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ABSTRACT

Unmanned Aerial Vehicles (UAVs) are used for several military and civil appli-

cations such as reconnaissance, surveillance etc. The UAVs, due to their design and

size limitations, have inherent kinematic constraints, communication constraints etc.

This thesis considers the path planning problems for UAVs while satisfying a class

of constraints.

We consider a multiple depot UAV routing problem, where the vehicles have mo-

tion constraints due to bound on their yaw-rate. For a given set of targets, it is

required that each target should be on the path of at least one of the vehicles. This

problem is hard to solve and currently there are no algorithm that could find an

optimal solution. We aim to find tight lower bounds for this problem via Lagrangian

relaxation. The complicating constraints of the problem are relaxed, and the cost

function is penalized whenever those constraints are violated. This reduces the orig-

inal problem to a known problem - a standard multiple traveling salesmen problem

(MTSP). Simulation results are presented to show that this method significantly

improved the existing lower bounds.

The second problem we consider is the routing of UAVs in GPS denied envi-

ronments and with limited communication range. Two different architectures for

navigation assisted by an array of Unattended Ground Sensors (UGSs) are consid-

ered. In the first case, when an UAV localizes itself by communicating with an UGS,

the second UAV can orbit around the first UAV. Contact with UGS allows them

to act as beacons for relative navigation eliminating the need for GPS. A random-

ized algorithm with approximation ratio of 9
2
and a transformation technique are

developed to solve this problem. In the second architecture, when two UAVs are
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located at two different UGSs, the third UAV localizes by triangulation using range

measurements from the first two UAVs. This three UAV case is solved using a graph

transformation technique to pose it as an one-in-a-set TSP. The solutions produced

by these algorithms were used to simulate the UAV routing on AMASE, a simulation

tool for routing UAVs developed by the Air Force Research Laboratories.
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1. MOTIVATION AND INTRODUCTION

Civil and military applications for Unmanned Aerial Vehicles (UAVs) have grown

enormously in the past two decades. Due to their portability and lack of need

for a pilot, UAVs could be deployed in dangerous and hard to reach terrains. In

military applications, UAV are used for border patrolling, reconnaissance missions

etc. [1, 2, 3], and in civil applications, they are used in search and rescue missions,

traffic monitoring, wild fire monitoring etc. [4, 5, 6]. UAVs are envisaged as data

mules to collect the data from sensor nodes in a sensor network [7, 8].

Along with many advantages, UAVs also have certain limitations. One such

limitation is the fuel carrying capacity; one needs to plan efficient routes to make

use of these limited resources. The fixed wing UAVs cannot rotate on their own

axis, and therefore cannot change their heading instantaneously. One needs to take

additional lengths resulting from motion constraints into account while solving the

path planning problems. Another limitation of the UAVs is the on-board battery

capacity, which restricts the communication range of the UAVs. UAVs rely on GPS

signals for navigation and therefore, are vulnerable to GPS jamming, in which case

UAVs need to rely on communication signals for navigation. Any two UAVs might

be able to communicate only if the distance between them is at most a certain limit,

which we refer to as the communication range (R) of the UAVs.

In this thesis, we consider routing problems for the UAVs with two different

classes of constraints. In a typical surveillance or reconnaissance mission, a team of

UAVs start from their initial locations, visit the given set of targets, and return to

their starting location. We refer to the initial locations as depots and the path of the

UAVs as tours. Once the tour is completed, the UAVs repeat the mission, and this
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is done again and again. One needs to find a tour that minimizes the fuel expended

for each tour for two reasons: (i) The limited available resources are efficiently used

and with the available amount of fuel the UAVs can go for more missions. (ii) This

may lead to shorter/faster tours, and hence each target would be visited by a UAV

more frequently. Here, we make the following assumptions on the UAVs:

1. The inertia of the UAVs are negligible.

2. There are no obstacles in the paths of the UAVs.

3. The disturbances due to wind is negligible.

4. The UAVs fly at a constant speed and hence the cost of traveling is directly

proportional to the length of the path.

We consider the fixed wing UAVs here, and they have finite speed and finite rate

of change of heading. We assume that the inertia of the UAVs are negligible, and we

can model the UAVs as Dubins vehicles. In this model, the rate of change of heading

angle is upper bounded by a constant, Ω. If the speed of the vehicle is u, the minimum

turning radius (ρ) is given by u
Ω
. This minimum turn radius criteria mandates that

the paths of the UAVs need to have bounded curvature. In [9], Dubins solved the

problem of finding shortest path of bounded curvature, and gave an algorithm to

find the path of minimum length between two points with initial and final heading

angles given. We use this result to obtain the length of the shortest paths between

a given pair of targets and headings.

Using the Dubins result, the path planning problem reduces to a continuous/discrete

optimization problem. We refer to this routing problem with one UAV (modeled as

Dubins vehicle) as the Dubins traveling salesman problem (DTSP). We refer to the
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routing problem with multiple UAVs (each initially located at different depots) as

multiple depot multiple vehicle Dubins traveling salesman problem (MDMVDTSP).

To solve the DTSP/MDMVDTSP, one needs to identify the sequence of targets

that are visited by each UAV and the heading angle of the UAVs at each target.

This problem is a generalization of the traveling salesman problem (TSP) where a

salesman starts from an initial location, visits the given cities, and returns to the

starting location in such a way that the total distance traveled by him is a minimum.

A generalization of this is a multiple traveling salesman problem (MTSP), where a

group of salesman has to visit the given cities, and each city should be visited by

at least one salesman. In the UAV routing problem, the underlying problem of

assignment of targets to a UAV and identifying the sequence is same as the MTSP.

This problem was studied extensively and a lot of results are available in the literature

[10, 11, 12, 13, 14, 15, 16].

In the case of DTSP/MDMVDTSP the optimal sequence of targets depends on

the length of path between each pair of targets, which depends on the heading angles

of the UAV at each target while the optimal headings depends on the sequence of tar-

gets. Due to this reason, there is a coupling between two problems: the TSP/MTSP

which can be formulated with discrete variables and the problem of finding optimal

heading which are continuous variables. This coupling of the discrete and continuous

optimization problems makes it hard to solve. One of the possible methods to solve

this problem is to discretize the headings, i.e. the heading of the UAV at each target

can only belong to a finite discrete set Φ = {φ1, φ2, · · ·φd}. Now one can pose this

as an errand scheduling problem, which can be formulated using integer variables to

determine the sequence of targets and the heading angle at each target.

There are currently no algorithms that could solve DTSP in polynomial time,
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but there are approximation algorithms1 and heuristics available. To corroborate

the performance of the approximation algorithms or heuristics, one need to know a

tight lower bound for the given problem. The lower bounds are important for two

reasons: (i) They corroborate the performance of heuristics. (ii) They can be used

to efficiently eliminate certain solutions in branch and cut procedures to solve the

mixed integer linear programming problems. We are interested in computing tight

lower bounds for the DTSP and MDMVDTSP using Lagrangian relaxation. That

is, we relax some of the complicating constraints of the problem, and penalize the

objective whenever these constraints are violated. This relaxed problem can be posed

as an easier related problem, which can be solved using readily available results. The

solution of this relaxed problem will be a lower bound to the actual minimization

problem.

1.1 Lower bound computation for DTSP and MDMVDTSP

The first part of the thesis deals with the algorithms to compute lower bounds for

the DTSP and MDMVDTSP. Here, the main idea is motivated by the method of Held

and Karp in [17]; they use the duality to compute the lower bounds for the TSP. They

considered the formulation of TSP in [18], where the decision variables indicate which

target/vertex has to be visited next after visiting a target. A visit from one target to

another target is called as an edge from first target to the second. The TSP induces

a constraint (degree constraint) that there should be at least two edges incident on

each vertex, which can be interpreted as one incoming edge and one outgoing edge.

In [17], the degree constraint is relaxed and penalized the cost function using penalty

(or dual) variables. This relaxation reduces the TSP to a known problem of finding

1An α-approximation algorithm finds a feasible solution to the problem in polynomial time,
and provides a guarantee that the solution is within α times the optimal solution. But in actual
computation, it may produce solutions better than the proven apriori guarantee.
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minimum spanning tree, for which combinatorial algorithms are available to solve.

Therefore, for any given set of penalty variables, a lower bound to the TSP could

be computed. Held-Karp also found a method to compute the penalty variables

that would give the best lower bounds, and it was found to be with in 1% for most

instances of TSP.

We follow a similar approach to compute tight lower bounds for the DTSP/ MD-

MVDTSP. The complicating constraints for the DTSP are the yaw rate constraints.

If the motion constraints (yaw rate) are relaxed, this problem reduces to an Euclidean

TSP(ETSP), i.e. TSP with Euclidean distances as the cost of travel between any pair

of targets. Hence, the solution to the ETSP is a lower bound to the optimal solution

of the DTSP. In this thesis, we relax the motion constraint of the UAV at target

locations, (i.e. at the target locations, the incoming heading angle of the UAV may

not be equal to the outgoing heading angle), and penalize the cost function whenever

this constraint is violated. After the relaxation the DTSP reduces to a regular asym-

metric TSP2 (ATSP). This resulting ATSP is NP hard problem too, but there are

algorithms available that would give a very tight lower bound for the ATSP. This in

turn is a lower bound to the optimal solution of the DTSP. To find the set of penalty

variables that provides the best lower bounds, we used a sub-gradient algorithm. It

is an iterative procedure that updates the penalty variables in each iteration and

produces better lower bounds after each update. We extended this technique to the

multiple depot case (MDMVDTSP) too. In the multiple depot case, after relaxing

the motion constraints and penalizing the cost function, MDMVDTSP reduces to

a multiple traveling salesman problem (MTSP). We can transform the MTSP into

an ATSP using the result in [19], and compute a tight lower bound to the resulting

2In an ATSP, the cost of travel from target i to target j may not be equal to the cost of travel
from target j to target i.
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ATSP, which in turn is a lower bound to the MDMVDTSP.

It was proved in [20] that the length of the Dubins path between two targets (i

and j) is convex with respect to the heading angles at the targets (θi and θj), when

the distance between those two targets is at least 4ρ units. Using this property of

the Dubins paths, we developed another method to compute lower bounds for those

instances of DTSP/MDMVDTSP where the distance between every pair of targets

is at least 4ρ units. We discretize the heading angles at each target, i.e. the heading

angles are restricted to a discrete set Φ = {φ1, · · ·φd}, and pose the DTSP as a one-

in-a-set TSP. We proved that Cost − 4Nδ is a lower bound to the DTSP where Cost

is the optimal solution to the discretized DTSP posed as the one-in-a-set TSP, N is

the number of targets and δ is the difference between any two consecutive angles in

the set Φ. We extended this technique to the multiple depot case (MDMVDTSP)

too.

1.2 GPS denied UAV routing

The second part of the thesis considers a routing problem in GPS-denied environ-

ments involving a team of Unmanned Aerial Vehicles (UAVs) and a set of Unattended

Ground Sensors (UGSs). Access to GPS is an important requirement for the navi-

gation of the UAVs, which makes UAVs vulnerable to GPS jamming and spoofing

[21, 22]. The surveillance missions could possibly be in hostile environments, and the

UAVs may be denied the access to the GPS signals. We consider a scenario where a

team of UAVs need to be routed for patrol in a GPS-denied zone; the navigation of

the UAVs is assisted by the UGSs deployed in the zone. The UAVs are equipped with

range sensors on board. Based on the strength of their wireless communication link,

they can estimate the distance between two UAVs or between a UAV and an UGS.

Since the batteries powering the wireless signal have limited capacity, the UAVs can
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estimate the range only if the distance between them is at most the certain limiting

distance R. The UGSs have limited power too, are not networked, but an UGS can

communicate with a UAV if it is located relatively close to the UGS. Here we assume

they can communicate if a UAV is located vertically above the UGS at UAV’s flying

altitude. We refer to this routing problem of the UAVs with limited communication

range as communication constrained UAV routing problem (CCURP).

