystal uniaxially compressed under 52MPa along the [001] 

austenite crystal direction. The test was conducted at 18°C. 

 

 

 

3.5 Conclusions 

A magneto-thermo-mechanical characterization (MaTMeCh) device was 

designed, assembled, and implemented for studying the martensitic transformation 

behaviors of meta-magnetic shape memory alloy single crystals. The robust device 

accommodates -100°C to 80°C test temperatures, 0-200MPa uniaxial compressive loads, 

and 0-9T collinear-to-load magnetic fields. Uniaxial stress, strain, volume average 

magnetization, applied magnetic field, and temperature are measured simultaneously. The 

mechanical load and magnetic field are driven independently, therefore, the MaTMeCh 

device is suitable for studying the effects of mixed loading conditions on single crystalline, 

or polycrystalline, compression bar samples. In this report was have discussed the shape 

memory effect, superelasticity, and magnetic field inducted meta-magnetic transitions, in 
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detail, and these served as a baseline for the MaTMeCh device design criteria. Finally, the 

testing capabilities were demonstrated by a few example data sets. Systematic studies are 

underway on Ni45Co5Mn36.6In13.4 single crystals and more experimental results will be 

presented at a later date.

 

 

  



 

 

 

 

 

*Part of this chapter is reprinted from Acta Materialia, 74, Bruno N. et al. The effect of 

heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic 

refrigeration, 66-84, Copyright (2014), with permission from Elsevier. 
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CHAPTER IV                                                                                                                                           

THE DEVELOPMENT OF A PERFORMANCE CRITERIA FOR FINDING 

OPTIMAL MATERIALS PROPERTIES* 

4.1 Overview 

Since the discovery of second order magnetic transitions, the magnetocaloric effect 

has been of interest to the scientific community. It was well known that these second order 

effects could be quantified using equilibrium thermodynamics, with the equations in 

Chapter 1, but the thermodynamic relations describing their performance in refrigeration 

processes were not formally developed until the 1980’s. These relations were originally 

derived assuming that the magnetocaloric working refrigerant exhibited a second order 

magnetic transition. As demonstrated above the governing equations for second and first 

order magnetic transitions need to be derived separately simply due to the differences in 

the underlying physics that generate the two caloric effects, i.e. changing heat capacity in 

second order transitions and the latent heat of a structural transformation in first order 

transitions. 

The objective of this chapter is to extend an existing thermodynamic framework 

that quantifies the refrigeration performance from second order transitions in non-shape 

memory alloys (SMAs), to the first order transitions exhibited by SMAs by employing the 

governing equations for first order phase transformations (FOPTs) into a previously 
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derived performance criteria. It will be shown that extending the framework can be 

achieved by employing a few reasonable assumptions and that making these assumptions 

ultimately reveals important materials parameters that are easily tuned in the SMA with 

thermal processing. Substituting expressions for the entropy change and adiabatic 

temperature change from FOPTs into the performance criteria has never before been done, 

and as a result, the refrigeration performance in MMSMAs was found to be controlled by 

only a few materials parameters. Modifying these parameters, in turn, changes the 

refrigeration performance, thus revealing the possibility of optimizing their MCE or ECE 

responses. 

Specifically, the refrigeration performance of a SMA magneto- or elastocaloric 

refrigerant depends on the irreversibility that arises from the structural hysteresis and 

elastic strain energy storage across FOPTs. In addition, their operating temperatures in a 

thermodynamic cycle must be carefully considered. Here, quantities including the 

refrigerant capacity (RC), relative cooling power (RCP), the magnitude of critical driving 

forces for field cycling, and other efficiency ratios are discussed and developed. A simple 

relation is derived and used later in this work to describe the MMSMAs energy conversion 

efficiency around the FOPTs.

4.2 Wood and Potter’s refrigerant capacity 

In 1987, Wood and Potter developed the idea of refrigerant capacity (RC) to 

describe the refrigeration performance of materials exhibiting second order magnetic 

transitions. This parameter describes how much thermal energy can be transferred through 

a temperature gradient by a working magnetocaloric material. Thermal energy is defined 



 

 

 

105 

 

by the first term of Eqn. (1.5), and therefore, “thermal work” is generated by moving this 

thermal energy across a temperature gradient. 

Figure 4-1 shows how the RC is computed from an entropy vs. temperature 

diagram for conventional non-SMA magnetocaloric refrigerants [12]. On the top of Fig. 

4-1, the entropy vs. temperature diagram (see Fig. 1-6) for a ferromagnetic material is 

depicted around its Curie temperature, 
curieT . The magnetic Curie temperature is labeled 

by an orange dashed line. On the entropy vs. temperature diagram (Top), the black curve 

indicates the entropy of the material under zero magnetic field, and the green curve 

indicates a decrease in the entropy due to the applied field, 0H  . On the lower half of 

Fig. 4-1, the entropy change vs. temperature is plotted corresponding to the difference in 

the entropy curves on the top half of the figure. 

As shown by the bottom half of Fig. 4-1, an entropy change, cS , is achievable at 

temperature cT , and an entropy change of hS  is achievable at temperature hT . These 

temperatures correspond to the cold and hot reservoirs of a magnetocaloric refrigeration 

cycle, respectively. In [12], the refrigeration capacity (RC) was defined as the product of 

the entropy change achieved at the cold reservoir of a refrigeration cycle and the 

temperature gradient, i.e. the difference in temperature of the hot and cold reservoirs, 

h cT T T   . This is shown by the shaded region on the bottom of Fig. 4-1 and is defined 

by 

.rev cW RC S T                                            (4.1) 
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Figure 4-1: (Top) Entropy versus temperature curves for zero (black) and constant 

(green) magnetic fields around a magnetic Curie point, curieT , and (bottom) the difference 

between the curves in (Top). 

 

 

 

The goal of much present-day research is to increase the RC in state of the art MCE 

materials [48]. One might assume that changing the cold temperature reservoir to a 

temperature greater than cT , say to *

cT  in Fig. 4-1, may increase the RC due to the fact 

that *

c cS S   . This would result in an increase in Eqn. (4.1). It was shown in [12], 

however, that this violates the second law of thermodynamics and that the entropy change 

at the hot temperature reservoir must always be greater than or equal to that at the cold 

reservoir, h cS S   . This implies that the hot and cold temperature reservoirs for a given 

refrigeration cycle must be selected very carefully for non-SMA calorific materials to 

maximize the RC.  

0H 

0H 

S

T

T

S
cS

hS

cT
hT

curieT
*

cS

*

cT

0H 



 

 

 

107 

 

In the best case, i.e. a completely reversible MCE, the entropy change at the 

temperature reservoirs are equal, that is to say 
c hS S   . However, in real processes, 

irreversibility is generated in the form of heat, and the entropy change at the hot 

temperature reservoir will always be greater than that at the cold, 
c hS S   . Taking this 

into consideration, the real work performed on the magnetocaloric material over a 

refrigeration cycle can be computed as [12] 

real irr h l fW S T S T Q Q                                     (4.2) 

where irrS  is the entropy produced by all irreversible processes and released at hT , lQ  is 

the work loss to heat leaks in the refrigeration cycle, and 
fQ  is the work lost to friction. 

4.2.1 Coefficient of performance 

In [12] a thermodynamic figure of merit was developed to determine the optimal 

operating temperature range in non-SMA MCE refrigerants. This figure of merit,  , was  

the ratio of reversible work (Eqn. 4.1) to real work (Eqn. 4.2) over one thermodynamic 

cycle, i.e. 

.rev

real

W

W
                                                   (4.3) 

Often, ratios like the one shown in Eqn. (4.3) are used to quantify the efficiency of a 

thermodynamic process. Later it will be demonstrated that a similar ratio can be used to 

probe at the energy conversion efficiency of the MMSMA across FOPTs. 
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4.3 Pecharsky and Gschneidner’s relative cooling power 

In 2000, Pecharsky and Gschneidner developed a similar thermodynamic 

parameter to the one in Eqn. (4.1) for comparing the performance of magnetocaloric 

refrigerants [49]. Instead of naming the performance term the “refrigerant capacity”, they 

described it as the “relative cooling power” (RCP) and explicitly stated in [49] that the 

RCP has no physical meaning. Instead, the RCP is only useful for comparing MCE 

materials. Figure 4-2 is an example of how the RCP can be computed from entropy change 

versus temperature diagrams for a Gd single crystal [49]. 

In [49], the RCP of MCE materials was determined by multiplying the maximal 

entropy change at the ferromagnetic Curie temperature, maxS , to a temperature range 

arbitrarily selected at full width-half maximum (FWHM) of the S  vs. T curve . This is 

shown in Fig. 4-2 by a horizontal solid like and two vertical dashed lines.  

 

 

 

 

Figure 4-2: The entropy change vs. temperature diagram for Gd single crystals taken 

from [49]. The relative cooling power (RCP) is computed by multiplying the maximal 

entropy change to the temperature range of full width-half maximum of the entropy 

change curve. 
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Fig. 4-2 shows a peak in S  around 300K for Gd single crystals corresponding to the 

Curie point of Gd. Each curve represents the entropy change generated by applying 

different field levels. The lowest solid curve is the entropy change generated from 

applying 2T. The RCP can then be computed from this diagram by [49] 

max( ) FWHMRCP S S T                                            (4.4) 

where 
FWHMT  is the temperature difference between full width-half maximum (FWHM) 

of the S  vs. T curve. For the 2T curve in Fig. 4-2, the RCP is computed to be 234 J/cm3.  

Although this shares the same units as the RC, described above, it does not share 

the same meaning. In Eqn. (4.1), the temperature gradient was selected carefully to 

represent that which energy was transferred in a thermodynamic cycle. In addition, the 

entropy change at the hot and cold sources were bound by the second law of 

thermodynamics. In the case of RCP, however, the temperature range has no physical 

implications and the entropy change used in its computation can only occur at the CurieT  . 

Since the RCP has no uses other than to compare MCE refrigerants, it was shown 

that it can also be determined from adiabatic temperature change vs. temperature diagrams 

as 

( ) ad FWHMRCP T T T                                             (4.5) 

with units of K2. In Eqn. (4.5), adT   is the adiabatic temperature change (see Eqn. (1.21)) 

of the MCE refrigerant corresponding to the maxS   in Eqn. (4.4). Since the entropy change 

considered in Eqn. (4.4) is not that at the hot or cold reservoir, as it was in [12] for the RC, 

the RCP cannot be used to analyze a thermodynamic cycle. In addition, thermodynamic 
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losses are neglected in its computation which further reduces its usefulness in quantifying 

the performance of MCE materials. The next sections will discuss, in detail, the 

consequence of using the RCP to analyze MMSMA refrigeration performance. Using the 

RCP as a measure of refrigeration performance is commonly done in literature, thus, 

misleading results are often reported in magnetocaloric studies. Here, a few alternatives 

to the RCP are developed specifically intended to be used to compare the refrigeration 

performance of MMSMAs that exhibit a thermal hysteresis. 

4.4 Magnetocaloric cycles and reversibility in MMSMAs 

In sections 4.3 and 4.4, the RC and RCP are defined. Both of these parameters 

were originally derived for second order phase transforming materials. If used properly, 

the RC quantifies the thermal work generated by the MCE refrigerant. The RCP is a metric 

designed only for comparing non-SMA materials. Both generally assume that the 

isothermal entropy change, generated in a magnetocaloric material under a given magnetic 

field, is repeatable with field cycling. In meta-magnetic shape memory alloys (MMSMAs) 

the entropy change is only repeatable with field cycling at very specific initial 

temperatures and, therefore, Eqns. (4.1) and (4.4) should be used with extreme caution. 

To illustrate the temperature dependence of the repeatable entropy change in 

MMSMAs, a Brayton cycle is depicted in Fig. 4-3. Figure 4-3 illustrates the idealized 

entropy vs. temperature (S – T) diagrams around a first order thermoelastic martensitic 

transformation upon cooling and subsequent heating, with (blue curve) and without (green 

curve) applied magnetic field, H. The S - T curve shifts to lower temperatures upon 

application of the field. The field reduces the transformation temperatures of the 
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MMSMAs and stabilizes the austenite where the austenite is ferromagnetic and the 

magnetic ordering of martensite is not magnetic. These idealized responses neglect the 

contribution of magnetic entropy to the total entropy in austenite and martensite phase 

regions, and thus, the conventional MCE behavior of martensite and austenite phases, for 

the sake of simplicity and ease of understanding the thermodynamic cycle. In addition, the 

diagrams assume, the forward transition range (
s fM M ) is equal to the reverse transition 

range (
f sA A ). The average of these transformation ranges, defined as 

    / 2elas f s s fT A A M M     
 

 is used in the following discussion. The 

transformation ranges are typically controlled by microstructurally stored elastic energy 

(see Eqn. (1.8)), and therefore the transformation range is denoted using the subscript 

“elas”. 

As shown in Fig. 4-3, the MMSMA initially begins the depicted Brayton cycle 

[50] at 
fM  (point 1 in the figure), or the hot reservoir of the cycle, hotT . The schematics 

under the S – T plot in Fig. 4-3 represent microstructures of the material at specified points 

or regions in the S – T diagram. Upon the field application, ad

compH , which is sufficient to 

induce a complete adiabatic reverse martensitic transformation at 
fM  (

: Martensite : AusteniteM A ), the sample exhibits endothermic behavior and cools to 

coldT  (point 3) if insulated from external heat sources. This temperature change is shown 

in the figure by the line hot coldT T  (region 2) and is directly related to the transformation 

entropy change.  Next, the sample is exposed to the refrigerated volume and allowed to 

absorb energy, thus heating the sample comprised of field-induced austenite (see 
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refrigeratorcoldT T , point 4 in the figure). The sample is then removed from the refrigerated 

volume and the field is released under insulated conditions warming up the sample due to 

the forward transformation ( A M ), which is an exothermic process (
refrigerator endT T , 

region 5). At this point (point 6 in the figure), the sample is exposed to ambient 

temperature and releases heat from the temperature endT  to hotT , returning the sample to a 

temperature below or equal to 
fM , which allows the process to be repeated. As shown on 

the abscissa in Figure 4-3, the operating temperatures which define the Brayton cycle are 

hot fT M  and cold hot adT T T  , where coldT  is the temperature that is achieved due to 

adiabatic magnetization of the sample and adT  is the adiabatic temperature change upon 

the field application (is max

adT , if the transformation is complete) defined in Eqn. (1.34).   

Clearly, if the RC from section 4.2 was computed for the MMSMA, the hot and 

cold temperature reservoirs of a thermodynamic cycle would be limited by its 

transformation temperatures. This was also observed in [51]. For the cycle in Fig. 4-3, the 

thermal work produced from field cycling can be defined by the size of the shaded area. 

Interestingly, for the cycle to be repeatable with field cycling, and in that sense equivalent 

to one attainable with second order magnetocaloric materials, the thermal hysteresis areas 

of the S – T diagram should not contribute to useful thermal work. Neglecting the thermal 

work produced within the thermal hysteresis during computation of the RC allows for an 

accurate comparison of performance between second and first order magnetic transitions. 
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Figure 4-3: Example MCE Brayton cycle discussed in the text; The sample starts under 

zero magnetic field at 
fM  at point 1. An applied field nucleates austenite (region 2) and 

cools the sample to point 3. The sample absorbs energy to point 4 within the refrigerated 

volume. The sample is then removed from the refrigerated volume and adiabatic 

demagnetization occurs in region 5 to point 6.  At point 6 the sample is allowed to cool 

to 
fM  from endT . The hatched region indicates the work performed by the Brayton 

Cycle. The schematics underneath the S – T plot show the representative microstructure 

at a given point or region [50]. 

 

 

 

In the cycle depicted in Fig. 4-3, the cS  is ambiguous as the MMSMA tends to 

heat from point 3 to point 4. This makes quantifying the entropy change at some isothermal 

reservoir, impossible. In fact, the MMSMA in Fig. 4-3 absorbs energy along an isofield 

line, instead of along an isotherm. Therefore, the next section is dedicated to quantifying 
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what is called the maximum thermal work [50] attainable in MMSMAs from their first 

order phase transformations. 

4.5 Maximum thermal work in shape memory alloys 

MMSMAs should theoretically be able to perform more thermal work than that 

specified by the shaded region within the Brayton cycle in Figure 4-3. This is illustrated 

in Figure 4-4 for a given applied magnetic field capable of inducing a complete adiabatic 

structural transformation, ad

compH . The theoretical maximum work, workT , that a MMSMA 

can perform, is independent of thermodynamic cycles and is defined as the area of the 

shaded region in the S  vs. T plot in Figure 4-4b. However, this area is limited by the 

MMSMA transformation temperatures as mentioned above. Figure 4-4b is constructed 

based on the ideal S T  diagrams shown in Figure 4-4a: at a given temperature, 

Austenite at Martensite at 0
ad
compH H HS S S

    , where Martensite at 0HS   is the entropy of martensite 

under  0H  , which fully transforms to austenite under ad

compH H , and 
Austenite at ad

compH H
S


 

is the entropy of the austenite under ad

compH H , which transforms back to martensite 

under 0H  . The temperatures limiting the shaded region were extended down from 

Figure 4-4a and areas of thermal transformation hysteresis, i.e. two phase regions, were 

not considered to contribute to reversible work upon field cycling. 
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Figure 4-4: (a) Entropy vs. temperature plot for a meta-magnetic SMA under zero and 
ad

compH  magnetic fields near the thermoelastic transformation. (b) Entropy change vs. 

temperature plot where the shaded region indicates workT . The rectangular shaded region 

between  0H

fM   and 
ad
compH H

fA


 indicate the workT  in the temperature range where the 

total entropy change is reversible. The areas of the transformation hysteresis indicate the 

operating temperature ranges where the forward and reverse entropy changes during 

isothermal magnetization experiments are not the same, and are therefore cyclically 

irreversible [50].

 

 

 

It is clear from Figure 4-4b that the transformation temperatures and S  dictate 

the size of the shaded region that is used to determine the useful work, or workT . Upon 
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closer inspection of Figure 4-4b, the elastic transformation ranges (
ad ad
comp compH H H H

f sA A
 

  

and 0 0H H

s fM M  ) also contribute to the shaded region by amount 
elasS T  , however 

these operating temperatures can only be accessed if special thermodynamic processes are 

used that allow martensite to form at the start of each cycle. In addition, it can be seen that 

within the operating temperature range of 0H

fM   and 
ad
compH H

fA


, the maximum entropy 

change of the MSMA is achieved, and thus is capable of contributing to the 
workT  by the 

amount max

adS T  . For the Brayton cycle in Fig. 4-3, only part of this value was captured 

and it is believed that special thermodynamic cycles, possibly involving mechanical stress 

or regenerative cycles, can be used to access the entire theoretical values. 

The example cycle in Figure 4-3 and depiction of workT  in Figure 4-4 clearly 

indicate the importance of studying the critical materials parameters to enhance the 

MCE/ECE in MMSMAs. It is shown in Figure 4-4 that a large workT  can be achieved if 

samples exhibit large adiabatic temperature changes, have large entropy changes across 

transformation, and have broad elastic transformation ranges. 

Once the S T   diagrams are constructed for a given MMSMA, the workT  is 

computed as the area of the shaded region in Figure 4-4b. The workT  is dependent not only 

on magnetic field, but also the martensitic transformation temperatures and is defined, 

here, as 

   ( , )
2

M A M A M Airr
work ad elas ad elas

S
T H T S T T T T                        (4.6) 
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where max

adT  is the maximum adiabatic temperature change, elasT  is the average of the 

forward and reverse elastic transformation ranges mentioned earlier, and 

max( )irr ad elasS T T    is the thermodynamic loss upon the forward and reverse phase front 

motion associated with the transformation hysteresis. It is important to include this entropy 

production to avoid violating the second law of thermodynamics as discussed earlier. 

Using the S T   diagram in Fig. 4-4b to compute the RCP in Eqn. (4.4), it can 

be seen the RCP will over-predict the available thermal work in the MMSMA because it 

includes thermal work transferred across the thermal hysteresis. For example, the S

value in Eqn. (4.4) for MMSMA is simply the entropy change across the martensitic 

transformation, M AS  , and the full width half maximum FWHMT  encompasses the 

thermal hysteresis. Including the thermal hysteresis while computing the RCP commonly 

done in literature, but as can be seen here, the results misleading. 

The computed RC in Eqn. (4.1), however, gives the same value as the first term of 

workT , i.e. the maximal thermal work generated from the latent heat of the martensitic 

transition. In workT , terms have been added to include work obtained within the elastic 

transformation ranges, losses due to transformation hysteresis, and limitations have been 

set on hotT  and coldT  to correspond to the martensite transformation temperatures. Note 

that the adiabatic temperature change can be approximated using Eqns. (1.34) or (1.39). 

The irrS  term in Eqn. (4.6) approximates the cooling power losses from the entropy 

production during the transformation process. The entropy production from the 
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transformation hysteresis is the hysteresis loss defined in [42] divided by the temperature 

of the isothermal magnetization tests [52] as, 

( ) M A

hys

irr

H S T
S

T

  
                                          (4.7) 

which, if ( ) 1H  , approximates entropy production for a complete transformation cycle. 

For magnetic fields that induce only partial transformation, the percent transformation, 

( )H , is 0 ( ) 1H  .  In Eqn. (4.7), irrS  can be roughly determined by multiplying the 

transformation entropy, M AS  , by the thermal hysteresis of transformation, 
hysT  under 

zero magnetic field and dividing by the temperature of the isothermal field-induced 

transformation.  Only half the irrS  is considered in Eqn. (4.6) because in the refrigeration 

cycle, like that shown in Figure 4-3, the transformation front propagates only once during 

the cooling step ( hot coldT T ), but irrS  takes into account both forward and reverse phase 

front motion. Upon releasing the magnetic field outside of the refrigerated volume, the 

other half of frictional dissipation associated with the complete transformation is 

produced. This second half does not affect how much the sample will cool upon field 

ramping, but as shown in Figure 4-4b, the hysteresis does limit the operating temperatures 

and thus reduces workT . Lastly, it is important to note that this approximation of entropy 

production from the martensitic transformation is assumed to be independent of rate. This, 

however, is not true in general and suggests a more accurate model must be developed in 

future studies to account for the rate dependence of entropy production. 
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4.6 Critical driving forces and magnetic field levels 

In MMSMAs, the driving forces needed to transform the MMSMA are an essential 

consideration when quantifying refrigeration performance. The driving force is used in 

computing the work input of a refrigeration cycle or that which is needed to cool the 

sample, and also in computing efficiency ratios like that shown in Eqn. (4.3). In general, 

a driving force of 
,

ad

i compy  is required to complete the cyclic adiabatic transformation of the 

MMSMA at either the 
fM  or 

fA  temperature. Other important driving forces include 

those needed to induce and/or complete the isothermal transformation, 
,i reqy  and 

,

iso

i compy , 

respectively. These force levels will be quantified, here, and then used later to compute 

the energy conversion efficiency of FOPTs. 

The critical magnetic field levels needed to achieve MFIT are derived, first, 

followed by those needed for the stress induced transformations. In the case of magnetic 

field induced transformations, where martensite is non-magnetic and austenite is 

ferromagnetic, the transformation temperatures decrease with applied magnetic field as 

shown in Figure 4-5a. In Fig. 4-5a the right-most curve is the measured 

thermomagnetization curve of NiCoMnSn under 0.05T, denoted as 1H . On increasing the 

magnetic field to 7T, 2H , the curve shifts left. As shown by the red dotted line, increasing 

the field sufficiently will shift the  temperature to be equal to the 
fM  temperature. If the 
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field is ramped isothermally at 
fM , the transformation will take place under high enough 

fields. Therefore, applying a large enough magnetic field will generate the reverse M to A 

transformation at any temperature below 
sA .  

The generalized force, 
,i reqy , needed to initiate the transformation the MMSMA at 

a temperature below sA  is defined as 

 ,

sA

i
i req s s

d
A T T A

dT
    

y
y                                   (4.8) 

where /sA

id dTy  is the inverse of the sA  temperature’s sensitivity to the applied driving 

force

 

 

 

 
 

Figure 4-5: The thermomagnetic response of NiCoMnSn under zero magnetic field 

(green) and 7T (blue) (a) and an illustration of magnetization isotherms corresponding to 

temperatures in Fig. 4-3 (b) [50].
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To completely transform the MMSMA under isothermal conditions at a temperature 

below 
sA , the generalized force 

,

iso

i compy  can be computed as  

 , .
fA

iso i
i comp f s

d
A T T A

dT
    

y
y                                 (4.9) 

Finally, if the transformation is adiabatic and the MMSMA exhibits a temperature change 

across the transformation, the generalized force needed to complete the transformation can 

be defined as  

 , ,
fA

ad i
i comp f ad s

d
A T T T A

dT
    

y
y                         (4.10) 

where unlike Eqn. (4.9), the adiabatic temperature change is added to increase the required 

driving force by an amount equal to /fA

ad iT d dT  y .  

The critical driving forces for MFITs are illustrated in Figure 4-5b. The influence 

of the adiabatic temperature change can be observed by the dash-dot line connecting the 

two magnetization curves at hotT T  and coldT T . Figure 4-5b depicts the magnetic 

responses of a meta-magnetic SMA at different states in Figure 4-3. The magnetic 

response at 
fM  shows the magnetic field, 

reqH , needed to start the transformation. If the 

sample is to transform under isothermal conditions, the field required to complete the 

transformation would be defined by the same magnetization curve, and is labeled as iso

compH

. However, the sample is insulated while the field is applied and an endothermic reaction 

occurs, as shown in Figure 4-3, thus the magnetic response is shifted to the right while the 



 

 

 

122 

 

sample cools and ultimately requires ad

compH  to complete the transformation. From Figs. 4-

3 and 4-5b, it can be deduced that 
hot fT M  and 

ad
compH H

cold fT A


 . 

In the case of completely reversible MFITs at 
fM , the generalized forces in Eqns. 

(4.8), (4.9) and (4.10), can be computed as magnetic field levels given as  

  ,
sA

req s f

dH
H A M

dT
                                           (4.11) 

  ,
fA

iso

comp f f

dH
H A M

dT
                                           (4.12) 

and 

  ,
fA

ad

comp f f ad

dH
H A M T

dT
                                      (4.13) 

respectively, where the temperature T  has been replaced with 
fM  and iy  with H . Using 

Eqns. (4.11), (4.12), and (4.13), the percent of transformed MMSMA is defined, (when 

hot fT M ) as 

( ) 100
req ad

req compad

comp req

H H
H where H H H

H H



   


                   (4.14) 

where H  is constrained between the minimum field required to induce transformation and 

the field required to attain complete transformation.  For 
reqH H  and 

compH H , ( )H  

obviously equals 0 and 1, respectively when considering only the reverse transformation. 

The fraction of transformation can then be used to determine workT , and irrS  under any 

given field or transformed volume fraction. 
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Analogously, Eqns. (4.11) through (4.14) can be derived for superelasticity. In the 

general case of only A to M transformation, these expressions are  

    , ,
sM

i
i req s s

d
T M T M

dT
    

y
y                            (4.15) 

 , ,
fM

iso i
i comp f s

d
T M T M

dT
    

y
y                           (4.16) 

and 

 , .
fM

ad i
i comp f ad s

d
T M T T M

dT
     

y
y                        (4.17) 

In the case of reversible superelasticity, they are defined as 

     ,
sM

req s f

d
T M T A

dT


                                  (4.18) 

  ,
fM

iso

comp f f

d
T M T A

dT


                                 (4.19) 

and 

  .
fM

ad

comp f ad f

d
T M T T A

dT


                             (4.20) 

In the next section, the above expressions for FOPTs are substituted into the RC 

framework in Eqn. (4.3). Essentially, Eqn. (4.3) can be used to identify key materials 

parameters that enhance performance. These can be modified using thermomechanical 

processing in MMSMAs. Eqns. (4.8) through (4.20) can be used to compute the applied 

work on the MMSMA, which is then compared to the MMSMAs capability to perform 

useful thermal work. 
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4.7 Ratios for identifying key material characteristics to enhance the giant caloric 

effects 

As shown in Figure 4-3, the thermal work generated by the MMSMA is limited by 

the thermodynamic cycle in which it is employed. In Eqn. (4.6), we identified the 

maximum thermal work attainable by MMSMAs, however, some important parameters 

did not contribute to 
workT . To identify material parameters that can be modified via 

thermal processing treatments, discussed in the next chapter, the performance criteria of 

the MMSMA must be decoupled from the thermodynamic cycle like was done for the 

workT  parameter, above. Additionally, the magnetic field levels needed to transform the 

MMSMA should contribute to the performance criteria of MMSMAs which was not 

considered in the 
workT  parameter. Employing Eqn. (4.3) will lend the ability to combine 

workT  and the driving forces defined in Eqns. (4.8)  through (4.20). 

Here, the refrigerant capacity (RC) resulting from the martensitic transformation 

is quantified in MMSMAs assuming that the latent heat of the structural transformation is 

the only contributor. This “ latentRC ” is then divided by the work needed to generate the 

latent heat. In other words, a ratio similar to the one in Eqn. (4.3), latent , is computed 

between the chemical energy change at the point of transformation and the work input 

needed to generate the chemical energy change.  

