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ABSTRACT

Accurate prediction of wave environment is critical to the design of ports, har-

bors and coastal structures. In this dissertation, two advancements for existing

phase-resolving models based on elliptic mild-slope equation (EMSE) are proposed.

First, an approach is developed to simulate wave-wave interactions using nonlinear

elliptic mild-slope equation in domains where wave reflection, refraction, diffraction

and breaking effects must also be considered. This involves the construction of an

efficient solution procedure involving effective boundary treatment, modification of

the nonlinear equation to resolve convergence issues, and validation of the overall ap-

proach. For solving the second-order boundary-value problem using finite difference

method, the Alternating Direction Implicit (ADI) scheme is employed, and the use

of approximate boundary conditions is supplemented, for improved accuracy, with

internal wave generation method and dissipative sponge layers. The performance of

the nonlinear model is investigated for a range of practical wave conditions involving

reflection, diffraction and shoaling in the presence of nonlinear wave-wave interac-

tions. In addition, the transformation of wave spectrum due to nonlinear shoaling

and breaking, and nonlinear harbor resonance inside a rectangular harbor are sim-

ulated. Numerical calculations are compared with the results from other relevant

nonlinear models and experimental data available in literature. Based on these re-

sults, a methodology is then developed which can be used to advance the existing

finite element models to include wave-wave interaction effects. The finite element

model developed in this study is applied to simulate nonlinear wave transformation

inside Ponce de Leon Inlet, FL. Results show that the methodology developed here

performs reasonably well, and has thus improved the applicability of this class of
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wave transformation models.

Second, a generalized expression for the three-dimensional radiation stress tensor

(RST) is derived from first principles. Computation of vertically-dependent RS using

this expression requires prior knowledge of the complex velocity potential obtained

from phase-resolving wave models based on linear wave theory. As such, this rep-

resents a generalization of the vertically-integrated (2-D) RST proposed by Bettess

and Bettess (1982) and is applicable to arbitrary linear wave fields. It can there-

fore be used to simulate 3-D wave-induced flow fields in harbors and coastal regions

where the presence of structures and bathymetric irregularities may cause reflection,

diffraction, breaking and focusing (caustics). To investigate the performance of the

generalized formulation, a 3-D coupled current-wave system is developed which in-

volves a wave prediction model (based on elliptic mild-slope equation) and a 3-D

circulation model that uses the generalized RST. The coupled system is then applied

to three different cases involving wave propagation over a sloping beach, a standing-

wave case, and wave interaction with a shore-parallel breakwater. Numerical cal-

culations of the wave-induced set-up/down and the 3-D current fields are compared

with analytical results and experimental data available in literature. Results show

that the approach developed here performs reasonably well and has a wide range of

applicability. In addition, the existing (2-D and 3-D) radiation stress formulations

are shown to be the special cases of this generalized form, which is further used to

develop an analytical expression of 3-D RST for full/partial standing waves over flat

bottom.
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1. INTRODUCTION, LITERATURE REVIEW AND OBJECTIVES

1.1 Context

Accurate prediction of wave environment is critical to the design of ports, har-

bors and coastal structures. While harbors are important hubs for commercial,

naval, social and cultural activities, nearshore regions contribute to the growth of

local and state economies. With an ever increasing demand for harbor expansions

and nearshore constructions, engineers are often challenged to provide robust infras-

tructure for the safety and efficiency of harbor and nearshore operations. Studies

involving physical and mathematical models are often conducted simultaneously to

ensure the feasibility of the proposed designs. For design projects, two physical

quantities of major concern are wave field and the associated wave-induced flow

field (currents and setup/down). For example, big waves inside harbors may disturb

harbor tranquility which can cause operational difficulties, and the wave-induced

currents in nearshore regions and near harbor entrances may lead to the problems

associated with sediment transport, erosion, scouring, etc.

Reliable modeling of waves and circulation pattern in harbors and nearshore

regions is often obtained using numerical techniques; however, sometimes these do-

mains challenge modelers with a variety of difficulties. For example, as shown in

Fig. 1.1, arbitrarily-shaped coastlines, harbor walls, artificial structures like break-

waters present in harbors may cause significant wave transformation due to reflection,

diffraction, refraction, breaking and focusing. In addition, the incident waves may

represent a spectrum of wave frequencies, and the mechanism of wave-wave inter-

actions may generate new harmonics which may trigger harbor resonance and, as a

consequence, may damage mooring lines and disrupt vessel operations in harbors.
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In this dissertation, two significant advancements for existing phase-resolving

models based on elliptic mild-slope equation (EMSE) are proposed. The phase-

resolving nature of these elliptic models allow them to handle complex domains

(with reflection, diffraction, etc.) similar to the one shown in 1.1. Precisely, these

two advancements are related to the simulation of nonlinear wave-wave interactions

and the computation of vertically-varied wave-induced forcing using elliptic models.

A detailed description of these advancements, motivation for this research, research

objectives and the organization of the dissertation are provided in this chapter.

1.2 Nonliear Wave-Wave Interactions and Elliptic Equation

The linear elliptic mild-slope equation [1, 2] has been utilized for a wide range

of applications that require reliable simulations of wave phenomena such as refrac-

tion, diffraction, and reflection from bathymetric features and structures. Exten-

sions of this equation have also been developed to incorporate steep-slope effects

[3, 4], floating docks [5], and nonlinear mechanisms such as wave-current interac-

tion [6], wave breaking [7] and amplitude dispersion [8]. In the last few decades,

harbor wave models developed using the elliptic equation (e.g. PHAROS, HARBD,

MIKE21-EMS, CGWAVE, etc) have found increasing use in practice. While other

phase-resolving models such as Boussinesq models can also simulate the mechanisms

mentioned above, the elliptic equation automatically spans the full range of water

depths of concern in engineering applications, enabling it to readily handle short as

well as long wavelengths with generally less susceptibility to numerical and other

problems, such as those noted by Walkley and Berzins [9] for harbor applications.

In addition, unlike its “parabolic approximation” [10], the elliptic equation places

no limitation on the angle of wave incidence or the degree and direction of wave

reflection and scattering. Thus elliptic equation models have been applied to Los
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Angeles/Long Beach harbor [11], Douglas Harbor [5], Venice Harbor [12], etc. and

in nearshore regions around submerged as well as surface protruding structures like

piers and breakwaters (e.g. [13]).

Their widespread usefulness notwithstanding, one major limitation of these el-

liptic mild-slope equation models is that the governing equation (with or without

extensions mentioned above) is rooted in linear theory; hence they completely ignore

wave-wave interactions. Even some spectral wave propagation studies (e.g. [14, 7])

conducted using these models have relied on simple linear superposition of the wave

components. However, nonlinear wave-wave interactions, which, in general, involve

transfer of energy and wave phase coupling among spectral components, are known to

be quite significant especially in shoaling regions [15]. In fact, data from [16] suggest

that the higher harmonics generated through such interactions can have amplitudes

larger than the incident primary harmonic even in simple cases. In harbors, nonlinear

interactions may contribute significantly to resonance [17, 18]. As mentioned earlier,

harbors with large natural periods can be excited by long period waves, resulting

in potential damage to mooring lines, fenders, and piers, and undesirable vessel mo-

tions. The primary source of the generation of these long period waves sometimes

is the nonlinear interaction (between short-period waves) which occur in shallower

regions in the vicinity of harbor entrances. Eventually both short-period as well as

long-period waves get trapped and amplified inside the harbor.

In the past, nonlinear oscillations inside harbors have been modeled in an ad

hoc manner or using application-specific approaches, for example, by decomposing

the domain into separate regions and selecting an appropriate model for each sub-

domain. Rogers and Mei [17] applied linear theory in the deep-water part of their

domain and the conventional shallow-water equations (including wave-wave interac-

tions) inside the harbor region. Similarly, U.S. Army Corps of Engineers developed

3



the Infra-gravity Wave Toolbox (IGWT) to couple a linear elliptic model (for the

harbor interior) with a one-dimensional Boussinesq model (for the exterior region).

The one-dimensional model (which includes waves generated via nonlinear interac-

tions) in the IGWT provides the input for the linear elliptic model, which then

simulates oscillations inside the harbor, one frequency at a time, neglecting the pos-

sibility of nonlinear interactions inside the harbor [19]. Besides being cumbersome,

the reliability of such methods cannot be assured because they clearly do not cou-

ple the solutions in the sub-domains; rather, one sub-domain merely provides an

approximate input to the other.

To overcome these limitations and to provide a basis for the effective modeling

of nonlinear wave transformation in complex coastal and harbor environments, we

consider the second-order nonlinear extension of the original mild-slope equation

[20, 21]. Although this extension includes wave-wave coupling, this elliptic nonlinear

mild-slope equation (hereafter referred to as ENMSE) has linear characteristics (i.e.

fully-dispersive) of the original mild slope equation, and hence would be applicable

(like the linear elliptic model) to a wide range of practical wave conditions and water

depths. Solutions with this approach have in fact been obtained in the past [20, 21,

22] but recourse was made to the parabolic approximation. This approximation is

certainly computationally effective because it reduces the order of all (or some of)

the highest-order derivatives. However, it is suitable only when (1) waves propagate

along a principal wave direction, and wave diffraction in this direction is negligible;

(2) the reflected or backscattered component of the wave is negligibly small; and

(3) wave amplitudes vary slowly in space. This approach is thus not suitable to

domains where structures and arbitrarily-shaped geometries (as found in harbors)

may generate reflected or back-scattered waves, or may violate the assumption of

slowly-varying amplitudes. In fact, one such difficulty has already been reported [20]
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while modeling one nonlinear wave shoaling scenario.

In this study we attempt the development of a model based on the ENMSE

(i.e. without invoking any simplifying approximations) and explore the difficulties

that may arise while eventually tackling domains of complex shape. Solution of the

ENMSE, owing to the high degree of nonlinearity in some cases, can pose several

problems associated with convergence, boundary conditions, etc. which must be

addressed.

1.3 Generalized Three-dimensional Wave-induced Forcing

Many theoretical, analytical and experimental studies pertaining to wave-induced

circulation in nearshore regions have been conducted over the last few decades. Most

of these studies have utilized circulation models based on the vertically-integrated

(2DH) Navier-Stokes equations, and, commensurately, the wave-induced forcing was

obtained from the vertically-integrated (2-D) radiation stresses (e.g. [23], [24], [25]).

Although these models have been applied successfully to simulate wave-induced

nearshore processes (e.g. longshore currents, rip currents, beach evolution and mor-

phology), they are not appropriate for applications in which reliable prediction of

the vertical structure of flow field is critical. Therefore, recent years have seen a

significantly increased use of 3-D flow models (e.g. POM, EFDC, ROMS, CH3D,

Delft3D) in coastal engineering applications. Note that two types of formulations

are used to incorporate the wave-induced effects in flow models: (1) radiation stress

formulations, and (2) vortex-force formulations. The first category formulations are

used with the flow equations given in terms of Lagrangian velocities (e.g. in POM

and EFDC models), and the wave-induced forcing in these equations appears as the

divergence of radiation stresses. In contrast, the vortex-force formalism appears (as

a vortex force and a Bernoulli head) in the flow equations given in terms of Eule-
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rian velocities (e.g. in ROMS model). Both approaches have been found to perform

satisfactorily by Moghimi et al. [26] and Kumar et al. [27, 28], who compared wave-

induced quantities obtained using both types of formulations for a number of appli-

cations. In addition, Lane et al. [29] stated that the two formulations are formally

equivalent. In the present study, we focus only on the first category of formulations.

More details regarding the vortex-force formulations can be found elsewhere in [30]

and [31].

With regards to the radiation stress formulations, Xia et al. [32] and Mellor [33]

suggested that the use of 2-D RST with 3-D flow models is inadequate, and therefore

they extended the concept of the conventional 2-D RST into three dimensions. Re-

cently, Sheng and Liu [34] also reported inconsistencies in the flow pattern simulated

using the 2-D RST with a 3-D flow model for the cases of wave propagation over a

reef and a sloping beach.

In the pioneering work of Mellor [33], an expression for the vertically-dependent

(3-D) RST was proposed while deriving a closed set of equations for 3-D wave-current

interactions. Some inconsistencies in their RS formulation were reported by Ardhuin

and Bennis [35]; Mellor [36, 37, 38] later addressed these inconsistencies and corrected

their original RS formulation by using a more accurate expression for the pressure

term which was not treated properly in [33]. Mellor [38] also emphasized that the

vertically-integrated form of M11 is consistent with [23] and [39]. (The corrected

formulation in [37, 38] hereafter referred to as M11). Despite some ongoing debate

(e.g. [27], [40], [26]) regarding the accuracy of M11 in shoaling regions, it has been

used satisfactorily with 3-D circulation models for a broad set of practical applica-

tions (e.g. [41], [42], [34], [27], [43]). Recently, Mellor [44] proposed a modification

to M11 in unpublished works. (The modified M11 hereinafter referred to as M13).

Unlike M11, the M13 formulation has not been thoroughly validated against field or
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experimental data. Although Mellor [45] applied it to a hypothetical case of a slop-

ing beach with no wave breaking and found good agreement between the modeled

and analytical set-up/down results, they did not discuss the accuracy of the modeled

velocity field.

Apart from M11 and M13, an expression for 3-D RST tensor (hereafter L04) was

derived by Lin [46]; the treatment of pressure term in their work differs from the one

used by Mellor [37] in the derivation of M11. Another formulation for 3-D RST was

derived by Xia et al. [32] using an entirely different approach; however, in a detailed

study by Sheng and Liu [34], severe anomalies (e.g. spurious undertow profile over a

sloping beach) were reported in the modeled flow field computed using the approach

of [32].

While the above developments aim to extend the 2-D RST into 3-D, it should

be noted that, like other related works (e.g. [47]) they all are limited to purely pro-

gressive wave fields, and the formulations are best suited for phase-averaged models.

As a result, their applicability in regions of wave reflection, diffraction and caustics,

especially in the presence of structures and bathymetric irregularities, is question-

able. Such situations are often encountered in practice. For example, in the presence

of breakwaters and seawalls, partial or full standing waves lead to the formation of

equilibrium scour/deposition profiles ([48], [49], [50], [51]) and beach cusps ([52],[53]).

For such complex problems, [24] and [54] proposed, in 2-D, the relevant RSTs. These

RSTs have been used to simulate flow field around breakwaters (e.g. [55]). In the

context of 3-D RST, Zhang and Liu [56] did introduce a formulation for standing

waves; however, the derivation is based on the inconsistent approach developed by

Xia et al. [32] (mentioned above) and uses an erroneous expression for the pressure

term. In addition, their formulation pertains only to the strictly one-dimensional

standing wave cases. (See discussion later for more details).
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To overcome the above limitations, here we address the development of an expres-

sion for a “generalized” 3-D RST, i.e. a vertically-dependent formulation suitable for

an arbitrary linear wave field and applicable to complex domains where reflection,

diffraction, and focusing may not be ignored. Such a formulation is intended to be

consistent with phase-resolving models for which the wave potential Φ has the form

Φ = Re

(
φ(x, y)

cosh k(h+ z)

cosh kd
exp(−iωt)

)
(1.1)

where k(x, y) is wave number and is related to wave frequency ω and local depth

h(x, y) through the linear dispersion relation; d = h + η̂ is total water depth, and η̂

is set-up/down. Notice that similar to other notable works (e.g. [23], [36], [32]), the

vertical structure of the wave field in Eq. (1.1) is based on linear theory; however,

unlike previous works, no assumption regarding the nature of the complex potential

φ(x, y) in Eq. (1.1) is employed in the derivation of new generalized RST. Three

different approaches used in the derivation of M11, M13 and L08 are considered in

this study for deriving a new generalized formulation for 3-D RST.

In particular, the above expression for Φ (Eq. 1.1) is consistent with elliptic

models based on the standard mild-slope equation of [1, 2]. Such models have been

utilized for a wide range of harbor and coastal engineering applications that require

simulation of wave transformation around structures and in arbitrarily-shaped do-

mains. Being inherently fully-dispersive, they are applicable to all water depths,

enabling them to readily handle short as well as long wavelengths. The generalized

expression for the “vertically-integrated” (2-D) RST, which was derived by Bettess

and Bettess [24], is consistent with Φ obtained from elliptic models, and the new

formulation described here may be considered as a 3-D extension of their formula-

tion. In fact, by vertical integration of the generalized formulation, the formulation
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of Bettess and Bettess [24] (herein referred to as BB2D) is recovered. Moreover, the

new formulation transforms to M11 for a progressive wave field over a flat bottom.

Finally, it can also be used to derive new analytical expressions for the 3-D RST in

cases of full/partial standing waves in 1-D for which the wave field φ(x, y) is available.

Despite these advantages, the generalized 3-D RS formulation, unlike the M11,

involves the computation of second-order derivatives which can perhaps be a source

of numerical errors. Such an issue was raised by Dingemans et al. [25] with regards

to the 2-D generalized RS formulation of Bettess and Bettess [24] which also involve

the computation of second-order derivatives. Therefore, to investigate the behavior

of the new generalized formulation, and to address this issue of numerical errors, we

consider the coupling of an elliptic model with a 3-D circulation model and a depth-

integrated (2-D) circulation model to simulate wave-induced setup/down current

field in complex scenarios discussed above. The results obtained using the BB87,

and an alternative approach proposed by Dingemans et al. [25] (hereafter reffeblack

to as D87) which ignores the computation of higher-order terms in the BB87 are also

included for comparisons in some cases.

1.4 Research Objectives and Dissertation Outline

1. The first objective here is to develop a finite element model based on the EN-

MSE which is capable of simulating nonlinear wave transformation in complex

harbor domains and nearshore regions. This objective will be accomplished in

a systematical manner by completing the following list of tasks:

• For a preliminary investigation of the ENMSE, a finite difference model is

first developed using an efficient and unconditionally-stable Alternating

Direction Implicit (ADI) scheme. The numerical problems associated with

convergence, iterative procedure, etc. (owing to the nonlinearities) are
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then addressed.

• An effective method for boundary treatment is developed which involves

the internal generation of waves using source function method and wave

absorption using dissipative sponge layers.

• The numerical model together with the boundary treatment method is

then validated by simulating wave environment for a variety of practical

wave conditions encounteblack in harbor and nearshore regions.

• Next, a framework for the development of a finite element model based on

Galerkin formulation is proposed, and an effective algorithm for numeri-

cal solution is designed that can be used to extend existing linear finite

element mild slope models to incorporate nonlinear wave-wave interaction

effects.

• The finite element model with the above mentioned boundary treatmnet

method is then validated using test cases and is applied to simulate non-

linear wave transformation for a field case of Ponce de Leon Inlet located

in Florida.

2. The second objective is to design a mechanism that can be used to simulate 3-D

wave-induced flow field in regions with significant wave reflection, diffraction

and focusing effects. This will be achieved in the following manner:

• A new formulation for generalized vertically dependent wave RST is first

derived using first principles. The generalized formulation is applicable

to an arbitrary linear wave field (including reflection, diffraction effects)

obtained using elliptic models.
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• A coupled system of an elliptic model and a 3-D flow model is then devel-

oped which can be forced with vertically dependent wave-induced forcing

and can simulate wave-induced setup/down and current field in complex

scenarios.

