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ABSTRACT 

Fibrosis is a disease in which scar tissue invades healthy organs and reduces their 

function. Fibrosis is involved in 45% of deaths in the United States, yet little is known 

about the signaling that underlies the early formation of a fibrotic lesion. Fibrocytes are 

fibroblast-like monocyte-derived cells, and are a key component of scar tissue. Monocytes 

can also differentiate into macrophages, and pro-fibrotic macrophages are an important 

component of scar tissue.  

Scar tissue is also essential for healing wounds. Chronic, non-healing wounds cost 

$25 billion annually to treat in the United States.  

How scar tissue starts to form in both healing wounds and fibrosis is poorly 

understood. A key question is what mechanism overrides the inhibitory signals present in 

wounds and at the site of fibrosis to trigger the differentiation of monocytes into fibrocytes. 

In this dissertation, I present evidence that proteases present in the early wound 

and scar tissue environment appear to be potent signals for fibrocyte, and pro-fibrotic 

macrophage, differentiation. Transient exposure of trypsin, tryptase, and thrombin to 

monocytes potentiates fibrocyte differentiation, even in the presence of fibrocyte 

inhibitors serum amyloid P (SAP) or interferon-gamma (IFN-γ), suggesting that proteases 

may be an early stage pro-fibrotic signal.  

Cancer is involved in 25% of deaths in the United States. The majority of these 

deaths are not caused by the primary tumor, but rather by metastases. Metastasis is a 

process whereby cancer cells migrate from a primary tumor to distant tissues. The tumor 
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environment is heterogeneous, and contains cancer-associated macrophages and 

fibroblasts in addition to cancer cells. Tumors are frequently surrounded by scar tissue, 

and in order to metastasize, cancer cells must pass through this scar tissue. Little is known 

about the molecular mechanisms cancer cells use to disrupt the scar tissue and escape the 

surrounded tumor.  

In this dissertation, I present evidence that galectin-3 binding protein 

(LGALS3BP) is secreted by metastatic cancer cells, inhibits fibrocyte differentiation, and 

acts through the CD209/DCSIGN receptor. LGALS3BP is upregulated at the leading edge 

of tumors metastasizing into surrounding scar tissue. This data suggests a role for 

LGALS3BP in metastasis.  

This dissertation is focused on why fibrocytes differentiate and discovering novel 

methods for potentiating and inhibiting this differentiation, with an eye towards 

developing novel therapeutics for fibrosing diseases, chronic wounds, and cancer. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Cancer, chronic wounds, fibrosis 

Cancer is involved in 25% of deaths in the United States, affects more than 1.5 

million new patients each year, and has an economic cost of $216 billion annually (1, 2). 

Metastasis is the primary cause of the 500,000 cancer related fatalities in the United States, 

and in breast cancer metastasis causes a drop in survival rate of 74% (1, 3). In certain solid 

tumors, the immune system may participate in a desmoplastic response, encapsulating the 

tumor with scar tissue before it can metastasize (4). Far from being a static shell 

surrounding a tumor, this desmoplastic sheath is a dynamic, responsive tissue that adjusts 

to changing tumor conditions (5, 6). In these cases, the tumor cells must pass through this 

sheath of fibrotic tissue in order to metastasize (4-11). 

The treatment of acute and chronic wounds is a major medical concern, with both 

acute and chronic wounds consuming treatment time and resources. Approximately 1 in 

250 people will require medical treatment for an acute wound in a given year, and between 

25-40% of hospital patients receive treatment for either an acute or chronic wound (12-

16). Chronic, non-healing wounds affect more than 6.5 million US patients per year, which 

is approximately 2% of the population, and cost more than $25 billion to treat (17). 

Chronic wounds also resist conventional healing treatments and often occur in at-risk 

populations, including the elderly, obese, immuno-compromised, or diabetic patients (17, 

18).  
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The opposite of a chronic wound is a fibrosing disease, in which inappropriate scar 

tissue is excessively formed. In fibrosing diseases, this scar tissue forms on a healthy 

organ, reducing its function (19). Fibrosing diseases include pulmonary fibrosis, 

congestive heart failure, liver cirrhosis, kidney fibrosis, and are involved in 45% of deaths 

in the United States (20). There are currently few FDA approved treatments for fibrosis 

(20, 21). Cancer, wound healing, and fibrosis all involve scar tissue formation, and a key 

component of scar tissue is the fibrocyte (22, 23). 

 

Fibrocytes  

Fibrocytes are monocyte-derived, fibroblast-like cells, first discovered by James 

Paget in the 1850s (24). Monocytes are circulating, innate-immune system cells that are 

recruited to wounds or fibrotic lesions by chemokines (25, 26), and in response to 

unknown wound signals differentiate into fibrocytes (27, 28). Fibrocytes express collagen 

and other extracellular matrix proteins, secrete pro-angiogenic factors, and activate nearby 

fibroblasts to proliferate and secrete collagen (22, 23, 27, 29-31), forming a scar.  

 Fibrocytes are CD45 positive, and are a key component of both wound healing and 

fibrosing diseases (22, 27, 29, 30) and the development of the body’s desmoplastic 

response to foreign or invasive bodies (9, 22). Within a wound, increasing fibrocyte 

differentiation potentiates wound healing, while decreasing fibrocyte differentiation leads 

to slower wound healing (32).  

Monocytes isolated from peripheral blood mononuclear cells differentiate into fibrocytes 

in vitro in defined media (33). The differentiation can be modulated by factors such as the 
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serum protein Serum Amyloid P (SAP), NaCl, cytokines such as interleukins-4, -12, and 

-13, interferon-γ, or hyaluronic acid (34-37). The presence of as little as 0.01% serum 

inhibits fibrocyte differentiation (33, 36). The SAP concentration in plasma is ~30 µg/ml 

(38). The IC50 for SAP inhibition of fibrocyte differentiation is 0.2 µg/ml (36, 39), and 

~1 µg/ml SAP completely inhibits fibrocyte differentiation (36). In humans, in addition to 

being present in plasma, a considerable amount of SAP is present in the interstitial space 

between cells within tissues (40). Normal tissues contain very few fibrocytes (31), but 

local increases in fibrocyte differentiation correlate with increased fibrosis and wound 

healing in animal models (32, 41). In vivo, SAP slows wound healing, while removing 

SAP from a wound promotes healing (32, 42). Conversely, SAP injections that double the 

serum SAP concentration inhibit fibrosis in a variety of animal models (41, 43-45). 

 

Wound healing macrophages 

In addition to differentiating in fibrocytes, monocytes also differentiate into both 

classically-activated M1 macrophages and alternatively-activated M2 macrophages (46). 

M1 macrophages are involved with the immune system’s response to pathogens like 

viruses and bacteria, and M2 macrophages are involved with immuno-regulation and 

tissue repair (47, 48). There are several subpopulations of M2 macrophages, including the 

M2a and Mreg subtypes (46). M2a macrophages are involved in scar tissue formation in 

both wound healing and fibrosis (49-52), while Mreg macrophages have an anti-

inflammatory phenotype (46). Unpolarized monocytes are cells that have not been 

exposed to factors that potentiate either M1 or M2 macrophage differentiation (53).  
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M1, M2a, and Mreg macrophages, while morphologically similar, display 

different surface markers and secrete different cytokines (46).  CD163 is a marker of Mreg 

macrophage differentiation (47, 54). Fibronectin is  a marker of M2a macrophage 

differentiation (55). CD206 is sometimes classed as an Mreg marker, and sometimes as 

an M2a marker (47, 54). CCR7 is a commonly used marker for M1 classical macrophage 

activation (47). Macrophage subtypes also have different secretion profiles, with M1 

macrophages secreting higher levels of the cytokine IL-12 compared to M2 macrophages 

(46). M2 regulatory macrophages secrete increased levels of the anti-inflammatory 

cytokine IL-10 (46). M2a macrophages secrete intermediate amounts of IL-12 and IL-10, 

and high amounts of IL-4 (46).  

 

Proteases and PAR 

 Proteases are proteolytic enzymes that cleave proteins at specific amino acid 

sequences. One family of proteases is defined by a serine at the enzyme’s active site. These 

serine proteases are commonly found in the digestive system, as well as in immune 

responses to pathogens, inflammation, and wounding.  

Trypsin, chymotrypsin, and pepsin are the primary mammalian serine proteases 

used in digestion. Each is secreted as a zymogen, and later cleaved to an active form. Each 

also cuts at a different amino acid pattern. Trypsin is a proteolytic enzyme that cuts at 

lysine or arginine residues, except when the following amino acid is proline (56). 

Chymotrypsin preferentially cleaves following the aromatic amino acids tyrosine, 

tryptophan, or phenylalanine (57). Pepsin cuts preferentially between hydrophobic and 
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aromatic amino acids (58). Endoproteinase Glu-C is a protease isolated from 

Staphylococcus aureus which cleaves at glutamic or aspartic acid (59, 60).  

Proteases also participate in wound healing. One of the events preceding scar tissue 

formation in a wound is the clotting cascade, in which the zymogen prothrombin is cleaved 

to thrombin, which in turn cleaves fibrinogen to fibrin. In addition to being upregulated 

during wound healing, thrombin activity is also upregulated in fibrotic lesions (61, 62). 

Thrombin causes inflammation when added to the lungs of mice, and increased 

concentrations of thrombin within lungs exacerbate fibrosis, while inhibition of thrombin 

attenuates fibrosis (63-66). Thrombin cleaves a six amino acid recognition site which is 

found on protease activated receptor-1 (PAR-1) (67, 68). This receptor is found on a 

variety of cell types including monocytes (69), and mediates the ability of thrombin to 

induce platelet aggregation (70). 

Proteases also participate in the immune system’s response to inflammation and 

foreign pathogens. Mast cells are found in both internal fibrotic lesions and sites of wound 

healing (71-73). Mast cells degranulate in response to objects the immune system 

recognizes as foreign, including certain tumors and pathogens like schistosomes, which 

are too large to be effectively engulfed by a single cell (73). In these cases, mast cells 

encourage the deposition of fibrocytes and fibroblasts to form a sheath of fibrotic tissue 

around the foreign object (74-77). Mast cell degranulation products include the protease 

tryptase, a protease similar to trypsin but which must be stabilized by heparin in order to 

be enzymatically active (73, 78, 79). Tryptase is upregulated in areas of increased mast 

cell degranulation, including wounds and especially in fibrotic lung tissue (71, 72, 78-80). 
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Elevated extracellular tryptase levels are also associated with collagen deposition in 

idiopathic pulmonary fibrosis (80). Tryptase cleaves at lysine and arginine residues, 

except when the following amino acid is proline (56).  Tryptase activates protease 

activated receptor-2 (PAR-2) (73, 81). This receptor is found on a variety of cells including 

monocytes (69), and mediates the ability of tryptase to increase the proliferation of, and 

collagen production by, fibroblasts (73). Intratracheal administration of tryptase causes 

inflammation, and inhibition of tryptase attenuates this inflammation (82-85). Inhibition 

of PAR-2 receptors attenuates collagen deposition in a heart disease model (86).  

Trypsin, tryptase, and thrombin influence wound healing and scar tissue formation 

by causing fibroblast proliferation and collagen secretion (73, 87-89), and by causing 

platelet aggregation (70).  

 

Cancer mutation and progression  

Cancers are highly variable, and display different phenotypes depending on their 

tissue of origin, the mutations to their genomes, the types of heterogeneous cells present 

in the tumor, and whether the cancer has metastasized or not. Due to this variation, some 

cancers are more dangerous than others. Some cancers are slow growing, others are fast 

growing, some are benign, others are metastatic (90). These stages of cancer can represent 

different cancers from different tissues, or represent different stages within one tumor over 

time. If left untreated (or undiscovered), some types of cancer will progress from benign 

stages to metastatic stages (10). 

The multi-hit model of cancer progression proposes that as cancers undergo 
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additional mutations they progressively lose control over cell-cycle regulation and basic 

cellular control functions (91). As cancer progresses and cancer cells undergo more 

mutations they change their phenotype by changing their protein expression profile. These 

expression changes have the effect of changing the cancer cell from a more epithelial 

phenotype (terminally differentiated cells which display tissue specific markers) to a more 

mesenchymal phenotype (stem-like cells which do not display tissue specific markers) 

(92, 93).  

Cancer cells that undergo this epithelial-to-mesenchymal transition (EMT) may be 

more able to resist cell death, evade the immune system, and activate invasion and 

metastasis, or commandeer nearby macrophages, epithelial cells, and fibroblasts to 

perform these functions (94). Mesenchymal cancer cells display fewer markers from their 

tissue of origin, and cancer cells that have metastasized differ further in their protein 

expression profile from their benign precursors (95-97). As cancer progresses a 

mesenchymal phenotype, it interacts with the immune system in different ways. Some 

tumors attempt to evade the immune system, and others act to suppress the immune system 

(98-102).  

 

 Cancer cell lines 

The MDA-MB-231 breast cancer line was isolated from metastases of a patient in 

the 1970s by the MD Anderson Cancer Center (103). MDA-MB-231 cells proliferate 

rapidly in culture and rapidly metastasize in murine models, indicating that these cells 
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retain the protein expression profile which allowed them to metastasize in the original 

patient (104). 

MDA-MB 435 has an uncertain origin: at the initiation of this project, the cell line 

was listed as a breast cancer line by the ATCC (105). Currently, the cell line is listed as a 

melanoma cell line (106). 

OVCAR-8 is an ovarian cancer cell line derived from a metastatic site (107, 108). 

U87-mg is derived from a glioblastoma (109). MCF-7 is a breast cancer cell line derived 

from a pleural effusion (110). DCIS.com is derived from a normal breast tissue cell line 

(MCF10A) passaged through a mouse, which forms a non-metastatic ductal carcinoma in-

situ when injected into mice (111). HT-29 (112), SW480 (113), DKOB8 (114), and HCT 

(115) are derived from non-metastatic colon cancers. ADR-RES (116) is derived from a 

non-metastatic ovarian cancer. SNU 398 (117) and HEP-G2 (118) are derived from non-

metastatic liver cancers. SW 1088 (119) and U87 MG (109) are derived from non-

metastatic brain cancers. PANC-1 (120) is derived from a non-metastatic pancreatic 

cancer. Mono Mac 1 (121), Mono Mac-6 (122), U-937 (123), HL-60 (124), and THP-1 

(125) are derived from leukemias.  

 

 Galectin-3 binding protein and galectin-3 

Galectin-3 binding protein (LGALS3BP) is a 60 kDa heavily glycosylated protein 

that was originally identified as a biomarker for metastatic melanoma (126). LGALS3BP 

was initially called antigen 90K because the protein isolated from human serum ran at 90 
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kDa on an SDS-page gel (127). LGALS3BP binds to galectins -1, -3, and -7, laminin, 

fibronectin, and collagen (127-129). LGALS3BP is a member of the scavenger receptor 

cysteine-rich domain (SRCR) family of proteins (130). 

 LGALS3BP is ubiquitously expressed in bodily secretions, including milk, tears, 

semen and serum, usually in the range of 10 µg/ml (131). This value can change greatly, 

however, depending on the individual or upon the different factors affecting the individual. 

In blood serum, for instance, LGALS3BP concentration in patients with breast cancer or 

melanoma can be an order of magnitude higher than normal serum levels (132). In breast 

milk, LGALS3BP concentration can rise and fall over the same range (approximately 10 

µg/ml to 100 µg/ml) depending on the length of time after the pregnancy (131). 

LGALS3BP mRNA transcripts are found in normal tissues throughout the body, 

predominately in lung and colon tissue (128). LGALS3BP is also elevated in the serum of 

HIV patients, suggesting that LGALS3BP is upregulated in response to HIV infection 

(133, 134). LGALS3BP has been suggested to be involved in resistance to infant 

respiratory infections (135).  

LGALS3BP has been primarily studied in the fields of immunology and cancer 

(128, 130). In cancer research, LGALS3BP is upregulated in the serum of patients with 

aggressive hormone-regulated cancers, including breast and ovarian cancer (136, 137). 

Higher levels of LGALS3BP correlate with worse outcomes in breast cancer patients (138, 

139), while increased serum concentrations of galectin-3 correlate’s with increased 

survival (140). LGALS3BP has also been found to promote VEGF secretion by breast 

cancer cells, including MDA-MB 231 cells (128, 141). Mouse knockouts of LGALS3BP 
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show higher circulating levels of TNF-alpha, IL-12, and interferon-gamma, suggesting a 

role in regulating the immune system (142).  

Galectin-3 is a ~30 kDa protein expressed nearly ubiquitously throughout the 

body, and can be found in and secreted by different cell types (140). Galectin-3 is a 

biomarker of fibrosing diseases such as heart disease and pulmonary fibrosis (143, 144). 

As the severity of the fibrosing disease increases, galectin-3 concentration in the serum 

increases. Galectin-3 is also secreted as an immunomodulator by macrophages (145).  

Galectin-3 interacts promiscuously with a number of intercellular and intracellular 

receptors and ligands, and is theorized to have roles in inflammation, host response to a 

virus, and wound healing (145, 146). Galectin-3 is a biomarker of fibrosing diseases such 

as heart disease and pulmonary fibrosis (143, 144). Galectin-3 can be secreted from cells, 

associated with membrane bound carbohydrates, or located in the cytoplasm (147). 

Galectin-3 is expressed by innate immune system cells such as macrophages, eosinophils, 

neutrophils, and mast cells (148). Further, galectin-3 is upregulated in colon, thyroid, and 

pancreatic cancers. Galectin-3 is also expressed in the kidneys and the gastro-intestinal 

tract (149, 150). 

Galectin-3 knockout mice have decreased granulocyte number, increased 

susceptibility to S. pneumonaie infection, and lack macrophage activation and chemotaxis 

under stimulation by IL-4 and IL-13, and have fewer atherosclerotic lesions of the heart 

(151). Additionally, knockout mice have lower numbers of leukocytes and monocytes 

after thioglycollate broth administration than do control mice (151).  
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Summary 

A key question in wound healing and fibrosis is thus the mechanism that overrides 

the inhibitory effect of SAP (and other fibrocyte differentiation inhibitors) to induce 

fibrocyte differentiation.  

The methods which cancer cells use to evade the immune system are incompletely 

understood. This is especially true for cancer’s evasion of the innate immune system’s 

inflammatory desmoplastic response to tumors. A longstanding question in metastasis is 

how tumor cells are able to disrupt the fibrotic cover to escape the surrounded tumor. It is 

unknown what role increased galectin-3 binding protein (LGALS3BP) concentration 

plays in metastatic cancers, or the role of increased galectin-3 concentration in scar tissue.   

  



 

12 

 

CHAPTER II 

TRYPSIN POTENTIATES HUMAN FIBROCYTE DIFFERENTIATION* 

Summary 

Trypsin-containing topical treatments can be used to speed wound healing, 

although the mechanism of action is unknown. To help form granulation tissue and heal 

wounds, monocytes leave the circulation, enter the wound tissue, and differentiate into 

fibroblast-like cells called fibrocytes. We find that 20 to 200 ng/ml trypsin (concentrations 

similar to those used in wound dressings) potentiates the differentiation of human 

monocytes to fibrocytes in cell culture. Adding trypsin inhibitors increases the amount of 

trypsin needed to potentiate fibrocyte differentiation, suggesting that the potentiating 

effect is dependent on trypsin proteolytic activity. Proteases with other site specificities 

such as pepsin, endoprotease GluC, and chymotrypsin do not potentiate fibrocyte 

differentiation. This potentiation requires the presence of albumin in the culture medium, 

and tryptic fragments of human or bovine albumin may also potentiate fibrocyte 

differentiation. These results suggest that topical trypsin speeds wound healing by 

generating tryptic fragments of albumin, which in turn potentiate fibrocyte differentiation.  

 

Hypotheses: Trypsin potentiate fibrocyte differentiation, and increases collagen secretion 

by monocyte derived cells, making trypsin potentially pro-fibrotic.  

                                                 

* Reprinted with permission. Originally published in PLoS ONE. White MJ, Glenn M, Gomer RH. Trypsin 
potentiates human fibrocyte differentiation. PLoS One. 2013 Aug 7;8. 

http://www.ncbi.nlm.nih.gov/pubmed/23951012
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Introduction 

The failure of wounds to heal properly constitutes a major medical problem, with 

both acute and chronic wounds consuming treatment time and resources. Between 25-40% 

of hospital patients receive treatment for either an acute or chronic wound (12-16). Poorly-

healing chronic wounds affect more than 6.5 million US patients per year, and cost more 

than $25 billion to treat (17). Chronic wounds resist conventional wound-dressing 

treatments and often occur in elderly, obese, immuno-compromised, or diabetic patients 

(17, 18).  

Monocytes are circulating cells that are recruited to wounds and sites of tissue 

injury by chemokines (25, 26). To help heal wounds, monocytes enter the wounded tissue 

and differentiate into fibroblast-like cells called fibrocytes (27, 28). Fibrocytes are 

collagen-expressing CD45+ cells which assist in scar tissue formation, a key component 

of both wound healing and fibrosing diseases (22, 27, 29, 30) and the development of the 

body’s desmoplastic response to foreign or invasive bodies (9, 22). Increasing fibrocyte 

differentiation within a wound healing environment potentiates wound healing, and 

decreasing fibrocyte differentiation leads to slower wound healing (32). Monocytes 

isolated from peripheral blood mononuclear cells differentiate in vitro in a defined media 

into fibrocytes (33). The differentiation can be modulated by factors such as the serum 

protein Serum Amyloid P (SAP), salt concentration, cytokines such as interleukins 4, 12, 

and 13 and interferon, or hyaluronic acid (34-37). Increased fibrocyte differentiation 

correlates with increased fibrosis and wound healing in animal models (32, 41).  
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After wounding, the blood clots, leaving serum on the wound. Albumin is the most 

common protein in serum, with levels between 35-50 g/L and accounting for ~50% of the 

total protein in blood (152). Albumin is produced in the liver and maintains blood 

homeostasis (152). Increased albumin levels are associated with increased wound healing 

in both acute (153) and chronic wounds (154-156).  

Trypsin, chymotrypsin, and pepsin are mammalian proteolytic enzymes. Each is 

secreted as a zymogen, and later cleaved to an active form. Each also cuts at a different 

amino acid pattern. Trypsin is a proteolytic enzyme that cuts at lysine or arginine residues, 

except when the following amino acid is proline (56). Chymotrypsin preferentially cleaves 

following the aromatic amino acids tyrosine, tryptophan, or phenylalanine (57). Pepsin 

cuts preferentially between hydrophobic and aromatic amino acids (58). Endoproteinase 

Glu-C is a protease isolated from Staphylococcus aureus which cleaves at glutamic or 

aspartic acid (59, 60).  

Although trypsin is generally thought of as a digestive enzyme, trypsin is also 

active in multiple cellular processes, including development and tumor invasion (157-

166). Trypsin is involved in gastric inflammation through cleavage of the proteinase-

activated receptors (PAR1-4) (67, 167, 168), and PAR1 and PAR2 digestion has also been 

implicated in cancer signaling (169, 170). Topical application of trypsin has been used to 

potentiate healing of both conventional and chronic wounds for more than 50 years after 

having been initially tested as a burn debridement treatment (171-177). In this report, we 

show that when trypsin potentiates fibrocyte differentiation, suggesting a mechanism of 

action for the effect of trypsin on wound healing.  
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Materials and methods 

Cell isolation and exposure of PBMCs to proteases and inhibitors 

Human blood was collected from adult volunteers who gave written consent and 

with specific approval from the Texas A&M University human subjects Institutional 

Review Board. Peripheral blood mononuclear cells (PBMC) and monocytes were isolated 

as previously described (34), and monocytes were checked for enrichment by flow 

cytometry in comparison to the un-enriched PBMC population (178). Cells were cultured 

in Fibrolife basal media as previously described (33), in either protein-free media (PFM) 

or serum-free media (SFM). PFM is composed of Fibrolife basal media (Lifeline Cell 

Technology, Walkersville, MD) supplemented with 10 mM HEPES (Sigma), 1× non-

essential amino acids (Sigma), 1 mM sodium pyruvate (Sigma), 2 mM glutamine (Lonza), 

100 U/ml penicillin and 100 μg/ml streptomycin (Lonza). SFM is composed of PFM 

supplemented with 1× ITS-3 (500 μg/ml bovine serum albumin, 10 μg/ml insulin, 5 μg/ml 

transferrin, 5 ng/ml sodium selenite, 5 μg/ml linoleic acid, and 5 μg/ml oleic acid, (Sigma). 