In the case of MFITs, the energy conversion efficiency is defined by latentRC  

divided by the Zeeman energy (term 5 in Eqn. (1.8)) and for superelasticity, latentRC  

divided by the mechanical strain energy described by term 2 in Eqn. (1.8). This ratio 
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quantifies the energy conversion efficiency of the MMSMA. According to the first law of 

thermodynamics, i.e. conservation of energy, the energy applied to the MMSMA should 

result in the same amount of energy output per the control volume in Fig. 1-2. In the ideal 

case, latent  will equal unity. In real processes, however, this is never reached due to 

dissipation. The energy ratios developed, here, quantify the ideality of the stress or 

magnetic field induced transformations. 

Careful review of Figs. 4-3 and 4-4 indicates that the critical temperature points 

on the entropy change vs. temperature diagram are defined by the martensitic transition 

temperatures for a thermodynamic cycle. This implies that for quantifying the RC for the 

latent heat of the structural transformation, that M A

ad h cT T T T      [53]. According 

the developments in [12], the entropy changes at the hot and cold temperature reservoirs 

of a refrigeration cycle must satisfy the condition h cS S   . As shown in Fig. 4-4b, the 

entropy change at both hot and cold reservoirs in SMAs are nearly equal to the entropy 

change of the martensitic transformation, M AS  . The latentRC  of the SMA for some 

thermodynamic cycle under the conditions shown in Fig. 4-4b is therefore defined as 

  
ad
compH H latent

rev c f fW S M A RC


                                   (4.21)                                     

and assuming M A

cS S     and 
ad
compH HM A

ad f fT M A
   , 

  .latent M A M A

adRC S T                                               (4.22) 

With the above considerations, M AS   and M A

adT   used in Eqns. (4.22) can be 

decomposed to identify important materials parameters that influence the workT  in Eqn. 
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(4.6), or the latentRC  in SMAs. Substituting Eqns. (1.30) and (1.34) into (4.22), the latentRC  

is defined as  

0

0

0

.

M A i
i M

latent M A i
i smartensite

pM A i
i M

d
T

d dT
RC T A

CdT d
T

dT T







 
  

      
  
    
 

y
X

y
X

y
X

         (4.23) 

where 
MT  is equal to the shift in the 

fA  temperature with applied force, i.e. 

f
M iA

i

dT
T

d
  y

y
. In Eqn. (4.23) it is assumed the complete martensite transformation 

occurs, and therefore, latentRC  also corresponds to the complete transformation under iy , 

in Eqn. (4.9). Here, it is important to note that the M A

adT   in Eqn. (1.34) is computed 

using the isothermal entropy change, M AS  , and the driving force needed to induce the 

complete isothermal transformation, 
,

iso

i compy .  

Next, to find the energy conversion efficiency ratio, latent , Eqn. (4.23) is divided 

by the energy needed to generate the latentRC , 

,

0

.

ad
i comp

i iE d 
y

X y                                                  (4.24) 

For MFITs, iX = M , iy = H  and Eqn. (4.24) is the Zeeman energy and, here, is roughly 

approximated as 

  ,
2

M A ad

compM H
E

 
                                                  (4.25) 
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where M AM   is the magnetization difference between M and A phases and ad

compH  is the 

magnetic field needed to completely transform the MMSMA under adiabatic conditions 

at 
fM  (see Eqn. 4.13). Next, latent  is computed by substituting 

iX = M  and 
iy = H  into 

(4.23), dividing Eqn. (4.23) by (4.25), and simplifying. This reduces to 

1

1 1
2f

latent

mart

p f

A M A

f

C AdT

M MdH






 

     

                                   (4.26) 

where the energy conversion efficiency, latent , is a function of the CC slope, 
fA

dT

dH
, 

martensite heat capacity, mart

pC , magnetization change, M AM  , thermal hysteresis, and 

elastic transition ranges through the  
f

f

A

M
 ratio. Any deviation from unity, computed from 

Eqn. (4.26), indicates the MFIT in the MMSMA is not ideal. Similarly, for the superelastic 

transformations, the energy conversion efficiency ratio can be approximately quantified 

as 

1
.

1 1
2f

latent

aust

p f

M A M

tr f

C AdT

Md







 

   
 

                               (4.27) 

Using Eqns. (4.26) and (4.27), the influence of thermomechanical processing on 

the energy conversion capabilities in MMSMAs can be quantified. However, these 

expressions do not allow the dissipative and non-ideal elastic effects to be separated into 

individual contributions. Instead, only one number is computed and its difference with 

unity signifies the ideality of the stress or magnetically induced transformation. 
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The equations governing FOPTs have never before been employed to quantify the 

energy conversion efficiency as was done here, in Eqns. (4.21) through (4.27). The next 

chapter uses this framework and describes the experimental procedures and processing 

techniques that can be employed to influence the materials parameters in Eqns. (4.26) and 

(4.27).  Processing and fabrication methods that influence the sample microstructure and 

the transformation characteristics can be utilized to improve energy conversion 

capabilities in MMSMAs. In doing so, these refrigerants can exhibit the highest energy 

conversion efficiency.  
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CHAPTER V                                                                                                                                                              

TUNABILITY OF MAGNETIC SHAPE MEMORY ALLOY BEHAVIOR 

5.1 Introduction 

Many scientifically interesting problems have arisen through past attempts to 

control reversible martensitic transformations (MTs). As discussed above, reversible MTs 

often occur from a cubic austenite phase, to a low temperature martensite phase of lower 

symmetry. It has been observed that the MT can be preceded by a softening in the 

transverse acoustic phonon branch (TA2) and a change in elastic compliance along certain 

austenitic crystallographic directions [54]. Interestingly, this phenomenon has been linked 

to the shape of the austenite crystal Fermi surface and is dependent on composition and 

electronic structure [55]. Therefore, the temperature in which the MT occurs may depend 

on both composition, which influences the electronic structure, crystallographic ordering, 

and the thermodynamic contributions discussed in Chapter 1.  

In the next sections, MMSMA composition and the influence of heat treatments 

on the MMSMA response are investigated. Heat treatments are employed to control the 

magnitude of the thermodynamic driving forces derived in Eqn. (1.8), and to manipulate 

the magnetoelastic couplings in a single MMSMA composition through crystallographic 

ordering. The experimental characterization of the MT following heat treatments 

demonstrates the tunability of the MMSMA. The characteristics surrounding the tuned 

MT are then used as inputs to quantify the effect of the thermal treatments on the energy 

conversion efficiency in Eqn. (4.26).  
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5.2 Meta-magnetic shape memory alloy compositions and e/a ratios 

The 
sM  and 

CT  for each composition in Table 2-1 were determined from 

differential scanning calorimetry or magnetometry, discussed earlier. In some samples 
CT  

is not reported because it was either not resolved by calorimetry or it resided at 

temperatures higher than the limit of the magnetometer (400K). Additionally, the ratio of 

valence electrons to number of atoms (e/a ratio) was computed for each alloy using the 

measured composition and is tabulated in Table 2-1. 

In metallurgy, the e/a ratio is commonly reported in alloys that exhibit a strong 

electronic dependence on their physical properties. As mentioned above, the physical 

properties of the MMSMA are controlled by the electronic Fermi surface in MMSMAs. 

Therefore, this method has been adopted for MMSMAs which exhibit a large change in 

transformation characteristics under small compositional variations [39, 56]. Figure 5-1 

depicts linear trends in the sM  temperatures for NiMnX (X=Ga, In, Sn, Sb) alloys as a 

function of their e/a ratio from [57].  

The solid lines in Fig.5-1 were computed from first principles calculations in [57] 

and assume the MMSMA transforms from a stoichiometric L21 austenite to L10 

martensite. It has been well documented [57] that experimentally changing the MMSMA 

composition away from stoichiometry, or including a quaternary addition such as Co, may 

result in a metastable non-L10 martensite phase, thus misaligning the sM  temperature with 

the predicted results.  
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Figure 5-1: The sM  (square) and CT  (circle) temperatures for the solution heat treated 

alloys in Table 2-1 plotted as a function of e/a ratio over theoretical lines [58]. 

 

 

 

The sM   (squares) and CT   (circles) temperatures for the solution heat treated 

(SHT) alloys in Table 2-1 have been overlaid on the plot in Fig. 5-1. The sM  and CT  

temperatures of the NiMnIn alloys overlap those predicted, however, there is a large 

degree of uncertainty. The sM  temperatures in the NiCoMnSn alloys exhibit the same 

slope as the predicted curve, but all of the transformation temperatures are shifted to lower 

e/a ratios. This may be a consequence of alloying NiMnSn with Co. Further studies are 

needed to verify the cause of this shift. 

A few of the above alloys were selected for further thermal treatments to identify 

the variation in sM  and CT  under a constant e/a ratio. The variation in these temperatures 

A

CT

sM
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after thermomechanical processing represented the influence of thermodynamics, or 

crystal ordering, on the MT. Two NiCoMnSn alloys were systematically heat treated, as 

shown in Tables 2-2 and 2-3, and their critical 
sM  and 

CT  plotted in Figure 5-2. 

The critical 
sM  and 

CT  temperatures for each of the secondary heat treated alloys 

in Tables 2-2 and 2-3 were identified and plotted with their corresponding e/a ratios (which 

were constant for each composition) as shown in Fig. 5-2. Interestingly, Ni45Co5Mn40Sn10 

did not exhibit much variation in the sM  temperature with the heat treatments tabulated 

in Table 2-3. As discussed later, these treatments were intended to increase grain size in 

polycrystalline ribbons and maintain a constant crystallographic order. These annealing 

treatments, on the Ni45Co5Mn40Sn10 alloy, were performed at temperatures above or at 

1073K. Furnace cooling was employed to minimize formation of anti-site defects and 

vacancies following the thermal processing. Any change in the sM  temperature in Fig. 5-

2 for the Ni45Co5Mn40Sn10 alloy was not a result of changing crystal order or vacancy 

concentration, but the change may have been a result of other thermodynamic 

contributions discussed later. 

On the other hand, a notable spread in the sM  temperature was found for the 

Ni43Co4Mn42Sn11 composition under a constant e/a ratio. The thermal treatments on this 

alloy were over a wider temperature range and they employed both slow-furnace and rapid 

cooling. Rapid cooling is defined by quenching the alloy in a quartz vial, by plunging a 

hot quartz ampoule from furnace temperatures into room temperature water. The quartz 

was not broken during the quench to protect the integrity of the thin ribbons. Interestingly, 
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the quenching procedure and wide range of annealing temperatures may have resulted in 

the formation of vacancies and/or anti-site defects and a change in crystallographic order 

whereby a corresponding change in 
sM  was measured. More detailed results of the 

systematic heat treatments on the NiCoMnSn alloys are presented in Chapter 6. 

 

 

Figure 5-2: The sM  temperatures as a function of valence electron to atom (e/a) ratio for 

the NiCoMnSn alloys in Tables 2-2 and 2-3. 
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NiMnIn alloys are shown in Tables 2-4 and 2-5. The alloys in Table 2-4 and Table 2-5 

were polycrystalline and did not contain cobalt. These alloys were heat treated for only 3 

hours at various temperatures and quenched in water. On the other hand, a cobalt-

containing single crystalline Ni45Co5Mn36.6In13.4 alloy was heat treated under the 
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conditions listed in Table 2-6. Most often the alloy was heat treated for only 3 hours, but 

for a few instances different times were employed. 

Figure 5-3 shows the spread in the critical 
sM  and 

CT  temperatures for the 

NiMnIn(Co) alloys tabulated in Chapter 2 for each heat treatment. The e/a ratios were 

computed using the compositions measured with WDS. Unlike the NiCoMnSn alloy 

system, the In containing MMSMA did not exhibit a clear linear trend in 
sM  temperatures 

over a wide e/a range. In addition, for a constant e/a ratio, the Ni48Mn38In14 alloy 

demonstrated small changes in sM , suggesting that this alloy was electronically stable and 

that only minimal changes in crystallographic ordering were achieved by annealing. The 

Ni45Co5Mn36.6In13.4 single crystalline alloy, on the other hand, exhibited the largest spread 

in sM  and 
CT  temperatures of all the selected base alloys. These results suggest that Co 

may play a role in the tunability of NiMnIn MMSMAs. In an attempt to identify the 

mechanisms responsible for the spread in sM  and CT  temperatures, depicted in Figs. 5-2 

and 5-3, the following sections take a closer look at the microstructure and crystal ordering 

in these alloys.  
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Figure 5-3: The sM  (square) and CT  (circle) temperatures for the NiMnIn(Co) alloys as 

a function of valence electron to atom (e/a) ratio. 
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5.3 Microstructural barriers  

As shown in the Figures 1-3, 1-4, and 1-5, and described by Eqn. (1.8), the 

martensitic transformation temperatures depend on non-chemical (elastic and dissipation) 

contributions to the free energy. The microstructural storage of elastic energy across the 

martensitic transition results in broad transition ranges and a deviation of an ideal 

thermoelastic transformation. Similarly, defect generation and other dissipative effects 

generate a thermal hysteresis resulting in further deviation from the ideal response.  

In both A to M and M to A transformations represented by Eqn. (1.8), the irrE  is 

positive indicating that additional energy must be overcome for both forward and reverse 

transformations. The 
elG , on the other hand, is stored in the microstructure during the A 

to M transformation, and is recovered by the M to A transformation [17]. This energy 

storage and release has been shown to be partially responsible for differences in the latent 

heat measured by calorimetry between forward and reverse transformations [17]. In terms 

of improving the giant calorific effects of MMSMAs, small elastic energy should be stored 

in the microstructure. If the stored elastic energy is too large, no enthalpy change would 

be measured in calorimetry because the chemical energy change would be stored 

elastically [17]. To study the influence of elastic energy storage through microstructural 

barriers on the MCE performance, the low hysteresis Ni45Co5Mn40Sn10 alloy in Table 2-3 

was subject to grain growth with carefully selected annealing treatments. The martensitic 

transformation characteristics are discussed, in detail, in subsequent sections. 
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5.3.1 Experimental procedures 

Four compositions near Ni45Mn40Co5Sn10 (at.%) were synthesized via arc melting 

in a protective argon atmosphere. Ribbons were prepared and their compositions measured 

with WDS as described in Chapter 2. The ribbon compositions were measured to be 

Ni44.5±0.15Mn43±0.20Co1.9±0.02Sn10.7±0.07 at.%, Ni44.4±0.35Mn40.9±0.29Co4±0.08Sn10.8±0.03 at.%, 

Ni44.4±0.08Mn39.8±0.12Co5.1±0.03Sn10.8±0.07 at.%, and Ni44.5±0.15Mn39.3±0.21Co5.4±0.06Sn10.8±0.04 

at.%. Henceforth, these alloys are abbreviated as Co2, Co4, Co5, and Co6, respectively.  

Differential scanning calorimetry (DSC) was conducted on the ribbon samples 

using a TA Instruments Q20 calorimeter by stacking more than 10 mg of ribbons in an 

aluminum pan. The temperature was swept at 5K/min between 353K and 453K. The 

martensitic transformation temperatures, ( sM ,
fM , sA , and 

fA ) were extracted from the 

DSC measurements using the line intersection method. This method is demonstrated on 

the Co5 cooling curve in Fig. 5-4 where the cooling curves of each as-spun sample are 

shown. The Co5 ribbons were selected for the grain size study due to the lowest 

transformation hysteresis and the largest latent heat of transformation.  

To promote grain growth in the as-spun ribbons, different Co5 ribbons were 

annealed at under the conditions in Table 2-3. The above mentioned samples were 

annealed in a partial argon atmosphere within quartz tubes that had been washed at least 

3 times with argon and purged to vacuum (310-4Torr) between washing. The ribbons 

were encased in tantalum foil to prevent their interaction with the quartz tube and a 

titanium sponge was sealed within the same tube as an oxygen getter. The ribbons were 

furnace cooled after annealing to produce similar crystallographic ordering and vacancy 
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concentrations on cooling. One additional heat treatment was conducted at 1173K in high 

vacuum (110-5 Torr) for 100min on separate ribbons, which were allowed to rest on the 

quartz tube during the heat treatment without tantalum foil or a titanium sponge and were 

subsequently furnace cooled. 

All the ribbons’ microstructures were investigated using a FEI Quanta 600 field 

emission scanning electron microscope (SEM). A backscatter electron (BSE) detector was 

used to collect images of the grains on the sample surfaces and ribbon cross sections after 

cleaving the ribbons transversely. Images of ribbon cross sections were collected using a 

secondary electron (SE) detector and second phases or inclusions were identified using 

the energy dispersive spectrometer (EDS) in the SEM. 

The grain size of the ribbon samples were measured from BSE images. A 

histogram of the measured grain diameters was plotted, a Gaussian curve was fit to the 

diameter data, and the average grain diameters were determined to be the maximum of the 

fitted peak. The grain diameter was then referred to as grain size (GS). The thicknesses of 

the ribbons were also measured from the SE image cross sections and then the GS to 

thickness ratio (GS/t) was used as a measure of grain constraint [59, 60].   

5.3.2 Transformation temperatures and latent heat of martensitic transformation 

In the ribbons, DSC scans were used to determine the transformation temperatures 

and latent heats of transformation. As shown in Fig. 5-4, the substitution of cobalt for 

manganese increases the transformation temperatures. The entropy changes across the 

martensitic transformation, 
s

f

M

pA M

M

C
S dT

T

   , were computed using the heat flow 
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measurements from the heating and cooling runs. For the Co2, Co4, Co5, and Co6 samples 

the entropy change upon the A to M transformation was computed to be 42, 41, 47, and 

42 J/kgK, respectively. This can also be seen from the DSC curves as the height and width 

of each peak. Increasing Co beyond 5 at.% resulted in a latent heat of transformation 

comparable to the compositions with lower Co percentages.  

 

 
 

Figure 5-4: Heat flow histories across the forward martensitic transformation for the 

Co2, Co4, Co5, and Co6 alloys described in the text. 
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and reverse (
f sA A ) transformations, and the 

sM  temperatures are tabulated in Table 5-

1 for each of the heat treated ribbons. 

 

 

 

Table 5-1: Transition ranges, sM  temperature, and parameters representing the 

energetics of the martensitic transformation, in Ni45Co5Mn40Sn10 (at.%) annealed 

ribbons. 

Annealing 

Treatment 

Time 

(min) 
sM   

(K) 

s fM M  

(K) 

f sA A   

(K) 

f sA M

(K) 

GS  

(μm) 

/A M

el trG Q  

(%) 

/irr trE Q

(%) 

1073K 

30 410 8.7 6.2 8.5 6.5 1.06 2.0 

60 411 8.8 6.7 9.0 7.3 1.07 2.2 

90 411 8.6 6.5 8.7 8.1 1.05 2.1 

120 411 8.6 6.3 9.2 8.3 1.05 2.2 

600 412 8.9 6.8 9.1 10.4 1.08 2.2 

1173K 

20 412 8 5.8 7.7 15 0.97 1.8 

40 413 8 6.1 7.2 17 0.97 1.7 

60 413 7.7 5.3 7.8 18.6 0.93 1.8 

80 413 7.9 6.2 8.3 20.4 0.96 2.0 

100 413 7.9 6.5 7.9 17.7 0.96 1.9 

100I  412 22 23 6.9 22.8 2.67 1.7 

120 414 7.7 7.2 7.9 23.3 0.93 1.9 

1198K 

30 413 7.6 5.9 7.7 19.2 0.92 1.8 

60 413 7.5 6 8.0 23.0 0.91 1.9 

120 414 6.6 5.5 7.2 36.2 0.80 1.7 
I1173K 100min in 1 10-5 torr vacuum and the ribbons were allowed to rest on the quartz tube. 

 

 

 

 

Table 5-1 demonstrates that the sM  temperature only marginally increases with 

annealing time and temperature. The transition ranges are not always decreasing with 

annealing time. Annealing the ribbons at 1073K had little effect on the martensitic 

transition characteristics in Table 5-1 when annealed for less than 600 minutes. A higher 

annealing temperature had a greater influence on the transition range. Interestingly, the 
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reverse transition range, 
f sA A , does not seem to be clearly effected by the annealing 

treatment. 

5.3.3 Microstructure and grain size 

Fig. 5-5 (a)-(f) show the micrographs of a ribbon face and its cross-section for the 

1073K, 1173K and 1198K 2hr heat treated ribbons. It is clear from Fig. 5-5(a) and (b) that 

1073K was not sufficient to promote grain growth to an extent large enough so that the 

grains completely extended through the thickness of the ribbon samples. On average the 

GS of the 1073K annealed ribbons was 8.1μm while the ribbon thicknesses were about 

31μm. The annealing treatments for 2 hours at 1173K and 1198K seem to have promoted 

grain growth sufficiently such that the grains could grow completely through the thickness 

of the cross section of the ribbon. Differences in grain size are obvious from different 

annealing treatments as shown in Figs. 5-5(a), (c), and (e). The average grain size of each 

heat treatment case is listed in Table 2-6. Lastly, all the samples tested were martensitic at 

room temperature.  
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Figure 5-5: Backscattered electron images of Ni45Co5Mn40Sn10 ribbons after annealing 

and furnace cooling from 1073K (a) and (b), 1173K (c) and (d), and 1198K (e) and (f) 

for 2 hours. 
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5.3.4 Thermodynamic contributions to the transformation characteristics 

To better understand the role of microstructure on magnetic refrigeration, we first 

need to explain how microstructural features influence the energetics of the martensitic 

transformation. In the theory of martensitic transformation, the local free energy balance 

for the forward martensitic transformation is described in Eqn. (1.8). With the absence of 

the terms 2-6 in Eqn. (1.8), the transformation would be an ideal first order phase 

transformation at temperature 
0T . Large irrE  values are the indication of thermal 

transformation hysteresis, as opposed to the ideal first order response where 0irrE  , and 

large A M

elG   values result in large transition ranges ( elasT ), also deviating from the 

ideal response. 

In earlier works, irrE  was shown to be related to the compatibility between the 

transforming phases, phase front motion during the transformation, and plastic 

deformation to accommodate the transformation shear and volume change. The elastic 

strain energy contribution, A M

elG  , on the other hand, was shown to be related to the 

level of compatibility between austenite and martensite phases as well as the interaction 

at interfaces between different martensite variants [61]. Following these descriptions, we 

build most of our discussion pertaining to the effect of grain size and microstructural 

features on the transition range and hysteresis in MMSMAs. 

As defined in [61], the magnitude of A M

elG   can be expressed as 

0.5 ( )A M

s fS M M   or 0.5 A M

elasS T  . This value is an indication of how much 

elastic strain energy must be overcome to transform the MMSMA. In MCE applications, 
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the elastic strain energy stored through the transformation is overcome by applying 

magnetic fields per Eqn. (1.8). Reducing A M

elG   ultimately reduces the required 

magnetic fields to trigger the M to A transition. 

For comparative purposes between heat treated alloys, a measure of 

microstructurally stored elastic energy is needed. A convenient metric that compares this 

elastic energy barrier to the energy that is converted to heat through the MCE, is 

/A M

el trG Q  where trQ is the latent heat of the martensitic transformation, 

A M

tr sQ S M   [17]. Conveniently, this ratio eliminates the need to find the entropy 

change across the martensitic transformation, which may be a function of atomic ordering, 

but still gives a relative comparison of performance between different MMSMAs or 

different microstructural conditions. Minimizing this ratio is favorable for MCE 

applications. The ratio /A M

el trG Q , calculated for the ribbon samples is shown in Table 

5-1. 

In Table 5-1, it is shown that /A M

el trG Q  decreases with increasing temperature 

and time of the heat treatment. In other words, this parameter decreases with increasing 

grain size indicating a smaller amount of strain energy is stored in the microstructure when 

larger grains are present. It is believed that smaller grains cause more nucleation sites for 

martensite, and therefore lead to a higher density of martensite/martensite and 

martensite/austenite phase boundaries and higher stored elastic strain energy.  

The magnitude of energy dissipation, irrE , on the other hand, can be computed 

by the expression A M

irr hysE S T     [42]. Using the ratio of the energy dissipation to 
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the latent heat of the martensitic transformation, the fraction of energy lost to heat (not 

converted to MCE cooling), across the martensitic transformation can be expressed as 

/irr trE Q . Again, this value should be minimized to produce a favorable MCE in 

MMSMAs. Not only will reducing this value amplify MCE cooling, but it will also reduce 

the magnetic field levels required to transform the MMSMA by reducing 
f fA M  

discussed in Chapter 2. The ratio of energy dissipation to latent heat of transformation, 

/irr trE Q , is also shown in Table 5-1 for each ribbon.  

Although it was our aim to keep dissipation, or 
hysT , as constant as possible by 

furnace cooling and maintaining crystallographic ordering our samples, some differences 

were still observed between different heat treatments as shown in Table 5-1. It seems that 

larger grain sizes or high GS/t ratios reduce /irr trE Q . Although there is some scatter, 

/irr trE Q  does not exhibit the same level of reduction with grain size increase as 

/A M

el trG Q . 

5.3.5 Effect of GS/t on the martensitic transition range 

In Fig. 5-6a, it is shown in Co5 ribbons that the 
s fM M  transition range decreases 

with increasing GS/t. Originally, 
s fM M  for the 1073K heat treated ribbons was about 

9K. Increasing the annealing time at this temperature had a minor effect on the transition 

range and GS/t. The standard deviation (2σ) of the grain size, as apparent in Fig. 5b from 

the width of the peaks, also did not exhibit much change. GS/t was around 0.2 for each of 

the ribbons annealed at 1073K. The low standard deviation in each ribbon sample annealed 
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at 1073K indicates that either the grains were at a size in which their surface energy was 

near an equilibrium at this annealing temperature, or the atomic diffusivity was too slow.  

 

 

 

Figure 5-6: Martensitic transition ranges as a function of grain size to thickness ratio in 

Ni45Mn40Co5Sn10 annealed ribbons (a). Error bars indicate   one standard deviation (σ) 

from the Gaussian regression data shown in (b). 

 

 

 

In this condition, each grain (with the exception of those on the ribbon surface) was 

completely in contact with its neighboring grains on all sides, as shown in Fig. 5-5b, and 

therefore any volume change that occurred due to the martensitic transformation would 

produce a tendency for martensite to self-accommodate. The self-accommodation process, 

in turn, produces many interacting martensite interfaces and stores additional 

microstructural elastic energy, per Eqn. (1.8). In ribbons with longer and higher 

temperature annealing treatments, on the other hand, the grains only contacted their 

neighbors along their circumference as shown in Figs. 5-5d and f. These larger grains grew 
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completely though the thickness of the ribbon and exhibit two free surfaces where no 

interaction with neighboring grains could occur. 

In the 1173K heat treated samples the standard deviation of the grain size 

distribution increased.  This indicates that increasing the annealing temperature did not 

promote growth in all of the grains, but that a select few grew at the expense of others. 

Although the standard deviation of the grains grew with GS/t, 
s fM M  was measured to 

be 8K to 7.5K. The 1173K heat treatments listed in Table 2-6 result in a linear decrease of 

s fM M  with increasing GS/t between the range of 0.5<GS/t<0.7.  

A further decrease in 
s fM M  was observed along with higher GS/t ratios, 

0.7<GS/t<1.2, after annealing at a higher temperature, 1198K. Although GS/t is less than 

unity for all cases as shown in Fig. 5-6a, all of the heat treatments at 1173K and above 

promoted grain growth through the cross section, as shown in Figs.5-5d and f. Grains in 

this case experienced smaller grain constraint than for the ribbons heat treated at 1073K. 

For the complete martensitic transformation, the change in volume in 

Ni45Mn40Co5Sn10 was computed to be -1.59% using the conventional Clausius-Clapeyron 

relation derived from the Gibbs free energy of martensite and austenite; i.e. 

( / )tr trS dT dP V   . Here, 
47trS 

J/kgK as given in the experimental results section, 

and  /dT dP  was found to be approximately -0.042 K/MPa for NiMnSn alloys [40, 45]. 

This volume change results in an inhomogeneous stress gradient along grain boundaries 

and as the martensite forms, a self-accommodation process has to take place to minimize 

the local free energy. The self-accommodation of martensite, in turn, produces more 
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interacting martensite/martensite or martensite/austenite boundaries that contribute to the 

elastic strain energy. The density of twin boundaries and interfaces (number of boundaries 

for a given area) increases with decreasing grain size as seen in Figure 5-5. Larger grains 

allow larger martensite plates to form, and therefore the density of these interfaces is less.  

Finally, it is shown in Fig. 5-6a that 
f sA A  is not affected by grain size to the 

same extent as 
s fM M . However, there is a slight decrease in 

f sA A  as GS/t increases. 

In addition, the reverse transformation range, 
f sA A , is always less than that of the 

forward transformation, 
s fM M .  It is believed that most of the stored elastic energy 

from the forward transition is recovered, and therefore results in a smaller reverse 

transition range [62] as observed here. 

5.3.6 Other microstructural effects on the martensitic transition range 

We have shown above that promoting grain growth decreases the transition range, 

and this is also expected to reduce the overall magnetic field requirement to complete an 

isothermal magnetic field-induced martensitic transformation per Eqn. (4.12). In order to 

consistently achieve this, heat treatments of this alloy should be conducted carefully and 

the microstructure should be composed of a single phase with no inclusions. 