We have considered two different architectures for the navigation of the UAVs

aided by the UGS. In both the architectures, the geometry and the relative location

of the UGSs are known by the UAVs. In the first architecture, two UAVs are needed

for the mission. The two UAVs have orbiting controllers, which allows them to

circumnavigate around the other UAV. When a UAV loiters above an UGS, the

other UAV can orbit around the first UAV, and reach out to another UGS. The

UAVs cooperatively perform a series of these maneuvers and navigate through zone

to fulfill the mission. In the second architecture considered, a UAV estimates its

states using the range measurements relative to two other UAVs idling above two

different UGSs. If two range measurements between a UAV and two other known

locations are available, states of the UAV can be estimated using triangulation. In

this scenario, two UAVs loiter above two UGSs, a third UAV can travel from one UGS

to other, as long as it is within the communication range from the first two UAVs.

To fulfill the mission, the team of three UAVs have to visit all the UGSs/targets

using the navigation scheme described.

If the UAVs have access to the GPS data, the routing problem for the UAVs is a

generalization of the traveling salesman problem (TSP). A suite of algorithms to find

optimal solutions, approximate solutions, lower bounds are available [23, 24, 25, 26,

27] for several generalizations of TSP with multiple vehicles, vehicles with motion

constraints etc. The contributions of this section are the following:
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• We developed a 9
2
-approximation algorithm for the two UAV CCURP.

• We presented a method to pose the two UAV problem as a one-in-a-set TSP

which was solved by transforming it into an asymmetric TSP.

• For the three UAV CCURP, we developed a graph transformation method to

transform it into a regular asymmetric TSP.

1.3 Contributions of the dissertation

• We presented an algorithm using Lagrangian relaxation to find tight lower

bound to the DTSP. We presented a sub-gradient procedure to find the tightest

possible bounds.

• The algorithm to find lower bound is extended to the multiple vehicle, MD-

MVDTSP.

• For the instances of DTSP/MDMVDTSP which satisfy a distance criteria, we

developed an algorithm to compute lower bounds using the convexity property

of the Dubins paths.

• We presented two architectures for routing the UAVs in the absence of GPS,

and with a limited communication range. In these two architectures, UAVs rely

on range measurements for navigation. First architecture requires two UAVs

and the second architecture requires three UAVs.

– A 9
2
approximation algorithm was developed to solve the Two-UAV CCURP.

– A transformation method was developed to pose the Two-UAV CCURP

as one-in-a-set TSP, which could be transformed into an ATSP.
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– Two UAV CCURP is implemented in AMASE3 for the feasibility study

and simulation of the UAV routing.

– A transformation technique is developed to pose the Three-UAV CCURP

as one-in-a-set.

3A tool-set developed at AFRL for simulation and demonstration of UAV routing and control
technologies.
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2. ROUTING UAVS WITH MOTION CONSTRAINTS∗

2.1 Introduction

In this section, we present the algorithms to compute tight lower bounds for the

DTSP and the MDMVDTSP. The objective of the DTSP is to find a path for the

vehicle such that each target is visited at least once by the vehicle, the path satisfies

the motion constraints of the vehicle and the length of the path is a minimum. To

solve the DTSP, one has to find the heading angle for the vehicle at each target

and the sequence in which the targets must be visited. Once the heading angles

are known for any two adjacent targets along the tour, the result in [9] can be

used to determine the path for the vehicle. Routing problems of this genre were

earlier studied in [28],[23],[29],[24] and [25]. References [28] and [23] provide an

approximate solution and an associated guarantee of sub-optimality. In [24], a two

step approach is prescribed to solve a Multi Depot, Multiple TSP. The sequence of

targets to be visited is first solved as a combinatorial problem, and the heading angle

at each target is later computed using dynamic programming. The work in [25] deals

with a Heterogeneous, Multi Depot, Multiple UAV Routing Problem (HMDMURP),

where there are multiple heterogeneous vehicles required to visit a group of targets.

HMDMURP is transformed into a standard Asymmetric TSP in [25] and solved using

the Lin-Kernighan Helsgaun (LKH) heuristic [30]. The applications of these path

∗Part of this section was reprinted with permission from the following articles:
S. Manyam, S. Rathinam, S. Darbha, and K. Obermeyer. “Computation of a lower bound for a
vehicle routing problem with motion constraints,” in Proc. ASME Dynamic Systems and Control
Conference, 2012, pp. 695-701. Copyright c© 2012 ASME.
S. Manyam, S. Rathinam, and S. Darbha, “Computation of lower bounds for a multiple depot,
multiple vehicle routing problem with motion constraints,” in Proc. IEEE Conference on Decision
and Control (CDC), 2013, pp. 2378-2383.
S. Manyam, S. Rathinam, S. Darbha, and K. Obermeyer, “Lower bounds for a vehicle routing
problem with motion constraints,” Accepted for publication in International Journal of Robotics
and Automation, Vol. 30, 2015. Copyright c© 2015 ACTA Press.
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planning problems with the curvature constraints were studied by several authors in

[31, 32] and [33]. A study of these path planning algorithms is included in [34].

Even though there are heuristics and approximation algorithms, there are cur-

rently no algorithms that can either find an optimal solution or a tight lower bound

for the DTSP. Lower bounds are important because they can be used to corroborate

the quality of the solutions produced by the heuristics or the approximation algo-

rithms. Currently, there is only one available method to compute lower bounds for

the DTSP. One can relax the motion constraints of the vehicles, causing the problem

reduced to a regular TSP. Here, the cost to travel between a pair of targets is equal

to or proportional to the Euclidean distance between them.

Another approach to solve the DTSP is to restrict the heading angles of the

vehicle at each target to a discrete set. This discretized DTSP (DDTSP) can be

posed as a One in a Set TSP (OST) and a lower bound can be obtained for the OST

[25]. For example, in [25], a transformation method which converts the OST into a

standard TSP is used to find feasible solutions and compute lower bounds. However,

the transformation method as prescribed in [25] does not provide tight lower bound

for every instance of the DDTSP for the following reason: this method relies on

modifying the travel costs by a large constant (this constant is generally called the

big-M). As a result, the quality of the lower bound depends on the value of M and

tends to deteriorate for large values of M (which usually happens as the size of the

problem increases). In fact, as observed in the simulations, there are several instances

where the transformation method produced a bound that was either negative or lower

than the bound obtained by solving the Euclidean TSP (ETSP). In this context, the

following are the objectives of this article for the DTSP where the vehicle is allowed

to visit each target only at a specified set of heading angles:
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• We aim to develop tight lower bounds for every instance tighter than the op-

timal solution of the corresponding Euclidean TSP.

• We aim to compare the bounds provided by all of the available methods to

corroborate their performance.

To address the first objective, we provide a new method for computing a lower

bound for the DTSP using Lagrangian relaxation. A Lagrangian relaxation is ob-

tained by removing some of the constraints in the DTSP and penalizing the cost

function whenever they are violated. Using the weak duality theorem, it follows that

the cost of the solution to the Lagrangian relaxation is a lower bound to the optimal

cost of the DTSP. The objective function of the Lagrangian relaxation is posed as

an asymmetric TSP where the cost of traveling each edge is computed by solving a

variational problem. This asymmetric TSP is solved using the Lin-Kernighan Hels-

gaun† (LKH) heuristic [30], which is one of the best known heuristics for the TSP in

the literature. The LKH heuristic also gives a tight lower bound which serves as a

lower bound to the DTSP. For any given set of dual/penalty variables, the solution

of this relaxation gives a lower bound to the DTSP. Sub-gradient optimization tech-

niques are used in order to obtain the best lower bound. Simulation results seem

to corroborate that the proposed method produces a lower bound better than the

transformation method [25] in almost all instances. Additionally, this lower bound

†LKH [30] is a local search algorithm available for solving the single TSP. It starts with a feasible
tour and repeatedly attempts to move to a neighboring tour with a lower cost. Neighboring tours
can be found by removing edges from the current tour and adding new edges appropriately. The
crux of this search lies in the ability to find suitable edges to be added or removed from the current
tour. It has been observed in simulations that the optimal Lagrangian dual cost of a TSP instance
is very close to its optimal tour cost (within 1-2%) for practically every instance of the TSPLIB,
and most of the edges present in an optimal dual solution are also present in the optimal tours of
the TSP. Therefore, while adding new edges in LKH, priority is given to the the edges found in the
dual solution as they act as proxies to the edges in the optimal tours. This basic idea was used by
Helsgaun in [30], where he developed the LKH heuristic and obtained optimal tours for large TSP
instances with high frequency.
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is a significant improvement when compared to the solution of the ETSP.

2.2 Lagrangian based lower bounds for the Dubins traveling salesman

problem

2.2.1 Problem formulation

Let N = {1, 2, ..., n} be the set of given targets and θ = {θ1, θ2, ..., θn} be the

set of headings at the targets. Let E denote the set of all the edges joining any two

vertices in N . Let xij be a binary decision variable which equals 1 if there is an

edge from i to j in the tour and equals 0 otherwise. Let X be the matrix of decision

variables, whose entry in the ith row and jth column is xij . Let F represent the set

of all feasible solutions, such that in each solution, every target in N is visited. We

will say that X ∈ F , if the matrix corresponds to one of the feasible solutions. The

DTSP can be stated as the following:

min
θ,X

∑

(i,j)∈E

dij(θi, θj)xij (2.1)

subject to:

X ∈ F , (2.2)

where dij(θi, θj) is the length of the shortest path of bounded curvature, from vertex

i at (xi, yi) with an initial heading θi to vertex j at (xj , yj) with a final heading θj .

The length dij can be expressed in terms of the kinematics of the Dubins vehicle as:

dij(θi, θj) = min
uij

(tfij − t0ij), (2.3)
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subject to:

ζ̇ij = cos θij , η̇ij = sin θij , θ̇ij = uij, |uij| ≤ Ω, (2.4)

ζij(t
0
ij) = xi, ηij(t

0
ij) = yi, (2.5)

ζij(t
f
ij) = xj , ηij(t

f
ij) = yj, (2.6)

θij(t
0
ij) = θi, θij(t

f
ij) = θj . (2.7)

Here, ζij and ηij are the position coordinates of the Dubins vehicle in x and y direc-

tions, θij(tij) is the heading angle of the vehicle at time tij, t
0
ij and t

f
ij are the initial

and final times while traveling from vertex i to vertex j. The term θ̇ij is the yaw rate

of the vehicle and it is upper bounded by Ω. When the minimum turning radius of

a UAV equals to 1 unit (of distance), the term Ω equals 1. Vehicles with different

turning radii can be modeled by changing the corresponding value of Ω.

Suppose the desired tour contains the edges (i, j) and (j, k) in the path of the

vehicle, the arriving (final) heading of the vehicle while traveling from target i to

target j should be equal to the departure (initial) heading of the vehicle while trav-

eling from target j to target k. We do not know which target precedes others in

the desired tour, but we know that there is only one incoming and outgoing edge

incident on target j. So, we can make use of the binary variables xij to formally

state the heading angle constraint at a target as follows:

∑

i:(i,j)∈E

θij(t
f
ij)xij −

∑

k:(j,k)∈E

θjk(t
0
ij)xjk = 0. ∀j ∈ N, (2.8)

In general, equations (2.7) and (2.8) are difficult constraints to deal with. The

domain of θij is cylindrical and one has to identify 0 and 2π as one and the same. We
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will pose these constraints using sines and cosines of the angles θij as shown below:

cos θij(t
0
ij) = cos θi, sin θij(t

0
ij) = sin θi, (2.9)

cos θij(t
f
ij) = cos θj , sin θij(t

f
ij) = sin θj . (2.10)

In summary, the constraint on the heading angles (2.8) at each target j can be

re-stated in terms of the sines and cosines as:

∑

i:(i,j)∈E

cos θij(t
f
ij)xij −

∑

k:(j,k)∈E

cos θjk(t
0
ij)xjk = 0, ∀j ∈ N, (2.11)

∑

i:(i,j)∈E

sin θij(t
f
ij)xij −

∑

k:(j,k)∈E

sin θjk(t
0
ij)xjk = 0, ∀j ∈ N. (2.12)

2.2.2 Computation of lower bounds

To compute a lower bound, the idea is to relax the constraints (2.11) and (2.12)

and penalize the objective function (2.1) whenever the constraints are violated via a

set of penalty (dual) variables. Let the penalty variable corresponding to the angle

constraint of target j in (2.11) is αj and the penalty variable corresponding to the an-

gle constraint of target j in (2.12) is βj . Let Π = [α1, · · · , αn, β1, · · · , βn], where αj , βj ∈

ℜ ∀j = 1...n. For any given set of penalty variables Π, a solution to the following
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Lagrangian relaxation of (2.1 - 2.2) is lower bound to the DTSP.