Where indicated, PFM was supplemented with recombinant insulin suitable for cell 

culture (Sigma), transferrin suitable for cell culture (Sigma), or human or bovine albumin 

to the above concentrations, or 12.5% human serum. TPCK is an irreversible inhibitor of 

chymotrypsin, and TLCK is an irreversible inhibitor of trypsin. TPCK-treated trypsin 

(Sigma), TLCK-treated chymotrypsin (Sigma), pepsin from porcine stomach mucosal 

lining (EMD), or endoproteinase Glu-C from S. aureus (Sigma) were all resuspended to 

10 mg/ml following the manufacturer’s instructions. Complete protease inhibitor cocktail 

(Roche, Indianapolis, IN) was resuspended to 40 mg/ml in water, and soybean trypsin 
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inhibitor (Sigma) was resuspended to 10 mg/ml in water. Fibrocytes were stained, 

identified and counted as previously described (179).  

 

Purification of albumin 

Albumin was purified from sterile filtered non-blood type specific human serum, 

tested negative for hepatitis A and B and HIV I and II (Lonza, Basel, Switzerland and 

Gemini Bio-products, West Sacramento, California) or  from triple filtered US origin fetal 

calf serum, tested for sterility and mycoplasma (Thermo Fisher Scientific, Milwaukee, 

WI) by affi-gel bead affinity elution (Bio-Rad, Hercules, California). 4 ml of beads were 

washed three times in 25 ml PBS, and were added to 40 ml of serum with gentle mixing 

at room temperature for 2 hours. The beads were collected by centrifugation at 300 x g for 

5 minutes and washed three times with 25 ml of filter-sterilized buffer (20 mM Tris, 140 

mM NaCl, 2 mM CaCl2 pH 8.0) and eluted overnight with gentle mixing in 25 ml of 0.5 

M NaCl. The beads were then removed by centrifugation at 300 x g for 5 minutes. The 0.5 

M NaCl solution containing the eluted albumin was then buffer exchanged three times 

through a 10 kDa filter (EMD Millipore, Billerica, MD) using 15 ml Earle’s balanced salt 

solution (EBSS buffer) (Sigma, St. Louis, MO), tested for concentration using by 

absorbance at 280 nm, and diluted to a final concentration of 25 mg/ml in EBSS and stored 

at 4° C. Samples were diluted 1:10 in 20 mM sodium phosphate buffer, pH 7.2, and run 

on 4-20% SDS gels (Bio-Rad, Hercules, California), which were silver stained to check 

for albumin purity.  
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Depletion of albumin 

Albumin was depleted from human serum by affi-gel bead affinity elution (Bio-

Rad). 500 µl of beads were washed three times in 2 ml PBS, and were added to 2 ml of 

serum with gentle mixing at room temperature for 2 hours. The beads were removed by 

centrifugation at 300 x g for 5 minutes and the albumin depletion was repeated as above 

twice more. Samples were diluted 1:10 in 20 mM phosphate buffer and run on 4-20% SDS 

gels which were silver stained to show differences in protein concentrations. Serum and 

depleted serum were diluted to 1:100 and 1:10 concentrations, respectively, and western 

blots were stained with mouse monoclonal anti human-albumin antibody, clone HSA-11, 

following the manufacturer’s instructions (Sigma). 

 

Trypsin digest products added to culture 

TPCK-treated trypsin-coated agarose beads (Sigma) were washed according to the 

manufacturer's instructions. To digest serum or albumin, 12.5 µl of beads was mixed with 

250 µl of serum, 25 mg/ml albumin, 250 µl SFM containing 500 µg/ml human albumin 

or bovine albumin, or 250 µl serum-free medium containing 10 µg/ml insulin or 5 µg/ml 

transferrin. Beads were incubated with gentle rotation at 37 ˚C for 2 hours, and were 

removed by centrifugation at 300 x g for 5 minutes. The digested media and undigested 

controls were mixed with PFM or SFM supplemented with bovine albumin. In 

experiments where human albumin was digested, the trypsinized human albumin and 

untrypsinized human albumin controls were, if indicated, mixed with SFM supplemented 

with human albumin.  
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Collagen staining by flow cytometry 

24-well tissue culture treated plates (BD Bioscience, San Jose, CA) were coated 

for 1 hour at 37° C with 20 µg/ml human cellular fibronectin from fibroblasts (Sigma) in 

PBS and gently rinsed twice with sterile PBS. 500 µl of PBMC at 1x106 cells/ml in SFM 

was added to each well. Control wells were supplemented with 250 µl SFM containing 

500 µg/ml human albumin, while sample wells were supplemented with SFM digested by 

TPCK-treated trypsin-coated agarose beads as described above. After 5 days, cells were 

washed with warm PBS and exposed to 125 µl accutase (Innovative Cell Technologies, 

San Diego, CA) for 20 minutes at 37 °C. Cells were resuspended via gentle pipetting, and 

washed by suspension in 1 ml ice cold PBS, collected by centrifugation at 300 x g for 5 

minutes, then washed once more. Cells were resuspended in 1% paraformaldehyde/ 0.2% 

saponin/ PBS for 15 minutes on ice, washed twice as above, and resuspended in 2% BSA/ 

0.2% saponin/ PBS for 15 minutes of blocking. Anti-collagen type I rabbit (Rockland, 

Gilbertsville, PA) and control rabbit IgG (Jackson Immunoresearch, West Grove, PA) 

antibodies were added to the cell suspensions at 1 µg/ml and incubated on ice for 30 

minutes. Cells were washed twice with ice cold PBS and resuspended in 4 µg/ml goat anti-

rabbit alexa-fluor 488 secondary antibody (Molecular Probes, Eugene, OR) for 30 minutes 

on ice. Cells were washed twice and resuspended in ice cold PBS and analyzed with an 

Accuri C6 flow cytometer for fluorescence. Negative controls were used to set gates.  
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Statistics were performed using Prism (Graphpad software, San Diego, CA). 

Differences among multiple groups were assessed by 1-way ANOVA (with Dunnett's post 

test), and between two groups by a two-tailed Mann-Whitney t-test. Significance was 

defined by p < 0.05. 
 

Results 

Trypsin treatment increases fibrocyte number 

Topical treatment with trypsin improves wound healing, although the mechanism 

is unknown (171-177). The differentiation of monocytes into fibrocytes plays a role in 

wound healing (22, 27, 28, 30). To test the hypothesis that trypsin increases wound healing 

by potentiating fibrocyte differentiation, we examined the effect of trypsin on fibrocyte 

differentiation in culture. Human peripheral blood mononuclear cells (PBMC) were 

incubated with trypsin for 5 days in a defined serum-free medium. The cells were then 

stained and scored for fibrocyte formation. Fibrocyte numbers were normalized to trypsin-

free controls due to variability in donors as we previously observed (33-36, 179). Trypsin 

concentrations between 20 and 150 ng/ml significantly increased the number of fibrocytes 

(Figure 1A), and this effect was observed for all donors tested. Trypsin concentrations 

above 1000 ng/ml decreased the number of fibrocytes. The number of adherent cells 

following fixing and staining was not significantly affected by trypsin (Figure 1B), 

suggesting that trypsin specifically increases the number of differentiated fibrocytes, 

rather than increasing the general cell viability or adhesion.  This suggests that trypsin can 

potentiate fibrocyte differentiation.  

Statistical analysis 
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Figure 1. Trypsin potentiates fibrocyte differentiation.  
(A) PBMC were cultured in serum free media in the presence of the indicated 
concentrations of trypsin for 5 days, after which the PBMC were air-dried, stained, 
counted for fibrocyte differentiation, and normalized for each donor to the no-trypsin 
control. The no-trpysin controls developed 41.8 ± 5.4 fibrocytes per 105 PBMC. (B) The 
same PBMC populations were then counted for the total number of PBMC adhered to the 
plate following fixing and staining and normalized for each donor to the no-trypsin 
control. There were no significant differences in the numbers of adhered PBMC following 
fixing and staining. Values in A and B are mean ± SEM, n=9. ** indicates p < .01 and *** 
indicates p < .001 compared to the no-trypsin control by 1- way ANOVA, Dunnett’s test.  
Other proteases do not increase fibrocyte number 

To determine if other proteases also potentiate fibrocyte differentiation, we 

examined the effect of three other proteases. Pepsin and endoproteinase Glu-C had no 
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significant effect on fibrocyte differentiation or the number of adhered PBMC (Figure 2A 

and B). Chymotrypsin at 5000 ng/ml and above caused lower fibrocyte numbers and lower 

numbers of adhered PBMC (Figure 2A and 2B). These results suggest that not all 

proteases potentiate fibrocyte differentiation, and that a specific aspect of the protein 

structure or activity of trypsin is responsible for trypsin potentiating fibrocyte formation.  

 
Figure 2. Chymotrypsin, pepsin, and endoproteinase GluC do not potentiate 
fibrocyte differentiation.  
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(A) PBMC were cultured with the indicated concentrations of protease for 5 days, and 
fibrocytes were counted as in figure 1. (B) The same PBMC populations were then counted 
for the total number of PBMC adhered to the plate following fixing and staining, and 
normalized to the no-protease control. At high concentrations, chymotrypsin significantly 
lowered the numbers of fibrocytes and adhered PBMC. Values are mean ± SEM, n=9 for 
pepsin and endoproteinase GluC, and n=7 for chymotrypsin. * indicates p < .05, ** 
indicates p < .01, and *** indicates p < .001 compared to the no-protease control by 1-
way ANOVA, Dunnett’s test.  
 

Trypsin’s enzymatic activity causes fibrocyte potentiation 

To determine whether trypsin’s enzymatic activity is necessary to potentiate 

fibrocyte formation, we examined the effect of two trypsin inhibitors on the ability of 

trypsin to potentiate fibrocyte differentiation. Adding trypsin inhibitors alone to cultures 

of PBMC had no significant effect on fibrocyte differentiation, with the exception of 4 

µl/ml protease inhibitor cocktail, which decreased overall fibrocyte formation (Figure 

3A). The addition of soybean trypsin inhibitor (Figure 3B) or protease inhibitor cocktail 

(Figure 3C) increased the amount of trypsin needed to potentiate fibrocyte differentiation. 

Increasing the inhibitor concentration increased the concentration of trypsin necessary to 

double fibrocyte differentiation compared to the controls (Arrows, Figures 3B and 3C). 

Pre-incubating trypsin and inhibitor completely abrogated trypsin’s potentiation of 

fibrocyte differentiation (data not shown). Together, these results suggest that the protease 

activity of trypsin affects its ability to potentiate fibrocyte differentiation. 
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Figure 3. Trypsin inhibitors increase the amount of trypsin needed to potentiate 
fibrocyte potentiation.  
Trypsin inhibitors were added to PBMC cultures at the beginning of the 5-day incubation 
period at the indicated concentrations, with and without trypsin present. PBMC were then 
air dried, stained, counted for fibrocyte differentiation, and normalized to the no-trypsin 
control. (A) Trypsin inhibitors did not significantly affect fibrocyte differentiation with 
the exception of 4 µl/ml Roche inhibitor, which decreased fibrocyte formation. ** 
indicates p < .01 compared to the inhibitor-free control. (B) Soybean trypsin inhibitor 
inhibited trypsin-induced fibrocyte potentiation. No-inhibitor data is the same as figure 
1A. Fibrocyte counts were normalized to the inhibitor-containing trypsin-free control. 
Arrows indicate the lowest trypsin concentrations that doubled the fibrocyte number. 
Compared to the no-trypsin control, there was a significant increase in the number of 
fibrocytes with p < .05 for 4 µl/ml inhibitor for 10,000 ng/ml and at 1 µl/ml inhibitor for 
5,000 ng/ml, and p < .001 at 1 µl/ml inhibitor for 2,500 and 10,000 ng/ml and at 0.1 µl/ml 
inhibitor for 2500 and 5,000 ng/ml (1-way ANOVA, Dunnett’s test). (C) Roche complete 
protease inhibitor cocktail inhibitor in the cell culture medium also inhibited trypsin-
induced fibrocyte potentiation. No-inhibitor data is the same as figure 1A. Arrows indicate 
the lowest trypsin concentrations that doubled the fibrocyte number. Compared to the no-
trypsin control, there was a significant increase in the number of fibrocytes with p < .05 
at 4 µl/ml inhibitor for 1250 ng/ml and 0.1 µl/ml inhibitor for 1250 and 2500 ng/ml, p < 
.01 at 1 µl/ml inhibitor for 10,000 ng/ml and at 0.1 µl/ml inhibitor for 10,000 ng/ml, and 
p < .001 at 4 µl/ml inhibitor for 2500, 5000, and 10,000 ng/ml (1-way ANOVA, Dunnett’s 
test). Values are mean ±  SEM, n=7.  
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25 

 

Albumin is necessary for trypsin to potentiate fibrocyte differentiation 

To test the hypothesis that trypsin acts on a protein supplement in the media to 

potentiate fibrocyte differentiation, we removed the protein supplements from our defined 

medium and added trypsin to this protein-free media. According to the manufacturer, 

Fibrolife medium is protein-free. Trypsin added to Fibrolife media lacking all three protein 

supplements (albumin, insulin and transferrin) did not potentiate fibrocyte differentiation 

(Figure 4A). At concentrations of 5 µg/ ml and higher, trypsin significantly decreased both 

fibrocyte numbers and the number of adhered cells (Figures 4A and 4B), presumably by 

decreasing cell adhesion. These results suggest that trypsin acts on or with a protein 

supplement to potentiate fibrocyte differentiation.  
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Figure 4. Trypsin does not potentiate fibrocyte differentiation in medium lacking 
protein supplements.  
(A) PBMC were cultured with the indicated concentrations of trypsin for 5 days in protein-
free medium, after which the PBMC were air-dried, stained, counted for fibrocyte 
differentiation, and normalized to the no-trypsin control. The no-trypsin controls 
developed 39 ± 7.2 fibrocytes per 105 PBMC. (B) The same PBMC populations were then 
counted for the total number of PBMC adhered to the plate following fixing and staining. 
Values are mean ±  SEM, n=7. * indicates p < .05, ** indicates p < .01, and *** indicates 
p < .001 compared to the no-trypsin control by 1-way ANOVA, Dunnett’s test. 
 



27 

Serum-free media contains three proteins: insulin, transferrin, and albumin. To 

determine whether insulin, transferrin or albumin potentiates fibrocyte differentiation 

when exposed to trypsin, we purified human and bovine albumin and made media 

containing only insulin, transferrin, or albumin. When TPCK-treated trypsin-coated 

agarose beads were used to trypsinize culture media containing purified human or bovine 

albumin, the trypsinized media potentiated fibrocyte formation following the removal of 

the beads and addition to PBMC (Figure 5A). Fibrocyte potentiation did not occur after 

the addition of protein-free, insulin-containing, or transferrin-containing media 

trypsinized in the same fashion (Figure 5A). To verify that TPCK did not influence 

fibrocyte differentiation, we digested human-albumin containing SFM with non TPCK-

treated trypsin beads. Media containing human albumin digested by non TPCK-treated 

trypsin-beads also potentiated fibrocyte differentiation (Figure 5B). Using trypsin-coated 

beads to directly digest bovine and human albumin into fragments, and then adding those 

fragments to protein-free medium also potentiated fibrocyte differentiation compared to 

undigested controls (Figure 6A). SDS-PAGE gels indicated that the protease treatment of 

albumin caused the formation of digestion products (Figure 6B). These results suggest that 

a trypsin fragment of albumin may potentiate fibrocyte differentiation. 
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Figure 5. Serum-free medium containing albumin potentiates fibrocyte 
differentiation after temporary mixing with trypsin-coated agarose beads.  
TPCK-treated trypsin-coated agarose beads were used to digest protein-free culture media 
(PFM) and PFM containing bovine albumin, human albumin, transferrin, or insulin, after 
which the beads were removed. Digested media and controls were mixed with SFM at the 
indicated percentages and added to PBMC at the beginning of a 5 day incubation, after 
which the PBMC were air-dried, stained, counted for fibrocyte differentiation, and 
normalized to the control media containing the same amount of undigested protein. (A) 
After removal of the beads, only medium containing albumin fragments potentiated 
fibrocyte differentiation. Values are mean ± SEM, n=3 for protein-free medium (PFM), 
insulin, and transferrin, n=4 for bovine albumin, and n=7 for human albumin. Compared 
to the human albumin control, digested human albumin significantly increased the number 
of fibrocytes with p < .05 at 62 µg/ml, p < .01 at 250 µg/ml, and p < .001 at 500 µg/ml. 
Compared to the bovine albumin control, digested bovine albumin increased the number 
of fibrocytes with p < .05 at 31 µg/ml, p < .01 at 250 µg/ml, and p < .001 at 500 µg/ml (1-
way ANOVA, Dunnett’s test). (B) Human albumin-containing media potentiated 
fibrocyte differentiation when digested by non-TPCK treated trypsin-coated agarose 
beads. Values are mean ± SEM, n=3. * indicates p < .05 and ** indicates p < .01 compared 
to the human albumin control by 1-way ANOVA, Dunnett’s test.  
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Figure 6. Albumin potentiates fibrocyte differentiation after temporary mixing with 
trypsin-coated agarose beads.  
TPCK-treated trypsin-coated agarose beads were used to digest bovine or human albumin. 
After the beads were removed, the digested albumin was added to PBMC cultures in SFM 
at the indicated concentrations for 5 days, after which the PBMC were air-dried, stained, 
counted for fibrocyte differentiation, and normalized to the bovine or human albumin 
controls. Values are mean ± SEM, n=4, ** indicates p < .01 and *** indicates p < .001 for 
both bovine and human albumin compared to the no-albumin control (1-way ANOVA, 
Dunnett’s test). (B) 250 µl of protein-free media supplemented with human albumin was 
digested for two hours with gentle rotation at 37°C with 1 µg/ml protease, 0.1 µg/ml 
protease, or with 12.5 µg/ml TPCK-treated trypsin-coated agarose beads. Samples were 
then run on a 7.5% SDS-PAGE gel and silver stained. PFM indicates protein free medium, 
CT indicates chymtotrypsin, and Glu-C indicates endoprotease Glu-C. Alternative prep 
indicates samples from a repeat of this experiment that happened to be included in this 
gel. This gel is a digestion of human albumin, and is representative of similar gels of 
digestions of medium containing bovine albumin or ITS-3.  
  



31 



 

32 

 

Increased fibrocyte numbers are associated with increased collagen expression 

Increased collagen expression in a PBMC culture is a marker for increased 

fibrocyte differentiation (27, 28, 178). To determine whether trypsinized human albumin 

increases collagen-positive cells, we resuspended and stained PBMC with an anti-collagen 

antibody following our 5-day differentiation assay. Increased collagen expression was 

detected by flow cytometry in PBMC cultures incubated with trypsinized human albumin 

(Figures 7A). A representative flow plot can be seen in Figure 7B. This suggests that the 

albumin fragment-induced increase in fibrocyte number is accompanied by an increase in 

collagen expression. 
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Figure 7. Collagen production is increased in PBMC exposed to trypsinized albumin.  
(A) TPCK-treated trypsin-coated agarose beads were used to digest protein-free media 
and media containing human albumin. After the beads were removed, the media was 
added to PBMC cultures in serum-free medium at a 33% concentration. Cells were 
exposed to trypsinized human albumin for 5 days, then resuspended, stained with anti-
collagen and alexa-fluor secondary antibodies, and measured for fluorescence by flow 
cytometry. Values are mean ± SEM, n=9, * indicates p < .05 by two tailed Mann- 
Whitney’s t-test. (B) Representative fluorescence overlay for collagen staining. The cells 
in the left plot were stained with isotype control primary antibodies, while the cells in the 
right plot were stained with anti-collagen primary antibodies. Red indicates trypsin-treated 
cells, while black indicates no trypsin treatment of the cells.  
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Fibrocytes differentiate from monocytes (22, 27, 33). Cells in a PBMC population 

can include T-cells, B-cells, or NK cells (36). To determine whether trysinized albumin 

acts directly on monocytes to potentiate fibrocyte differentiation, as opposed to an indirect 

action through other cells in the PBMC population, we isolated monocytes by negative 

selection from an average of 16% to an average of 83% purity. When added to the 

monocyte-enriched cells, 70 µg/ml trypsinized albumin potentiated fibrocyte 

differentiation by 223% ± 9% (n=3; p < 0.01, t-test). This suggests that tryptic fragments 

of albumin act directly on monocytes to potentiate fibrocyte differentiation.  

 

Trypsinizing albumin-containing serum promotes fibrocyte differentiation 

In a wound environment, monocytes and exogenous trypsin would be exposed to 

serum. Human serum contains more than 500-1200 proteins, of which the primary 

component is albumin (180, 181). To determine whether trypsin potentiates fibrocyte 

differentiation when mixed with human serum, we digested human serum with trypsin, 

and then added these digestion products to PBMCs. As previously observed (36), human 

serum inhibited fibrocyte differentiation, presumably due to the presence of serum 

amyloid P (SAP) in the serum (Figure 8A). Compared to no trypsin, trypsin-treated serum 

increased fibrocyte differentiation.  

 

 

When the serum was depleted of albumin (Figures 8B and 8C), the serum also 

inhibited fibrocyte differentiation, and compared to no trypsin, trypsin treatment did not 

Trypsinized albumin increases fibrocyte formation in an enriched monocyte population 
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cause an increase in the number of fibrocytes (Figure 8A).  Compared to the no-trypsin 

control, in media containing 12.5% human serum, trypsin concentrations between 5 and 

20 µg/ml increased fibrocyte differentiation, while the same concentrations of trypsin in 

albumin-depleted serum media did not increase fibrocyte differentiation (Figure 8D). 

These results indicate that trypsin’s potentiation of fibrocyte differentiation in serum 

requires albumin.   
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Figure 8. Trypsinized human serum containing albumin potentiates fibrocyte 
differentiation.  
(A) TPCK-treated trypsin-coated agarose beads were used to digest human serum and 
albumin-depleted human serum, which were then added to PBMC in protein-free media 
at the indicated concentrations for 5 days, after which the cells were air-dried, stained, 
counted for fibrocyte differentiation. Values are mean ± SEM, n=7 for serum, n=4 for 
depleted serum. Compared to the trypsinized depleted serum, trypsinized serum 
significantly increased the number of fibrocytes: * indicates p < .05 by a two-tailed Mann-
Whitney’s t-test. Compared to depleted serum, trypsinized depleted serum did not 
significantly increase fibrocyte number by a two-tailed Mann-Whitney’s t-test. (B) 
Albumin-depleted serum shows less albumin, but a similar protein pattern to human 
serum, when both are run at 1:10 dilutions on a silver stained 4-20% SDS-PAGE gel. (C) 
A Western blot of serum and albumin-depleted serum stained with anti human-albumin 
antibodies. (D) Trypsin was added to PBMC in a 12.5% serum containing medium, and a 
12.5% albumin-depleted serum containing medium, at the indicated concentrations for 5 
days, after which the cells were air-dried, stained, counted for fibrocyte differentiation. 
Values are mean ± SEM, n=7 for serum, n=4 for depleted serum. Compared to the 
trypsinized depleted serum, trypsinized serum significantly increased the number of 
fibrocytes: * indicates p < .05 by a two-tailed Mann-Whitney’s t-test. 
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Discussion 

Trypsin speeds the healing of dermal wounds (171-177). Albumin is a major 

component of serum, and a trypsin-treated extract of serum potentiates wound healing 

(172). In this report, we showed that trypsin indirectly potentiates monocyte 

differentiation into fibrocytes in culture while albumin was necessary for this potentiation 

to occur. This then suggests that topical trypsin and trypsin-treated serum potentiates 

wound healing by tryptic fragments of albumin potentiating fibrocyte differentiation.  