• Finally, the coupled system with the generalized vertically dependent wave

RST is applied to a number of application involving breakwaters and

sloping beaches.

Introduction and literature review will be provided in Chapter 1. A brief back-

ground on linear elliptic models and the second-order ENMSE will be given in Chap-

ter 2. This chapter will also describe well-accepted boundary treatment method for

linear elliptic models, newly proposed boundary treatment method for the nonlinear

model, convergence issues with the ENMSE, and the derivation of an alternative

equation with improved convergence. Chapter 3 will include the development of

a finite difference model which is consideblack for the preliminary investigation of

ENMSE by simulating nonlinear wave transformation in a variety of cases. The de-

velopment of a finite element model including an iterative solution scheme will be

discussed in Chapter 4. Next, The new generalized 3-D formulation for vertically

dependent RS is derived from first principles in Chapter 5; its expression in terms

of the complex surface elevation φ from the elliptic models will also be presented in

this section. In addition, the new generalized formulation will be related to other RS

formulations (e.g. Mellor, 2008; Bettess and Bettess, 1987; Dingemans et al., 1987;

Longuet-Higgins and Stewart, 1964), and a new expression for vertically-dependent

RS for a standing wave case will be derived. A brief discussion pertaining to the

salient features of the 3-D circulation model used in this study will be provided in

Chapter 6. The suitability of some relevant formulations with the coupled system of
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elliptic model and the 3-D circulation model is next examined in Chapter 6 by simu-

lating wave-induced circulation for a series of test cases involving wave reflection and

diffraction effects. A brief discussion about the physical mechanism of wave-induced

circulation, and the results of wave-induced setup/down and current field are also

included for these test cases. Finally, the conclusion and the recommendations for

future work are provided in Chapter 7.
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2. LINEAR AND NONLINEAR ELLIPTIC MILD SLOPE EQUATION

Phase-resolving wave models, as discussed earlier in Chapter 1, are well suited

to domains with complex bathymetric and geometric features where the effects of

wave diffraction and reflection can be important. These mass-balance models are in

general based on water wave boundary value problem for inviscid and irrotational

wave motion given by

(2.1)∇h
2φ+ Φzz = 0; −h ≤ z ≤ η̃,

(2.2)Φz = −∇hh.∇hΦ; z = −h,

(2.3)gη̃ + Φt +
1

2
(∇hΦ)2 +

1

2
(Φz)

2 ; z = η̃,

(2.4)η̃t − Φz +∇hη̃ · ∇hΦ = 0; z = η̃,

where the Cartesian coordinate system (x, y, z) is located on the still waver level

(SWL), with z measured positive upwards from the SWL; Φ denotes three-dimensional

complex wave potential; η̃ denotes surface elevation; ∇h is the gradient operator in

the horizontal Cartesian coordinates (x, y); g is the acceleration due to gravity; and

subscripts denote differentiation.

This dissertation focuses mainly on the phase resolving models based on elliptic

mild slope equation. The linear form of this equation was first proposed by [1, 2] and

has since been utilized for a wide range of applications. A second-order extension of

this equation [20, 21] was later proposed to incorporate triad wave interaction effects.

In this chapter, we first briefly discuss some relevant features of the linear mild slope

models, and later we discuss the second-order ENMSE, an alternative equation with

improved convergence, and a new method for boundary treatment.
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2.1 Linear Elliptic Wave Models

The standard mild-slope equation of Berkhoff [1, 2] is based on first-order (in ε

= ka (where k is wave number and a is a characteristic wave amplitude) trunca-

tion of vertically integrated water wave boundary problem given in Eqs. (2.1-2.4).

Some variants of this linear equation have also been developed to incorporate steep-

slope effects [3], and nonlinear mechanisms such as wave-current interaction [6], wave

breaking [7] and amplitude dispersion [10]. For nearshore regions, the wave-breaking

effects significantly alter the wave transformation and wave-induced circulation, and

the following extension (e.g. Booij, 1981; de Giro-lamo et al., 1988; Massel, 1992;

Isobe, 1999) which incorporates breaking effects in terms of a parameterized dissipa-

tion function is mostly used:

(2.5)∇h ·
(

CCg∇hφ̂
)

+
(
k2CCg + iωγ

)
φ̂ = 0

where C and Cg are phase and group velocity respectively; and γ is the parameterized

breaking dissipation factor; and φ̂ denotes two-dimensional complex surface elevation.

Note that Eq. (2.5) is valid under the mild-slope assumption |∇h|/kh ≤ 1. This

assumption can however be relaxed by incorporating the steep-slope effects ([3])

which allows Eq. (2.5) to handle slopes as steep as 1:2. The time-harmonic 3-D

complex velocity potential Φ is defined in terms of φ̂ using

Φ = Re

(
φ̂(x, y)

cosh k(h+ z)

cosh kh
exp(−iωt)

)
+ CC (2.6)

where CC denotes complex conjugate.
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The wave height (H), surface elevation (η̃) and wave propagation angle (θ) at all

grid locations is obtained from complex φ̂ using

H =
2ω

g

∣∣∣φ̂∣∣∣ , (2.7)

η̃ = −1

g

∂Φ

∂t
at z = 0 (2.8)

and

θ = arctan

(
∂s/∂y

∂s/∂x

)
, (2.9)

where s(x, y) denotes the phase of the complex surface elevation φ(x, y) and follows

the relation φ = (H/2)exp(is). Actually, the above expression for θ is valid only for

a progressive wave field; at locations where wave reflection, diffraction and focusing

occurs, the use of Eq. (2.9) may produce spurious results. In fact, in such situations

the wave propagation angle is not defined. The components of wave velocity (ũα, w̃)

and the dynamic pressure p̃d under waves is defined using the following relations

from linear wave theory:

(2.10)(ũα, w̃) = Re

(
∂φ̂

∂xα

cosh k(h+ z)

cosh kd
exp(−iσt), kφ̂sinh k(h+ z)

cosh kd
exp(−iωt)

)

(2.11)p̃d = ρωφ̂
cosh k(h+ z)

cosh kd
exp(−iωt)

where α, β denote horizontal coordinates.

For elliptic equation, many parameterizations for breaking dissipation factor γ

have been proposed [7] and have rigourously been verified against field data (e.g.

Larson, 1995; Kamphuis, 1994). Since the breaking dissipation factor, in general,

is a function of wave height which is not known a priori, Eq. (2.5) must be solved
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using iterations. The performance of some of these breaking models with the elliptic

equation was investigated by Zhao et al. [7] who developed an iterative technique for

implementing these breaking models with the elliptic equation. A similar technique

is used in this study to obtain numerical solution; more details regarding the iterative

procedure and the convergence issues are discussed in [7].

2.2 Boundary Conditions

A typical coastal domain, on which the elliptic equation (Eq. 2.5) is solved, is

shown in Fig. 2.1. For the completeness of the boundary-value problem, two types of

boundary conditions: (1) along coastlines and structural boundaries, and (2) along

the artifical open-ocean boundaries are generally assigned. Mathematical details

regarding these boundary conditions are also provided in [11, 7]. A short description

regarding the boundary conditions at closed and an open-ocean boundaries (see Fig.

2.1) is provided here for use in later discussions.

2.2.1 Closed Boundary Condition

Model domains are enclosed by closed boundaries represented by arbitrary shaped

coastlines or surface-penetrating structures like breakwaters, jetties, pier legs, sea-

walls, etc. Along closed boundaries, the following condition has mostly been used:

∂φ̂

∂n
=

(
1−Kr

1 +Kr

)
φ̂ (2.12)

where n is the normal directed outward to the boundary and Kr is the reflection

coefficient which varies between 0 and 1. Kr = 1 represents perfectly reflecting

boundary, whereas Kr = 0 corresponds to a fully-absorbing boundary.
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2.2.2 Open Boundary Condition

Along the open ocean boundary, denoted by a semi-circle or a full outgoing waves

must leave the domain. The open boundary condition which is based on parabolic

approximation is given by:

∂φ̂

∂r
+ pφ̂+

∂2φ̂

∂θ2
= 0 (2.13)

where

p =
k2r2 +K2

0r
2 + ik0r + 1/4

2ik0r2
;

q =
1

2ik0r2
;

and k0 can be computed using the mean water depth along the open boundary.

As shown in Fig. 2.1, the elliptic equation applies in the domain, and the bound-

ary condition in Eq. 2.13 is applied only along the semi-circular or circular open

boundary.

2.3 Elliptic Nonlinear Mild-Slope Equation (ENMSE)

Starting from the fully-nonlinear boundary value problem for the inviscid and

irrotational wave motion, and using a Taylor series expansion about the still water

level (SWL) to second-order with parameter ε = ka (where k is wave number and a

is a characteristic wave amplitude), a nonlinear time-dependent wave transformation

model for the wave propagation over mildly-sloping depths was derived by Kaihatu

and Kirby [20]:
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Figure 2.1: Definition sketch of a typical wave model domain. (a) Open-sea problem;
(b) coastal/harbor problem.

.
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φ̃ntt −∇h · [(CCg)n∇hφ̃n] + ωn
2

(
1− Cgn

Cn

)
φ̃n

=
1

2

{∑
l

∑
m

[
ω2
l + ω2

m

g2

(
φ̃ltφ̃mt

)
t
− ω2

l ω
2
m

g2

(
φ̃lφ̃m

)
t

]

−
∑
l

∑
m

[(
∇hφ̃l · ∇hφ̃m

)
t
+∇h ·

(
φ̃lt∇hφ̃m

)
+∇h ·

(
φ̃mt∇hφ̃l

)]}
n

(2.14)

where ∇h is the two-dimensional gradient operator in the horizontal Cartesian coor-

dinates (x, y); and g is the acceleration due to gravity. Eq. (2.14) represents a set of

N coupled hyperbolic equations where the subscript n(= 1, 2, ..., N) represents the

nth frequency component. Cn and Cgn are phase and group velocity, respectively, for

the nth frequency component, whose expressions are given by linear wave theory; and

the complex time-dependent wave potential function φ̃n has an assumed relationship

with the resultant velocity potential Φ

(2.15)Φ(x, y, z, t) =
N∑
n=1

fn(z)φ̃n(x, y, t)

where z is the vertical coordinate starting at the SWL; and the wave angular fre-

quency ωn and the wave number kn for the nth frequency component are related

by the linear dispersion relation. The function fn(z) = cosh(kn(h+ z))/cosh(knh),

where h denotes water depth. A detailed derivation of Eq. (2.14) can be found in [20].

The notation {}n on the right hand side of Eq. (2.14) is due to the nonlinear coupling

(triad interactions) between component n and two other spectral components (l and

m). Using Eq. (2.14) along with time-harmonic wave behavior, i.e.

(2.16)φ̃n(x, y, t) =
φ̂n(x, y)

2
e−iωnt +

φ̂∗n(x, y)

2
eiωnt
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and using the definition of resonant triad interactions (to define a relationship be-

tween l, m and n)
(2.17)ωn = ± ωl ± ωm

Kaihatu and Kirby [20] obtained the following nonlinear elliptic model:

∇h · [(CCg)n∇hφ̂n] + k2
n(CCg)nφ̂n

= − i

4

[
n−1∑
l=1

2ωn∇hφ̂l · ∇hφ̂n−l + ωn−lφ̂n−l∇2
hφ̂l + ωlφ̂l∇2

hφ̂n−l

+
ωlωn−lωn

g2
(ω2

l + ωlωn−l + ω2
n−l)φ̂lφ̂n−l

]
− i

2

[
N−n∑
l=1

2ωn∇hφ̂
∗
l · ∇hφ̂n+l − ωlφ̂∗l∇2

hφ̂n+l + ωn+lφ̂n+l∇2
hφ̂
∗
l

−ωlωn+lωn
g2

(ω2
l − ωlωn+l + ω2

n+l)φ̂
∗
l φ̂n+l

]
(2.18)

The above equation (or the ENMSE) can be seen as the second-order nonlinear

extension of the standard elliptic mild-slope equation of Berkhoff et al. [1]. The

right hand side in Eq. (2.18) contains quadratic nonlinear terms (hereafter referred

to as QNLs). The same equation, in non-dimensional form, was derived separately

by Tang and Ouellet [21]. As noted earlier, the parabolic approximation has been

used in the past to obtain solutions; here we simulate nonlinear wave transformation

using the complete and more general ENMSE.

It is noted that the ENMSE is a system of nonlinear, second-order (both in x and

y), elliptic partial differential equations and requires conditions on all boundaries.

Therefore, the physical characteristics of the ENMSE differ from the parabolic mod-

els, which require no conditions on the “downwave” boundary. As a result, it requires

a different iterative procedure for the linearization (for numerical solution purposes)

of the nonlinear problem. In parabolic models, the solution marches from one row
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to the next, and solutions on the previous row are used to estimate the nonlinear

terms. Sometimes, for greater accuracy, the nonlinearities are “centered” between

the current row and the row for which the solution is sought; then, “estimates” of

the solution on the latter row are needed, resulting in an iterative process [21]. In el-

liptic models, the solution over the entire domain is obtained at the same time, and

the standard iterative procedure used to handle nonlinear mechanisms (e.g. wave

breaking in [7], wave-current interactions in [6]), requires all nonlinear parameters to

be predetermined (i.e. the equation is “linearized”) at all grid points based on the

previous iteration. This is somewhat comparable, in principle, to the latter scheme

used for parabolic approximations. However, even in the case of breaking, Zhao et al.

[7] found that this approach needed adjustment: a solution with no breaking created

large wave heights in shallow regions, which resulted in excessively large estimates

for the breaking parameters. As a result, the following solution yielded very small

wave heights, which led, in the following round, to (nearly) no breaking and large

wave heights, and eventually to an oscillating pattern. They resorted to averaging

the solutions to estimate the nonlinearities.

Obviously, the success of any iterative procedure depends on the magnitude of

the nonlinearities. To gage the likelihood of success of this general approach, the

one-dimensional form of ENMSE is used for a preliminary investigation. The one-

dimensional nonlinear equation, along with boundary conditions, was solved using

second-order finite differences. (Details regarding the boundary conditions are in-

cluded in Section 2.3). It was found that the ENMSE, when solved using the nonlin-

ear iterative procedure, encounters convergence problems even for the simple problem

of wave decomposition (into different harmonics) over a flat bottom (viz. the wave

tank experiments of Chapalain et al. [16]). The ENMSE failed to converge and

provide a stable solution. For this particular problem, analysis revealed that the
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convergence issue is most probably an artifact of the iterative procedure. For an aid

to comprehension, the modeled amplitudes of the four harmonics at the first and

third iteration are shown in Fig. 2.2. During the first step of the iterative procedure,

the QNLs are assumed zero, and the systems of equations is solved to obtain linear

“approximation” (see Fig. 2.2 ) of φ̂n. In the second step, the linear solution is used

to calculate QNLs, and the resulting boundary value problem is solved for the next

set of approximate solutions. However, in the third iteration, the QNLs for the first

harmonic, both analytically as well as numerically, are found to oscillate at a spatial

frequency of k1, which is exactly equal to the natural frequency of the first harmonic

(plots not shown for brevity). This resembles a resonance-like situation in harmonic

systems, and the solution for the first harmonic increases linearly with distance along

the wave tank (see Fig. 2.2) while other harmonics grow through wave interaction

effects. This increase is clearly nonphysical, since the total energy of the system

should be conserved. As a consequence, the solution diverges within the next few

iterations due to the incompatibility of the iterative scheme with the ENMSE.

To overcome this problem, either the above boundary-value problem must be

solved with a modified iterative procedure, or some suitable alterations must be

introduced in the governing equation Eq. (2.18). For this study, we consider latter

approach and derive an alternative equation in the following section.

2.3.1 An Alternative Approach

An alternative equation is derived from Eq. (2.5) by applying multiple-scale anal-

ysis, a perturbation technique used as a tool for solving weakly nonlinear problems.

In the framework of mild-slope equation based models, Li [58] used this approach

to derive an alternative (evolution-type) form of linear elliptic mild-slope equation.

Following Li [58], we introduce a slow time variable t̄ = εt so that the complex veloc-
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Figure 2.2: Convergence issues with ENMSE. (Top) Modeled amplitudes at first
iteration, and (b) modeled amplitudes at third iteration.

ity potential function in Eq. (2.5) now also depends on the slow variable t̄ as follows:

(2.19)φ̃n(x, y, t, t̄) =
φ̂n(x, y, t̄)

2
e−iωnt +

φ̂∗n(x, y, t̄)

2
eiωnt.

Given two distinct time scales t and t̄, the derivatives with respect to t (e.g [57]) in

Eq. (2.5) must now be replaced by

(2.20)
∂

∂t
→ ∂

∂t
+ ε

∂

∂t̄

and

(2.21)
∂2

∂t2
→ ∂2

∂t2
+ 2ε

∂2

∂t∂t̄
+ ε2 ∂

2

∂t̄2
.

Note that in comparison to the derivation by Li [58], Eq. (2.5) contains additional

complex nonlinear terms on the right-hand side which require careful treatment. By
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incorporating the definition of resonant triad interactions, we obtain a nonlinear

equation of the form

− ε2∂
2φ̂n
∂t̄2

+ 2iεωn
∂φ̂n
∂t̄

+∇h · [(CCg)n∇hφ̂n] + k2
n(CCg)nφ̂n

= {QNLs}n + {HOTs}n (2.22)

where, coincidentally, the derivation yields nonlinear terms on the RHS which are

identical to the ones described previously, and HOTs represent the higher-order

terms in O(ε2) or higher. Ignoring all the small terms of O(ε2) and higher and, for

convenience, replacing t̄ by t results in

(2.23)2iωn
∂φ̂n
∂t

+∇h · [(CCg)n∇hφ̂n] + k2
n(CCg)nφ̂n = {QNLs}n

which is an evolution-type nonlinear mild-slope equation that, in the linear case

(N = 1 and QNLs = 0), reduces to the evolution equation derived by [58]. Note that

Eq. (2.23) represents a system of N coupled nonlinear, parabolic partial differential

equations (parabolic in the sense of the two-dimensional heat equation), but it does

not inherit the limitations of the parabolic approximation of the elliptic mild-slope

equation. In fact, the steady-state form of Eq. (2.23) returns Eq. (2.18), and

when marched to steady state, Eq. (2.23) should provide a simulation of all desired

phenomena such as wave reflection, diffraction, refraction, wave-wave interaction, etc.

In addition, Eq. (2.23) should be considered as a pseudo time-dependent equation

which is different from hyperbolic time-dependent models (e.g. [54, 59]).

2.3.2 Surface Elevation

From linear theory, the first-order dynamic free-surface boundary condition

(2.24)Φt + gη = 0
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may be used to estimate the resultant time-dependent surface profile η using

(2.25)η(x, y, t) =
N∑
n=1

An(x, y)e−iωnt + CC

where φ̂n is the steady-state wave potential solution for nth frequency component,

and An is the corresponding complex wave amplitude expressed as

(2.26)An(x, y) =
iωn
g
φ̂n(x, y).

