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ABSTRACT 

 

 It is widely accepted that mice are active, social animals.  Treadmill running, basal 

cage activity, and voluntary wheel running have all been used in order to study these 

qualities.  Wheel running models have been used as an index of voluntary physical activity 

and appear to have several correlates in humans.  Distances covered and voluntary aspect of 

many wheel running models allows researchers to study genetic motivators of activity as well 

as to track responses to training.  Often, wheel running models employ a single mouse and 

wheel per cage, which precludes social interactions and may impact activity levels and other 

parameters due to anxiety.  The mechanisms by which this isolation modifies activity levels 

are of paramount importance to support accurate translation of results to human application.  

This study was designed to assess the effects of housing density and wheel availability on 

activity levels in mice.  Six outbred female SENCAR mice (National Cancer Institute, 

Bethesda, MD) were housed under various conditions by altering the number of animals and 

exercise wheels per cage.  Starting at six weeks of age, mice were given wheel access in one 

of two cage combinations: one mouse and one wheel (n= 4) or two mice and one wheel (n= 

1).  Data pertaining to distance and duration ran was recorded daily, with speed being 

calculated later as the third primary value of interest.  Over the study span of 33 weeks the 

mice were randomly re-assigned to 1 mouse/1 wheel (total 506 days), 2 mice/1 wheel (64 

days), and 2 mice/2 wheel (316 days) combinations (1v1, 2v1, and 2v2 respectively).  While 

data was collected for all combinations, 1v1 and 2v2 were maintained for the longest amount 

of time.  Overall, the SENCAR mice would be classified as high-active mice.  When 

standardized per mouse, mice ran significantly less distance per day (p=0.0001) when two 
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mice were housed in the cage regardless of the number of wheels (1v1 = 10.01±4.02, 2v1 = 

6.19±3.35, 2v2 = 6.27±3.43 km) as well as less time per day (1v1 = 309.8±109.4, 

2v1=186.1±94.5, 2v2=157.4±65.9 mins; p=0.0001).  Conversely, speed of activity was 

significantly faster (p=0.0001) in the 2v2 housing situation (1v1=32.1±5.9, 2v1=33.38±7.0, 

2v2=38.4±9.6 m/min).  In summary, housing density and wheel availability can alter activity 

levels in SENCAR mice. 
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NOMENCLATURE 

 

PA Physical Activity 

1v1 One Mouse and One Wheel per Cage 

2v1 Two Mice and One Wheel per Cage 

2v2 Two Mice and Two Wheels per Cage 
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1. INTRODUCTION 

 

 Obesity is the most common chronic illness in Western countries and has reached 

epidemic proportions globally [49, 53, 94].  As many as 250,000 deaths per year in the 

United States are attributable to a lack of regular physical activity and it is, consequently, one 

of the five major risk factors for obesity [60].  Physical activity has genetic as well as 

environmental regulatory mechanisms [10] and several different biological regulatory 

pathways, such as the dopaminergic system [44], are being investigated.  It is anticipated that 

such studies will ultimately aid in developing personalized activity based strategies to 

prevent related diseases [44]. 

 Using an animal model to study factors that control physical activity has many 

advantages, not the least of which are that the environment can be strictly controlled, the 

participants are relatively easy to acquire, and a variety of diets and training protocols can be 

applied.  Many researchers have investigated the basal activity levels and exercise training 

potential of mice and other rodents [1, 2, 6, 13, 27, 28, 50-52, 63, 72, 82, 83].  Differences 

across species and strains in both activity level and training potential have been found [6, 13, 

27, 28, 50, 51, 82, 83].  Activity levels have individual variation, just as is seen in humans, 

but also are affected by sex, age, and strain of mouse [10, 12, 75, 76].   This activity can be 

measured in many different ways; ranging from voluntary approaches (e.g. running wheel) to 

forced tests (e.g. treadmill or swimming).  One of the more common approaches to 

measuring rodent activity is to use a voluntary wheel running model.  Two primary strengths 

of this model, further elaborated in the subsequent sections (Review of Literature), are: 1) the 

environment can be controlled through the addition of enrichment devices (e.g. multiple 
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running wheels, cage mates, mazes) [26, 73, 89, 90] and, 2) greater amounts of activity can 

be achieved with use of a running wheel compared to a treadmill [20].  Some researchers 

have suggested that wheel running is an unnatural or even maladaptive stimulus, but free 

living mice will use running wheels [54, 75].     

 Currently, it is estimated that over 75% of the genes in the human and mouse genome 

are orthologs that represent conserved mammalian functional genes [65].  This biological 

parallel aids in the eventual translation of mouse model research to humans.  Likewise, 

physiological responses to voluntary physical activity are similar in humans and mice, which 

include but are not limited to, increased cardiovascular function [22] and altered muscle and 

mitochondrial enzyme levels [22, 46].  For these reasons, wheel running is a good analogue 

for human physical activity.  