Trypsin inhibitors in the culture medium of PBMC caused more trypsin to be 

necessary to potentiate fibrocyte differentiation, indicating that trypsin’s enzymatic 

activity is the key factor in albumin digestion and fibrocyte potentiation. Soybean trypsin 

inhibitor is a slow-binding but nearly irreversible inhibitor of trypsin’s enzymatic activity 

(182). Soybean trypsin inhibitor stoichiometrically binds trypsin, and the amount of 

soybean-trypsin inhibitor added to the trypsin-containing PBMC cultures at higher 

concentrations was in excess of the total amount of trypsin added. Human serum also 

contains reversible protease inhibitors with less binding efficacy for trypsin than soybean 

inhibitor (183, 184). When mixed and immediately added to albumin-containing medium, 

not even the highest concentration of soybean inhibitor or serum (Figures 3B and 8D) 

completely abrogated trypsin’s albumin-induced fibrocyte potentiation, suggesting that 

transient trypsinization is enough to digest albumin and induce fibrocyte differentiation.  

Increased fibrocyte formation correlates with increased fibrosis (185) and faster 

wound healing (32), and protein additives to wound dressings can improve the wound 

healing response (32). Chronic non-healing wounds are often resistant to more usual 
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treatment dressings (17, 18). Chronic wounds are associated not only with infection, age, 

and diabetes, but also with decreased albumin concentrations in the wound area (153-156). 

An intriguing possibility is that if albumin degradation products in wounds potentiate 

fibrocyte differentiation, the decreased albumin concentrations in the chronic wounds 

might result in lower levels of the albumin degradation products in the chronic wounds, 

resulting in lower levels of fibrocyte differentiation.  

Trypsin at ~50 mg/L (50 µg/ml) has been used to produce a lyophilized, 

trypsinized serum for wound treatment (172). We observed that 5-20 µg/ml trypsin added 

to 12.5% serum potentiates fibrocyte differentiation (Figure 8D). This would then 

correspond to 40-160 µg/ ml trypsin in 100% serum, which corresponds to the trypsin 

concentration used for the wound-healing product.  

Proteinases have previously been implicated in interactions with proteinase-

activated receptors (PARs) (67). PARs are activated by cleavage of a small peptide from 

the surface of the receptor by a serine protease, usually trypsin or chymotrypsin (67). 

Research on PARs has been primarily confined to mesenchymal cells, usually in the 

digestive tract where trypsin is a common enzyme (186-189). Since cells treated with 

trypsin in protein-free media do not have increased fibrocyte formation, and chymotrypsin 

does not potentiate fibrocyte differentiation, trypsin’s effect on fibrocyte differentiation 

does not appear to be mediated by proteinase activated receptors.   

 Monocyte-derived fibrocytes are found in wound healing environments (22, 27, 

28) and at tissue near a tumor edge (7, 8, 11), both areas of increased serine proteinase 

activity (162, 190-193). For instance, marapsin, a protease that also cleaves at arginine, is 
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up-regulated in wound healing environments (190). An intriguing possibility is that 

endogenous proteases, by generating tryptic fragments of albumin, help to potentiate 

fibrocyte differentiation in wounds and tissues near a tumor edge.  

Taken together, our results suggest that topical trypsin and trypsinized albumin 

potentiate wound healing at least in part by potentiating fibrocyte differentiation. While 

trypsin has been used in the treatment of burns and in wound dressings for more than 50 

years, a mixture of albumin and trypsin may further speed wound healing, especially when 

applied to chronic wounds deficient in albumin (153-156).  
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CHAPTER III 

A BRIEF EXPOSURE TO TRYPTASE OR THROMBIN POTENTIATES 

FIBROCYTE DIFFERENTIATION IN THE PRESENCE OF SERUM OR SAP* 

Summary 

A key question in both wound healing and fibrosis is the trigger for the initial 

formation of scar tissue. To help form scar tissue, circulating monocytes enter the tissue 

and differentiate into fibroblast-like cells called fibrocytes, but fibrocyte differentiation 

is strongly inhibited by the plasma protein Serum Amyloid P (SAP), and healthy tissues 

contain very few fibrocytes. In wounds and fibrotic lesions, mast cells degranulate to 

release tryptase, and in early wounds thrombin mediates blood clotting. Tryptase and 

thrombin are upregulated in wound healing and fibrotic lesions, and inhibition of these 

proteases attenuates fibrosis.  

* Reprinted with permission. Originally published in the Journal of Immunology. White MJ, Glenn M,
Gomer RH. A brief exposure to tryptase or thrombin potentiates fibrocyte differentiation in the presence of 
serum or serum amyloid p. Journal of Immunology. 2015 Jan 1;194(1):142-50.

http://www.ncbi.nlm.nih.gov/pubmed/23951012
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Here we report that tryptase and thrombin potentiate human fibrocyte 

differentiation at biologically relevant concentrations and exposure times, even in the 

presence of concentrations of serum and SAP that normally completely inhibit fibrocyte 

differentiation. The fibrocyte potentiation by thrombin and tryptase is mediated by 

protease-activated receptors 1 and 2, respectively. Together, these results suggest that 

tryptase and thrombin may be an initial trigger to override SAP inhibition of fibrocyte 

differentiation to initiate scar tissue formation.  

Hypothesis: Tryptase and thrombin, two proteases involved with scar tissue formation, 

will promote fibrocyte differentiation at a physiological concentration 
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Introduction 

Poorly-healing chronic wounds affect more than 6.5 million US patients per year 

(17). The opposite of poorly healing wounds is fibrosing diseases, where inappropriate 

scar tissue forms in an organ (19). Fibrosing diseases such as pulmonary fibrosis, 

congestive heart failure, liver cirrhosis, and kidney fibrosis are involved in 45% of deaths 

in the United States (20). Both wound healing and fibrosis involve scar tissue formation. 

A key component of scar tissue is the fibrocyte (22, 23). Monocytes are recruited to 

wounds or fibrotic lesions, and in response to unknown wound signals differentiate into 

fibrocytes (27, 28). Fibrocytes express collagen and other extracellular matrix proteins, 

secrete pro-angiogenic factors, and activate nearby fibroblasts to proliferate and secrete 

collagen (22, 23, 27, 29-31).  

In serum-free cultures, monocytes differentiate into fibrocytes, but the presence of 

as little as 0.01% serum inhibits fibrocyte differentiation (33, 36). Fibrocyte differentiation 

can be inhibited by the plasma protein Serum Amyloid P (SAP), interferon-γ, and IL-12 

(34-37). The SAP concentration in plasma is ~30 µg/ml (38). The IC50 for SAP inhibition 

of fibrocyte differentiation is 0.2 µg/ml (36, 39), and ~1 µg/ml SAP completely inhibits 

fibrocyte differentiation (36). In vivo, SAP slows wound healing, while removing SAP 

from a wound promotes healing (32, 42). Conversely, SAP injections that double the 

serum SAP concentration inhibit fibrosis in a variety of animal models (41, 43-45). 

Normal tissues contain very few fibrocytes (31). In humans, in addition to being 

present in plasma, a considerable amount of SAP appears to be present in the interstitial 

space (40). A key question in wound healing and fibrosis is thus the mechanism that 
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overrides the inhibitory effect of SAP (and other fibrocyte differentiation inhibitors) to 

induce fibrocyte differentiation. One of the events preceding scar tissue formation in a 

healing wound is the clotting cascade, in which the protease thrombin cleaves fibrinogen 

to fibrin. Thrombin activity is upregulated in fibrotic lesions (61) and immediately after 

wounding (62). Thrombin causes inflammation when added to mouse lungs, increased 

concentrations of thrombin within lungs exacerbate fibrosis, and inhibition of thrombin 

attenuates fibrosis (63-66). Thrombin cleaves a six amino acid recognition site which is 

found on protease activated receptor-1 (PAR-1) (67, 68). This receptor is found on a 

variety of cell types including monocytes (69), and mediates the ability of thrombin to 

induce platelet aggregation (70).  

Mast cells are found in both internal fibrotic lesions and sites of wound healing 

(71-73). Mast cells degranulate in response to external stimuli (73) to release, among other 

things, the protease tryptase (73, 78, 79). Tryptase is upregulated in areas of increased 

mast cell degranulation, including wounds and especially in fibrotic lung tissue (71, 72, 

78-80). Extracellular tryptase is upregulated and associates with collagen increases in scar 

tissue in idiopathic pulmonary fibrosis (80). Tryptase cleaves at lysine and arginine 

residues, except when the following amino acid is proline (56).  Tryptase activates 

protease activated receptor-2 (PAR-2) (73, 81). This receptor is found on a variety of cells 

including monocytes (69), and mediates the ability of tryptase to increase the proliferation 

of, and collagen production by, fibroblasts (73). Intratracheal administration of tryptase 

causes inflammation, and inhibition of tryptase attenuates this inflammation (82-85). 

Inhibition of PAR-2 receptors attenuates collagen deposition in a heart disease model (86).  
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 In this report we show that relatively brief exposures of human mononuclear cells 

to levels of thrombin and tryptase that would be found in a wound potentiate human 

fibrocyte differentiation, overriding the SAP and serum inhibition, and could be a 

triggering mechanism for fibrocyte-mediated wound healing and fibrotic lesions.  

Materials and methods  

Cell isolation and culture 

Human blood was collected from volunteers who gave written consent and with 

specific approval from the Texas A&M University human subjects Institutional Review 

Board. Peripheral blood mononuclear cells (PBMC) and monocytes were isolated as 

previously described (34), and cultured as previously described (194), in either serum-free 

or protein-free media. Protein-free media (PFM) was Fibrolife basal media (Lifeline Cell 

Technology, Walkersville, MD) supplemented with 10 mM HEPES (Sigma, St. Louis, 

MO), 1× non-essential amino acids (Sigma), 1 mM sodium pyruvate (Sigma), 2 mM 

glutamine (Lonza, Basel, Switzerland), 100 U/ml penicillin and 100 μg/ml streptomycin 

(Lonza). Serum-free media (SFM) was PFM further supplemented with 10 μg/ml 

recombinant human insulin (Sigma), 5 μg/ml recombinant human transferrin (Sigma), and 

550 μg/ml filter-sterilized human albumin (isolated and checked for purity as previously 

described (194)), fish skin gelatin (Sigma), or skim milk powder (EMD Millipore, 

Billerica, MD). Protein supplements were checked for concentration using absorbance at 

280 nm. SFM made with each supplement was mixed with 500 ng/ml TPCK-treated 

bovine trypsin (Sigma) for 24 hours at 37˚C, and assayed on 4-20% SDS gels (Bio-Rad, 
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Hercules, California), which were silver stained to check for purity and the presence of 

breakdown products. Where indicated, PFM was supplemented to 2.5% (v/v) with sterile 

filtered non-blood type specific human serum, tested negative for hepatitis A and B and 

HIV I and II (Lonza and Gemini Bio-products, West Sacramento, California). Monocytes 

were purified, tested for purity, and cultured as previously described (194, 195). Fibrocyte 

counts, total cell counts, and collagen staining were performed as previously described 

(194). 

Proteases, PAR agonists, and PAR inhibitors 

PAR-1 agonists SFLLRN-NH2 (American Peptide Company, Sunnyvale, CA) and 

SFLLRNPNDKYEPF (Tocris, Minneapolis, MN), PAR-2 agonists 2f-LIGRL-NH2 

(EMD Millipore, Billerica, MD) and AC 55541 (Tocris), TPCK-treated bovine trypsin 

(10,000 BAEE units/mg, Sigma) and human thrombin (1000 NIH units/mg, Sigma) were 

resuspended following the manufacturer’s instructions. Tryptase purified from human 

mast cells (70 BPVANA units/mg, Fitzgerald, Acton, MA) was mixed with 15 kDa 

heparin from porcine stomach (Sigma) in a 1:10 molar ratio of tryptase to heparin 

immediately after thawing (196). Trypsin, tryptase, thrombin, PAR-1 agonist, and PAR-2 

agonist were incubated with PBMC as described previously (194). For timecourse 

experiments, protease-containing SFM was completely removed from PBMC after the 

indicated times (4, 12, or 24 hours), then replaced with fresh SFM, or SFM containing 

SAP or serum, as indicated.   
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PAR-1 inhibitors SCH 79797 hydrochloride (Axon Medchem, Reston, VA, added 

to cells at 5 µg/ml (197)) and vorapaxar (Axon Mechem, 25 µg/ml (198)), and PAR-2 

inhibitors ENMD-1068 (Enzo Life Sciences, Farmingdale, NY, 50 µg/ml (73)) and 

FSLLRY (Tocris, 1 µg/ml (86)) were resuspended following the manufacturer’s 

instructions. After a 1-hour incubation on ice in PFM, PBMC were collected by 

centrifugation at 300 x g for 10 minutes, resuspended in ice-cold PBS, and washed at 300 

x g for 10 minutes, twice. PBMC were then plated and allowed to differentiate under the 

indicated conditions as described previously (194). 

SAP and interferon-γ 

Human SAP was purified as previously described (36) with the following 

modifications. Human serum from blood donors was mixed 1:1 with PBS. This was mixed 

with gentle rolling in a 10:1 ratio with SP sepharose beads (GE Healthcare, Piscataway, 

NJ) in 20 mM Tris, 140 mM NaCl, 2 mM CaCl2 pH 8.0 and eluted as previously described 

(36). The SAP purity was checked by silver stain on an SDS-PAGE gel, and concentration 

was assessed by absorbance at 280 nm.  Proteases at 40 ng/ml were co-incubated with 

purified SAP, and the reactions were analyzed by PAGE with 4-20% SDS gels and silver 

stained to assess cleavage of SAP. Recombinant human interferon-γ (IFN-γ, Peprotech, 

Rocky Hill, NJ) was resuspended according to the manufacturer’s instructions. SAP and 

IFN-γ were then added to SFM at the indicated concentrations.  
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Transwell migration of monocytes was performed as previously described (199), 

with the following modifications: The filter size was 8 µm, SFM was used as media, cells 

were allowed to pass through the filter for 12 hours, and adherent cells that passed through 

the filter were imaged with an InCell 2000 microscope (GE Healthcare) and then counted 

by CellProfiler (200).  

Statistics 

Statistics were performed using Prism (Graphpad Software, San Diego, CA). 

Differences were assessed by two-tailed t-tests or Mann-Whitney tests. Significance was 

defined by p<0.05. 

Results 

Tryptase and thrombin potentiate fibrocyte differentiation 

We previously observed that trypsin, but not chymotrypsin, pepsin, or
 

endoprotease GluC, potentiates fibrocyte differentiation (194). Fibrocytes are involved in
 

wound healing, and trypsin is used topically to speed wound healing (171-176).  The
 

extracellular levels of both tryptase and thrombin increase during the formation of scar
 

tissue (62, 71). To determine whether tryptase and thrombin also potentiate fibrocyte
 

differentiation, we examined the effect of these proteases on fibrocyte differentiation in
 

culture. Our previous assays had been done in media with a supplement called ITS-3; due
 

to difficulties in obtaining this, we substituted human albumin for ITS-3 (194). Human
 

peripheral blood mononuclear cells (PBMC) were incubated with trypsin, tryptase or
 

Transwell migration 
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thrombin for 5 days in serum-free medium containing human albumin. The cells were then 

stained and scored for fibrocyte formation. In the absence of added proteases, we observed 

388 to 1120 fibrocytes per 105 PBMCs from the different donors, similar to what we have 

previously observed (33-35, 194). Because of this variability, fibrocyte numbers were thus 

normalized to protease- free controls. In media with albumin as the supplement, 0.2 to 445 

ng/ml trypsin potentiated fibrocyte differentiation (Figure 9A and D), encompassing the 

20 to 200 ng/ml trypsin concentrations that we previously observed to increase fibrocyte 

differentiation in media with ITS-3 (194). Tryptase concentrations between 4 and 56 ng/ml 

and thrombin concentrations between 3 and 50 ng/ml also significantly increased the 

number of fibrocytes (Figure 9B-D). Tryptase concentrations above 100 ng/ml and 

thrombin concentrations above 400 ng/ml decreased the number of fibrocytes (Figures 9B 

and 9C). These effects were observed for all donors tested. In addition to having a unique 

morphology, fibrocytes express collagen, and the protease-induced increase in the number 

of visible fibrocytes was accompanied by an increase in the number of collagen-positive 

cells (Figure 10). The number of adherent cells following fixing and staining were not 

significantly affected by tryptase or thrombin (Figure 11), suggesting that tryptase and 

thrombin specifically increase the number of differentiated fibrocytes, rather than 

increasing general cell viability or adhesion.  
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Figure 9. Trypsin, tryptase and thrombin potentiate fibrocyte differentiation.  
PBMC were cultured in serum free media in the presence of the indicated concentrations 
of (A) trypsin (n=13), (B) tryptase (n=15), or (C) thrombin (n=14) for 5 days. Fibrocyte 
counts were normalized for each donor to the no-protease control. The no-protease 
controls developed 767 ± 90 fibrocytes per 105 PBMC. Values in A through C are mean ± 

SEM; the absence of error bars indicates that the error was smaller than the plot symbol. 
* indicates p < .05, ** p < .01, and *** p < .001 compared to the no-protease control (t-
test). (D) Images of PBMC after 5 days with no protease (control), 12.5 ng/ml trypsin, 
12.5 ng/ml thrombin, or 55 ng/ml tryptase. Arrows indicate fibrocytes. Bar is 40 µm.   
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Figure 10. Tryptase and thrombin increase collagen secretion by PBMC.  
(A) Representative flow plots of no-protease control PBMC stained with control rabbit 
IgG (black), and for collagen (green), and protease-treated PBMC stained for collagen 
(red). PBMC were exposed to 12.5 ng/ml (B) tryptase or (C) thrombin for 5 days, 
resuspended, stained for collagen, and assayed by flow cytometry. Values are mean ± 

SEM, n=5, * indicates p < .05 (t-test).  
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Figure 11. Tryptase and thrombin do not significantly affect the total number of 
adhered PBMC, and trypsin potentiates fibrocyte differentiation in the presence of 
fish gelatin or skim milk.  
(A) The PBMC populations in Figure 9 were counted for the total number of PBMC 
adhered to the plate following fixing and staining for tryptase and (B) thrombin. Counts 
were normalized for each donor to the no-protease control. There were no significant 
differences in the numbers of adhered PBMC following fixing and staining. The protease 
concentrations causing peak fibrocyte counts are indicated. (C) PBMC were cultured in 
the presence of 500 µg/ml fish gelatin or (D) powdered skim milk in the presence of the 
indicated concentrations of trypsin. After 5 days, fibrocytes were counted as in Figure 9. 
Values are mean ± SEM, n=6. * indicates p < .05, ** p < .01 compared to the no-protease 
control (t-test). 

The plasma thrombin concentration in a clotting wound is ~37 nM (62). The 

molecular mass of thrombin is ~36 kDa, so this thrombin concentration is ~1.3 x103 ng/ml. 

Far from a wound, the levels of active thrombin should be negligible, so assuming that a 

gradient of thrombin forms in the interstitial space, with the highest concentration in the 

clotting blood, at some point in the tissue near the wound the thrombin concentration 
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would be on the order of the 3-50 ng/ml that potentiates fibrocyte differentiation in vitro 

(Figure 9). Tryptase requires stabilization by heparin to be enzymatically active (196). 

Tryptase (~35 kDa) signaling thus must be measured by its activity. In wound fluid, 

tryptase activity is ~0.30 mU/mg wound fluid protein, where a unit is the cleavage of 1 

µmol/min of Z-gly-pro-arg-pNA (201). In the assay conditions used by (201) tryptase 

activity is ~1.75 x 108 mU/g tryptase, and 35 nM tryptase cleaves 30 pmol/sec of 0.2 mM 

Z-gly-pro-arg-pNA (202). Wound fluid contains ~31 mg/ml protein (203), and combining 

these indicates that wound fluid contains ~63 ng/ml tryptase, within the range of tryptase 

concentrations that promote fibrocyte differentiation in vitro (Figure 9). Together, these 

results suggest that physiological concentrations of thrombin and tryptase can potentiate 

fibrocyte differentiation.  

Fibrocytes differentiate from monocytes (22, 27, 33). Cells in the PBMC 

population include T cells, B cells, monocytes, and NK cells (36). To determine whether 

trypsin, tryptase, or thrombin act directly on monocytes to potentiate fibrocyte 

differentiation, we purified monocytes from PBMC by negative selection as previously 

described (194). Monocytes were 16% ± 9% (mean ± SEM, n=3) of the PBMCs and 92% 

± 5% in the purified fraction. Trypsin, tryptase, and thrombin all potentiated the 

differentiation of fibrocytes from purified monocyte populations by a factor of ~2 (Figure 

12), similar to the ~2-fold increase in fibrocyte these proteases caused in PBMC 

populations (Figure 9). Together, these results suggest that trypsin, tryptase, and thrombin 

directly affect monocytes to potentiate fibrocyte differentiation.  
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Figure 12. Trypsin, tryptase, thrombin, PAR-1 agonist, and PAR-2 agonist potentiate 
fibrocyte differentiation from purified monocytes.  
Monocytes were cultured in SFM at 12.5 ng/ml protease or 10 µM agonist. After 5 days, 
fibrocytes were counted as in Figure 9. Values are mean ± SEM, n=3. * indicates p < .05, 
** p < .01 compared to the SFM control (t-test). 
 

Tryptase and thrombin potentiate fibrocyte differentiation in serum-containing media 

 We previously observed that trypsin potentiates fibrocyte differentiation in media 

supplemented with human serum (194). Serum is present in a wound after blood clots 

(204). To determine whether tryptase and thrombin can potentiate fibrocyte differentiation 

in an environment containing serum, we incubated PBMC in serum-containing media for 

five days with tryptase and thrombin. As previously observed (36), serum inhibited 

fibrocyte differentiation (Figure 13). In the presence of serum, 14 to 446 ng/ml tryptase 

and 28 to 224 ng/ml thrombin potentiated fibrocyte differentiation (Figure 13), indicating 

that levels of these proteases that would be observed in a wound can override the inhibitory 

effect of serum.   
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Figure 13. Tryptase and thrombin potentiate fibrocyte differentiation in the presence 
of human serum.  
PBMC were cultured in medium containing serum in the presence of the indicated 
concentrations of tryptase or thrombin for 5 days, and fibrocytes were counted as in Figure 
9. Serum-containing media complete inhibited fibrocyte differentiation in the no-protease 
control. Values are mean ± SEM, n = 4. * indicates p < .05, ** p < .01, and *** p < .001 
compared to the no-protease control (t-test). 
 

Trypsin potentiates fibrocyte differentiation in the absence of albumin 

 The observation that three different proteases, in the presence of albumin, 

potentiate fibrocyte differentiation suggests that either the proteases potentiate fibrocyte 

differentiation, or a proteolytic fragment of albumin potentiates fibrocyte differentiation. 

To determine if fibrocyte potentiation is dependent on the protein composition of the 

defined media, we co-incubated PBMC with trypsin and fish gelatin or skim milk powder. 