Contaminating the microstructure with second phases or inclusions is detrimental to the 

transformation characteristics of shape memory alloys.  

In past studies [27, 40, 50, 63, 64], heat treatments have been performed on NiMn-

based SMA powders [63], melt-spun ribbons [50, 64], and bulk polycrystals [27, 40]. In 

such cases, separating the sample from the wall of the containment vessel with a non-
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reactive agent during a heat treatment can be difficult and is often neglected. As explained 

in the experimental section, two similar 100min heat treatments were conducted at 1173K 

with one set of ribbon samples allowed to rest on the quartz tube under high vacuum during 

the entirety of the annealing treatment, and the other set encased in tantalum foil in argon 

atmosphere with titanium sponge used as an oxygen getter. Fig. 5-7a shows a micrograph 

of the samples that were allowed to touch the quartz during annealing, and Fig. 5-7b shows 

the microstructure of the samples wrapped in tantalum foil. Clearly, the former samples 

grew inclusions during the heat treatment and those wrapped in tantalum foil did not. It 

was shown in [65] and [66] that the standard Gibbs free energy of formation for MnSiO3 

is lower than that of SiO2 (quartz) (See Fig. 5-7c). EDS analysis confirmed that these 

inclusions were rich in Si and Mn, indicating that they were indeed MnSiO3. The result of 

allowing the samples to rest on the quartz tube during heat treatment was the 

microstructural contamination shown in Fig. 5-7a.  

The effect of the inclusions on the martensitic transition range is significant. DSC 

scans were conducted on both of these ribbons to determine their transition ranges. 

s fM M  and 
f sA A  of the contaminated samples were 22K and 23K, respectively, 

whereas these ranges were 7.9K and 6.5K for the ribbons shown in Fig. 5-7b. The set of 

ribbons that were not contaminated had a GS/t ratio of about 0.5, but those with the 

manganese silicate contamination had GS/t ≈ 0.73.  

Although the contaminated ribbons exhibited a larger grain size which should have 

allowed larger martensite plates to form and decreased the stored elastic strain energy 

[Eqn. (1.8)], the inclusions prevented this, as shown by the size of martensite twins in Fig. 
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5-7a. Interestingly, the thermal hysteresis (approximated as 
f sA M ) in the contaminated 

ribbons was about the same as in the clean samples. The contaminated ribbons exhibited 

a thermal hysteresis of 7.3K and the clean ribbons, 7.9K. This is somewhat surprising as 

the matrix composition should affect the compatibility between austenite and martensite 

[40] around the composition gradient. The second phase particles should also have some 

impact on the thermal hysteresis.  Interestingly, /irr trE Q  is about the same in the 

contaminated sample as the rest of the samples tested, the reason of which is not clear.  

On the other hand, the silicates seem to affect the self-accommodation process of 

martensite and the size of the martensite twins, and thus the transition range, through the 

higher density of phase/twin fronts. With increasing twin boundary density induced by 

either small grains or small distances between inclusions, the elastic strain energy 

contribution to the martensitic transformation increases in these alloys. 
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(c) 

 

Figure 5-7: Ni45Mn40Co5Sn10 ribbons annealed at 1173K for 100min in high vacuum (1
10-5 torr) resting on the quartz vial (a), in partial argon atmosphere wrapped in tantalum 

foil using a titanium oxygen getter (b), and the standard Gibbs free energy of formation 

for manganese silicates shown in (a) and quartz within the temperature range of the 

annealing treatments as determined from [65] and [66]. Manganese silicates shown in (a) 

are assumed to be MnSiO3 as shown by the minimal standard Gibbs free energy in (c). 
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5.3.7 Effect of GS/t on iso

compH  and  latent  

Although significant scatter is observed in 
f sA A , decreasing 

s fM M  resulted 

in a smaller overall temperature range that must be overcome to complete the 

transformation (
f fA M ) as discussed in Chapter 4 using Eqn. (4.12) and depicted in Fig. 

5-8. Decreasing this temperature range ultimately decreases the required magnetic field to 

complete the field-induced transformation at temperature 
fM . Using the Clausius-

Clapeyron slope given in [40] for the same alloy composition (-0.384T/K), the magnetic 

field required to complete the isothermal martensitic transformation at temperature 
fM  is 

plotted in Fig. 5-8. It can be seen that decreasing 
f fA M  by only a few Kelvin also 

decreases the magnetic field requirement by approximately 2T. The samples with GS/t 

close to 0.32 required about 7T to complete the reversible field-induced transformation at 

fM , while those with a GS/t ratios near 0.62 and 1.7 required fields of about 6T and 5.1T, 

respectively.  

Reducing the required field by 2T is significant as it would require substantially 

lower magnetic energy to transform the MMSMA and leads toward the possibility of using 

permanent magnet technology for solid-state MMSMA refrigeration applications. 

Although the lowest field capable of completely transforming the MMSMA in this study 

was shown to be 5.1T, about 3T larger than permanent magnet capabilities, reducing the 

magnetic field requirements using carefully selected heat treatments will allow a larger 

fraction of the transformation to occur from field cycling and, in turn, increase the energy 

conversion efficiency ratio of the MMSMA. 
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Figure 5-8: 
f fA M  and iso

compH  dependencies on grain size to thickness ratio ( /GS t ) in 

Ni45Co5Mn40Sn10 annealed ribbons. 

 

 

 

Figure 5-9 shows the grain constraint dependence of the latent  parameter 

developed in Eqn. (4.26). Here, latent  was computed with measured values in Table 5-1, 

45.7J/kgK
fA

M A M A dH
S M

dT

      measured from calorimetry, and 390J/kgKMart

pC   

which is a typical value for intermetallic MMSMAs at room temperature. As mentioned 

earlier, larger latent  values indicate that for a given latent heat of martensitic 

transformation, less Zeeman energy is required to generate it, therefore the martensitic 

transformation converts energy more efficiently with large latent . According to the data 

in Figs. 5-8 and 5-9, reducing the magnetic field requirement to completely transform the 

MMSMA results in an increase in the conversion efficiency of approximately 7%.  
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Figure 5-9: The magnetic to thermal energy conversion efficiency from Eqn. (4.26) of 

Ni45Co5Mn40Sn10 annealed ribbons as a function of grain size to thickness ratio. 

 

 

 

The data in Fig. 5-9 indicates that although the effect is not very large, increasing 

the GS/t ratio in MMSMAs improves the energy conversion efficiency through magnetic 

field induced transformations in NiCoMnSn MMSMAs. Higher efficiency ratios may be 

attainable with larger GS/t ratios, however, additional studies need to be performed over 

a wider range of GS/t for a given composition. In addition, the data in Fig. 5-8 indicates 

that the required magnetic field needed for a complete isothermal and reversible 

martensitic transformation can be reduced by as much as 2T. This reduction is a result of 

increasing the grain size for a ribbon of constant thickness and reducing the A M

elG   term 

in Eqn. (1.8). 
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5.4 Crystal structure and order  

5.4.1 Review of the L21 to B2 transition in NiMnIn Alloys 

Here, a single composition of Ni45Co5Mn36.6In13.4 is heat treated to manipulate the 

crystallographic order in austenite, and therefore, the electronic state. Single crystals, 

instead of polycrystals, are studied to negate the influence of grain size on the 

thermodynamics driving the martensitic transformation, discussed above. Thermal 

treatments for the NiCoMnIn alloy are tabulated in Table 2-6.  

In past studies [67], it has been reported that some compositions of NiMnIn exhibit 

a change in crystallographic order from a L21 Heusler phase to a B2 cubic phase on heating 

above a critical temperature, 12 / 2L B
T . The L21 superlattice is denoted as a Fm3m structure 

(space group 225). The L21 and B2 crystal orders are depicted in Figure 5-10 as simulated 

by PowderCell. 

 

 

 

 
Figure 5-10: B2 and L21 ordered crystal structures in NiCoMnIn alloys. 
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At temperatures below a critical point, Mn and In atoms migrate to designated sublattice 

sites. The perfect Heusler structure is described with In and Mn atoms occupying the 4a 

and 4b Wykoff sublattice sites [68]. In the B2 structure, however, Mn and In are randomly 

distributed between the two. 

Diffraction offers a means to quantify the long range crystal order in these 

materials. The structure factor of the unit cell in Fig. 5-10 can be written as a function of 

effective scattering factors for each sublattice site [68].  In short, odd reflections (111, 311, 

331, etc…) are characteristic of L21 long range order, even reflections (200, 222, 420, 

etc…) are characteristic of B2 order, and the fundamental reflections (220, 400, 440, 

etc…) are characteristic of A2 order. The relative intensity of these reflections can be used 

to compute a degree of long range crystal order. For example, the normalized diffraction 

pattern of a perfect Heusler alloy (Ni45Co5Mn25In25) is depicted in Figure 5-11 as 

simulated with PowderCell. 

 

 

 

 
Figure 5-11: The normalized simulated x-ray diffraction peaks of the perfect L21 

structure in Fig. 5-10. 
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In Fig. 5-11, the ratio of intensity at the (111) reflection around 2 26   to the 

fundamental reflection gives relative degree of long range L21 order. The relative intensity 

of the (200) reflection can be used to quantitatively characterize degree of long range B2 

order, and the (220) fundamental peak is invariant of order. In practice, this can be used 

to visualize the L21 morphology with transmission electron microscopy (TEM). Here, we 

observe the L21 morphology in heat treated NiCoMnIn alloys exhibiting differing degrees 

of long range L21 order. 

 

 

 

 

Figure 5-12: An illustration of the MMSMA TEM sample oriented such that the [011] 

zone axis parallel to the electron beam (a) and the resulting diffraction pattern of the 

[011] zone axis. The (111) reflection is investigated for dark field imaging to visualize 

L21 morphology. 
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In TEM, the [011] austenite zone axis (Fig. 5-12a) can be diffracted with the 

electron beam to generate the pattern shown in Fig. 5-12b. In Fig. 5-12b, the diffraction 

pattern of a L21 Heusler phase is shown. The transparent spot is labeled as (000). The 

B2(200) and L21(111) diffraction spots are indicated by arrows. In TEM, the electron 

beam can be positioned through an aperture to align only with the (111) spot. This is 

represented as the green semi-transparent circle around the (111) reflection. The resulting 

“dark field image”, which will be shown later, represents the spatial variation of the (111) 

peak intensity, i.e. L21 morphology. 

 5.4.2 Experimental procedures  

Single crystalline Ni45Co5Mn36.6In13.4 nom. at.% MMSMA were synthesized as 

described in Chapter 2. A master sample was cut into compression samples with electro-

discharge machining (wire EDM) which were then sealed in a quartz vial under partial 

vacuum/argon atmosphere (~14 torr). The samples were then solution heat treated. During 

the solutionizing heat treatment, the master sample was wrapped in tantalum foil to 

prevent the formation of precipitates from interacting with the surrounding quartz. In 

addition, a titanium sponge was sealed in the quartz vial during all of the heat treatments 

as an oxygen getter. 

WDS was performed on the solutionized single crystals at multiple locations and 

the composition was determined to be Ni45.6Co4.82Mn36.0In13.55 at.% with a ± 1 at.% 

accuracy of the reported values. After solution heat treating the single crystal, small pieces 

were isolated using a low speed diamond saw and subsequently resealed with the same 

procedure. Secondary annealing treatments were performed at 573, 673, 773, 873, 973, 
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998, 1023, 1048, 1073, 1098, and 1123K for 3 hours followed by a water quench (WQ). 

To identify the influence of crystallographic ordering on the martensitic transformation 

characteristics, the magnetic response of each sample was measured using a Quantum 

Design superconducting quantum interference device with a vibrating head (SQUID-

VSM) using the methods described in Chapter 2.  

From these measurements, the martensitic transformation temperatures 

(martensite finish, 
fM , martensite start, sM , austenite start, sA , and austenite finish, 

fA

) were determined as shown in Fig 5-13. The change in magnetization across the 

martensitic transformation with 1T applied field, M , was also extracted as depicted in 

Fig. 5-13. The austenite Curie temperature, CurieT , was extracted by finding the 

temperature derivative of the magnetization under the smallest field measured (~0.01T-

0.05T) as shown by the inset of Fig. 5-13.  

In Fig. 5-13, the thermomagnetic response of the 1173K 24hrs + 1073 3hrs WQ 

sample is shown. On cooling from 400K, the ferromagnetic austenite phase transforms to 

a non-magnetic martensite phase at temperature sM . The forward (A to M) transformation 

is completed at 
fM . On heating, the martensite transforms to austenite at temperature sA  

and finishes at 
fA  resulting in the thermal hysteresis (

f sA M ) typically observed from 

first-order solid to solid phase transformations. The thermomagnetic data in Fig. 5-13 also 

provides the transition range (
s fM M ) discussed earlier. 
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Figure 5-13: The thermo-magnetization curve of Ni45Co5Mn36.6In13.4 at.% single crystal 

after annealing at 1173K for 24 hours followed by 1073K for 3hrs. Heating/cooling was 

performed at 5K /min. The inset shows the derivative of the thermomagnetization curve 

under 0.01T revealing the austenite Curie temperature ( CurieT ) at the minimum of the 

high temperature peak. 

 

 

 

After the aforementioned parameters were extracted from the data, the heat 

capacity ( mart

pC ) was measured for each sample at a temperature equal to its 
fM  

temperature using a TA instruments Q2000 differential scanning calorimeter (DSC). At 

each test temperature the heat capacity of a sapphire standard was measured (in 2 separate 

tests) and used to calibrate the DSC instrument; this calibration was then used to “correct” 

the measured heat capacity of the MMSMA. Heat capacity measurements were then used 

to compute the adiabatic temperature change ( adT ), derived in Eqn. (1.34).  
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A TA instruments SDT/Q600 thermo-gravimetric analyzer (TGA) was employed 

for high temperature heat flow logging to determine the L21 to B2 ordering temperature (

12 / 2L B
T ). In the TGA, a sample previously aged at a low temperature to promote L21 

ordering was heated in a ceramic pan with a lid up to 773K and then to 1073K at 10K/min. 

During the heating from 773K to 1073K the heat flow was recorded. The minimum of an 

endothermic peak in this temperature range indicated a change in crystal symmetry 

resulting from the change in atomic configurations at the ordering temperature. The 

minimum of the captured endothermic peak was found to be at 900K, thus providing the 

12 / 2L B
T  for the Ni45Co5Mn36.6In13.4 alloy in this study. 

5.4.3 Results 

Before heat treating the samples, the L21/B2 ordering temperature was identified 

using a thermo-gravimetric analyzer (TGA), i.e. a high temperature differential scanning 

calorimeter. The sample measured in the TGA was first ordered to the L21 phase in a 

protective argon atmosphere by furnace cooling from 1173K across the unknown ordering 

temperature. The sample was then heated at 10K/min in a ceramic pan between 773K and 

1073K, concurrently the heat flow was recorded as depicted in Figure 5-14. 

As shown in Fig. 5-14, a negative peak was measured around 900K. The negative 

peak indicates that an endothermic reaction occurs and is an expected result of ordering 

from L21 to B2. Specifically, the L21 ordered crystal is characterized by a lower 

configurational entropy (atomic disorder) than the B2 phase. On heating, the alloy 

undergoes an increase in configurational entropy, thus resulting in an endothermic 

reaction. As shown in Fig. 5-14, the order/disorder transformation occurs at 
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12 / 2
900

L B
T K  which corroborates well with values reported in literature for a similar 

alloy composition [69]. 

 

 

 

 
 

Figure 5-14: Heat flow of Ni45Co5Mn36.6In13.4 single crystals furnace cooled from 1173K 

prior to heat flow measurements. The sample was heated at 10K/min and the minimum 

at 900K indicates the L21 to B2 ordering temperature. 

 

 

 

It is well known that in off-stoichiometric Heusler alloys, like the MMSMA 

studied here, crystallographic ordering influences the martensitic transformation 

temperatures and A M

elG   in Eqn. (1.8) [68]. In effect, crystal ordering influences the 

enthalpy and the calorific effects of the MMSMA, and therefore, is a major consideration 

when tailoring the MMSMA response with heat treatments. 

To study the influence of crystal order on the martensitic transformation 
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characterization was performed around the martensitic transformation and some 

heating/cooling histories are shown in Fig. 5-15a. In most of the samples, the martensitic 

transformation is generated on cooling from 400K to 100K under 1T as depicted by the 

large decrease in magnetization around the martensite start temperature (
sM ). At 

temperatures above 
sM , a gradual decrease in magnetization is measured in austenite on 

heating which can be attributed to the 
CurieT  of the ferromagnetic austenite. At 

temperatures below sM , on the other hand, the magnetization levels describe that of 

martensite and depend on the thermal treatment. Here, we categorize the magnetic order 

of martensite as frustrated anti-ferromagnetism, which was measured in [45] with 

polarized neutrons, and later relate some of the discussion toward how the magnetization 

levels of martensite indirectly influence the energy conversion efficiency (see Eqn. (4.26) 

in MMSMA.  

The X=573K thermomagnetization curve, in Fig. 5-15a, shows an “arrested 

transformation” where 1T is capable of stabilizing austenite at temperatures below 
fM . 

Here, the transformation attempts to proceed on cooling around 200K, but cannot. There 

has been active discussion in the literature aimed at identifying why this arrest occurs. 

Some believe that the aggregate microstructural features such as antiphase boundaries 

(APBs), magnetic clusters, and martensitic nuclei are responsible [45, 70]. These 

microstructural features may also influence the martensitic transformation temperatures 

and are later discussed in detail. 
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Figure 5-15: Thermo-magnetization curves under 1T 5K/min heating/cooling (a) and 

martensite start temperature, sM , under ~0.05T of Ni45Co5Mn36.6In13.4 at.% single 

crystals that have been solutionized (SHT) at 1173K for 24 hours and then annealed at 

1073, 973, 873, 773, 673K, and 543K for 3hrs. 

 

 

 

The sM  temperatures, as extracted from Fig. 5-15a, are shown in Fig. 5-15b and 

vary as a function of secondary heat treatment temperature. This variation, also shown in 

Fig. 5-3, is attributed to the degree of long range crystal order in the MMSMA resulting 

from the heat treatment. In addition, high temperature quenching may generate higher 

vacancy concentration and anti-site defects in the austenite phase. Both of these would 

influence the A M

elG   in Eqn. (1.8), thus the transformation temperatures are expected to 

change.  
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As shown in Fig. 5-16, the 
CurieT  varies linearly with 

sM . This phenomenon has 

been reported to be linked to the degree of order in NiMnIn alloys [46], and therefore is 

indirect evidence that the degree of order in these alloys has changed with heat treatments. 

The 
CurieT  of the solution heat treated-1173K 24hrs (SHT), 1173K 24hrs + 573K 3hrs 

(573), and 1173K 24hrs + 673K 3hrs (673) WQ annealed samples are elevated compared 

to those of the other annealing treatments. Some speculations regarding this behavior are 

discussed in subsequent sections.  

Since the objective of the current study was to identify the influence of crystal 

order on the energy conversion efficiency in MMSMAs, the magnetization change from 

M to A and the CC slope were needed from the above data as inputs to Eqn. (4.26). The 

product of these parameters is the entropy change from M to A (Eqn. 1.30). The M AM   

and /fA
dH dT  were extracted from the data above and are plotted in Figure 5-17.  

 

 

 

 
Figure 5-16: The austenite Curie temperature ( CurieT ) vs. martensite start ( sM ) 

temperature Ni45Co5Mn36.6In13.4 at.% single crystals that have been solutionized (SHT) at 

1173K for 24 hours and then annealed at 1073, 973, 873, 773, 673K, and 543K for 3hrs. 
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In Fig. 5-17a, the magnetization change, M AM  , from M to A is plotted as a 

function of secondary heat treatment temperature. According to reports in literature, Co-

free NiMnIn alloys [46] have been shown to decrease M AM   with decreasing secondary 

annealing temperature. These heat treatments were also reported to decrease 
sM . It was 

believed that this decrease was related to a larger degree of ferromagnetic order in the 

aggregate magnetic interactions below 
fM  [45]. The data presented here shows a similar 

decrease from quenching between 1173K and 900K, however, when heat treating below 

12 / 2L B
T , the M AM   is recovered to nearly the original SHT level. Therefore, the 

following discussion is broken into two parts. The first will focus on the influence of 3hr. 

heat treatments in the temperature range 12 / 2
1173K

L B
T T  , and the second on the 

influence of heat treating NiCoMnIn at temperatures below 12 / 2L B
T . 

 

 

 

 
 

Figure 5-17: The magnetization changes ( M AM  ) across the martensitic transition (a) 

and austenite-finish phase diagram slopes (b). 
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On heat treating the Ni45Co5Mn36.6In13.4 single crystals at temperatures below 

1173K, but above 900K, the 
sM  temperature tends to slightly increase with decreasing 

heat treatment temperature. This increase in 
sM  can be attributed to the reduction of 

vacancy concentration and anti-site defects resulting from lower temperature annealing 

above 12 / 2L B
T . Perhaps the alloy orders to some degree, as well. It is well known that 

reducing the vacancy concentration and anti-site defects will effectively reduce lattice 

strain in the austenite sublattice ( A M

elG  ), and therefore the sM  temperature will 

increase. This is also observed with increasing grain size [59, 60] and was discussed 

earlier. Here, however, the specimens are single crystals and the austenite/martensite or 

martensite/martensite interface boundaries should be the only other contributors to the 

strain energy storage across the MT. 

On increasing the sM  temperature, the transformation then occurs closer to the 

austenite Curie point, CurieT . At the CurieT , magnetization drops off, and therefore an 

increase in sM  corresponds to a drop in M AM  . In turn, the drop in M AM   is an 

indication that the magnetic Zeeman energy difference ( A M

magG   in Eqn. 1.8) has 

decreased, and thus, the transformation temperature sensitivity ( /dT dH ) to magnetic 

field is expected to decrease.  This was explained in Chapter 1. 

In Fig. 5-17b, the austenite-finish phase diagram slope, 
fA

dH

dT
 (Clausius-

Clapeyron slope) is plotted as a function of heat treatment temperature. This particular 

slope was plotted due to its importance in Eqn. (4.26). As expected, the /dT dH  decreases 



 

 

 

168 

 

as 
sM  increases and M AM   decreases. The 

fA
dH

dT
 exhibits a maximum with the 1073K 

3hrs secondary heat treatment.  

Interestingly, the increase in sM  and the corresponding decrease in M AM   from 

quench temperatures between 900K and 1173K result in a sharper forward martensitic 

transformation, 
s fM M . The forward martensitic transition range, the total transition 

range, 
f fA M , and the thermal hysteresis, 

f sA M , are plotted as a function of heat 

treatment temperature in Fig. 5-18a. The author believes that heat treating at temperatures 

below 1173K but above 900K results in a smaller elastic energy barrier that must be 

overcome to propagate the forward martensitic transition due to the expected decrease in 

vacancy concentration and reduction of anti-site defects. As mentioned in the introduction, 

the elastic energy barrier contribution to Eqn. (1.8) is defined by A M

elG  . In [61], the 

magnitude of A M

elG   was approximated by ( )
2

s f

S
M M


  , hence, a reduction in 

s fM M  corresponds to a decrease in A M

elG  . 

Reducing A M

elG  , in effect, increases the latent heat measured by calorimetry 

[17]. Since no magnetic field is applied in a calorimeter, the measured latent heat 

(enthalpy) is a function of elastic and chemical contributions, including that from 

dissipation. The computed entropy change, M AS  , corresponds to the sum of these 

contributions. Under zero magnetic field, the M AS   was determined for the heat treated 

alloys as shown in Fig. 5-18b. Interestingly, M AS   increases as a result of the lower 
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temperature secondary heat treatments within the 1173K and 900K range. In zero 

magnetic field, the A M

magG   contribution in Eqn. (1.8) can be neglected. Therefore, the 

increase in M AS   at temperatures above 12 / 2L B
T  are attributed to a reduction in the elastic 

enthalpy contribution [17] as indicated by the decreasing 
s fM M  in Fig. 5-18a. On the 

other hand, at temperatures below 12 / 2L B
T , the M AS   starts to decrease. This may be an 

indication that A M

elG   increases, which is confirmed with the increase in 
s fM M  below  

12 / 2L B
T , in Fig. 5-18a. 

 

 

 

 
 

Figure 5-18: The characteristic transformation temperature ranges (a) and the 

transformation entropy change, M AS   for the heat treated Ni45Co5Mn36.6In13.4 single 

crystals. 
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ordering from a B2 to L21 crystal structure. On ordering to L21, the ferromagnetic 

interactions in austenite become stronger [45], thus 
CurieT  increases as shown in Fig. 5-16. 

It is commonly believed that lower temperature heat treatments order the lattice and 

promotes the Mn-Mn ferromagnetic interactions [45, 71]. The influence of these 

interactions are also believed to be carried over to the martensite phase because the 

martensitic transformation is diffusionless and the next nearest neighbors do not change 

across the transition. On cooling to martensite from austenite, the magnetic interactions 

obviously change across the transition due to a change in lattice parameters, but they may 

still result in a higher overall magnetization level below 
fM [46]. Interestingly, the largest 

magnetization change occurs in the SHT sample (~100 emu/g). Considering that it was 

not subjected to an ordering treatment, this high change in magnetization may be the result 

of anti-site defects, high configurational disorder, or vacancies, however, the exact reason 

still remains unclear.  

With a decrease in sM , and an increasing CurieT  driven by L21 ordering, the 

M AM   is expected to increase with heat treatments below 12 / 2L B
T . This increase in 

M AM   is confirmed with the data shown in Fig. 5-17a. Accordingly, this indicates an 

increase in the magnetic Zeeman energy, A M

magG  , and a higher sensitivity in 
dT

dH
, i.e. 

smaller 
fA

dH

dT
. The decrease in 

fA
dH

dT
 is also confirmed experimentally in Fig. 5-17b. 

Upon reaching a specific degree of long range order with low temperature heat 

treatments, the martensitic transformation becomes completely arrested. As shown in Fig. 
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5-15a, the M AM   resulting from the X=573 heat treatment, is essentially zero under 1T. 

In fact, other reports indicate that M AS   is also nearly zero [72], indicating that the 

transformation does not occur, or that the elastic enthalpy and dissipation contributions 

cancel the chemical enthalpy measured in calorimetry. For the Ni45Co5Mn36.6In13.4 single 

crystals studied, here, it is believed M AS   is nearly zero from applying the CC relation 

in Eqn. 1.30. In Fig. 5-18b, the M AS   values computed with the CC relation for all other 

heat treatments agree well with those computed from enthalpy data measured with 

calorimetry. 

The microstructural mechanism responsible for the arrested transformation in 

these alloys is investigated in the next section, but first, the energy conversion efficiency 

for the above 3hr. heat treated alloys are computed using Eqn. (4.26). The parameters 

required to compute Eqn. (4.26) include M AM  , 
fA

dH

dT
, 

fA , 
fM , and mart

pC . These 

parameters are plotted in Figs. 5-17, 5-18, and 5-19. The mart

pC  was measured at the 
fM  

temperature and is plotted for a few heat treatment cases in Fig. 5-19a. 

The typical specific heat capacity of an intermetallic alloy is nearly 400J/kgK 

above the Debye temperature. As shown in Fig. 5-19, the measured heat capacity is, 

indeed, around 400J/kgK. The heat capacity is assumed to follow the Debye model, as 

depicted in Fig. 5-19b, where the limit of the phonon contribution to the total entropy is 6 

cal/molK (3R). In Fig. 5-19b, the Debye temperature, D , was assumed to equal 322K as 

reported in another study for the same alloy composition [70]. At temperatures above 

250K, the measured mart

pC  was, on average, larger than the theoretical limit of the 
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vibrational contribution, indicating that perhaps the magnetic contributions to mart

pC  are 

larger at elevated temperatures. Further investigations are needed to corroborate the data 

in 5-19b. 

 

 

 

 
 

Figure 5-19: The specific heat capacity as a function of 3 hour heat treatment 

temperature (a) and the specific heat capacity for each heat treatment as a function of 

temperature added to a plot of a Debye curve (b) for Ni45Co5Mn36.6In13.4 single crystals. 

Data points in (a) and (b) were measured at the 
fM  temperature of the heat treated alloy. 

 

 

 

Finally, Latent  was computed for each heat treatment case and is shown in Fig. 5-

20. In Fig. 5-20, the data point corresponding to the solution heat treated alloy (SHT) and 

the L21/B2 ordering temperature, 12 / 2L B
T , are labeled. Interestingly, a maximum is 

observed at a temperature above 12 / 2L B
T  indicating that the energy conversion efficiency 

resulting from the aforementioned heat treatments is the best in B2 ordered 

Ni45Co5Mn36.6In13.4 alloys. This seems to be a result of minimizing the elastic energy 
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contribution, A M

elG  , by decreasing vacancy concentration in a B2 ordered alloy with the 

help of secondary heat treatments.  

The magnetization change, in this case, is neither maximum nor minimum with 

respect to Figure 5-17a, however, the 
fA

dH

dT
 is maximum. Since M AM   defines the 

magnetic Zeeman energy, A M

magG  , which then controls the magnitude of 
fA

dH

dT
, the  

fA
dH

dT
 should not be minimum nor maximum if M AM   was its only controlling factor. 