 Non-physiological factors can also alter rodent wheel running activity.  To our 

knowledge, in all published studies where wheel running is employed, researchers use one 

animal and one wheel per cage to study physical activity, allowing access to the wheel to be 

tightly controlled for a given period of time, be it weeks or months [1, 5, 27, 45, 51, 88].  Yet 

the removal of social cues by housing the animals individually can increase other forms of 

physiological remodeling, and the effect of this on activity levels is still to be determined [24, 

80, 89, 90].  Additionally, while results are mixed, several studies have shown an anxiolytic 

effect when mice are singly housed [61, 74].  In reality, the use of singly housed animals 

simplifies assessment of the exact amount of activity performed by each animal, which is 

critical when the activity level is the dependent variable being studied.  However, because of 

the lack of studies designed to assess this parameter, the effects of housing density on activity 

levels remain almost completely unexplored. Therefore, the purpose of this study was to 
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compare how housing density and wheel availability would affect physical activity levels in 

outbred SENCAR mice.  Our hypothesis was that a 2v1 housing combination would decrease 

activity levels compared to the 1v1 combination while the addition of a second wheel in the 

2v2 combination would lead to a recovery of this activity.           
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2. LITERATURE REVIEW

2.1 Importance of Physical Activity 

The United States has seen a gradual rise in prevalence of obesity over the past few 

decades [56, 59].  The increase in body weights, BMI, waistline measurements and other 

parameters of obesity, has occurred in conjunction with an inversely low level of physical 

activity [4, 9, 48, 50, 55, 86].  Regular physical activity is a powerful prevention and 

treatment approach for hypokinetic conditions such as cardiovascular disease and type II 

diabetes [50].  Conditions such as these are causing healthcare costs per capita to rise yearly 

[35, 92].  One study that determined the aggregated annual costs of obesity in Canada ranged 

from 1.27 to 11.08 billion dollars per year, representing approximately 12% of Canada’s total 

health expenditures [85].  It has become well-established there is a genetic aspect governing 

physically activity, an observation across species from humans to mice and rats [10, 28, 39, 

52, 64].  Due to these and other parallels, mice and other rodents represent attractive models 

to tease out the mechanisms regulating physical activity and energy balance.  

2.2 Why Use a Mouse Model? 

Mice are often used in biomedical research as they are a less expensive option 

compared to humans and allow the timely study of important physiological and biological 

mechanisms [1]. In addition, multiple generations can be propagated in a relatively short 

time, facilitating the study of transgenerational effects.  Booth and colleagues and Garland 

and colleagues have successfully developed inbred strains of rats and mice with differing 

physical activity characteristics (e.g. [36, 69, 83]) while others (e.g. [28, 50, 51]) have chosen 

to use previously established inbred strains to examine the biological mechanisms controlling 

activity.  Further, years of research has led to a nearly complete map of the mouse genome 
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[17, 65] and this fact combined with the similar physiological properties of humans and 

rodents have allowed researchers to make valuable connections between the two species [19, 

22, 46, 81].  Cardiac and muscular capacities are of paramount importance to performance, 

both of which have been shown to increase from PA in humans and mice [8, 34, 40, 91].     

Another benefit of rodent models is the ready access to tissues, including various 

regions of the brain, such as the ventral hypothalamus and dopamine system. These tissues 

are unavailable for research unless obtained from cadavers which offers its own biological 

complications.  As an example, studies in rats showed that lesions in the hypothalamus 

decrease spontaneous locomotor activity [30].  Interestingly, the dopamine system has been 

linked by multiple studies to the control of PA [11, 70].  Specifically, Knab et al. showed that 

administration of a D1-like agonist significantly reduced wheel running in highly active 

C57L/J mice, while had no effect on low active C3H/HeJ activity [44].  These results support 

the premise that physical activity is altered by the dopamine system and provide examples of 

research that would be impossible to conduct in humans.  Finally, from a logistical 

standpoint, using mice as subjects decreases the compliance/adherence issues often 

encountered in studies using human subjects, especially with regard to exercise programs 

[15, 23, 62]. 

 

2.3 Mice are Motivated to Run 

 

 One of the primary reasons that there are few issues with exercise compliance/ 

adherence in mice is based on an understanding of the basal activity level of mice, which 

supports the basis and design of this study.  Many researchers have established that mice are 

inherently active [6, 24, 27, 50, 51, 84].  Mouse running models were used as early as the late 
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19th century; Stewart used one of the first wheel monitoring systems to study how alcohol, 

barometric pressure, and diet affected wheel running [79].  His apparatus consisted of a 

cylindrical shape of fine wire netting attached to whalebone pens to record revolutions on a 

kymograph.  Technology has come a long way since then and kymographs have been 

replaced with electronic computers, but the process and theories are much the same. 

 Wheel running activity can be reported in many different fashions, most often 

presented as distance paired with associated duration and speed, in units ranging from 

kilometers per hour to meters per minute, depending on the animal of choice and length of 

study [1, 6, 13, 27, 45, 50].  Yet, others summarize activity based on number of revolutions 

or work done [5, 21, 58, 66, 79].  Lightfoot et al. examined 41 different mice strains based on 

their activity levels [50] and showed that C57BR/CDJ mice ran the greatest distance (11 km), 

C58J mice ran the longest (580.6 min), and PWD/PHJ mice ran the fastest (38.6 m/min) on a 

daily basis.  On the lower end, 129S1/svlmJ mice ran the shortest distance and least duration, 

0.4 km/day and 24.6 min/day, while C3H/HeJ ran the slowest with an average daily speed of 

13.3 m/min.  Also important to note is that the commonly used C57BL/6J strain is on the 

higher end of the activity scale in both daily distance (7.5 km) and average daily speed (31.7 

m/min) [50].  Many of the studies described in this review utilize the C57BL/6J because of 

these high activity characteristics. 