Trypsin caused fibrocyte potentiation when mixed with fish gelatin or skim milk powder 
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(Figure 9). There is only a 15% sequence similarity between human albumin and fish 

gelatin, and the largest identical sequence is 3 amino acids. This suggests that after 

proteolytic digestion of the two proteins, there is no common peptide produced that could 

activate fibrocyte differentiation. The observation that trypsin potentiates fibrocyte 

differentiation in the presence of fish gelatin, and the absence of albumin, suggests that 

albumin is not necessary for the trypsin effect, and thus that trypsin may directly potentiate 

fibrocyte differentiation. 

 

Trypsin, tryptase, and thrombin signal through protease-activated receptors 

Since trypsin, rather than a proteolytic fragment of albumin, appears to potentiate 

fibrocyte differentiation, we examined the possibility that trypsin activates a cell surface 

receptor. Proteases can act as extracellular signals by cleaving the extracellular domains 

of protease-activated receptors (PARs) (205). PAR-1 and PAR-2 are expressed on human 

monocytes (69). To determine if trypsin, tryptase, or thrombin potentiate fibrocyte 

differentiation through PAR-1 or PAR-2, we examined the effect of these proteases on 

PBMC differentiation after exposure to PAR-1 and PAR-2 inhibitors. ENMD-1068 and 

FSLLYR-NH2 are peptides which selectively block PAR-2 activation but do not interfere 

with the activities of PAR-1, 3, or 4 (73, 86). ENMD-1068 at 26 nM and FSLLRY-NH2 

at 12 nM inhibit PAR-2 function as measured by proliferation and collagen production in 

fibroblasts (73, 86). 26 nM ENMD-1068 and FSLLRY-NH2 decreased trypsin and 

tryptase potentiation of fibrocyte differentiation (Figure 14A and B), but thrombin 

potentiation of fibrocyte differentiation was not significantly affected (Figure 14C).  
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SCH79797 and vorapaxar are inhibitors of PAR-1 that do not interfere with PAR-

2 signaling (197, 198). SCH79797 at 70 nM and vorapaxar at 47 nM inhibit PAR-1 

function in platelet aggregation assays (197, 198). SCH79797 and vorapaxar did not 

significantly affect trypsin’s or tryptase’s fibrocyte potentiation (Figure 14D and 14E), but 

blocked the ability of thrombin to potentiate fibrocyte differentiation (Figure 14F). 

Conversely, PAR-1 and PAR-2 agonists potentiated fibrocyte differentiation at 

concentrations similar to previously observed effective concentrations (206-209) when 

added to PBMCs (Figure 14G and 14H) or to purified monocytes (Figure 12). These data 

suggest that tryptase and trypsin signal through PAR-2, and thrombin signals through 

PAR-1, to potentiate fibrocyte differentiation.  
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Figure 14. PAR-1 and PAR-2 affect fibrocyte differentiation.  
PBMC were incubated with (A-C) inhibitors of protease activated receptor-2 (PAR-2) or 
(D-F) inhibitors of protease activated receptor-1 (PAR-1) before mixing with (A, D) 
trypsin, (B, E) tryptase, or (C, F) thrombin at the indicated concentrations. (G) PAR-1 
agonists or (H) PAR-2 agonists were added to PBMC at the indicated concentrations. After 
5 days, fibrocytes were counted as in Figure 9. Values are mean ± SEM, n=6. * indicates 
p < .05, ** p < .01, and *** p < .001 compared to the agonist-free or protease-free control 
(t-test) for ENMD-1068, SCH 79797, SFLLRN-NH2, and 2f-LIGRL-NH2.  x indicates p 
< .05 for FSLLRY-NH2, Vorapaxar, SFLLRNDKYEPF, and AC 55541, each n=3. In G 
and H, arrows indicate the published EC50 concentrations. 
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Tryptase and thrombin compete with SAP to potentiate fibrocyte differentiation 

  SAP inhibits the differentiation of monocytes into fibrocytes, while trypsin, 

tryptase and thrombin potentiate this differentiation. Tryptase and thrombin are present in 

wounds along with SAP (62, 71). To determine how these signals might compete with 

each other, we co-incubated SAP with proteases. As previously observed (36), 10 µg/ml 

SAP completely inhibited fibrocyte differentiation (Figure 15 A-F). In the presence of 10 

µg/ml SAP, trypsin showed no significant potentiation of fibrocytes from PBMC (Figure 

15A) but did potentiate fibrocyte differentiation from monocytes (Figure 15F). Levels of 

tryptase and thrombin that would be observed in a wound, as well as PAR-1 and PAR-2 

agonists, competed with 10 µg/ml SAP to potentiate fibrocyte differentiation from PBMC 

(Figure 15B-E) and purified monocytes (Figure 15F). This potentiation was not caused by 

protease digestion of SAP, as only trypsin caused any measurable cleavage of SAP (Figure 

15G).  
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Figure 15. Tryptase and thrombin compete with SAP to potentiate fibrocyte 
differentiation, but do not obviously digest SAP.  
PBMC mixed with SAP at 10 µg/ml were incubated with the indicated concentrations of 
(A) trypsin, (B) tryptase, (C) thrombin, (D) PAR-1 agonist SFLLRN-NH2, or (E) PAR-2 
agonist 2f-LIGRL-NH2 for 5 days. Fibrocytes were then counted as in Figure 9. Values 
are mean ± SEM, n=4. * indicates p < .05 compared to SAP with no protease or no agonist 
(t-test). (F) Monocytes in SFM were co-incubated with 10 µg/ml SAP, in the absence 
(control) or presence of 12.5 ng/ml protease, or 10 µM PAR-1 or PAR-2 agonist. After 5 
days, fibrocytes were counted as in Figure 12. Values are mean ± SEM, n=3. * indicates p 
< .05, ** p < .01, and *** p < .001 compared to the SAP control (t-test). (G) Purified SAP 
was incubated with proteases at 40 ng/ml for 24 hours at 37° C, run on a 4-20% SDS-
PAGE gel and silver stained. Molecular masses in kDa are indicated at left.  
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To determine if trypsin, tryptase or thrombin change the IC50 of SAP’s inhibition 

of fibrocyte differentiation, we co-incubated each protease with a series of SAP 

concentrations (Figure 16, Supplemental Figure 9E). Trypsin, tryptase, thrombin, PAR-1 

agonist, and PAR-2 agonist significantly potentiated fibrocyte differentiation in the 

presence of SAP at some of the indicated SAP concentrations (Figure 16). SAP inhibited 

fibrocyte differentiation with an IC50 of 0.16 ± 0.05 µg/ml. SAP’s IC50 with trypsin was 

0.23 ± 0.13 µg/ml; with tryptase 0.39 ± 0.13 µg/ml; with thrombin 1.03 ± 0.46 µg/ml; with 

PAR-1 agonist 0.44 ± 0.31 µg/ml; and with PAR-2 agonist 1.59 ± 0.77 µg/ml. The 

tryptase, thrombin, and PAR-2 agonist effects on the IC50 were significant (p<0.05; 

Mann-Whitney test). Together, these results indicate that tryptase and thrombin can 

compete with SAP to potentiate fibrocyte differentiation.  
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Figure 16. Tryptase and thrombin alter SAP’s IC50. 
PBMC were co-incubated with the indicated concentrations of SAP and 12.5 ng/ml (A) 
trypsin, (B) tryptase, (C) thrombin, or 10 µM (D) PAR-1 agonist or (E) PAR-2 agonist. 
After 5 days, fibrocytes were counted as in Figure 9. In A-E, the lower curve is SAP alone. 
Values are mean ± SEM, n=6. * indicates p < .05, ** p < .01, and *** p < .001 compared 
to the no-protease or no-agonist control (Mann-Whitney test).  
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Trypsin, tryptase, thrombin, PAR-1 and PAR-2 agonist compete with interferon-gamma 

(IFN-γ) to potentiate fibrocyte differentiation  

Like SAP, interferon-gamma (IFN-γ) is present in wounds and scar tissue (210, 

211) and inhibits the differentiation of monocytes into fibrocytes (37). To determine how 

these signals might compete with each other, we co-incubated proteases with IFN-γ. As 

previously observed, 10 ng/ml IFN-γ inhibited fibrocyte differentiation (37). Each 

protease and receptor agonist potentiated fibrocyte differentiation in the presence of 10 

ng/ml IFN-γ (Figure 17).  

To determine if proteases or PAR agonists act as monocyte chemoattractants or 

chemorepellents, we placed PBMC in the upper cup of a Boyden chamber and added each 

protease or agonist above, below, or on both sides of the filter. Each protease reduced 

PBMC migration through the filter, suggesting that these proteases may have a 

chemostatic effect on PBMC regardless of whether the protease was added above or below 

the filter (Figure 17). Each agonist acted as a chemoattractant whether added above or 

below the filter (Figure 17).  
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Figure 17. Trypsin, tryptase, thrombin, PAR-1 agonist, and PAR-2 agonist potentiate 
fibrocyte differentiation in the presence of interferon-gamma (IFN-γ), and act as 
chemoattractants or chemostatic agents for monocytes.  
(A) PBMC were co-incubated with no IFN-γ or 10 ng/ml IFN-γ and either no protease or 
agonist (IFN-γ control), or 12.5 ng/ml trypsin, tryptase, or thrombin, or 0.1 µg/ml PAR-1 
agonist (SFLLRN-NH2) or PAR-2 agonist (sf-LIGRL-NH2). After 5 days, fibrocytes 
were counted as in Figure 9, and counts were normalized to the IFN-γ control. Values are 
mean ± SEM, n=4. * indicates p < .05, ** p < .01, and *** p < .001 compared to the IFN-
γ control (t-test). (B) Monocytes were co-incubated with 20 ng/ml IFN-γ and either no 
protease or agonist (IFN-γ control), or 12.5 ng/ml protease or 0.1 µg/ml PAR-1 or -2 
agonist. Monocytes were incubated and counted as in Figure 12, and counts were 
normalized to the IFN control. Values are mean ± SEM, n=3. * indicates p < .05 compared 
to the IFN-γ control (t-test). (C) PAR-1 (SFLLRN-NH2 or SFLLRNPNDKYEPF) and 
PAR-2 (2f-LIGRL-NH2 or AC 55541) agonists were added at 10 µM, proteases were 
added at 12.5 ng/ml, and the monocyte chemoattractant MCP-1 (Peprotech) was added at 
50 ng/ml, into SFM either above, below, or on both sides of an 8 µm pore size insert in a 
24-well plate well. PBMC were added to the insert chamber and after 12 hours cells in the 
insert were counted. (D) PBMC that adhered to the plate were stained, imaged, and 
counted. Values are mean ± SEM, n=3. * indicates p < .05 and ** p < .01 compared to the 
SFM control (paired t-test). 



65 

A brief exposure to trypsin, tryptase, and thrombin potentiates fibrocyte differentiation 

Tryptase and thrombin are proteolytically active over short time frames in wounds 

and in scar tissue (62, 196). To determine if a brief exposure to these proteases is sufficient 

to potentiate fibrocyte differentiation, we allowed PBMC to adhere to plates and exposed 

them to tryptase, trypsin, or thrombin for 4 (Figure 18), 12 (Figure 19), or 24 hours (Figure 

20), then completely removed the media and added fresh, protease-free media to the 

PBMC for the rest of the 5 day assay. These conditions approximate the bursts of time 

proteases would be active in a fibrotic lesion or a healing wound environment.  

At each timepoint, tryptase, trypsin, and thrombin were able to potentiate fibrocyte 

differentiation over a broader range than had been previously established in by exposing 

PBMC to proteases for 5 days (Figure 9). Similarly, proteases at each timepoint were able 

to significantly potentiate fibrocyte differentiation in the presence of 2.5 µg/ml SAP or 

2.5% (v/v) human serum. These data suggest that even a brief exposure to tryptase, trypsin, 

or thrombin over biologically relevant concentrations is sufficient to induce fibrocyte 

differentiation.  
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Figure 18. A 4 hour exposure to tryptase, trypsin, and thrombin potentiates fibrocyte 
differentiation.  
PBMC were cultured in (A-C) SFM, (D-F) SFM with 2.5 µg/ml SAP, or (G-I) PFM with 
2.5% (v/v) human serum in the presence of the indicated concentrations of (A,D,G) 
trypsin, (B,E,H) tryptase, or (C,F,I) thrombin for 4 hours, after which media was removed 
and replaced with (A-C) SFM , (D-F) SFM with 2.5 µg/ml SAP, or (G-I) PFM with 2.5% 
(v/v) human serum. Cells were then allowed to differentiate over the remainder of the five-
day assay, and fibrocytes were counted as in Figure 9. Serum-containing and SAP-
containing media completely inhibited fibrocyte differentiation in the protease-free 
control. Values are mean ± SEM, n = 5. * indicates p < .05, ** p < .01 and *** p < .001 
compared to the protease-free control (t-test).   
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Figure 19. A 12 hour exposure to tryptase, trypsin, and thrombin potentiates 
fibrocyte differentiation.  
Cells were incubated as in Figure 18, with the exception that media were changed at 12 
hours instead of at 4 hours. 
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Figure 20. A 24 hour exposure to tryptase, trypsin, and thrombin potentiates 
fibrocyte differentiation.  
Cells were incubated as in Figure 18, with the exception that media were changed at 24 
hours instead of at 4 hours. 

Discussion 

In this report, we show that tryptase and thrombin potentiate fibrocyte 

differentiation and collagen production, and that this potentiation occurs even in the 

presence of levels of serum or SAP that completely inhibit fibrocyte differentiation. 

Tryptase and thrombin potentiation appears to act directly on monocytes, and is mediated 

by PAR-2 and PAR-1, respectively. Tryptase and thrombin potentiate fibrocyte 

differentiation at biologically relevant concentrations and exposure times. Not all 

proteases are pro-fibrotic, as pepsin and chymotrypsin do not activate PAR-1 or PAR-2 
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(212-214), and do not potentiate fibrocyte differentiation (194). These results suggest a 

triggering mechanism for fibrocyte-mediated wound healing and fibrotic lesions, where 

thrombin from clotting blood or tryptase from a sufficient amount of mast cell 

degranulation override SAP inhibition and initiate fibrocyte differentiation.   

Tryptase, thrombin, PAR-1 signaling, and PAR-2 signaling have been implicated 

in the development of fibrosis through their effects on fibroblasts (61, 67, 68, 73, 80, 87-

89, 215). Both PAR-1 and -2 have been implicated in liver fibrosis in mice (216, 217), and 

both PAR-1 knockout mice and PAR-2 knockout mice are less susceptible to both induced 

heart disease and inflammation (218-220). Intratracheal administration of trypsin, 

tryptase, and thrombin cause inflammation, and inhibition of tryptase and thrombin 

attenuate this inflammation (63, 66, 82, 84). Inhibitors of tryptase (221-223) and thrombin 

(224), and antagonists of both PAR-1 (225) and PAR-2 (226) are patented for the treatment 

of fibrosis. Both tryptase (227) and thrombin (228) inhibitors are currently in clinical trials 

for the treatment of fibrosis.  However, while PAR-1 and PAR-2 antagonists have been 

suggested as therapeutics (229, 230), neither is currently in clinical trials. PAR-1 and 

PAR-2 thus mediate both fibroblast proliferation and fibrocyte differentiation, two major 

components of scar tissue (195, 231-233). Our work thus strongly supports and expands 

the idea that tryptase, thrombin, PAR-1 signaling, and PAR-2 signaling potentiate wound 

healing and fibrosis.  

Systemic mastocytosis involves the degranulation of mast cells throughout the 

body (234), and is associated with serious local, and moderate systemic, fibrosis (235, 

236). Mast cell degranulation causes the release of tryptase. Serum tryptase in healthy 
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patients is ~2 ng/ml, while mastocytosis patients have 20 to 100 ng/ml (237, 238). Our 

observation that 4 to 56 ng/ml tryptase potentiates fibrocyte differentiation suggests that 

the fibrosis seen in mastocytosis patients may be due to the released tryptase inducing 

fibrocyte differentiation.  

That tryptase and thrombin compete with SAP suggests that the PAR-1 or PAR-2 

pathway is capable of potentiating fibrocyte differentiation in the presence of SAP. 

Trypsin potentiates fibrocyte differentiation in the presence of SAP after a brief exposure 

(Figures 18-20), but not over the course of a 5-day differentiation (Figure 15A and 16A). 

Tryptase and thrombin potentiated fibrocyte differentiation under all timecourse, SAP, 

and serum conditions. Tryptase and trypsin appear to signal through the same receptor 

(73). Whether our results imply that different PAR-2 isoforms exist, or that PAR-2 can 

differentiate between trypsin and tryptase signaling, is unclear.  

A protein additive was necessary for fibrocyte potentiation. While albumin mixed 

with protease was the most effective media treatment for potentiating fibrocyte 

differentiation, both fish gelatin and milk powder also increased fibrocyte differentiation 

when mixed with protease. This suggests that the fibrocyte potentiation caused by 

proteases relies on a suitable protein additive, not solely albumin. Albumin is increased in 

fibrotic lesions (61) and healing wounds (153), and is decreased in chronic, non-healing 

wounds (154-156), implying that albumin’s presence may mediate the protease signaling 

that, by activating fibrocyte differentiation, may initiate key aspects of wound healing and 

fibrosis.   
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CHAPTER IV 

TRYPSIN, TRYPTASE, AND THROMBIN BIAS MACROPHAGE 

DIFFERENTIATION TOWARDS A PRO-FIBROTIC M2A PHENOTYPE 

Summary 

For both wound healing and the formation of a fibrotic lesion, circulating 

monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and 

pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. 

Monocytes can also differentiate into classically activated M1 macrophages and 

alternatively activated M2 macrophages. The proteases thrombin, which is activated 

during blood clotting, and tryptase, which is released by activated mast cells, potentiate 

fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is 

unknown. Here we report that thrombin, tryptase, and the protease trypsin bias 

macrophage differentiation towards a pro-fibrotic M2a phenotype from unpolarized 

monocytes, or from M1 and M2 macrophages. These results suggest that proteases can 

initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.  

Hypothesis: Trypsin, tryptase, and thrombin at physiological concentrations polarize 

macrophages towards a wound-healing phenotype 
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Introduction 

The failure of wounds to heal properly constitutes a major medical problem, with 

both acute and chronic wounds consuming treatment time and resources (12, 14). The 

opposite of poorly healing wounds is fibrosing diseases, where unnecessary and 

inappropriate scar tissue forms in an organ (19). Fibrosing diseases include pulmonary 

fibrosis, congestive heart failure, liver cirrhosis, and kidney fibrosis, and are involved in 

45% of deaths in the United States (20). A key question in wound healing and fibrosis is 

the triggering mechanism that induces scar tissue formation.  

Extracellular levels of the proteases tryptase and thrombin are upregulated in both 

fibrotic scars and healing wounds (62, 71). One of the events preceding scar tissue 

formation in a healing wound is the clotting cascade, in which the protease thrombin 

cleaves fibrinogen to fibrin. Thrombin activity is upregulated immediately after wounding 

(62) and in fibrotic lesions (61). Mast cells are found in both internal fibrotic lesions and 

sites of wound healing (71-73). Mast cells degranulate to release tryptase, and tryptase is 

upregulated in wounds and fibrotic lung tissue (71-73, 78-80). Tryptase, and thrombin, as 

well as other proteases such as trypsin, potentiate wound healing and scar tissue formation 

by increasing fibroblast proliferation and collagen secretion (73, 87-89), inducing platelet 

aggregation (70), and by potentiating the differentiation of a subset of monocytes into 

fibroblast-like cells called fibrocytes (194, 239). Thrombin signals through protease-

activated receptor-1 (PAR-1), trypsin and tryptase signal through protease-activated 

receptor-2 (PAR-2) (67, 68, 73, 81), and we found that agonists of PAR-1 and PAR-2 

potentiate fibrocyte differentiation (239). Monocytes also differentiate into both 
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classically-activated M1 macrophages and alternatively-activated M2 macrophages (46). 

M1 macrophages are associated with pathogen responses, and M2 macrophages are 

associated with immuno-regulation and tissue restructuring (47, 48). There are at least two 

subpopulations of M2 macrophages. Mreg macrophages have an anti-inflammatory 

phenotype, and do not secrete matrix proteins. (46). M2a macrophages are involved in 

scar tissue formation in both wound healing and fibrosis (49-52). M2a macrophages 

become more prevalent as wound healing progresses and collagen deposition increases, 

and directly secrete the matrix protein fibronectin, a major component of scars (240-242). 

Macrophages are critical to wound healing (243). Removal of macrophages from a mouse 

wound by depletion or conditional knockout lowers the amount of scar tissue deposited in 

the wounds (244).

Human M1, M2a, and Mreg macrophages, while morphologically similar, display 

different surface markers and secrete different cytokines (46).  CD163 is a marker of M2 

macrophage differentiation that is sometimes classed as an Mreg marker (47, 54). 

Fibronectin is an unambiguous marker of M2a macrophage differentiation (55). CD206 is 

sometimes classed as an Mreg marker, and sometimes as an M2a marker (47, 54). CCR7 

is a commonly used marker for M1 classical macrophage activation (47). M1 and M2 

macrophages also have different secretion profiles, with M1 macrophages secreting higher 

levels of the cytokine IL-12 compared to M2 macrophages (46). M2 regulatory 

macrophages secrete increased levels of the anti-inflammatory cytokine IL-10 (46). M2a 

macrophages secrete intermediate amounts of IL-12 and IL-10, and high amounts of IL-4 
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(46, 245). Polarized macrophages display a spectrum of markers, and macrophage 

phenotypes can only be assessed by examining multiple differentiation markers (46). 

In this report, we show that trypsin, tryptase and thrombin bias populations of 

human unpolarized macrophages, M1 macrophages, or M2 regulatory macrophages 

towards an M2a phenotype, suggesting an additional mechanism whereby mast cells 

degranulating, and/or blood clotting, releases and/or activates extracellular proteases to 

induce and/or potentiate wound healing and fibrosis.  

Materials and methods 

Proteases, PAR agonists, and PAR inhibitors 

TPCK-treated bovine trypsin (10,000 BAEE units/mg, Sigma, St. Louis, MO) and 

human thrombin (1000 NIH units/mg, Sigma) were resuspended following the 

manufacturer’s instructions. Tryptase purified from human mast cells (70 BPVANA 

units/mg, Fitzgerald, Acton, MA) was mixed with 15 kDa heparin from porcine stomach 

(Sigma) in a 1:10 molar ratio of tryptase to heparin immediately after thawing (196). 

Immunohistochemistry and ELISAs 

Human blood was collected from volunteers who gave written consent and with 

specific approval from the Texas A&M University human subjects Institutional Review 

Board. PBMC were isolated and cultured as previously described (53) to bias macrophage 

differentiation towards M1 and M2 phenotypes, with the following modifications. PBMC 

were cultured with 25 ng/ml MCSF or GMCSF for one week in 10% serum, as previously 
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described (53), after which the cells were treated with 12.5 ng/ml trypsin, tryptase, or 

thrombin for two days. Cells were fixed and stained for CCR7 (mouse monoclonal clone 

150503, R&D systems, Minneapolis, MN), CD163 (mouse monoclonal clone GH1/61, 

Biolegend, San Diego, CA), CD206 (mouse monoclonal clone 15-2, Biolegend), and 

fibronectin (rabbit polyclonal, Sigma), as previously described (195). Fibrocytes and 

macrophages were counted based on their morphology, as previously described (36). For 

each donor and each stain, at least 200 macrophages and at least 100 fibrocytes were 

scored. Conditioned media from PBMC cultured in SFM with or without 12.5 ng/ml 

protease were analyzed for IL-10, IL-12, and IL-4 using a human IL-12 ELISA kit 

(Peprotech, Rocky Hill, NJ), a human IL-10 ELISA kit (Biolegend), and a human IL-4 

ELISA kit (Peprotech, Rocky Hill, NJ), following the manufacturer’s instructions. 