Conversely, the 
fA

dH

dT
 parameter seems to be also influenced by the A M

elG   term in 

Eqn. (1.8). Therefore, when employing Latent  to determine the maximum energy 

conversion efficiency through MFITs, all the contributions to the free energy are 

considered. Thus, Eqn. (4.26) a powerful tool for quickly identifying the best energy 

converter through parameter optimization.  
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Figure 5-20: The magnetic-to-thermal energy conversion efficiency in 

Ni45Co5Mn36.6In13.4 single crystals subject to 3 hour thermal treatments followed by 

water quenching. 

 

 

 

As such, the SHT+1073K 3hrs WQ alloy has been identified to be the best 

magnetic-to-thermal energy converter for all the mentioned heat treatments in 

Ni45Co5Mn36.6In13.4. This is attributed to the B2 crystallographic order, the location of sM  

with respect to CurieT , and the vacancy concentration and anti-site defects which control 

A M

elG  . Heat treatments above 12 / 2L B
T  and below 1173K essentially decrease any stored 

strain energy in the lattice, and at the same time, maintain the thermal hysteresis at nearly 

10K. 

For the SHT+1073K 3hrs WQ heat treatment, the adiabatic temperature change 

and magnetic field needed to generate the complete the adiabatic transformation can be 

computed from Eqns. (1.34) and (4.13), respectively. These data are plotted in Fig. 5-21a 
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and b for the aforementioned heat treatments. In Fig. 5-21a, the B2 ordered alloys exhibit 

a computed adiabatic temperature change of approximately -6 to -8K. This corresponds 

well with direct measurements reported in studies on similar alloy compositions [27]. On 

approaching the ordering temperature, the computed adiabatic temperature change 

increases, indicating that L21 ordered alloys will perhaps exhibit a larger temperature 

change than the B2 ordered alloys. This may be attributed to the fact that their 
fM  

temperatures are lower, and therefore their mart

pC ’s are also lower. However, when 

selecting a heat treatment for a specific MCE application the adT  is not the only 

consideration. Instead, those concerning the magnetic field levels needed to generate the 

adT  are often more important. 

 

 

 

 
 

Figure 5-21: The computed adiabatic temperature change (a) and magnetic field needed 

to complete the adiabatic transformation at temperature 
fM  (b) for Ni45Co5Mn36.6In13.4 

single crystalline 3 hour heat treated alloys. 

 

-14

-12

-10

-8

-6

-4

-2

0


T

a
d
  

(K
)

12001000800600

Secondary Heat Treatment Temperature (K)

Ni45Co5Mn36.6In13.4 

Single Crystal

SHT

14

12

10

8

6

4

2

0

H
co

m
p

a
d
 (

T
)

12001000800600

Secondary Heat treatment Temperature (K)

Ni45Co5Mn36.6In13.4 

Single Crystal

SHT

(a) 
(b) 



 

 

 

176 

 

In Figure 5-21b, the magnetic field level needed for the adiabatic transformation 

at 
fM  is plotted for each heat treatment case. This is the field level needed to drive the 

refrigeration process in Fig. 4-3. Interestingly, the B2 ordered alloys that had been treated 

above 1000K for 3hrs exhibit smaller magnetic field requirements. At first glance, the 

SHT alloy looks to be the best alloy for MCE applications, however, the M AS   generated 

by applying the magnetic field is quite small compared to the 1073K heat treated alloy, as 

shown in Fig. 5-17b. This is due to the low sM  temperature and high A M

elG   believed to 

be generated by anti-site defects and vacancies resulting from the quench procedure. Using 

the data in Figs. 5-21, magnetocaloric processes can be designed by selecting the best 

performing MMSMA, or for a MMSMA that exhibits the best adiabatic temperature 

change and/or smallest magnetic field requirement for some MCE processes.  

5.4.4 Observing microstructural defects in arrested NiCoMnIn 

The final section of this chapter deals with identifying and observing 

microstructural precursors that indicate the martensitic transformation is arrested. The 

martensitic transformation in NiCoMnIn alloys can be suppressed by employing low 

temperature secondary thermal treatments as depicted by the X=573 magnetothermal 

curve in Fig. 5-15. The sM  temperature, in the case of arrested alloys, is normally very 

low and away from room temperature. Therefore, this phenomenon typically does not 

influence near room temperature refrigeration schemes. 

As discussed in the previous section, ordering the MMSMA to L21 increases the 

CurieT  in austenite and decreases sM . This corresponds to an increase in M AM   and 



 

 

 

177 

 

A M

magG  , thus decreasing the 
fA

dH

dT
. Surprisingly, very low heat treatment temperatures 

(≈573K) that were intended to order the alloy to L21, resulted in very low measured 

M AM   as shown by the data point in Fig. 5-17a for the 573K heat treatment. This has 

been the topic of major discussion in the literature, and is believed to be related to glassy 

behaviors in MMSMAs. In short, the magnetoelastic couplings that arise from low 

temperature heat treatments tend to disrupt the martensitic transformation, and therefore, 

austenite does not transform to martensite at low temperatures. Careful review of Fig. 5-3 

indicates that the sensitivity of tuning the NiMnIn alloy may be related to the presence of 

cobalt in the NiMnIn system. For the Co-free Ni48Mn38In14 alloy, the martensitic 

transformation is not substantially tuned with thermal processing, but the transformation 

can still be suppressed with low temperature heat treatments as discussed later. 

Here, we probe the austenitic microstructure in an attempt to identify a feature 

indicative of arrested transformations. The alloys studied, here, were subject to heat 

treatments like those mentioned in Chapter 2. However, to determine the time dependence 

on the L21 to B2 transformations, various thermal treatments are employed for different 

durations. Sample microstructures heat treated for different durations were observed with 

transmission electron microscopy (TEM), as described in the experimental section. 

Microstructural TEM observations were then related to the thermomagnetic responses 

measured with SQUID magnetometry.  

Thermal treatments employed for this study are tabulated in Table 2-6. Initially, 

the dark field images of L21 morphology and the thermomagnetic responses were 
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compared between SHT and SHT + 573K 3hrs or 1 week alloys. Figure 5-22a depicts the 

thermomagnetic responses of the alloys under 1T and 5-22b, c, and d the corresponding 

dark field images of L21 morphology in room temperature austenite.  

In Figures 5-22b, c, and d the bright morphology corresponds to microstructural 

L21 ordering, and dark regions indicate ordering other than L21, including B2 or D03. 

Interestingly, the L21 morphology looks almost identical in these cases with slightly larger 

morphology produced in the 573K 3hrs and 1wk cases. The thermomagnetic responses 

between the SHT and secondary heat treated alloys, however, are substantially different 

in 5-22a. The 573K 3hrs and 1wk heat treated alloys exhibit similar arrested responses as 

indicated by low M AM   values at low temperatures. The 1 week heat treatment was 

sufficient to completely arrest the transformation and only 3 hours was not. According to 

the dark field images in Fig. 5-22, the size of the L21 morphology may be responsible for 

the thermomagnetic response of the MMSMA. That is, larger L21 morphology might 

influence the transformation.  

To further probe at the microstructure, Ni45Co5Mn36.6In13.4 was heat treated at 

673K for 3hours and 24hours, and then compared with the solutionized case. The 

thermomagnetic response of these alloys are shown in figure 5-23a. The L21 morphology 

for these cases are shown in 5-23b and c. Interestingly, the L21 morphology in Fig. 5-23b 

coarsened from the SHT case to a greater degree in 3hours at 673K than for 3hours at 

573K shown in Fig. 5-22c.  After SHT, the 673K 3hrs heat treatment decreased the sM  

temperature, decreased M AM  , and increased the transition range. This is an indication 

that the A M

elG   from Eqn. (1.8) also increased.  
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Figure 5-22: The thermomagnetic responses of a 1173K 24hour water quenched (SHT), 

SHT + 573K 3hrs, and SHT + 573K 1 week Ni45Co5Mn36.6In13.4 alloy under 1T (a), and 

their corresponding L21 morphologies in (b), (c), and (d), respectively.  

 

 

 

Heat treating for a longer duration of 24hours, resulted in an even courser L21 

morphology characterized by the thermomagnetic response depicted in Fig. 5-23a. The 

24hour heat treatment, in this case, arrested the transformation completely. Upon closer 

inspection of Figs. 5-23b and c, non-uniformities are observed littering the L21 

morphology in the 24hrs heat treatment case. The non-uniform contrast seems to indicate 

the degree that the martensitic transformation will be arrested. Highly dense contrast 
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differences correspond to more arrested transformations. Considering these non-

uniformities are only slightly present in the 3hrs heat treatment case, the increased 

magnetization of the martensite phase (shown in Fig. 5-23a) can be attributed to partial 

arrested martensitic transformation. In addition, an increased degree of L21 order is 

generated from the SHT case, as depicted by larger L21 morphology, and therefore, 

martensite may exhibit stronger ferromagnetic interactions as determined for Co-free 

NiMnIn alloys [46]. In the 573K heat treated cases shown in 5-22, the L21 morphology 

was too small to observe the contrast difference within the L21 domains. 

Therefore, we attempted to further increase the L21 domain size with higher 

temperature, shorter heat treatments to clearly observe the contrast difference structure 

responsible for arresting the transformation. The influence of additional thermal treatment 

on L21 morphology was studied by secondarily heat treating solutionized 

Ni45Co5Mn36.6In13.4 alloys at 773K for 15min, 30min, and 3hrs. The thermomagnetic 

responses of the heat treated alloys are depicted in Fig. 5-24a. 

As shown in Fig. 5-24a, heat treating for 3 hours at 773K resulted with an increase 

in sM  which is also depicted in Fig. 5-15b. The L21 morphology for this heat treatment 

case was quite large as indicated by the bright regions in Fig. 5-24b. Here, the bright 

morphology are separated by black walls, known as antiphase boundaries (AFPs). In this 

case, these APBs are characterized by B2 crystal order and are formed with approximately 

10nm thickness to reduce the free energy between L21 domains [73]. At some points, the 

APBs appear to be thicker than 10nm because they are skewed out of plane parallel to the 

electron beam through the thickness of the TEM sample. 
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Figure 5-23: The thermomagnetic responses of a 1173K 24hour water quenched (SHT), 

SHT + 673K 3hrs, and SHT + 673K 24 hours Ni45Co5Mn36.6In13.4 alloy under 1T (a), and 

the corresponding L21 morphologies for the secondarily heat treated alloys in in (b) and 

(c), respectively. 

 

 

 

Heat treating the alloy at 773K for 30 minutes, on the other hand, only slightly 

increases the sM  from the SHT case. The transformation range, 
s fM M , substantially 

grows from the SHT case, and the magnetization level measured below 
fM  was about 45 

emu/g. This elevated level of magnetization may indicate that some degree of L21 ordering 

had occurred within 30min, thus increasing the magnetic ordering in martensite. In 

addition, the large magnetization at low temperatures can be attributed to a partially 
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arrested martensitic transformation where austenite persisted in the microstructure below 

fM .  

Interestingly, the thermomagnetic responses corresponding to the 1173K 24hrs + 

773K 30min heat treatment case (Fig. 5-24c) looks similar to that of the 1173K 24hrs + 

673K 3hours (Fig. 5-23b). From these heat treatments, the size of the L21 domains 

separated by B2 APBs are different. In addition, the L21 morphology resulting from the 

773K 30min heat treatment is littered with the non-uniformities first discussed in the 673K 

24hrs alloy in Fig. 5-23c. It is believed that since the L21 domains are larger in the 773K 

30min sample than the 673K 3hrs sample, the contrast difference is more visible. The 

contrast difference in the 673K 3hours case may not be observable because the L21 

domains are too small and the ordering that produces contrast non-uniformities is hidden 

in the dark B2 morphology.  

The main difference between the thermomagnetic responses of the 773K 30min 

and 673 3hrs cases is the thermal hysteresis around the martensitic transformation. The 

673K 3hrs case exhibits larger hysteresis. This may be attributed to smaller L21 domains 

separated by B2 APBs, but more microstructural investigations are needed to identify the 

cause of the differences in thermal hysteresis. 
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Figure 5-24: The thermomagnetic responses of a 1173K 24hour water quenched (SHT), 

SHT + 773K 3hrs, SHT + 773K 30min, and SHT + 773K 15min Ni45Co5Mn36.6In13.4 

alloy under 1T (a), and their corresponding L21 morphologies in (b), (c), and (d), 

respectively. 

 

 

 

Finally, the most arrested case of the 773K heat treatments was measured from the 

15 minutes heat treatment, as shown in Fig. 5-24a. The L21 morphology of the 1173K 

24hrs + 773K 15min sample is shown in 5-24d. The contrast difference within the L21 

domains, in this case, are even denser than that resulting from the 773K 30min case. The 

density of the microstructural non-uniformities from the 773K 15min case is nearly 
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equivalent to the 673K 24hours heat treatment in 5-23c. B2 APBs are clearly present in 

the 773K 15min case, but local disorder is the microstructural feature indicating that the 

transformation is arrested. 

The time/temperature dependent microstructures depicted in Figs. 5-24 and 5-23 

give an indication on how L21 domains form from a B2 ordered matrix. Initially, the alloy 

is collectively disordered and characterized by a B2 crystal structure in the SHTed state. 

At elevated temperatures, below 12 / 2L B
T , the alloy orders toward L21 according to the 

Allen-Cahn equation [74],  

 20f

dt d


  




                                               (5.1) 

where   is a long range order parameter, t  is time,   is a positive kinetic coefficient, 

0f

d


 is the spatial derivative of the excess free energy due to interfaces, and   is a 

diffusion coefficient defined by 2 . The diffusion coefficient   is dependent on  , 

which is known as the gradient energy coefficient. 

In the NiCoMnIn system, studied here, TEM observations indicate a clear spatial 

gradient in the order parameter, and thus the first term on the R.H.S. of Eqn. (5.1) is non-

zero. In addition, the mobility coefficients,   and  , contribute to the time dependence 

of ordering. In the micrographs above, certain regions of the microstructure initially order 

more quickly than others. The microstructural feature (contrast non-uniformity) is 

observed within a L21 matrix, thus suggesting that the size of the L21 domain is not 

responsible for arresting the transformation. Additional studies, however, are needed to 
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identify the rate of local ordering in NiCoMnIn alloys and the temperature dependence of 

the mobility coefficients,   and  . 

5.4.5 Conclusions: 

In summary, the magneto-structural property relations in NiCoMnIn alloys were 

investigated using transmission electron microscopy (TEM) and  SQUID magnetometry 

in attempts to observe the microstructural defects responsible for arresting the martensitic 

transformations. A precursor microstructural feature in room temperature dark field 

images of austenite was observed in arrested alloys. This features was observed in L21 

domains which were separated by B2 antiphase boundaries. This microstructural feature 

was not observed in the alloys heat treated for 3hours. L21 ordering, however, was 

demonstrated to occur within 3 hours at temperatures above 573K and the resulting 

martensitic transformation was found to progress regardless of the L21 domain size. On 

the other hand, the martensitic transformation is arrested when L21 morphology is 

degraded with high temperature-short duration heat treatments. The microstructural 

feature responsible for suppressing the transformation in the 573K 3hours alloy was not 

visible in the dark field images due to the small size of the L21 domains which typically 

illuminate them. 

 In terms of magnetic or solid-state refrigeration, a few points can be made on the 

above findings.  

1. Arrested Ni45Co5Mn36.6In13.4 alloys cannot perform in magnetically driven 

refrigeration applications. Therefore, these arrested alloys have no use in MCE 
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applications. More work is needed to quantify the applicability of arrested alloys 

for elastocaloric applications. 

2. The most efficient energy conversion ratio can be achieved in a Ni45Co5Mn36.6In13.4 

alloy first solutionized and then subsequently re-heat treated at 1073K for 3 hours. 

This was related to the reduction in strain energy associated with dislocations and 

anti-site defects above the ordering temperature. These exhibit larger entropy 

changes, nearly 8K temperature changes, and require nearly 4-6T to drive the 

transformation. 

3. Generally, B2 ordering via heat treatments will yield a better magnetocaloric 

refrigerant in Ni45Co5Mn36.6In13.4. 

In the next chapter, a few case studies are presented for the giant MCE and ECE 

in the alloys tabulated in Chapter 2. The optimal annealing treatment in 

Ni45Co5Mn36.6In13.4 single crystals defined by Eqn. (4.26) is investigated further and 

entropy change versus temperature diagrams are constructed for a few heat treatment 

cases. Additionally, the energy conversion efficiency of the heat treated alloys listed in 

Chapter 2 are computed from the experimentally determined key materials parameters, 

discussed earlier.



 

 

 

 

 

*Part of this chapter is reprinted from Acta Materialia, 74, Bruno N. et al. The effect of 

heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for 

magnetic refrigeration, 66-84, Copyright (2014), with permission from Elsevier. 
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CHAPTER VI                                                                                                                     

CRITICAL ANALYSES OF GIANT MAGNETOCALORIC AND ELASTOCALORIC 

EFFECTS IN SELECTED MAGNETIC SHAPE MEMORY MATERIALS* 

6.1 Introduction 

The following chapter is dedicated to discussing the measured calorific responses 

around martensitic transformations in a few selected magnetic shape memory alloys. For 

each alloy and heat treatment, the parameters in Eqns. (4.26) or (4.27) were identified 

through the procedures described in Chapter 2 and the energy conversion efficiency was 

computed to reveal the optimal thermoprocessing condition. Entropy change versus 

temperature diagrams were generated for a few heat treatment cases in NMnX (X=Sn, In). 

Additionally, the influence of crystallographic anisotropy on the elastocaloric effect was 

studied in as-grown Ni54Fe19Ga27 single crystals. It will be shown in subsequent sections 

that superelastic curves from Ni54Fe19Ga27 pose analytical problems when computing the 

ECE as discussed in Chapter 2. These problems can be overcome by implementing Eqns. 

(2.8) through (2.11). 
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6.2 Ni43Co4Mn42Sn11 (at.%) 

6.2.1 Introduction 

Bulk polycrystalline Ni43Mn42Co4Sn11 (at %) alloys were prepared using the 

procedures in Chapter 2. Some induction melted samples were homogenized in argon at 

1173K (above the reported L21 ordering temperature [75]) for 24 hours and quenched in  

ice water. The melt-spun ribbon samples made from the bulk alloys and were subsequently 

heat treated as described in Chapter 2.  

Microstructural compositional analysis was performed with WDS and 

thermomagnetic measurements with a Quantum Design SQUID-VSM magnetometer. 

These measurements were used in determining martensitic transformation temperatures 

and transformation hysteresis. All thermomagnetic measurements began with zero field 

heating to 400K and were followed by FC-FH. For qualitative comparison of the effect of 

the secondary heat treatments, the change in magnetization across the transformation, 

M AM  , was determined from the difference of the magnetization levels at 
fA  and sA  

from the thermomagnetization curves under 0.05T. 

Isothermal magnetization responses were measured at small temperature intervals 

and the forward ( A M ) and reverse ( M A ) paths were separated so that Eqn. (2.3) 

could be applied to construct an entropy change diagram. Only the reverse transformation 

was considered because the M A  transformation was associated with the endothermic 

response responsible for the cooling. In these experiments, the applied field was ramped 

at 25 Oe/s and the magnetic responses were considered to be isothermal because this rate 
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is sufficiently low to prevent temperature changes from the latent heat of the 

transformation. The M AS   was plotted over a range of temperatures from the isothermal 

magnetization curves, which then allowed 
workT  to be computed using Eqn. (4.6). 

Isothermal magnetization measurements also provided a means to validate the critical 

fields iso

compH , ad

compH  and 
reqH  computed with Eqns. (4.11), (4.12), and (4.13). 

Thermomagnetic transformation temperatures measured under 0.05T were then 

compared to those measured with DSC. For DSC analysis, the temperature was ramped at 

2K/min. In order to compute adT  in Eqn. (4.6), the heat capacity was measured using a 

Quantum Design Physical Property Measurement System (PPMS) between 10K and 250K 

by a pulsed-relaxation method-continuous heating scheme.  

6.2.2 Results 

Magnetic characterization of the Ni43Mn42Co4Sn11 samples was performed and the 

thermomagnetic results are compared in Figure 6-1a. The figure shows the 

thermomagnetization curves of the solutionized bulk, and as-spun and solutionized ribbon 

samples under 0.05T. The as-cast bulk specimen did not exhibit a notable meta-magnetic 

phase transition, thus the results are not shown. The austenite phase of the bulk sample is 

ferromagnetic (FM) for a narrow temperature interval on heating until its Curie 

temperature, CurieT , is reached. The CurieT  of the austenite was determined to be about 

365K. The martensite exhibits a small magnetic susceptibility, which in past studies has 

been attributed to short-range frustrated antiferromagnetic interactions by neutron 

polarization measurements [45, 76]. The frustrated antiferromagnetic response is shown 
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by the low magnitude of magnetization from 4.2K to 160K. Around 200K the sample 

started transforming to the highly magnetic austenite as a result of the reverse 

transformation. Both as-spun (A-S) and solutionized ribbons exhibited good meta-

magnetic shape memory characteristics with a sharp transition between the austenite and 

martensite. The changes in magnetization across MT ( M AM  ), transformation ranges (

elasT ), temperature hysteresis (
hysT ), and their sum (

compT ) were extracted from Figure 

6-1a. The data indicate that the solutionized bulk sample exhibits the smallest thermal 

hysteresis, but the ribbon samples exhibit the smallest transformation range.  

In addition, the Clausius-Clapeyron (CC) slopes were determined using the 

thermomagnetization results like that seen in Figure 6-1(c) for the solutionized ribbon 

samples. The corresponding phase diagrams are shown for the solutionized bulk and 

ribbon samples in Figure 6-1(d). These results will later be used to discuss the effect of 

microstructure on the performance parameters summarized earlier. 

Differing from the samples in the bulk form, the ribbons exhibit a large M AM   

with the application of very low magnetic fields. In addition, the ribbons show the smallest 

compT  which is desired for efficient refrigeration performance per Eqns. (4.6). On the 

other hand, the solutionized bulk sample exhibits the smallest 
hysT . Since the 

refrigeration performance parameters can be improved by decreasing 
hysT , the 

solutionized Ni43Mn42Co4Sn11 ribbons were exposed to secondary heat treatments in 

attempt to further reduce their 
hysT  as can typically be done for NiMnIn alloys [46].
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Figure 6-1: (a) 0.05T thermo-magnetization curves of Ni43Mn42Co4Sn11 polycrystalline 

samples in as-spun ribbon, bulk solutionized at 1173K for 1 day, and ribbon solutionized 

at 1173K 2 hrs. (b) Schematic showing how some of the parameters in Table 1 were 

determined using the results in (a). (c) Thermo-magnetization curves of the solutionized 

ribbon samples under 0.05T and 7T which were used to construct the critical field-

temperature phase diagram in (d). (d) includes the critical field – temperature phase 

diagrams for the solutionized bulk and ribbon samples [50]. 

 

 

 

In [46], it was shown that 
hysT  is related to L21 ordering, and therefore secondary 

heat treatments were performed at temperatures (673K, 773K, 873K) below the reported 

B2/L21 ordering temperature for 1 hr to promote L21 ordering. At each temperature,  
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ribbons were rapidly quenched (RQ) or furnace cooled (FC). Characteristic features of the 

martensitic transformation after secondary heat treatments are determined directly from 

the experiments or calculated using the equations in Chapters 1 and 2, and tabulated in 

Table 6-1. The critical field vs. temperature phase diagrams for the completion of the 

martensite to austenite transformation in the secondary heat treated ribbons are shown in 

Figure 6-2(a), which are extracted from the thermomagnetization curves. Later, these 

phase diagrams will be used to compute the 
 

iso

compH  parameter. 

 

 

 

Table 6-1: Martensitic transformation (MT) characteristics of the secondary heat treated 

ribbons. FC denotes furnace cooling; RQ denotes rapid quenching and the MT 

temperature is determined as 
0 ( ) / 2s fT M A   [50]. 

Annealing 

Treatment 

sA
dH

dT
 

(T/K) 

fA
dH

dT
 

(T/K) 

fM  

(K) 
sM  

(K) 
sA  

(K) 

fA   

(K) 
0T  

(K) 

hysT  

(K) 
elasT  

(K) 

iso

compH  

(T) 

ad

compH  

(T) 

reqH  

(T) 
cT  

(K) 

673K FC -0.14 -0.23 193 208 217 225 217 21 11 7.56 9.6 3.4 368 

773K FC -0.17 -0.23 185 217 214 230 223 23 26 11.2 13.3 4.9 367 

873K FC -0.19 -0.26 189 225 216 243 234 22 31 13.9 17.0 5.0 366 

673K RQ -0.16 -0.25 210 222 229 238 230 17 10 6.9 9.5 3.1 361 

773K RQ -0.18 -0.27 209 227 230 240 233 17 14 8.2 11 3.8 360 

873K RQ -0.22 -0.24 213 233 232 246 240 16 17 8.0 10.1 4.3 360 
1173K 

SHT -0.19 -0.22 198 216 224 233 224 21 13 7.6 9.6 5 340 
 

 

 

 

As seen in Table 6-1, secondary heat treatments resulted in slight changes in 

transformation temperatures, thermal hysteresis, and magnetic field sensitivity of sA  and 

fA , but on average, the M AM   across the transformation remained approximately the 
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same and therefore was not included in the table. The RQ samples exhibited an increase 

in transformation temperatures, whereas the FC samples showed a decrease in 

transformation temperatures as compared to the solution heat treated ribbons. This 

suggests that slight changes in atomic ordering were dependent on the cooling rate of the 

secondary heat treated ribbons.  

The product of the slopes of the CC lines in Figure 6-2(a) and the 
f fA M  

computed from Table 6-1 yielded the iso

compH  following Eqn. (4.11), which is also tabulated 

in Table 6-1. The solutionized ribbon that was secondarily heat treated at 673K for 1 hour 

and then RQ was found to exhibit the smallest iso

compH  of 6.9T whereas the solutionized 

ribbon sample originally had a iso

compH  of 7.6T.  

Figure 6-2(b) shows the 7T thermo-magnetization curves of the Ni43Mn42Co4Sn11 

as-spun, solutionized (SHT), and solutionized plus 673K 1hr RQ ribbons 

(SHT+673K(RQ)). The 0.05T thermo-magnetization curve for the SHT+673K(RQ) 

sample is shown in the inset. As can be seen in the inset, the 7T field does not lead to a 

large change in the magnetization of austenite, and the large applied field reduces M AM   

across MT as the magnetization of martensite increased more than that of the austenite. 

We attribute this to the short range antiferromagnetic interactions of martensite [45, 76, 

77] making magnetic saturation of martensite difficult. Large fields decrease the 

transformation temperatures, as expected. The CC slopes, /sA
dH dT  and /fA

dH dT , for 

the SHT+673K(RQ) ribbons were determined to be -0.16 T/K and -0.25 T/K, respectively, 

from thermomagnetization curves.  
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Figure 6-2: (a) The critical field-temperature phase diagram for the completion of the 

martensite to austenite phase transformation for the secondary heat treated ribbons. (b) 

Thermo-magnetization curves of the Ni43Mn42Co4Sn11 as-spun, SHT, and 

SHT+673K(RQ) ribbons in the field of 7T; Inset: 0.05T and 7T thermo-magnetization 

curves of SHT+673K(RQ) ribbons, (c) Isothermal magnetization curves of the 

SHT+673K(RQ) ribbons. Magnetization isotherms were measured at temperatures much 

less than 
fM  (=190K), at 

fM =210K, and above 
fA =245K [50].
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To verify the validity of Eqns. (4.11) and (4.12), the isothermal magnetic response 

of the Ni43Mn42Co4Sn11 SHT+673K(RQ) ribbons was measured under applied magnetic 

fields up to 7T at a temperature  (=190K) much below 
fM , at 

fM  (=210K), and a 

temperature (=245K) above 
fA , using martensite as the initial phase in the former two 

cases. The response is shown in Figure 6-2(c). The magnetization values at low 

temperatures are small. Small magnetic hysteresis is observed at T =190K since the field 

is not sufficient to induce a large structural transformation and the sample is mainly 

comprised of short range frustrated antiferromagnetic martensite. The small hysteresis 

may be attributed to a low concentration of magnetic domains rotating at low applied fields 

or a small volume fraction of phase transformation. The response near 
fM  shows 

magnetic hysteresis upon unloading the field indicating structural transformation has taken 

place. At temperatures above 
fA , no magnetic hysteresis is observed indicating that the 

field does not induce a transformation from austenite to another phase, and austenite is 

purely ferromagnetic.  

More importantly, the isothermal magnetization curves in Figure 6-2(c) verify the 

validity of Eqn. (4.11) for the SHT+673K(RQ) ribbons. In Table 6-1, iso

compH  and 
reqH  

were predicted to be 6.9T and 3.1T, respectively, using the thermo-magnetization results. 