L(Π) = min
θ,X

∑

(i,j)∈E

dij(θi, θj)xij (2.13)

−
∑

j∈N

αj





∑

i:(i,j)∈E

cos θij(t
f
ij)xij −

∑

k:(j,k)∈E

cos θjk(t
0
ij)xjk





−
∑

j∈N

βj





∑

i:(i,j)∈E

sin θij(t
f
ij)xij −

∑

k:(j,k)∈E

sin θjk(t
0
ij)xjk



 ,

subject to:

X ∈ F .

By replacing cos θij(t
f
ij) and cos θjk(t

0
ij) with cos θj , and replacing sin θij(t

f
ij) and

sin θjk(t
0
ij) with sin θj and simplifying the objective in (2.13), L(Π) can be written as

L(Π) = min
θ,X

∑

(i,j)∈E

[dij(θi, θj)− αj cos θj − βj sin θj (2.14)

+ αi cos θi + βi sin θi]xij .

Now, for any set of penalty variables, note that L(Π) ≥ J(Π) where

J(Π) = min
X

∑

(i,j)∈E

min
θ
[dij(θi, θj)− αj cos θj − βj sin θj

+ αi cos θi + βi sin θi]xij . (2.15)

Theorem 1. For any given Π, the solution to the minimization problem with ob-

jective J(Π) shown in equation (2.15), subject to the constraints in (2.2) is a lower

bound to the DTSP (2.1-2.2, 2.11-2.12).

Proof. Clearly L(Π) in (2.13) is the Lagrangian relaxation of the DTSP defined by the
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objective in (2.1) and the constraints in (2.2,2.11,2.12). The weak duality theorem

states that for a minimization problem, the cost of the Lagrangian relaxation for any

set of penalty variables is at most equal to the optimal cost of the DTSP. Therefore,

L(Π) is a lower bound to the DTSP. One can also note that that J(Π) is at most

equal to L(Π). Therefore, for any given Π, the solution to (2.15) is a lower bound to

the DTSP.

Consider the following variational problem

νij(αi, αj, βi, βj) =min
θi,θj

dij(θi, θj)− αj cos θj (2.16)

− βj sin θj + αi cos θi + βi sin θi,

where dij(θi, θj) is given by equations (2.3) to (2.6) and (2.9) to (2.10). dij(θi, θj) is

the minimum Dubins distance required by the vehicle to travel from the configura-

tion (xi, yi, θi) to (xj, yj, θj) and can be calculated using the result from Dubins[9].

Given the values of αi, αj, βi, βj, one can compute νij as follows: Discretize the

allowable values of the heading angle and obtain a discrete set of heading angles

Φ = {φ1, φ2, ...φd}. We assume that this discrete set of heading angles is the same

for all the targets, i.e. Φi = Φ, ∀i ∈ N . Therefore, for every pair of θi, θj ∈ Φ, the

value of dij(θi, θj)− αj cos θj − βj sin θj + αi cos θi + βi sin θi can be easily computed.

The minimum of all these values, each corresponding to a pair of θi, θj ∈ Φ is νij .

Now, given Π = (α1, .....αn, β1, .....βn), νij can be computed for every edge (i, j) ∈

E. The minimization problem in (2.15) then reduces to the following:

J(Π) = min
X∈F

∑

(i,j)∈E

νij(αi, αj , βi, βj)xij , (2.17)

This is an asymmetric Traveling Salesmen Problem (ATSP) where the weight of each
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edge (i, j) is νij . This ATSP can be solved using the LKH heuristic and it gives a

tight lower bound for the ATSP, which is in turn a lower bound to the DTSP.

In summary, the following is the algorithm for finding a lower bound, given a set

of penalizing variables (Π):

1. Select the penalty variables Πk = (α1, ..αn, β1, ..βn).

2. Use Πk to formulate the Lagrangian relaxation and the variational problem

(2.16).

3. Solve the variational problem (2.16) for every (i, j) ∈ E.

4. Find a lower bound by solving the ATSP using the LKH heuristic.

For any given Π, J(Π) is a lower bound to the DTSP, the best lower bound can

be found by maximizing J(Π) for all Π, i.e., by solving J∗ = maxΠ J(Π). Since J(Π)

is a combination of a finite number of linear functions, it is concave in Π. Therefore,

we use a subgradient optimization technique to solve for J∗. One can refer to [35]

and [36] to understand the details of subgradient optimization.

2.2.2.1 Subgradient procedure

This procedure is explained in the context of a general optimization problem.

Consider the problem: minx c
′x subject to Ax = b where x is a n × 1 vector, b is a

m× 1 vector, c is a n× 1 vector and A is a m× n matrix. A Lagrangian relaxation

of this problem is minx c
′x + λ′(Ax − b) where λ = (λ1, λ2, · · · , λm) is a vector of

penalty variables. The best lower bound can then be obtained by solving the following

Lagrangian dual problem: maxλ minx c
′x+ λ′(Ax− b). A subgradient procedure for

solving this dual problem starts with an initial set of penalty variables (λ0) and

iteratively attempts to update these penalty variables with a goal of improving the
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lower bound. After each iteration k, a new penalty vector λk+1 is computed by taking

a step along the direction of the subgradient:

λk+1 = λk + δksk, (2.18)

where sk is a vector (of dimension m× 1) representing the subgradent direction and

δk is the step size along the subgradient. In general, the subgradient direction sk is

chosen to be b − Axk [36] where xk is the solution of the Lagrangian dual problem

for the kth iteration. One can also select a constant step size or a diminishing step

size or a Polyak’s step size for updating the penalty variables. The convexity of

the Lagrangian function then guarantees the convergence of the above subgradient

procedure.

2.2.2.2 Implementation details for the DTSP

An important part of the subgradient optimization technique is to find a di-

rection of the subgradient and step size at each iteration k. With respect to the

DTSP, as constraints (2.11) and (2.12) are relaxed, one can chose the following as

the subgradient:

sk =







∑

i:(i,j)∈E cos θkij(t
f
ij)x

k
ij −

∑

k:(j,k)∈E cos θkjk(t
0
ij)x

k
jk

∑

i:(i,j)∈E sin θkij(t
f
ij)x

k
ij −

∑

k:(j,k)∈E sin θkjk(t
0
ij)x

k
jk






. (2.19)

Here, xk
ij and θkij are the solutions for the problems defined in (2.17) and (2.16)

respectively in the kth iteration. For the computational experiments, we chose the

step size (δk) to be 1 initially and reduced it by a factor of 2 after every 50 iterations.

This iterative procedure is outlined as below:
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1. Initialize k := 0. Choose the initial penalty vector Π0 with all the penalty

variables to be equal to zero. Let ǫ be a small number and kmax be the maximum

number of iterations allowed for the subgradient procedure.

2. Compute νij as shown in (2.16), for all (i, j) ∈ E.

3. Solve the ATSP using the LKH heuristic. Set the lower bound, J(Πk), during

the kth iteration to be equal to the lower bound computed using the LKH

heuristic.

4. If k > 1 and J(Πk+1)−J(Πk)
J(Πk)

≤ ǫ stop the iterative procedure and output the best

lower bound.

5. Compute Πk+1 = Πk + δksk, where sk is given by the equation (2.19). If

k ≥ kmax, stop the iterative procedure and output the best lower bound; else,

set k = k + 1 and return to step 2.

2.2.3 One in a set transformation

To corroborate the performance of the proposed technique, we also solve the

DTSP using the method in Oberlin et. al [25]. In [25], the authors solve the discrete

DTSP (where the choice of the heading angle at each target is restricted to a discrete

set) by transforming the DDTSP into an ATSP. They replicate each target m times

such that each of the m replications correspond to a possible heading angle. Now,

the DTSP is posed as a problem of finding a subtour for each vehicle such that

exactly one copy of each target is visited once and the total distance traveled by the

vehicle is a minimum. This problem is then transformed into an ATSP using the

method presented by Noon and Bean in [37]. One can solve this ATSP using the

LKH heuristic. This algorithm readily gives a feasible solution to the DTSP, which

is an upper bound to the optimum. Also it provides a lower bound which can be
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used to compare with the lower bounds obtained using the method proposed in this

article.

2.2.4 Numerical results

For two instances with 20 targets and 40 targets, targets are randomly located,

lower bounds to the DTSP were computed using the Lagrangian relaxation method.

The plots of the lower bound versus the number of iterations of the sub-gradient

procedure for those two instances are shown in Figure 2.1(a) and Figure 2.1(b) re-

spectively. Each of these figures also show the plots for different discretizations(Θd)

of the heading angle. As the size of the set Θd is increased, the lower bound reduces.

This is due to the fact that the solution of the variational problem (2.16) gives a

better minimum with more discretizations of the heading angle θi. One can also

infer from Figure 2.1(a) and Figure 2.1(b) that the final value of lower bound also

converges in terms of the size of the set Θd. The average of the percentage of im-

provement compared with the lower bound after 20 iterations with 32 discretizations

is plotted in Figure 2.2. Clearly, after 20 iterations, the improvement of the lower

bound is minimal even after 200 iterations of sub-gradient procedure. Figure 2.3

shows the average computation time required for all the algorithms as a function of

the size of the problem. Even though the computation time significantly increases

as the number of iterations increases, the improvement in the lower bound after 20

iterations is minimal. Therefore, one can stop the iterative process after 20 iterations

to find a tight lower bound within a reasonable amount of time.

Tables 2.1 and 2.2 compares the lower bounds computed using the proposed

method with the optimal cost of the Euclidean TSP (ETSP) and the lower bound

obtained using the Transformation Method (TM) with the minimum turning radius

ρ = 4 and ρ = 6. We have computed the lower bounds for two instances of each
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Figure 2.1: Convergence of sub-gradient procedure
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case with 10, 20, 30, 40 and 50 targets. In these simulations, we have run the sub-

gradient procedure for 200 iterations. The ETSP corresponding to each instance was

solved using the LKH Heuristic. The LKH algorithm gives a lower bound to the

ETSP which is in turn a lower bound to the corresponding DTSP. The first column

in the tables indicates the size (number of targets) of an instance. The second column

refers to the optimal cost of the Euclidean TSP (ETSP) which is a lower bound to

the DTSP. Third and fourth columns refers to the lower bounds calculated using

the proposed Lagrangian method and the TM respectively. Fifth and sixth columns

refers to the improvement (in %) in the lower bounds calculated using the Lagrangian

method and the TM with respect to the optimal cost of the ETSP.

The average improvement in the lower bounds computed using the proposed

Lagrangian dual algorithm is 31.5% with ρ = 4 and 48.5% with ρ = 6. As mentioned

in the introduction, there were several instances for which the bounds computed by

using the TM were either negative or were inferior compared to the solution of the

ETSP. These instances are marked by ’*’ in the tables. When the transformation

method worked, it produced bounds on an average that were better than the bounds

found using the proposed method. In summary, choosing the maximum of the bounds

found by the proposed method and the transformation method improved the lower

bound available for the DTSP significantly.