  

 
Staining intensity measurements  

 Images of cells were obtained with a Nikon D1X SLR camera (Nikon, Tokyo, 

Japan) or a 10 MP USB camera (OMAX, Kent, WA) imager on a Nikon diaphot inverted 

tissue culture microscope (Nikon) with a 10x lens.  The image analysis program 

CellProfiler (200) was used to identify cells in the images as either macrophages or 

fibrocytes (based on their elongated shape), and measure the relative mean staining 

intensity of each cell. For each donor and each stain, at least 5 fields of view, comprising 

about ~200 cells, were analyzed. The CellProfiler pipeline is in the supplemental methods 

section.  
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Statistics  

Statistics were performed using Prism (Graphpad Software, San Diego, CA). 

Differences were assessed by two-tailed unpaired and two-tailed paired t-tests, where 

indicated. Significance was defined by p<0.05.  

 

Results  

Trypsin, tryptase, and thrombin potentiate the differentiation of monocytes into M2a 

macrophages  

To determine if trypsin, tryptase, or thrombin influence the differentiation of 

monocytes into macrophages, we co-incubated PBMC and proteases for five days, and 

examined the expression of CCR7, CD163, CD206 and fibronectin on the macrophages. 

We used physiological concentrations of proteases that we previously observed to 

potentiate fibrocyte differentiation (17, 42). CCR7 is a marker for M1 macrophage 

activation (23). No protease increased CCR7 staining (Figures 1A and S1A). CD163 and 

CD206 are markers of Mreg and M2a macrophages (23, 34). Tryptase and thrombin 

increased the percentage of CD163-positive macrophages, and all three proteases 

increased the percentage of CD206-positive macrophages (Figures 21A, 22B, and 22C). 

Fibronectin is a marker of M2a macrophage differentiation (35). Each protease 

significantly increased the percentage of fibronectin-positive macrophages (Figures 21A 

and 22D). In these assays, each protease also increased the percentage of fibrocytes 

expressing CD206 (Figures 21B and 22C) and tryptase and thrombin increased the 

percentage of fibrocytes expressing fibronectin.   



 

77 

 

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

0

20

40

60

80

100
CCR7
CD163
CD206
Fibronectin

**
**
*

**
**

**

* **

*

Pe
rc

en
t P

os
iti

ve
M

ac
ro

ph
ag

es

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

0

20

40

60

80

100
CCR7
CD163
CD206
Fibronectin

* * ** * *

Pe
rc

en
t P

os
iti

ve
Fi

br
oc

yt
es

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

0.4

0.5

0.6

0.7

0.8

0.9

CD163
CD206
Fibronectin

CCR7

**
*

** **

***** *
* *

M
ea

n 
In

te
ns

ity

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

Contro
l

Tryp
sin

Tryp
tas

e

Thro
mbin

0.4

0.5

0.6

0.7

0.8

0.9

CD163
CD206
Fibronectin

CCR7

*
**

**
*

**
*

**
***

***
*

M
ea

n 
In

te
ns

ity

 
Figure 21. Trypsin, tryptase, and thrombin bias monocyte differentiation towards an 
M2a phenotype.  
PBMC were cultured in serum-free media in the presence or absence of trypsin, tryptase, 
or thrombin. Macrophages (A, C) and fibrocytes (B, D) were counted by morphology from 
representative fields of view. (A) and (B) were performed by eye, while (C) and (D) show 
analysis of staining intensity. Cells were stained for the indicated markers. Values are 
mean ± SEM, n=6. * indicates p < .05, ** p < .01, and *** p < .001 compared to the no-
protease control (paired two-tailed t-tests).  
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Figure 22. Images of PBMC cultured with proteases.  
Panels show representative images from slides used for Figure 21, staining for (A) CCR7, 
(B) CD163, (C) CD206, and (D) fibronectin. Bars are 50 µm.   
 

 To determine if protease treatment changed the staining intensity of the 

macrophage marker immunohistochemistry, stained slides were further analyzed by image 

analysis that identified cells as macrophages, fibrocytes, or other cells and then measured 

the mean staining intensity of each cell (Figure 23). As expected, the image analysis 

indicated that the proteases increased the number of fibrocytes (Figure 24). Trypsin, 

tryptase, and thrombin did not increase the staining intensity of CCR7, and increased the 

mean staining intensity of CD163, CD206, and fibronectin on both macrophages and 

fibrocytes (Figures 21C and D). Together, the data indicate that as determined by staining 

for M1, M2, and M2a markers, the proteases biased monocyte differentiation towards an 

M2a phenotype. 
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Figure 23. CellProfiler analysis of PBMC images.  
CellProfiler’s pipeline is capable of distinguishing individual cells, separating these cells 
into macrophages and fibrocytes based on morphology, and recording the intensity of the 
staining for these cells. (A) A representative image analyzed by CellProfiler. (B) 
CellProfiler’s detected cells. (C) CellProfiler’s detected fibrocytes in green, and 
macrophages in red. Bar is 50 µm.  
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Figure 24. Proteases increase fibrocyte numbers when added to PBMC.  
Cellprofiler counts of fibrocytes and macrophages from slides used for Figure 21 were 
normalized as a percent of controls. Values are mean ± SEM, n=6. *** p < .001 compared 
to the no-protease control (paired two-tailed t-tests). 
 

To determine if proteases also affect extracellular cytokine accumulation by 

cultured macrophages, conditioned media from human PBMC cultured for five days with 

12.5 ng/ml of trypsin, tryptase, or thrombin was assayed by ELISA for IL-4, IL-10, and 

IL-12. Trypsin, but not tryptase or thrombin, cleaves IL-4, IL-10, and IL-12 (ExPASy 

peptide cutter). Compared to conditioned media from untreated control cells, tryptase 

increased IL-4 accumulation in PBMC conditioned media (Figure 25A). Thrombin 

increased both IL-10 and IL-12 (Figure 25B and C).  The data thus suggest that tryptase 

biases monocytes towards an M2a phenotype (high IL-4, moderate IL-10 and IL-12), 

while thrombin increased both IL-10 and IL-12 in the conditioned media.  
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Figure 25. The effect of proteases on extracellular cytokine accumulation from 
monocytes.  
PBMC were cultured as in Figure 21, and after 5 days conditioned media were analyzed 
by ELISA for (A) IL-4, (B) IL-10, and (C) IL-12. Values are mean ± SEM, n=20. * 
indicates p < .05 and ** p < .01 compared to the no-protease control (paired two-tailed t-
tests). 
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Trypsin, tryptase, and thrombin potentiate the differentiation of M2 macrophages into 

M2a macrophages 

 M2a macrophages can differentiate not only from unpolarized monocytes, but also 

from other macrophage subsets (247). M2 macrophages are associated with decreased 

inflammation and increased tissue repair (48, 52). To determine if proteases can potentiate 

the differentiation of M2a macrophages from M2 macrophages, we biased unpolarized 

monocytes towards M2 phenotypes, as previously described (53), after which we added 

proteases to the macrophage population for two days, and stained for macrophage markers. 

Trypsin, tryptase, and thrombin had no significant effect on the percentage of 

macrophages staining for the M1 marker CCR7 or the M2 marker CD163, both tryptase 

and thrombin significantly increased the percentage of CD206-positive macrophages, and 

all three proteases increased the percentage of fibronectin-positive macrophages (Figures 

26A and 27). In this assay, tryptase increased the percentage of fibrocytes that were 

positive for CD206, and trypsin, tryptase, and thrombin increased the percentage of 

fibrocytes that were positive for fibronectin (Figures 26B and 27). All three proteases had 

no significant effect on CCR7 staining intensity, increased the staining intensity of CD163 

on macrophages, and tryptase and thrombin increased the staining intensities of CD206 

and fibronectin on macrophages (Figure 26C). CellProfiler also detected that the proteases 

increased the number of fibrocytes when added to the M2-biased PBMC population 

(Figure 28). All three proteases increased the staining intensity of CD163 on fibrocytes, 

thrombin increased the CD206 staining intensity, and tryptase and thrombin increased the 

fibronectin staining intensity (Figure 26D). Together, the data indicate that as determined 
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by staining for M1, M2, and M2a markers, the proteases biased M2 macrophage 

polarization towards an M2a phenotype. 
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Figure 26. Trypsin, tryptase, and thrombin bias M2 macrophage differentiation 
towards an M2a phenotype.  
PBMC were cultured with MCSF for 7 days to generate M2 macrophages, after which the 
media was removed and proteases were added to the PBMC for 2 days. Macrophages (A, 
C) and fibrocytes (B, D) were counted by morphology from representative fields of view. 
(A) and (B) were performed by eye, while (C) and (D) show analysis of staining intensity. 
Cells were stained for the indicated markers. Values are mean ± SEM, n=6. * indicates p 
< .05, ** p < .01, and *** p < .001 compared to the no-protease control (paired two-tailed 
t-tests). 
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Figure 27. Images of cultures containing M2-biased macrophages subsequently 
cultured with proteases.  
Panels show representative images from slides used for Figure 26, staining for (A) CCR7, 
(B) CD163, (C) CD206, and (D) fibronectin. Bars are 50 µm.   
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Figure 28. Proteases increase fibrocyte numbers when added to cultures containing 
M2-biased macrophages.  
Cellprofiler counts of fibrocytes and macrophages from slides used for Figure 26 were 
normalized as a percent of controls. Values are mean ± SEM, n=6. * indicates p < .05 and 
** p < .01 compared to the no-protease control (paired two-tailed t-tests). 
 

To determine if proteases also affect extracellular cytokine accumulation by 

cultured M2 macrophages, conditioned media from M2 macrophages cultured for two 

days with trypsin, tryptase, or thrombin was assayed by ELISA for IL-4, IL-10, and IL-

12. Thrombin increased IL-4 accumulation (Figure 29A). Trypsin and tryptase decreased 

IL-10 (Figure 29B). No protease significantly altered IL-12 concentrations (Figure 29C). 

The data thus suggest that the proteases may bias M2 macrophages towards an M2a 

phenotype by either decreasing the concentration of the anti-inflammatory cytokine IL-10 

or increasing the concentration of the pro-fibrotic cytokine IL-4. 
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Figure 29. The effect of proteases on extracellular cytokine accumulation from 
cultures containing M2-biased macrophages.  
PBMC were cultured as in Figure 26, and after 2 days of protease treatment, conditioned 
media were analyzed by ELISA for (A) IL-4, (B) IL-10, and (C) IL-12. Values are mean 

± SEM, n=6. * indicates p < .05 compared to the no-protease control (paired two-tailed t-
tests). 
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Trypsin, tryptase, and thrombin potentiate the differentiation of M1 macrophages into 

M2a macrophages 

M1 macrophages are associated with inflammatory immune responses to 

pathogens like bacteria and viruses (47). To determine if proteases could bias M1 

macrophages towards an M2a phenotype, we biased monocytes towards an M1 phenotype 

(53), after which we added proteases to the macrophage population for two days, and 

stained for macrophage markers. None of the proteases significantly affected CCR7 or 

CD163 staining, but all three increased the percentage of macrophages staining for CD206 

and fibronectin, and all three increased fibronectin intensity staining on macrophages 

(Figures 30A, 30C, and 31). CellProfiler also detected that the proteases increased the 

number of fibrocytes when added to the M1-biased PBMC population (Figure 32). Each 

protease increased CD206 and fibronectin staining on fibrocytes, and each protease 

increased fibronectin intensity staining on fibrocytes (Figures 30B, 30D, and 31). 

Together, the data indicate that as determined by staining for M1, M2, and M2a markers, 

the proteases biased M1 macrophage polarization towards an M2a phenotype. 
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Figure 30. Trypsin, tryptase, and thrombin bias M1 macrophage differentiation 
towards an M2a phenotype.  
PBMC were cultured with GMCSF for 7 days to generate M2 macrophages, after which 
the media was removed and proteases were added to the PBMC for 2 days. Macrophages 
(A, C) and fibrocytes (B, D) were counted by morphology from representative fields of 
view. (A) and (B) were performed by eye, while (C) and (D) show analysis of staining 
intensity. Cells were stained for the indicated markers. Values are mean ± SEM, n=6. * 
indicates p < .05 and ** p < .01, compared to the no-protease control (paired two-tailed t-
tests). 
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Figure 31. Images of cultures containing M1-biased macrophages subsequently 
cultured with proteases.  
Panels show representative images from slides used for Figure 30, staining for (A) CCR7, 
(B) CD163, (C) CD206, and (D) fibronectin. Bars are 50 µm. 
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Figure 32. Proteases increase fibrocyte numbers when added to cultures containing 
M1-biased macrophages.  
Cellprofiler counts of fibrocytes and macrophages from slides used for Figure 30 were 
normalized as a percent of controls. Values are mean ± SEM, n=6. * indicates p < .05 
compared to the no-protease control (paired two-tailed t-tests). 
 

To determine if proteases also affect extracellular cytokine accumulation by 

cultured M1 macrophages, conditioned media from human M1 macrophages cultured for 

two days with trypsin, tryptase, or thrombin was assayed by ELISA for IL-4, IL-10, and 

IL-12. Tryptase increased IL-4 accumulation (Figure 33A), no protease significantly 

affected IL-10, and all three proteases decreased IL-12 (Figure 33C). The data thus 

indicate that as determined by cytokine accumulation, tryptase polarizes M1 macrophages 

towards an M2a phenotype. 
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Figure 33. The effect of proteases on extracellular cytokine accumulation from 
cultures containing M1-biased macrophages.  
PBMC were cultured as in Figure 30, and after 2 days of protease treatment, conditioned 
media were analyzed by ELISA for (A) IL-4, (B) IL-10, and (C) IL-12. Values are mean 

± SEM, n=6. * indicates p < .05 compared to the no-protease control (paired two-tailed t-
tests). 
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Discussion 

 In this report we show that physiological levels of trypsin, tryptase, and thrombin, 

in addition to acting as pro-fibrotic signals to fibrocytes (18) and fibroblasts (9, 13-15), 

appear act as pro-fibrotic signals to macrophages, altering macrophage surface marker 

expression and the secretion profile towards an M2a phenotype. M2a macrophages are 

involved in scar tissue formation (25-28).Trypsin, tryptase, and thrombin increased 

fibronectin staining of macrophages differentiated from monocytes, M1 macrophages, or 

M2 macrophages. Tryptase increased the extracellular IL-4 accumulation in cultures of 

both monocytes and M1 macrophages, while trypsin and tryptase lowered both IL-10 and 

IL-12 accumulation in cultures of M1 and M2 macrophages, respectively.  

 Physiological levels of tryptase and thrombin (18) bias macrophages and 

monocytes towards an M2a phenotype suggests that mast cell degranulation or thrombin 

activation act to polarize M2a macrophages in both wounds or fibrotic lesions. 

Physiological levels of tryptase and thrombin also potentiate fibrocyte differentiation (18) 

and increase fibroblast-mediated collagen deposition (9, 13-15). Thus tryptase and 

thrombin are pro-fibrotic signals to each of fibrocytes, fibroblasts, and macrophages, 

comprising the vast majority of cells in a scar (25-28, 46, 47).  

  M2a macrophages secrete increased IL-4. IL-4 potentiates fibrocyte differentiation 

(48) and collagen secretion by fibroblasts (49). Trypsin, tryptase, and thrombin are directly 

pro-fibrotic in their signaling to monocyte, macrophages, and fibroblasts, and are 

indirectly pro-fibrotic by increasing the amount of IL-4 in wounds and fibrotic lesions. To 

our knowledge, there is no information to suggest IL-4 promotes thrombin activation or 
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mast cell degranulation, indicating that trypsin, tryptase, thrombin and IL-4 do not 

constitute a pro-fibrotic vicious cycle.  

 Mast cell degranulation lowers the number of M2 macrophages in the local 

environment without increasing CD163 staining, exactly as we observe (50). Activated 

platelets, which are present during the clotting cascade, and thrombin itself increase IL-

10 secretion and decrease IL-12 secretion from macrophages (51, 52). However, fibrin, 

which also is present during clotting, increases M1 macrophage differentiation, as 

measured by macrophage inflammatory chemokines (53). While these findings appear 

contradictory, there is general agreement that macrophages progress from pro-

inflammatory (M1) to anti-inflammatory and remodeling (M2 and M2a) phenotypes 

during wound healing, so macrophage polarization in a wound depends on an interplay of 

factors, of which thrombin is only one signal (54-56). While thrombin is active early in 

wound healing, mast cells appear more active in the later stages of wound healing (57), 

and could provide an additional signal to polarize macrophages to an M2a phenotype as 

the wound nears resolution.  

Here we present data that physiological concentrations proteases bias macrophage 

differentiation towards an M2a phenotype, further implicating proteases in the 

development of fibrosis (18). Our results expand protease’s pro-fibrotic signaling from 

fibroblasts and fibrocytes to include macrophages present in scar tissue.   
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Model 1. Model for protease-induced fibrosis.  
This model indicates a progression of pulmonary fibrosis based on the data presented in 
chapters 2-4 of this thesis. (1) Indicates an alveoli that has suffered an environmental 
insult, causing inflammation. (2) Indicates the presence of proteases within this 
inflammation. (3) Indicates the presence of fibrocytes and wound-healing m2a 
macrophages within the alveoli. These fibrocytes and macrophages have differentiated 
from the blood monocytes from the capillary near the lung, in the presence of both 
proteases and SAP. (4) Fibrocytes and wound-healing macrophages induce fibroblast 
proliferation. (5) Fibrocytes, fibroblasts, and macrophages together secrete collagen and 
begin to form fibrosis.  
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CHAPTER V 

GALECTIN-3 BINDING PROTEIN SECRETED BY BREAST CANCER CELLS 

INHIBITS FIBROCYTE DIFFERENTIATION 

 

Summary 

To metastasize, tumor cells often need to migrate through a layer of collagen-containing 

scar tissue which encapsulates the tumor. A key component of scar tissue and fibrosing 

diseases is the fibrocyte, a monocyte-derived, collagen-secreting pro-fibrotic cell. To test 

the hypothesis that invasive tumor cells may block the formation of the fibrous sheath, we 

determined if tumor cells secrete factors that inhibit fibrocyte differentiation. We found 

that the human metastatic breast cancer cell line MDA-MB 231 secretes a factor that 

inhibits human fibrocyte differentiation, while less aggressive breast cancer cell lines 

secrete less of this activity. Purification indicated that Galectin-3 Binding Protein 

(LGALS3BP) is the active factor. Recombinant LGALS3BP inhibits fibrocyte 

differentiation, and immunodepletion of LGALS3BP from MDA-MB 231 conditioned 

media removes the fibrocyte differentiation-inhibiting activity. LGALS3BP inhibits the 

differentiation of fibrocytes from wild-type mouse spleen cells , but not from SIGN-R1-/- 

mouse cells, suggesting that CD209/SIGN-R1 is required for the LGALS3BP effect. 

Galectin-3 and galectin-1, binding partners of LGALS3BP, potentiate fibrocyte 

differentiation. In breast cancer biopsies, increased levels of tumor cell-associated 

LGALS3BP were observed in regions of the tumor that were invading the surrounding 
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stroma. These findings suggest LGALS3BP and galectin-3 as new targets to treat 

metastatic cancer and fibrosing diseases. 

Hypothesis: Types of metastatic cancer secrete anti-fibrotic activity, and conditioned 

media from these cell lines will inhibit monocyte to fibrocyte differentiation  
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Introduction 

A key component of scar tissue is the fibrocyte, a collagen-producing monocyte-

derived cell found in healing wounds and fibrotic lesions. Monocytes are recruited to 

wounds or fibrotic lesions by chemokines (25, 26), and in response to wound signals such 

as tryptase released from mast cells, or thrombin activated during blood clotting, 

differentiate into fibrocytes (27, 28, 239). Monocytes isolated from peripheral blood 

mononuclear cells differentiate in vitro in a defined media into fibrocytes (33). Fibrocytes 

express collagen and other extracellular matrix proteins, secrete pro-angiogenic factors, 

and activate nearby fibroblasts to proliferate and secrete collagen (22, 23, 27, 29, 30). 

Increased fibrocyte differentiation correlates with increased fibrosis in animal models (32, 

41). Elevated fibrocyte counts also associate with poor prognosis in human diseases (248). 

In response to a foreign object or inflammatory environment, the immune system 

can initiate a desmoplastic response in which monocytes differentiate into fibrocytes to 

form a sheath of fibrotic tissue around the foreign object (74-77). In response to some 

tumors, the immune system also initiates a desmoplastic response, attempting to contain 

the tumor (4, 9). This desmoplastic sheath is a dynamic, responsive tissue that adjusts to 

changing conditions in the tumor microenvironment (5, 6).  

To metastasize through this desmoplastic tissue, cancer cells must find a way to 

remove scar tissue or to prevent scar tissue from forming (5-8, 10, 11). As cancer 

progresses towards metastasis and a more mesenchymal phenotype, it interacts with the 

immune system in different ways. Some tumors attempt to evade the immune system, and 

others act to suppress the immune system (98-102).  
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The MDA-MB-231 cell line was isolated from metastases of a breast cancer patient 

(103). MDA-MB-231 cells behave aggressively in culture and murine models, displaying 

a metastatic phenotype that suggests that these cells retain the protein expression profile 

which allowed them to metastasize through the basement membrane of the original patient 

(104).  

Galectin-3 binding protein (LGALS3BP), previously called Mac-2 binding protein 

and tumor-associated antigen 90K, is a heavily glycosylated 90 kDa protein (127). 

LGALS3BP binds to galectins 1, 3, and 7, fibronectin, and collagen IV, V, and VI (127-

129). LGALS3BP is a member of the scavenger receptor cysteine-rich domain (SRCR) 

family of proteins (130). LGALS3BP is ubiquitously expressed in bodily secretions, 

including milk, tears, semen, and serum, usually 10 µg/ml (131). In patients with 

aggressive hormone-regulated cancers, including breast cancer, serum LGALS3BP 

concentration can be an order of magnitude higher than in normal serum (132, 136, 137). 

In breast milk, LGALS3BP concentration can rise and fall over the same range 

(approximately 10 µg/ml to 100 µg/ml) depending on the length of time after the 

pregnancy (131). LGALS3BP is produced mostly by epithelial cells in glands (breast and 

tear ducts) and cancer cells (especially breast cancer cells) (249).   

Higher levels of serum LGALS3BP correlate with worse outcomes in breast cancer 

patients (136-139), while higher levels of LGALS3BP’s binding partner galectin-3 

correlate with better outcomes for breast cancer patients (140). LGALS3BP promotes 

angiogenesis by increasing VEGF signaling and directly signaling endothelial cells (128, 

141). Mouse knockouts of LGALS3BP show higher circulating levels of TNF-alpha, IL-
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12, and interferon-gamma, suggesting a role of LGALS3BP in regulating the immune 

system (142).  

Galectin-3 is a ~30 kDa protein expressed nearly ubiquitously in human tissues, 

and can be secreted from cells, associated with membrane bound carbohydrates, or located 

in the cytoplasm (140, 147-150). Galectin-3 is a biomarker of fibrosing diseases such as 

heart disease and pulmonary fibrosis (143, 144). As the disease severity increases, serum 

galectin-3 concentrations increase. Galectin-3 is widely expressed by immune system 

cells, and promotes the differentiation of monocytes into macrophages (145). Galectin-3 

interacts with a number of intercellular and intracellular receptors and ligands, and is 

theorized to have roles in inflammation, host response to a virus, and wound healing (145, 

146, 148).  

In this report, we show that MDA-MB 231 cells secrete LGALS3BP, which in turn 

inhibits fibrocyte differentiation, and that conversely galectin-3 promotes fibrocyte 

differentiation. LGALS3BP and galectin-3 are new modulators of fibrosis in the tumor 

microenvironment. Additionally, the effects of LGALS3BP and galectin-3 on fibrocytes 

show these proteins are active signaling molecules in cancer and fibrosis, respectively, 

and not passive biomarkers.   