 All three activity traits are strongly associated with gender, or have a sexual 

dimorphism, with females generally showing higher activity levels [50].  A previous study by 

the same lab reported female mice ran 20% farther on average than males [51].  Further, 

female C57BL/6J mice were reported to have higher Vo2max than their male counterparts 

when corrected for bodyweight [42]. Similarly, female Sprague-Dawley rats also ran 
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significantly more than males, due to increased duration of running episodes and running 

speed [25].  Even when variables are employed to alter activity levels, females have been 

shown to be the more active sex.  Jones et al. examined how food restriction altered 

locomotor activity in Wistar rats and showed that regardless of food group, females ran 

significantly farther than males [38].   

 A well-established mechanism of this sex based difference is the estrous cycle.  As 

early as 1927 the periodicity of female rodent running was characterized [68].  Daily 

revolutions well above and below the animal average were seen in female rats within the four 

day estrous cycle [68].  Activity data was compared with vaginal mucosa samples to 

determine the association of activity and the ovulatory cycle. Using these data, it was 

determined that peak running days occurred just before ovulation [68].  This same trend was 

seen more recently in the previously mentioned Sprague-Dawley strain [2].  

 Even if the same sex is used in an attempt to remove this variable, others, including 

age, affect rodent PA [78, 82].  Mouse PA levels gradually reach a peak at around 9-12 

weeks of age, much like humans [78, 82].  After this point, PA falls linearly with age until 

death [76].  As the animals age, other physiological aspects begin to affect PA.  It has been 

reported that timid or fearful rats tend to be more active in wheel running studies than 

fearless ones [7].  It has been suggested that the act of running after a stressful encounter may 

be an indication that wheel running has anxiolytic effects [61].  This ‘stress running’ can take 

the place of other behavioral manifestations such as excessive grooming and teeth grinding.  

In humans, it has been hypothesized that running-induced stress reduction may be related to 

noradrenergic-galaninergic suppression, but the exact mechanism is still to be found [74].       
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2.4 Housing Density 

 Few studies have explicitly looked at the association between housing density and 

PA. A rare study that incorporated group housing with wheel running was conducted by 

Stranahan et al. [80], where male Sprague Dawley rats were used to study how wheel 

running altered neurogenesis in the dentate gyrus.  It is important to note that even though 

these authors used altered housing densities and monitored wheel running, that the primary 

objective in this study was not to analyze the effect of group housing on activity levels.   

 Briefly, individual rats were given access to a running wheel while in their cage 

alone. In a separate arm, group housed animals (3/cage) had access to a single running wheel. 

After a short 12-day wheel protocol, runners housed in groups showed a significant increase 

in BrDU-labeled cells, a marker of DNA synthesis, in the dentate gyrus compared to group 

housed controls [80].  This trend was reversed in individually housed runners who showed a 

significant decrease in the number of labeled cells compared to individually housed controls. 

As reported, results from this study did not indicate that there were significant differences in 

amount of wheel activity in group vs. individually housed animals. However, since group 

values were reported only as the total cage of wheel activity divided by three, and individual 

values were not reported, reliable conclusions related to the effect of group housing on 

activity levels cannot be made.  

 A second significant result observed by Stranahan et al. [80] was that stress hormone 

corticosterone was affected by housing density and wheel access.  Both individually housed 

cohorts (controls and runners) had higher levels of corticosterone than their group housed 

counterparts based on samples taken four hours into the dark cycle.  The role of stress was 

further investigated by replacing daily BrDU injections, which had been previously proposed 
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as a stressor, with a brief cold-swim test of comparable duration.  Individually housed 

runners exposed to either daily stress (injections or cold-swim) had lower levels of cell 

proliferation in the dentate gyrus compared to individually housed controls [80].  Conversely, 

group housed runners had increased proliferation compared to their controls.  Another lab 

had previously reported similar results, an increase in dentate gyrus proliferation after group 

housing running, in Sprague-Dawley rats [26].  Similar results were reported by the same lab 

when female C57BL/6 mice were used [89, 90].  Results showed increases in BrDU labeled 

neurons in the dentate gyrus of group housed runners compared to group housed control 

animals [89].  Additionally, the number of  BrDU labeled neurons is increased in runners 

compared to both controls and mice who engaged in other enrichment activities such as 

swimming and maze running [90].  According to the authors “these data suggest that housing 

density, running, and daily stress interact with each other so that the results of group housing 

of runners being buffered from negative effects of stress on physiological processes [90].”    