With nonlinear parabolic mild-slope models, it is noted that [20, 70] the first-order

approximation may lead to underestimation of wave energy transfer at higher fre-

quencies. A second-order correction for parabolic models was therefore derived by

Kaihatu [71]. Here, to derive a similar correction for the present model, we use the

second-order dynamic free-surface condition

(2.27)η = −1

g
Φt −

1

2g
(∇hΦ)2 − 1

2g
(Φz)

2 +
1

g
ΦtΦzt

and follow Kaihatu’s procedure to obtain a corrected expression for surface profile η

in the form:

(2.28)η(x, y, t) =
N∑
n=1

Bn(x, y)e−iωnt

where Bn is the corrected wave amplitude for nth harmonic given by

Bn(x, y) = An(x, y)

− 1

4g

[
n−l∑
l=1

∇hφ̂l · ∇hφ̂n−l +
ωlωn−l
g2

(ω2
l + ωlωn−l + ω2

n−l)φ̂lφ̂n−l

]

+
1

2g

[
N−n∑
l=1

∇hφ̂
∗
l · ∇hφ̂n+l −

ωlωn+l

g2
(ω2

l − ωlωn+l + ω2
n+l)φ̂

∗
l φ̂n+l

]
(2.29)

in which the second and the third terms on the right-hand side, which physically

represent the effect of triad interactions, arise from second-order terms in Eq. (2.27).
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Note that the definition of resonant triad interactions has also been utilized in the

derivation of Eq. (2.29) so that it is consistent with Eqs. (2.18) and (2.23).

The numerical modeling of Eq. (2.23) using finite difference method, the im-

proved convergence properties of Eq. (2.23), and the preliminary invesstigation of

this equation are discussed in the next chapter.
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3. PRELIMINARY INVESTIGATION USING FINITE DIFFERENCE MODEL

3.1 Finite Difference Model

To perform a preliminary investigation of the nonlinear equation, and to establish

a new method for boundary treatment, a finite difference model based on Alternating

Direction Implicit (ADI) scheme is developed. a discussion regarding The solution

procedure using this scheme, the boundary treatment method, and the investigation

of the model using a variety of test cases is presented in the subsequent sections.

3.1.1 Solution Procedure

Li [58] used the ADI scheme to solve an evolution-type mild-slope equation (the

linearized form of Eq. (2.23)). A schematic of the ADI scheme is shown in Fig. 3.1.

The finite difference discretization of the nonlinear equation in Eq. (2.23) for two

sweeps of the ADI scheme are given by:

−2iω

(
φ̂
n+1/2
i,j − φ̂ni,j

∆t/2

)
+ (CCg)i,j δ

2
xφ̂

n+1/2
i,j +

1

2
k2
i,jφ̂

n+1/2
i,j

+ (CCg)i,j δ
2
yφ̂

n
i,j +

1

2
k2
i,jφ̂

n
i,j + δxφ̂

n+1/2
i,j δx (CCg)i,j + δyφ̂

n
i,jδy (CCg)i,j = 0

−2iω

(
φ̂
n+1/2
i,j − φ̂ni,j

∆t/2

)
+ (CCg)i,j δ

2
xφ̂

n+1/2
i,j +

1

2
k2
i,jφ̂

n+1/2
i,j

+ (CCg)i,j δ
2
yφ̂

n+1
i,j +

1

2
k2
i,jφ̂

n+1
i,j + δxφ̂

n+1/2
i,j δx (CCg)i,j + δyφ̂

n+1
i,j δy (CCg)i,j = 0

where

δ2
xφ̂

n
i,j =

φ̂ni−1,j − 2φ̂ni,j + φ̂ni+1,j

∆x2

δ2
yφ̂

n
i,j =

φ̂ni,j−1 − 2φ̂ni,j + φ̂ni,j+1

∆y2
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Importantly, in both sweeps of the ADI scheme, a tri-diagonal system of equations

is formed which can effectively be solved using the very efficient Thomas algorithm.

This obviates the need to store large matrices and related issues that arise in the

solution of elliptic systems (see the review by Panchang and Demirbilek [11]). Li

[58] showed, using von Neumann’s stability analysis, that the numerical scheme is

unconditionally stable for linear problems and has second-order accuracy both in

time and space. Following Li [58], the ADI scheme with finite-difference method is

used for this study, and the domain is descretized using regular grids with uniform

spacing in each direction. However, the nonlinear terms, which make the equation

non-homogeneous, can create some restrictions on the time-steps, possibly if the

nonlinear changes imposed on the scheme between time-steps are large.

To resolve nonlinearities, we start with an initial guess, φ̂n = 0 say, at t =

0. For the linearization of the problem in a numerical sense, the QNLs at the

grid points are calculated using the solution obtained at the previous step. The

derivative terms in the QNLs are calculated using second-order finite differences,

and the discretization of the linear part using ADI scheme is same as given in [58].

The marching process continues until the steady-state is achieved for all frequency

components under consideration. Unlike nonlinear elliptic models (e.g. [7]) where one

first obtains a linear solution and then performs iterations to get the final nonlinear

(e.g. with breaking) solution, here we simply march in time. There are no iterations

involved between two successive time steps. QNLs at a particular time-step are

calculated using the solution at previous time step.

In order to handle nearshore applications, a dissipative breaking mechanism may

be added in the governing equation. The formulas for the nonlinear breaking mecha-

nism are provided in later Section 4.2, however the breaking parameter also depends

on the wave height (to be calculated). Thus, breaking compounds the nonlinear
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complications of the present model. However, no special treatment is needed. In

fact, at each step of the marching process, both the QNLs and the breaking factor

are updated simultaneously using the solution at previous step, which makes the

process efficient.

3.1.2 Boundary Treatment

To complete the boundary value problem, two types of boundary conditions,

similar to those used with linear models discussed in Chapter 2, may be considered:

(1) along physical boundaries such as structures and coastlines, characterized as

fully or partially reflecting, and (2) along artificial open-ocean boundaries intended

to be fully transmitting to incident and outgoing scattered waves. Most engineering

applications, as shown in Fig. 3.2, may be categorized either as open-sea problems

where the modeled domain is surrounded all over by artificial open-ocean boundaries

(ABCDA in Fig. 3.2), or coastal/harbor applications where artificial open-ocean

boundaries (HIEF in Fig. 3.2) are connected to shoreline or harbor boundaries

(FGH).

For evolution type mild-slope models, Li [58] concluded that the boundary condi-

tions typically used with elliptic models can be successfully used with evolution type

models. Therefore they were first examined for the case of wave propagation over

a flat bottom, including decomposition into higher harmonics, as studied by [16].

The boundary conditions usually used with elliptic models [11, 60, 61] consist of ap-

proximate representations of incoming waves and outgoing waves, and combinations

of these on some boundaries. While this approach provided a reasonable match to

the data of Chapalain et al. [16], some spurious oscillations were seen in the results

(see Fig. 3.3). Experiments showed that the magnitude of the oscillations depended

on the location of the boundaries; they appeared to diminish if the boundaries were
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Figure 3.1: A schematic of ADI scheme.
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Figure 3.2: Definition sketch of computational domain. (a) Open-sea problem; (b)
coastal/harbor problem.

placed, fortuitously, near locations where the magnitude of the higher harmonics was

negligibly small (i.e. at the quasi-sinusoidal nodes, where, as discussed by [16], the
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Figure 3.3: Definition sketch of a typical wave model domain
.

wavefield is almost linear (sinusoidal)). Of course, in general problems, such locations

are not known a priori. These oscillations were attributed to the separation of the

wave components inherent in this treatment of the boundaries, and resulting prob-

lems can be expected to be even more pronounced for other complex applications.

To preserve the generality of the present nonlinear model, we considered the

option of supplementing the linear boundary conditions with a sponge layer, which

can substantially dissipate wave energy near domain boundaries, so that spurious

wave reflections can be minimized. Sponge layers have largely been used in nonlinear

Boussinesq models [18, 62], and with hyperbolic mild-slope models in some instances

(e.g. [59, 63]). For our purposes, an extension of Eq. (2.23) is derived. Starting

from the time-dependent, two-equation model of [54] which accounts for dissipative

sponge layer, we first derive a hyperbolic mild-slope model by following the standard
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procedure given in [59]. The hyperbolic model is then converted to the evolution-

type model by factoring out time-harmonicity and introducing the slowly-varying

time variable discussed earlier. This leads to:

(3.1)2iωn
∂φ̂n
∂t

+∇h · [(CCg)n∇hφ̂n] + k2
n(CCg)nφ̂n + iωnDφ̂n = {QNLs}n

where the last term on the left hand side of Eq. (3.1) is due to the dissipative sponge

layer. The dissipation factor D for a given x inside the layer is assumed to be:

(3.2)D = C1

exp
[
(|x− xs|/|xe − xs|)C2

]
− 1

exp(1)− 1

where xs and xe are the coordinates of starting and ending points of the sponge layer

region, and , C1 and C2 are application-dependent coefficients. The width of sponge

layer is generally 1.5-2.0 times the wavelength of the smallest (or primary) frequency

component [18, 64]. Usually sharp variations in the dissipation factor inside the layer

may send spurious backscattered waves into the domain. Therefore, coefficients C1

and C2 for a particular application are selected in a manner that spurious reflection

and/or diffraction effects due to wave propagation inside the layer do not affect

the solutions in the region of interest. In most cases, this can be ascertained by

simulating the performance of sponge layers for the smallest (or primary) frequency

component by using the linear version of Eq. (3.1).

The performance of the sponge layers is examined using flat bottom case of [16]

mentioned earlier. The results shown in Fig. 3.4 are now devoid of small-scale

spurious oscillations and compare well with the laboratory data for all the four

modeled harmonics.

Note that it is straightforward to implement sponge layers along the downwave

and lateral boundaries of the domain. Along the upwave boundary, a sponge layer

will not only suppress the outgoing waves but also the specified incident waves.
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Figure 3.4: Improved modeled results with sponge layer along downwave boundary.
Markers represent experimental data of Chapalain et al. [16].

Therefore, its use necessitates a mechanism for the internal generation of waves with

Eq. (2.24).

Internal wave generation is mostly limited to time-dependent models (e.g. [54,

18, 62, 65, 66]). Two types of methods, the source function method and the line

(delta) source method, have been used successfully; however, Kim et al. [67] reported

that the line source method may produce noisy solutions with some equations. For

linear elliptic models, extensions for the source function method [68] and the line

source method [69] are derived and used for regular waves. Following the tedious

but straightforward derivation procedure given in [68], we obtain an extension of Eq.

(2.24) which has an additional (source) term {S}n added to the {QNLs}n on the

right-hand side. For nonlinear problems, the source function may be needed for all

frequency components under consideration, and its expression for the nth frequency

component is
(3.3)S(x, y) = Dnexp

[
−γ(x− xi)2

]
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where parameter γ is related to the width of source function; xi denotes the center

coordinate of source region; and the magnitude Dn of the source function for nth

frequency component is calculated using

(3.4)Dn =
2Ainωn√
π
γ
exp

(
−k2n
4γ

)
where Ain is the incident wave amplitude for nth frequency component. The factor

of 2 in Eq. (3.3) accounts for two-way wave generation. The component that travels

toward the upwave boundary is dissipated together with the outgoing scattered waves

generated inside the modeling region.

Numerical simulations were performed to obtain criteria for the selection of γ.

In general, γ should be selected in a way that the width of the source function is

as small as possible; however, a sufficient number of grid points is always needed to

properly resolve the source region. For the present model, we recommend γ in the

range of 80/λ2 to 320/λ2 which implies a source region width of 0.25λ to 0.5λ where

λ is the wavelength. This range for γ is similar to one used in Boussinesq models

[62, 18] with a slightly different approach for internal wave generation. Unlike linear

problems which appeared less sensitive to γ values, for nonlinear problems, erroneous

contributions to the QNLsn due to nonlinear interactions inside the source region

should be minimized by selecting an appropriate value of γ. (See Section 3.1 for

more details). These criteria are used in all cases considered later in this paper.

3.2 Model Validation

A variety of tests which cover many practical situations usually encountered in

coastal/harbor engineering applications are considered. By way of preliminary test-

ing, the model was verified (with QNLs = 0) for linear problems for which analyt-

ical/other solutions are known. Good agreement is found between modeled results

35



and analytical solutions, and the computational scheme (ADI) is found to be efficient

for these linear problems. Results for these linear problems are not shown for brevity.

Four additional tests are selected from the literature for data-model or inter-

model comparisons, and also to verify the performance of various model features

such as sponge layers, internal wave generation, nonlinear wave breaking, etc. The

tests involve: (1) the combined effects of wave reflection and wave-wave interactions

in the vicinity of a submerged shelf (breakwater); (2) the transformation of a wave

spectrum (from deep to shallow water) due to nonlinear wave shoaling and breaking

over a plane sloping beach; (3) nonlinear refraction and diffraction effects with the

generation of higher harmonics in two dimensions; and (4) nonlinear harbor resonant

interactions, i.e. harbor resonance in the presence of resonant triad interactions,

which is a particularly demanding test.

3.2.1 Waves around Submerged Breakwater

Wave reflection in the presence of structures may significantly alter the nature of

the wave-field. One of the main features of the present model, as discussed earlier,

is to simultaneously handle wave back-scattering and nonlinear interactions. Ex-

perimental data and numerical results [72] from a fully-nonlinear x-z plane model

are available for validation. Besides the generation of higher harmonics, a high de-

gree of backscattering renders this a good test for the effectiveness of the internal

wave generation and the sponge layers as described earlier. Note that the internal

wave generation method has not been exercised with nonlinear mild-slope models

in the past. In particular, with nonlinear parabolic mild-slope models, the upwave

boundary treatment is much simpler, because the wave-field is expected to be pre-

dominantly progressive. The experimental setup together with the configuration of

submerged shelf is shown in Fig. 3.5. The submerged shelf has steep sides (slope
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Figure 3.5: Experimental setup of Ohyama et al. [72].

1:2) that cause waves to reflect back. In the shallow region over the shelf, nonlinear

interactions become prevalent and higher harmonics are generated. These harmonics

then travel towards the downwave boundary where the linear boundary condition is

used together with a sponge layer. The sponge layer, which is 1.5 times as wide as

the wavelength (= 2.42 m) of the fundamental harmonic (T = 1.34 s), absorbs most

of the wave energy and minimizes undesired wave oscillations caused by the linear

boundary condition. The incident harmonics are generated inside the domain along

a wave generation line located at the wavemaker position (X = −28.3 m) in the

experiments. The higher harmonics are assumed to have zero input wave amplitude

at the generation line. Although this case contains no variations in the y−direction,

the two-dimensional model developed here was used. A 1200 X 4 grid (∆x/Lmin

= 0.08 and ∆y/Lmin = 0.50) was used along with a “time” step of ∆t/Tmin =0.80

where Lmin is the minimum wavelength (near wavemaker region) and Tmin is the

minimum period among all the harmonics under consideration; about 1200 steps are

required to obtain steady-state solution which takes approximately 17 s to finish on

a 3.33 GHz single-processor computer with 4 GB RAM.
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The spatial variation of three harmonics for Case 2 (Ai1 = 0.025 m) from Ohyama

et al. [72] is shown in Fig. 3.6, along with their data and their fully nonlinear model

(an x−z plane potential-flow based model which is theoretically more accurate than

the present second-order nonlinear model). The results obtained with the present

model correlate reasonably well with the fully nonlinear model results and also with

the experimental data. Significant wave back-scattering on the upwave side of the

shelf can be observed in all the plots shown in Fig. 3.6.

Results are presented for different values of γ to understand the significance of

correctly selecting γ to ensure the accuracy of the modeled results. Based on the

criteria discussed in Section 2.3, all values of γ in the range of 13.0 to 54.0 are found

to produce satisfactory results. Sample results for γ = 25 are shown in Fig. 3.6(a)

and Fig. 3.6(b). Good agreement is observed between modeled results for γ = 25

and the fully-nonlinear model results (see Fig. 3.6(b)). However, for a value outside

the range (i.e. γ = 2), the large width of the source function (not shown here) near

the wave generation line causes spurious nonlinear interactions near the generation

line (X = −28.3 m in Fig. 3.6(a)) and consequently affects the overall model results.

The results (for the three harmonics) shown with dashed line in Fig. 3.6(a) are quite

different from the fully-nonlinear model results.

3.2.2 Spectral Transformation over Sloping Beach

Depth-induced wave breaking and shoaling, especially in shallow regions with

prevalent near-resonant interactions, play a critical role in nearshore wave trans-

formation. To investigate the present model’s ability to simulate nearshore wave

environment, we consider Case 2 in [73] which has been used by researchers (e.g.

[20, 74]) to understand breaking and shoaling properties of irregular waves, and also

to verify their numerical models. For this case, the incident wave condition is ob-
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Figure 3.6: (a) Modeled amplitudes near internal generation line X = −28.30 m. (b)
Comparison of modeled amplitudes with data near submerged shelf. Present model
with γ = 2 (· · ·); present model with γ = 25 (—); data form Ohyama et al. [72] (# #),
and fully-nonlinear model (++). (Top) First harmonic; (middle) second harmonic;
(bottom) third harmonic.

tained using a Pierson-Moskowitz-type spectrum with a peak frequency of 1 Hz in

deeper (h = 0.47 m) portion of the tank. The experimental setup with a sloping

bottom is shown in Fig. 3.7.

With regards to Case 2, Kaihatu and Kirby [20] concluded that most shallow

water models over-predict shoaling approximately at all frequencies; because, the

peak frequency of the input spectrum corresponds to kh = 1.96, which lies outside

the range of applicability of shallow water models. Their nonlinear parabolic mild-

slope model, with linear characteristics of a fully-dispersive model, provided results

that depict good agreement with the experimental data. With no significant wave

reflection and diffraction effects, and with the same dispersive characteristics as the

nonlinear parabolic mild-slope model, we anticipate the present model to replicate
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Figure 3.7: Experimental setup of experiments of Mase and Kirby [73].

a similar agreement. However, Case 2 is more demanding and challenging for the

present model as it uses a completely different and more complex solution procedure

in comparison to the parabolic model. The input wave spectrum is truncated to

contain frequencies in the range 0 to 2.5 Hz. A total of 255 frequency components

are considered, and higher frequencies with little energy are ignored. A sponge layer

along the downwave boundary is optional here, because the amplitudes become small

at this boundary due to breaking dissipation. The present two-dimensional model

is used with a 2000 X 3 grid (∆x/Lmin = 0.04 and ∆y/Lmin = 1.0) and a “time”

step of ∆t/Tmin =0.08; to obtain steady-state solution, about 8000 steps are required

which takes around 2.5 h to finish on the same computer mentioned earlier. We note

that the model given by Eq. (2.23) does not include a dissipative mechanism to

account for wave breaking; therefore, following [20], we revise Eq. (2.23) to include

a dissipation mechanism as follows:

(3.5)2iωn
∂φ̂n
∂t

+∇h · [(CCg)n∇hφ̂n] + ikn(CCg)nαnφ̂n + k2
n(CCg)nφ̂n = {QNLs}n

where the third term on the left hand side in Eq. (3.5) is due to breaking dissipation,

and

(3.6)αn = αn0 +

(
fn
fpeak

)2

αn1,
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(3.7)αn0 = Fβ(x),

(3.8)αn1 = (β(x)− αn0)
f 2
peak

∑N
n=1|An|2∑N

n=1 f
2
n|An|2

,

(3.9)β(x) =
3
√
π

2
√
gh

B3fpeakH
5
rms

γ4
0h

5
,

(3.10)Hrms = 2

√√√√ N∑
n=1

|An|2,

where fpeak is the peak spectral frequency; fn is the nth frequency; β(x) is a proba-

bilistic decay function which defines the depth dependence of breaking dissipation,

and was developed by [75]. Note that for this mechanism to be consistent with the

present model, the dissipation factor β(x) in [20] has been multiplied by a factor of

2. Parameters B and γ0 are set to 1 and 0.6 respectively. F is a weighting factor;

F = 0.0 indicates uniform dissipation over all frequencies, whereas, F = 1.0 (used

here) allows frequency-squared weighted dissipation. More details about the dissi-

pative mechanism can be found elsewhere [75, 71]. The primary objective here is

to include a dissipative mechanism in the present model. Note that in the category

of mild-slope models, this type of dissipative mechanism (based on the frequency-

squared weightage) has hitherto been exercised only with parabolic models.