 

Materials and methods 

PBMC isolation and culture 

Human blood was collected from adult volunteers who gave written consent and 

with specific approval from the Texas A&M University human subjects Institutional 
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Review Board. Peripheral blood mononuclear cells (PBMC) were isolated and cultured as 

previously described (34, 194). Protein-free medium (PFM) was Fibrolife basal medium 

(Lifeline, Walkersville, MD) supplemented with 10 mM HEPES (Sigma, St. Louis, MO), 

1× non-essential amino acids (Sigma), 1 mM sodium pyruvate (Sigma), 2 mM glutamine 

(Lonza, Basel, Switzerland), 100 U/ml penicillin and 100 μg/ml streptomycin (Lonza). 

Serum-free media (SFM) was PFM further supplemented with 10 μg/ml recombinant 

human insulin (Sigma), 5 μg/ml recombinant human transferrin (Sigma), and 550 μg/ml 

filter-sterilized human albumin (194). PBMC were cultured in SFM with the indicated 

concentrations of conditioned media, recombinant human galectin-1 and galectin-3 

(Peprotech, Rocky Hill, NJ), or recombinant human galectin-3 binding protein (R & D 

systems, Minneapolis, MN) for five days, after which PBMC were stained, and fibrocytes 

were counted, as previously counted (194). Adhered cells and macrophages were counted 

as previously described (194). Human monocytes were purified, tested for purity, and 

cultured as previously described (194, 195). For immunohistochemistry, PBMC were 

fixed and stained for CD209 (Biolegend, San Diego, CA)  as previously described (195). 

 

Tumor cell lines and conditioned media 

MDA-MB 231 (103), MDA-MB 435 (105), and DCIS.com (111) cells were the 

kind gift of Dr. Weston Porter. HT-29 (112), SW480 (113), DKOB8 (114), and HCT (115) 

cells were the kind gift of Dr. Robert Chapkin. MCF-7 (110), ADR-RES (116), OVCAR-

8 (107, 108), SNU 398 (117), HEP-G2 (118), SW 1088 (119), U87 MG (109), and PANC-

1 (120) cells were the kind gift of Dr. Deann Wallis. Mono mac-1 (121) and Mono mac-6 



 

101 

 

(122) were from the DSMZ (Liebniz Institute: German Collection of Microogranisms and 

Cell Culture, Braunschwieg, Germany), and U-937 (123), HL-60 (124), THP-1 (125), and 

HEK-293 (250) cells were from the ATCC (Manassas, VA). The MDA-MB 435 cell line 

has previously been classed as a breast cancer cell line, but is currently classed as a 

melanoma cell line (105, 106). Each tumor cell line was tested for mycoplasma 

contamination using a PCR detection kit (MDBioproducts, St. Paul, MN) following the 

manufacturer’s instructions, and all work was done with cell lines containing undetectable 

levels of mycoplasma.  

Tumor cell lines were grown in DMEM supplemented with 10% fetal calf serum 

(Genesee Scientific, San Diego, CA) in 75 cm2 flasks (BD, Franklin Lakes, NJ) until 70% 

confluent. Adhered cells were washed three times with PBS, and were then incubated with 

10 ml protein free media (PFM). After 24 or 48 hours, the conditioned medium was 

collected and clarified by centrifugation at 300 x g for 10 minutes. Conditioned media 

from MDA-MB 231 cells was further clarified by centrifugation at 1,000 x g for 10 

minutes, followed by clarification at 200,000 x g for 1 hour. The supernatant was then 

concentrated with a 100 kDa centrifugal filter (EMD Millipore, Billerica, MD), and buffer 

exchanged with 20 mM sodium phosphate, pH 7.2. Proteins were visualized by silver stain 

on 4-20% SDS-PAGE gels (Bio-Rad, Hercules, California) and protein concentration was 

assessed by absorbance at 280 nm (Synergy MX, Biotek, Winooski, VT). 

Protein purification and identification 

 300 ml of MDA-MB 231 CM was clarified by ultracentrifugation, concentrated, 

and buffer-exchanged as described above, and resuspended in 1 ml. This was loaded on a 
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5 ml MonoQ anion exchange column on an AKTA chromatography system (GE 

Healthcare, Piscataway, NJ). The column was washed with 6 ml of 20 mM NaPO4 pH 7.4 

buffer (first 6 fractions), and bound proteins were then eluted with a 14 ml gradient of 0 

to 0.3 M NaCl in 20 mM NaPO4 pH 7.4, collecting 0.5 ml fractions. Serial doubling 

dilutions of fractions were then mixed with PBMC, and their effect on fibrocyte 

differentiation was measured as previously described (36). Trypsin digestion of samples, 

purification of peptides with Zip tips (EMD Millipore), and mass spectrometry was 

performed by the University of Utah mass spectrometry core facility, and peptides with 

MASCOT scores > 40 and mass errors < 3 ppm were used for protein identification. 

 

Flow cytometry 

PBMC were placed on an ultra low attachment plate (Corning, Corning, NY) and 

incubated with MDA-MB 231 conditioned media at the indicated concentrations for the 

indicated time. These cells were then removed from the plate using ice cold 5 mM EDTA 

in PBS (Rockland, Limerick, PA) with gentle pipetting. PBMC were collected by 

centrifugation at 300 x g for 10 minutes, resuspended in 100 µl ice cold PBS, and analyzed 

for viability using propidium iodide (Sigma) and forward/side scatter via flow cytometry 

(Accuri-BD, Franklin Lakes, NJ) as previously described (251, 252).  

 

Immunodepletion of conditioned media 

 For immunodepletion, rabbit polyclonal anti-galectin-3 binding protein (BIOSS, 

Woburn, MA), mouse monoclonal anti-galectin-3 (Biolegend), mouse IgG isotype control 
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(Jackson, West Grove, PA) and rabbit polyclonal anti-protein S (Sigma) antibodies were 

bound to protein G-coated Dynabeads (Invitrogen, Carlsbad, CA) beads following the 

manufacturer’s instructions. Beads complexed with antibodies were mixed 1:10 with 

conditioned media at 37° C for 2 hours. Beads were then removed from the conditioned 

media following the manufacturer’s instructions.  

 

Sequencing MDA-MB 231 LGALS3BP 

 Total RNA was isolated from MDA-MB 231 cells using a kit (Omega Biotek, 

Norcross, GA), and cDNA was generated using a kit (Thermo Scientific, Waltham, MA). 

LGALS3BP was amplified using Phusion polymerase (New England Biolabs, Ipswich, 

MA) with primers 5’-AACTCGAGGTCCACACCTGAGTTGG-3’ and 5’-

AAACTCCTAGTCCACACCTGAGG-3’ that encompassed all known or predicted 

transcript variants (253), and resulted in a single band on a DNA gel. Amplified 

LGALS3BP was ligated into pCMV and sequenced at Lonestar Labs (Houston, TX), using 

the primers listed above and internal primers (5’-CGCCCTGGGCTTCTGTGG-3’ and 5’-

GGTCTATCAGTCCAGACG-3’).  

 

Isolation of mouse spleen cells 

 SIGN-R1 -/- spleens were developed by Andrew McKenzie (254) and were the 

kind gift of Dr. Jeffrey Ravetch at Rockefeller University. Mouse spleen cells were 

isolated as previously described (255). 
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Staining of biopsies 

De-identified slides of formalin fixed paraffin-embedded biopsies or surgical 

specimens from patients with confirmed infiltrative ductal carcinoma of the breast were 

kindly provided by Dr. Kelly Hunt at The University of Texas M.D. Anderson Cancer 

Center. Patients signed informed consent prior to the initiation of treatment. The M.D. 

Anderson Institutional Review Board approved the use of all patient-derived tissues and 

data. Slides were deparaffinized in xylene and rehydrated through graded ethanols. 

Antigens were retrieved by incubating sections with Antigen Unmasking Solution H-3300 

(Vector Labs, Burlingame, CA) in a steamer for 20 minutes. Slides were then 

permeabilized by incubating with 0.2% Triton X-100 in PBS for 45 minutes at room 

temperature. Slides were blocked by incubating with 1% Bovine Serum Albumin in PBS 

for one hour at room temperature. Slides were then incubated with primary antibody 

diluted in 0.1% BSA/PBS overnight at 4ºC. Primary antibodies were collagen-I (Rabbit 

pAb, 1:500, Abcam #ab34710), CD45RO (Mouse mAb, 1:100, Biolegend #304202), 

LGALS3BP (Rabbit pAb, 1:200, GeneTex #GTX116497), galectin-3 (Rat mAb, 1:200, 

BioLegend #125401). Secondary antibody in 0.1% BSA/PBS was then added for one hour 

at room temperature. Secondary antibodies were donkey anti-mouse DyLight 488, donkey 

anti-rabbit Red X, and goat anti-rat 488 (1:500, Jackson ImmunoResearch). Sections were 

DAPI stained for 10 minutes and mounted with Dako Fluorescent mounting medium 

(Dako, Carpinteria, CA). Images were captured with a Olympus BX51 microscope and 

Olympus DP72 camera (Olympus, Tokyo, JP) and CellSens software (Center Valley, PA). 
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Statistics  

Statistics were performed using Prism (Graphpad Software, San Diego, CA). 

Differences were assessed by two-tailed t-tests or two-tailed Mann-Whitney tests. 

Significance was defined as p<0.05. 

 

Results 

MDA-MB 231 and MDA-MB 435 cells secrete factors that inhibit fibrocyte 

differentiation 

 To determine whether factors secreted from tumors might promote or inhibit 

fibrocyte differentiation, we examined the effect of conditioned media (CM) from a 

variety of human tumor cell lines on human fibrocyte differentiation. Human PBMC were 

incubated in the presence or absence of tumor cell line CM, and after 5 days, fibrocytes 

were counted. In the absence of CM, we observed 81 to 1374 fibrocytes per 105 PBMCs 

from the different donors, similar to what we have previously observed (194). Because of 

this variability, fibrocyte numbers were thus normalized to CM-free controls. CM from 

MDA-MB-231 (231) (103) and MDA-MB-435 (435) cells (105) inhibited fibrocyte 

differentiation in a concentration-dependent manner (Figure 34A and Figure 35A), and 

this effect was observed for PBMC from all donors tested. The 435 CM did not affect the 

number of adherent cells after removing weakly adhering cells, and then fixing and 

staining, while 231 CM slightly inhibited adherent cell number only at 12.5% CM, which 

is well above the IC50 for fibrocyte inhibition (Figure 34B and Figure 35B). PBMC 

exposed to 231 CM or 435 CM for 5 days did not have significantly increased cell death 
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as assessed by propidium iodide staining (Figure 34C and Figure 35C), or decreased total 

cell number (this includes the weakly adherent cells removed before fixing and staining) 

as assessed by removing all cells from the assay well and counting by flow cytometry 

(Figure 34D and Figure 35D). Some concentrations of 231 CM increased total cell 

numbers (Fig. 34D). This may be due to factors in the conditioned media that promote cell 

survival and/or cell proliferation.  

Fibrocytes differentiate from monocytes (22, 27, 33). Cells in the PBMC 

population include T-cells, B-cells, monocytes, and NK cells (36). To determine whether 

the CM effect on fibrocyte differentiation is a direct effect on monocytes, or is mediated 

by the other cells in a PBMC population, 231 or 435 CM was added to purified human 

monocytes. 231 CM and 435 CM inhibited fibrocyte differentiation from purified 

monocytes (Figure 34E and Figure 35E). For the inhibition of fibrocyte differentiation 

from PBMC, the IC50 of 231 CM was 0.33 ± 0.05% (mean ± SEM, n=37, Hill coefficient 

1.06 ± 0.13), and that of 435 CM was 0.45 ± 0.17% (n=7, Hill coefficient 0.73 ± 0.20). 

When added to monocytes, the 231 and 435 IC50s were 1.2 ± 0.2% (n=5, Hill coefficient 

1.08 ± 0.15) and 1.9 ± 0.7% (n=3, Hill coefficient 1.70 ± 0.60), respectively. The 

difference in IC50s for 231 CM between PBMCs and monocytes was significant with p < 

0.05 (t test); the difference for 435 CM was not significant. Since purifying monocytes 

and thus removing other cells from the PBMC population modestly increased the 231 CM 

IC50, these data suggest that either the monocyte purification procedure modestly reduced 

the ability of monocytes to respond to the factor(s) in CM that inhibits fibrocyte 

differentiation, or else the presence of the other cells in the PBMC population somewhat 
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potentiates the ability of monocytes to respond to the factor(s). In either case, the data 

indicate that monocytes can respond directly to the factor(s). 

In addition to differentiating into fibrocytes, monocytes can also differentiate into 

macrophages. To determine if the CMs that inhibit fibrocyte differentiation also affect 

macrophage differentiation from monocytes, we counted the total number of adhered 

macrophages, as assessed by morphology. 231 CM caused a decrease in macrophage 

differentiation at 12.5% CM, but did not affect the number of macrophages at lower 

concentrations which inhibited fibrocyte differentiation, and 435 did not significantly 

inhibit macrophage differentiation (Figure 34F and Figure 35F). Together, the data 

indicate that factors in 231 and 435 CM affect monocytes to strongly inhibit fibrocyte 

differentiation, while having no effect, or a relatively modest effect, on cell death, total 

cell numbers, numbers of macrophages, and the numbers of adherent cells.  
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Figure 34. MDA-MB 231 conditioned media inhibits fibrocyte differentiation. 
(A) PBMC were cultured in serum free media in the presence of the indicated 
concentrations of MDA-MB 231 (231 CM) conditioned media for five days. Fibrocyte 
counts were normalized for each donor to the SFM control. (B) Counts of total adherent 
PBMC per five fields of view at the indicated concentrations of 231 CM. (C) Total 
propidium iodide positive PBMC, and (D) total PBMC, after 5 days at the indicated 
concentrations of 231 CM, measured by flow cytometry. (E) Total number of fibrocytes 
from monocytes cultured at the indicated concentrations of 231 CM for 5 days. 
Monocytes were 16% ± 9% (mean ± SEM, n=3) of the PBMCs and 92% ± 5% in the 
purified fraction. (F) Total number of macrophages from PBMC cultured at the indicated 
concentrations of 231 CM for 5 days. Values are mean ± SEM. The absence of error bars 
indicates that the error was smaller than the plot symbol. (A, B, F) n=38, (C, D, E) n=3. 
* indicates p < .05, ** p < 0.01, and *** p < 0.001 compared to the control (t-test).  
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Figure 35. MDA-MB 435 conditioned media inhibits fibrocyte differentiation.  
PBMC were cultured as in Figure 34, except 435 CM was used instead of 231 CM. (A, B, 
F) n=10, (C, D, E) n=3. * indicates p < .05, ** p < 0.01, and *** p < 0.001 compared to 
the control (t-test). 
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Some but not all human cancer cell lines also secrete a fibrocyte inhibitory activity 

To determine if other tumor types might secrete factors that inhibit fibrocyte 

differentiation, we exposed PBMC to conditioned media from cancer cell lines derived 

from human breast, skin, colon, liver, pancreas, brain, ovary, and leukocyte tissue. We 

defined units of activity as the inverse of the CM’s IC50 for fibrocyte inhibition. Of the 

cell lines tested, conditioned media from OVCAR-8, U87-mg, MDA-MB 231, MDA-MB 

435, MCF-7, and DCIS.com significantly inhibited fibrocyte differentiation (Figure 36). 

OVCAR-8 is an ovarian cancer cell line derived from a metastatic site (107, 108). U87-

mg is derived from a glioblastoma (109). MDA-MB 231 is derived from a breast cancer 

metastasis (103). MDA-MB 435 has an uncertain origin: originally the cell line was listed 

as a breast cancer line by the ATCC (105). Currently, the cell line is listed as a melanoma 

cell line (106). MCF-7 is a breast cancer cell line derived from a pleural effusion (110). 

DCIS.com is derived from a normal breast tissue cell line (MCF10A) passaged through a 

mouse, and forms a non-metastatic ductal carcinoma in-situ when injected into mice (111). 

Each cell line whose CM inhibited fibrocyte differentiation was isolated from hormone 

secreting tissues (breast, ovarian), with the exception of the U87-mg and MDA-MB 435 

cell lines. No colon, liver, pancreatic, or leukemia CM significantly inhibited fibrocyte 

differentiation (Figure 36A), and 0.4 to 10% SW480 colon cancer CM modestly 

potentiated fibrocyte differentiation (Figure 36B).  
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Figure 36. The effect of conditioned media from other cancer cell lines on fibrocyte 
differentiation.  
(A) Conditioned media from 20 different cancer cell lines show different levels of 
potentiation and inhibition for fibrocyte differentiation. Activity Units are the dilution of 
CM which inhibited fibrocyte differentiation to 50% of the control value. Higher activity 
units indicate more potent inhibition of fibrocyte differentiation. n=3 for Mono mac-1, 
Mono mac-6, U937, HL-60, THP-1, DK0B8, HCT (P21+/P53+), HCT (P21-/P53+), 
HCT (P21+/P53-), HCT (P21-/P53-), HEK-293, K562; n=6 for ADR-RES, OVCAR-8, 
snU-398, HEP-G2, U-87 MG, PANC-1, SW480, n=7 for DCIS.com, n=10 for MCF-7 
and MDA-MB 435, and n=38 for MDA-MB 231. A = cancers derived from breast 
tissue, B = skin, C = leukocyte, D = colon, E = embryonic kidney, F = ovarian, G = 
Liver, H = Brain, and I = Pancreas. The absence of error bars indicates that the error was 
smaller than the plot symbol. # indicates inconsistent inhibition of fibrocyte 
differentiation (variability of response of PBMC from different donors), * indicates p < 
.05, ** p < 0.01, and *** p < 0.001 compared to the control (t-test). (B) Conditioned 
media from SW480 cells potentiated fibrocyte differentiation. Values are mean ± SEM, 
n=6. * indicates p < 0.05, **  p < 0.01, and *** p < 0.001 compared to the control (t-
test).  

 



 

112 

 

D
C

IS
M

C
F-

7
M

D
A

-M
B

 2
31

M
D

A
-M

B
 4

35
M

on
om

ac
-1

M
on

om
ac

-6
U

93
7

H
L-

60
TH

P-
1

K
-5

62
H

T-
29

H
C

T 
15

SW
48

0
D

K
O

B
8

H
C

T 
(p

21
+/

P5
3+

)
H

C
T 

(p
21

-/P
53

+)
H

C
T 

(p
21

+/
P5

3-
)

H
C

T 
(p

21
-/P

53
-)

H
EK

-2
93

A
D

R
-R

ES
O

VC
A

R
-8

sn
u 

39
8

H
EP

-6
2

sw
 1

08
8

U
-8

7 
M

G
pa

nc
-1

0

100

200

300

400

**
****

**
*

**

**

*#
##

#

A B C D E F G H I

A
ct

iv
ity

 U
ni

ts

0

50

100

150

200

0.1 1 10 100

**
**

**
*

*

0.01
Conditioned medium, percent

Fi
br

oc
yt

es
,

pe
rc

en
t o

f c
on

tr
ol

A

B

 
 



 

113 

 

The 231 fibrocyte inhibitor is a protein, and can be concentrated and purified 

 To determine if the fibrocyte inhibition activity in 231 conditioned media is due to 

a protein, we exposed conditioned media to trypsin, heat, and freeze-thaw cycles. All three 

treatments strongly decreased the ability of 231 CM to inhibit fibrocyte differentiation 

(Figure 37). The 231 CM retained ~80% activity after clarification by ultracentrifugation, 

and was largely retained by a 100 kDa filter (Figure 38A). The components of 231 CM 

that passed through a 100 kDa filter potentiated fibrocyte differentiation (Figure 39A). 

This potentiating activity was retained by a 10 kDa filter (Figure 39B). Together, these 

results suggest that the 231 CM activity which inhibits fibrocyte differentiation is a 

protein. 

 To purify the 231 CM fibrocyte differentiation inhibitor, the 100 kDa retentate was 

fractionated by anion exchange chromatography, and fractions were assayed for activity 

(Figure 40A). There was little activity in the flow-through, some activity throughout the 

elution, and a large peak of activity in fractions 27 and 28, corresponding to a NaCl 

concentration of 375 mM. The IC50 of both of these fractions occurred at a ~4,096-fold 

dilution, with a Hill coefficient of 4.6 ± 1.7 (mean ± SEM, n=6). Silver-stained gels 

showed prominent bands at ~85 and ~39 kDa in fraction 27 (Figure 40B). Tryptic 

fragments of proteins in fraction 27 were analyzed by mass spectrometry. In decreasing 

order of the number of identified peptides, the identified proteins were human galectin-3 

binding protein, desmoplakin, plakoglobin, desmoglein type 1, pentraxin-3 (PTX-3), adult 

intestinal phosphatase, and dermcidin. However, after purifying peptides with a Ziptip, 

the only identified peptides corresponded to galectin-3 binding protein (LGALS3BP; 
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GI:5031863).  
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Figure 37. The fibrocyte inhibitory factor in MDA-MB 231 conditioned media is a 
protein.  
PBMC were cultured as in Figure 34, with the indicated concentrations of (A) 231 CM or 
CM digested with trypsin, (B) 231 CM or CM frozen and thawed one, two, or three times, 
or (C) 231 CM or CM heated to 50, 72, or 95 ˚C. Values are mean ± SEM; the absence of 
error bars indicates that the error was smaller than the plot symbol. * indicates p < 0.05, 
** p < 0.01, and *** p < 0.001 compared to the control (t-test). 
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Figure 38. MDA-MB 231 conditioned media’s fibrocyte inhibitory activity is 
greater than 100 kDa.  
(A)  The indicated fractions were assessed for their ability to inhibit fibrocyte 
differentiation. The activity units were normalized to the value for the CM. Values are 
mean ± SEM, n=24.  
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Figure 39. A component of MDA-MB 231 conditioned media which passes through 
a 100 kDa filter potentiates fibrocyte differentiation.  
(A) PBMC were cultured as in Figure 34, with the indicated concentrations of 231 CM 
that flowed through a 100 kDa filter. (B) The material assayed in A was then fractionated 
and concentrated using a 10 kDa filter, and the material retained by the 10 kDa filter was 
assayed. Values are mean ± SEM, n = 6; the absence of error bars indicates that the error 
was smaller than the plot symbol. * indicates p < 0.05 and ** p < 0.01 compared to the 
control (t-test). 
 



 

117 

 

 
Figure 40. Anion exchange chromatography of the partially purified factor. 
 (A) 100 kDa concentrated MDA-MB 231 CM, produced as in Figure 38, was 
fractionated on an anion exchange column. Fractions were assayed as in Figure 34, and 
the resulting fibrocyte inhibition was measured by activity units, as in Figure 36. (B) 
SDS-PAGE gel of the fractions, silver stained.  
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Immunodepletion of LGALS3BP from CM removes most of the fibrocyte inhibitory 

activity 

 To determine if the LGALS3BP detected in CM affects fibrocyte differentiation, 

we immunodepleted LGALS3BP from 231 and 435 CM. Immunodepletion with a control 

antibody had little effect on the ability of CM to inhibit fibrocyte differentiation (Figure 

41 and 39). Immunodepletion of LGALS3BP from 231 CM (Figure 41) increased the IC50 

by 8.6 ± 1.3 fold (mean ± SEM, n=7, p < 0.001, t-test). Similarly, immunodepletion of 

LGALS3BP from 435 CM (Figure 42) increased the IC50 by 21 ± 11 fold (mean ± SEM, 

n=7, p < 0.001, t-test). These results suggest that LGALS3BP is a significant component 

of the 231 and 435 CM fibrocyte inhibitory activity.  
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Figure 41. Immunodepletion of LGALS3BP decreases MDA-MB 231 CM’s 
fibrocyte inhibitory activity. 
MDA-MB 231 CM was immunodepleted with anti-LGALS3BP or isotype control 
antibodies. Values are mean ± SEM, n=7. 
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Figure 42. Immunodepletion of LGALS3BP decreases MDA-MB 435 CM’s fibrocyte 
inhibitory activity.  
MDA-MB 435 CM was immunodepleted with anti-LGALS3BP or isotype control 
antibodies, and then assessed for the ability to inhibit fibrocyte differentiation as in Figure 
34. Values are mean ± SEM, n=7.  
 