For an instance with 10 targets, a solution using the Lagrangian relaxation and

the heuristic is shown in Figure 2.4. The path shown in blue is the solution from

Lagrangian relaxation and the path shown in red is a feasible solution obtained from

a heuristic algorithm. As the heading angle constraint is relaxed in the Lagrangian

relaxation, the path may not be a feasible Dubins tour. One can see that the incoming

and outgoing headings are not same at some targets in Figure 2.4.
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Table 2.1: Lower bound comparison with ρ = 4
Inst.a #Targ.b ETSPc Lag.d TMe %Diff.f %Diff.g

1 10 63.25 73.21 83.26 15.76 31.65
2 10 54.70 60.83 80.53 11.20 47.22
3 20 74.97 93.10 102.70 24.18 36.99
4 20 74.38 91.00 103.55 22.34 39.21
5 30 78.39 115.44 119.73 47.26 52.73
6 30 84.76 111.23 158.21 31.23 86.65
7 40 97.36 135.63 110.97 39.31 13.98
8 40 99.62 142.14 -59.40 42.69 *
9 50 115.26 157.95 -1.60 37.04 *
10 50 113.74 163.84 6.08 44.05 *

Mean 31.51 44.06

Table 2.2: Lower bound comparison with ρ = 6
Inst.a #Targ.b ETSPc Lag.d TMe %Diff.f %Diff.g

1 10 58.90 84.30 98.83 43.12 67.78
2 10 66.77 82.77 * 23.96 *
3 20 72.83 115.20 * 58.18 *
4 20 68.75 110.14 * 60.19 *
5 30 93.91 135.60 * 44.40 *
6 30 97.23 151.27 48.18 55.59 *
7 40 99.73 150.40 144.30 50.80 44.68
8 40 97.61 147.37 119.39 50.98 22.32
9 50 110.78 169.49 * 52.99 *
10 50 109.34 158.51 266.53 44.97 143.76

Mean 48.52 69.64

aInstance
bNumber of targets
cEuclidean TSP
dLagrangian algorithm
eTransformation method
f% Difference using Lagrangian algorithm
g% Difference using Transformation method
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2.3 Extension of the lower bound computation to the multiple depot

multiple vehicle DTSP

The DTSP can be extended to a multiple vehicle case and the problem is defined

below: given a set of targets and a set of vehicles starting from distinct depots, the

objective is to find a path for each of the vehicles such that (i) every target is visited

at least once by a vehicle, (ii) the paths satisfy the motion constraints of the vehicles

and (iii) the sum of the length of the paths is a minimum. The vehicles here are

modeled as Dubins vehicle, and this path planning problem is referred as the Multi-

Depot Multiple Vehicle Dubins Traveling Salesman Problem (MDMVDTSP). Let

T = {1, 2, ..., n} be the set of given targets and θ = {θ1, θ2, ..., θn} be the set of

headings at the targets. Let D = {n+1, n+2, ..., n+m} denote the initial locations

(or depots) of the vehicles. Let N = T ∪ D and E denote the set of all the edges

joining any two vertices in N . Let xij be a binary decision variable which equals

1 if there is an edge from i to j in the tour and equals 0 otherwise. Let X be the

26



matrix of decision variables, whose entry in the ith row and jth column is xij . Let F

represent the set of all feasible solutions, such that in each solution, every target in

T is visited atleast once by one of the vehicles in D. We will say that X ∈ F , if the

matrix corresponds to one of the feasible solutions. The MDMVDTSP can be stated

as the following:

min
θ,X

∑

(i,j)∈E

dij(θi, θj)xij (2.20)

subject to:

X ∈ F , (2.21)

where dij(θi, θj) is given by the equations (2.3 - 2.7). The Lagrangian relaxation for

MDMVDTSP follows similar to the result in section 2.2.2 and it is shown in equation

(2.22).

J(Π) = min
X∈F

∑

(i,j)∈E

νij(αi, αj , βi, βj)xij . (2.22)

This is an asymmetric Multiple Depot Multiple Traveling Salesman Problem (MDMTSP).

This could be transformed to an asymmetric TSP (ATSP) using the result in [19] and

the resulting ATSP could be solved using LKH heuristic. The LKH heuristic gives a

tight lower bound for the ATSP, which in turn is a lower bound to the MDMVDTPS.

2.3.1 Numerical results

The lower bound for the MDMVDTSP are computed using the proposed La-

grangian method and one in a set transformation method for 20 instances each with

10, 20, 30 and 40 targets with 2, 3 and 4 vehicles. The minimum turning radius (ρ)
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for each of these vehicles is 4. The percentage of improvement in the lower bound

compared to the solution of the corresponding EMTSP is computed. The solution

of the EMTSP is a lower bound to the MVDTSP. The average of the percentage

improvement of the lower bound for 20 instances of each of the case is listed in Table

2.3. We can see a significant improvement of 30 to 40 percent in the lower bounds

computed using the proposed method. The proposed method performs better than

the transformation method in all of the instances with multiple vehicles. In most

of the instances, the transformation method produced either negative value for the

lower bound or a value less than the solution of EMTSP and hence the average

improvement is negative in Table 2.3. That is because this method relies on modi-

fying the cost of traveling for some of the edges by a large constant(generally called

big-M). Hence the lower bound depends on the value chosen for M .

The average computation time (for 20 instances) required to compute the lower

bounds using the EMTSP, the proposed method and the transformation method are

shown in Table 2.4. We can clearly see that the computation time required by the

proposed method is significantly less compared to the transformation method. The

transformation method transforms the MVDTSP into an asymmetric TSP with a

very large number of nodes and hence the high computation time. The EMTSP

is transformed into a symmetric TSP and solved using LKH heuristic, which is the

fastest known heuristic to solve TSP. Since this involves only solving a TSP, the com-

putation time required for EMTSP is very less compared to the other two methods.

A dual solution and a heuristic solution are shown for an instance with single

depot in Figure 2.5 and for two instances with multiple depots in Figures 2.6 and

2.7. The paths shown in blue are the dual solutions and the paths shown in the red

are the feasible heuristic solutions. The dual solution is the solution of the problem

in equation (2.22). However, this may not be a feasible path, since the incoming

28



angle and outgoing angle at some of the targets may not be the same. One can

see the discontinuity of the dual path at few targets in Figure 2.5, 2.6 and 2.7. In

case of multiple vehicles, two or more vehicles are used to visit the targets, only if

the targets are separated into more than one cluster and a depot is present in each

cluster as in Figure 2.7. If the targets are not separated as clusters, in most of the

instances, it is cheaper to pick one vehicle to visit all the targets. For the instances

where the targets are separated into clusters, the distance needed to travel from one

cluster to another would dominate and hence choosing two vehicles in each cluster

to visit the targets in their clusters could be cheaper.

Table 2.3: Average of the percentage lower bound improvement compared to the
solution of EMTSP

# Targets % Improvement of the Lowerbound

2 Depots 3 Depots 4 Depots
TMa Lagb TMa Lagb TMa Lagb

10 -57.8 27.3 -105.9 34.1 -70.3 38.6
20 -25.5 32.3 -48.9 35.1 -72.6 37.3
30 -65.6 32.4 -74.7 34.1 -133.6 35.4
40 -92.6 38.1 -136.9 38.6 -161.3 39.1

aTransformation method
bProposed Lagrangian method

2.4 Lower bound computation using convexity

Let p1, ....pn be a sequence of targets, pi is called a sharp turn if the angle

∠(pi−1, pi, pi+1) is acute and one of the pi’s neighbors is within a distance 4 units

from the segment joining pi to its other neighbor. Let θ1, θ2....θn be the headings at

each target, and let C is a mapping of the angles vector (θ1, θ2....θn) to the length
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Table 2.4: Average of the computation time required using three different methods
# Targets Computation time (seconds)

EMTSPa TMb Lagc

10 0.07 277.81 113.43
20 0.17 1365.07 357.49
30 0.32 3960.58 745.62
40 0.66 7379.01 1255.56

aEuclidean MTSP
bTransformation method
cProposed Lagrangian method

Depot

Targets

Heuristic solution

Dual solution

Figure 2.5: Dual solution vs heuristic solution with 12 targets

of the shortest Dubins path, with a minimum turning radius of 1 unit, visiting the

targets in the given order. The result in [20] is the following: when there are no

sharp turns, all global minima of C is strictly convex over its lifted domain in ℜn.

The shortest distance (dij) between two targets i and j is a function of the headings
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Depots

Targets

Heuristic solution

Dual solution

Figure 2.6: Dual solution vs heuristic solution with 20 targets

Depots

Targets

Dual Solution

Heuristic Solution

Figure 2.7: Dual solution vs heuristic solution with 20 targets

at the targets (θi, θj). The partial derivatives of dij were given in [20] as:

∂dij(θi, θj)

∂θi
= ±(1− cosαi),

∂dij(θi, θj)

∂θj
= ±(1 − cosαj), (2.23)
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where αi and αj are the length of the circular arcs in the vehicle’s path at target

i and j respectively. We attempt to compute a lower bound to the single vehicle

DTSP using the convexity of C, when the distance between every pair of targets is

atleast 4 units.

Consider an instance of DTSP where distance between every pair of vertices is

greater than 4 units. To find the optimal solution, one has to find the optimal

sequence of targets to be visited and the optimal headings at each target. Let T ∗ be

the optimal sequence of targets, θ∗(T ∗) be the optimal headings at each target and

C(θ∗(T ∗)) be the cost of the optimal solution. Since this is hard to solve, one can

restrict the values of allowable headings at each target to a discrete set Φd and pose

the DTSP as a one-in-a-set TSP. In general, the optimal sequence and headings of

the one-in-a-set TSP can be different from the optimal solution of the DTSP. Let

T 1, θ1(T 1) be the optimal sequence of targets and headings and C(θ1(T 1)) be the

optimal cost for the corresponding one-in-a-set TSP.

Let Φd = {φ1, φ2, ....φd} be the set of discrete values of headings allowed at each

target, where φi+1 − φi = δ, i = 1, 2, .., d− 1. Let Θ be the set of vectors of size n,

defined as Θ = {θ : θi ∈ Φd, i = 1, 2, .., n}.

Theorem 2. C(θ1(T 1))−4nδ is a lower bound to the optimal solution of the DTSP,

C(θ∗(T ∗)).

Proof. For a given sequence T of targets, there are two cases. In the first case, the

headings at each target are restricted to a discrete set Φd and in the second case,

there are no restrictions on the headings. We use two different notations for the

optimal solutions of these two cases. Let θ̂(T ) be the optimal vector of headings

corresponding to the case where headings at each target are restricted and θ0(T ) be

the vector of optimal headings for the unrestricted case.
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Similarly for the optimal sequence T ∗ of targets , let θ2(T ∗) be the optimal vector

of headings corresponding to the restricted (or discrete) case and θ∗(T ∗) be the vector

of optimal headings for the unrestricted case.

For the given sequence T of targets, C(θ(T )) is convex in θ(T ) and therefore

C(θ0(T )) ≥ C(θ̂(T )) +∇θC(θ̂(T )) · (θ0(T )− θ̂(T ))

≥ C(θ̂(T ))+ (2.24)

∑

(i,j):xij∈T

[

∂dij(θi, θj)

∂θi
(θ0i − θ̂i) +

∂dij(θi, θj)

∂θj
(θ0j − θ̂j)

]

xij

From equations (2.23), one can see that the maximum value of
∂dij
∂θi

and
∂dij
∂θj

is 2

and the maximum value of (θ0i − θ̂i) is δ. The inequality in (2.24) becomes

C(θ0(T )) ≥ C(θ̂(T ))−
∑

(i,j):xij∈T

(2δ + 2δ)xij

C(θ0(T )) ≥ C(θ̂(T ))− 4nδ (2.25)

For the sequence T ∗, we can write the inequality similar to (2.25) as:

C(θ∗(T ∗)) ≥ C(θ2(T ∗))− 4nδ. (2.26)

Here the elements of the vector θ2(T ∗) belongs to the discrete set Φd and therefore

(T ∗, θ2(T ∗)) is a feasible solution to the one-in-a-set TSP. Since (T 1, θ1(T 1)) is the

optimal solution to the one-in-a-set TSP, we can write

C(θ1(T 1)) ≤ C(θ2(T ∗)). (2.27)
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From inequalities (2.26) and (2.27)

C(θ1(T 1))− 4nδ ≤ C(θ∗(T ∗)). (2.28)

Theorem 2 holds for the multiple vehicle case too and the proof follows along

similar lines to the proof for the single vehicle case. The lower bounds computed

using this method are compared with the bounds from the Lagrangian relaxation

method and transformation method in Table 2.5 for the single vehicle DTSP and the

MDMVDTSP. This method produced better bounds than the other two methods in

8 out of 10 instances of the single vehicle case and all the instances of the multiple

vehicles case.