The modeled spectral transformation of the input wave spectrum due to nonlinear

energy transfer between frequency components is shown in Fig. 3.8. In these plots,

results are compared with the experimental data at three wave-gauges located in deep

(47 cm), intermediate (20 cm), and shallow (5 cm) water depth. The present model is

able to capture most of the salient features of deep-to-shallow water transformation

observed in the experimental results. For example, the peak-frequency shift toward

a lower frequency, the reduction in the wave energy near the peak frequency region,
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Figure 3.8: Comparison of wave spectrum for Case 2 of Mase and Kirby [73]. Ex-
perimental data (- - -) and modeled results (—) for h = 47 cm (top), h = 20 cm
(middle), and h = 5 cm (bottom).

and the increase in wave energy at low and high frequencies, are modeled reasonably

well. As expected, the model results are also quite comparable with the nonlinear

parabolic model [20] results (not shown here). Overall the results in Fig. 3.8 detail

the effectiveness of the breaking model and the numerical iterative procedure with the

present model. It is encouraging that the nonlinear breaking model, when used with

the present evolution-type model, does not require any modifications in the iterative

procedure described earlier. However, nonlinear breaking with linear elliptic mild-

slope models, as described by Zhao et al. [7], requires additional iterations which

significantly increase computational efforts.
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Figure 3.9: Bottom contours (top) and centerline bathymetry (bottom) of Whalin
[77].

3.2.3 Wave Propagation over Semicircular Shoal

Whalin [77] performed a series of experiments to study wave-focusing over a

slowly varying depth profile. Many researchers (e.g. [78, 74, 79, 20]) have since used

Whalin’s experimental data to verify their model’s capability to simulate nonlinear

wave diffraction and refraction with the generation of higher harmonics.

The wave tank used in Whalin’s experiments had a length of 25.60 m and a

width of 6.10 m. The topography consists of a semicircular shoal (also called a

topographic lens) on a slope in the central portion of the tank (Fig. 3.9). Three sets

of experiments were conducted by Whalin, by generating waves with periods T = 1, 2

and 3 s using a wave-maker situated in the deeper part of the wave tank (h = 0.46

m). The present model is applied to all the cases considered by Whalin [77] in his

experiments. However, in this paper we only discuss results for the cases included

in Table 6.1 (i.e. T = 1 and 2 s). The T = 1 s case demonstrates the advantages

of the present model over the parabolic model of Kaihatu and Kirby [20]. The low
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Table 3.1: Input wave parameters for the experiments of Whalin [77]

T (s) a0 (cm) ε = ka kh
2 1.06 0.0168 0.730
2 1.46 0.0237 0.730
1 0.98 0.0410 1.965
1 1.95 0.0815 1.965

period challenges the assumption of slow spatial variation inherent in the parabolic

approximation, which, therefore, could not produce reliable solutions. For T = 2

s, we expect the present model to provide results comparable with their parabolic

model as there is negligible back-scattering of waves, and the waves propagate mostly

along the x-direction.

As in the case of [20, 21], three harmonics for the T = 2 s case and two harmonics

for the T = 1 s case are found to be sufficient. For all numerical simulations, the

internal wave generation method is used with the generation line located near X =

0.0 m, and a dissipative sponge layer is placed in the offshore region. The free

parameter γ, for all simulations, is based on the criteria discussed earlier in Section

2.3. The higher-harmonics are assumed to have zero incident wave amplitude at the

generation line. Near the downwave boundary, a dissipative sponge layer is used

that forces the waves to dissipate energy and vanish before they interact with the

downwave boundary.

Modeled results along the centerline Y = 3.078 m for the T = 2 s case are

compared with experimental data in Fig. 3.10 for a0 = 1.06 cm and in Fig. 3.11 for

a0 = 1.49 cm. It can be seen in these plots that the wave-field is roughly linear near

the wave-maker boundary; however, due to wave focusing over the shoaling region,

the nonlinear interactions become significant and the higher-harmonics start to grow.
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Figure 3.10: Comparison of wave amplitudes along the centerline of the tank for
T = 2.0 s and a0 = 1.06 cm. Modeled first harmonic (—), second harmonic (- · -),
third harmonic (- - -). Data of Whalin [77]: first harmonic (�), second harmonic
(o), third harmonic (4).

Whalin [77] also reported a rapid growth of higher-harmonics in the focusing zone.

Good agreement is found (especially for a0 = 1.06 cm case) between the modeled

results and experimental data for all three harmonics shown in Fig. 3.11. The present

model results are nearly identical to those resulting from the parabolic model (not

shown here) of Kaihatu and Kirby [20]; this is to be expected, since, as mentioned

above, the wave-field is slowly-varying and devoid of significant wave reflection.

Similarly, modeled results and data for T = 1 s case are presented in Fig. 3.12

for a0 = 0.98 cm, and in Fig. 3.13 for a0 = 1.95 cm. The high value of the dispersion

parameter (kh = 1.965) in this case may violate the shallow-water approximation

inherent in the conventional Boussinesq models. However, modeled results (for a0 =

1.95 cm) are comparable with the results obtained using higher-order Boussinesq

models [80] with improved dispersive characteristics (i.e. valid up to kh = 6.0).
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Figure 3.11: Comparison of wave amplitudes along the centerline of the tank for
T = 2.0 s and a0 = 1.49 cm. Modeled first harmonic (—), second harmonic (- · -),
third harmonic (- - -). Data of Whalin [77]: first harmonic (�), second harmonic
(o), third harmonic (4).

Note that the oscillating wavefield pattern near the shoaling region for the T = 1 s

case should not be confused with the spurious oscillations caused by the approximate

boundary conditions. It is not possible to conclude from Whalin’s data [77] whether

these modulations should be present or not; but, according to [79], these oscillations

are due to the interactions between bound and free harmonics inside the shoaling

region. The results of Liu and Tsay [78], however, do not show such modulations

because their model does not allow harmonic interactions. With a 1200 X 40 grid

(∆x/Lmin = 0.33 and ∆y/Lmin = 0.48 for T = 1 s; ∆x/Lmin = 0.14 and ∆y/Lmin =

0.22 for T = 2 s) and a “time” step of ∆t/Tmin =0.20, a total of 200 and 150 steps

are sufficient to achieve steady state for T = 1 s and T = 2 s, respectively. On the

same computer, the computational time for both cases is less than 60 s.
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Figure 3.12: Comparison of wave amplitudes along the centerline of the tank for
T = 1.0 s and a0 = 0.98 cm. Modeled first harmonic (—), second harmonic (- - -).
Data of Whalin [77]: first harmonic (�), second harmonic (o).

Figure 3.13: Comparison of wave amplitudes along the centerline of the tank for
T = 1.0 s and a0 = 1.95 cm. Modeled first harmonic (—), second harmonic (- - -).
Data of Whalin [77]: first harmonic (�), second harmonic (o).
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3.2.4 Nonlinear Harbor Interactions

Harbor resonance in the presence of wave-wave interactions may have a signif-

icant impact on harbor design applications. Rogers and Mei [17], in a rigorous

experimental and numerical study, investigated the effects of nonlinear energy trans-

fer on resonant excitations inside idealized rectangular harbors with narrow harbor

region (see Fig. 6.10). For modeling purposes, they divided the nonlinear problem

into two one-dimensional problems: first, for the narrow bay region, they used con-

ventional shallow water equations, and second, for the outer region, they applied

linear wave theory. A matching condition, also called the impedance condition, was

used at the junction of two sub-domains. However, they acknowledged the poor per-

formance of the impedance condition for higher harmonics and suggested that more

general models be developed. They also conducted a set of experiments for a fixed

fundamental frequency with varying harbor lengths and incident wave amplitudes.

Three harbor lengths in their experiments corresponded to the first three resonant

peaks of the fundamental frequency. Here we use their experiments to examine the

present model’s capabilities to simulate nonlinear harbor interactions in the presence

of strong reflection caused by harbor walls and coastlines. As discussed previously,

parabolic approximation based models are inappropriate in such situations.

In a more recent study, Woo and Liu [18] used a Boussinesq-type model with

improved dispersive and nonlinear characteristics to simulate harbor interactions.

They simulated harbor interactions for three different bay configurations with one

set of incident amplitudes; however, with the presnet model, we only consider the

longest bay configuration due to numerical limitations discussed later.

The computational domain for a 1:10 prototype harbor model (similar to [18]) of

the experiments with the longest bay configuration is shown in Fig. 3.14. Only half
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Figure 3.14: Computational domain for nonlinear harbor problem. Figure not drawn
to scale.

the domain is considered for computations, for reasons of symmetry. The prototype

model has a uniform water depth of 1.53 m all over the domain. All harbor walls,

including the coastline, are assumed to be fully reflecting. Therefore, the internal

wave generation method, with γ based on the criteria discussed in Section 2.3, is

used for upwave boundary treatment, and the scattered waves are absorbed using a

two wavelength-wide sponge layer placed near the generation line.

There appears to be some lack of clarity in [17] regarding the input, as noted by

Woo and Liu [18]. To derive input conditions, we utilize measurements of standing

wave amplitudes and phase differences available from the experiments conducted

by [17] with the bay mouth closed. Based on this information, and by simulating

these experiments with the present model, we observe that it is sufficient to assign

amplitudes for the first two wave harmonics. The third harmonic is assumed to have

zero incident amplitude and is allowed to grow through nonlinear interactions. A

similar approach was used by Woo and Liu [18] in their study. Two separate cases

with different incident amplitudes but for the same wave frequencies and bay length
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of 21.75 m are simulated. For numerical simulations, the primary and secondary

harmonics have incident amplitudes of 0.0305 m and 0.0074 m respectively for the

first case, and 0.0206 m and 0.0019 m respectively for the second case. In both cases,

wave periods for primary and secondary harmonics are 4.90 s and 2.45 s respectively.

These incident harmonics are input at the wave generation line located at x = −18

m (shown in Fig. 3.14).

It is observed that the wavefield inside the bay is mostly one-dimensional (not

shown) which is consistent with the experiments. The modeled results along the bay

axis (y = 0.0) for both cases are compared with the experimental data of [17] in Figs.

3.15 and 3.16 for all wave harmonics. The existence of nodes and antinodes inside the

bay is due to the standing wave formation. Although the model behaves satisfactorily

for both cases, some mismatch between the model results and the experimental data

is observed in the vicinity of bay entrance. The second harmonic is over-predicted

near the entrance. A similar discrepancy was observed by Woo and Liu [18] for

the first case with their Boussinesq-type model. They reported strong gradients

near the bay entrance which also generated high-frequency wiggles near the bay

entrance. To overcome this issue with their finite-element model, they suggested

rounding of the boundary near the corner, to avoid singularities at corner nodes.

With the present model, although we do not observe high-frequency wiggles for both

cases, examination reveals that the QNLs in Eq. (9) attain large values, especially

for higher harmonics in the vicinity of the entrance. This is most probably due

to the accumulation of numerical errors associated with the computation of higher-

order derivatives at the corner and nearby boundary nodes. Fortunately, the effect

of these errors on model results is mostly local, and the solution away from the

entrance is not affected significantly. As shown in Figs. 3.15 and 3.16, the modeled

harmonics are in good agreement with the experiments for x ≥ 6 m. A thin friction
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Figure 3.15: Comparison of wave amplitudes along the longitudinal axis of the bay
for the first case. Modeled harmonics (—) and experimental data (o) of Rogers and
Mei [17]. (Top) First harmonic; (middle) second harmonic; (bottom) third harmonic.

layer with uniformly low friction factor near the entrance region marginally reduced

these numerical errors; however, eventually using finite elements (as is the case with

many existing linear mild-slope models such as CGWAVE and PHAROS) or other

methods that allow the use of boundary-fitted unstructured grids may ameliorate

this effect. (Note that the errors near the entrance are owing to the approximate

numerical (finite-difference) method and not due to the governing equation).

A domain with 1000 X 400 grid (∆x/Lmin = 0.016 and ∆y/Lmin = 0.023) and

a temporal resolution of (∆t/Tmin = 0.09 s is found satisfactory in both cases; the

steady-state solution is obtained in 9000 steps. An abundant number of grids are
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Figure 3.16: Comparison of wave amplitudes along the longitudinal axis of the bay
for the second case. Modeled harmonics (—) and experimental data (o) of Rogers and
Mei [17]. (Top) First harmonic; (middle) second harmonic; (bottom) third harmonic.

used especially in y-direction to properly resolve inner bay and the region near bay

mouth. However, the number of grid points can significantly be reduced with a model

that allows variable grid density within a domain (as in case of [18]).

Note that the transformation (reduction) of the modeled amplitude of primary

harmonic (results shown in [17]) due to nonlinear interactions is most significant

for the longest bay case in [17]; therefore, the longer bay configuration has perhaps

provided sufficient challenges to test various features as well as nonlinear aspects of

the present model. The model used in this dissertation is also discussed by Sharme

et al. [81].
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3.3 Summary and Conclusions

This study describes the development of an approach to simulate nonlinear wave

transformation in the presence of wave reflection, diffraction, refraction, breaking,

etc. The proposed model would be applicable to a wide range of practical wave

conditions encountered in harbor and coastal engineering applications. Since linear

elliptic equation models (e.g. MIKE21-EMS, CGWAVE, PHAROS, etc) are widely

used for harbor applications, an initial foray is made into extending such models to

include wave-wave interactions. It is expected that the findings of this research will

contribute to the eventual development of a new generation of elliptic harbor wave

models. The second-order extension of nonlinear elliptic mild-slope equation was first

considered; however, convergence issues inspired the derivation of an evolution-type

equation. The ADI scheme with finite-difference method is found to perform satis-

factorily for all the validation cases. Boundary conditions typically used for elliptic

(linear) wave models were found to be unsatisfactory. A combination of these bound-

ary conditions with dissipative sponge layers and internal wave generation techniques

was therefore established and validated for the present model. Further, the “march-

ing” process used in the evolution scheme enables one to compute the nonlinear terms

for both wave-wave interactions and breaking simultaneously without requiring an

“iterative” process in the usual sense of the word, as described in previous work

[6, 12]. Various model features are verified for a variety of wave conditions rang-

ing from deep to shallow water conditions. Reasonable agreement found between

data and model results, and superior model performance in some cases, suggest that

the proposed approach will enhance the applicability of the elliptic mild-slope wave

models. In addition, this preliminary investigation of the nonlinear mild-slope equa-

tion paves the way for the development of more sophisticated finite-element based
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nonlinear models capable of handling arbitrary shaped domains in a more accurate

manner.

Future efforts to extend the present model to handle multidirectional input and

steep bathymetric variations may also be warranted. Motivation for such exten-

sions come from the works of Athanassoulis and Belibassakis [82], Belibassakis and

Athanassoulis [83] and Toledo and Agnon ([84]) who developed different forms of

wave transformation models with improved capabilities to handle steep slopes. Al-

though their models (in the context of nonlinear waves) are primarily applied to

domains with one-dimensional bottom variations and are devoid of the mechanisms

like breaking dissipation, internal generation, etc., they allow the incorporation of

steep bathymetric variations encountered in practice. A study combining develop-

ments discussed in the present study with the models in [83, 84] will certainly benefit

reseach community and wave modelers.
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4. FINITE ELEMENT MODEL

4.1 Introduction

As discussed earlier in Chapter 2, modeling nonlinear wave-wave interactions in

the presence of reflection, diffraction, and harbor resonance is critical for studies

related to harbor design and tranquility. Many finite-element (FE) models (e.g. CG-

WAVE) based on the standard elliptic mild-slope equation of Berkhoff [1, 2] have been

developed. Such FE models are well known for efficient handling of complex harbor

and nearshore processes. Nonlinear mechanisms such as breaking, wave-current in-

teractions, amplitude dispersion and wave-direction-dependent boundary conditions

are also incorporated in these models. For harbor design problems, the FE models

which allow the use of unstructured grids are preferred over finite-difference models.

The use of unstructured grids allows accurate delineation of domain boundaries (e.g.

harbor walls, arbitrary-shaped coastlines, structural boundaries), ensuring proper

imposition of boundary conditions. This is important for appropriate handling of

wave reflection and diffraction effects in the vicinity of domain boundaries. In addi-

tion, for such models, the mesh density can easily be refined (in a region of interest)

for improved accuracy. Owing to these advantages, the FE models have been suc-

cessfully applied to simulate wave transformation in complex harbor domains (e.g.

Los Angeles/Long Beach harbor [11]; Douglas Harbor [5]; Venice Harbor, [12] and

around coastal structures present in nearshore regions.

Yet, it must be noted that the governing equation for the existing FE models is Eq.

(2.5) or its extensions which are only suitable for linear waves. Importantly, nonlinear

wave-wave interactions are completely ignored in these models. However, as discussed

in Chapter 1, these nonlinear interactions are known to be quite significant especially

55



in shoaling regions and in harbors.

In this Chapter, we discuss the development of an approach that extends the ex-

isting FE models to incorporate nonlinear wave-wave interaction effects. In Chapter

2, we considered the second-order extension [20, 21] of the standard mild-slope equa-

tion for the development of a finite-difference model. The finite-difference model uses

an effective method for boundary treatment (using internal generation and dissipa-

tive sponge layers) and provides stable solutions with good convergence properties.

Here, for the FE model, we use the same boundary value problem discussed in Chap-

ter 2. The methodology discussed here will improve the applicability of the existing

FE models mentioned above.

The structure of this Chapter is as follows: After presenting the boundary-value

problem in Section 4.2, we discuss the finite-element formulation in Section 4.3. The

numerical solution scheme used in the model is also discussed in this section. Two

cases are considered for model validation in Section 4.5. The model is then applied

to simulate nonlinear wave transformation in Ponce de Leon Inlet, FL. Concluding

remarks and recommendations for future work are provided in Section 4.6.

4.2 The Boundary-Value Problem

A typical harbor domain where the boundary value problem is solved is shown in

Fig. 4.1. The governing equation for the computational region Ω is same as in the

finite-difference model, i.e.