Recombinant LGALS3BP inhibits fibrocyte differentiation 

  To test the hypothesis that LGALS3BP inhibits fibrocyte differentiation, we 

incubated PBMC with recombinant human LGALS3BP. LGALS3BP significantly 
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inhibited fibrocyte differentiation with an IC50 of 0.22 ± 0.05 µg/ml (Hill coefficient 6.5 

± 2.2) (Figure 43), but unlike 231 CM (Figure 34A), did not completely inhibit fibrocyte 

differentiation. Together with the immunodepletion assays, the data indicate that 

LGALS3BP does inhibit fibrocyte differentiation. 

 
Figure 43. Recombinant LGALS3BP inhibits fibrocyte differentiation.  
Recombinant LGALS3BP was added to PBMC, and fibrocyte differentiation was 
assessed as in Figure 34. Values are mean ± SEM, n=8. * indicates p < .05, ** p < 0.01, 
and *** p < 0.001 compared to the control (t-test). 
 

The 231 LGALS3BP mRNA encodes a canonical LGALS3BP 

 LGALS3BP has an experimentally verified transcript variant, and several 

predicted transcript variants (253). To determine if MDA-MB 231 cells secreted a 

truncated or alternatively spliced variant of LGALS3BP, mRNA was isolated from MDA-



 

122 

 

MB 231 and converted to cDNA. Using primers which encompass all known or predicted 

transcript variants (253), LGALS3BP cDNA was amplified via PCR and sequenced. The 

sequence encoded the four LGALS3BP peptides detected by mass spectrometry, and was 

identical to human LGALS3BP from oral squamous carcinoma cells (256), and is identical 

to the sequence of the recombinant full-length human LGALS3BP (R&D datasheet). 

 

LGALS3BP produced in cancer cells has a higher mass than recombinant LGALS3BP 

 To determine the concentration of LGALS3BP in CM, western blots of CM and 

known amounts of recombinant LGALS3BP were stained for LGALS3BP. MDA-MB 

231, MDA-MB 435, and OVCAR-8 CMs showed high concentrations of LGALS3BP 

compared to MCF-7, DCIS.com, and U87-mg CMs (Figure 44). MDA-MB 435, MDA-

MB 231, and OVCAR-8 cells accumulated ~1 µg/ml LGALS3BP in their CMs. U87-mg 

CM had very little LGALS3BP, suggesting that glioma cells may inhibit fibrocyte 

differentiation by other means. LGALS3BP has a predicted mass of ~60 kDa, but 

LGALS3BP isolated from the serum of cancer patients has a mass of ~90 kDa (249) and 

the LGALS3BP we observed in cancer cell CMs has a mass of ~85 kDa. While 

LGALS3BP in cancer CM appears as a single band, the recombinant LGALS3BP from 

CHO cells has several bands. R&D Systems is the only manufacturer of recombinant 

LGALS3BP produced in eukaryotic cells, and they have also observed their product to 

appear as multiple bands on a gel (personal communication).  
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Figure 44. High concentrations of LGALS3BP are present in 321 and 435 
conditioned media.  
Western blot of equal volumes of the indicated concentrations (in ng/ml) of recombinant 
LGALS3BP and conditioned media from the indicated cell types were stained with anti-
LGALS3BP antibodies. Blot image is representative of three separate experiments.  
 

231 and 435 CMs inhibit fibrocyte differentiation using a DC-SIGN-dependent 

mechanism 

The C-type lectin receptor DC-SIGN/CD209 is expressed on monocytes, and is 

upregulated as monocytes differentiate into dendritic cells (257). IgG is capable of 

inducing a pro- or anti-inflammatory macrophage phenotype by interacting with 

monocytes (258). IgG that is glycosylated with N-linked sialic-acid glycans binds DC-

SIGN, and causes macrophages to secrete IL-10, reducing inflammation (258, 259). Both 
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glycosylated IgG and LGALS3BP bind human DC-SIGN (129, 258). To determine if the 

DC-SIGN receptor might mediate the effect of LGALS3BP on fibrocyte differentiation, 

we added 231 CM and 435 CM to spleen cells from WT and CD209-/- (SIGN-R1-/-) mice. 

231 CM and 435 CM inhibited fibrocyte differentiation from  wild type C57BL/6 mouse 

spleen cells, but potentiated fibrocyte differentiation from CD209 knockout mouse spleen 

cells (Figure 45) in a similar manner to 231 CM components that passed through a 100 

kDa filter (Figure 39). Recombinant LGALS3BP, 231 CM, and 435 CM each upregulated 

CD209 expression on PBMC as measured by immunohistochemistry (Figure 46). 
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Figure 45. CD209 (SIGN-R1) is needed for the effect of MDA-MB 231 and MDA-MB 
435 CM on mouse fibrocyte differentiation.  
Cells were isolated from mouse spleens and incubated with the indicated concentrations 
of CM. Spleen cells from (A) wild-type C57BL/6 and (B) SIGN-R1 -/- knockout mice 
were incubated with the indicated concentrations of MDA-MB 231 or MDA-MB 435 CM. 
After 5 days, fibrocytes were counted. Values are mean ± SEM, n=3, * indicates p < 0.05 
and ** p < 0.01 compared to the control (t-test). 
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Figure 46. LGALS3BP, 231 CM, and 435 CM increase CD209 staining, and 
recombinant galectin-3 and galectin-1 potentiate fibrocyte differentiation.  
(A) LGALS3BP, 231 CM, and 435 CM increase CD209 staining on PBMC by 
immunohistochemistry. Values are mean ± SEM, n=4, ** p < .01, compared to the SFM 
control (two-tailed t-test). (B) Panel shows representative images from slides used for (A). 
Bars are 50 µm. (C) The effects of recombinant galectin-3 and recombinant galectin-1 on 
human fibrocyte differentiation were assessed as in Figure 34. Values are mean ± SEM, 
n=8, * indicates p < 0.05, ** p < 0.01 compared to the control (t-test). (D) The indicated 
mixtures of galectin-3 and LGALS3BP were assessed for their effects on fibrocyte 
differentiation, and fibrocyte counts were normalized to serum-free medium controls. 
Values are mean ± SEM, n=8. * indicates p < 0.05 and ** p < 0.01 compared to the control 
(t-test).  
 

Galectin-3 and galectin-1 potentiate fibrocyte differentiation  

  Galectin-1 and galectin-3 are binding partners for LGALS3BP (249, 260). To 

determine if galectins -1 and -3 affect fibrocyte differentiation, we incubated PBMC with 
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recombinant human galectins -1 and -3 (261, 262). Galectin-1 and -3 significantly 

potentiated fibrocyte differentiation (Figure 46A). To determine how a mixture of 

galectin-3 and LGALS3BP would influence fibrocyte differentiation, recombinant 

galectin-3 and LGALS3BP were co-incubated with PBMC. Concentrations of galectin-3 

that potentiated fibrocyte differentiation continued to potentiate fibrocyte differentiation 

when mixed with concentrations of LGALS3BP that inhibited fibrocyte differentiation 

(Figure 43 and 46). Galectin-3 did not potentiate fibrocyte differentiation when mixed 

with a 3-fold higher quantity of LGALS3BP (Figure 46B). This suggests that the 

fibrocyte-potentiating effect of galectin-3 competes with the fibrocyte-inhibiting effect of 

LGALS3BP.  

 

Increased LGALS3BP expression at the interface between breast cancer and scar tissue 

 To determine how tumor cells, LGALS3BP, galectin-3, and fibrocytes interact in 

human tumors, we stained sections of human infiltrative ductal carcinomas for CD45RO, 

collagen-I, galectin-3, and LGALS3BP. For all biopsies tested, the tumor cells strongly 

expressed LGALS3BP.  
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The staining intensity of LGALS3BP increased at the interface of tumor cells and stroma, 

particularly where tumor cells were invading through layers of collagen-rich stroma 

(Figure 47). ‘X’ indicates the tumor, the arrow indicates tumor infiltration into scar tissue, 

and ‘*’ indicates areas with fibrocytes.  Galectin-3 colocalized with the fibrocyte markers 

CD45RO and collagen-I (Figure 47). These data suggest that in some breast tumors, 

LGALS3BP expression is increased at the interface between the tumor and desmoplastic 

tissue, and that fibrocytes are reduced when LGALS3BP expression is increased. 

Intriguingly, galectin-3, which we observed to potentiate fibrocyte differentiation, 

colocalized with fibrocytes (Figure 47).  
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Figure 47. Breast cancer tumor sections visualized by immunofluorescence show 
increased LGALS3BP at the edge of tumors.  
Human infiltrative ductal carcinoma tumor specimens were sectioned and stained for 
CD45RO, collagen WHAT type, LGALS3BP, and galectin-3. Images are (A) 
Hematoxylin and eosin stain of a representative biopsy section, (B) immunofluorescence 
for collagen (red) and CD45RO (green), and (C) immunofluorescence for LGALS3BP 
(red) and galectin-3 (green). Yellow indicates co-localization. The box in (A) indicates 
area of magnification, ‘X’ indicates the tumor, the arrow indicates tumor infiltration into 
scar tissue, and ‘*’ indicates areas with fibrocytes.  Bar in A is 200 µm and bars in B and 
C are 50 µm.  
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Discussion 

In this report, we show that several human tumor cell lines secrete activity that 

inhibits the differentiation of human monocytes into fibrocytes. For a metastatic breast 

cell line and a metastatic melanoma cell line, the majority of the activity is LGALS3BP. 

LGALS3BP produced by cancer cells appears to act through the CD209 receptor to inhibit 

fibrocyte differentiation. LGALS3BP’s binding partner, galectin-3, is upregulated in 

fibrotic tissue surrounding breast cancer tumors, and promotes fibrocyte differentiation at 

physiological concentrations. In breast cancer biopsies, LGALS3BP is concentrated at the 

edge of the tumor in regions with fewer fibrocytes. Taken together, this suggests that 

LGALS3BP may inhibit fibrocyte differentiation to facilitate metastasis in breast cancer 

and melanoma.  

LGALS3BP (Mac2-BP, Antigen 90K) is a secreted member of the scavenger-

receptor cysteine-rich (SRCR) family of proteins (249). LGALS3BP binds to galectins -1 

and -3 (263), both collagen and fibronectin (264), and increases cell adhesion (260).  

Mouse knockouts of LGALS3BP show higher circulating levels of TNF-alpha, IL-12, and 

IFN-γ, suggesting multiple roles in regulating the immune system (151).  

MCF-7 and DCIS.com cells, which are derived from non-metastatic breast cancers 

(110, 111), accumulate relatively low extracellular levels of LGALS3BP, while MDA-

MB 231 cells, which are derived from a metastatic breast cancer (103), accumulate high 

extracellular levels of LGALS3BP (265-271). Patients with metastatic breast cancer tend 

to have abnormally high serum levels of LGALS3BP (139, 249). MDA-MB 435 

accumulates high concentrations of extracellular LGALS3BP compared to other cancer 
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cell lines (272), and patients with metastatic melanoma have higher serum LGALS3BP 

than patients with benign skin cancer (126). In patients with breast cancer (273, 274), 

ovarian cancer (275-278), or melanoma (279-281), serum LGALS3BP concentrations 

increase during the progression to metastasis (137, 282).  An intriguing possibility is that 

LGALS3BP may play a role in metastasis by inhibiting fibrocyte differentiation.  

The Hill coefficient of recombinant LGALS3BP for fibrocyte inhibition is 6.5, but 

231 and 435  CM have Hill coefficients close to 1. Fractions of 231 CM containing 

LGALS3BP have a Hill coefficient of 4.6. Both 231 CM and 435 CM contain a factor (or 

factors) that potentiate fibrocyte differentiation (Figure 39), suggesting that perhaps 

LGALS3BP competes with these factors to produce a Hill coefficient of ~1. Recombinant 

LGALS3BP, 231 CM, and 435 CM all increase CD209 staining on monocytes, suggesting 

that LGALS3BP may cooperatively bind to monocytes by increasing CD209 expression.  

LGALS3BP secreted from MDA-MB 231 cells has a higher apparent mass than 

recombinant LGALS3BP produced in CHO cells, despite the two having an identical 

primary structure. Since LGALS3BP is glycosylated (129), this suggests that the 

LGALS3BPs from the two cell lines have different glycosylations and/or other 

posttranslational modifications. MDA-MB 231 and 435 secrete ~1 µg/ml of LGALS3BP 

into conditioned media, and 231 and 435 CM have an IC50 for fibrocyte differentiation of 

~0.3% (Figures 34 and 35). Taken together, these results indicate that the IC50 for 

LGALS3BP should be ~0.3% x 1 µg/ml = ~3 ng/ml. Recombinant LGALS3BP’s IC50 for 

fibrocyte inhibition was 300 ng/ml. This then suggests that glycosylation and/or 

posttranslational modification of LGALS3BP may affect its ability to inhibit fibrocyte 
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differentiation. In agreement with this, LGALS3BP produced by cancer cells has at least 

a fourfold higher affinity for CD209 (DCSIGN) receptors than LGALS3BP produced by 

non-cancer cells (129). The CD209 receptor, which we found to be necessary for the 

ability of LGALS3BP to inhibit fibrocyte differentiation, is activated by posttranslational 

glycosylations (258). A reasonable possibility is thus that  the posttranslational 

glycosylations of LGALS3BP produced in CHO and MDA-MB 231 cells have different 

affinities for CD209, resulting in the observed differences in IC50’s.  

Galectin-3 is expressed by monocytes and macrophages (283). Serum galectin-3 

is upregulated in heart disease and other fibrosing diseases (284), and inhibitors of 

galectin-3 are currently in clinical trials for the treatment of fibrosing diseases (285, 286). 

While serum galectin-3 is 100-900 ng/ml (261), we observed potentiation of fibrocyte 

differentiation at 2.5 to 5 µg/ml. Similar concentrations of galectin-3 are necessary to 

induce changes in other cells (262), suggesting that either the effects of galectin-3 we and 

others observed in tissue culture are not physiological, or that extracellular concentrations 

of galectin-3 in some tissues may be much higher than in the serum.  

 

 

 

If galectin-3 levels in a tissue are high enough to potentiate fibrocyte 

differentiation, this would suggest that high levels of galectin-3 could potentiate fibrosis 

in part by potentiating fibrocyte differentiation. Since we observed that galectin-1 also 
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potentiates fibrocyte differentiation, high levels of galectin-1 may similarly potentiate 

fibrosis.  

 Together, this work elucidates a signal and receptor used by metastatic tumor 

cells to block a response of the innate immune system. An intriguing possibility is that 

blocking LGALS3BP may decrease the ability of tumor cells to inhibit the desmoplastic 

response and metastasize. Conversely, LGALS3BP might be useful to decrease fibrocyte 

differentiation and thus decrease fibrosis. Since galectin-3 and galectin-1 potentiate 

fibrocyte differentiation, these proteins might be useful to inhibit metastasis, although 

with the danger that they might promote fibrosis. 
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Model 2. Model of breast cancer surrounded by fibrotic sheath.  
This model of pre-metastatic breast cancer shows a heterogeneous tumor composed of 
epithelial duct cells that have undergone different mutations. This tumor has been 
identified by the immune system, and quarantined behind a fibrotic sheath composed of 
fibroblasts, fibrocytes, and inflammatory macrophages, together comprising scar tissue. 
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Model 3. Model of fibrotic sheath around breast cancer becoming co-opted or 
suppressed by tumor.  
The pre-metastatic breast cancer has converted the fibroblasts and inflammatory 
macrophages into cancer associated fibroblasts and anti-inflammatory macrophages, 
both of which act as myeloid derived suppressor cells (MDSC). Increased secretion of 
galectin03 binding protein at the tumor edge inhibits fibrocyte differentiation as well, 
further weakening the scar tissue.  
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Model 4. Model of breast cancer metastasis through fibrotic sheath.  
With fibrocytes inhibited, and fibroblasts and macrophages co-opted, then cancer cells 
are free to metastasize to neighboring or distant tissues.  



138 

CHAPTER VI 

CONCLUSIONS AND FUTURE 

DIRECTIONS 

Conclusions 

Fibrosing diseases are involved in 45% of deaths in the US, and there are currently 

few FDA approved treatments for these diseases (20, 21). Chronic wounds affect more 

than 6.5 million US patients per year, and annually cost more than $25 billion to treat (17). 

Cancer is diagnosed in 1.5 million Americans annually, is involved in 25% of US deaths, 

and has an economic cost of $216 billion annually (1, 2). Metastases are responsible for 

the majority of cancer caused deaths (3). In some cases, the innate immune system can 

recognize and encapsulate tumors in a sheath of desmoplastic scar tissue (4). Thus, there 

is compelling reason to study scar tissue, and develop treatments to inhibit or promote scar 

tissue, as treatments for each of fibrosing diseases, wound healing, and cancer.  

Scar tissue is a heterogeneous mixture of fibroblasts, fibrocytes, and macrophages, 

each of which are differentially regulated by inflammatory proteases (287). Monocyte-

derived fibrocytes are found in scars (287), wound healing environments (22, 27, 28) and 

at tissue near a tumor edge (7, 8, 11). Increased fibrocyte formation correlates with 

increased scar tissue formation (185) and faster wound healing (32).  

Tryptase, thrombin, PAR-1 signaling, and PAR-2 signaling have been implicated 

in the development of fibrosis through their effects on fibroblasts (61, 67, 68, 73, 80, 87-

89, 215). Both PAR-1 and -2 have been implicated in liver fibrosis in mice (216, 217), and 

both PAR-1 knockout mice and PAR-2 knockout mice are less susceptible to both induced 
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heart disease and inflammation (218-220). Intratracheal administration of trypsin, 

tryptase, and thrombin cause inflammation, and inhibition of tryptase and thrombin 

attenuate this inflammation (63, 66, 82, 84). Inhibitors of tryptase (221-223) and thrombin 

(224), and antagonists of both PAR-1 (225) and PAR-2 (226) are patented for the treatment 

of fibrosis. Both tryptase (227) and thrombin (228) inhibitors are currently in clinical trials 

for the treatment of fibrosis.  However, while PAR-1 and PAR-2 antagonists have been 

suggested as therapeutics (229, 230), neither is currently in clinical trials. PAR-1 and 

PAR-2 thus mediate both fibroblast proliferation and fibrocyte differentiation, two major 

components of scar tissue (195, 231-233). Our work thus strongly supports and expands 

the idea that tryptase, thrombin, PAR-1 signaling, and PAR-2 signaling potentiate wound 

healing and fibrosis.  

The mechanism that triggers the exuberant deposition of scar tissue in fibrotic 

disease is an unresolved question. We have shown that tryptase and thrombin potentiate 

fibrocyte differentiation and collagen production, and that this potentiation occurs even in 

the presence of levels of serum or SAP that completely inhibit fibrocyte differentiation. 

Tryptase and thrombin potentiation appears to act directly on monocytes, and is mediated 

by PAR-2 and PAR-1, respectively. Tryptase and thrombin potentiate fibrocyte 

differentiation at biologically relevant concentrations and exposure times.  

Trypsin, tryptase, and thrombin also bias monocyte and macrophage 

differentiation towards a pro-fibrotic M2a phenotype. These proteases change the 

expression of markers on macrophages, and change the secretion profile of macrophages. 

Trypsin, tryptase, and thrombin increase fibronectin staining of macrophages and 
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fibrocytes, whether the population of cells differentiated from unpolarized, M1, or M2 

macrophages. Tryptase increases IL-4 concentration in both unpolarized and M1 

macrophages, while trypsin and tryptase lower both IL-10 and IL-12 concentration from 

M2 and M1 macrophages, respectively. Additionally, both PAR-1 agonist and PAR-2 

agonist increase the concentration of IL-4, IL-10, and IL-12 from unpolarized 

macrophages. When combined, the data indicate that these proteases bias monocyte 

differentiation towards M2a macrophages and fibrocytes, each of which is a pro-fibrotic 

and inflammatory cell. Not all proteases are pro-fibrotic, as pepsin and chymotrypsin do 

not activate PAR-1 or PAR-2 (212-214), and do not potentiate fibrocyte differentiation 

(194). These results suggest a triggering mechanism for fibrocyte-mediated wound healing 

and fibrotic lesions, where thrombin from clotting blood or tryptase from a sufficient 

amount of mast cell degranulation override SAP inhibition and initiate fibrocyte 

differentiation.   

Activation of PAR-1 and PAR-2 seem to independently effect macrophage 

differentiation. Trypsin, tryptase, and PAR-2 agonist activation of PAR-2 on macrophages 

produced higher quantities of IL-4 and lower levels of IL-10 regardless of previous M-

CSF or GM-CSF exposure. Thrombin and PAR-1 agonist activation of PAR-1 produced 

lower levels of IL-4 and higher levels of IL-10 regardless of previous M-CSF or GM-CSF 

exposure. These data suggest that activation of PAR-1 or PAR-2 triggers a slightly 

different fibrotic response in macrophages.   

That tryptase and thrombin compete with SAP suggests that the PAR-1 or PAR-2 

pathway is capable of potentiating fibrocyte differentiation in the presence of SAP. 
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Trypsin potentiates fibrocyte differentiation in the presence of SAP after a brief exposure 

(Figure 20), but not over the course of a 5-day differentiation (Figure 15). Tryptase and 

thrombin potentiated fibrocyte differentiation under all time-course, SAP, and serum 

conditions. Tryptase and trypsin appear to signal through the same receptor (73). Whether 

our results imply that different PAR-2 isoforms exist, or that PAR-2 can differentiate 

between trypsin and tryptase signaling, is unclear.  

Systemic mastocytosis involves the degranulation of mast cells throughout the 

body (234), and is associated with serious local—and moderate systemic—fibrosis (235, 

236). Mast cell degranulation causes the release of tryptase. Serum tryptase in healthy 

patients is ~2 ng/ml, while mastocytosis patients have 20 to 100 ng/ml (237, 238). Our 

observation that 4 to 56 ng/ml tryptase potentiates fibrocyte differentiation suggests that 

the fibrosis seen in mastocytosis patients may be due to tryptase inducing fibrocyte 

differentiation.  

 Fibrocytes and scar tissue are also involved in cancer metastasis. Tumors are 

composed not primarily of cancer cells but rather of associated cells which provide 

scaffolding on which the cancer cells grow. These myeloid derived suppressor cells 

promote angiogenesis and assist with metastasis by chaperoning cancer cells through the 

bloodstream (288, 289). Signals in the tumor microenvironment suppress macrophage 

activity or direct macrophages and fibrocytes to aid the tumor rather than to hinder it.  

As tumors progress, cancer cells undergo additional mutations, and progressively 

lose control over cell-cycle regulation and basic cellular control functions (91). These 

mutations can change multiple aspects of the tumor’s biology, including the milieu of 
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signals in the tumor microenvironment (290-294). These protein expression changes have 

the effect of changing the tumor cell from a more epithelial phenotype (terminally 

differentiated cells which display tissue specific markers) to a more mesenchymal 

phenotype (stem-like progenitor cells which lack tissue specific markers) (92, 93). The 

tumor itself may break and expand into adjacent tissues or into the surrounding blood 

vessels (5). Thus, metastasis changes the protein expression profile of the cancer cells, the 

tumor, and of the surrounding stromal cells (295). These stromal cells include 

macrophages, fibrocytes, and fibroblasts, which can be essential for tumor maintenance, 

signaling, and metastasis (296-299). LGALS3BP concentration is upregulated in the 

serum of patients with metastatic breast cancer and melanoma.   