As can be seen from the isothermal magnetization curve at 
fT M  in Figure 6-2(c), these 

magnetic fields reasonably match the experimentally observed ones in the figure for the 

M A  transformation. 
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The latent heat and heat capacity were determined for the SHT ribbon samples 

using DSC and the PPMS mentioned earlier. As shown in Figure 6-3(a), the M AS   was 

determined to be 18J/kgK from the area of the endothermic peak ( ( / )M A

pS C T dT  

). In addition, the transformation temperatures match those obtained from 0.05T thermo-

magnetic measurements for the SHT ribbons.   

The Clausius-Clapeyron (CC) relation can also be used to find M AS  . The CC 

relation is defined by Eqn. (1.30). To further verify that the M AS   was about 18 J/kgK, 

the above equation was used, where M AM   was found, from magnetic data like that 

shown in Figure 6-2(c) at 
fT M , to be 84.1 emu/g and /fA

dH dT  was determined to be 

-0.22 T/K from thermo-magnetic measurements. The CC relation predicted the 

transformation entropy of 18.6 J/kgK, which is in good agreement with the DSC 

measurements. This indicates that either Eqn. (1.30) or the experimental results shown in 

Fig. 6-3(a) can be used to determine M AS  . 

In Fig. 6-3(b), the heat capacity data are shown. The data provide an accurate 

measure of the heat capacity bracketing the hysteresis region, although the first-order 

transition region itself is not reproduced by the pulse-relaxation technique. These values 

are used to determine the adiabatic temperature change near 0T  as required in Eqn. (4.6) 

to compute the workT . At higher temperatures the data approach the classical 3NkB per mole 

as expected, plus a small electronic term. Using M AS   of 18 J/kgK and a 
pC  of 434 

J/kgK at 190K (near 
fM ), and a 0T  of 224K from Table 6-1, max

adT  is computed from 
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Eqn. (1.22) to be 9.3K. This implies that if 
hotT  is considered to be equal to 

fM =198K as 

in Fig. 2-3, 
coldT  would be 188.6K (i.e. 

hot adT T ). The 
workT  contribution within the 

temperature range permitting the complete field induced entropy change (
ad
compH H

fA


 to 

0H

fM  ) is defined as  max max / 2M A

ad irr adS T S T    . Here we found 
irrS  equals to 1.9 

J/kgK when 
fT M  in Eqn. (4.7). This leads to the 

workT  of 159 J/kg for the SHT ribbons 

in this temperature range. However, when considering the entropy changes in the elastic 

regions of transformation, the maximum possible reversible workT  is computed using 

max max( ) / 2M A M A

ad elas irr ad elasS T S T S T T         (Eqn. (4.6)). For the SHT 

ribbons, this total reversible workT  is 389 J/kg. 

 

 

 

 
 

Figure 6-3: (a) sA  field sensitivity as a function of the normalized difference between 

CurieT  and 0T  for the secondary heat treated ribbon samples of Ni43Mn42Co4Sn11 alloys 

and (b) heat capacity measurements of SHT ribbons on cooling [50]. 
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In the SHT+673K(RQ) ribbon samples, the entropy change across transformation 

was calculated using the CC equation (Eqn. 1.30) as explained for the SHT sample above. 

The M AM   was measured at   / 2f sT A A   to be 79 emu/g, and the CC slope (

/fA
dH dT ) to be -0.25 T/K. Eqn. (1.30) then results in M AS   of 19.7 J/kgK. Assuming 

the heat capacity does not significantly change after the secondary heat treatments, max

adT  

is found to be 10.4K, thus the ad

compH  (from Eqn. (4.13)) then equals 9.5T for the 

SHT+673K(RQ) ribbon which is slightly lower than that of the SHT ribbons. The workT  

contribution within the temperature range permitting the complete entropy change (

ad
compH H

fA


 and 0H

fM  ) is calculated to be 196 J/kg, with irrS  being equal to 1.5 J/kgK when 

fT M  in Eqn. (4.7). Including the entropy changes in the elastic regions of 

transformation, the total reversible workT  is calculated to be 385 J/kg for the 

SHT+673K(RQ) ribbon. 

Comparing the SHT ribbons with those exposed to secondary heat treatments, it 

was found that the transformation entropy change increases as a result of these heat 

treatments, iso

compH  decreases for the RQ samples, and 
ad
compH H

fA


 to 0H

fM   (temperature 

region where the complete reversible entropy change can be achieved) grows at the 

expense of the elastic transformation regions 
ad ad
comp compH H H H

f sA A
 

  and 0 0H H

s fM M  . These 

findings suggest that the material can be easily tailored for a given cycle with simple heat 

treatments to permit not only a certain cooling capacity under a given field, but also that 
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the field levels required to achieve refrigeration and their operating temperatures can be 

modified. 

Figure 6-4(a) shows the M AS   curves from the discontinuous heating protocol 

described in Chapter 2 for the SHT ribbons. Here, M AS   from the field induced 

transformation, over the entire temperature range, seemed to plateau at a value (18 J/kgK) 

that matches that measured in DSC. This indicates that the transformation entropy is not 

largely a function of magnetic field and entropy production from hysteresis is relatively 

small compared to the entropy change of the MT. In addition, a clear growth of the S T   

diagram to lower temperatures is observed as the fields become larger. This is due to the 

negative CC slope.  

A schematic of the S T   diagram shown in Fig. 4-4 has been drawn over the 

data to indicate how the S T   diagram should look to experimentally verify the 

computed workT  from the first two terms of Eqn. (4.6). Clearly, the magnitude of the 

entropy change is consistent with the theoretical diagram, but a majority of measurements 

still reside outside the temperatures of interest enclosed by the black trapezoid in Fig. 6-

4. Again, this is due to the large elasT ,
hysT , and iso

compH  (or ad

compH ) exhibited by the SHT 

ribbons. This can also be viewed as the inability to sufficiently decrease the transformation 

temperatures with the applied field of 7T. Reducing elasT  and 
hysT  would effectively 

overlap theoretical S T   and experimentally captured S T   curves with small applied 

magnetic fields. 
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Figure 6-4: (a) Entropy change ( S ) in the solutionized Ni43Mn42Co4Sn11 

polycrystalline ribbon as a function of temperature around the martensitic transformation 

from the discontinuous heating protocol. The theoretical S T   diagram from Fig. 4-4b 

has been drawn over the experimentally collected data as a black trapezoid. The 

corresponding adiabatic temperature changes are plotted in (b) per Eqn. (1.34) [50]. 
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workT  values as only a fraction of the theoretical curve overlaps the experimentally 

captured one up to 7T. The maximum measured 
workT  value (overlapping of two curves) 

was found to be 74 J/kg under the applied field if 7T. However, the projected 
workT  of 389 

J/kg was found using Eqn. (4.6). 

Using the data in 6.4(a), 
adT  was computed with Eqn. (1.34) and is plotted in 

Fig. 6-4b. The data in Fig. 6-4b demonstrates that the SHT ribbons are capable of 

exhibiting nearly 4K temperatures changes by applying 2T and as much as 6K by applying 

4T. Unfortunately, these temperature changes are not repeatable with field cycling due to 

the large thermal hysteresis. For example, to fully recover martensite on removing the 

field, the MMSMA must be at the 
fM  temperature depicted in the figure. At T = 198K, 

only about 2K can be generated by applying 7T. This is a very small caloric effect.

Finally, the discontinuous heating protocol from Chapter 2 was performed for the 

SHT+673K(RQ) ribbons and the S T   diagram is shown in Fig. 6-5(a).  The theoretical 

S T   curve from the thermodynamic framework in Fig. 4-4 has also been drawn over 

the data. 
reqH , iso

compH , and ad

compH  for the SHT+673K(RQ) ribbons were calculated to be 

3.1T, 6.9T, and 9.5T, respectively, as shown in Table 6-1. The M AS   value saturates 

near 19.7 J/kgK as computed from Eqn. (1.30). It is important to note that the 

SHT+673K(RQ) ribbons show a iso

compH  of 6.9T. According to Eqn. (4.12), this means that 

an isothermal test at temperature 
fM  will produce a complete field-induced structural 

transformation with the application of 6.9T. This prediction is verified with Fig 6-5 
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because the 7T S T   curve shows an entropy change of approximately 19J/kgK at 

temperature 0H

fM   as indicated by point 1 in the figure. 

 

 

 

 
 

Figure 6-5: (a) Entropy change ( S ) in the SHT+673K(RQ) ribbon as a function of 

temperature around the martensitic transformation from the discontinuous heating 

scheme. The theoretical S T   diagram from Fig. 4-4(b) has been drawn over the 

experimentally collected data as a black trapezoid (b) Half the entropy production from 

the reverse MT for the same temperatures and field levels as shown in (a) [50]. 
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shows / 2irrS T  diagrams which were calculated using Eqn. (4.7). Since the  S T   

curves saturate at M AS   that is measured with DSC, the diagram in Fig. 6-5(a) can be 

used at every temperature and field level to yield a value for ( ) M AH S   in Eqn. (4.7). 

In other words, the S T   curves in Fig. 6-5(a) were multiplied by 
hysT  and divided by 

the temperature at each data point in which the isothermal test was conducted to produce 

the / 2irrS T  diagrams. 

To determine the workT , in this and the SHT ribbon cases discussed earlier, the area 

of overlapping theoretical and measured S T   curves were first determined, and then 

the overlapping area of the theoretical and measured / 2irrS T  curves were subtracted at 

each field level. This assumes that the entropy production is a function of transformation 

volume fraction. The workT  results are plotted in Figure 6-6(a) for the SHT+673K (RQ) 

ribbons. The measured workT   value was found to be 234 J/kg at iso

compH  as shown in Fig. 6-

6a. The maximum projected workT , however, should reach 385 J/kg under ad

compH  

considering all the terms in Eqn. (4.6). Although this projected workT  of the 

SHT+673K(RQ) ribbons is almost the same as that of the SHT ribbons (389 J/kg), the 

secondary heat treatment allows this high workT  to be reached under a smaller magnetic 

field than that of the SHT ribbons as shown by ad

compH  values in Table 6-1. This 

improvement is attributed to the larger /GS t  ratio and beneficial degree of L21 ordering 

that yields desired MCE properties as discussed in Chapter 5. 
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The 
workT  of Ni43Mn42Co4Sn11 heat treated ribbons is greater than other meta-

magnetic SMAs that have been reported in the literature since we used a very simple 

parameter optimization approach to select a favorable microstructure and resulting 

desirable properties to maximize MCE. However, it is difficult to compare the results 

directly because most results in the literature compute the 
workT  in the conventional way 

which defines 
hotT  and 

coldT  arbitrarily at full width at half maximum of the S T   curve 

[49]. These temperatures are often inside the thermal hysteresis range shown in Fig 4-4 

and the values do not reflect reversible S  and 
workT values. It was shown in Chapter 4 

that the conventional way of calculating 
workT  is not correct for meta-magnetic SMAs.  

Ni43Mn42Co4Sn11 SHT ribbons exhibit a 
workT  of 389 J/kg and from our isothermal 

tests, only 74 J/kg was accessible experimentally under 7T. The MCE performance of the 

solutionized ribbons was improved with secondary heat treatments whereby a 
workT  of 385 

J/kg is achievable under an applied field of 9.5T. The SHT ribbons allow for a slightly 

larger workT  using special thermodynamic cycles because they also have a larger elastic 

temperature range. This, in turn, requires higher applied fields to transform the ribbon. 

The alloys in the literature such as Ni50Mn37Sn13 (39J/kgK, 1.8T) [75], NiMnIn (130 J/kg, 

3T) [78] have been reported to exhibit smaller workT  under smaller fields, but neither their 

measurement protocol nor heat capacity were reported.  

Finally, Latent  was computed with Eqn. (4.26) and is plotted for each heat 

treatment condition in Fig. 6-6b. Interestingly, the RQ samples exhibited a higher energy 

conversion efficiency than the FC treatments. It is believed this is due to the sharper 
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transition ranges exhibited by RQ samples. Interestingly, low temperature heat treatments 

increased the energy conversion efficiency by nearly 20%. The SHT + 673K 1hr. RQ was 

indeed the optimal heat treatment condition with the highest conversion efficiency.  

 

 

 

 
 

Figure 6-6: (a) Maximum thermal work of the SHT+673K(RQ)  ribbons as a function of 

applied magnetic field. Values were computed from the data in Fig. 6-5a and b using the 

discontinuous heating protocol and (b) the Latent  computed with Eqn. (4.26) for each 

heat treatment case [50]. 

 

 

 

6.2.3 Conclusions

In the present work, we demonstrate how Ni43Co4Mn42Sn11 can be used as solid-

state refrigerant using the Brayton cycle in Fig. 4-3. From this cycle, the key material 

parameters, important for controlling MCE and refrigeration performance, were 

identified, such as the magnetic fields required to induce, and complete, the martensitic 

transformation, magnetization change across the transformation, transformation 

temperature range, and thermal hysteresis. The performance parameter, maximum thermal 
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work (
workT ), was used for comparing the performance of meta-magnetic SMAs with 

different compositions and microstructures. It was shown that the conventional method of 

quantifying performance in MMSMAs by using the RCP is not a valid approach for 

MMSMAs and that the 
workT  should be used to quantify refrigeration performance across 

a first order transformation. 

In attempt to validate the selection of the above materials parameters, a case study 

was conducted on a specific NiMnCoSn composition. The results indicated that these 

parameters can be optimized using simple heat treatments even in the compositions of 

meta-magnetic SMAs that show high L21 atomic stability. Atomic ordering was shown to 

change the transformation thermal hysteresis. The best performance parameters were 

achieved in Ni43Mn42Co4Sn11 polycrystalline ribbons when they were homogenized at 

1173K and then annealed at 673K for 1 hr. followed by a rapid quenching in water. This 

was also demonstrated using Eqn. (4.26). Furthermore, the cooling method after the 

secondary heat treatments was shown to affect the meta-magnetic response and ultimately 

control the transformation range and thermal hysteresis. 

More precisely, the effects of secondary heat treatments on the aforementioned 

materials parameters were studied in the Ni43Mn42Co4Sn11 melt-spun ribbons. Promoting 

atomic disorder decreased the thermal hysteresis. The elastic energy storage upon 

martensitic transformation was reduced by increasing the grain size to thickness ratio, 

which reduced the transformation range from 25K in the as-spun ribbons to only 10K in 

the heat treated ribbons. This effectively reduced the magnetic fields required to transform 

the materials and increased the operating temperature range of the refrigerant.  
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Finally, the relationships between the entropy change vs. temperature diagrams 

were discussed. Comparisons between theoretical and experimental entropy change vs. 

temperature curves were shown and used to demonstrate how the sample responses were 

improved by the optimization heat treatments. Ultimately, it was found that past reports 

on the MCE in meta-magnetic SMAs can still yield valuable information as long as the 

experimental protocol, martensitic transformation temperatures, and heat capacity are also 

presented so the 
workT  can be calculated accurately. 

The key materials parameters proposed in this work provide a powerful tool for 

analyzing meta-magnetic SMA refrigerants as shown in the present work. The alloy 

composition and responses presented in this study indicate meta-magnetic SMAs can be 

used as solid state refrigerants. Moreover, further composition and microstructural 

optimization through thermal treatments can improve the transformation characteristics 

and thus, the refrigeration performance parameters for them to compete with conventional 

rare-earth based MCE materials, such as Gd alloys. 

6.3 Ni48Mn38In14  

6.3.1 Introduction 

In the following sections the magnetocaloric effects in NiMnIn and NiCoMnIn 

alloys in Tables 2-4, 2-5, and 2-6 are discussed in detail. The thermomagnetic responses 

of the alloys are presented as measured from SQUID magnetometry using FC and FH 

protocols. Using the thermomagnetization data, the magnetic Clausius-Clapeyron slopes, 

fA
dH

dT
, were extracted and plotted as a function of heat treatment. Other parameters in 
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Eqn. (4.26) were identified using calorimetry to determine the optimum heat treatment 

condition listed in the tables. Finally, entropy change diagrams were generated from 

measured magnetization data (using Eqn. (2.3)) which were then used to compute the 

adiabatic temperature change of the alloy with Eqn. (1.34). 

 6.3.2 Results 

The thermomagnetic response of each heat treated alloy in Table 2-4 is shown in 

the Appendix. Each heat treatment case exhibits a magnetic Curie point near 300K in the 

austenite phase. Interestingly, these heat treatments only modestly change the sM  

temperature. This small change is also depicted in Figure 5-3. Other differences observed 

between the responses include magnitudes of M AM  , thermal hysteresis, and 

transformation ranges. All of these parameters have been shown to influence the energy 

conversion efficiency as explained in Chapter 4 with Eqn. (4.26). 

The magnetization changes across the martensitic transformation from each heat 

treatment case were identified for the 1T thermomagnetic curve and are plotted in Figure 

6-7a.  Interestingly, the solution heat treated case (SHT) exhibits one of the largest 

magnetization changes. Three hour secondary heat treating at 1073K results in a 

significant drop in the magnetization change. Secondary heat treatments at even lower 

temperatures tend to recover the magnetization change to levels comparable to the SHT 

case. This is attributed to promoting crystallographic ordering to L21 from B2 austenite 

[46]. Heat treating at 673K for 3 hours, the martensitic transformation becomes suppressed 

and the magnetization change is nearly zero. Further work must be performed to identify 
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the cause of the suppression of the transformation in these alloys, but this arrest can be 

achieved in both NiCoMnIn and NiMnIn alloys. 

The 
fA  temperature Clausius-Clapeyron slopes for each 3 hour heat treated alloy 

was extracted from the data are shown in Figure 6-7b. As discussed in Eqn. (1.8) in 

Chapter 1, a decrease in the magnetization change (shown in Fig. 6-7a) must be 

accompanied by a decrease in the /dT dH  slope due to a reduction in the magnetic 

Zeeman energy. As expected, this decrease with decreasing M AM   is depicted in Fig. 

6-7b. Promoting L21 ordering with lower temperature heat treatments results in an increase 

in M AM   and therefore an increase in /dT dH . 

Using Eqn. (2.2), the entropy change was computed for each heat treatment case. 

The entropy change across the martensitic transformation is plotted in Figure 6-7c. The 

SHT case exhibits the largest entropy change of approximately 24J/kgK. Lower 

temperature secondary heat treatments result in an initial drop in the entropy change 

followed by recovery. This is similar to the response in M AM   in 6-7a. When the 

M AM   is nearly zero from the 673K 3hr heat treatment, the entropy change is also 

computed to be nearly zero per the CC equation. 
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Figure 6-7: The magnetization change (a), / fA
dT dH  Clausius-Clapeyron slope (b), 

computed entropy change (c), and temperature ranges (d), for each 3 hour heat treated 

Ni48Mn38In14 alloy. The Entropy change was computed from Eqn. (2.2) and temperature 

ranges were extracted from the thermomagnetization data in the Appendix. 

 

 

 

Finally, the complete transformation ranges (
f fA M ), the thermal hysteresis, 

f sA M , and sM  are plotted in Fig. 6-7d for each heat treatment case. At once, the 

influence of the microstructurally stored elastic energy across the martensitic 

transformation is realized as indicated by the magnitude of 
f fA M  [61]. From the SHT 
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+ 1073K 3hrs heat treatment case, the hysteresis and transition ranges are larger than the 

SHT case. In contrast to the Ni45Co5Mn36.6In13.4 alloy (Co5) in Chapter 5, a sharp increase 

is observed in 
f fA M  with heat treatments slightly below the SHT temperature. In the 

Co5 alloy, the transformation ranges abruptly decrease when heat treated at a temperature 

slightly below 1173K. Therefore, the increase in the transition ranges may be attributed to 

some phenomenon other than vacancy concentration as was discussed in Chapter 5 for the 

Co-containing alloy. Perhaps crystallographic ordering at temperatures above some 

critical temperature influences the crystallographic compatibility, however, more work is 

needed to identify the cause of the increase in transition range. 

Using the parameters in Fig. 6-7, Latent  was computed for each heat treatment case 

to identify the relative magnetic to thermal energy conversion efficiency and is plotted in 

Fig. 6-8 as a function of secondary heat treatment temperature. Clearly, the Ni48Mn38In14 

alloy exhibits a dissimilar response in Latent  to the cobalt containing alloy in Chapter 5. 

From Fig. 6-8, it is clear that the SHT case exhibits similar conversion efficiency to the 

alloys ordered toward L21 resulting from low temperature heat treatments. The Latent  for 

the 673K 3hours heat treatment case, in Fig. 6-8, is zero because the martensitic 

transformation is suppressed, thus the entropy change across the transformation is nearly 

zero.  

Two heat treatment cases were selected to construct entropy change vs. 

temperature diagrams on either side of the local minimum at 1123K in Fig. 6-8. The SHT 

case and the SHT + 973K 3hrs cases were selected to identify differences between the 

two, although they exhibit similar conversion efficiency. Per Fig. 6-7, SHT case exhibits 
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larger M AM   and /dT dH , but both cases exhibit nearly the same entropy change, 

20J/kgK. In the SHT + 973K 3hrs alloy, the 
f fA M  range is larger by about 5 Kelvins.  

 

 

Figure 6-8: Latent  as a function of 3 hour secondary heat treatment temperature 

computed from Eqn. (4.26) in Ni48Mn38In14. 

 

 

 

In Figure 6-9(a-c) the magnetization history on applying the magnetic field, the 

computed entropy change vs. temperature diagram (Eqn. 2.2), and the computed adiabatic 

temperature change (1.34), are shown for the SHT alloy, respectively. Here, the 

magnetization change is measured to be approximately 80-85emu/g under 3T or higher. 

Magnetization measurements were taken at intervals of 3Kelvin across the martensitic 

transformation range. The entropy change diagram in Fig. 6-9b indicates an entropy 

change of nearly 20J/kgK can be generated at 253K by applying 4T to the alloy. The 

entropy change diagram grows toward the left due to the negative CC slope, as expected. 
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The computed adiabatic temperature change, in Fig. 6-9c, demonstrates that the alloy will 

exhibit approximately 8K temperature change under 7T applied magnetic fields.  
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Figure 6-9: The magnetization history (a), computed entropy change (b), and computed 

temperature change (c) for the Ni48Mn38In14 solution heat treated alloy and the 

magnetization history (d), computed entropy change (e), and computed temperature 

change (f) for the Ni48Mn38In14 solution heat treated alloy subject to a secondary 973K 

3hour WQ heat treatment. Entropy change diagrams were computed with Eqn. (2.2) and 

adiabatic temperature change with Eqn. (1.34). 
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temperature changes with field cycling, the sample must first be cooled below 
fM  to 

recover the martensite phase and then reheated to sA  before the field is re-ramped. In other 

words, the cyclic reversibility of the temperature change reported in Fig. 6-9c is very poor.  

 Similarly, the magnetizing responses for the SHT + 973K 3hrs heat treated alloy 
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case. In addition, the change in magnetization from applying 7T has also been reduced 

with ordering. It is believed that the entropy change in this alloy is reduced due to the 

additional elastic energy contribution to the driving force in Eqn. (1.8). Clearly, the 

martensitic transformation range in the SHT + 973K 3hrs heat treated alloy is larger than 

the SHT case, and in turn, decreases /dT dH . 

 With smaller /dT dH , the SHT + 973K 3hrs heat treated alloy requires larger 

magnetic fields than the SHT case to complete the martensitic transformation. This can be 

seen from the slopes of the magnetization responses in Fig. 6-9a and d. In the SHT + 973K 

3hrs heat treated alloy, the magnetization vs. magnetic field (M-H) slope is smaller on 

applying field across the transition, indicating the transformation requires that magnetic 

fields be applied. In some cases, the transformation will progress with small fields. In this 

case, very large fields are needed. Nevertheless, the adiabatic temperature change was 

computed for this heat treatment case as shown in in Fig. 6-9f. Since the entropy change 

in this alloy is slightly smaller, the adiabatic temperature change is expected to be slightly 

smaller than the SHT case. Like the SHT case, however, the cyclic reversibility of the 

caloric response is very poor.  In both alloys, approximately only 4K can be generated by 

cycling 0 to 7T at temperatures near 
fM . The cyclic reversibility can be quantified with 

a 0.6 conversion efficiency parameter from Eqn. (4.26), whereas nearly 0.8 can be 

achieved in the NiCoMnIn alloy described in Chapter 5. 

 6.3.3 Conclusions 

In conclusion, the Ni48Mn38In14 alloy exhibits a dissimilar conversion efficiency 

response to the cobalt containing alloy in Chapter 5. Interestingly, very large elastic energy 
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is stored in the microstructure across the transformation in this alloy composition when 

quenched from temperatures near the SHT temperature. Lower temperature annealing then 

orders NiMnIn toward L21, and results in an increase in the conversion efficiency. On 

ordering to L21 from lower temperature heat treatments, the magnetization change across 

the transformation is recovered to nearly that of the SHT case. In this particular alloy 

composition, the SHT case is expected to outperform the other secondary annealing cases.  

6.4 Ni50Mn36-XIn14+X (X=0, 0.5, 1, 1.5): 

6.4.1 Introduction 

Initially, thermal treatments were employed on the Ni50Mn36In14 alloy in attempts 

to modify the transformation temperatures as described in Chapters 2 and 5. The thermal 

treatment temperatures and times were tabulated in Table 2-5 for the Ni50Mn36In14 alloy. 

Interestingly, these thermal treatments had minimal effect on the transformation 

temperatures, and therefore are not discussed here. It is believed that only small changes 

in the transformation temperatures resulted from thermal treatments because the austenite 

phase was paramagnetic, rather than the typical ferromagnetic phase. It is interesting to 

note that more ferromagnetic austenite phases result in higher tunability with thermal 

processing. That is, cobalt containing MMSMA that exhibit ferromagnetism in austenite 

seem to be the most sensitive to thermal treatment. Ferromagnetic NiMnIn alloys then 

exhibit the next lower level of sensitivity with thermal processing and, finally, the 

transformation characteristics in paramagnetic MMSMAs exhibit very little susceptibility 
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to thermal treatments. The thermomagnetic responses under 7T can be found in the 

Appendix for each heat treatment case of Ni50Mn36In14. 

Instead, the base alloy Ni50Mn36In14 (at.%) was employed to generate a 

composition spread and identify the energy conversion efficiency from the resulting alloys 

of different composition in their solutionized conditions. Alloys were homogenized 

(solution heat treated) at 1173K for 24hours and quenched in water. Despite the fact that 

the Ni50 base alloy was of paramagnetic order in austenite, the martensitic transformation 

could still be observed from SQUID magnetometry due to its high sensitivity (~10-8emu) 

as shown in Fig. 6-10a. Very small magnetization changes were measured in this base 

alloy under 0.05T. Some recent work [79] suggested that perhaps the refrigerant capacity 

would be greatly increased by reducing the martensitic transformation temperature to the 

theoretical austenite Curie point. Here, we identify the magnetic to thermal energy 

conversion efficiency with Latent   for alloys whose sM  is above, below, and nearly equal 

to the austenite CurieT . 

To reduce the sM  temperature in the base alloy, arc-melting was employed. High 

purity Ni, Mn, and In were added to achieve the desired composition spread. Wavelength 

dispersive spectroscopy (WDS) was employed to verify the composition of the alloys. 

SQUID magnetometry was used to identify the magnetic parameters in Eqn. (4.26), and 

the heat capacity was approximated using the universal Debye curve for the NiCoMnIn 

alloy in Fig. 5-19b. The Debye curve in Fig. 5-19b is a universal curve in units of 

Cal/molK, and assumes the Debye temperature is 322K. The transformation temperatures 

of the Ni50 base alloy were elevated. Therefore the heat capacity was assumed to equal 
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the saturated 3R (6cal/molK) vibrational limit. The thermomagnetization responses of the 

alloys in the composition spread are depicted in Figure 6-10a-d. 

6.4.2 Results 

As shown in Fig. 6-10a, the base alloy exhibits a small magnetic signal under 

0.05T. Under 1T, the martensitic transformation can be identified by the thermal hysteresis 

around 350K. The magnetization change across the transformation was approximately 

2emu/g in this case. Under 7T, the austenite phase is characterized by at most 20emu/g 

exhibiting a 15 emu/g magnetization change around the transition. Interestingly, the 

thermal hysteresis in this alloy is nearly 5K. According to the magnetic fitting in [79], the 

austenite phase was determined to be paramagnetic, and thus explains why small 

magnetization changes occur across transition. 

On substituting indium (valence of 3e-) for manganese (valence of 7e-), the 

martensitic transformation temperatures decrease. This can be attributed to reducing the 

valence electron concentration per atom (e/a ratio) depicted in Fig. 5-1 and tabulated in 

Table 2-1. Decreased e/a ratios result in lower sM  temperatures. The projected austenite 

Curie temperature, CurieT , of the base alloy is tabulated in Table 2-1 as 289K [79]. When 

only 0.5 at.% of Mn was replaced with In, the martensitic transformation temperature had 

decreased by about 10K, as shown in Fig. 6-10b. The thermal hysteresis in this alloy 

remained approximately the same as the base alloy. The magnetization change, on the 

other hand, had almost doubled, yet, the austenite phase was still expected to be 

paramagnetic because the sM  temperature was above the projected  CurieT  of 289K. 
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Replacing 1 at.% Mn with In resulted in a larger decrease in 
sM . In this alloy (see 

Fig. 6-10c) the 
sM  temperature had dropped about 50K from the base alloy and the 

transformation occurred around room temperature. Interestingly, this particular 

composition exhibited only 3K thermal hysteresis. The magnetization change across the 

transformation was, again, nearly doubled from the In14.5 at.% case. Finally, 1.5at.% of 

Mn was replaced for In. In this condition, the 
sM  temperature was reduced to 260K and 

the 0.05T thermomagnetic response exhibited approximately 10emu/g in austenite. It is 

believed lowering the sM  temperature resulted in a ferromagnetic austenite phase. 