(4.1)2iωn
∂φ̂n
∂t

+∇h · [(CCg)n∇hφ̂n] + k2
n(CCg)nφ̂n + ikn(CCg)nαnφ̂n

+ iωnDφ̂n = {QNLs}n + {S}n

where {QNLs}n represents quadratic nonlinear terms defined earlier in Chapter

2. Eq. (4.1) also includes terms related to breaking, friction and source function

56



 

Open Boundary 

Land 

Γ 

Exterior 

  X 

  Y 

Incident wave 

Ω 

C 
C 

Land 

Internal generation 

Sponge layer 

Figure 4.1: A typical harbor domain

associated with the internal wave generation. More details regarding the breaking

factor αn, friction factor Dn and source function {S}n can be found in Chapter 3.

For the completeness of the boudary-value problem, linear boundary conditions

(discussed earlier in Chapter 2) are imposed along the domain boundary Γ which

is comprised of closed boundary Γc and open boundary Γo segments. These ap-

proximate boundary conditions are supplemented with internal wave generation and

sponge layers for improved boundary treatment. Note that, in comparison to the

existing FE models based on the linear elliptic equation, only the governing equation

has been modified, but the boundary conditions remain same. The development of

the FE model based on the boundary value problem discussed above is presented in

the next section.
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4.3 Development of a Finite Element Model

To develop a finite element model over a two-dimensional computational region

Ω enclosed by boundary Γ, we first redefine the boundary value problem (discussed

above) in a concise form: The governing equation

2iωn
∂φ̂n
∂t

+∇h · [a∇hφ̂n] + bφ̂n = fn(x, y, t) (4.2)

where

a = (CCg)n ;

b = iωnDn + k2
n(CCg)n + ikn (CCg)n αn;

fn = {QNL}n + {S}n ;

and the generalized boundary condition

qn ≡
∂φ̂n
∂n

= q̂n on Γ. (4.3)

Note that the function fn on the right hand side in Eq. (4.2) has contributions

due to nonlinear interaction effects in {QNL}n and source function {S}n; b includes

frictional and breaking dissipation effects. Eq. (4.3) is the generalized form of the

standard linear boundary conditions applied at the closed boundary (Γc) and open

boundary (Γo) segments. The boundary-value problem discussed above is a parabolic

time-dependent problem. The development of a Galerkin finite-element model of

such problems, in general, involves two main steps: (1) semidiscretization, and (2)

time approximation. (Details regarding such models can be found in [85]). In the

semidiscretization step, a weak formulation of the boundary value problem over an
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element Ωe is first established:

∫ ∫
Ωe

[
v

(
2iωn

∂φ̂n
∂t

+ bφ̂n − Fn

)
− a∇hφ̂n · ∇hv

]
dxdy −

∮
Γe

(
ã
∂φ̂n
∂n

)
vdxdy = 0

(4.4)

where v(x, y) is a weight function and the spatial approximation of the dependent

variable φ̂n over finite elements is then defined in the form

φ̂n(x, y, t) =
m∑
j=1

φ̂enj(t)N
e
j (4.5)

where φ̂enj represents the value of φ̂n at location (xj, yj) in an element e. N e
j for

j = 1, 2, ..m is shape function. In Eq. (4.5), it is assumed that the time dependence

of the dependent variable φ̂n is separable from its spatial variation. The substitution

of Eq. (4.5) in the weak form results in a set of ordinary differential equations (ODEs)

in time:
m∑
j=1

(
M e

ij

dφ̂enj
dt

+Ke
ijφ̂

e
nj

)
− f eni −Qe

i = 0 (i, j = 1, 2, ...m) (4.6)

or, in matrix form

[M e]
{

˙̂
φen

}
+ [Ke]

{
φ̂en

}
= {F e

n} (4.7)

where {F e
n} = {f en}+ {Qe}, and the element matrices [M e], [Ke], {f e} and {Qe} are

defined using

M e
ij = 2iωn

∫
Ωe

NiNjdxdy, (4.8)

Ke
ij =

∫
Ωe

{−a∇hNi · ∇hNj + bNiNj} dxdy, (4.9)

f ei =

∫
Ωe

fnNidxdy (4.10)
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and

Qe
i =

∫
Ωe

qnNidxdy. (4.11)

In this study, triangular finite elements for which shape function Ni is a linear func-

tion are considered for spatial discretization. More details regarding shape functions

and the computation of element matrices can be found in [85].

In the second “time-approximation” step, the time discretization of the ODEs in

Eq. (4.6) is obtained by using a finite-difference scheme. We consider the commonly

used “α family of approximation” method [85] in which a weighted average of the

time derivative is defined using

(1− α)
{

˙̂
φe
}
s

+ (1− α)
{

˙̂
φe
}
s+1

=

{
φ̂e
}
s+1
−
{
φ̂e
}
s

∆ts+1

(4.12)

where subscript s denotes values at time ts. Using this approximation, the ODE in

Eq. (4.6) is transformed (at any time ts) into a set of algebraic equations:

[
K̂e
]
s+1

{
φ̂en

}
s+1

=
{
F̂ e
n

}
s,s+1

(4.13)

where [
K̂e
]
s+1

= [M e] + α∆t [Ke]s+1 ;{
F̂ e
n

}
s,s+1

= ∆t
(
α {F e

n}s+1 + (1− α) {F e
n}s
)

+ ([M e]− (1− α)∆t [Ke]s)
{
φ̂en

}
s
.

Different values of α in the equations above give different well-known approximations:

60



α =



0, the forward difference scheme; conditionally stable

1/2, the Crank-Nicolson scheme; unconditionally stable

2/3, the Galerkin scheme; unconditionally stable

1, the backward difference scheme; unconditionally stable

For the present study, we use the backward-difference scheme (i.e. α = 1) to obtain

a set of algebraic equation similar to Eq. 4.13. Next, the element matrix form in Eq.

4.13 is assembled over all elements to get the assembled matrix form:

[
K̂
]
s+1

{
φ̂n

}
s+1

=
{
F̂n

}
s,s+1

(4.14)

where [K̂] and F̂n are the assembled matrices; .
{
φ̂n

}
s+1

is the solution of the

boundary value problem at time ts+1.

4.4 Solution Algorithm

The set of algebraic equations in Eq. 4.14 can be solved at any time step using

the standard iterative methods (e.g. Successive over-relaxation method, Gauss-Seidel

method) or Krylov subspace methods (e.g. Conjugate gradient method, generalized

minimal residual method). Here we use the standard Conjugate Gradient method

(see [86]) to obtain solutions at all time steps. For linear elliptic models, this method

is known to perform very well even for complex domains.

Since the standard Conjugate method requires
[
K̂
]
s+1

to be symmetric and

positive-definite, we first use the Gauss transformation, i.e. multiply Eq. 4.14 by
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[
K̂∗
]
s+1

, the complex conjugate transpose of
[
K̂
]
:

[
K̂∗
]
s+1

[
K̂
]
s+1

{
φ̂n

}
s+1

=
[
K̂∗
]
s+1

{
F̂n

}
s,s+1

. (4.15)

The matrix
[
K̂∗
]
s+1

[
K̂
]
s+1

is always symmetric and positive-definitive. Following

Panchang et al. [86], the solution of Eq. 4.15 is obtained using the following algo-

rithm:

1. To obtain solution at time ts+1, start the iterative procedure with φ̂n (solution

at t = ts) for all grid points where the solution is desired. An initial guess for

φ̂n is needed for t = 0;

2. At i = 0th iteration, compute for all points r0 = F̂n − K̂φn,0 and p0 = K̂∗r0

3. Compute for the ith iteration:

αi =

∣∣∣K̂∗ri∣∣∣2∣∣∣K̂pi∣∣∣2
4. Update at all points φn,i+1 = φn,i + αipi

5. Check for convergence of solution.

6. Compute for all points ri+1 = ri − αiK̂pi.

7. Compute for the ith iteration:

βi =

∣∣∣K̂∗ri+1

∣∣∣2∣∣∣K̂∗ri∣∣∣2 .

8. Compute at all points pi+1 = K̂∗ri+1 + βipi.

9. Set i = i+ 1 and go to step 3.

More details pertaining to the algorithm above are given in [86].
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4.5 Model Validation

For preliminary testing, the model was first successfully verified (with QNLs = 0)

for linear problems. (Results for these problems are not shown for brevity.) Two

test cases considered earlier in Chapter 3 for the validation of finite-difference model

are used again for data-model comparisons. The tests involve: (1) two-dimensional

nonlinear shoaling over a topographic lens; and (2) nonlinear harbor resonant inter-

actions in a rectangular harbor.

4.5.1 Wave Propagation over Semicircular Shoal

Many researchers (e.g. [74], [79], [20]) have considered experimental data of [77]

to validate their model’s capability to simulate nonlinear wave shoaling. The set-

up for Whalin’s experiments is shown in Fig. 3.9. The wave tank had a length of

25.60 m and a width of 6.10 m, and the topography consists of a semicircular shoal

in the central portion of the tank (Fig. 3.9). Whalin conducted tests for incident

periods of T = 1, 2 and 3 s. The present FE model is applied to the T = 1 s

case with incident amplitude of 1.95 cm. Two harmonics are found to be sufficient

for this case. For numerical simulation, the internal wave generation method is

used with the generation line located near X = 0.0 m, and the sponge layers are

placed to absorb waves near the offshore and the coastal boundaries. The higher-

harmonics are assumed to have zero incident wave amplitude at the generation line.

A similar boundary treatment approach was used earlier for the validation of the

finite-difference model.

Modeled results along the centerline Y = 3.078 m are compared with experimen-

tal data in Fig. 4.2. It can be seen in the plot that the modeled wave-field compares

very well with the experimental data. Moreover, the modeled amplitudes shown in

Fig. 4.2 are mostly similar to the amplitudes obtained using the finite-difference
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Figure 4.2: Comparison of wave amplitudes along the centerline of the tank for
T = 1.0 s and a0 = 1.95 cm. Modeled first harmonic (—), second harmonic (- - -).
Data of Whalin [77]: first harmonic (�), second harmonic (o).

model in Chapter 3.

For an unstructured grid with 7100 triangular elements, and a “time” step of

∆t/Tmin =0.20, a total of 200 steps are sufficient to achieve final steady-state solution

on a computer with 2 GB RAM and a 3 GHz processor. The computational time to

reach steady-state is less than 5 mins. At each time step, 1000 iterations are found

sufficient. For larger time steps, more number of iterations are generally required.

4.5.2 Nonlinear Harbor Interactions

As discussed in Chapter 3. wave-wave interactions have a significant impact on

harbor design applications. Rogers and Mei [17] and Woo and Liu [18] investigated

the effects of nonlinear energy transfer on resonant excitation inside rectangular

harbors. Here we again consider the experimental data of [17] to examine the newly

developed FE model. All harbor walls, including the coastline, are fully reflecting.

Two test cases with same input wave conditions but different bay lengths (21.75 m
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Figure 4.3: Computational domain for nonlinear harbor problem. Figure not drawn
to scale.

and 13.70 m) are considered. The computational domain (for a 1:10 prototype harbor

model) with the longest bay configuration is shown in Fig. 4.3. The model has a

uniform water depth of 1.53 m all over the domain. Similar to Woo and Liu [18],

three input harmonics are used. The primary and secondary harmonics have incident

amplitudes of 0.035 m and 0.01 m respectively for the two bay configurations. Wave

period for the fundamental harmonic is 4.90 s. The wave generation line (at x =

-18 m) and the sponge layers are shown in Fig. 4.3. A similar boundary treatment

approach was used earlier with the finite-difference model.

For the two cases, the modeled wave-fields along the bay axis (y = 0.0) are

compared with the experimental data in Figs. 4.4-4.5. The formation of nodes and

antinodes is consistent with the data of Rogers and Mei [17]. Although the model

behaves satisfactorily for both cases, some mismatch between the modeled amplitudes

and the experimental data is observed. In comparison to the results shown earlier

in Chapter 3 (for the longer bay case), in this case, the rounding of corners at bay

mouth improves modeled results near the bay entrance. In the second case, some

mismatch is observed between the modeled first harmonic and experimental data in
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Figure 4.4: Comparison of wave amplitudes along the longitudinal axis of the bay for
the first case. Modeled harmonics (—) and experimental data (o) of Rogers and Mei
[17]. (Top) First harmonic; (middle) second harmonic; (bottom) third harmonic.

Fig. 4.5. However, this discrepancy is consistent with Woo and Liu [18] and Rogers

adn Mei [17]. According to Rogers and Mei [17], harbor entrance losses (ignored

here) are more important for the shorter bay case than for the longer bay case. On

the other hand, wave-wave interactions are more dominant inside the longer bay. A

proper handling of harbor entrance losses may improve modeled results in the second

case.

An unstructured grid with 12,310 triangular elements and a temporal resolution

of (∆t/Tmin = 0.09 s is found satisfactory; the steady-state solution is obtained in
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Figure 4.5: Comparison of wave amplitudes along the longitudinal axis of the bay for
the second case. Modeled harmonics (—) and experimental data (o) of Rogers and
Mei [17]. (Top) First harmonic; (middle) second harmonic; (bottom) third harmonic.

5000 steps. High-resolution mesh is used near the bay entrance.

4.6 Modeling Wave Transformation in Ponce de Leon Inlet

Ponce de Leon Inlet is located near Orlando in Florida. As shown in Fig. 4.6,

the bathymetry at Ponce de Leon Inlet consists of a navigation channel, jetty, large

ebb shoal, and inlet. The U.S. Army Engineer Research and Development Center

conducted an experimental study using a 1:100-scale physical model in which the

north jetty was modeled like a vertical wall with stones sloped around it, and the

south jetty was not included. Wave data collected during these experiments have
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been used by researchers (e.g. [87], [88]) for model validation. Shi et al. [88]

successfully validated their Boussinesq model against data. Since we do not have

access to the experimental data, in this study we use the BOUSS-2D model to validate

the performance of newly developed FE model. BOUSS-2D is a sophisticated model

that solves Boussinesq-type equations and is widely used for harbor and coastal

applications.

Two different cases are considered for modeling purposes. The incident wave

direction is normal to the offshore boundary Y = 0.0. Coastline is chosen to be fully

absorbing, and the jetty is fully reflective. In the first case, a monochromatic wave

with height Hm0 = 0.78 m and period T = 15 s is input. A total of four harmonics

are considered. The internal wave generation method is used with the generation

line located near Y = 0.0 m, and the dissipative sponge layers are placed along the

open-ocean boundaries to minimize spurious wave reflections from the boundaries.

Wave breaking is simulated using the breaking model of [75]. Details regarding the

breaking model are provided earlier in Chapter 3.

The finite element mesh for this case contains of about 210000 nodes and 420000

elements. Modeled significant wave heights obtained using the present FE model and

the BOUSS-2D model are compared in Fig. 4.7. Very good agreement is observed

between the results obtained using two models. Wave reflection effects near the inlet

and nonlinear shoaling effects over the shoal are well captured by the present FE

model. Wave heights are also compared (see Fig. 4.8) along the two arrays (Array

1 and array 2 shown in Fig. 4.6) and a good agreement is observed. Moreover,

snapshots of the modeled free surface elevation obtained from the two models are

shown in Fig. 4.9.

In the second case, a shallow water TMA spectrum with 15 s peak period and

Hm0 = 0.98 m is considered as input. Detailed analysis of this case is in progress;
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Figure 4.6: Ponce de Leon Inlet bathymetry (in m).

some preliminary results are discussed here. The finite element mesh for this case

contains of about 650000 nodes and 910000 elements. For the present model, the

wave spectrum is divided into 25 wave components. Modeled significant wave heights

obtained using the present FE model and the BOUSS-2D model are compared in

Fig. 4.10. Although the present model performs reasonably well, some mismatch

especially near the jetty and shoal region is observed. A possible reason is that the

BOUSS-2D model uses a well resolved TMA spectrum. In future, we consider using

a large number of wave components for more reliable results.

4.7 Conclusions and Recommendations

This study describes the development of a finite-element model based on the

second-order extension of the standard elliptic mild-slope equation. The proposed

model is capable of simulating nonlinear wave transformation in complex harbor and

coastal domains. The model, using unstructured grids, allows accurate imposition of
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Figure 4.7: Wave height comparison. Modeled SWH using the present model (top)
and using BOUSS-2D (bottom).
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Figure 4.8: Comparison of wave heights along Array 1 (top) and Array 2 (bottom).
Present FE model (··); BOUSS-2D model (+ +).

boundary conditions and handling of reflection/diffraction. For effective boundary

treatment, the commonly used linear boundary conditions are supplemented with

internal wave generation method and dissipative sponge layers. Model performance

is verified for two different cases involving nonlinear shoaling and harbor resonance.

The model is also applied to a real application involving arbitrary shaped boundaries

and complex bathymetric features. Satisfactory model performance suggests that the

proposed approach will enhance the applicability of the existing finite-element models

based on the elliptic mild-slope equation.
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Figure 4.9: Modeled surface elevations using the present model (top) and using
BOUSS-2D (bottom).
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Figure 4.10: Wave height comparison. Modeled SWH using the present model (top)
and using BOUSS-2D (bottom).
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5. GENERALIZED VERTICALLY DEPENDENT RADIATION STRESS

TENSOR

Many theoretical, analytical and experimental studies pertaining to wave-induced

circulation in nearshore regions have been conducted over the last few decades. Dif-

ferent expressions for wave radiation stress tensor have been developed for progressive

waves. In this Chapter, a discussion pertaining to the performance of three 3-D RSTs

(M11, M13 and L08) for progressive waves is first provided in Section 5.1. A brief

background on elliptic wave models is provided in Section 5.2. An expression for

wave-induced pressure distribution for an arbitrary wave field is developed in Sec-

tion 5.3. The new generalized formulation for 3-D RST is derived in Section 5.4; its

expression in terms of the complex potential φ obtained from the elliptic models is

also presented in this section. In Section 5.5, the generalized formulation is related

to other RST formulations (e.g. [36], [24], [23]), and a new analytical expression for

the vertically-dependent RST for a full/partial standing wave case is obtained.

5.1 Evaluation of Existing Approaches for 3-D RSTs

As discussed above, different approaches to obtain 3-D RSTs for linear progres-

sive waves are available. Three approaches used for deriving M13, M11 and L08 are

relevant to this study. We briefly evaluate these approaches before they are consid-

ered for the derivation of new generalized 3-D RSTs in Section 4. Consistent with

the flow equations in [45], M13, M11 and L08 are expressed mathematically in the

form

Sαβ = kE

(
kαkβ
k2

FCSFCC − δαβFSCFSS
)

+ δαβ=(σ) (5.1)
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where σ is the conventional sigma coordinate. The first term in Eq. (5.1) is same

for M13, M11 and L08 with

FCS =
cosh kd(1 + σ)

sinh kd
; FCC =

cosh kd(1 + σ)

cosh kd
;

FSC =
sinh kd(1 + σ)

cosh kd
; FSS =

sinh kd(1 + σ)

sinh kd
,

but =(σ) in the last term differs. For M11, =(σ) is surface singular (non-zero only

at surface) such that =(σ) = δ(σ)E/(2d) where

δ(σ)= 0 if σ 6=0, and

∫ 0

−1

δ(σ)dσ=1.