2.5 Wheel Size 

 

From a mechanical perspective, various labs use different wheel types depending on 

their animal of choice and equipment.  Several materials can be used for the body of the 

running wheel, usually metal or plastic mesh [3, 5, 27, 28, 51, 58].  Additionally, a variety of 

wheel circumference sizes have been employed experimentally [3, 21].  While mechanical in 

nature, consistency of these factors (e.g. wheel material and size) can affect the magnitude of 

PA and thus, are important considerations when inter- and intra-study comparisons are being 

attempted. 

Various studies have investigated whether wheel size, often represented in terms of 

circumference or diameter, alters activity levels.  Collier and Leshner compared wheels with 
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circumferences of 1,117mm and 556mm [21].  Male C57BL/6J mice ran significantly farther 

on the small wheels, which investigators attributed to the significantly greater number of 

revolutions per day achieved with the small wheels (9000 rev) vs. the larger wheels (3500 

rev).  However, when the varying weights of the wheels were taken into consideration in the 

calculation of the total work per day, this difference was eliminated, suggesting that the 

wheel circumference did not matter as much as the total work per day. Banjanin and 

Mrosovsky used wheels which had a circumference of 550mm and width of 75mm for the 

large option and 408mm x 60mm for the smaller version [3].  Choice preference was tested 

by placing both a small and large wheel in cages with a single mouse.  To negate position 

preference the two wheels were interchanged halfway through the test period.  Male 

C57BL/6 mice in these cages ran significantly more revolutions per day on the larger of the 

two wheels [3].  Mrosovsky’s lab used these same wheels in an earlier study with golden 

hamsters [58] and showed that the use of the same preferential test set up showed 

significantly more usage of the (550mm) wheel over the smaller (408mm) option.  It is 

important to note here that the large wheel used by Banjanin and Mrosovsky is similar in size 

to the small wheel used by Collier so an absolute comparison is difficult.  Banjanin and 

Mrosovsky neglected to report total work done, as Collier did, in order to normalize the 

activity data.  Using these studies as a benchmark it appears a wheel size ‘sweet spot’ exists 

near wheel circumferences of 545 and 565 millimeters. 

A second factor to consider when altering wheel size is the associated change in 

wheel resistance.  The two main factors that can affect the wheel resistance are efficiency of 

the axle/bearing and weight of the wheel, the later often increasing with wheel size.  

Konhilas et al. [45] directly studied the effect of wheel resistance on PA and several other 
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physiological characteristics by designing a special adjustable wheel that allowed  

modification of load [45].  In this study, male C57Bl/6 mice were randomized into sedentary, 

no resistance, low resistance, and high resistance groups.  Briefly, the no resistance group 

was used as a standard for the entirety of the study while the other two groups received 

gradual increases in their wheel resistance until the resistances equaled 5 grams (low 

resistance) and 12 grams (high resistance).  Only when the load on the wheel was increased 

past 9 grams in the high resistance group did the mice run significantly less distance, 

compared to the no resistance and low resistance groups.   

 After further analysis, Konhilas et al. determined that mice can tolerate up to ~25% of 

their body weight in resistance load without affecting activity level, as measured by distance, 

time, and speed [45].  In the earlier study by Collier and Leshner [21], the wheel resistance 

was taken into consideration by measuring how many grams were required to turn the wheels 

¼ turn, which was determined to be 5.01 and 6.70 grams, respectively, for the 1,117mm and 

556mm wheels.  While the smaller wheels revolved significantly more times, less force is 

required, equalizing the work done [21].  The bodyweights of the mice used by Collier and 

Leshner were not listed. However, since both investigative teams used the same mouse strain, 

the 25% rule established by Konhilas et al. [45] appears to be applicable in both studies. 

2.6 Wheel Surface 

 Once a wheel size is selected there are a variety of materials currently in use to 

construct the wheels.  In the study previously discussed, Banjanin and Mrosovsky compared 

activity levels on standard rod wheels, plastic mesh wrapped wheels, and solid floor wheels 

[73].  The standard rod wheels had a circumference of 550mm and 1.6mm metal rods spaced 

12 mm apart.  The remaining two wheels were modifications to this base wheel; either a 
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plastic mesh or solid plastic strip was placed around the outside of the wheel so the mice still 

came in contact with the rods.  In their preference test the mesh wheel was preferred over 

both the standard rod wheel and solid covered wheel.  This preference of a plastic mesh 

wrapped wheel over standard rods was also apparent in their hamster study [58].  Golden 

hamsters and plastic mesh wheels were also used by Beaulieu and Reebs with the primary 

goal of studying paw wounds [5].  Those animals given a plastic mesh wheel ran 24% less 

than those with metal rods but a few crucial differences existed.  Beaulieu and Reebs 

attached their plastic mesh to the inside of the wheel so the paws came into contact with it 

and only one wheel was placed in each cage.  They attributed the reduced activity to an 

increased size and duration of paw wounds.  The plastic mesh allowed more of the paw to 

come into contact each step compared to the rod alternative.  These studies present an 

argument that wheel surface material does matter, specifically what is coming into contact 

with the animal’s paws. 