2.5 Conclusions

1. We have considered a routing problem for vehicles with motion constraints,

which are modeled as Dubins vehicle. The motion constraints require that the

yaw rate of the vehicles is upper bounded by a constant anywhere along the

path.

2. This problem is posed as a minimization problem similar to a Traveling Sales-

man Problem, where the cost to travel between a pair of targets depends on

the initial and final headings of the vehicle.

3. We relax the motion constraints of the vehicle at target locations and penalize

the objective. This reduces the problem to a regular asymmetric TSP, the

solution of which is a lower bound to the DTSP.

4. The ATSP is solved using LKH heuristic, which also gives a lower bound, and
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this in turn is a lower bound to the DTSP.

5. The best lower bounds possible using this approach are computed by choosing

appropriate penalty variables, which are computed using an iterative subgra-

dient algorithm.

6. This method to compute the lower bounds using the Lagrangian relaxation

is extended to the multiple vehicle case (MDMVDTSP). Here, after relaxing

the motion constraints, the problem reduces to a Multiple Traveling Salesman

Problem, which is solved by transforming into a single TSP.

7. For the instances which satisfy the 4 units distance criteria, we have developed

a method to compute the lower bounds using the convexity property of the

Dubins paths.

8. The lower bounds computed using the proposed algorithms are compared with

the lower bound computed using the transformation method in [25] and the

optimal solution of corresponding Euclidean TSP. The proposed methods pro-

duced bounds significantly better than the bounds computed using the other

two methods.
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Table 2.5: Comparing the lower Bounds computed using convexity, Lagrangian and
transformation methods

Lower bounds for the single vehicle DTSP
# Targets ETSPa Lagb OSTc Convd

10 106.67 108.19 -380.14 107.94
10 116.48 118.43 -177.20 116.88
20 163.63 167.57 13.49 169.64
20 175.64 177.61 -1512.35 182.80
30 211.10 212.94 -445.53 222.69
30 197.61 200.87 -6.73 202.49
40 237.20 240.97 83.49 246.78
40 236.89 240.64 -3134.59 242.70
50 271.71 275.83 -315.26 289.11
50 272.24 276.53 63.58 283.95

Lower bounds for the MDMVDTSP with 3 vehicles
10 100.58 103.01 -81.11 125.78
10 125.17 125.30 -1290.98 134.91
20 167.93 169.74 29.45 180.42
20 165.44 168.31 -3271.64 169.32
30 210.28 214.04 -3137.66 245.38
30 213.71 216.04 -3859.22 242.82
40 240.79 245.95 14.68 257.80
40 239.24 242.99 24.64 262.75

aOptimal solution of Euclidean TSP
bLower bound using proposed Lagrangian algorithm
cLower bound using transformation method
dLower bound computed using convexity
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3. UAV ROUTING IN GPS DENIED ENVIRONMENTS∗

3.1 Two UAV CCURP

3.1.1 Introduction

This section deals with the GPS-denied UAV routing; here we consider two differ-

ent architectures for the navigation of UAVs aided by the unattended ground sensors

(UGSs). In the first architecture, we assume the UGS are placed uniformly across the

restricted zone. Figure 3.1 shows an illustration of this scenario, where the restricted

zone is divided into squares and an UGS (represented by the black dot) is located

at the four corners of each square. We assume that the distance between two UGS

along the edges of each square is less than the UAV-to-UAV communication range

(R). At any instance, one of the UAVs (referred to as the first UAV) uses an UGS to

localize its position while the second UAV pivots (orbits) about the first UAV from

one UGS to another; an illustration of this is shown in Figure 3.2. The UAVs have

controllers on board to orbit around another UAV, which is done by estimating the

distance between them using the range sensors. This type of controllers were devel-

oped in [38, 39, 40, 41] for the UAVs to orbit around moving or stationary targets.

The UAVs navigate through the UGS network by leap-frogging from UGS to UGS.

A set of targets, which is a subset of UGS, are located at critical locations of the

restricted zone. The UAVs must visit the targets periodically to collect any intruder

information. A target is considered to be visited if a UAV is located vertically above

the target. The two UAVs are collectively assigned the task of visiting a set of n

∗Part of this section was reprinted with permission from S. Manyam, S. Rathinam, S. Darbha,
D. Casbeer, and P. Chandler, “Routing of two Unmanned Aerial Vehicles with communication
constraints,” in Proc. IEEE International Conference on Unmanned Aircraft Systems (ICUAS),
2014, pp. 140-148. Copyright c© 2014 IEEE.
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UGS

Target locations

Figure 3.1: Field with UGS deployed

targets. The objective of the routing problem is to find an optimal cyclical trajectory

for each UAV such that

(i) each target is visited by one of the UAVs,

(ii) the UAVs always maintain a fixed distance (less than or equal to their commu-

nication range R) throughout their motion,

(iii) at least one of the UAVs is located vertically above an UGS at every instance,

(iv) the sum of the distances traveled by the two UAVs is minimized.

Requirements (ii) and (iii) ensure that one of the UAVs localizes while the other nav-

igates relative to the localized UAV. Requirement (i) is necessary for accomplishing

the mission, while requirement (iv) ensures that the distance traveled or the time

spent in visiting all the targets is minimized. We refer to this problem as the Com-
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Step 1 Step 2

Step 3 Step 4

Figure 3.2: Navigation of the UAVs

munication Constrained UAV Routing Problem (CCURP). A feasible solution to an

instance of the CCURP is shown in Figure 3.3.

Let G = (V,E) represent a graph where V denotes the set of all UGS (which are

the vertices of the restricted zone) and E represents the set of all the edges joining

any two vertices in the graph that lie within the communication range. As shown

in Figure 3.1, four edges are incident on every vertex. The length of each edge is a

constant and is denoted by R. Let T := {1, 2, ...n} ⊆ V denote the subset of UGS

that must be visited by the UAVs. At the start of the monitoring mission, the UAVs

are assumed to occupy a pair of adjacent vertices as shown in Figure 3.1. Without

loss of generality, we assume there are two adjacent targets in T and we initialize the

locations of the UAVs at these two targets.

An admissible configuration, or simply the configuration, of UAVs is defined to be

39



Initial location of the UAVs

Target UGS locations the UAVs must visit

CW

CS

CS

CS

CE

x - axis

y - axis

Figure 3.3: A tour of the UAVs

the adjacent pair of vertices occupied by the UAVs. Since the two UAVs are assumed

to be identical, the definition of configuration of UAVs does not make a distinction

as to which of the UAVs occupies which vertex as long as the UAVs occupy the pair

of vertices specified by the configuration. If the location of one of the UAVs is fixed

at a vertex, there are four possible configurations for the UAVs as shown in Figure

3.4. A target is said to be visited if the UAVs reach the target at any one of these

four configurations. The UAVs can move between any two adjacent configurations

using a flip, i.e., one of the UAVs pivots and rotates around the other fixed UAV by

90 degrees as shown in Figure 3.5. The UAVs travel πR
2

units during each flip. The

UAVs can travel from an initial configuration to any final configuration by executing
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a sequence of flips.

N

S

W E

C

(a) CE Configuration

N

S

W E

C

(b) CW Configuration

N

S

W E

C

(c) CN Configuration

N

S

W E

C

(d) CS Configuration

Figure 3.4: Four different configurations available for visiting a target at C

Let the (x, y) coordinates of vertex u ∈ V be denoted by (ζi, ηi). Target u

can be visited by the UAVs using any of the configurations present in the set

{CE,CW,CN,CS}. In all these configurations, one of the UAV positions is fixed at

(ζi, ηi) and the other UAV occupies one of the following set of coordinates depending

on the configurations CE,CN,CW,CS respectively: (ζi + R, ηi), (ζi, ηi + R), (ζi −

R, ηi), (ζi, ηi −R).

Given any two targets i and j, let dmin(θi, θj) denote the minimum total distance

required by the UAVs to travel from configuration θi to θj . dmin(θi, θj) can be

computed by using a shortest path algorithm in the following way: Let Gs = (Vs, Es)
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UAV1 UAV2
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(a) UAV2 rotating in the
counter-clockwise direction

UAV1 UAV2

N

S

W E

(b) UAV2 rotating in the
clockwise direction

Figure 3.5: One flip of the UAVs

denote a new graph where Vs is a set of vertices that denotes all the configurations

corresponding to the vertices in V and Es denotes all the edges that join any two

adjacent configurations in Vs. Since each edge in Es joins two adjacent configurations,

a travel cost of πR
2

(corresponding to one flip) units is assigned to the edge. The

Dijkstra algorithm can then be applied on Gs to find the length of the shortest path

from θi to θj . This shortest path specifies the sequence of flips that are necessary to

move the UAVs from θi to θj .

A tour for the UAVs is specified by a sequence (s1, s2, . . . , sn) of targets visited by

the UAVs and the corresponding configurations θs1 , θs2 , . . . , θsn at the targets. The

length of the tour, D(tour), is defined as:

D(tour) :=

n−1
∑

i=1

dmin(θsi , θsi+1
) + dmin(θsn , θs1).

The objective of the CCURP is to determine the sequence (s1, s2, . . . , sn) of targets

to be visited and the associated configurations θs1 , θs2, . . . , θsn at the targets such

that D(tour) is minimal.
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3.1.2 Posing two UAV routing problem as one-in-a-set TSP

One can pose the CCURP as a one-in-a-set traveling salesman problem, which is

defined as follows: Given p sets, each set contains q number of targets, the salesman

has to visit one target from each set and return to the initial location such that the

total distance traveled is a minimum. In CCURP, if we consider each target as a set

and the four configurations at each target as its elements, the CCURP can be posed

as a one-in-a-set TSP. The two UAVs has to start from their initial locations (we

refer to them as depot), visit at least one of the four configurations at each target

and return to their initial location, while the total distance traveled is minimized.

A feasible solution for the CCURP posed as a one-in-a-set TSP is shown in Figure

3.1.2. For any two given configurations, we need to know the shortest path between

them to pose the one-in-a-set TSP. In section 3.1.2.1, we present an algorithm to

compute these shortest paths. Using the result from [37], one can transform the one-

in-a-set TSP into an asymmetric TSP, which could be solved using the LKH heuristic

[30]. LKH is the best known heuristic to solve TSP, it is known to produce optimal

solutions for most instances of TSP within a few seconds. A detailed description to

transform the on-in-a-set TSP into regular asymmetric TSP is provided in Appendix

A.