For M13, =(σ) =
E

2d

∂

∂σ
(2FCCFSS − F 2

SS), and for L08, =(σ) =
Ek

2
(2FCSFSS). Note

that the term =(σ) in M11 is a surface singular term; however, for both M13 and

L08, this term varies over the vertical. More details regarding the three formulations

are provided in Section 5.

For a preliminary evaluation, we consider a sloping beach case [34] which involves

wave breaking over a slope (1:40). As shown in Fig. 5.2(a), the wave tank is 150 m

long, and the water depths at the deepest and the shallowest portion of the tank

are 2.1 m and 0.1 m respectively. The incident wave has a height of 0.6 m and a

period of 5 s. Modeled wave height shown in Fig. 5.2(b) is obtained by solving the

wave energy equation. The wave-induced flow field (set-up/down and currents) is

simulated using the EFDC model with radiation stresses obtained using M13, M11

and L08. (Details pertaining to the EFDC model are provided later in Section 6).

The modeled set-up/down (not shown here) from the three approaches compares

very well with the analytical solution [34]. This is expected, because the analytical

solution is based on the standard 2-D RST [23], and all three formulations on vertical
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integration transform to the standard 2-D RST. However, for a complete evaluation,

it is also important to examine modeled currents obtained using M13, M11 and L08.

Modeled currents are plotted in Figs. 5.2(c-e). For comparison, analytical solu-

tions or other data are not available, but as mentioned earlier, M11 has been found

to perform satisfactorily by researchers for applications involving sloping beaches.

As shown in Figs. 5.2(c-e), the current fields obtained using M11 and L08 predict

undertow inside surfzone. This seems physical, because undertow generally occurs

for breaking waves over sloping beaches. In contrast, M13 produces a reverse un-

dertow which does not seem correct. There are some minor differences between the

magnitudes of currents obtained using M11 and L08.

At this point, although we do not have a definite answer regarding why M13 could

not produce satisfactory results in this case, but it is obvious that the discrepancy in

the modeled results arises due to the term =(σ) which is defined differently for the

three formulations. This issue regarding M13 and =(σ) is discussed in Sections 5.

5.2 The Elliptic Wave Model

Phase-resolving models based on the standard mild-slope equation of Berkhoff

[1, 2] are often used to simulate the transformation of small-amplitude waves inside

harbors and around coastal structures. Models of this type have also been used

by Karambas et al. (2007) and Newell et al. (2005) to simulate the wave-induced

currents in complex domains. Breaking, which significantly alters the wave-induced

circulation in nearshore regions, is included in terms of a parameterized dissipation

function to obtain:

∇h · (CCg∇hφ) +
(
k2CCg + iωγ

)
φ = 0 (5.2)
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where φ(x, y) denotes two-dimensional complex surface elevation as in Eq. (1.1);

∇h is the gradient operator in the horizontal Cartesian coordinates (x, y); g is the

acceleration due to gravity; C and Cg are phase and group velocity respectively; and γ

is the parameterized breaking dissipation factor. Note that Eq. (5.2) is the vertically-

integrated form of the 3-D Laplace equation (∇2Φ = 0 where Φ is the complex

velocity potential) and is valid under the mild-slope assumption |∇h|/kh ≤ 1. This

assumption can however be relaxed by incorporating steep-slope effects [3]. The

time-harmonic 3-D complex velocity potential Φ is related to φ(x, y) using Eq. (1.1).

For the elliptic equation (Eq. 5.2), many parameterizations for breaking dissipa-

tion factor γ have been tested [7]; since the breaking dissipation factor, in general,

is a function of wave height which is not known a priori, Eq. (5.2) must be solved

through iteration, as described by Zhao et al. [7]. Similar techniques are used in

this study to obtain numerical solution; details regarding the iterative procedures,

convergence issues, etc. may be found in [7]. For brevity, details regarding numerical

strategies for solving Eq. (5.2) and boundary conditions are not provided here; they

may be found elsewhere in [11].

Once φ(x, y) is estimated, the wave height (H) and surface elevation (η̃ = η̃1 cosωt+

η̃2 sinωt where η̃1 and η̃2 are the real and imaginary parts of η̃ respectively) at all

grid locations are obtained from φ(x, y) using

H =
2ω

g
|φ| (5.4a)

and

η̃ = −1

g

(
∂Φ

∂t

)
z=0

=
ω

g
(φ1 sinωt− φ2 cosωt) (5.4b)

where φ1 and φ2 are the real and imaginary parts of the complex potential φ(x, y)
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Figure 5.1: Wave field schematic.

respectively. The components of wave velocity (ũα, w̃) and the dynamic pressure p̃d

is defined using the following relations from linear wave theory:

(ũα, w̃) = Re

(
∂φ

∂xα

cosh k(h+ z)

cosh kd
exp(−iωt), kφsinh k(h+ z)

cosh kd
exp(−iωt)

)
(5.5)

p̃d = −ρ∂φ
∂t

= ρωφ
cosh k(h+ z)

cosh kd
(φ1 sinωt− φ2 cosωt) (5.6)

where α, β denote the horizontal coordinates. Note that the above relations for wave

quantities apply to any arbitrary linear wave field.

5.3 The Generalized Pressure Distribution

We develop an expression for pressure applicable to an arbitrary wave field. The

pressure treatment is critical to the derivation of new generalized 3-D RST in the

next section. We start with the z-direction momentum equation for irrotational and
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Figure 5.2: Bottom Profile (a) and Modeled wave height (b); Modeled current field
using M11 (c), using L08 (d) and using M13 (e).
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inviscid wave motion:

∂w̃

∂t
+

∂

∂xβ
(ũβw̃) +

∂

∂z

(
w̃2
)

= −1

ρ

∂p

∂z
− g −h < z < η (5.7)

where (ũα, w̃) are the components of wave velocity. The total free surface elevation

(η), as shown in Fig. 1, receives contributions from the waves (η̃) and the set-

up/down (η̂) such that η = η̂ + η̃. Wave quantities (ũα, w̃) and η̃ may belong to

an arbitrary wave field. The equation above is then vertically integrated from an

arbitrary z to z = η as follows:

∫ η

z

∂w̃

∂t
dz+

1

ρ

∫ η

z

∂p

∂z
dz+

∫ η

z

∂

∂xβ
(ũβw̃) dz+

∫ η

z

∂w̃2

∂z
dz+

∫ η

z

gdz = 0 −h < z < η

(5.8)

which simplifies by the application of Leibniz integral rule and kinematic free-surface

BC to yield

p+ ρw̃2 + ρg(z− η)− ρ ∂
∂t

∫ η

z

w̃dz− ρ ∂

∂xβ

∫ η

z

(ũβw̃) dz = 0; −h < z < η. (5.9)

Next, using periodicity of wave field, the equation above is wave-averaged to obtain

p+ ρw̃2 + ρg(z − η̂)− ρ ∂

∂xβ

∫ η

z

(ũβw̃) dz = 0; −h < z < η̂

where the overbar denotes wave average (or time average over one wave cycle). The

wave-averaged contribution due to the fourth term in Eq. (5.9) is nil. Since the

second-order (in ka) integrand in the last term of the equation above has a higher-

order (negligible) contribution in the region −|η̃|< z − η̂ < |η̃|, the upper limit of

integration is changed from z = η to z = η̂ so that the averaging operator can be
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transferred inside the integral:

p+ ρw̃2 + ρg(z − η̂)− ρ ∂

∂xβ

∫ η̂

z

(
ũβw̃

)
dz = O(ε3); −h < z < η̂. (5.10)

Note that the pressure treatment in the equations above mostly follows [24],

[23], [36]. In contrast, Mellor ([36, 37, 44]) did not include the last term on the

LHS in Eq. (5.10) by assuming wave field to be purely progressive. Here we do not

employ any such assumption regarding the nature of the wave field so that generality

is preserved. Moreover, for the development of 3-D RSTs for progressive waves,

different approaches for pressure treatment have been used. To obtain M13, Mellor

[44] used an approximation of Eq. (5.9) to define pressure in the region −h ≤ z ≤ η.

Mellor [37] and Lin [46] used Eq. (5.10) in combination with hydrostatic assumption

(in the region −|η̃|< z − η̂ < |η̃|) to obtain M11 and L08 respectively.

5.4 The Generalized Vertically Dependent RST

We derive the vertically dependent generalized RSTs (in terms of the complex

potential φ) applicable to an arbitrary linear wave field. The derivation process

mostly follows Mellor [33, 44] who developed a coupled wave-current system in terms

of mean drift velocity (Eulerian current plus the Stokes Drift).

We start with the conservation equations

∂uα
∂xα

+
∂w

∂z
= 0, (5.11)

∂uα
∂t

+
∂

∂xβ
(uαuβ) +

∂

∂z
(uαw) = −1

ρ

∂p

∂x
and (5.12)

∂w

∂t
+

∂

∂xβ
(uβw) +

∂

∂z

(
w2
)

= −1

ρ

∂p

∂z
− g, (5.13)

where xα ≡ (x, y); uα = ûα + ũα; w = ŵ + w̃; (ûα, ŵ) are the components of current

81



velocity and (ũα, w̃) are the components of wave velocity. For convenience, Coriolis,

baroclinic, pressure-slope transfer and turbulent-mixing effects are ignored in this

section.

Next, to obtain flow equations in terms of mean drift velocity as in [33] and [44],

we use the following transformation that maps Cartesian coordinates (xα, z, t) to

wave-following coordinates (x∗α, z̄, t
∗):

xα = x∗α, (15a)

t = t∗ and (15b)

z = s(x∗α, z̄, t
∗), (15c)

where

s(x∗α, z̄, t
∗) = z̄ + s̃ and (15d)

s̃ =

∫
w̃dt; (15e)

s defines a material surface, and s̃ is the vertical displacement of material surface due

to waves. s = η̂+ η̃ for z̄ = η̂ and s = −h for z̄ = −h. The transformation is same as

the one used in [33] and [44] except for two minor differences: (1) z̄ in Eqs.(15a-15e)

is equivalent to η̂ + σD in [44], and (2) s̃ in Eq. (15e) corresponds to an arbitrary

wave field, not simply to a progressive wave field as in [33] and [44]. Based on the

transformation, any quantity ψ(xα, z, t) can be transformed to ψ∗(x∗α, s, t
∗) using

∂ψ

∂t
=
∂ψ∗

∂t∗
− ∂ψ∗

∂z̄

st
sz̄
, (5.16)

∂ψ

∂xα
=
∂ψ∗

∂x∗α
− ∂ψ∗

∂z̄

sx
sz̄

and (5.17)
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∂ψ

∂z
=
∂ψ∗

∂z̄

1

sz̄
, (5.18)

where st = ∂s/∂t = ∂s̃/∂t; sz̄ = ∂s/∂z̄ = (1 + ∂s̃/∂z̄) and sα = ∂s/∂xα =

(∂z̄/∂xα + ∂s̃/∂xα) . (Detailed derivation of Eqs. (5.16-5.18) can be found in [44].

For convenience, we drop asterisks.

Next, using the transformation relations given in Eqs. (5.16-5.18), the flow equa-

tions (Eqs. 5.11-5.13) are first transformed and then wave-averaged to yield

∂sz̄
∂t

+
∂sz̄uα
∂xα

+
∂w′

∂z̄
= 0 (5.19)

∂

∂t
(sz̄uα) +

∂

∂xβ
(sz̄uαuβ) +

∂

∂ ¯̄z

(
uαw′

)
= −1

ρ

∂

∂xα
(psz̄) +

1

ρ

∂

∂z̄
(psα) (5.20)

where w = w′ + uαsα + st is defined following Mellor [33, 44]. (Similar equations

in terms of sigma-coordinates are given in Mellor [44]). Next, we use the following

relations from Mellor [44]:

sz̄uα = Uα, (5.21)

sz̄uαuβ = UαUβ + ũαũβ and (5.22)

w′uα = ΩUα, (5.23)

where Uα = ûα + usα is the horizontal mean drift velocity; usα is the Stokes Drift

given by usα = ∂ũαs̃/∂z̄. Inserting Eqs. (5.21-5.23) into Eqs. (5.19-5.20), we get the

following set of flow equations:

∂η̂

∂t
+
∂Uα
∂xα

+
∂w′

∂z̄
= 0, (5.24)

∂Uα
∂t

+
∂

∂xβ
(UαUβ) +

∂

∂z
(Uαw

′) = −
(

1

ρ

∂

∂xα
(psz̄)−

1

ρ

∂

∂z̄
(psα)

)
− ∂

∂xβ
(ũαũβ) .

(5.25)
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So far the development of above equations is general. Now we consider different

approaches for pressure treatment and simplify the RHS in Eq. (5.25). This leads

to the new expressions for generalized 3-D RSTs. The approaches used by Mellor

[44, 37] and Lin [46] are considered for pressure treatment, and the respective RSTs

are hereinafter referred to as SM13
αβ , SM11

αβ and SL08
αβ .

5.4.1 Expression for SM13
αβ

Mellor (2013a) simplified the last two terms in Eq. (5.9) using linear wave theory

and obtained an expression for pressure applicable in the region −h ≤ z ≤ η. (The

procedure applied by Mellor is equivalent to using Taylor’s series approach for small

amplitude waves). Following his approach, an expression for pressure applicable to

arbitrary linear waves is obtained:

p = ρg(η̂ − z)− ρw̃2 + p̃d + ρ
∂

∂xβ

∫ η̂

z

(ũβw̃) dz + ρ
∂

∂t
(wη̃)

∣∣∣∣
z=0

(5.26)

where p̃d is the dynamic pressure given by Eq. (5.6). For any arbitrary wave field,

the last term vanishes when wave-averaged. The integral term, however, vanishes on

wave-averaging only for linear progressive waves.

Next, following Mellor [44], the transformed pressure in wave-following coordi-

nates is given by

p = ρg(η̂ − z̄)− ρgs̃− ρw̃2 +

(
p̃d +

∂p̃d
∂z̄

s̃

)
+ ρ

∂

∂xβ

∫ η̂

z̄

(
ũβw̃

)
dz̄, (5.27)

which is then used to obtain

sz̄p = ρg(η̂ − z̄)− ρw̃2 + ρ
∂

∂xβ

∫ η̂

z̄

(
ũβw̃

)
dz̄ +

∂

∂z̄

(
p̃ds̃−

gs̃2

2

)
and (5.28)

84



sαp = ρg(η̂ − z̄)
∂z̄

∂xα
+ ρ

∂z̄

∂xα

∂

∂xβ

∫ η̂

z̄

ũβw̃dz̄. (5.29)

Using these relations and after considerable algebra, the RHS of Eq. (5.25) is sim-

plified in the form

−1

ρ

∂

∂xα
(psz̄)+

1

ρ

∂

∂z̄
(psα)− ∂

∂xβ
(ũαũβ) = −g ∂η̂

∂xα
−1

ρ

∂SM13
αβ

∂xβ
+ρ

∂z̄

∂xα

∂

∂z̄

(
∂

∂xβ

∫ η̂

z̄

ũβw̃dz̄

)
(5.30)

where

SM13
αβ = ρ

{(
ũαũβ − δαβw̃2

)
+ δαβ

∫ η̂

z

∂

∂xβ

(
ũβw̃

)
dz

}
+

∂

∂z̄

(
p̃ds̃−

gs̃2

2

)
(5.31)

is the generalized 3-D RST obtained using the approach suggested by Mellor [44].

Notice that, in comparison to the other terms on the RHS of Eq. (5.31), the last

term in Eq. (5.31) can be ignored. This is true for most coastal applications, because

∂z̄/∂xα which is proportional to ∂h/∂xα at the bottom and ∂η̂/∂xα on the surface,

is usually small. For linear progressive waves, and for flat bottom cases, this term

always vanishes.

On substituting Eqs. (5.30-5.31) into Eqs. 5.24-5.25), the flow equations similar

to those in [44] are obtained. However, unlike [44], the expression for SM13
αβ given

above is valid for an arbitrary linear wave field. For linear progressive waves over

flat bottom (i.e. wave quantities obtained using Airy’s theory), SM13
αβ transforms to

M13.

Recall that M13 could not produce satisfactory results for the sloping beach case

in Section 2. It may, therefore, be argued that the expression for SM13
αβ given above

is also not adequate for arbitrary linear waves. The following hypothesis is given

here to address this issue: Any vertical water column is comprised of two regions,
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namely Region 1: −h ≤ z ≤ 0, and Region 2: −|η̃|< z − η̂ < |η̃|. It is clear form

the derivation above that the second and the third term inside curly bracket in SM13
αβ

corresponds to wave-averaged pressure contribution in Region 1, whereas, the last

term corresponds to wave-averaged pressure contribution in Region 2. (The term

ũαũβ does not directly relate to pressure). The last term in M13 is an estimate of

the last term in Eq. (5.31) using Airy’s theory. As discussed earlier in Section 2, the

last term in Eq. (5.1) for M13, which also corresponds to the pressure contribution in

Region 2, is the source of spurious behavior in the sloping beach case. Therefore, it

seems the use of Airy’s theory to obtain pressure contribution in Region 2 is perhaps

problematic. In fact, this hypothesis is also supported by Bennis et al. [? ] who

stated that Airy’s theory does not correctly estimate terms such as p̃ds̃; they in fact

suggested using more sophisticated wave models (e.g. [? ].

In summary, it is possible that the expression for SM13
αβ in Eq. (5.31) is correct,

but it certainly does not work in the framework of linear theory. However, we do

not have any proof for this conjecture, and since the present study is based on linear

wave theory, we do not consider Eq. (5.31) further in this paper. Instead, we develop

the generalized forms of M11 and L08 in the following discussion.

5.4.2 Expression for SM11
αβ

Mellor (2011) used Eqs. (5.9, 5.10) for pressure treatment. To account for the

pressure contribution in Region 2, they employed hydrostatic assumption as used

by Longuet-Higgins and Stewart [23] and Bettess and Bettess [24]. Using Mellor’s

approach, one can express the RHS of Eq. (5.25) in the form

−1

ρ

∂

∂xα
(psz̄) +

1

ρ

∂

∂z̄
(psα)− ∂

∂xβ

(
ũαũβ

)
= T (1) + T (2) (5.32)
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where T (1) and T (2) pertain to the pressure contributions in Region 1 and Region 2

respectively. In wave-following coordinates, T (1) can easily be estimated by setting

s̃ = 0 (i.e. by excluding Region 2) in the RHS of Eq. (5.25) such that

T (1) = −1

ρ

∂p

∂xα
+

1

ρ

∂z̄

∂xα

∂p

∂z̄
− ∂

∂xβ

(
ũαũβ

)
. (5.33)

However, the development of term T (2), which corresponds to hydrostatic pressure

contribution in Region 2, requires special treatment. Following Mellor [37], T (2) is

defined in the form of a surface singular term:

T (2) = −∂E
M11
D

∂xα
(5.34)

where EM11
D relates to the wave-averaged integral of hydrostatic pressure

∫ η̂+η̃

η̂

ρg (η − z) dz= ρg
η̃2

2
(5.35)

such that

EM11
D = 0 if z̄ 6= η̂, and

∫ η̂+

−h
EM11
D dz̄=

1

2
ρgη̃2.