Unfortunately, the thermal hysteresis also substantially increased when lowering the sM  

temperature below 
CurieT . 
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Figure 6-10: The 0.05T, 1T, and 7T field cooling (FC) and field heating (FH) 

thermomagnetic histories of solutionized Ni50Mn36In14 (a), Ni50Mn35.5In14.5 (b), 

Ni50Mn35In15 (c), and Ni50Mn34.5In15.5 (d) alloys. 

 

 

 

 

Figure 6-11 depicts the thermomagnetic martensitic transformations under 7T of 

each alloys mentioned above. Interestingly, the CurieT  slightly increases on increasing In 

content as indicated by the increased magnetization levels at high temperatures in 

austenite.  Clearly, the Ni50Mn35In15 alloy exhibits the smallest thermal hysteresis. In fact, 

3K thermal hysteresis under 7T is the smallest hysteresis observed in NiMnIn, to date [80].  
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Figure 6-11: A comparison of the Ni50Mn(36-X)In(14+X) (X=0, 0.5, 1, and 1.5) 

thermomagnetic responses under 7T. 

 

 

 

The parameters in Eqn. (4.26) were extracted from thermomagnetic data above and 

are plotted in Fig. 6-12 as a function of In content. Indium content, in these plots, 

correspond to that which was directly measured with WDS. No clear trends are identified 

from the few data points. However, the 
f fA M , in 6-12a, was found to be minimum for 

the Ni50Mn35In15 alloy. As expected, the M AM   under 1T increases as In content 

increases and sM  decreases. As such, with larger magnetic Zeeman energy, the /dT dH  

also increases as discussed in Chapter 1. To fully identify the parameters in Eqn. (4.26), 

the heat capacity for this alloy was approximated using the Debye curve in 5-19b. It is 

important to note that the Debye curve in Fig. 5-19b neglects any magnetic contribution 

to the specific heat capacity and only predicts the vibrational contribution with a Debye 

temperature of 322K. 
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The resulting values for Latent  are shown in Fig. 6-12c along with the entropy 

change across the martensitic transformation as computed using Eqn. (2.2). A very large 

value for the conversion efficiency was computed for the solutionized Ni50Mn35In15 alloy 

of about 0.8. The base alloy and the others exhibited a conversion efficiency of about 0.6. 

Interestingly, the Ni50Mn35In15 alloy exhibits the largest entropy change under 1T of all 

the fabricated alloys. It is believed a peak exists in the entropy change around 14.9at. % 

In content as demonstrated with the bell-curve fit. According to Eqn. (2.2) the entropy 

change can be computed with the parameters in Fig. 6-12b. For reasons unknown, the 

maximum in the entropy change corresponds to neither the maximum M AM   nor the 

minimum /dT dH  as would be expected with Eqn. (2.2). Since M AM   influences the 

/dT dH  through the magnetic Zeeman energy term discussed in Eqn. (1.8) in Chapter 1, 

other contributions to the free energy seem to influence the /dT dH , thus making the 

Ni50Mn35In15 composition particularly well suited for MCE applications. Perhaps the 

small transition ranges in this composition reduce the A M

elG   term in Eqn. (1.8) and 

therefore, some optimum is achieved in the M AS  . Further studies need to be performed 

to identify the cause of the peak in M AS  .  

Finally, the MCE was measured in only the base alloy. This data was partially used 

in [79]. The very small /dT dH  slope depicted in 6-12b resulted in a small amount of 

magnetic field induced transformation when applying up to 7T at any temperature. A few 

magnetization responses are shown in Fig. 6-12d. Next, Eqn. (2.3) was employed with the 

data shown in Fig. 6-12d to generate the entropy change diagram in Fig. 6-13a.  As 



 

 

223 

 

expected, very small entropy changes were generated in this alloy due to the difficulty to 

transform the MMSMA under reasonable field levels.  

Even though the entropy change is somewhat small compared to the other alloys 

discussed in this work, the reversibility of this alloy is better than most due to its small 

thermal hysteresis. The thermal hysteresis of the base alloy, is shown to be only 4K in Fig. 

6-12a, and therefore, nearly repeatable entropy and adiabatic temperature changes can be 

achieved in this alloy with field cycling. The adiabatic temperature changes corresponding 

to the entorpy changes in Fig 6-13a were computed with Eqn. (1.34) and are plotted in 

Fig. 6-13b.  

The computed adiabatic tempeature changes are nearly 4K with the application of 

6T-7T. This is comparable to those attainable in the Ni48Mn38In14 alloy discussed earlier. 

Even though the reversibility is better in the small hysteresis Ni50Mn36In14 alloy, 

approximately the same magnitude temperature change can be achieved with field cycling.  
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Figure 6-12: Transition temperature range and thermal hysteresis (a), / fA
dT dH  and 

M AM   (b), M AS   and Latent  (c) as a function of indium content in Ni50Mn(50-X)InX. 

A few magnetization responses a different temperatures are plotted in (d) for the 

solutionized Ni50Mn36In14 alloy. M AS   was computed with Eqn. (2.2) and Latent  with 

Eqn. (4.26). 
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Figure 6-13: The entropy change versus temperature diagram computed with Eqn. (2.3) 

for the data shown in Fig. 6-12d (a), and the corresponding adiabatic temperature 

changes computed with Eqn. (1.34) for 0-7T (b). 

 

 

 

 6.4.3 Conclusions 

In conclusion, modifying the composition of Ni50Mn36In14 is an effective way of 

reducing thermal hysteresis and tuning the martensitic transformation to occur at a desired 

temperature. Replacing Mn with In in Ni50Mn36In14, the magnetization change across the 

martensitic transformation increases as a result of decreasing the e/a ratio and sM  

temperature. Around In14.9 at.%, a peak exists in the entropy change. This corresponds 

to a minimum in the thermal hysteresis, as well. More work must be performed to identify 

the MCE generated by the optimized Ni50Mn35In15 alloy. 

6.5 Ni45Co5Mn36.6In13.4 single crystals 

In Chapter 5, the most promising heat treatment condition in Ni45Co5Mn36.6In13.4 

was identified as SHT + 1073K 3hours. This heat treatment condition had resulted in 
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optimal materials parameters so that Latent  from Eqn. (4.26) was maximal. Here, the MCE 

is measured for the optimal heat treat condition. In addition, a shorter duration heat 

treatment is identified that produces similar transformation properties in 

Ni45Co5Mn36.6In13.4 single crystals. The MCE is then studied in the short duration ordering 

treatment and the two are compared.  

6.5.1 Results 

In Figure 6-14 the thermomagnetization curves under 1, 3, 5, and 7T are shown for 

the optimized Ni45Co5Mn36.6In13.4 alloy. In this particular heat treatment, the 

transformation temperatures are around room temperature. 

 

 

 

 
 

Figure 6-14: The 1T, 3T, 5T, and 7T, field cooling (FC)/field heating (FH) 

thermomagnetic responses of Ni45Co5Mn36.6In13.4 single crystals that had been heat 

treated at 1173K for 24hours followed by a secondary annealing treatment at 1073K for 

3hours and then water quenched.  
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As shown in Fig 6-14, the thermal hysteresis in this heat treated alloy remained fairly 

constant at 8K regardless of the applied field level. In addition, the magnetization change 

for nearly all of the applied field levels was between 80-90emu/g. The martensite phase 

was found to be extremely non-magnetic as shown by the very low magnetization levels 

below the 
fM  temperatures. 

According to the data in Chapter 5, the /dH dT  in this alloy was neither maximum 

nor minimum. The resulting entropy change was computed with the CC equation to be 

nearly 25J/kgK. This entropy change, and the corresponding adiabatic temperature change 

were computed in Chapter 5 to be between -6K and -8K. These temperature changes can 

be driven with cyclic fields up to 6T in a thermally insulated sample. To identify how the 

entropy change is influenced by temperature, entropy change versus temperature diagrams 

were generated using Eqn. (2.3) as shown in Fig. 6-15a. 

As shown in 6-15a, 4T is capable of generating about 20J/kgK at 300K. Since 

308K is approximately equal to the 
fM  temperature in Fig. 6-14, the repeatability is very 

good with field cycling. Applying 5, 6, and 7T in this alloy at 300K does not generate 

larger entropy changes because the material is magnetically saturated and the isothermal 

transformation completes with nearly 4T. Due to the negative CC slope, applying larger 

magnetic fields allows the entropy change to be achieved at lower temperatures as 

depicted in Fig. 6-15. 
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Figure 6-15: The entropy change versus temperature diagram (a) and the corresponding 

adiabatic temperature change (b) in Ni45Co5Mn36.6In13.4 single crystals heat treated at 

1173K for 24hours and secondary annealed at 1073K for 3hours followed by quenching 

in water. Entropy change values were computed with Eqn. (2.3) and adiabatic 

temperature changes with (Eqn. 1.34). 

 

 

 

In Fig. 6-15b, the adiabatic temperature changes are computed with Eqn. (1.34) 

from the data in 6-15a. The heat capacity data in Fig. 5-19b for the same sample was used 

to compute adT . From this optimized heat treatment, the NiCoMnIn will change about 

4K with the application of 2T. This is significant, as the same temperature change could 

be achieved in the Ni50Mn36In14 sample in the previous section by applying 7T. Since 
fM  

is nearly 308K, this temperature change should be repeatable with field cycling. Applying 

larger magnetic fields will further transform the MMSMA, thus larger adiabatic 

temperature changes will be generated. The data in Fig. 6-15b indicate that the MMSMA 

should change nearly 8K by applying up to 7T. 

While working with NiMnIn alloys, it was realized that very short heat treatments 

are capable of ordering the NiCoMnIn single crystals [46, 75]. This was also seen with the 
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TEM images in Chapter 5 Figure 5-23. Therefore, a SHT crystal was heat treated at 873K 

for only 30min and then quenched in water. Surprisingly, this heat treatment resulted in 

martensitic transformation characteristics almost identical to the SHT + 1073K 3hrs WQ 

case. The thermomagnetization responses of the SHT + 873K 30 min WQ case are shown 

in Fig. 6-16. 

 

 

 

 
 

Figure 6-16: The 0.05T, 1T, and 7T thermomagnetic responses of Ni45Co5Mn36.6In13.4 

single crystals that have been heat treated at 1173K for 24hours followed by a secondary 

heat treatment of 873K for 30mins. 

 

 

 

When compared to the response in 6-14, it can be seen that the SHT + 873K 30 

min WQ case exhibits slightly larger magnetization levels in A and M than the SHT + 

1073K 3hrs WQ case, but nearly the same magnetization change across the martensitic 

transition. At the same time, the /dT dH  is slightly larger. Here, / 4.3K/TdT dH   , but 

for the SHT + 1073K 3hrs WQ case, / 4.1K/TdT dH   . Thus, the M AS   is lower in 
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the SHT + 873K 30min case. To identify the temperature dependence of M AS   in the 

SHT + 873K 30min WQ alloy, Eqn. (2.3) was employed. The M AS   is shown in Fig. 6-

17a. 

 

 

 

 
 

Figure 6-17: The entropy change (a) and adiabatic temperature change (b) as a function 

of temperature for the Ni45Co5Mn36.6In13.4 single crystals solutionized at 1173K for 

24hours followed by a secondary heat treatment of 873K for 30mins. Entropy change 

value in (a) were computed with Eqn. (2.3) and adiabatic temperature change values in 

(b) were computed with Eqn. (1.34). 

 

 

 

The computed adiabatic temperature changes corresponding to the entropy 

changes in Fig. 6-17a are shown in 6-17b. Only about 2K can be generated at the 
fM  

temperature in this alloy (306K), which corresponds to half of what can be produced in 

the SHT + 1073K 3hrs heat treatment case. This is most likely a result of the smaller 

M AS    in the 873K 30min alloy. Due to the higher cyclic reversibility in the SHT + 

1073K 3hrs alloy, the maximum found in Latent  (Fig. 5-20) is apparently an accurate 

metric for comparing the influence of heat treatments on a single MMSMA composition. 
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6.5.2 Achieving 1K thermal hysteresis in Ni45Co5Mn36.6In13.4 single crystals 

To identify if 3 hour heat treatments were a sufficient duration to achieve 

thermodynamic equilibrium between B2 and L21 phases in NiCoMnIn, a one week 

secondary ordering heat treatment was performed at 873K. This temperature was nearly 

equal to the ordering temperature discussed in Chapter 5 (900K). Interestingly, the 

magnetothermal response in the 1 week secondary heat treatment was drastically different 

than the 3 hour (Figure A14) or 30minutes cases (Figure 6-16).  

In Fig. 6-18, the thermomagnetization response of a SHT + 873K 1 week WQ 

sample is shown. Surprisingly, the 1 week heat treatment resulted in a 1K-3K thermal 

hysteresis. This low level of hysteresis has never before been observed in 

Ni45Co5Mn36.6In13.4 single crystals, and suggests that the MMSMAs heat treated for only 

3 hours are in metastable equilibrium. The differences in their thermomagnetic responses 

are representative of their metastability.  

Dark and bright field TEM imaging was performed on this particular heat 

treatment using the methods detailed in Chapter 5. The bright and dark field images (Fig. 

6-19) suggests that the alloy is comprised of both B2 (dark) and L21 (bright) phases. 

However, the dark field image in 6-19b indicates that the alloy is mostly B2 ordered. Due 

to the differences between the thermal hystereses measured in SHT + 873K 1WK  and 

SHT + 873K 30min cases, B2 APBs, which were clearly uniform as depicted in Fig. 5-23 

and non-uniform in the 1W case of Fig. 6-19b, may contribute to structural dissipation 

across the transformation. More work, however, is needed to identify the cause of the 

small hysteresis measured from the 1WK heat treatment. In addition, the entropy change 
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versus temperature diagrams need to be generated to identify the cyclic reversibility of the 

FOPT. 

 

 

 

 
 

Figure 6-18: The 0.05T, 1T, and 7T thermomagnetic responses of Ni45Co5Mn36.6In13.4 

single crystals solution heat treated at 1173K for 24 hours followed by a secondary heat 

treatment of 873K for 1 week. 

 

 

 

 

 

Figure 6-19: Transmission electron microscopy bright field micrograph of room 

temperature martensite (a) and L21 morphology in room temperature austenite (b) in a 

Ni45Co5Mn36.6In13.4 single crystal heat treated for 1173K for 24hours followed by a 

secondary heat treatment at 873K for 1 week quenched in water. 
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6.5.3 Conclusions 

Two heat treatment cases of NiCoMnIn were investigated for the magnetocaloric 

effects. The three hour secondary heat treatments at 1073K were determined to be superior 

when compared to a 30min heat treatment at 873K due to the smaller 
f fA M  

temperature range and larger entropy change. With a brief critical analysis of the 

reversibility in these materials, Eqn. (4.26) was validated. In the optimum 1073K 3hrs 

case, it was determined that a 4K temperature change can be achieved at the 
fM  

temperature with cycling only 2T. Higher field levels would result in larger temperature 

changes up to 8K. A specially selected 1 week long heat treatment was employed at 873K 

to determine if the MMSMA was in thermodynamic equilibrium when only heated for 3 

hours. Only 3 hour treatments were identified as insufficient to stabilize the MMSMA 

response. Further investigations are required to fully understand and identify the 

mechanisms responsible for decreasing the thermal hysteresis to 1-3K from the typical 8K 

in all the other heat treatments. In addition, entropy change versus temperature diagrams 

are needed for this specially heat treated alloy to identify the influence of low hysteresis 

on the reversible MCE. 

6.6 Ni54Fe19Ga27 single crystals 

This final section contains data describing the anisotropy of the giant elastocaloric 

effect (ECE) in Ni54Fe19Ga27 single crystals. Directly measured adiabatic temperature 

changes are also presented and compared to those computed using the framework in 

Chapter 1. It is shown that when properly applied, the thermodynamic framework can 
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accurately predict the directly measured adiabatic temperature change from superelastic 

loading and that the most efficient loading direction for converting mechanical energy to 

thermal can be revealed with Eqn. (4.27). The giant elastocaloric effect offers an additional 

driving mechanism to transform the shape memory alloy, rather than a magnetic field, thus 

lending the possibility of implementing novel refrigeration cycles as discussed in Chapter 

7.  

6.6.1 Introduction 

The Ni54Fe19Ga27 (at%) alloy was fabricated to nominal composition using the 

Bridgman technique in an inert environment. In the as-grown state, this single crystal 

contained no   phase [81] precipitates verified by optimal microscopy and no annealing 

was performed to promote their growth. Electro-discharge machining (EDM) was used to 

cut compression specimens of 4mm   4mm   8mm nominal dimensions in three different 

crystallographic compression orientations along the 8mm length. To determine stress-free 

martensitic transformation temperatures, the compression samples were heated and cooled 

at 5K/min in a superconducting quantum interference device – vibrating sample 

magnetometer (SQUID-VSM) around the martensitic transition (MT) and their 

magnetization was measured under 0.05T. The average of the transformation temperatures 

are reported in Table 6-2. Heat capacity measurements were performed on a small disk 

sample (EDM cut) using a quantum design physical property measurement system 

(PPMS) and heat capacity measurements were compared with those reported in literature 

for our alloy composition. The specific heat capacity (data not shown) for the alloy in this 
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study has been found to be approximately 405 J/kgK at 
fA , which is also in reasonable 

agreement with previous work (425 J/kgK) for an alloy of the same composition [82].  

 

Table 6-2: The martensitic transformation temperatures described in Figure 1-3a for 

Ni54Fe19Ga27 (at.%). 

Austenite 

Crystal 

Direction 

fM  

(K) 

sM  

(K) 
sA  

(K) 

fA  

(K) 

[001] 

275 280 284 289 [123] 

[011] 

 

 

 

To measure the stress-strain (  ) curves used to compute entropy change with 

Eqn. (2.11), the isothermal superelastic (SE) response was measured in the [100], [123], 

and [011] austenite crystallographic compression directions. Uniaxial loading directions 

of the compression specimens were verified with x-ray diffraction by measuring peak 

locations on the sample compression face with Cu-Kα x-rays. Isothermal SE loading was 

performed from 253K to 353K in increasing increments of about 3K and the stress-strain 

response was recorded. Since each sample was initially at room temperature before testing 

and then cooled to 253K (below 
fM ) to begin the heating sequence, a mechanical load of 

3000N was first applied to each sample upon reaching 253K to orient the self-modulated 

martensite that formed upon cooling to its stress-preferred state. The self-accommodation 

process was depicted in Fig. 1-1. This martensitic reorientation does not create a large 

entropy (or temperature) change because no latent heat is generated by orienting 

martensite. This step of the test sequence was performed to keep consistency with the 
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analysis described in Chapter 2. Since only the latent heat of the stress-induced 

transformation was to be quantified, and cycling stress would not generate self-

accommodated martensite, the ECE resulting from martensitic reorientation was not 

considered. 

 After the initial detwinning of self-accommodated martensite, a constant 5-10 

MPa preload was left on the sample during heating to the next temperature step, thus 

allowing the compression rods (see Fig. 2-9) to conduct heat to the sample through contact 

on the compression faces. Once the sample reached the target temperature on heating, the 

load was again ranged from 5-10MPa to 200MPa and back to 5-10MPa. This heating 

protocol is the equivalent experimental procedure followed by some magnetocaloric 

measurements [83].  

The isothermal compression tests were performed using a screw-driven material 

testing system (MTS) with quasi-static displacement control condition (~equating to 

nearly 0.06 %ε/sec on the nominal sample dimensions) to prevent the sample from 

changing temperature as a result of the latent heat of the superelastic transformation. 

Despite the slow strain rate, temperature fluctuations of approximately 0.4K were 

measured during isothermal loading and unloading which were attributed to K-type 

thermocouple resolution and sensitivity. It is important that the temperature remained 

constant during tests as the superelastic    curves were used to compute isothermal 

entropy change. To measure the adiabatic temperature change presented in the final 

section, the sample was loaded at 0.01mm/s (very quickly) so that the latent heat of 
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transformation could be monitored with the attached thermocouple prior to losing the heat 

to the pushrods, or the pushrods giving up heat to the sample. 

Sample strain was measured using a MTS high temperature extensometer (HTEX) 

with ceramic tips held in place with a mechanical spring against the compression rods near 

the sample. Specimen surface temperature was actively measured every one second using 

a thermocouple fixed to the specimen’s surface. The specimen and compression rods were 

insulated using thermal insulation (pyrogel) to prevent heat leaks to the environment. The 

isothermal superelastic    responses were measured with the same acquisition rate 

(1Hz) such that temperature, stress, and strain could be compared at the same instant in 

time. For adiabatic measurements the acquisition rate was increased to 50Hz. 

6.6.2 Results 

Figure 6-20 shows the superelastic responses (SE) in the [123], [001], and [011] 

austenite directions at 288K, i.e. nearly 
fA . Clearly, the [001] single crystal compression 

direction exhibits a single stage transition to approximately 5.5% transformation strain 

under stresses less than 50MPa. The [123] direction also exhibits a single stage 

transformation up to 4% strain. The [011] direction, however, is capable of exhibiting a 

two stage stress-induced martensitic transformation from austenite, A, to martensite, IM

, up to 3% strain and then from IM  to a second martensite, IIM , up to 5.5% strain. For 

the [011] direction, the label “A” indicates that the sample is first compressed in the 

austenite phase at 
fA  and “M” denotes martensite, IIM  in the figure. Mechanical loading 

drives the A to M transformation as discussed in Chapter 1. 
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At a critical stress level, an A to 
IM  transformation is initiated. Further loading 

drives the A to 
IM  transformation to completion at , Iiso M

comp . Loading beyond , Iiso M

comp  

produces elastic deformation in IM , and perhaps reorientation, until a second critical 

stress is reached around 200MPa. At this stress level, the  I IIM M  transformation 

occurs [32]. Finally, the elastic response of IIM  is measured around 5.5% applied strain 

above , IIiso M

comp . Mechanically unloading results in a completely reversible two stage 

transformation with mechanical hysteresis from both transitions, namely IM

hys  and 

IIM

hys  as depicted in the figure.  In the [001] and [123] compression directions, however, 

only a single stage reverse transformation is measured when loaded to 200MPa as shown 

in the inset. 

Isothermal compression tests were performed at different temperatures and the 

critical stresses for the M to A transformation (those that generate cooling) were extracted 

and plotted with temperature. The critical stress ( sA ) vs. temperature phase diagram is 

shown in Figure 6-20b. Here, only the sA  is plotted because the M to A transformation 

in NiFeGa is endothermic and generates cooling with mechanical unloading. As shown in 

Fig. 6-20b, the [123] loading direction exhibits the steepest /sA
d dT  slope of 4.6MPa/K, 

followed by the [011] (for the IM A  transformation) and the [001] of 4.4MPa/K and 

3.0MPa/K, respectively. The CC slope of the II IM M  transformation observed in the 

[011] direction is also plotted in Fig. 6-20b. Interestingly, this slope is very small and 

negative. 
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Figure 6-20: The superelastic responses of [011], [001], and [123] austenite crystal 

directions from compression at 288T K  (a) and the sA  versus temperature phase 

diagram (b) for each loading direction. 

 

 

 

According to Eqn. (2.5), the transformation strain can be multiplied by the CC 

slope to identify the transformation entropy change generated from superelastic loading. 

In Eqn. (2.5) the mass density,  , is needed and it was therefore approximated using a 

mass scale and compression sample volume. Using the data in Fig. 6-20, critical materials 

parameters for Eqn. (4.27) were extracted and tabulated in Table 6-3. 
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Table 6-3: The critical transformation characteristics in Ni54Fe19Ga27 single crystals for 

the [001], [123], and [011] austenite crystal directions while loaded in compression. 

Stress hysteresis, 
f

hys T A



 , transformation strain, 

f
tr T A



, and austenite moduli of 

elasticity, AE , were extracted from the data in Fig. 6-20a. 

Crystal 

Direction 

  

(kg/m3) 

f
tr T A



 

(%) 

/sA
d dT  

(MPa/K) 

M AS   

(J/kgK) 

f
hys T A




  

(MPa) 

iso

comp  

(MPa) 
AE  

(GPa) 

[001] 

8457 

4.9 3.02 17.4 16 29 7.2 

[123] 3.4 4.63 18.5 22 50 13.5 

[011] 
2.8I 4.43I 14.6 32I 

145II 

56.3I 

258II 
9.4 

1.8II -0.54II -0.97 
I: First stage martensitic transition, II: Second stage martensitic transition. 

 

In Table 6-3, mass density  , measured transformation strain 
f

tr T A



, the CC 

slope /sA
d dT , computed M AS  , measured stress hysteresis 

f
hys T A




 , and the 

austenite moduli of elasticity AE , are tabulated for each crystal loading direction at T=
fA

. 

In each loading direction, the M AS   was computed to be nearly 18J/kgK with 

the exception of the [011]. Due to the negative CC slope of the I IIM M  transformation, 

the entropy change is opposite in sign to that generated by the IA M . Thus, when 

applying the giant ECE in NiFeGa, the I IIM M  transformation in the [011] direction 

should be avoided to generate the largest effect. In Table 6-3, the stress hysteresis at T=

fA , 
f

hys T A



 , is shown to be substantially different in each loading direction indicating 

that the mechanical-to-thermal energy conversion efficiency for each direction will also 
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different. Finally, it is interesting to note that the austenite moduli of elasticity are directly 

proportional to the magnitude of the /sA
d dT , as predicted in Chapter 1 (Section 1.3.2). 

Next, isothermal compression tests were performed up to 200MPa in each 

austenite loading direction. This maximal stress level was selected to prevent the 

I IIM M  transition in [011] and is experimentally equivalent to arbitrarily selecting 7T 

for the peak field in MCE measurements. In Fig. 6-21a, isothermal stress-strain data are 

shown for the M to A (reverse) transformation in the [001] loading direction. These curves 

were used to compute an entropy change vs. temperature diagrams with Eqn. (2.11) and 

are plotted in Fig. 6-21b for different degrees of applied strain. Here, is it important to 

note that the entropy change curves in Fig. 6-21b need be expressed in terms of applied 

strain, instead of applied stress, due to the inability to integrate the   with respect to  , 

i.e. d  . This is discussed in Chapter 2 . The    response is not a valid function to 

integrate as shown by the decrease in stress near 1% strain of the    curves in Fig. 6-

21a.  In other words, at T=289K, the    response of the [001] direction exhibits the 

same stress value,  , for two or more   values. This results in the inability to integrate 

the    curve, and instead, a different thermodynamic formula was derived in Chapter 

2 to perform the analysis.  

In some cases, as shown for the [123] loading direction in Fig. 6-22a, the  

response can be integrated. This is because no drop in stress is measured during 

mechanical testing and only one stress value corresponds to one strain value. Nevertheless, 

Eqn. (2.11) derived from Helmholtz free energy can be applied to either case, and 
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therefore, is more mathematically robust than the other expression derived from the Gibbs 

free energy in Eqn. (2.7). Here, only Eqn. (2.11) is implemented.  

In Fig. 6-21b, 5% applied strain in the [001] direction corresponds to the full 

18J/kgK predicted in Table 6-3. Similarly, in the [123] direction, about 18J/kgK is 

generated by loading up to 4% applied strain.  The shape of the entropy change vs. 

temperature diagram in Fig. 6-22b indicates that only the peak entropy change can be 

generated at temperatures below 305K. This, of course, is only true up to 200MPa. The 

entropy change data exhibits this particular shape as a byproduct of only loading the 

MMSMA up to 200MPa. If a higher mechanical load was applied, superelasticity would 

be achieved at higher temperatures and, therefore, the entropy change of the 

transformation can be generated at higher temperatures. In fact, superelastic loading can 

be achieved at temperatures up to that which plastic deformation occurs, or the coexistence 

lines on a phase diagram intersect [32]. 

Finally, a similar magnitude for the entropy change between A and IM  was 

measured in the [011] austenite compression direction. The reverse IM A     

curves are shown at various temperatures. Clearly, these    curves could not have been 

integrated as d  , as mentioned before, and therefore Eqn. (2.11) was employed 

instead. Again, the entropy change diagram that results is a function of applied strain in 

Fig. 6-23b. If the second II IM M  transition was driven by larger mechanical loads in 

the [011] direction, the entropy change would be decreased as a result of the summative 
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nature of the S  and the negative CC slope of the 
II IM M  transition depicted in 6-

20b. 

 

 

 

  
 

Figure 6-21: Mechanical unloading across the M to A transition in Ni54Fe19Ga27 single 

crystals along the [001] austenite crystal direction (a) and the entropy change versus 

temperature diagram computed with Eqn. (2.11). 

 

 

 

 

 
 

Figure 6-22: Mechanical unloading across the M to A transition in Ni54Fe19Ga27 single 

crystals along the [123] austenite crystal direction (a) and the entropy change versus 

temperature diagram computed with Eqn. (2.11). 