2.7 Temperature 

 Environmental factors such as temperature have been well documented with respect 

to physical activity performance in humans [16, 32, 43, 57].  As already reported there are 

physiological similarities between mice and humans so therefore the study of temperature’s 

effect on wheel running is valuable.  High temperatures have been shown to increase and 

decrease activity levels in different animals so specificity is required when making 

hypotheses [14, 33, 88]. 

 Warm-blooded animals have internal mechanisms to control their body temperature 

across any range of ambient temperature they may encounter.  At rest, hypothermia at low 

ambient temperatures is avoided by elevating metabolic rates, while decreasing metabolic 
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rates at high temperatures occurs if environmental temperatures are elevated [57].  In the 

context of exercise, humans preserve this trend of temperature control in part to prevent 

injury and in part due to the physical limitations of the human body.  In order to maintain an 

optimal homoeothermic environment, activity is decreased in hot temperatures to reduce 

endogenous heat production and the inverse happens in cold environments [16].  Vaanholt, et 

al. saw this trend reverse in both mice bred for high spontaneous wheel running activity and 

cage controls [88].  They hypothesized that the increased metabolic cost of thermoregulation 

at low ambient temperatures could be too great for high levels of activity, but had no 

explanation for the activity increase in high temperatures.  Campbell and Lynch saw a similar 

trend in Sprague Dawley rats; activity was not reduced when body temperatures were raised 

above the preferred thermal neutral zone of 27 to 30°C [14].  Yet a trend similar to humans 

was seen by male Wistar rats; as ambient temperature increased, wheel running decrease 

[33].  While not completely resolved, the preponderance of evidence indicates that ambient 

temperature affects wheel running.  

 Based on the current literature, a variety of factors can alter PA levels in mice.  Sex 

and strain have been widely studied with significant findings.  Out of these studies 

researchers are able to choose optimal subjects to examine the effect of different types and 

sizes of wheels on affect activity levels.  However studies with combinations of these factors 

often employ singly housed animals, which has been shown to modify physiological systems 

[3, 83].  Therefore group housing is a possible option to negate this isolation effect, which is 

currently being underused in the field.  Thus, the current study was designed to assess the 

impacts of housing density and wheel availability on physical activity levels in outbred 

SENCAR mice. 



14 

 

3. METHODS 

 

 Overview:  All procedures in this study were carried out according to federal 

regulations and after approval by the Texas A&M Institutional Animal Care and Use 

Committee (AUP 2013-0132). 

3.1 Experimental Mice 

Six female SENCAR outbred mice were purchased from the National Cancer Institute 

(Frederick, MD) and randomly numbered S1 to S6.  Female SENCAR mice were used as 

opposed to an inbred strain because the SENCAR strain (and females only) were being 

investigated in a larger project investigating the effect of dual housing, exercise, diet on 

mammary tumorigenesis.  Further, female mice are more active than male mice [50].  

After adequate acclamation time (≈1 week), four mice were randomly assigned to 

cages with one mouse per cage (S1-4) and a single metal running wheel with a solid surface 

and a circumference of 450cm was mounted in each cage. This single housing/ single wheel 

combination was designated as ‘1v1’.  The remaining two mice (S5/S6) were housed 

together, also with one metal running wheel of the same dimensions; this double housing / 

single wheel combination was designated as ‘2v1’. 

The running wheels were securely affixed to the top of the cage in order to allow free 

turning of the wheel and sufficient room for the mice to enter and exit the wheel at will.  

Wheel running measurements and set-ups followed techniques previously published 

repeatedly by our lab group [50].  Briefly, magnets were glued to each wheel and Sigma 

Sport BC500 computers were placed on top of each cage in alignment with the glued 

magnets.  These computers were calibrated to the running wheel size and distance (km) and 
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duration (mins) were recorded on a daily basis.  Distance was subsequently divided by 

duration of exercise to calculate the speed (m/min) of exercise.  With regard to the 2v1 

condition and to any cage that housed two mice at a time, we were not able to distinguish the 

individual distances run by the mice in the cage, as data were recorded per wheel. 

 After four weeks under these housing conditions S5 and S6 were split up into 1v1 

combinations and mice S1 and S2 were combined to form a 2v1 cage.  This was done in 

order to compare mice that had been singly housed under the 2v1 condition.  Two weeks 

later mice S3 and S4 were combined into a 2v1 cage - to further increase the sample size of 

this combination - while S5 and S6 remained in 1v1.  After an additional two weeks, an 

apparent decrease in total cage activity in the 2v1 condition (see Fig. 1) was noted, which 

may have been caused by a lack of available wheels (i.e. both mice wanted to run at the same 

time).  Thus, we introduced a third housing option, in which a second wheel of the same type 

was added to the cage, creating a two mouse-two wheel system, the 2v2 combination.  The 

2v2 option was introduced into the cages housing S1/S2 and S3/S4 mice while S5 and S6 

mice remained in the 1v1 condition. These combinations – 1v1 and 2v2 - were then carried 

out for the remaining seven months of the study. 

3.2 Procedures 

Mice were housed in a fully climate controlled animal housing facility equipped with 

a 12:12 light dark cycle.  Daily during the light cycle, between the hours of 6:00 AM and 

6:00 PM, the distance and duration on each cage computer were manually recorded.  