3.1.2.1 Shortest path between two configurations

The shortest path problem between two given configurations of UAVs can be

solved by transforming the given graph G as explained here. We will explain this

with reference to an example. Let the graph shown in Figure 3.7(a) be the original

graph given. Construct a new graph which has as many vertices as the number of

edges in the graph G and let us call this G′. Each edge in G, numbered 1 to 24

in Figure 3.7(a) corresponds to a vertex in G′ as shown in Figure 3.7(b). In the
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Figure 3.6: One-in-a-set TSP: feasible solution

original graph G, each edge corresponds to a configuration of the UAVs. Let us

consider any two configurations of the UAVs, which corresponds to two edges in G

and which in-turn corresponds to two vertices in G′. If the UAVs could travel from

one configuration to another in just one flip, then add an edge between those two

vertices in G′. Let the length of the edge be πR
2

units. For example, the UAVs can

travel from a configuration represented by edge #1 to edge #4. Therefore, there is

an edge present in G′ between vertices numbered 1 and 4. Add all possible edges

between the vertices to complete the construction of G′.
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(a) Original Graph (G)
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(b) Transformed Graph (G′)

Figure 3.7: Graph transformation for shortest path computation
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(a) Original Graph (G)

1 2 3

4 5 6 7

a
′
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11 12 13 14
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22 23

18 19 20 b
′

24

(b) Transformed Graph (G′)

Figure 3.8: Shortest path between two configurations

For a given initial and final configurations, let a and b be the edges they represent

in G. The two UAVs are initially located at the either ends of the edge a and the

final locations of the UAVs should be at either ends of the edge b. In the transformed

graph G′, those two edges corresponds to two vertices a′ and b′ as shown in Figure

3.8(b). One can compute a shortest path between the two vertices in graph G′ using
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Dijkstra’s or Bellman-Ford algorithm. In the solution of the shortest path between

vertices a′ and b′, each intermediate vertex corresponds to an edge in G. In the

solution, each step between consecutive vertices of G′ corresponds to a flip in G. In

Figure 3.8(b), the shortest path from a′ to b′ is shown in blue. The intermediate

vertices are 12, 16, 20 and 17. The first step from vertex a′ to 12 in G′ corresponds

to the flip a to 12 in G. The path from edge a to b in G is shown in Figure 3.8(a),

where the red and green dashed lines represent the paths of the two UAVs.

3.1.3 Approximation algorithm

In this section, we present an approximation algorithm for solving the CCURP

and prove the approximation ratio of the proposed algorithm. In gist, this algorithm

generates two feasible solutions for the CCURP and chooses the best of the two. The

first solution is generated by arbitrarily choosing a configuration at each target and

applying the Christofides algorithm [42] to generate a tour. The second solution is

generated by rotating each of the configurations chosen in the first solution by two

flips and applying the Christofides algorithm to generate another tour. The main

steps in this algorithm Approx are as follows:
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Algorithm Approx:

1. For each target u ∈ T , choose any configuration θ1u from the set

{CE,CW,CN,CS}.

2. For each target u ∈ T , assign a new configuration θ2u that is exactly two

flips away from θ1u. Specifically,

θ2u :=















































CE, if θ1u = CW,

CN, if θ1u = CS,

CW, if θ1u = CE,

CS, if θ1u = CN.

3. For k = 1 : 2, do the following:

• Compute dmin(θ
k
u, θ

k
v ) for any two distinct targets u, v ∈ T .

• Define a graph Gk = (Θk, Ek) where Θk := {θku : u ∈ T} and Ek

denote the set of all the edges that join any two configurations in Θk.

The cost of traveling the edge joining any two distinct configurations

θku, θ
k
v is set to dmin(θ

k
u, θ

k
v ).

• Use the Christofides algorithm [42] available for the single TSP to

find a tour that visits each configuration exactly once. Let the

sequence of configurations found by the Christofides algorithm be

denoted by Πk. Also, let the solution be denoted as Sk := (Πk,Θk).

4. Output the solution with the minimum cost among S1 and S2.
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In the above algorithm, Θ1 and Θ2 denote the two sets of configurations chosen in

steps 1 and 2 of the algorithm. Fixing the configuration to visit each target reduces

the CCURP to a single TSP. Given the configurations Θ1 and Θ2, let Π1
opt and Π2

opt

be the optimal sequence of targets to visit respectively. For any feasible sequence of

targets (Π) and a corresponding set of configurations (Θ), let C(Π,Θ) represent the

cost of the corresponding tour. Let Π∗ be the sequence of targets and let Θ∗ be the

corresponding configurations at each target in an optimal solution to the CCURP.

Lemma 1. For k = 1, 2, C(Πk,Θk) ≤ 3
2
C(Π∗,Θk).

Proof. Choose any k ∈ {1, 2}. The Christofides algorithm for the TSP has an ap-

proximation ratio of 3
2
[42]. Given the set of configurations Θk, as Πk

opt is an optimal

solution to the TSP and Πk is the feasible solution obtained using the Christofides

algorithm, we must have

C(Πk,Θk) ≤
3

2
C(Πk

opt,Θ
k). (3.1)

In addition, as Π∗ is a feasible sequence of targets to the CCURP, we must also have

C(Πk
opt,Θ

k) ≤ C(Π∗,Θk). (3.2)

From inequalities (3.1) and (3.2):

C(Πk,Θk) ≤
3

2
C(Π∗,Θk). (3.3)

Given a configuration at a target, note that any other configuration in {CE, CN ,

CW , CS} at the target can be reached through a sequence of at most two flips. For
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example, CN can be reached from CE using one flip and the UAVs travel πR
2

units

during this flip. Similarly, CW can be reached from CE through a sequence of two

flips and the UAVs travel πR units during this motion. The following lemma bounds

the cost of choosing the configurations in Θ1 in terms of the optimal cost of the

CCURP.

Let n1 denote the number of targets whose configurations in Θ1 differ from the

corresponding optimal set of configurations in Θ∗ by one flip. Let n2 denote the

number of targets whose configurations in Θ1 differ from the corresponding optimal

set of configurations in Θ∗ by two flips.

Lemma 2. C(Π∗,Θ1) ≤ C(Π∗,Θ∗) + n1πR + 2n2πR.

Proof. Let the sequence of targets visited by the UAVs in Π∗ be denoted by (u1, u2, · · · , un).

For all i = 1, .., n, let θ1ui
represent the UAV configuration at target ui in Θ1. Simi-

larly, let θ∗ui
represent the UAV configuration of target ui in Θ∗

ui
. As the travel costs

satisfy the triangle inequality, we have

dmin(θ
1
ui
, θ1ui+1

) (3.4)

≤ dmin(θ
1
ui
, θ∗ui+1

) + dmin(θ
∗
ui+1

, θ1ui+1
)

≤ dmin(θ
1
ui
, θ∗ui

) + dmin(θ
∗
ui
, θ∗ui+1

) + dmin(θ
∗
ui+1

, θ1ui+1
).

Adding the above equation for all pairs of adjacent targets in Π∗, we get,

C(Π∗,Θ1) =
n−1
∑

i=1

dmin(θ
1
ui
, θ1ui+1

) + dmin(θ
1
un
, θ1u1

)

≤
n−1
∑

i=1

dmin(θ
∗
ui
, θ∗ui+1

) + dmin(θ
∗
un
, θ∗u1

) + 2
n

∑

i=1

dmin(θ
1
ui
, θ∗ui

)

= C(Π∗,Θ∗) + 2

n
∑

i=1

dmin(θ
1
ui
, θ∗ui

). (3.5)
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Note that dmin(θ
1
ui
, θ∗ui

) is equal to πR
2

if the configurations θ1ui
and θ∗ui

differ by

one flip. Also, dmin(θ
1
ui
, θ∗ui

) is equal to πR if the configurations θ1ui
and θ∗ui

differ by

two flips. Therefore,

C(Π∗,Θ1) ≤ C(Π∗,Θ∗) + n1πR + 2n2πR.

Based on the choice of configurations in Θ2, note that there must be n1 targets

whose configurations in Θ2 differ from the corresponding optimal set of configurations

in Θ∗ by one flip. Also, there must be n−n2−n1 targets whose configurations in Θ2

differ from the corresponding optimal set of configurations in Θ∗ by two flips. Using

the same reasoning as in the proof of Lemma 2, we can deduce the following result.

Corollary 1. C(Π∗,Θ2) ≤ C(Π∗,Θ∗) + n1πR + 2(n− n1 − n2)πR.

Lemma 3. The cost, C, of any feasible tour to the CCURP must be at least nπR
2

units.

Proof. Let Π = (s1, s2, ...sn) be the sequence of targets visited by the UAVs and

Θ = {θ1, ...θn} be the corresponding set of configurations at each target in a feasible

tour. The cost of the tour is:

C =

n−1
∑

i=1

dmin(θsi , θsi+1
) + dmin(θsn , θs1). (3.6)

As the UAVs execute at least one flip while traveling between any two successive

configurations along the tour, we must have dmin(θsi , θsi+1
) ≥ πR

2
for i = 1, · · · , n−1

and dmin(θsn, θs1) ≥
πR
2
. Hence, the lemma follows.

Theorem 3. The approximation factor of Approx is 9
2
.
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Proof. The computational complexity of Approx is dominated by the Christofides al-

gorithm which runs in polynomial time. Approx chooses the best of the two solutions

(Π1,Θ1) and (Π2,Θ2). Combining Lemma 1,2 and Corollary 1, we get,

min(C(Π1,Θ1), C(Π2,Θ2))

≤
3

2
min(C(Π∗,Θ1), C(Π∗,Θ2))

≤
3

2
[C(Π∗,Θ∗) + πR min{n1 + 2n2, 2n− (n1 + 2n2)}] .

(3.7)

Given n1 + n2 ≤ n, it is easy to verify that min{n1 + 2n2, 2n − (n1 + 2n2)} ≤ n.

Therefore,

min(C(Π1,Θ1), C(Π2,Θ2))

≤
3

2
[C(Π∗,Θ∗) + nπR]

≤
3

2
[C(Π∗,Θ∗) + 2C(Π∗,Θ∗)] (using Lemma 3)

=
9

2
C(Π∗,Θ∗).

3.1.4 Heuristic

We also implement a modification of the approximation algorithm referred to

as Approxlkh for improving the quality of the solutions produced by Approx. In

this modification, we use the Lin-Kernigan Heuristic (LKH) [43] instead of the

Christofides algorithm to find a tour in Step 3 of Approx. The LKH is considered

to be one of the best algorithms for solving a single vehicle TSP.
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3.2 Three UAV CCURP

In the second architecture, the UGS may be arbitrarily located within the en-

vironment; there is no need for a regular grid. In this scenario, three UAVs are

needed for the cooperative navigation. When a UAV is located above an UGS, the

UAV can communicate with that UGS and localize itself, i.e. it can estimate the

co-ordinates of its location in the xy-plane. If two UAVs are located at two UGSs,

the third UAV triangulates its position using (i) xy-coordinates of the first two UAVs

that are located above distinct UGS and (ii) range measurements from the first two

UAVs. It was shown in [44], two measurements from two different known locations

is sufficient for the system to be observable. As long as the third UAV is within

the communication range (R units of distance) from the other two UAVs (located at

two different UGS), it can navigate from one point to another. In Figure 3.9, UAV1

and UAV2 are, respectively, located at UGS a and b. Since, UGS c and d are within

a distance of R units from a and b, UAV3 is able to travel from UGS c to d while

maintaining communication link with UAV1 and UAV2.

In a more general scenario with more than three UAVs, the UAV that is traveling

from one UGS to another might be able to communicate with more than two UAVs

within its communication range. Due to more range measurements available, this

would allow more precise estimation of the traveling UAV’s location. In this thesis,

we consider the routing problem with three UAVs, which is a minimum requirement

for this navigation scheme.

3.2.1 Problem statement

In this architecture, the objective of the routing problem is to find trajectories

for the three UAVs, such that

• each UGS is visited atleast once by one of the UAVs,
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Figure 3.9: UAVs traveling while maintaining the communication links

• the traveling UAV is within a distance of R from the other two UAVs, which

are located at two UGSs,

• the sum of the distances traveled by the three UAVs is minimized.

Let V be the set of targets/vertices, which denote the locations of the UGSs in

the restricted zone. We define a configuration and adjacent configurations as the

following:

Configuration: Three UAVs located at three UGSs such that the distance between

any two of them is less than the communication range R. In the Figure 3.9, three

UAVs are located at UGSs a, b, and c forming an admissible configuration. Even

when the UAVs are not located at those UGSs, we would refer to those set of three

UGSs as a possible configuration or simply a configuration.

Adjacent Configurations: Two configurations are adjacent if they have two UGSs

in common. In Figure 3.9, configurations (a, b, c) and (a, b, d) share two common

UGSs, a and b, and therefore are adjacent.