After inserting T (1) and T (2) from Eqs. (5.33-5.34), and wave-averaged pressure p

from Eq. (5.10), one obtains the RHS of Eq. (5.25) as

−1

ρ

∂

∂xα
(psz̄)+

1

ρ

∂

∂z̄
(psα)− ∂

∂xβ

(
ũαũβ

)
= −g ∂η̂

∂xα
−
∂SM11

αβ

∂xα
+ρ

∂z̄

∂xα

∂

∂z̄

(
−δαβw̃2 +

∂

∂xβ

∫ η̂

z̄

ũβw̃dz̄

)
(5.36)

where

S
(M11)
αβ = ρ

{(
ũαũβ − δαβw̃2

)
+ δαβ

∫ 0

z

∂

∂xβ

(
ũβw̃

)
dz

}
+ δαβE

M11
D (5.37)
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is the generalized 3-D RST obtained following Mellor [37]. It can be considered as

the generalized form of M11. As discussed earlier with regards to Eq. (5.30), the

last term in Eq. (5.36) is negligible for most coastal applications. (Similar term is

present in [37]).

5.4.3 Expression for SL08
αβ

The treatment of pressure in Lin [46] is same as in Mellor (2011); therefore, one

can define RHS of Eq. (5.25) in the form of Eq. (5.32). The term T (1) is once again

given by Eq. (5.33); however, the development of T (2) differs from [37]. Note that T (2)

in Eq. (5.34) is a surface singular term, and the definition of wave-averaged integral

(Eq. 5.35) in [37] is not consistent with the wave-following coordinate system. This

has been debated by some researchers. Following Lin [46], here we obtain a new

expression for T (2) in the form

T (2) = −∂E
L08
D

∂xα
(5.38)

where EL08
D relates to the following wave-averaged integral defined by Lin [46]:

Z =

∫ s

ˆ̄z

ρg (s− z̄) dz′= ρg
˜̃s2

2
= ρg

˜̃η2

2

sinh2 k (z̄ + h)

sinh2 kd
(5.39)

such that

EL08
D =

∂Z

∂z̄
= ρg

˜̃η2

2

k sinh 2k (z̄ + h)

sinh2 kd
. (5.40)

Using the above expression for T (2) with T (1) from Eq. (5.33), one can get an
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equation similar to Eq. (5.36); SM11
αβ must be replaced by SL08

αβ given in the form

SL08
αβ = ρ

{(
ũαũβ − δαβw̃2

)
+ δαβρ

∫ 0

z

∂

∂xβ

(
ũβw̃

)
dz

}
+δαβ

{
ρg

˜̃η2

2

k sinh 2k (z̄ + h)

sinh2 kD

}
.

(5.41)

SL08
αβ can be considered as the generalized form of L08.

Once the generalized forms of M11 and L08 are derived, we can define these new

generalized RSTs in the form similar to Eq. (5.1):

Sαβ = ρ

{(
ũαũβ − δαβw̃2

)
+ δαβρ

∫ 0

z

∂

∂xβ

(
ũβw̃

)
dz

}
+ δαβ=(z̄), (5.42)

where =(z̄) = EM11
D for SM11

αβ , and =(z̄) = EL08
D for SM08

αβ .

Finally, to obtain a simplification of Sαβ, we separate the terms in Sαβ and express

them (using Eqs. 5.4b and 5.5) in terms of the wave solution φ from the elliptic wave

model as follows:

ρ
(
ũαũβ − δαβw̃2

)
=
ρ

2

{(
∂φ

∂xα

∂φ∗

∂xβ
+
∂φ∗

∂xα

∂φ

∂xβ

)
cosh2 k(h+ z̄)

2 cosh2 kd
−δαβk2φφ∗

sinh2 k(h+ z̄)

cosh2 kd

}
,

ρ

∫ η̂

z̄

∂

∂xβ

(
ũβw̃

)
dz̄ =

ρ

8

(
∂

∂xβ

(
A
∂φφ∗

∂xβ

))
where

A =
cosh 2kd− cosh 2k(h+ z̄)

cosh2 kd
,

and

1

2
ρgη̃2 =

ρ

4

ω2

g
φφ∗.

The above terms are substituted back into Eq. (5.42) to get the final expression
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for the vertically dependent RST given by

SG3D
αβ =

ρ

2

{(
∂φ

∂xα

∂φ∗

∂xβ
+
∂φ∗

∂xα

∂φ

∂xβ

)
cosh2 k(h+ z̄)

2 cosh2 kd

− δαβk
2φφ∗

sinh2 k(h+ z̄)

cosh2 kd

}
+ δαβ

ρ

8

(
∂

∂xβ

(
A
∂φφ∗

∂xβ

))
+ δαβ=(z̄) (5.43)

where =(z̄) = EM11
D for SM11

αβ , and =(z̄) = EL08
D for SM08

αβ where

EM11
D = 0 if z̄ 6= η̂, and

∫ η̂+

−h
EM11
D dz̄=

ρ

4

ω2

g
φφ∗.

EL08
D =

ρ

4

ω2

g
φφ∗

k sinh 2k (z̄ + h)

sinh2 kd
.

5.5 Relation to Other Formulations

In this section, we relate the generalized formulation (SG3D
αβ in Eq. 5.43) with

other 3-D as well as 2-D RSTs mentioned earlier in Section 1.

5.5.1 RST for Progressive Wave

For forward propagating waves over a flat bottom, expressed analytically using

η̃(t) = a0 cos(kx− ωt) (where a0 = wave amplitude), Eq. (5.4b) yields the complex

potential

φ =
a0g

ω
(sin kx cosωt− cos kx sinωt), (5.44)

and on substitution in SG3D
αβ (Eq. 5.43), results in Sαβ for M11 and L08 given by Eq.

(5.1). (σ in Eq. 5.1 is related to z̄ using z̄ = η̂ + σd).

In particular, for a progressive wave field, the second term on the RHS of Eq.

(5.43) vanishes, and the first term is uniformly distributed (independent of z) along

the vertical direction. Moreover, the vertical integration of Eq. (5.43) yields the
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standard 2-D RST of Longuet-Higgins and Stewart [23]:

S
(2D)
αβ =

[
kαkβ
k2

cg
cp

+ δαβ

(
cg
cp
− 1

2

)]
E. (5.45)

5.5.2 RST for Arbitrary Wave Field

For an arbitrary linear wave field, the G3D formulation can be seen as a 3-D

extension of the 2-D BB2D formulation of [24]. When vertically integrated, G3D

yields

S
(G2D)
αβ =

ρ

8

(
sinh 2kd+ 2kd

2k cosh2 2kd

)(
∂φ

∂xα

∂φ∗

∂xβ
+
∂φ∗

∂xα

∂φ

∂xβ

)
+

δαβ
ρ

8

(
∂

∂xβ

(
B
∂φφ∗

∂xβ

))
+ δαβ

ρ

8

(
2kd

k cosh2 2kd

)
k2 (φφ∗) (5.46)

where

B =

cosh 2kd− sinh 2kd

2kd
k cosh2 2kd

 ,

which matches with BB2D, if the term B in Eq. (5.46) is constant over the domain,

as in [24]. Since this is true only for domains with flat bottom, here we use more

general Eq. (5.46) as a substitute for BB2D for subsequent numerical calculations.

5.5.3 RST for Full/Partial Standing Wave Field

For full/partial standing waves over a flat bottom, an expression for 3-D RST

is not available in the literature. Although, for full standing waves, an effort was

made by Zhang and Liu [56], they used the inconsistent approach proposed by Xia et

al. [32]; also their treatment of the pressure term is erroneous (see discussion later).

Using the general nature of G3D, a 3-D RST for full/partial standing waves over flat

bottom, expressed analytically using η̃(t) = Re
(
a0e

i(kx−ωt) +Ra0e
i(kx+ωt)

)
(where
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R is reflection coefficient and a0 is the amplitude of forward-propagating wave), is

developed here. For this wave field, Eq. (5.4b) yields complex potential

φ =
a0g

ω
{(1−R) sin kx cosωt− (1 +R) cos kx sinωt} (5.47)

which on substitution in Eq. (5.43) gives

Sαβ = ρga2
0k

{
(1 +R2 − 2R cos 2kx) cosh2 k(h+ z̄)

sinh 2kd
− δαβ

(1 +R2 + 2R cos 2kx) sinh2 k(h+ z̄)

sinh 2kd

− δαβ

(
cosh 2kd− cosh 2k(h+ z̄)

sinh 2kd

)
R cos 2kx

}
+ δαβ=S(z̄) (5.48)

where =S(z̄) = EM11
DS following Mellor [37], and =S(z̄) = EL08

DS following Lin [46]

where

EM11
DS = 0 if z̄ 6= η̂, and

∫ η̂+

−h
EM11
D dz̄=

ρga2
0

4
(1 +R2 + 2R cos 2kx).

EL08
DS =

ρga2
0

4
(1 +R2 + 2R cos 2kx)

k sinh 2k (z̄ + h)

sinh2 kd
.

For R = 0, the above RST expression simplifies to M11, and for R = 1, it gives an

RST expression for full standing waves over flat bottom which vertically integrates

to yield the standard 2-D radiation stress components (S
(2D)
xx , S

(2D)
xy , S

(2D)
yx and S

(2D)
yy )

for standing waves (e.g. [54]) expressed as

S(2D)
xx =

1

2
ρga2

[
1 +

4kh

sin2kh
− 2 coth 2kh cos 2kx

]
(5.49)

S(2D)
yy =

1

2
ρga2

[
− cos 2kx+

4kh

sin2kh
sin2 kx+ 2 coth 2kh cos 2kx

]
(5.50)

S(2D)
xy = S(2D)

yx = 0 (5.51)

92



It should be noted that the last term in the brackets on the RHS of Eq. (5.48) con-

tributes to the total wave-induced forcing for full/partial standing waves (R 6= 0),

but as mentioned earlier, it vanishes in the case of progressive waves (R = 0). A

heuristic explanation may be provided for this as follows: this term physically means

that some weight of the water column is transferred to the neighboring columns

through the water motion. In the case of forward propagating waves, it has been

suggested (Svendsen 2006; Longuet-Higgins and Stewart 1962) that this is not pos-

sible over a long period and each water column just carries its own weight; therefore,

in the wave-averaged sense, this term is negligible for progressive waves. However,

when the wave field is not purely progressive (e.g. for a standing wave), an individual

water column may help carry the weight of neighboring water columns.
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6. MODELING THREE-DIMENSIONAL WAVE-INDUCED FLOW

A brief discussion pertaining to the salient features of the 3-D circulation model

used here is provided in Section 6.1. Application of the coupled system (the elliptic

model, the new RST, and the circulation model) is described in Section 6.2 to ex-

amine wave-induced flow fields (set-up/down and currents) for a series of test cases

involving wave reflection and diffraction. Summary and Conclusions are provided in

Section 6.3.

6.1 3-D Flow Model

The wave-induced flow field driven by the 3-D RST is simulated using the EFDC

model which has been widely used ([90], [89], [92], [91]) to simulate 3-D circulation,

transport of pollutants and sediments in rivers and nearshore regions. The model

solves the 3-D, vertically hydrostatic, turbulence-averaged equations of motion using

Cartesian or curvilinear coordinates in the horizontal and sigma coordinates in the

vertical. Various options for bottom friction, turbulence closure, wetting-drying are

available. The model is characterized by the following set of equations:

∂η̂

∂t
+
∂Uαd

∂xα
+
∂w′

∂σ
= 0 (6.1)

∂Uαd

∂t
+
∂UαUβd

∂xβ
+
∂Uαw

′

∂σ
+ gd

∂η̂

∂xα
=

∂

∂σ

(
KM

d

∂ûα
∂σ

)
+

∂

∂xβ

[
AMd

(
∂Uα
∂xβ

+
∂Uβ
∂xα

)]
− Fα(σ)

ρ
(6.2)
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where Uα = ûα+usα is the horizontal component of the mean flow velocity; w′ is the

vertical component of flow velocity in sigma coordinates; η̂ is the surface elevation;

d = h + η̂ is total water depth; AM and KM are the horizontal and vertical eddy

viscosity respectively. As suggested by Mellor [45], the vertical velocity gradient

in the turbulent mixing term is ∂ûα/∂σ (not ∂Uα/∂σ). More details regarding the

parameters AM and KM are available in [32]. In EFDC, the wave-induced forcing Fα

is typically applied only on the surface (analogous to wind forcing). To accommodate

depth-varying forcing at different sigma layers (−1 ≤ σ ≤ 0), here Fα(σ) is described

as

Fα(σ) = −∂(dSαβ(σ))

∂xβ
; (6.3)

the expression for Sαβ(σ) in terms of the sigma coordinates can be obtained by

replacing z̄ with η̂ + σd in Eq. (5.43).

The EFDC model can be used in single-layer or multi-layer modes to simulate

2DH and 3-D flow fields respectively. Using the EFDC model and the elliptic wave

model, a coupled wave-current system is developed. (Only the “one-way” coupling

between the wave model and the EFDC model is considered, i.e. the effect of currents

on the waves is ignored.)

6.2 Validation

To investigate the performance of the generalized formulation (Eq. 5.43) with the

coupled system, a number of cases covering many practical situations often encoun-

tered in coastal/harbor engineering applications are considered. They involve: (1)

undertow due to a wave propagating over a plane beach; (2) wave-induced circula-

tion associated with a standing wave; and (3) wave-induced flow around a detached

breakwater with significant reflection, diffraction and breaking effects. The mod-

eled results are compared with experimental data and results obtained using other
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Figure 6.1: Bottom profile (top). Wave set-up Comparison (bottom). Modeled
results using EFDC and G3D (—); modeled results using 2DH model and 2-D RS (-
- -); and experimental data (· · ·).

models.

6.2.1 Undertow over a Sloping Beach

Undertow associated with the mass transport due to wave action significantly al-

ters the mechanism of mixing and transport of pollutants and sediments in nearshore

regions, and has been extensively studied (e.g. [96], [94], [93], [34], [97], [42]). Ting

and Kirby [96] conducted a laboratory study to measure quantities associated with

mass transport for spilling- and plunging-type breakers. Their data for plunging

breaker case was recently used by Sheng and Liu [34] who compared the perfor-

mance of three distinct RSTs (including M11) using the coupled system of the wave

model SWAN and the circulation model CH3D.

The objective here is to investigate the performance of the two generalized for-

mulations (SM11
αβ and SL08

αβ ) with the coupled system discussed earlier. We consider

96



the plunging breaker case from Ting and Kirby (1994) for which the laboratory data

of set-up/down and vertical variation of current profiles are available. This case in-

volves wave propagation over a sloping beach (slope 1:35) in a two-dimensional wave

tank with the cross-shore length of 40 m and the alongshore width of 0.6 m. Water

depth in the deeper portion of the tank is 0.4 m (Fig. 6.1), and the incident wave

height and period are 0.128 m and 5 s respectively.

Two separate simulations for which the radiation stresses are obtained using SM11
αβ

and SL08
αβ are considered. The wave model simulations (performed for a domain of size

14 m x 0.6 m) uses 15 triangular elements per wavelength. With the EFDC model,

a horizontal grid with 0.35 m resolution is used, and the domain is decomposed into

20 sigma layers in the vertical. On a single processor of a 2.00 GHz computer with

3 GB RAM, the computational time for each simulation to achieve steady-state is

around 12 min with a time step of 0.005 s. The modeled results of set-up/down

obtained using the EFDC model are compared (in Fig. 6.1) with the experimental

data and the results obtained using a 2DH analytical model given by

∂Sxx
∂x

= −ρg(h+ η̂)
∂η̂

∂x
. (6.4)

(Due to similarity between the modeled results of set-up/down for two simulations,

only the results obtained using SM11
αβ are shown in Fig. 6.1). Good agreement is

observed between modeled results and other data; for example, the maximum value

of the set-up at the shoreline and the location of the breaker line are comparable with

the data. This implies that the choice of RST (2-D or 3-D) does not significantly

affect the modeled set-up/down values for this case, probably because a balance sim-

ilar to Eq. (6.4) also establishes for the 3-D model simulation. (Similar comparison

is also observed in [34]. However, the 3-D model simulations properly resolve the
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Table 6.1: Location of seven measurement stations (Ting and Kirby 1994)
Station 1 2 3 4 5 6 7
Location, x (m) 7.295 7.795 8.345 8.795 9.295 9.795 10.395
Depth, d (m) 0.169 0.156 0.142 0.128 0.113 0.096 0.079

vertical structure of the flow field as shown in Fig. 6.2. The vertical profiles of mod-

eled mean horizontal velocities at seven different measurement stations (Table 1) also

compare well (see Fig. 6.3) with the experimental data. As shown in Figs. 6.2 and

6.3, both SM11
αβ and SL08

αβ provide a similar vertical structure of the flow field; however,

SM11
αβ slightly overestimates the magnitude to currents especially near the surface.

Not surprisingly, the modeled results obtained using SM11
αβ are consistent with the

results obtained by Sheng and Liu [34] using M11 formulation, because for forward

propagating waves, SM11
αβ reduces to M11 (shown earlier). Minor differences between

the flow field results may be attributed to the fact that only the turbulence associ-

ated with currents is included with the EFDC model (i.e. the effect of wave-induced

bottom stress and wave-enhanced turbulence is assumed to have a minimal effect on

the modeled quantities. Details regarding the implementation of these mechanisms

can be found elsewhere [98]. It should also be noted that like most studies related to

wave-induced circulation, the present study is also based on linear theory which can

provide a reasonable estimate of nearshore dynamics; however, inside the surf zone,

sometimes nonlinear processes are prevalent.

6.2.2 Standing Wave over a Flat Bottom

We consider the case of a standing wave over a flat bottom for which the sur-

face elevation η̃ is expressed analytically using η̃ = 2a cos kx coswt. This case is

analogous to a nearshore situation where a normally incident wave interacts with a

fully-reflecting, infinitely-long shore-parallel breakwater or a seawall.
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Figure 6.2: Vertical structure of modeled current velocities.

Figure 6.3: Comparison of modeled mean horizontal velocity (—) with data (· · ·).
Results using SL08

αβ (green) and using SM11
αβ (red)
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Some analytical studies related to mass transport for standing waves are available

(e.g. [100] [101], [99]). In general, as discussed by Scandura et al. [99], mass

transport for standing waves depends notably on the parameter D = (δ/a)2 /2 where

δ =
√

2ν/σ is boundary layer thickness, and ν is kinematic viscosity. D is defined

as the order of magnitude of the ratio between the dissipative viscous term and

the convective term. Analytical expressions for mass transport were obtained by

Longuet-Higgins [100] and Ng [101] for D >> 1 and by Scandura et al. [99] for

D << 1. For D >> 1, the spatial gradients of radiation stresses and the gradients of

set-up/down in the momentum equation balance each other; however, for D << 1,

the nonlinear convective term also contribute significantly to this balance. Special

consideration for boundary layers is required for D >> 1, and Longuet-Higgins

[100] and Ng [101] therefore divided the overall domain into three vertical regions

(a surface boundary layer; a bottom boundary layer; and an intermediate region),

allowing effective treatment of boundary layer effects. With the numerical tools used

in this study, the boundary layer effects are not properly resolved. Moreover, for

D << 1, dissipative viscous forces are negligible which makes the modeling of such

cases difficult due to stability issues.