Recording times were taken during a six hour window of the light cycle.  Exact accuracy 

with time of recording was deemed a non-factor due to the general reduction of activity 

during the light cycle.  Bi-monthly the data was entered into a computer spreadsheet in order 
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to calculate daily distances, durations, and average running speeds.  During daily recordings, 

the status of each wheel-running apparatus was assessed to assure that proper magnet-sensor 

alignment was maintained and wheels rotated properly.  Data from periods in which the 

apparatus failed (e.g. magnet was chewed off, wheel came out of alignment, bedding was 

piled preventing wheel rotation) were removed.  Days when housing density changed were 

also marked in the data book to insure proper data tracking could be continued. 

3.3 Statistics and Analysis 

Initial activity indices between 1v1 and 1v2 conditions were compared using a two-

way ANOVA with week and housing condition as factors.  The alpha value was set at 0.05 a 

priori.  Post hoc analysis (Tukey) was conducted if significant main effects were observed.  

Overall differences between housing/wheel conditions were compared using a 1-way 

ANOVA with housing/wheel condition as the factor.  Given that we could not determine how 

much activity each mouse in the double-housed wheels completed, the data was analyzed by 

wheel; i.e. cages with two wheels in them had activity values averaged within cage that 

resulted in two equivalent wheel values within each cage.  The alpha value was set a priori at 

0.05.  Wheel preference analysis was conducted by averaging the activity index across the 

total time of observation in the animal groupings that had two wheels mounted in the cage 

(S1/S2 and S3/S4) and comparing these indices within cage.  Thus, an overall comparison of 

right vs. left-mounted wheels was determined using a paired t-test.  The alpha value was set a 

priori at 0.05.  Further analysis of wheel preference was conducted by subtracting daily 

distances, duration, and speed observed on the right wheel from the left wheel within each 

cage.  These wheel preference differences were then fit with the equation that resulted in the 

best fit.  To investigate potential factors increasing wheel running variance across the study, 
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we randomly selected a 14 day period in which complete distance data was available for all 

animals (i.e. there were no wheel-malfunctions during this period).  We compared the 

distance the animals ran between the housing conditions 1v1 and 2v2 using a one-way 

ANOVA with the alpha value set at 0.05 a priori. 
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4. RESULTS 

 

Figure 1 shows the running distances of the original experimental set up (1v1 vs. 

2v1). Values are represented per cage as opposed to per wheel because all cages had only one 

wheel.  While time in these combinations is limited (n= 24-28 days), there was a significantly 

longer distance ran by the mice in the 1v1 cages overall (p < 0.0001), specifically for weeks 

three and four (p < 0.0001).  It is important to note however that data for the 2v1 cage was 

limited to only three days during week four due to apparatus malfunction (i.e. magnet out of 

alignment or stuck wheel).  

After these initial results, as indicated in the Methods, we converted the 2v1 groups to 

the 2v2 configuration with a second wheel.  Figures 2-4 depict the three primary activity 

measurements (i.e. distance, duration, and speed) amongst all housing combinations over all 

days of observation.  The numbers of days of observation varied because of the varying 

length of time of use of the housing/wheel condition as well as the number of data points 

eliminated due to malfunctioning wheels.  Further, if there were not both valid distance and 

duration measures for a day, that day was eliminated from the analysis.  

Thus, the days of observation used in the analysis for each condition were:  1v1 = 506 

days of observation; 2v1 = 64 days of observation; and 2v2 = 316 days of observation.  

Overall, these data showed there was a significant effect of housing density and wheel 

availability on activity levels.  Relative to daily distance, 2v1 and 2v2 cages ran significantly 

less (p= 0.0001) per wheel than 1v1 cages (Fig. 2).  This decrease in daily distance between 

1v1 and 2v1 cages is in agreement with the data shown in Figure 1, supporting our initial 

hypothesis.  Likewise, daily duration ran per wheel in 2v1 cages was significantly less (p= 
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0.0001) than 1v1 cages, while 2v2 cages spent significantly less (p= 0.0036) time running 

than both alternative housing options (Fig. 3).  However 1v1 and 2v1 cages ran significantly 

slower (p= 0.0001) than 2v2 cages (Fig. 4).        

Mice S5 and S6 were housed in a 1v1 combination for the longest amount of time 

leading us to use their data to produce Figure 5.  Panels (a) and (b) present the daily distances 

ran by these mice caged as indicated for 3 to 10 months of age.  In both panels of Fig. 5, the 

periodicity of daily distances ran is marked by a low day, two rising days, and a final peak 

day to complete the four day cycle.  This rhythm has been previously established to be driven 

by the estrous cycle [68].  The second trend seen in these figures is the increase and decrease 

in wheel activity relative to age.  While the saw tooth pattern is still present in the latter half 

of the data set, both the peak and low days are decreased in magnitude compared to values 

recorded earlier in the lifespan of the mice.  These data agree with the current literature 

showing a decrease of activity in aging mice [87] as well as the estrous cycle-induced 

periodicity of activity [68].  