 

200

150

100

50

0

S
tr

es
s 

(M
P

a)

6543210

Compressive Strain (%)

Ni54Fe19Ga27 [001] Reverse Transformation

253K289K

307K

353K

325K

25

20

15

10

5

0


S
 (

J/
k

g
K

)

340330320310300290

Temperature (K)

NiFeGa [100] Reverse Transformation











200

150

100

50

0

S
tr

es
s 

(M
P

a)

43210

Compressive Strain (%)

Ni54Fe19Ga27 [123] Reverse Transformation

317K

309K

298K

288K

25

20

15

10

5

0


S

 (
J/

k
g
K

)

315310305300295290285

Temperature (K)

NiFeGa [123] Reverse Transformation









(a) (b) 

(a) (b) 



 

 

244 

 

 

Figure 6-23: Mechanical unloading across the M to A transition in Ni54Fe19Ga27 single 

crystals along the [011] austenite crystal direction (a) and the entropy change versus 

temperature diagram computed with Eqn. (2.11). 

 

 

 

Next, to identify the mechanical to thermal energy conversion efficiency of the 

stress-induced transformation for each loading direction, the    curves were integrated 

to quantify the magnitude of the mechanical dissipation. The mechanical dissipation, irrS

, was computed in units of J/kg as  

                         

0

0

1
.A M M A

irrS d d
T





   


 
 

  
 
                                   (6.1) 

 at T=
fA . Eqn. (6.1) used the    data for each loading direction in Fig. 6-20. The 

applied strain,  , was used to approximate the percent of the martensitic transformation 

as % transformation / total  . irrS  was then plotted as a function of percent 

transformation ( % ) as shown in Fig. 6-24. 
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6-3, is smaller in the [001] direction. The transformation strains seem to be partly 

responsible for the magnitudes of the dissipation. When mechanically loading only to 50% 

transformation, the [001] direction exhibits smaller hysteresis loss than the [123] direction. 

In the [011] direction, the 
IA M  and the 

I IIM M  transitions were considered to 

define a complete transformation. As expected, the [011] direction exhibits the largest 

hysteresis loss across the entire transformation interval corresponding to the large 

magnitude in 
hys  in Table 6-3. 

 

 

 

 

 
 

Figure 6-24: Dissipation computed from Eqn. (6.1) as a function of percent 

transformation. The percent transformation was approximated assuming / total  . 
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Eqn. (4.3) accounts for the work performed by an entire cycle (applying and removing the 

mechanical force). 

To determine  , 
revW  was computed as described in Eqn. (4.1). 

cS  was used 

from the plots in Figs. 6-21, 6-22, and 6-23 as the largest entropy change at the coolest 

temperatures. The T  in Eqn. (4.1) was assumed to equal 
adT  per the discussion in 

Chapter 4 and was computed to be 5.5K with the data in Table 6-3 and Eqn. (1.39). 
realW  

in Eqn. (4.2) was computed using irrS  in Fig. 6.24 and the 
revW . In Eqn. (4.2) and the 

lQ  

and 
fQ  contributions were neglected. Employing Eqns. (4.2) and (4.3), with the data 

shown in Figures 6-21 through 6-24, the conversion efficiency was computed as a function 

of percent transformation and is plotted in Fig. 6-25.  

 

 

 

 
 

Figure 6-25: Transformation efficiency   computed with Eqn. (4.3) and 
Latent  from 

Eqn. (4.27) for Ni54Fe19Ga27 single crystals at 289K in [001], [123], and [011] austenite 

crystal directions as a function of percent transformation.   in Eqn. (4.3) was developed 

in [12]. 
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In Fig. 6-25, the [123] compression direction exhibits a higher energy conversion 

efficiency for a complete transformation than the other compression directions. Up to 40% 

transformation the [001] single crystal exhibits a slightly better and nearly equal 

mechanical-to-thermal energy conversion efficiency than the [123] direction. This is 

attributed to the hysteresis loss in Fig. 6-25. The [011] exhibits a linear behavior and 

performs poorly, overall. A 45% efficiency is predicted for the [123] direction and a 35% 

efficiency for the [001] direction.  

The magnitude of   is interesting to compare to Latent  because   accounts for the 

energy applied to the shape memory alloy over a complete cycle, whereas Latent  only 

accounts for energy applied and not that which is recovered on releasing the load as 

mentioned in Chapter 2. As a result of the differences between the two computational 

methods, Latent  is larger in all the cases and is shown by transparent data points in Fig. 6-

25. To compute Latent , the data in Table 6-3 were applied in Eqn. (4.27). 

Although Latent  over predicts the energy conversion ratio, the relative comparison 

between crystal directions is still accurate. Latent  was defined assuming that the complete 

transformation occurs, and therefore is only plotted for 100% transformation. The [123] 

direction exhibits the best conversion efficiency. The over prediction is the result of how 

the energy input is computed in the denominator of Eqn. (4.3). Nevertheless, the Latent  in 

Eqn. (4.27) can be used to accurately compare the relative energy conversion performance 

between single crystal shape memory alloys. The [123] direction is most efficient in 

converting mechanical energy to thermal. In the next section, the directly measured giant 
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ECEs in [123] and [001] single crystal loading directions are discussed and results are 

presented. These two directions were selected because they exhibited the highest energy 

conversion ratio per the above discussion. 

 6.6.3 Direct giant ECE measurement 

The [123] and [001] austenite loading directions were mechanically loaded and 

unloaded at 0.01mm/s up to 200MPa at room temperature and their temperatures were 

recorded with time. The stress-strain responses are shown in Fig. 6-26a for six cycles. In 

Fig. 6-26a the [123] loading direction exhibited what looked to be substantial 

transformation hardening as a result of the adiabatic conditions. 

 

 

 

  
 

Figure 6-26: The adiabatic compressive stress-strain responses of Ni54Fe19Ga27 [123] and 

[001] austenite crystal directions at 297K (a) and the measured adiabatic temperature 

changes (b) from the loading in (a). 
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The transformation hardening in the [123] single crystal is a result of the sample 

changing temperature across the stress-induced transformation and the increase in critical 

stresses as described by the CC slope in Table 6-3. On the other hand, the [001] direction 

may have exhibited smaller transformation hardening due to its smaller CC slope. 

Interestingly, the [001] single crystal exhibited over-recovery after its first cycle, 

indicating that the sample may not have been completely in the austenite phase at room 

temperature. In Figure 6-26b, the adiabatic temperature change is plotted for the 

mechanical cycling in Fig. 6-26a. 

As shown in Fig. 6-26b, the mechanical loading, or A to M transition, generated 

about 2.5K temperature increase in both of the single crystals. This is a result of the 

exothermic forward martensitic transformation. Mechanical unloading was performed 

immediately after the sample was loaded to martensite, thus not allowing the sample to 

cool back to RT. On unloading, the sample cooled by approximately 5K in both single 

crystals. This agreed well with the predicted adT  of 5.5K computed with Eqn. (1.39). 

6.6.4 Conclusions 

Ni54Fe19Ga27 single crystals were studied for their giant elastocaloric effects. The 

[001], [123], and [011] austenite crystal directions were found to generate an entropy 

change of nearly 18J/kgK around their stress-induced transformations and an adiabatic 

temperature change of 5.5K. Each loading direction exhibited a different magnitude of 

stress hysteresis, and therefore the mechanical to thermal energy conversion of each 

sample was different. The energy conversion efficiency,  , was computed using the 
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methods in [12], as well as with Latent  developed in Eqn. (4.27). It was found that these 

parameters, although different in magnitude, predict that the ECE in the [123] austenite 

crystal direction outperforms the other directions tested in this study. 

6.7 General conclusions 

As demonstrated by the case studies in this chapter, the giant magnetocaloric and 

elastocaloric effects in MMSMAs can be simply quantified by the latent heat of the 

martensitic transformation. The transformation is then driven from M to A by a magnetic 

field, or A to M by a mechanical load. It was found that the Latent  parameters defined by 

Eqns. (4.26) and (4.27) were capable of predicting the relative calorific performance 

between shape memory alloys of the same composition. In addition, different heat 

treatments and crystal loading directions were studied to quantify differences in the caloric 

effects. 

The next chapter demonstrates that a combination of both driving forces, namely 

mechanical stress and applied magnetic field, can result in what is known as the stress-

assisted magnetocaloric effect (SAMCE). It will be shown that when both driving forces 

are employed, the required magnitude of each is substantially reduced. As a result, the 

caloric effects generated by the martensitic transformation can be realized in everyday 

applications where magnetic fields below 2T and stresses below 60MPa can be employed 

to generate efficient cooling systems with magnetic shape memory alloy solid-state 

refrigerants. 
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CHAPTER VII                                                                                                                                                                                                                                                                

THE META-MAGNETIC RESPONSE OF MMSMA SINGLE CRYSTALS UNDER 

MECHANICAL STRESS AND MAGNETIC FIELD 

7.1 Introduction 

In the following chapter, the influence of high magnetic fields on the superelastic 

response in Ni45Co5Mn36.6In13.4 single crystals is identified. The custom MaTMeCh device 

was employed, as described in Chapter 3, with the aim of isolating the temperature-field-

stress space in which the calorific effects are most pronounced. The influence of magnetic 

field on the austenite modulus of elasticity, energy dissipation across the transformation, 

and most importantly, the entropy change from the stress-induced martensitic 

transformation is quantified. The temperature and magnetic field dependence of each term 

in Eqn. (1.8) is investigated and their influence on the superelastic response is discussed.  

Finally, a complete stress-assisted MFIT is demonstrated in Ni45Co5Mn36.6In13.4 

single crystals. With the help of mechanical stress, magnetic fields below 1.5T prove to 

be sufficient to induce a complete martensitic transition. The complete stress-assisted 

MFIT (SAMFIT) is demonstrated in a region of the temperature-field-stress space where 

the entropy change is largest. This is an important finding, in that it opens the possibility 

of achieving larger caloric effects than those reported in more-expensive rare-earth MCE 

refrigerants. Additionally, in NiCoMnIn, these caloric effects can be tuned (see Chapter 

5) to occur at a desired temperature.  



 

 

252 

 

7.2 The influence of magnetic field on superelasticity in Ni45Co5Mn36.6In13.4 single 

crystals 

Figure 7-1 shows the superelastic response of a solution heat treated (SHT) 

NiCoMnIn [001] oriented single crystal in uniaxial compression. The 
fA  temperature of 

this particular sample was identified with SQUID magnetometry as -12°C, and therefore, 

the superelastic tests were performed at this temperature under different magnetic field 

levels. Each test exhibits full recovery. As shown in the figure, the sample was originally 

in the austenite phase and compression first resulted in the elastic response of austenite. 

At a critical stress, the stress-induced A to M transformation occurred. Each sample was 

only strained to 6.5% to protect its microstructural integrity. In doing so, the elastic 

response of the stress-induced martensite was not observed. On removing the applied 

stress, however, the elastic modulus could be identified. The reverse martensitic 

transformation took place and no significant irrecoverable strain was measured in any of 

the cases above 0T. 

Under higher magnetic fields, the critical stress to transform the MMSMA from A 

to M increased. This is expected per the discussion in Chapter 1. With larger applied 

magnetic fields, the thermodynamic equilibrium temperature, 0T , exhibited a decrease 

thus requiring a higher mechanical load to trigger the transition, i.e. a larger chemical 

energy barrier had to be overcome by mechanical force. As shown in Fig. 7-1, the increase 

in critical stress is not linear below field levels of approximately 3T. Additionally, it is 

interesting to note that the larger applied field levels do not necessarily correspond to an 

increase or decrease in stress hysteresis nor an increase or decrease in transformation 
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hardening. Under these loading conditions, this particular sample exhibited a mechanically 

stable response under all the applied magnetic field levels. 

 

 

 

 
 

Figure 7-1: Superelastic responses of solutionized Ni45Co5Mn36.6In13.4 single crystals at -

12°C under 0T, 1T, 2T, 3T, 5T, 7T, and 9T. 

 

 

 

On the other hand, a similar compression sample was tested after being subject to 

a SHT + 600°C 30min heat treatment and the results are depicted in Figure 7-2. As shown 

in Fig. 7-2, the critical stresses increase with increasing field level, as expected. In contrast 

to the SHT case, this sample exhibited an increase in stress hysteresis with field. It is 

important to note that the SHT + 600°C 30min sample also exhibits significant 

transformation hardening compared to the SHT sample in Fig. 7-1. It is believed this is a 

result of the production of multiple or single martensite variants upon triggering the 

transformation with stress, however, more work must be performed to identify the 

influence of microstructural features on the mechanical behavior in these samples. Perhaps 

mechanical training influences martensite morphology. 
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Figure 7-2: Superelastic responses of solutionized + 600°C 30min Ni45Co5Mn36.6In13.4 

single crystals at 18°C under 0T, 1T, 2T, 3T, 5T, 7T, and 9T. 

 

 

 

The critical stresses for the start of the A to M transformation, sM , were extracted 

from the data in Figures 7-1, 7-2, and the stress-strain curves in the Appendix. Phase 

diagrams were then plotted in Figure 7-3a and b for the SHT and SHT + 600°C 30min 

samples, respectively. As shown in Figure 7-3a, the slope of the critical stress ( sM )-
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decrease in the CC slopes. The decrease was neglected in the calculation, above, but will 

be discussed more later. 

 

 

 

  
 

Figure 7-3: The sM  versus temperature phase diagram for SHT(a) and SHT+600°C 

30min(b) Ni45Co5Mn36.6In13.4 single crystal compression samples in the [001] austenite 

direction. 

 

 

  

Similarly, the decrease in slope with increasing field is observed in the SHT + 

600°C 30min sample as shown in Fig. 7-3b. In this particular sample, all of the slopes of 

the sM  vs. temperature diagram are larger and show no apparent non-linearity as is 

observed for the SHT case at low temperatures. It is interesting to note that the CC diagram 

in Fig. 7-3b has been constructed for temperatures above -40°C, whereas that in Fig. 7-3a 

has been plotted down to -90°C. Again, assuming that the transformation strain is 

approximately 6.24% with a mass density of 8000kg/m3 for the SHT + 600°C30min 

sample, the stress-induced entropy changes computed with Eqn. (2.5) and the slopes in 

Fig. 7-3b equate to 24.6J/kgK and 11.4J/kgK for 0T and 9T, respectively. Clearly, smaller 
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applied fields and higher transformation temperatures will result in larger entropy changes 

in these materials. 

Using the superelastic data in Figs. 7-1 and 7-2, the magnetostress was computed 

for each heat treatment condition as shown in Figs. 7-4a and b. 

 

 

 

  
 

Figure 7-4: The magnetostress for SHT (a) and SHT+600°C 30min (b) 

Ni45Co5Mn36.6In13.4 single crystals along the austenite [001] direction. 

 

 

 

The magnetostress was computed using the stress level at 4% applied strain under 

different field levels as described in [18]. Here, the SHT sample at -12°C exhibited a 

magnetostress of 13.5MPa/T and the SHT + 600°C 30min sample at 18°C, 12.8MPa/T. 

The difference between the magnetostress capabilities can be attributed to differences in 

the CC slopes in Fig. 7-3. More work is needed to identify the influence the temperature-

field dependence of magnetostress. 
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In Eqn. (1.8), the elastic energy stored across the stress-induced transformation 

influences the shape memory behavior. As such, the austenite moduli of elasticity, AE , 

were extracted from each superelastic test in the Appendix, Fig. 7-1, and 7-2, in an attempt 

to determine its field-temperature dependence. The AE  is plotted in Figs. 7-5a and b for 

the SHT and SHT + 600°C 30min cases, respectively, as a function of H

sT M . Here, T 

was the superelastic test temperature and H

sM  is the 
sM  temperature under field, H, which 

was identified by a linear extrapolation of the phase diagram lines in Fig. 7-3 to a critical 

stress of 0. 

 

Although no clear trend is observed in either of the graphs for the field dependence 

on the AE , a temperature dependence can be clearly seen. Temperatures much higher than 

H

sM  are accompanied with elastic hardening of austenite. To make this clear, all of the 

data points from Fig. 7-5 were plotted on a single graph as shown in Fig. 7-6. 
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Figure 7-5: The elastic moduli if austenite in SHT (a) and SHT + 600°C 30min (b) 

Ni45Co5Mn36.6In13.4 single crystals in the [001] austenite direction as a function of 

temperature away from H

sM . 

 

 

  

 

 

Figure 7-6: The elastic moduli if austenite in Ni45Co5Mn36.6In13.4 single crystals in the 

[001] austenite direction as a function of temperature away from H

sM . 
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As shown in Fig. 7-6, approaching the H

sM  temperature is accompanied by elastic 

softening in austenite to nearly 4GPa or less. At temperatures 40K above the H

sM  

temperatures, austenite exhibits an AE  of nearly 8-10GPa. This has been well documented 

[84], and has been related to the softening of phonons at the point of the transformation, 

mentioned earlier. More superelastic tests need to be performed to identify the influence 

of the AE  on the martensitic transformation characteristics. 

Finally, the field-temperature dependence of mechanical dissipation was 

investigated. The areas of the stress-strain hysteresis loops (mechanical dissipation) were 

extracted from the data in the Appendix using a MATLAB script and IGOR integration 

software. The dissipation was computed using an expression similar to Eqn. (6.1). The 

mechanical dissipation was then plotted as a function of applied strain level and that 

corresponding to 6% applied strain was extracted for each superelastic test. 

In Figure 7-7a and b, the dissipation at 6% applied strain is plotted for each field 

level and temperature in the SHT and SHT + 600°C 30min samples, respectively.  
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Figure 7-7: The mechanical dissipation from 6% applied strain in SHT (a) and SHT + 

600°C 30min (b) Ni45Co5Mn36.6In13.4 single crystals compressed in the [001] austenite 

direction. 

 

 

 

Interestingly, the SHT case (7-7a) exhibited small dissipation in a virgin sample. 

Subsequent training from repeated mechanical cycling increased the dissipation levels. In 

the SHT + 600°C 30min case, the sample exhibited larger dissipation losses over a 

majority of the test temperatures and field levels. From Fig. 7-7b, it can be seen that 

perhaps increasing the field levels corresponds to a decrease in dissipation, however, more 

data points are needed to corroborate the current data set. Additional tests will be 

performed to identify the influence of mechanical training on the dissipation resulting 

from superelastic loading. 
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correspond to larger stress hysteresis widths and greater degrees of transformation 

hardening. The stress hysteresis width at 4% applied strain was plotted as a function of 

compression strain in Fig. 7-8c.  

At 2% applied strain the sample exhibits a stress hysteresis of only 20MPa, similar 

to the SHT case plotted in in Fig. 7-1. Upon reaching higher levels of strain up to 7%, the 

stress hysteresis doubles. Additionally, mechanical unloading at room temperature from 

higher applied strain levels was accompanied with irrecoverable strain, thus indicating the 

generation of plastic deformation during the stress-induced martensitic transformation. 

Due to the clear spread in the stress level at the finish of the M to A transition, fA
 , that 

results from different applied strain levels, the superelastic data from these tests could not 

yield reliable results to construct the fA
  vs. temperature phase diagrams. More 

superelastic data are needed on mechanically trained and untrained specimens to fully 

understand the field-temperature dependence of mechanical dissipation and stability of the 

superelastic response. 
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Figure 7-8: The stress-strain (a), magnetization-stress (b), and mechanical hysteresis 

versus compressive strain (c) responses of a SHT + 600°C 30min Ni45Co5Mn36.6In13.4 

single crystal at room temperature under 0.01T. 

 

 

 

In Chapter 1, superelasticity was explained using Eqn. (1.8) and Figure 1-4a. Here, 

we attempt to determine the cause of the non-linearity and field dependence in the CC 

slope shown in Fig. 7-3. For the discussion, the temperature-magnetic field dependence of 
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term in Eqn. (1.8) is simply the difference between AG  and MG  at temperatures away 

from 
0T . The second term can be defined as [85]  

,mech cr trE                                                       (7.1) 

where 
cr  is the critical stress at the onset of the A to M transformation and 

tr  is the 

transformation strain. The third term is the elastic energy stored across the martensite 

transition and can be approximated as [62] 

2

0

1

2

A M

el trG V                                                (7.2) 

where 0V  is the molar volume and   is the shear modulus. The shear modulus is directly 

proportional to the modulus of elasticity, AE .  

The fourth term in Eqn. (1.8) is the mechanical dissipation for each compression 

sample, discussed here, and was plotted Figs. 7-7a and b. Finally, the fifth term is the 

difference in magnetic Zeeman energy, and is defined as 

,A M A M

magG M H                                              (7.3) 

where A MM   is the difference in magnetization between A and M phases, and H  is the 

applied field. Eqn. (7.3) is the magnetic analog to Eqn. (7.1). Term 6 in Eqn. (1.8) is 

neglected as it is expected to be small in the cubic austenite phase. 

Substituting Eqns. (7.1) – (7.3) into Eqn. (1.8) at 0T T  results in 0chG   and 

2

0

1
0 ,

2

A M

cr tr tr irrV E M H                               (7.4) 

where the critical stress, cr , can be explicitly solved as 
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2

0

1

2 .

A M

tr irr

cr

tr

V E M H




  

                               (7.5) 

Differentiating Eqn. (7.5) with respect to temperature and assuming each term exhibits a 

temperature dependence leads to 

2

0

1

2 ,

A M

tr irr
cr

tr

V E M H
d d

dT dT






 
     

  
 
 

                        (7.6) 

which then simplifies to 

   0
.

2

A M

trcr irr

tr tr

d M Hd Vd d E

dT dT dT dT



 

 
                         (7.7) 

Equation (7.7) demonstrates that the mechanical Clausius-Clapeyron slopes, in 

Fig. 7-3, are dependent on the temperature derivatives of the shear modulus and 

transformation strain, dissipation across the transition, and the magnetic Zeeman energy. 

Assuming the A MM   and tr  are independent of temperature well below the magnetic 

Curie point of austenite, Eqn. (7.7) reduces to  

 0
.

2

A M

cr irr
tr

tr tr

d Vd d E M dH

dT dT dT dT




 

 
                          (7.8) 

In the following sections, the temperature and field dependence of each term is 

investigated. 

Term 1; the influence of the austenite elastic modulus 

In Fig. 7-6, it was demonstrated that when temperatures were elevated beyond 

H

sM , the AE  increased. As such, the temperature derivative of the elastic energy term in 
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Eqn. (7.8) is positive. It is believed that at lower temperatures the AE  is smaller, and 

therefore this term is reduced. This ultimately reduces the crd

dT


. Nevertheless, more data 

points with less experimental scatter are needed to identify the influence of magnetic field, 

rather than temperature, on the first term of Eqn. (7.8). 

Term 2; the influence of dissipation 

Similarly, the temperature dependence of the mechanical dissipation increases 

with increasing temperature as shown in Figs. 7-7a and b. In Fig. 7-7a, mechanical training 

was observed to influence the stability of the superelastic response, and therefore, more 

data is needed to accurately define the magnetic field dependence of dissipation on the 

crd

dT


 slope. At low temperatures, however, the dissipation is observed to decrease in Fig. 

7-7b. This would also decrease the crd

dT


 slope as shown in 7.3. 

Term 3; the influence of the entropy change 

Per Eqn. (2.2), the last term of Eqn. (7.8) is the entropy change across the 

martensitic transformation, as quantified for the magnetocaloric effect, divided by the 

transformation strain. As discussed in Chapter 1, the entropy change of the martensitic 

transformation can be extracted from magnetic data by multiplying crdH

dT
 to A MM  . To 

probe at the decrease in crd

dT


, the magnetic phase diagrams were constructed for both 

heat treatment cases in Figure 7-3 using thermomagnetization data obtained with SQUID 

magnetometry (see Chapter 2). These phase diagrams are depicted in Fig. 7-9a. 
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Figure 7-9: The magnetic phase diagram for SHT and SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 single crystals (a) and theoretical total entropy versus temperature 

curves for austenite and martensite phases from 0 to 400K (b). 

 

 

 

As shown in Fig. 7-9a, the SHT sample exhibits a strong non-linearity under high 

fields and low temperatures. Additionally, the thermal hysteresis, defined here as 
f sA M

, increases at lower temperatures and high fields. The SQUID magnetometer only 

permitted measurements up to 7T. In the SHT + 873K 30min case, however, this non-

linearity is smaller and the thermal hysteresis remains nearly constant under any field 

level. The data in Fig. 7-9a suggest that under higher field levels, the transition takes place 

at lower temperatures, as expected. At low temperatures, the crdH

dT
 decreases. Per Eqn. 

(7.8), the decrease in crdH

dT
 results in a decrease in crd

dT


. 

To explain why both crdH

dT
 and crd

dT


 decrease, Eqn. (2.2) and Fig. 7-9b need to 

be considered. In Fig. 7-9b, the approximate total entropy curves for martensite and 
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austenite phases are plotted as predicted with the Debye model. The measured total 

entropy on heating across the martensitic transition, in a SHT sample, is plotted between 

the two Debye curves. It is important to note that the Debye model only accounts for the 

vibrational entropy contribution. The austenite phase was modeled to exhibit a larger 

Debye temperature than martensite, resulting in a difference in total entropy between the 

two phases at elevated temperatures. The martensitic transformation is indicated on the 

plot with the measured heating curve. Note, Eqn. (2.2) is used for computing the entropy 

difference between M and A phases as depicted by the curves in Fig. 7-9b. 

At lower temperatures (points A B C   ), the entropy difference between A 

and M phases decreases. It is believed that at lower temperatures, the entropy of each 

phase converges at some temperature. At lower temperatures, the entropy difference 

between the M and A phases tend to decrease and is currently not fully understood. 

Ultimately, applying magnetic fields to a MMSMA decreases the temperature at which 

the transformation occurs. This decrease in 0T , in turn, results in a decrease in A MS   as 

described by Eqn. (2.2). If the transformation strain remains nearly constant, as was 

demonstrated by the superelastic curves, herein, the decrease in A MS   must result in a 

decrease in crd

dT


. 

This finding suggests that the NiCoMnIn shape memory alloys that transform at 

high temperatures will exhibit larger caloric effects than those that transform at low 

temperatures. The increase in the entropy difference between the two phases is desirable, 

however, the resulting adiabatic temperature change at higher temperatures may be 
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reduced compared to those that transform at low temperatures simply due to the elevated 

heat capacity (see Eqn. (1.34)). Nevertheless, NiCoMnIn single crystals are capable of 

exhibiting a giant caloric effect near, or away from room temperature, and the specific 

heat capacity within this temperature range varies between 325-450J/kgK, as shown in 

Fig. 5-19b. The adiabatic temperature changes computed in Fig. 5-21a demonstrate that 

the SHT or SHT + 600°C 30min alloys will exhibit between 6-8K temperature changes 

upon a complete transformation.  

In conclusion, the magnetic field and temperature dependence of each of the terms 

in Eqn. (1.8) on the mechanical Clausius-Clapeyron slope was investigated. The influence 

of temperature on dissipation and elastic modulus of austenite was clearly determined, 

however the magnetic field dependence still remains unclear. The decrease in the 

mechanical CC slope was attributed to the decrease in entropy difference between M and 

A phases at low temperatures, thus indicating transforming MMSMAs at higher 

temperatures will result in a larger caloric effect. Unfortunately, higher temperatures also 

result in higher mechanical dissipation. Further studies will be performed to identify if 

dissipation can be reduced under high magnetic field levels. 

The next section demonstrates the stress-assisted magnetic field induced 

transformation (SAMFIT) in Ni45Co5Mn36.6In13.4 [001] single crystals. The stress-

temperature-field space was selected for these measurements considering the above 

discussions and data. Temperatures near 0H

sM   were employed to minimize hysteresis and 

dissipation losses. Additionally, the required mechanical forces and magnetic fields are 

minimal nearest to this temperature. The SHT + 600°C 30min sample exhibited a higher 
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transformation temperature, and therefore a higher entropy change than the SHT sample. 

In the following section, both heat treatments are subject to mixed loading conditions to 

measure their multiferroic responses across SAMFITs. 

7.3 The stress-assisted magnetocaloric effect 

In the above section, the temperature-field space was identified where mixed 

loading conditions would be the most effective at minimizing both stress and field 

requirements while maintaining a high degree of entropy change. In this section, the 

martensitic transition in the Ni45Co5Mn36.6In13.4  [001] single crystals is triggered using a 

magnetic field. However, uniaxial stress is not held constant between forward and reverse 

transformations. This is known as stress-assisted magnetic field induced transformation. 

Here, the process is demonstrated in SHT and SHT + 600°C 30min heat treated single 

crystals. 

Figure 7-10a demonstrates the stress and magnetic field history applied to a 

Ni45Co5Mn36.6In13.4  SHT + 600°C 30min compression specimen during a stress-assisted 

magnetic field induced transition (SAMFIT). At time 0t  , the sample is uniaxially 

preloaded along the [001] austenite direction up to approximately 52MPa (see point 1) 

under 0T. Next, the mechanical load is decreased to 30MPa from point 1 to point 2. This 

stress level equals that which the sample will transform from the M phase back to the A 

phase at 18°C, i.e. the 
18

sA

T C



. While the stress is held constant at 30MPa, the magnetic 

field is ramped from 0T to 3T as illustrated from point 2 to 3. After reaching 3T, the field 

is held constant, and the mechanical load is increased again to 52MPa (point 3-4). While 

the stress is held constant at 52MPa, the field is discharged to 0T. This is illustrated from 
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point 4 to 5. This process can be repeated cyclically. For cyclic operation, the loading 

illustrated through points 2-5 should be repeated. 