Here we consider two hypothetical cases: Case 1 for which a uniform value of

viscosity is selected so that D = 10, and Case 2 for which the spatially varying

vertical and horizontal viscosities are defined using default tools in the EFDC model.

Note that the turbulence and bottom friction induced by wave action and boundary-

layer effects are ignored in this study. For a flat bottom case with kh = 0.25 m,

and the incident wave amplitude of a = 0.1 m and wave period of T = 8.0 sec,

the modeled non-dimensional wave height (H/a) varies between 0 to 2 with the

maximum and minimum values occurring at the antinodes (X/L = 0, 1/2, 1, ...

where X is the cross-shore distance and L is wavelength) and nodes (X/L = 1/4,
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3/4, ...) respectively. (Wave heights not plotted for brevity). For EFDC simulations,

40 sigma layers are used with the EFDC model, and the horizontal grid is resolved

at 0.125 m uniform spacing. On the same computer, with a time step of 0.001 s,

the model takes approximately 3 mins to provide a steady-state solution of the set-

up/down and current field. For both Case 1 and Case 2, two separate simulations

for which radiation stresses are computed using SL08
αβ and SM11

αβ are considered.

The modeled set-up/down is compared in Fig. 6.4 with the standard analytical

solution (Bettess and Bettess 1982; Copeland 1985)

η̂ = ak2 coth 2kh cos 2kx (6.5)

which is obtained from the horizontal balance equation (relating η̂ to radiation

stresses) in Eq. (6.4). For Case 1, the modeled set-up/down compares very well

with the analytical solution. This is consistent with the type of momentum balance

(discussed above) that exists for large values of D. However, for Case 2 (i.e. small

D), the convective term also participates in this balance, and consequently, some

mismatch between the modeled and analytical results is observed near the nodes

and antipodes. Similar mismatch between the modeled and the analytical results

for a progressive wave case (with small turbulent viscosity) was reported by Mel-

lor (2013); see discussion later. (Due to similarity between the set-up/down results

obtained using SL08
αβ and SM11

αβ , only the results corresponding to SL08
αβ are shown).

The vertical profiles of current velocities obtained using the EFDC model are

shown in Fig. 6.5 and Fig. 6.6 for Case 1 and Case 2 respectively. Since experimental

data related to wave-induced circulation for standing waves are not available, the

analytical results mentioned above may be used for qualitative verification. The

formation of vertical circulation cells (in x − z plane) for standing waves has been
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reported by Longuet-Higgins [100], Ng [101] and Scandura et al. [99]. Irrespective

of D values. the streamline plots in Figs. 6.5(a,b) and 6.6(a,b) also depict vertical

cells for both RSTs SL08
αβ and SM11

αβ . (For streamline plots, we use ∂ψ/∂x = −Ω and

∂ψ/∂σ = dUα where ψ is streamfunction). The circulation cells on the left and the

right side of the nodes (e.g. at X = 6.25 m) have clockwise and counter-clockwise

patterns respectively, and as a result, a vertical jet shooting downwards forms under

the nodes (e.g. at X = 6.25 m). An exactly opposite circulation pattern is found on

the left and the right of the antinodes (e.g. at X = 0, 12.50 m), and a jet shooting

vertically upwards exists under the antinodes. These characteristics of the flow fields

are consistent with the analytical works mentioned earlier. Moreover, the magnitudes

of velocities (both horizontal and vertical) are much smaller for Case 1 than for Case

2. This difference may be attributed to the different types of momentum balance

(see discussion earlier) that exist for these cases. Large velocity magnitudes in Case

2 are due to the contribution of nonlinear convective term in the overall balance.

This is consistent with the results shown by Scandura et al. [99] for a flat bottom

standing wave case. Similar findings but for a progressive wave case were reported

by Mellor (2013). Large velocity magnitudes (one order larger than the Stokes drift)

are observed in his results for small values of vertical turbulent viscosity KM . Mellor

(2013) also showed that the convective terms may cause a considerable mismatch

between the modeled and analytical set-up/down results as discussed earlier with

regards to Fig. 5.6.

The vertical profiles of mean horizontal velocities at locations between the nodes

and antinodes (e.g. at X = 3.13, 9.38 m) are shown in Figs. 6.5(c,d) and 6.6(c,d)

for Case 1 and Case 2 respectively. It can be seen that the modeled results obtained

using SL08
αβ and SM11

αβ differ significantly especially near the surface. Note that, as

discussed earlier, the term EM11
D in Eq. (5.43) is concentrated near the surface for
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SM11
αβ , but for this case EL08

D in SL08
αβ is distributed over vertical (as a function of

sinh 2kh) with significant contribution to the lower layers. For large values of D, the

difference between the results from the two RSTs is more pronounced than for small

D values.

Furthermore, Zhang and Liu (2009) also reported the formation of vertical cir-

culation cells using their 3-D RST formulation for standing waves, but the direction

of the cell rotation and the magnitude of the currents were off due to inconsistencies

in their formulation (discussed earlier in Section 1.) Importantly, this case also il-

lustrates the role of reflection on wave-induced circulation. Dingemans et al. (1987)

suggested that the reflection-diffraction effects cannot drive “depth-averaged” cur-

rents. However, as shown in Figs. 6.5 and 6.6, reflection effects can drive the flow

field in the vertical plane. This is also consistent with deposition and scouring of

sediments occurring at the nodes and antinodes for a standing wave (Zhang and Liu,

2009).

6.2.3 Flow around a Detached Breakwater

Next we simulate the wave-induced circulation in a complex domain involving

a nearshore detached (shore-parallel) breakwater located on a plane beach. This

case resembles a field situation where an artificial breakwater shelters a coastline

from wave action. The half-detached breakwater, as depicted in the computational

domain shown in Fig. 6.5, has an alonghshore length of 1 m and is installed at

a location 1.5 m away from the shoreline. For computations, it is assumed that

the breakwater reflects the incident waves perfectly. For this case, the laboratory

tests were carried out by Kuroiwa et al. [102] who investigated the mechanism of 3-D

circulation in the vicinity of the breakwater. Their measurement points are indicated

by A, B, C and D in Fig. 6.7. The input wave is a normally-incident monochromatic
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Figure 6.4: Comparison of wave-induced set-up/down. Analytical solution (—), and
modeled results using SL08

αβ for Case 1 (- -) and Case 2 (- · -).

wave train with period T = 1 s and wave height Ho = 6.90 cm. A contour plot of

modeled wave heights obtained using the elliptic model is shown in Fig. 6.8. Some

typical features of the wave field around detached breakwater such as the formation

of a shadow region (with negligible wave activity) behind the breakwater, significant

wave reflection on the upwave side of the breakwater, wave diffraction shoreward of

the breakwater and the energy dissipation due to wave breaking inside the surf-zone

can be observed in Fig. 6.8. The formation of a partial standing wave upwave of

the breakwater and the wave breaking along the sloping beach are reminiscent of the

previous two tests. Reasonably good agreement between modeled wave heights and

data [102] at all measurement points can be observed in Fig. 6.8.

Two separate simulations with EFDC model are considered for which the radi-

ation stresses are obtained using SL08
αβ and SM11

αβ . A 250 x 75 grid with a uniform

spacing (∆x = 2 m and ∆y = 4 m) is used in the horizontal direction, and a total of
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Figure 6.5: Comparison of modeled mean velocity field for Case 1. Streamline plots
for mean velocity obtained using SL08

αβ (a) and SM11
αβ (b). Mean horizontal velocity

along X = 3.125 m (c) and along X = 9.375 m (d) obtained using SL08
αβ (- -) and

SM11
αβ (—).
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Figure 6.6: Comparison of modeled mean velocity field for Case 2. Streamline plots
for mean velocity obtained using SL08

αβ (a) and SM11
αβ (b). Mean horizontal velocity

along X = 3.125 m (c) and along X = 9.375 m (d) obtained using SL08
αβ (- -) and

SM11
αβ (—).
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Figure 6.7: Model domain. Circles denote current measurement stations A, B, C
and D.

20 sigma layers are used in the vertical. With a time step of 0.035 s, each simulation

takes approximately 300 mins to complete a 0.20 day run on the same computer.

The spatial variation of wave-induced set-up/down (η̂) simulated using the EFDC

model with SL08
αβ is shown in Fig. 6.9. The spatial variation of η̂ on the upwave

side of the breakwater can be attributed to the formation of standing wave; this is

somewhat analogous to the standing wave case discussed earlier.

Further, the wave-induced flow fields (obtained using 3-D EFDC) for the regions

upwave and downwave of the breakwater are shown in Figs. 6.10 and 6.11 for the

top and the bottom layers. Behind the breakwater, a horizontal circulation cell

is observed (in both top and the bottom layers) which is a typical feature of the

wave-induced flow field around a detached breakwater. The vertical profiles of the

horizontal components of current velocity at four measurement points are compared

with the experimental data in Fig. 6.12. (Note that the results obtained using SM11
αβ

are not shown here for brevity; discrepancies between the results obtained using
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Figure 6.8: Modeled wave height distribution (top), and wave height comparison
(bottom). Solid line: modeled wave height, and circles: denote measurements.
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Figure 6.9: Modeled wave-induced set-up/down obtained using EFDC-3D and G3D.
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Figure 6.10: Spatial distribution of currents on the downwave side of the breakwater.
Top layer (left) and bottom layer (right)
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Figure 6.12: Comparison of the vertical profile of current velocity. Modeled x-
directed (solid) and y-directed (dashed) velocity components; measured x-directed
(�) and y-directed velocities (◦).
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Figure 6.13: Modeled 2DH current field using BB2D (left) and D87 (right).

SL08
αβ and SM11

αβ are of the same order as for Case 2 in the previous section.) For the

most part, very good agreement is observed, which confirms the efficacy of the newly

derived RSTs with the coupled system. Some discrepancies in the results may be

attributed to the choice of the breaking model, ignoring the boundary-layer effects

and the wave-enhanced turbulence, etc. In addition, the top and bottom layer flow

fields shown in Figs. 6.10 and 6.11 depict the presence of undertow in the surf-zone

away from the breakwater (say y = 1.0 m) and the formation of vertical circulation

cells on the upwave side (say y = 2.4 m) of the breakwater. These features of the

flow field are also reminiscent of the previous two tests.

Finally, we address the issue of potential numerical errors associated with the

computation of higher-order derivative terms present in the generalized RSTs. As

noted earlier, such a possibility was raised by Dingemans et al. (1987) who provided
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an alternative approximate formulation (referred to as D87 here) suitable for 2-D

cases. Due to the lack of detailed data related to 3-D flow field, it is not possible to

conclude if the results presented in Figs. (6.10 and 6.11) are contaminated by these

numerical errors. However, this issue can be addressed by comparing the 2DH flow

fields obtained using D87 and BB2D formulations. Recall that the BB2D formulation

also contains higher-order derivatives, and the D87 is an alternative approach which

avoids the computation of higher-order derivatives. The wave-induced flow fields

obtained using D87 and BB2D formulations with the single-layer EFDC model are

shown in Fig. 6.13. In a visual examination, one does not detect any spurious

patterns in the flow field obtained using BB2D, confirming that the generalized

formulations are not vulnerable to numerical issues as postulated by Dingemans et

al. (1987), as long as the grid resolution is L/10 or smaller (where L is wavelength).
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7. SUMMARY AND CONCLUSIONS

7.1 Summary and Conclusions

This study describes the development of an approach to simulate nonlinear wave

transformation in the presence of wave reflection, diffraction, refraction, breaking,

etc. The proposed model would be applicable to a wide range of practical wave

conditions encountered in harbor and coastal engineering applications. Since linear

elliptic equation models (e.g. MIKE21-EMS, CGWAVE, PHAROS, etc) are widely

used for harbor applications, an initial foray is made into extending such models to

include wave-wave interactions. It is expected that the findings of this research will

contribute to the eventual development of a new generation of elliptic harbor wave

models. The second-order extension of nonlinear elliptic mild-slope equation was first

considered; however, convergence issues inspired the derivation of an evolution-type

equation. The ADI scheme with finite-difference method is found to perform satis-

factorily for all the validation cases. Boundary conditions typically used for elliptic

(linear) wave models were found to be unsatisfactory. A combination of these bound-

ary conditions with dissipative sponge layers and internal wave generation techniques

was therefore established and validated for the present model. Further, the “march-

ing” process used in the evolution scheme enables one to compute the nonlinear terms

for both wave-wave interactions and breaking simultaneously without requiring an

“iterative” process in the usual sense of the word, as described in previous work

[6, 12]. Various model features are verified for a variety of wave conditions ranging

from deep to shallow water conditions. Reasonable agreement found between data

and model results, and superior model performance in some cases, suggest that the

proposed approach will enhance the applicability of the elliptic mild-slope wave mod-
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els. In addition, this preliminary investigation of the nonlinear mild-slope equation

paves the way for the development of more sophisticated finite-element based nonlin-

ear models capable of handling arbitrary shaped domains in a more accurate manner.

Based on this, a methodology is then developed which can be used to advance the

existing finite element models to include wave-wave interaction effects. The finite

element model is applied to simulate nonlinear wave transformation inside Ponce de

Leon Inlet, FL. Results show that the methodology developed here performs rea-

sonably well, and has thus improved the applicability existing finite element models

based on linear elliptic equation.

Future efforts to extend the present model to handle multidirectional input and

steep bathymetric variations may also be warranted. Motivation for such exten-

sions come from the works of Athanassoulis and Belibassakis [82], Belibassakis and

Athanassoulis [83] and Toledo and Agnon ([84]) who developed different forms of

wave transformation models with improved capabilities to handle steep slopes. Al-

though their models (in the context of nonlinear waves) are primarily applied to

domains with one-dimensional bottom variations and are devoid of the mechanisms

like breaking dissipation, internal generation, etc., they allow the incorporation of

steep bathymetric variations encountered in practice. A study combining develop-

ments discussed in the present study with the models in [83, 84] will certainly benefit

reseach community and wave modelers.

Furthermore, a preliminary investigation of the three existing RSTs for linear

progressive waves is conducted. It is found that the 3-D RST proposed by Mellor

[44] does not work satisfactorily. Two alternative approaches (Mellor 2011 and Lin

2008) are considered to obtain generalized 3-D RSTs for using with the complex

velocity potential resulting from analytical methods or phase-resolving wave models

(e.g. elliptic mild-slope models) applicable to complex wave conditions where re-
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flection, diffraction, breaking and focusing effects may play a significant role. This

represents a generalization of the work of Bettess and Bettess [24] for such mod-

els, and overcomes the limitations of existing formulations which are suitable for

forward-propagating waves only. The generalized formulations are implemented in

a coupled wave-current system developed using a wave model (based on the elliptic

mild-slope equation) and a 3-D circulation model, and the wave-induced flow field

is estimated for a series of test cases involving reflection, diffraction and breaking.

Three different cases involving wave propagation over a sloping beach, a standing-

wave case, and wave interaction with a shore-parallel breakwater are considered. For

all cases, modeled results agree well with the results from analytical methods and

with laboratory data available in literature. Some discripancy between the modeled

velocities obtained using the two newly-developed RSTs are observed; the approach

suggested by Lin (2008) is found more reliable. Moreover, it is shown that exist-

ing 2-D and 3-D formulations can be deduced from the generalized formulation. It

can further be used to derive analytical expressions of 3-D RST for simple cases,

e.g. an analytical formulation is developed for full/partial standing waves over a

flat bottom for the first time. Using the full standing wave case, it is also deduced

that the reflection/diffraction-related effects, which do not drive depth-averaged flow

field, can drive currents in the vertical. Finally, numerical issues associated with the

higher-order derivatives are addressed, and it is concluded that the generalized for-

mulation is not vulnerable to numerical noise if a reasonable grid resolution of L/10

or smaller is used.
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[80] Madsen, P.A., Banijamali, B., Schäffer, H.A., Sørensen, O.R.. Boussinesq

type equations with high accuracy in dispersion and nonlinearity. In: 25th Int.

Conf. Coast. Engrg., ASCE, New York. 1996, p. 95–108.

[81] Sharma, A., Panchang, V.G., Kaihatu, J.M., Sørensen, O.R.. Modeling

nonlinear wave-wave interactions with the elliptic mild slope equation. Applied

Ocean Res. 2014, p. 114-125.

[82] Athanassoulis, G.A., Belibassakis, K.A.. A consistent coupled-mode theory

for the propagation of small-amplitude water waves over variable bathymetry

regions. J Fluid Mech 1999;389.

[83] Belibassakis, K.A., Athanassoulis, G.A.. A coupled-mode system with ap-

plication to nonlinear water waves propagating in finite water depth and in

variable bathymetry regions. Coast Eng 2011;58(4).

[84] Toledo, Y., Agnon, Y.. Nonlinear refraction-diffraction of water waves: The

complementary mil-slope equation. J Fluid Mech 2009;641.

[85] Reddy, J.N.. An Introduction to The Finite Element Method, 2nd Edition,

McGraw-Hill, USA 1993.

[86] Panchang, V.G., Wei, G., Cushman-Roisin, B.. Solution of the mild-slope

wave problem by iteration. Applied Ocean Research 1991;13.

[87] Smith, S.J., Harkins, G.S.. Numerical wave model evaluations using labo-

ratory data. Proc. Ocean Wave Measurements and Analysis, Waves ‘97 1997,

123



Virginia Beach, VA.

[88] Shi, F., Kirby, J.T., Dalrymple, R.A., Chen, Q.. Wave simulations in

Ponce de Leon Inlet using Boussinesq model. J Waterw, Port, Coast Ocean

Eng 2003;129.

[89] Jin, K. R., and Ji, Z. G. (2001). “Calibration and verification of a spectral

wind-wave model for Lake Okeechobee.” Ocean Eng., 28, 571-584.

[90] Kuo, A. Y., Shen, J., and Hamrick, J. M. (1996). “The effect of acceleration

on bottom shear stress in tidal estuaries.” J. Waterway, Port, Coastal Ocean

Eng., 122, 75-83.

[91] Singhal, G., Panchang, V. G., and Nelson, J. A. (2013). “Sensitivity assessment

of wave heights to surface forcing in Cook Inlet, Alaska.” Continental Shelf

Res., 63, S50-S62.

[92] Park, K., Jung, H. S., Kim, H. S., and Ahn, S. M. (2005). “Three-dimensional

hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang

Bay, Korea. Marine Environmental Res., 60, 171-193.

[93] Stive, M. J. F., and Wind, H. G. (1986). “Cross-shore mean flow in the surf-

zone.” Coastal Eng., 10, 325-340.

[94] Svendsen, I. A. (1984). “Mass flux and undertow in a surf zone.” Coastal Eng.,

8, 347-365.

[95] Svendsen, I. A. (2006). “Introduction to Nearshore Hydrodynamics.” World

Scientific, Singapore.

[96] Ting, F. C. K., and Kirby, J. T. (1994). “Observation of undertow and turbu-

lence in a laboratory surf zone.” Coastal Eng., 24, 51-80.
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