Figures 6-8 depict the lifetime total distance, duration, and average speed covered on 

the left and right wheels from S1/S2 (a) and S3/S4 (b) while housed in 2v2 cages.  As 

previously established both wheels were the same size, consisted of the same material, and 

attached to the cage in the same fashion.  The experiment was designed to avoid, as much as 

possible, introduction of any bias.  As shown in Figures 6-8, increased preference of mice in 

both cages for the left over the right wheel was observed, and this preference reached 

significance for distance (p < 0.0001), duration (p < 0.001), and speed (p < 0.0081).   While 

the distance run on the left wheel was significantly longer for both S1/S2 and S3/S4 cages, 

the preference in duration was primarily due to the S3/S4 cage (Figure 7).  Further, the 
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increased speed achieved with the left wheel, while statistically significant, was quite 

variable over the course of the experiment (Fig. 8) and thus, is of unknown physiological 

relevance.  

These analyses, Figures 6-8, used the cumulative distance and duration measurements 

from the cage computers.  In order to determine if this left-right preference changed over 

time the daily difference between wheels for distance, duration, and speed within each cage 

was analyzed (Fig. 9-11).  Figure 9 shows the daily difference in distance per wheel from 

S1/S2 (a) and S3/S4 (b) while housed in 2v2 cages.  As depicted in panel (a), cage S1/S2 

showed decreased left wheel preference over time (p< 0.0001).  These data produced a poor 

linear fit (r2= 0.15).  Daily distance between wheels in cage S3/S4 showed no significant 

difference along with a poor linear fit (p= 0.4664, r2= 0.0031).  Figure 10 presents duration 

values for the same groups and parameters.  Cage S1/S2 showed slight left wheel preference 

initially but trended toward the right wheel overtime.  However more time was still spent on 

the left wheel, reaching statistical significance (p= 0.0062, r2= 0.05).  Similar to the distance 

data, cage S3/S4 showed no significant duration difference between wheels over time (p= 

0.9287, r2= 0.000047).  While both cages produced significant fits for speed (Figure 11, p< 

0.0001), the physiological relevance of these data is suspect due to the poor fits (r2= 0.1967, 

r2= 0.1235, respectively).        

In order to assess a potential cause of the large variance seen in many of our analyses, 

a randomly picked 14 day period with complete data sets (e.g. distance, duration, speed) was 

chosen for more detailed comparisons of the distance ran in the 1v1 and 2v2 configurations 

(Fig 12).  Using this 14-day period taken at ~7 months of age, differences in activity due to 

aging should be eliminated from calculation, leaving the effects of estrous cycle.  We 
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observed no significant difference (p= 0.067) between distances ran in 1v1 and 2v2 cages 

during this two-week period.  Further, we observed that while the standard deviations were 

smaller than those seen in the overall comparisons (Fig. 2), they were still approximately 

twice as large in the 2v2 condition as it was in the 1v1 condition; a similar proportionality in 

standard deviation was also present in the overall data.   
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5. DISCUSSION 

 
 

 The aim of this study was to compare how various factors, principally housing 

density and wheel availability would affect physical activity levels in outbred SENCAR 

mice.  With a standard 1v1 housing combination, the average daily distance ran by these 

mice was close to, or slightly more, than inbred mice labeled as “high active” [24, 28, 50].  

Relative to this housing method, our data would place the SENCAR strain in the top 15% in 

daily distance ran for mouse strains as established by Lightfoot et al. [50].     

 The SENCAR mice were chosen for the mammary tumorigenesis experiments 

because of the increased sensitivity to carcinogen [18, 29, 67], having been shown to be 10 to 

20 times more sensitive to tumor initiation than CD-1 control mice [77].  Our voluntary 

wheel running model provides novel activity data with respect to outbred mice in general, 

and the SENCAR strain in particular.   

 Mice and other rodents are generally nocturnal, and the majority of their running is 

done at night [37, 41, 79]; however we observed running tendencies during the light cycle in 

response to daily tasks.  When situations required the temporary removal of a wheel (e.g. 

damaged wheel replacement, computer realignment) the mice often would have to be 

physically removed from the wheel with clear resistance to this act.  Upon reintroduction of 

the wheel the mice would immediately enter and begin running.  This tendency was more 

apparent in the higher active cages but could be seen throughout the study across all animals. 

 Based on the 1v1 activity levels seen in this strain, we anticipated that there would be 

a decreased activity in the 2v1 combination due to competition for the wheel or higher levels 

of play outside the wheel. Indeed, our early results (Fig. 1) showed that the 2v1 animals were 

less active.  This trend held throughout the entirety of the study; mice in 2v1 cages ran 
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significantly shorter distances and for less time, compared to 1v1 cages. These results lead us 

to propose that the mice could be competing for time on the wheel. However, with the 

addition of a second wheel to avoid this competition, distance and duration actually went 

down, and only speed/day increased.  When comparing the 2v1 and 2v2 configurations, 

distance in 2v2 cages was not different from 2v1 while duration actually decreased.   

 The addition of a cage mate altered total wheel running more than wheel availability.  