If two configurations are adjacent, the team of three UAVs can move from one

configuration to another while satisfying the communication constraints. For exam-
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ple, in Figure 3.9, the UAV located at c can go to d while using range measurements

relative to the positions of the UAVs at a and b, i.e. the UAVs move from config-

uration (a, b, c) to (a, b, d). The UAVs have to make these maneuvers to navigate

across the zone without losing the communication links from each other. An UGS

may present in more than one configuration as shown in Figure 3.9, UGS a is present

in two configurations (a, b, c) and (a, b, d). An UGS is considered to be visited, if the

UAVs visit atleast one of the configurations in which the UGS is present. For the

feasibility of the routing problem, we make the following assumptions:

A1: For every UGS i ∈ V , there exists atleast one configuration Ck such that,

i ∈ Ck. In other words, there are no UGS in V separated by a distance greater than

R from every other UGS.

A2: There are no isolated configurations, i.e. the UAVs can start from any

configuration and reach any other configuration.

Let C1 and C2 represent two configurations of UGS (i, j, k) and (j, k, l) respectively.

The two configurations C1 and C2 are adjacent as they have two common UGS. The

UAVs can travel from C1 to C2 in a single maneuver and let D(C1, C2) be the distance

traveled by the UAVs during this maneuver. D(C1, C2) is equal to the euclidean

distance between the UGSs i and l. An UGS can be present in more than one

configurations. For example, in Figure 3.9, UGS a is present in two configurations

(a, b, c) and (a, b, d). Let Sa = {Ca1 , . . .Cal} be the set of configurations in which

UGS a is present in each of these configurations. UGS a is considered to be visited

if the UAVs reach any of the configurations Cl ∈ Sa.

To solve the routing problem, one needs to identify the configurations to visit

and the sequence in which they have to be visited, C1 · · · Cp such that, every target

in V is visited atleast once by one of the UAVs and the total distance traveled by all
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the UAVs is minimum.

Minimize

p−1
∑

i=1

D(Ci, Ci+1) +D(Cp, C1) (3.8)

Subject to:V ⊆ C1 ∪ · · · ∪ Cp. (3.9)

3.2.2 Solution methodology

Similar to the two UAV routing problem, we can pose this three vehicle problem

as a one-in-a-set TSP using a graph transformation. Let G = (V,E) be a graph,

where each vertex represent the location of an UGS. One can construct a graph G′,

where each vertex in G′ corresponds to a configuration in G. The following is the

outline of construction of Graph G′:

• Identify all the possible configurations in G, i.e. triplets of UGS such that the

distance between any pair of UGS is less than the UAVs’ communication radius

R.

• Corresponding to each configuration in G, add a vertex in G′.

• If two configurations are adjacent in G, add an edge between the corresponding

vertices in G′. The weight of this edge is equal to the distance traveled by the

UAVs to go from the one configurations to the other. Figure 3.10 shows an

example of the graph G and G′ constructed as explained here.

• For each UGS a ∈ V , identify the set (Sa) of configurations in which a is

present. In Figure 3.11, a target is represented in red, the configurations in

which it is present and corresponding nodes in G′ are shown in red.

• Complete the graph G′ by adding the edges between every pair of vertices with

weight equal to the distance of the shortest path between them.
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G G
′

Targets

Configurations

Figure 3.10: Graph G′ constructed based on the graph of the target locations G

• Solve the following one-in-a-set TSP: find a tour on G′, such that atleast one

vertex/configuration from each set Sa, a ∈ V is visited, such that the length of

the tour is a minimum.

The resulting one-in-a-set TSP may not have mutually exclusive node-sets. An

algorithm to transform this into an instance with mutually exclusive node-sets, and

in-turn into an asymmetric TSP is presented in Appendix A.

3.3 AMASE simulation

AMASE is a simulation environment developed at Air-Force Research Labs for

the cooperative control study and analysis of the UAVs. It is used to study the effec-

tiveness and feasibility to implement the control algorithms necessary for the UAV

missions. A circumnavigation controller was developed at AFRL for the navigation

of UAVs using range and range-rate measurements relative to a stationary or mov-

ing object. Using this controller, an instance of the two UAV CCURP is simulated

successfully on AMASE. For this simulation, 25 UGS were deployed uniformly as a
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G G
′

Targets

Configurations

Figure 3.11: A target present in more than one configuration shown in G and its
corresponding nodes in G′

G
′

Figure 3.12: Node sets in G′, each set containing the configurations correspond to
each target
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squre grid and five target locations are selected randomly. A snapshot of the simu-

lation is shown in Figure 3.13. The green arrow represent the idling UAV and the

pink arrow represents the orbiting UAV. Since the UAV considered here were fixed

wing aircrafts, the idling UAV orbits the UGS with the least turning radius possible

while the orbiting UAV hops from one UGS to another.

Figure 3.13: Simulation of the two UAV CCURP on AMASE

3.4 Computational results

To test the algorithms for the two UAV problem, a restricted zone of size 30 ×

30 units was chosen. This zone was divided into squares of size equal to 1 unit.

The targets were located randomly in this area. Fifty instances were generated

for each case with 10, 20, 30 and 40 targets. The LKH program [43] by Helsgaun

available at http://www.akira.ruc.dk/ keld/research/LKH/ was used to solve the

single asymmetric TSP in Approxlkh. The LKH program was run without changing

any of its default settings. All the simulations were run on a Dell Precision T5500
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workstation (Intel Xeon E5630 processor @ 2.53GHz, 12GB RAM).

For a given problem instance I, the bound on the a posterior guarantee provided

by an algorithm is defined as
CI

solf

CI
opt

where CI
solf

is the cost of the feasible solution

found by the algorithm and CI
opt is the optimal cost.

The optimal cost for an instance was found by posing the CCURP as an one-in-a-

set TSP and then transforming it into a single symmetric TSP in the following way:

Given n sets of vertices with each set containing at least one target, the objective

of the one-in-a-set TSP is to determine a selection of a target from each set and

the sequence in which the selected targets must be visited so that the total distance

traveled by the salesman is a minimum. The CCURP can be readily cast as a one-

in-a-set TSP by associating the sets of configurations Θi = {CE,CN,CW,CS}, i =

1, 2, . . . , n as the given n sets and the configurations as be the targets of the one-

in-a-set TSP. We then transform the one-in-a-set TSP to a regular asymmetric TSP

using the result in [37], and finally, transform the asymmetric TSP into a symmetric

TSP using the result in [45]. The resulting symmetric TSP was solved using the

Concorde solver [46].

The simulation results are shown in Tables 3.1 and 3.2. The algorithms Approx

and Approxlkh were relatively very fast compared to the transformation method

used for solving the CCURP. We were able to solve every instance using Approx and

Approxlkh within two seconds. On the other hand, finding an optimal solution using

the Concorde solver required more than 60 minutes for some instances. The average

and worst case a posterior guarantee of the solutions found by Approx and Approxlkh

is shown in table 3.2. These results show that the proposed algorithms were able to

find high quality solutions for the tested instances relatively fast. Solutions obtained

for an instance using the proposed algorithms are shown in Figure 3.4 and 3.4. An

optimal solution for this instance is shown in Figure 3.4.
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The three UAV CCURP is solved using the graph transformation method ex-

plained in Section 3.2.2. Four benchmark traveling salesman problem instances are

chosen from TSPLIB [47] for the three UAV CCURP. The city locations given in

the TSPLIB instances are chosen as the UGS locations for the CCURP. We have

to choose the communication radius of the UAVs for each instance such that there

exists atleast one feasible CCURP tour. With the communication radius R, for each

UGS, there should be atleast two other UGSs within R. For each UGS u ∈ V , we

have computed the second shortest of all the distances d2u between itself and other

UGSs. We chose the communication radius R to be α times the maximum of all those

distances, R = αmaxu∈V d2u, where α ≥ 1 is a scaling factor. The computational

results for four instances of TSPLIB with four different values for α are presented

in Table 3.3. The higher the value of α, the communication radius is larger and

hence more configurations are feasible. This would lead to find a tour with lower

cost than the instance with a lower communication radius. This is as predicted since

with more feasible configurations, there can exist more tours on the configuration

graph and minimum of those could be less than or equal to the instances with fewer

configurations.

Table 3.1: Average simulation time in seconds
Targets Algorithm Approx Algorithm Approxlkh OSTa

10 0.071 0.133 2.489
20 0.101 0.245 10.942
30 0.312 0.579 65.468
40 0.875 1.178 404.185

aOne-in-a-set transformation
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Table 3.2: A posterior bound using the proposed algorithms
Targets Algorithm Approx Algorithm Approxlkh

Solution qual-
ity (Avg.)

Solution qual-
ity (Max.)

Solution qual-
ity (Avg.)

Solution qual-
ity (Max.)

10 1.089 1.230 1.051 1.114
20 1.140 1.249 1.088 1.144
30 1.176 1.271 1.119 1.156
40 1.220 1.346 1.142 1.185

Table 3.3: Computational results for three UAV CCURP
Instance #Targets α R #Config

-urations
Tour
Cost

Time
(secs)

burma14 14 1.1 4.47 75 53.0993 3
14 1.15 4.67 89 52.54 4
14 1.2 4.88 122 47.22 11
14 1.275 5.2 138 46.59 14

ulysses16 16 1.1 17.56 458 99.34 147
16 1.15 18.36 458 99.34 147
16 1.2 19.16 465 88.66 147
16 1.3 20.75 491 87.47 168

bays29 29 1.1 681.83 289 14811.3 84
29 1.15 712.82 320 13996 124
29 1.2 743.81 382 13152.6 182
29 1.3 805 498 12400.5 308

eil51 51 1.15 15.13 197 857.6 59
51 1.2 15.79 238 836.98 83
51 1.25 16.45 312 736.46 145
51 1.3 17.11 374 734.73 213
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Initial location of the UAVs

Targets

Figure 3.14: An instance with 10 targets solved using algorithm Approx

Initial location of the UAVs

Targets

Figure 3.15: An instance with 10 targets solved using algorithm Approxlkh

3.5 Conclusion

We considered a problem of routing UAVs with communication constraints in a

GPS denied environment. We considered two different architectures for the navi-
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Initial location of the UAVs

Targets

Figure 3.16: Optimal tour of an instance of with 10 targets

gation of the UAVs. We developed a 9
2
-approximation algorithm for the two UAV

routing problem, and a transformation method to pose the routing problem as one-

in-a-set TSP. These algorithms for the two UAV problem were tested on 50 instances

with 10, 20, 30 and 40 targets. The approximation algorithm needed only a fraction

of a second and produced solutions within 1.25 times the optimal solution for all of

the instances. On the other hand, the transformation method was relatively time con-

suming but found optimal solutions for most of the instances. Computational results

were also presented for the three UAV CCURP using the transformation algorithm;

this was tested on four benchmark TSPLIB instances with different communication

radii.
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4. CONCLUSIONS AND FUTURE WORK

This thesis is devoted for studying the path planning of UAVs for patrolling mis-

sions. Due to certain limitations, the UAVs have motion constraints, communication

constraints etc. We addressed the path/route planning of the UAVs with two classes

of constraints. The first one is motion constraint induced due to the bounded yaw

rate of the fixed wing UAVs. Due to this constraint, the path of a UAV needs to

have bounded curvature, and this mandates the UAV to travel along arc-like paths to

make turns. Therefore the length of the shortest path between two targets depends

on the initial and final heading angles of the UAV. To find the routes with these

constraints, apart from the sequence of targets to be visited, one has to find heading

angles of the UAVs at each target. The coupling of these two sets of decisions makes

it harder to solve this routing problem. We developed a Lagrangian relaxation tech-

nique to compute tight lower bounds for the routing problem with one UAV (DTSP),

and extended that to the multiple vehicle case, MDMVDTSP.