Figure 7-10b is the measured stress-strain response resulting from the loading path 

detailed in Fig. 7-10a. Numbered points in 7-10b correspond to the same stress-field state 

in 7-10a. Interestingly, loading the MMSMA in this way does not lead to a notable 

decrease in the mechanical hysteresis. Careful inspection of Fig. 7-10b indicates that the 

M to A transformation results from applying the magnetic field (MFIT), and the A to M 

transformation is driven by removing the magnetic field. As shown in Fig. 7-10b, nearly 

6% transformation strain is achieved by applying 3T to the mechanically pre-loaded 

MMSMA specimen.  

The compressive strain versus applied magnetic field is plotted in Figure 7-10c. 

Again, the points are labeled corresponding to the loading in 7-10a. In 7-10c, nearly 6% 

transformation strain is achieved by applying 3T to the MMSMA. Under 2T, only 3.5% 

transformation strain is reached. Using these strains with Eqn. (2.5), assuming a mass 

density of 8000kg/m3, and the crd

dT


 in Fig. 7-3b (3.1MPa/K), the entropy change is 

computed to be 23J/kgK and 13.5J/kgK, respectively. The entropy change of 23J/kgK 

matches those reported in Fig. 6-15a for magnetic fields up to 7T. It seems that with only 

3T, employing stress-assisted transformations lends the ability to completely transform 

the MMSMA under reduced field levels. 
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Figure 7-10: The stress and magnetic field loading history (a), stress-strain response (b) 

and strain-magnetic field response (c) across a stress-assisted magnetic field induced 

transformation in Ni45Co5Mn36.6In13.4 single crystals in the [001] austenite direction. 
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On the same graph, the data from Fig. 7-10c is shown. In the case of the constant 

mechanical load, the magnetic field hysteresis is nearly 4T. If mixed loading conditions 
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zero. Additionally, the same transformation strain is achieved no matter the loading 

sequence, i.e. if mechanical stress is held constant or changes mid-cycle. Clearly, the 

benefit of employing mixed loading sequences on MMSMA is the reduction of required 

magnetic field to complete the martensitic transformation.  

Since the cyclic repeatability of steps 2-5 illustrated in Figure 7-10a are required 

in refrigeration processes, 5 cycles were carried out on the same compression sample to 

identify if the MMSMA specimen could perform consistently under multiple cycles. The 

cyclic tests were only performed up to 2T because this field level can be generated by 

permanent magnets and the test is more representative of application. The stress-strain 

data for the 5 cycles are plotted in Figure 7-11b. The pre-cycle compression test (red 

curve) was performed to identify the critical stresses for cycling the fields. Next, the 

sample was mechanically preloaded to a stress-induced martensite state and then unloaded 

to the 
18

sA

T C



 state. The stress and field were then cycled as described above and the stress-

strain data were recorded. The numbers overlaid on the data in 7-11b indicate the cycle 

number of the stress-strain history.  
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Figure 7-11: The strain versus magnetic field in SHT + 600°C 30min Ni45Co5Mn36.6In13.4 

single crystals in the [001] austenite direction for MFIT and SAMFIT(a), and the stress-

strain response from SAMFIT cycling (b). 

 

 

 

Over the course of 5 cycles, the magnetic field induced strain (MFIS) decreased 

from 5.14% to 4.1%. More cycles were not carried out due to the length of time required 

for such cycling. It is believed that eventually the MFIS would reach an equilibrium value 

as the sample was trained from the loading sequence. Mechanical training in these alloys 

tends to increase the transformation hardening and, therefore, less MFIS is achieved. 

Smaller MFISs were generated with field cycling due to the mechanical instability of the 

single crystals. More work is needed to verify the influence of temperature and strain level 

on the mechanical instability. 

Nevertheless, achieving 4% transformation strain under a cyclic 2T is significant. 

To demonstrate the maximum potential of the NiCoMnIn single crystals, a virgin 

(untrained) SHT sample was tested up to only 2T under the loading sequence described in 

Fig. 7-10a. Only one cycle was performed to prevent mechanical training. Figure 7-12a 
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shows the stress-strain response at -10°C, i.e. the measured 
fA  temperature of the virgin 

SHT sample.  In this sample, the upper and lower mechanical stresses for SAMFIT were 

identified to be 35MPa and 17MPa, respectively. The field was only charged to 2T.  

 

 

 

 
 

Figure 7-12: The stress-strain response of a SHT Ni45Co5Mn36.6In13.4 single crystal (a) 

and the measured magnetization response (b) in the [001] austenite direction.  

 

 

 

As shown by the stress-strain response in 7-12a, the transformation hardening was 

small and the stress hysteresis was nearly 18MPa. From point 2 to 3, the NiCoMnIn single 

crystal transformed completely under 17MPa. The measured magnetization is plotted in 

Fig. 7-12b which also suggests that the complete transformation took place. Under 2T, the 

austenite phase should be magnetically saturated, and therefore, 100emu/g is an 

appropriate magnetization level for a saturated ferromagnetic phase. Amazingly, the 

complete martensitic transformation was achieved under a magnetic field level as small 

as 1.3T. 
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Finally, the compressive strain versus applied magnetic field response is shown in 

Figure 7-13. Like the magnetic response in Fig. 7-12b, the MFIS reaches a maximum of 

5.35% under 1.3T. Unloading the magnetic field under 35MPa (point 4 to 5) did not 

initiate the A to M transformation until the field was completely reduced to zero. 

Irrespective of the field level needed to generate the return transition, the SHT virgin 

NiCoMnIn compression sample was shown to exhibit a complete SAMFIT under a 

magnetic field of 1.3T. To the author’s knowledge, this has never before been 

experimentally demonstrated and was made possible by the MaTMeCh device.  

 

 

 

 
Figure 7-13: The strain versus magnetic field response of a SHT Ni45Co5Mn36.6In13.4 

single crystal loaded along the [001] austenite direction. A complete martensitic 

transformation is demonstrated with magnetic field levels below 1.5T. 

 

 

 

In the previous section, 5.35% transformation strain was measured as a result of 
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2T, the CC slope was determined to be 2.2MPa/K. With a computed mass density of 

8081kg/m3, the resulting entropy change is 14.5J/kgK. The MMSMA should cool by 

nearly 6-8K per Eqn. (1.34). Achieving temperature changes this large by applying only 

1.3T is substantial and has never before be realized with these alloys. This capability is 

better than those exhibited by common rare-earth containing MCE compounds. 

Additionally, the martensitic transformation in MMSMAs offers a tunable transformation 

such that a single composition can be employed across a range of temperatures.  

In Table 7-1, common magnetocaloric compounds are tabulated alongside their 

adiabatic temperature changes attainable under 2T at the magnetic Curie temperatures 

[48]. In the table, Curie temperatures are referred to as ‘operating temperatures’. 

Additionally, the cost to melt 1kg of the magnetocaloric substance is tabulated. Cost was 

computed by converting the compound composition to wt.% and identifying the mass 

needed to melt 1kg. The cost was computed with raw pieces or granules with at least 

99.9% purity from Alfa-Aesar.com. 

As shown by the adT  in Table 7-1, common MCE materials can produce between 

2-7K temperature changes at their operating temperature. Their operating temperatures 

are clearly dependent on composition. Some compounds that exhibit small adiabatic 

temperature changes are exceedingly expensive. Perhaps the compounds exhibiting low 

operating temperatures can be employed in cryogenic laboratory applications, and 

therefore the cost is not a major consideration. When compared to the Ni45Co5Mn36.6In13.4 

alloy at the bottom of the table, the potential of employing a MMSMA in solid-state 

refrigeration applications becomes clear.  
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Table 7-1: Adiabatic temperature change values (MCE) of various metal compounds 

from [48] under 2T applied magnetic field and their operating (Curie) temperatures. 

Ni45Co5Mn36.6In13.4 is appended to the bottom to demonstrate its relative capabilities. 

Compound (at.%) adT  (K) 
Operating 

Temperature (K) 

Cost 

($/kg)* 

TbAl2 2.2 108 22,202 

DyAl2 3.6 63.3 4,775 

HoAl2 4.6 31 11,559 

Gd3Al2 2.4 281 5,049 

GdZn 3 270 3,995 

Gd3In 2 191 5,400 

DyNi2 4 20 3,787 

Y2Fe17 2.3 307 1,332 

Lu2Fe17 0.6 263 40,467 

LaFe11.44Si1.56 7.5 188 2,250 

TbCo2 1.9 231 17,256 

DyCo2 4.4 138 3,864 

ErCo2 3.2 35 11,050 

Gd5Si2Ge2 7.4 276 6,376 

Gd 4.8 294 5,620 

Ni45Co5Mn36.6In13.4 6† 250-350K†† 1,218 
*Cost was determined from 99.9% pure raw elements on alfa.com using wt.% as computed from at.% 

given in the table. 
†Achieved with 2T under SAMFIT 
††Tunable with heat treatment 
 

 

 

When comparing NiCoMnIn to an alloy of similar cost, such as Y2Fe17, Table 7-1 

demonstrates that Ni45Co5Mn36.6In13.4 exhibits an advantage in that the operating 

temperature can be tuned. Similarly, the large adT  in LaFe11.44Si1.56 is impressive, 

however, it will only perform at 188K and is double the cost of Ni45Co5Mn36.6In13.4. 

Clearly, Ni45Co5Mn36.6In13.4 has the potential to become a competitive candidate for solid-

state cooling applications. Without the experimental evidences shown and discussed 

above, the material’s potential would have remained unclear. 
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For the first time, a complete martensitic transformation was driven in 

Ni45Co5Mn36.6In13.4 with a magnetic field below 1.3T. Using mechanical loading between 

field-ramping, the martensitic transformation was shown to be cyclical. When compared 

to more common non-SMA magnetocaloric compounds, NiCoMnIn exhibits a clear 

advantage in cost and ability. Unfortunately, experimental evidences suggest that 

mechanical training hinders the cyclic performance of the alloy. Further studies are 

underway to identify ways to avoid excessive transformation hardening and the evolution 

of mechanical hysteresis in these alloys. 

7.4 Conclusions 

The preceding chapter demonstrated the potential of employing 

Ni45Co5Mn36.6In13.4 single crystals for near-room temperature refrigeration applications. 

Mechanical phase diagrams were plotted using superelastic data under various magnetic 

fields and temperatures. A non-linearity developed in the phase diagram slopes at low 

temperatures. Using non-equilibrium thermodynamics, different contributions to this non-

linear behavior were identified and discussed. The main cause of the non-linearity was 

determined to be a decrease in the difference between the entropy of austenite and 

martensite phases at low temperatures. Applying magnetic fields reduced the 

transformation temperatures, and in turn, reduced the entropy difference between the 

phases. Nevertheless, further studies are underway to identify the magnetic field 

dependence of the elastic moduli of austenite, structural dissipation, and elastic energy 

storage across the transition which all contribute to the thermodynamics surrounding the 

martensitic transformation.  
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Finally, a complete first order phase transformation was generated in 

Ni45Co5Mn36.6In13.4 single crystals for the first time under 1.3T. To achieve the complete 

transformation, mechanical stress was applied in between field ramping, thus reducing or 

eliminating magnetic hysteresis. This discovery opens the possibility of a new type of 

refrigeration system that employs the stress-assisted magnetocaloric effect in magnetic 

shape memory alloys. Although the mechanical stability of these materials was 

demonstrated to be somewhat poor, more studies are underway to identify loading 

sequences that prevent the evolution of transformation hardening and an increase in stress 

hysteresis. Despite the poor mechanical stability in Ni45Co5Mn36.6In13.4, a comparison 

between other rare-earth containing MCE refrigerants was made. Clearly, 

Ni45Co5Mn36.6In13.4 offers advantages over other refrigerants due to their cost, operating 

temperatures, and adiabatic temperature changes. 
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CHAPTER VIII                                                                                                                                                                                                                            

GENERAL CONCLUSIONS AND FUTURE WORK 

In the beginning of this work, a completely reversible magnetic field induced 

transformation in NiCoMnIn single crystals had never before been achieved with a 

magnetic field below 2T. Different methods of reducing the high magnetic field 

requirement were initially discussed. They included finding optimum alloy compositions, 

tuning microstructures with heat treatments, and finally, employing mixed stress and 

magnetic field loading conditions with the aim of reducing magnetic hysteresis. 

With the former, a few thermodynamic frameworks were developed that indicated 

an increase in relative energy conversion efficiency and refrigeration performance of heat 

treated alloys. Although the relative energy conversion performances of the shape memory 

alloys were increased with heat treatments, the alloys were still unable to completely 

transform under 2T. Nevertheless, a few of these heat treated alloys exhibited substantially 

reduced dissipative losses across their martensitic transformations which merits further 

investigation. For example, Ni45Co5Mn36.6In13.4 single crystals were demonstrated to 

exhibit only 1K thermal hysteresis with carefully selected heat treatments. Additionally, a 

NiMnIn alloy with only 3K thermal hysteresis was identified. In either of these cases, the 

alloys maintained a reasonable entropy change from the first order martensitic phase 

transformation and should be the subject of further studies. 

There is still much work to be done to improve and understand the microstructures 

of meta-magnetic shape memory alloys.  It still remains unclear why Co containing alloys 

exhibit a higher degree of tunability than their non-Co containing counterparts. 
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Additionally, the arrest behavior in NiMnIn alloys is still not completely understood. 

Future work should be performed to identify the atomic mobility in these alloys and to 

build a clearer picture of the time-temperature-transformation dependence of their L21 to 

B2 transition.  

Different contributions to the free energy around the martensitic transformation 

were discussed and manipulated with heat treatments. Varying degrees of long range 

L21/B2 orders in single crystal Ni45Co5Mn36.6In13.4 were demonstrated to influence the 

magnetic to thermal energy conversion efficiency. It was determined that a B2 ordered 

alloy exhibited the highest energy conversion efficiency, and therefore, is most favorable 

in magnetocaloric applications. With low annealing temperatures, however, it was found 

that some mixture of L21 and B2 causes the martensitic transformation to become 

interrupted. With TEM dark field images, a microstructural contrast difference was 

observed within L21 morphology in arrested alloys. Before this work, the contrast 

differences in the L21 morphologies had never before been observed. 

A common finding in all the work, herein, is that the entropy changes from 

martensitic transformations decrease when the transformation temperatures are lowered. 

The physical cause of this decrease is currently not fully understood. In the greater picture, 

this implies that the shape memory alloys are only suitable for refrigeration within a set 

temperature interval; their operating temperature can be tuned to occur within this interval 

via heat treatments. If the sM  temperature is shifted too low, the transformation may 

become arrested and will not proceed by simple heating/cooling. In order to trigger the 
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martensitic transformation at low temperatures, mechanical stress can be employed, but 

the entropy change generated by the martensitic transformation will be small. 

A magneto-thermo-mechanical characterization (MaTMeCh) device was 

developed, herein, to probe at the multiferroic couplings in NiCoMnIn single crystals. This 

device offered the capability of simultaneously measuring compressive strain, stress, 

temperature, and the average magnetization within a longitudinally magnetized shape 

memory alloy specimen. These measurements were the first of their kind up to 9T while 

down to -90°C. Additionally, the capabilities of the test rig facilitated cyclic stress-assisted 

magnetic field induced transformations. The results ultimately lead to a complete 

martensitic transformation under 1.3T. 

The MaTMeCh device facilitated data acquisition with the potential to change the 

way scientists and engineers think about solid-state refrigeration. A cost analysis of some 

common magnetocaloric refrigerants was performed, and when compared to that of 

NiCoMnIn, the shape memory alloy was shown to offer the same temperature change of 

more expensive compounds. In addition, the operating temperature of a single 

composition in NiCoMnIn can be tuned to occur at any temperature within an interval of 

nearly 100K. Currently, the author is developing a stress-assisted magnetocaloric 

refrigeration device that employs this new technology.  

Although the complete transition in NiCoMnIn single crystals can be driven with 

magnetic fields below 2T, the magnetic field dependence of the transformation hardening, 

austenite modulus of elasticity, and dissipation across the martensitic transition are still 
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not completely understood. Further investigations are currently underway with the 

MaTMeCh device to identify the field dependence of these materials parameters.  
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APPENDICES 

 

A.1 Thermomagnetic history of Ni48Mn38In14 alloys 

 

Figure A1: Thermomagnetic response of SHT Ni48Mn38In14 (at.%) polycrystals under 

0.05T, 1T, and 7T. Samples were heated to 400K under zero field and were then field 

cooled (FC) and field heated (FH). 

 

 

 

Figure A2: Thermomagnetic response of SHT + 1123K 3hrs WQ Ni48Mn38In14 (at.%) 

polycrystals under 0.05T, 1T, and 7T. Samples were cooled to 10K under zero field 

(ZFC). The field was then applied and the temperature was increased to 400K under 

field. The sample was subsequently cooled in field (FC). 
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Figure A3: Thermomagnetic response of SHT + 1073K 3hrs WQ Ni48Mn38In14 (at.%) 

polycrystals under 0.05T, 1T, and 7T. Samples were cooled to 10K under zero field 

(ZFC). The field was then applied and the temperature was increased to 400K under 

field. The sample was subsequently cooled in field (FC). 

 

 

 

 

Figure A4: Thermomagnetic response of SHT + 973K 3hrs WQ Ni48Mn38In14 (at.%) 

polycrystals under 0.05T, 1T, and 7T. Samples were heated to 400K under zero field and 

were then field cooled (FC) and field heated (FH). 
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Figure A5: Thermomagnetic response of SHT + 873K 3hrs WQ Ni48Mn38In14 (at.%) 

polycrystals under 0.05T, 1T, and 7T. Samples were heated to 400K under zero field and 

were then field cooled (FC) and field heated (FH). 

 

 

 

 

Figure A6: Thermomagnetic response of SHT + 773K 3hrs WQ Ni48Mn38In14 (at.%) 

polycrystals under 0.05T, 1T, and 7T. Samples were cooled to 10K under zero field 

(ZFC). The field was then applied and the temperature was increased to 400K under 

field. The sample was subsequently cooled in field (FC). 
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Figure A7: Thermomagnetic responses of heat treated Ni48Mn38In14 (at.%) polycrystals 

under 1T. Samples were heated to 400K under zero field and were then field cooled (FC) 

and field heated (FH). 
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Thermomagnetic history of Ni50Mn36In14 

 

Figure A8: Thermomagnetic responses of heat treated Ni50Mn36In14 (at.%) polycrystals 

under 7T. Samples were heated to 400K under zero field and were then field cooled (FC) 

and field heated (FH). 
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Thermomagnetic history of Ni45Co5Mn36.6In heat treated alloys 

 

 

Figure A9: Thermomagnetic response of SHT Ni45Co5Mn36.6In13.4 (at.%)  single crystals 

under 0.05T, 1T, 5T, and 7T. Samples were heated to 400K under zero field and were 

then field cooled (FC) and field heated (FH). 

 

 

 

 

Figure A10: Thermomagnetic response of SHT + 1123K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 0.01T, 1T, and 7T. Samples were heated to 400K under zero 

field and were then field cooled (FC) and field heated (FH). 
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Figure A11: Thermomagnetic response of SHT + 1073K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 0.01T, 1T, and 7T. Samples were heated to 400K under zero 

field and were then field cooled (FC) and field heated (FH). 

 

 

 

 

Figure A12: Thermomagnetic response of SHT + 1023K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 0.01T, 1T, and 7T. Samples were heated to 400K under zero 

field and were then field cooled (FC) and field heated (FH). 
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Figure A13: Thermomagnetic response of SHT + 973K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 0.01T, 1T, and 7T. Samples were heated to 400K under zero 

field and were then field cooled (FC) and field heated (FH). 

 

 

 

 

Figure A14: Thermomagnetic response of SHT + 873K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 1T, 3T, 5T,and 7T. Samples were heated to 400K under zero 

field and were then field cooled (FC) and field heated (FH). 
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Figure A15: Thermomagnetic response of SHT + 773K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 1T, 3T, 5T,and 7T. Samples were heated to 400K under zero 

field and were then field cooled (FC) and field heated (FH). 

 

 

 

 

Figure A16: Thermomagnetic response of SHT + 673K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 0.01T, 1T, 3T,and 7T. Samples were heated to 400K under 

zero field and were then field cooled (FC) and field heated (FH). 
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Figure A17: Thermomagnetic response of SHT + 573K 3hrs WQ Ni45Co5Mn36.6In13.4 

(at.%) single crystals under 0.05T and 1T. Samples were heated to 400K under zero field 

and were then field cooled (FC) and field heated (FH). 

 

Isofield Stress-Strain response of Ni45Co5Mn36.6In13.4 SHT single crystals along 

the [001] austenite crystal direction 

 
 

Figure A18: Superelastic compression response of SHT Ni45Co5Mn36.6In13.4 (at.%) in the 

[001] austenite direction under 0T at 20°C, 10°C, 0°C, -5°C, -12°C, and -16°C.  
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Figure A19: Superelastic compression response of SHT Ni45Co5Mn36.6In13.4 (at.%) in the 

[001] austenite direction under 1T at 19°C, 11°C, 3°C, -5°C, and -12°C.  

 

 

 

Figure A20: Superelastic compression response of SHT Ni45Co5Mn36.6In13.4 (at.%) in the 

[001] austenite direction under 3T at 8°C, 0°C, -12°C, and -20°C.  
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Figure A21: Superelastic compression response of SHT Ni45Co5Mn36.6In13.4 (at.%) in the 

[001] austenite direction under 5T at 0°C, -8°C, -12°C, -20°C, and -28°C.  

 

 

 

 

Figure A22: Superelastic compression response of SHT Ni45Co5Mn36.6In13.4 (at.%) in the 

[001] austenite direction under 7T at -12°C, -20°C, -31°C, -40°C, -65°C , and -90°C.  
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Figure A23: Superelastic compression response of SHT Ni45Co5Mn36.6In13.4 (at.%) in the 

[001] austenite direction under 9T at -12°C, -21°C, -32°C, -42°C, -51°C , and -90°C.  

 

 

 

Isofield Stress-Strain response of Ni45Co5Mn36.6In13.4 SHT+600°C 30min  single 

crystals along the [001] austenite crystal direction 

 

Figure A24: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 0T at 40°C, 30°C, 20°C, 

and 10°C.  
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Figure A25: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 1T at 30°C, 20°C, 10°C, 

and 1°C.  

 

 

 

 

Figure A26: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 2T at 35°C, 25°C, 15°C, 

5°C, and -5°C.  
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Figure A27: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 3T at 25°C, 19°C, 11°C, 

3°C, and -5°C.  

 

 

 

 

Figure A28: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 5T at 14°C, 6°C, -2°C, -

10°C, and -15°C.  
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Figure A29: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 7T at 5°C, -5°C, -15°C, -

23°C, and -30°C.  

 

 

Figure A30: Superelastic compression response of SHT + 600°C 30min 

Ni45Co5Mn36.6In13.4 (at.%) in the [001] austenite direction under 9T at -10°C, -18°C, -

26°C, -32°C, and -40°C.  
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Table of Replacement parts for MaTMeCh Device 

 

Table A1: Replacement parts for MaTMeCh apparatus 

Company Item Description Product # Qty. 
Unit 

Price 

Total 

Price 

Mechatronic 

Techniques Inc. 
Linear Actuator Custom 1 8167 8167.5 

Conax 

Technologies 

6 T type thermocouple vacuum 

feedthrough 

HD18-

450(6K)MPGAT

,24/24 

1 449 449 

Conax 

Technologies 

12 copper lead wire vacuum 

feedthrough 

HD18-

450(12CU)MPG

AT,24/24 

1 449 449 

Omega 

Engineering 

 (24BIT USB 16SE/8DE CH MOD 

CE) 

OMB-DAQ-

2408 
1 599 599 

Omega 

Engineering 
1/16 DIN RAMP & SOAK CTRL 

CN8202-R1-R2-

AL1 
1 3.69 369 

Engineered 

Spring Products 
0.147 Titanium Spring Custom 3 125 375 

Bass Tool & 

Supply 

NTK TNG-43 SX5 T0220 

CERAMIC INSERT 
RNG-43-SX5 3 13.12 39.36 

Palma Tool & 

Die 
TOP CAP Custom 1 2361 2361 

Palma Tool & 

Die 
TOP ROD Custom 1 554 554 

Palma Tool & 

Die 
PROBE ARMS (PAIR) Custom 1 834 834 

Palma Tool & 

Die 
SPINE Custom 1 86 86 

Palma Tool & 

Die 
SIDES (PAIR) Custom 2 59 118 

Palma Tool & 

Die 
ARM RODS Custom 4 63.5 254 

Palma Tool & 

Die 
THREADED ARM RODS Custom 2 318.5 637 

Palma Tool & 

Die 
SEAT Custom 1 992 992 

Palma Tool & 

Die 
BOTTOM ROD Custom 1 970 970 

Palma Tool & 

Die 
BOTTOM CAP Custom 1 3416 3416 

Palma Tool & 

Die 
BOTTOM PLATE Custom 1 698 698 

Palma Tool & 

Die 
BASE PLATE Custom 1 503 503 

Palma Tool & 

Die 
TUBE Custom 1 3376 3376 

Palma Tool & 

Die 
Bottom Rod Custom 1 215 215 
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Palma Tool & 

Die 
Upper Rod Custom 1 525 525 

Bomas Machine Al2O3 Ceramic Seat Custom 5 78 390 

McMaster-Carr 
18-8 Stainless Steel Low Head 

Socket Cap Screw 
93615A410 1 5.93 5.93 

McMaster-Carr 
Type 316 Stainless Steel 37 Degree 

Flared Tube Fitting 
50715K162 2 11.25 22.5 

McMaster-Carr Bronze Precision Acme Round Nut 95072A109 3 32.92 98.76 

McMaster-Carr 
Type 316 Stainless Steel General 

Purpose Acme Threaded Rod 
97014A315 2 65.17 130.34 

McMaster-Carr 
Brass General Purpose Acme Square 

Nut 
95270A114 3 6.89 20.67 

McMaster-Carr Easy-Bend Aluminum Tubing 5177K621 2 14.12 28.24 

McMaster-Carr Plastic Dowel Pin 97155A319 1 3.2 3.2 

McMaster-Carr 
Clean & Bagged Cryogenic 

Solenoid Valve 
7902K41 1 245.4 245.41 

McMaster-Carr Ultra-Thin Heat Sheet 35475K363 3 43.64 130.92 

McMaster-Carr Buna-N O-Ring 9452K156 1 8.5 8.5 

McMaster-Carr Buna-N O-Ring 9452K126 1 11.31 11.31 

McMaster-Carr External Retaining Ring 98410A725 1 9.9 9.9 

McMaster-Carr 
Flexible White Tubing Made With 

Teflon PTFE 
51155K42 1 13.7 13.7 

McMaster-Carr Pressure Transducer 3196K5 1 176.1 176.1 

McMaster-Carr 
Quick-Assembly Brass 45 Degree 

Flared Fitting 
50635K511 3 3.48 10.44 

McMaster-Carr Dow Corning High-Vacuum Grease 2966K52 1 26.68 26.68 

McMaster-Carr Buna-N O-Ring 9452K185 1 4.15 4.15 

McMaster-Carr 
Type 316 SS 37 Degree Flared Tube 

Fitting Adapter 
50715K162 2 7.53 15.06 

McMaster-Carr Bronze Precision Acme Round Nut 95072A109 3 32.92 98.76 

McMaster-Carr 
Type 316 SS General Purpose 

ACME Threaded Rod 
97014A315 2 65.17 130.34 

McMaster-Carr 
Brass General Purpose Acme Square 

Nut 
95270A114 3 6.89 20.67 

McMaster-Carr 
Brass General Purpose Acme 

Cylinder Nut 
95100A103 2 5.94 11.88 

McMaster-Carr 
Miniature Metal-Handle 

Screwdriver 
7026A11 1 5.71 5.71 

McMaster-Carr Nonmarring Tweezers 6182A22 1 38.51 38.51 

McMaster-Carr 
Formable 260 Brass, Rod, 3mm 

Diameter, 300mm long 
88605K48 1 3.59 3.59 

ChinaTiScrew.co

m/AliExpress 

Titanium Screw M1.6X6 DIN 912 

Socket Head 
  1 44 44 

ChinaTiScrew.co

m/AliExpress 

Titanium Screw M2.5X6 DIN 912 

Socket Head 
  1 30 30 

http://www.mcmaster.com/#9452K156
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Gearmo USB to RS485/RS422 Converter GM-482422 1 42.94 42.94 

  
 

    27765 
Approximate total cost of MATMECH 
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Figure A31: NMR magnet liquid helium dewar for MaTMeCh device design 

specifications. 
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Figure A32: Approval drawing for custom spindle drive actuator for MaTMeCh apparatus.  

 