A potential mechanism underlying this decreased activity could be linked to increased cage 

activity outside of the wheel.  Supporting this speculation is our anecdotal observations that 

during daily recordings often one mouse was seen entering a wheel to run which was shortly 

followed by the second mouse jumping on the same wheel.  At first this observation might be 

seen as a mechanism to increase activity yet this attempt to simultaneously run, seen in both 

2v1 and 2v2 cages, quickly lead to both mice falling off the wheel.  After this occurrence the 

mice often continued to play/chase each other around the cage.  The addition of a cage mate 

most likely increased total ambulatory activity but decreased activity on the wheel.  This 

occurrence was observed during the light cycle, when activity is minimal, so further studies 

are necessary to elucidate what occurred during the dark cycle.  

 In high active inbred strains (e.g. C57L/J, [50]), normal variance in female mice 

during the high active period (9-12 weeks of age) is approximately 2.7 km/day.  However we 

saw variances of 3.35-4.02 km/day across all housing combinations, leading to the 

conclusion that there are several potential factors responsible for the high level of variability 

observed in this study: 1) the mice used were an outbred strain with increased genetic 

heterogeneity; 2) PA was measured over a seven-month period, and it is well-established that 

activity levels decrease significantly across the lifespan in mice [87]; and 3)  Part of the 
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observed variability also could be due to the effect of the estrous cycle on activity in the 

mice.  All mice were female and ran from six weeks to 10 months of age. Therefore the PA 

was initiated in the prepubertal period, and continued into sexual adulthood, including the 

well documented peak activity period (9-12 weeks of age) [82]   as well as the period of 

reduced activity associated with aging [87], as observed in Fig. 5. 

 While our protocol was not designed to study wheel choice preference by the mice, 

some preference was surprisingly observed. All wheels used in this study were constructed of 

identical solid metal, with a circumference of 450mm. Therefore, there was no innate 

difference between the wheels in the 2v2 combination other than location within the cage, yet 

significant preference was seen for the left wheel across all major variables (i.e. distance, Fig. 

6; duration, Fig. 7; and speed, Fig. 8). Due to the limitations of the design we cannot 

determine the individual distances run by each mouse, only how much each wheel was being 

used.   

 The 2v2 cages averaged five hours of running on each wheel per night, totaling ten 

hours per cage.  Based on being active primarily during the 12 hour dark cycle, and allotting 

time for lifestyle tasks (e.g. sleeping, eating, nest building), it seems highly unlikely that 

these activity levels were accomplished without the wheels being used at the same time.  

Additionally, while the speed index (Fig. 8) was noted to be significantly higher for the left 

wheel, upon examination of the patterns, it can be seen that this was variable and in fact, 

when considering how much difference in speed there was between the two wheels on a daily 

basis (Fig. 11) these differences appear to not be physiologically significant.  The same can 

be said for the results depicted in Figures 9 and 10.  While cage S3/S4 showed a daily 

preference for the left wheel, the fit was poor and significant was not reached.  Adding in the 
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variable preference seen in cage S1/S2, increased right wheel preference overtime, it is 

difficult to make a solid claim for these data.  Thus, while there were significant differences 

across all metrics between the wheels within each cage, with the left wheel generally being 

preferred, it is unclear as to the physiological relevance of these observations.  

 The act of learning acquisition could play a role in the root of this wheel preference.  

Spatial learning occurs via specialized place cells in the hippocampus, a different pathway 

than other types of learning [47].  Extinction of a learned task leads to suppression rather 

than a complete removal [47].  Therefore with reference to our mice, the initial left wheel 

preference seen in Figures 9 and 10a could potentially be brought back with proper training.  

Amongst other comparisons, Rogers et al. determined that spatial preference was related to 

lateral paw preference, a measure of ‘handedness’ in mice [71].  Multiple studies link these 

various preference tests to dopamine levels and associated arousal [31, 71, 93].  Of these 

papers, Glick et al. showed a link in rats between dopamine imbalances and spontaneous 

rotation within the cage [31].  Combining these variables together depicts an argument for 

the amount of circulating dopamine, which along with wheel activity is highest during the 

dark cycle [71, 79], leading to the learned preference of one wheel over the other.         
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6. SUMMARY

In conclusion, various factors such as strain, housing density, and number of available 

wheels can alter wheel-running in mice.  Until this study, wheel running had not been studied 

in outbred SENCAR mice.  Our study shows that when compared to PA data from other 

strains, SENCARs would be considered highly active mice.  Further, we observed the 

expected periodicity reflecting the estrous cycle in our SENCAR female mice that were 

provided voluntary wheel access for an extended period of time.  Additionally, the housing of 

two mice in the same cage significantly decreased activity levels, regardless of wheel 

number.  The observed decrease in distance can be primarily attributed to decreased time 

spent running, as the speed of exercise actually increased when 2 animals were co-caged. 

Surprisingly, we observed that mice housed with two wheels showed a preference for 

exercise on the left wheel; this preference was unexpected and it is unknown why mice may 

have a preference.  Therefore, our study illustrates that these variables must be considered in 

order to maintain the ability to translate conclusions to human application for activity based 

health interventions.       
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