The second class of constraints considered in this thesis is the finite commu-

nication radius of the UAVs. UAVs may be denied access to GPS signals due to

hostile environments and may need to rely on communication signals for successful

navigation. Since the radius of communication is finite, they would not be able to

transmit/receive signals beyond certain range (R). The zone of interest which needs

to be patrolled is deployed with unattended ground sensors (UGSs) and the UAVs

need to cooperatively travel without losing contact with other UAVs and/or the

UGSs. The path planning problem for the UAVs is solved along with the constraints

imposed by the limited communication range.
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4.1 Contributions of Section 2

• The UAVs with finite yaw rate cannot change their headings instantaneously,

and they are modeled as Dubins vehicles. The routing problem (DTSP) has

the following complicating constraints: at each target, the incoming heading

angle of the UAVs should be the same as the outgoing heading angle.

• We have relaxed the heading angle constraint and penalized the objective when-

ever they are violated through penalty/dual variables. Then, the problem re-

duces to a regular ATSP where the cost of an edge between a pair of targets

is given by the solution of a variational problem. This variational problem is

solved by discretizing the variables and using the Dubins result.

• The resulting ATSP is solved using the LKH heuristic, which gives a tight lower

bound to the ATSP, this in turn is a lower bound to the DTSP.

• The lower bounds were made tighter by maximizing with respect to the penalty

variables. This was done using a sub-gradient procedure, which updates the

penalty variables iteratively and improves the lower bound.

• The lower bound computation using Lagrangian relaxation is extended to the

routing problem with multiple UAVs, MDMVDTSP.

• This technique produced significantly better bounds compared to the existing

bounds (solution of corresponding Euclidean TSP). The average improvement

in the bounds is 30% to 40% compared to the solution of ETSP.

• For certain instances that satisfy a distance criteria, using the convexity prop-

erty of the Dubins paths, we developed a technique to compute lower bounds

for the DTSP/MDMVDTSP.
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4.2 Contributions of Section 3

• We have addressed the GPS-denied UAV routing problem with two different

architectures involving the UGS and UAVs’ localization schemes using the com-

munication signals.

• The first architecture requires two UAVs and it needs the UGS to be placed

uniformly as a regular grid; the UAVs navigate using orbiting/circumnavigating

controllers on-board. A 9
2
approximation algorithm is developed for the two

UAV CCURP. A transformation method is developed for this problem; this

poses the two UAV CCURP as a one-in-a-set TSP. The one-in-a-set TSP is

solved by transforming into an asymmetric TSP using a known result. The

resulting ATSP is solved using the LKH heuristic and Concorde TSP solver.

This routing scenario is successfully simulated on AMASE, an AFRL software

to study the feasibility of the routing and control algorithms.

• The second architecture requires three UAVs, and this does not need the UGS

need to be located in a regular grid. A graph transformation method is devel-

oped to pose the three UAV CCURP as a one-in-a-set TSP, which is solved by

transforming it into an ATSP.

4.3 Future Work

• Though the lower bounds computed for the DTSP and MDMVDTSP are

tighter than the existing bounds, the gaps between the lower bounds and the

upper bounds are quite large. One can look at alternate ways of relaxing the

motion/heading constraints to compute further tighter lower bounds.

• The incoming and outgoing heading angles may not be equal at each target

in the solution of the DTSP with heading angle constraints relaxed. If we
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chose appropriate penalty variables, in the solution of the relaxed problem,

the incoming and outgoing headings should be reasonably close to each other.

Based on this solution, one can develop heuristics to produce near optimal

solutions to the DTSP/MDMVDTSP with the quality of the solution readily

available from the lower bounds.

• To find the optimal solutions to the CCURP, the one-in-a-set TSP is trans-

formed into ATSP, which in turn is transformed into a symmetric TSP and

solved using Concorde solver. After the two transformations, the problem size

may increase and become too large to be solved in reasonable time. In the three

UAV CCURP, this problem would be aggravated if there are too many targets

within a circle of radius equal to the communication range of the UAVs . This

may lead to a huge number of possible configurations and the size of the result-

ing one-in-a-set TSP may be too large. Therefore, one can pose the CCURP as

a mixed-integer linear program similar to the multiple salesmen problem. Ad-

ditional constraints could be added to maintain the communication feasibility,

which is necessary for the localization of the UAVs. The resulting formula-

tion could be efficiently solved with branch and cut algorithms, and this may

find optimal solutions for larger instances of the CCURP. This formulation

could be extended to solve the routing problem involving a swarm of vehicles,

which need to maintain communication links between themselves and/or with

a remotely located ground station.
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APPENDIX A

TRANSFORMATION OF ONE-IN-A-SET TSP INTO AN ATSP

Transforming general one-in-a-set TSP instance into an instance with mu-

tually exclusive node-sets

We present a transformation method to transform the one-in-a-set set instance

with intersecting node-sets into an instance with mutually exclusive node-sets, which

is also referred to as canonical one-in-a-set TSP. Then it is transformed into a regular

asymmetric TSP. Here we present an overview of the transformation, but one can

refer to [37] for detailed description and proofs. Let the one-in-a-set TSP instance

be defined on a graph P0 constructed in section 3.2.2. Let the set of nodes of P0 be

V 0 and edges be E0. Each node i ∈ V 0 belongs to one or more node-sets, and let

Mi be the set of node-sets of which node i is a member, and |Mi| be the size of this

set. An instance of a problem is shown in Figure A.1(a). We will transform the given

graph in four stages into the one-in-a-set TSP with mutually exclusive node-sets.

• Stage 1: Construct a graph P1 with the same set of nodes (V1 = V 0) as of P0,

but different edges. Add only the edges in P0 which enters atleast one new

node-set, and the cost of these edges are same as the cost of the edges in P0.

• Stage 2: Construct graph P2 with same set of nodes (V2 = V1) and edges as

in P1. Let cij be the cost of the edge (i, j) ∈ E0. Define the cost of each edge

in P2 as cij +mα, where α is a positive number, strictly greater than the sum

of the cost of all edges in P1, and m is the number of new node sets the edge

(i, j) enters.

• Stage 3: For each node i ∈ V2 with multiple node-set membership, create a
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Figure A.1: Transformation of one-in-a-set TSP

|Mi| replicas of the node, each corresponding to a node set. Add edges between

each of these nodes (replicas) to the other nodes with cost same as the cost in

P2. Add edges between the replicas of each node with zero cost and refer to

this new graph as P3 = (V3, E3).

• Stage 4: In each node-set, remove the edges between nodes belonging to the

same set, and refer to this graph as P .

After this transformation through the four stages, the problem is posed as one-in-

a-set TSP on graph P with mutually exclusive node-sets. This can be transformed

into a regular asymmetric TSP as explained in the next section.
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Transforming canonical one-in-a-set TSP into ATSP

We present a method to transform the one-in-a-set TSP to a regular ATSP using

the result from [37]. In one-in-a-set TSP, the salesman needs to start from an initial

location, visit one of the cities in each set and return to the starting location, such

that the total distance traveled is the minimum. Here we explain the transformation

in the context of the UAV routing problem. A target in CCURP corresponds to a set

and a configuration corresponds to a vertex in one-in-a-set TSP. Let P be the graph

on which the one-in-a-set TSP is defined. The idea here is to modify the topology of

P and transform it into a new graph (P ′) such that the optimal solution of a single

vehicle ATSP on P ′ is same as the optimal solution of one-in-a-set TSP in P .

To do this, first we number the vertices in each set (s) as s1, s2, s3 and s4. For

example, we name the vertices in set a as a1, a2, a3 and a4. Since only one of the

vertices needs to be visited in each set, adding directed zero cost edges between the

vertices of a set does not change the optimal solution. We add zero cost directed

edges in each set (s) from si to si+1 for i = 1, 2, 3 and from s4 to s1 as illustrated in

Figure A.2. We want the vehicle to enter a set, visit every vertex in the set traveling

through the zero cost edges and go to the next set. We would want the optimal cost

of the one-in-a-set TSP to be the same as that of the ATSP and to ensure that, we

make some changes to the cost of the edges connecting vertices belonging to different

sets. For example, if a vehicle enters the set #b and visits vertex b1 first, then it

would visit b2, b3 and b4 and leaves the set from b4.

Let us say the vehicle next visits the vertex c2 in set #c. Now, the cost of edge

going from b4 to c2 is not same as the cost of the edge going from b1 to c2. Therefore

we would replace the cost of edges going out from b4 with the cost of the edges going

out from b1. In every set s, for each vertex si, by following the cycle of zero cost
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Figure A.2: Transformation of one-in-a-set TSP to ATSP: zero cost edges added.

edges, we can identify the successive vertex sj. In the new graph, we set the cost of

the edge going out from sj to s′k, where s′k is in a different set, to the cost of edge

going from si to s′k in the original graph. We do this for all the edges connecting

vertices of different sets.

Solving an ATSP on this new graph, there is a possibility that one may not

be able to construct an optimal solution to the one-in-a-set TSP from the optimal

solution of the ATSP. Sometimes, it may not be cheaper to visit all the vertices in a

set at once. For example, the vehicle may visit two vertices in a set, go to another

set and come back to the first set and visit the remaining vertices. If there are n

sets, there can be more than n+ 1 edges connecting vertices from different sets. To

overcome this problem, in the optimal solution of ATSP, we need to make sure there

are only n edges connecting vertices from different sets. To ensure that, in P ′, we

increase the cost of each edge connecting vertices from different sets by a constant

value (M). If M is chosen such that it is greater than the sum of all the edges in
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Figure A.3: Transformation of one-in-a-set TSP to ATSP: vehicle entering a set at
one vertex exits from the successive vertex.

P ′, then in the optimal solution of the ATSP, there will be only n edges connecting

vertices from different sets.

Theorem 4. If M is chosen such that it is greater than the sum of all the edges in

P ′, then in the optimal solution of the ATSP, there will be only n edges connecting

vertices from different sets.

Proof. We will prove this by contradiction. Let indices i = a...z represent each set

in P ′. Let Ca1a2 , Ca1a3 .... be the costs of the edges before adding M . M is chosen

such that it is greater than the sum of all the edges in P ′.

M ≥
∑

(i,j)∈P ′

Cij. (A.1)

Let C ij be the cost of the edges after adding the constant M , C ij = Cij+M, ∀(i, j) ∈

P ′. Let us say there are more than n edges connecting vertices from different sets

in the optimal solution of the ATSP. Therefore, at least for one of the sets, there
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should be two edges connecting the vertices in the set with the vertices from other

sets. Let us assume that set #q has three edges connecting the vertices in it with

the vertices from other sets as illustrated in Figure A.4(a). We can remove two of

those edges and construct a new tour by connecting all the vertices in set #q with

the zero cost edges. A section of the original and new tour is illustrated in Figure

A.4(b) and we call this section a ’sub-tour’. The edges connecting the set of vertices

{q1, q2, q3, q4, r1, r2, r3, r4, t} are different in the assumed tour and the modified tour,

and all other edges are same in both the tours. Let Cs and C ′
s be the cost of the edges

in the sub-tour of the assumed optimal solution and modified solution. Ignoring the

zero cost edges, Cs and C ′
s can be written as summations of the costs of edges as

following:

Cs = Cq4r1 + Cr4q2 + Cq3t (A.2)

C ′
s = Cq4r1 + Cr4t (A.3)

Since M is the sum of the costs of all the edges in P , we have the following inequality:

Cq4r1 + Cr4t ≤ M

⇒ Cq4r1 + Cr4t ≤ 3M

⇒ Cq4r1 + Cr4t ≤ (M + Cq4r1) + (M + Cr4q2) + (M + Cq3t)

⇒ Cq4r1 + Cr4t ≤ Cq4r1 + Cr4q2 + Cq3t

⇒ C ′
s ≤ Cs (A.4)

The cost of the modified tour is less than the assumed optimal solution and hence

the assumption is wrong. Therefore the optimal solution of the ATSP in P ′ cannot

have more than n edges connecting vertices from different sets.
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Figure A.4: Sub-tour in the optimal solution of the ATSP
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