MDA-MB 231 secretes more LGALS3BP compared to MCF-7 and DCIS.com cell 

lines (265-271), and MDA-MB 435 has high levels of LGALS3BP (272). The MDA-MB 

435 cell line has previously been classified as both a breast cancer cell line, but is currently 

considered a melanoma cell line (105, 106). Breast cancer (273, 274), ovarian cancer (275-

278), and melanoma (279-281) each secrete increasing amounts of LGALS3BP during the 

progression to metastasis (137, 282). Mouse knockouts of LGALS3BP show higher 

circulating levels of TNF-alpha, IL-12, and interferon-gamma, suggesting a definite role 

in regulating the immune system (151).  

LGALS3BP produced by cancer cells is differentially glycosylated due to genetic 

changes affecting the endoplasmic reticulum of cancer cells, and due to the altered 

biochemistry and metabolic environment within cancer cells (129). LGALS3BP produced 

by cancer cells has a greater affinity for CD209 (DCSIGN) receptors (129). While cancer 
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conditioned media containing LGALS3BP inhibits fibrocyte differentiation in mouse 

spleen cells, the same media does not inhibit fibrocyte differentiation from CD209 -/- 

spleen cells.  LGALS3BP secreted by MDA-MB 231 breast cancer cells is not 

alternatively spliced or prematurely truncated. While cancer conditioned media potently 

inhibits fibrocyte differentiation, and immunodepleting LGALS3BP abrogates this 

inhibition, recombinant LGALS3BP produced in CHO cells inhibits fibrocyte 

differentiation to a smaller degree. 

While fibrocytes appear to inhibit carcinoma metastasis, fibrocyte-like cells can 

act as myeloid derived suppressor cells (MDSC) in Ewing’s sarcoma, increasing 

metastasis (300). Further, LGALS3BP is a negative indicator of survival in carcinomas, 

but is a positive indicator of survival in Ewing’s sarcoma (301). There role of LGALS3BP 

and fibrocytes in cancer metastasis is far from settled.  

Galectin-3 is a widely expressed protein secreted by epithelial cells. Galectin-3 is 

an upregulated bio-marker in heart disease specifically and in other fibrosing diseases 

generally (284). While Galectin-3 concentration in the blood is 100-900 ng/ml (261), we 

observed fibrocyte differentiation at 2.5 to 5 µg/ml. Similar concentrations of galectin-3 

are necessary to induce changes in other cells, suggesting that local concentrations of 

galectin-3 may be much higher in order to potentiate fibrocyte differentiation in tumor 

stroma desmoplasia (262). 

Galectin-3 knockout mice have decreased granulocyte number, increased 

susceptibility to S. pneumonaie infection, and lack macrophage activation and chemotaxis 

under stimulation by IL-4 and IL-13, and have fewer atherosclerotic lesions of the heart 
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(151). Additionally, knockout mice have lower numbers of leukocytes and monocytes 

after thioglycollate broth administration than do control mice (151).  

In this dissertation, I have demonstrated that the CM from cancer cell lines is 

capable of preferentially inhibiting fibrocyte differentiation. Metastatic cancer lines tend 

to inhibit fibrocyte differentiation more than benign cancer cell lines. LGALS3BP is 

upregulated in metastatic cancers (including breast cancers and melanomas) and is the 

factor that inhibits fibrocyte differentiation in the CM of MDA-MB 231 breast cancer cells 

and MDA-MB 435 melanoma cells. Physiological concentrations of LGALS3BP inhibit 

fibrocyte differentiation, and physiological concentrations of galectin-3 potentiate 

fibrocyte differentiation. Additionally, LGALS3BP is upregulated at the interface between 

breast tumors and scar tissue, and LGALS3BP concentration is highest at portions where 

the fewest fibrocytes are present.  

I have also demonstrated that physiological concentrations of proteases potentiate 

fibrocyte differentiation through the PAR-1 and PAR-2 receptors. Trypsin, tryptase, and 

thrombin compete with SAP and human serum to potentiate fibrocyte differentiation. 

Additionally, trypsin, tryptase and thrombin potentiate fibrocyte differentiation over 

physiological time ranges. These proteases are upregulated in both wound healing and 

fibrosing diseases.  

Fibrosing diseases are involved in 45% of deaths in the United States. Cancer is 

involved in 25% of deaths in the United States. Even healthy individuals regularly need 

to heal wounds, and treatment of wounds costs the United States about $25 billion 

annually. This dissertation approaches these diseases by using LGALS3BP, produced by 
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metastatic cancers, as a possible treatment for fibrosing diseases. More specifically, this 

dissertation analyzes the effect of LGALS3BP, which is upregulated in cancer, and 

proteases, which are upregulated in fibrosis and wound healing, on the innate immune 

system in humans and mice. Future work will expand the knowledge about the 

mechanisms of LGALS3BP fibrocyte inhibition and protease-induced fibrocyte 

potentiation, with the ultimate goal of developing treatments for metastatic cancers and 

fibrosing diseases.  
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Future Directions 

 Several interesting avenues remain to be explored for both the role of fibrocytes 

and cancer and the role of proteases in scar tissue formation.   

 One future project idea would be to determine which glycosylated amino acids 

on LGALS3BP are necessary to inhibit fibrocyte differentiation, and determine whether 

these amino acids are only glycosylated in cancer cells. It is unknown how LGALS3BP 

acquires altered glycosylations within the cancer cell. Does the altered chemistry and 

metabolism within cancer cells change LGALS3BP’s glycosylations, or do cancer cells 

attach different glycosylations to LGALS3BP through mutations in the ER, or both? 

Additionally, linking specific mutations in cancer metabolism or ER function to these 

changes in LGALS3BP metabolism could provide a new biomarker for metastatic 

potential in cancer patients. Alternatively, if the metabolic environment inside the cancer 

cell is responsible for the glycosylation changes to LGALS3BP, that too would 

constitute a novel mechanism for the treatment of cancer.  

Recombinant LGALS3BP is a difficult protein to produce, both in our labs and in 

other labs (Private communication, R&D Systems). However, recombinant production 

of LGALS3BP would allow us to analyze differentially glycosylated LGALS3BP, and 

how these glycosylated residues interact with CD209, or other receptors with which 

LGALS3BP might interact.  

Another possible project would be to analyze whether LGALS3BP knockout 

mice are deficient in metastasis, or whether galectin-3 knockout mice are resistant to 

fibrosis. Both LGALS3BP and galectin-3 mediate fibrocyte differentiation, and using a 
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different model organism would help explain how fibrocytes, LGALS3BP, and galectin-

3 operate in a disease model of cancer and fibrosis.  

LGALS3BP, or molecules with mimic LGALS3BP, could be useful therapeutics 

for fibrosing diseases or metastatic cancers. Since LGALS3BP is upregulated by 

metastatic cancers, and increased concentrations of LGALS3BP are associated with 

decreased 5-year survival, then LGALS3BP is an obvious target for antibody therapy in 

patients with cancer. Similarly, LGALS3BP could be a potential therapeutic for 

fibrosing diseases, for which there currently are few FDA treatments.  (20, 21) Even if 

the use of LGALS3BP directly does not lead to a useful treatment for either fibrosing 

diseases or cancer, understanding of this new element of immune evasion would be an 

important step in basic immunology.   

MDA-MB 231, MDA-MB 435, and SW480 cell lines secrete factors into their 

conditioned media that potentiate fibrocyte differentiation. Both SW480 CM and 

unknown protein(s) in 231 and 435 CM potentiate fibrocyte differentiation through an 

unknown mechanism. An unknown factor secreted by the U87-MG brain cancer cell line 

appears to have a mild inhibitory effect on fibrocyte differentiation. While it is certain 

that the potentiating factor in SW480, MDA-MB 231, and MDA-MB 435 is a protein, it 

appears resistant to heat treatment.  

We have shown that 231 CM, 435 CM, and LGALS3BP inhibit fibrocyte 

differentiation. If monocytes are not differentiating into fibrocytes, what type of cells are 

they differentiating into? Monocytes are components of the innate immune system, but 

what about the effect 231 CM, 435 CM, or LGALS3BP  has on the adaptive immune 
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system? Does cancer modulate the markers for macrophages or dendritic cells in 

tumors? Does cancer CM modulate T-cell proliferation or secretion profiles? 

Another possible project would be to research the PAR signal transduction 

cascade. While inhibitors of proteases and PAR are already patented, the specific 

signaling cascade that promotes fibrocyte differentiation within the cell is largely 

unknown. Modulators of this pathway could be used a potential therapeutics, and could 

be a patentable invention.  
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APPENDIX A 

SAP DOES NOT INFLUENCE DERMAL OR LUNG FIBROBLAST 

PROLIFERATION OR PROTEOME AS MEASURED BY 2D GEL 

ELECTROPHORESIS 

 

Introduction 

 Wound healing and fibrosis are major medical concerns. Approximately 1 in 250 

people will require medical treatment for a wound in a given year (15). Fibrosing 

diseases—including heart disease, pulmonary fibrosis, kidney fibrosis, and liver 

cirrhosis—are associated with 45% of deaths in the United States (20). In fibrosing 

diseases, scar tissue buildup in and on organs reduces their function (20). Fibrosing 

diseases can reduce the quality of life or the length of life for patients.  

 Monocytes are a type of immune system cell involved in wound healing and 

fibrosis. Monocytes are circulating cells that are recruited to wounds and sites of tissue 

injury by chemokines (25, 26).  Monocytes enter the wound and differentiate into a 

number of monocyte-derived cell types, one of which is the fibrocyte (27, 28).  Fibrocytes 

are fibroblast-like monocyte-derived cells which are CD45 positive, and express collagen 

(27). Fibrocytes are involved in forming collagen scars in both wound healing and fibrosis 

(29, 30).  

 Fibroblasts are a tissue resident cell which divide more quickly and secrete more 

collagen in a wound or site of tissue injury (302).  
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Wound healing and fibrosis are major medical concerns tied together by the 

process of scar tissue formation (303). In scar tissue formation, fibroblasts and fibrocytes 

secrete collagen to form scar tissue (304).  

Serum amyloid P (SAP) is a protein which inhibits the differentiation of monocytes 

to fibrocytes (36). SAP slows wound healing when added to wounds, and removing SAP 

from wounds speeds wound healing (32). SAP’s affect on fibroblasts is unknown. Here 

we investigate whether SAP has a direct affect on two different types of fibroblasts from 

adult tissues, dermal fibroblasts and lung fibroblasts.  

 

Materials and Methods 

Fibroblasts 

 Normal adult lung fibroblasts (Lonza, Basel, Switzerland) and normal adult dermal 

fibroblasts (Lonza) were cultured in growth medium (RPMI supplemented to 10% with 

U.S. origin fetal bovine serum (FBS) (Genessee scientific, San Diego, CA) and 100 U/ml 

penicillin (Lonza) and 100 μg/ml streptomycin (Lonza) and 2mM glutamine (Lonza)). At 

approximately 40% confluency the growth media was removed, cells were gently washed 

three times with 1x PBS while still adhered to the plate, and protein free media (PFM) 

(Composed of Fibrolife basal media (Lifeline Cell Technology, Walkersville, MD) 

supplemented with 10 mM HEPES (Sigma, St. Louis, MO), 1× non-essential amino acids 

(Sigma), 1 mM sodium pyruvate (Sigma), 2 mM glutamine (Lonza), 100 U/ml penicillin 

and 100 μg/ml streptomycin (Lonza))  was added to the cells, and where indicated was 

supplemented with 10 µg/ml of Serum Amyloid P (SAP) (EMD Millipore, Billerica, MD) 
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or 10 µg/ml bovine serum albumin (BSA) (Sigma). Fibroblasts were allowed to remain in 

PFM for the indicated time, and either counted by hemocytometer, lysed, or fixed and 

stained for immunofluorescence.  

 

Phase contrast 

 Fibroblasts were photographed at 24 and 48 hours after the addition of PFM or 

PFM supplemented with 10 µg/ml SAP (EMD Millipore) in 24 well tissue culture treated 

plates (BD biosciences, San Jose, CA) using a Nikon diaphot inverted tissue culture 

microscope (Nikon, Tokyo, Japan) and a Nikon D1X SLR camera (Nikon).  

 

SAP purification 

 SAP was purified as previously described (36), with the following modifications. 

Human serum from blood donors was mixed 1:1 with PBS. This serum was mixed with 

gentle rolling in a 10:1 ratio with SP sepharose beads (GE healthcare, Piscataway, NJ) in 

20 mM Tris, 140 mM NaCl, 2 mM CaCl2 pH 8.0 buffer and eluted as previously described 

(36). SAP purification was checked by silver stain on an SDS-PAGE gel and concentration 

was assessed by absorbance at 280 nm.  

 

PBMC SAP assays 

 SAP (calbiochem), SAP (kind gift of Promedior biosciences), and purified SAP 

from human serum were tested to ensure that they inhibited monocyte to fibrocyte 
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differentiation as previously described (33). PBMC were acquired, stained, and counted 

as previously described (34).  

 

 Proliferation assay 

 SAP was depleted from serum as previously described (36) with the following 

modifications. Undiluted sterile filtered non-blood type specific human serum, tested 

negative for hepatitis A and B and HIV I and II (Lonza) was mixed with SP sepharose 

beads (GE healthcare) in 20 mM Tris, 140 mM NaCl, 2 mM CaCl2 pH 8.0 buffer. A serum 

control was mixed solely with buffer. Beads were removed by five minutes of 

centrifugation at 200 x g. Human serum (Lonza) was also supplemented with 30 µg/ml of 

recombinant SAP (kind gift of Promedior) or purified native SAP. 

 Fibroblasts growing in RPMI (supplemented to 10% with FBS (Genessee 

scientific) and 100 U/ml penicillin (Lonza) and 100 μg/ml streptomycin (Lonza) and 2mM 

glutamine (Lonza)) were washed twice with 1x PBS trypsinized with 1x porcine trypsin 

(Sigma). These fibroblasts were mixed with growth medium and centrifuged at 300 x g 

twice, before being incubated on ice and counted using a hemocytometer.  

  3,000 cells were placed in each well of a 24-well plate with 1 ml of growth 

medium supplemented with 10% human serum or Fibrolife supplemented with fibroblast 

growth additives (Lifeline), where indicated. Fibroblasts were trypsinized and counted on 

a hemocytometer every 24 hours for the following nine days.  
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 In the two day PFM proliferation assays, growth media was removed from cells 

around 40% confluency. After three washed with 1x PBS, PFM or PFM supplemented 

with SAP was added to fibroblasts. All other details are identical to those above.  

 

 

 

One dimensional gels 

 After two days in protein free media (PFM) or PFM supplemented with SAP 

(EMD Millipore)to 10 µg/ml, fibroblasts were lysed with 6x SDS sample buffer with 2-

mercaptoethanol. At the same time, fibroblast conditioned media was mixed with 6x SDS 

sample buffer with 2-mercaptoethanol. Samples were heated to 95 degrees for 10 minutes 

and then loaded onto a 4-20% SDS-PAGE reducing gel (Bio-Rad, Hercules, California) 

at 130V for 50 minutes. Gels were silver stained and imaged.  

 

Two dimensional gels 

 Fibroblasts in a 6-well plate (BD Falcon) were washed three times with 1x PBS 

and placed in PFM or PFM supplemented with BSA (Sigma) or SAP (Calbiochem) to 10 

µg/ml. After 48 hours fibroblasts were lysed with 400 ul 2% (w/v) CHAPS buffer and 

removed from the plate with a rubber policeman. Cell lysate was centrifuged at 18,000 x 

g in 4 degrees for 20 minutes, and the bottom 100 ul of lysate was discarded. 

Approximately 35 µg of protein from the cell lysates were concentrated by precipitation 

with methanol/chloroform (305).   
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 For lung fibroblasts, approximately 12 µg of protein was dissolved in 1 ml IEF 

buffer containing 8.5 M urea, 4% CHAPS, 100 mM DTT, 18mM Destreak, and 10 ul 

carrier ampholytes (Calbiochem). 125 ul of buffer was used to resuspend the protein and 

actively rehydrate an immobilized pH gradient IPG dry strips (Bio-Rad, pH 4-7, 7 cm) for 

12 hours at room temperature and 50V. The proteins were focused using a Protean IEF 

cell (Bio-Rad) using a four step program: 15 minutes at 250V, 2 hour linear gradient to 

4000V, a hold at 4000 V until 16,000 VH was reached, and finally a 500 V hold. After 

focusing, the IPG strips were equilibrated in a solution containing 6M urea, 75 mM Tris, 

30% (v/v) glycerol, 2% SDS (w/v), 0.002% (w/v) Bromophenol blue and 10 mg/ml DTT 

for 15 minutes at room temperature. The strips were transferred to a second equilibration 

buffer (same composition as the first buffer) replacing DTT with Iodoacetamide (25 

mg/ml). The strips were then transferred to the top of a top of a 12% polyacrylamide slab 

gel (Bio-Rad) and anchored in place with low melting temperature agarose (0.5%). The 

proteins were separated until the dye reached the bottom of the gel. Following this, the 

gels were fixed and stained as by a silverquest stain kit (Invitrogen, Grand Island, NY), 

following the manufacturer’s instructions.  

For the dermal fibroblasts, the 2d gels were run using the same protocol with the 

following adjustments. The proteins were dissolved in a solution containing 7M Urea, 2M 

Thiourea, 4% CHAPS, 18mM Destreak, 0.5% Pharmalyte (pH3-10) and used to rehydrate 

immobilized pH gradient IPG dry strips (GE Healthcare, Piscataway, pH 3-10NL, 13 cm) 

overnight at room temperature. The proteins were focused according to manufacturer’s 

recommendations on an IPGPhor (GE Healthcare) using a four step program (1 hour at 
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500 volts, 1 hour at 1000 volts, 2.5 hour gradient to 8000 volts and hold there to reach a 

total of 25,000 volt-hours). The strips were then transferred to the top of a 12% 

polyacrylamide slab gel (Laemmli) and anchored in place with low melting temperature 

agarose (0.5%). A small paper tab saturated with molecular weight markers (BioRad, 161-

0317) was aligned beside the strip. The proteins were separated at 40 mAmps per gel until 

the dye front reached the bottom of the gel. 

 

Immunofluorescence 

 PFM (or PFM supplemented to 10 µg/ml with SAP or BSA) was removed from 

fibroblasts on 8-well EZ slides (EMD Millipore) after the amount of time indicated (24, 

48, or 72 hours) and the adhered cells were washed twice in 1x PBS. Fibroblasts were then 

fixed in freshly prepared 4% paraformaldehyde (Electron microscopy science, Hartfield, 

PA) for 10 minutes. Fibroblasts were then permeabilized with 0.1% triton (w/v, Fisher) in 

1x PBS. Wells were gently washed with 1x PBS/tween (0.05% w/v) twice, and were 

allowed to sit for 10 minutes in PBS/tween three times.  

 Rabbit polyclonal antibody against EDF-1’s N-terminal region (Aviva systems 

biology, San Diego, CA) was added at 5 µg/ml in 4% BSA/PBS (w/v, Sigma) for 2 hours 

after blocking the fibroblasts for 1 hour in 4% BSA/PBS. Cells were washed as above, 

and 2.5 µg/ml biotinylated donkey anti-rabbit IgG secondary antibody (Jackson 

immunoresearch, West Grove, PA) was added in 4% BSA/PBS. Cells were washed as 

above. A streptavidin / alexafluor conjugate at 2 µg/ml was added in 4% BSA/PBS. Cells 

were washed as above, and a coverslip was mounted on the slide with vectashield 
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mounting media, with DAPI (Vector, Burlingame, CA). Slides were imaged on an IX70 

inverted microscope (Olympus, Center Valley, PA) and a coolsnap HQ2 camera 

(Actimetrics, Wilmette, IL).  

 Immunofluorescence for vimentin and hsp90b1 was performed as above, with the 

following changes. Monoclonal mouse anti-hsp90b1, V9 clone (Sigma) was added to cells 

at 1 µg/ml in 1x PBS with no blocking, and rabbit polyclonal anti-hsp90b1 (Genetex, 

Irvine, CA) was added to cells at 5 µg/ml in 1x PBS with no blocking. 2 µg/ml Alexafluor 

488 goat anti-mouse or Alexafluor 488 goat anti-rabbit (Molecular probes, Eugene, OR) 

were added to the cells in 1x PBS. Slides were mounted as above, and imaged on a 

microphot-fx fluorescent microscope (Nikon) with a Nikon D1X SLR camera (Nikon). 

 

Results 

 SAP, a pentameric protein found at approximately 30 µg/ml in human blood, 

inhibits the differentiation of monocytes to into fibroblast-like cells called fibrocytes. SAP 

also slows wound healing when added to a wound, and the absence of SAP speeds wound 

healing. We wanted to examine the effect of SAP on another type of wound healing cell 

found ubiquitously in wounds, the fibroblast. Fibroblasts in wounds proliferate and secrete 

more collagen.  

 

 

 

Fibroblast morphology does not change after exposure to SAP 
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 To determine if Serum Amyloid P (SAP) had any effect on the morphology of 

fibroblasts, SAP was added to protein-free culture media for both adult lung and adult 

dermal fibroblasts. The addition of SAP at a biological concentration of 10 µg/ml for 24 

or 48 hours did not result in any morphological changes to the fibroblasts when compared 

to the control cells (Figure 48 A-B).  

 

Fibroblast secretome does not appear to change under SAP stimulation, but proteome 

analysis reveals potential differences 

 To determine if Serum Amyloid P (SAP) might have subtler effects on either the 

proteome or secretome of fibroblasts, SAP was added to fibroblasts for 48 hours. The 

control cells were lysed by the addition of 2x sds sample buffer and electrophoresed on an 

SDS-PAGE gel. Conditioned media from SAP treated and control fibroblasts was also 

analyzed via gel. Close examination of the band patterns revealed no differences between 

SAP treated and control cells (Figure 49).   

 Fibroblasts were also analyzed by two-dimensional gel electrophoresis on two 

different gel apparatus platforms to determine if SAP treatment changed the proteome of 

either adult lung or adult dermal fibroblasts. Two dimensional gels were run for fibroblasts 

treated with no protein, SAP, and bovine serum albumin (BSA) at 10 µg/ml. The 2d gels 

were closely analyzed using flicker software for spots that moved or changed in intensity, 

indicating proteins that changed in size, isoelectric point (PI), concentration, or in which 

post-translational modifications were adorning the protein. Very few regions of difference 

were present between the gels of cells not treated with protein or treated with SAP or BSA. 
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Gel spots were excised and identified by mass spectrometry, and spots that were identified 

as SAP or BSA breakdown products were excluded. In the adult lung fibroblasts, 

endothelial differentiation factor 1 (EDF-1) was identified as a candidate protein to be 

downregulated by SAP (Figure 50). In the adult dermal fibroblasts, both vimentin and 

hsp90b1 were identified as candidate proteins to be downregulated by SAP (Figure 50).    

 

Immunofluorescence does not show an increase in EDF-1, HSP90B1, and Vimentin 

staining intensity under SAP stimulation 

 To further analyze these potential protein hits, fluorescent antibody staining was 

used to visualize these proteins within the cell. Fluorescent staining of each of EDF-1 at 

24, 48, and 72 hours revealed no large scale differences in protein intensity or localization 

with the cell after SAP treatment when compared to the control adult lung cells (Figure 

51). For adult dermal cells, staining for both vimentin and HSP90b1 revealed no 

differences in intensity or cellular localization (Figure 51). These results suggest that SAP 

does not affect the proteome of lung or dermal fibroblasts under these experimental 

conditions.  

 

SAP does not increase fibroblast proliferation 

Previous wound healing research demonstrated that fibroblasts proliferate in a 

wound as part of the healing process. Previous research has also suggested the SAP does 

not affect fibroblast proliferation after short term exposure (306). To test whether SAP 

influences fibroblast proliferation during a long term exposure, SAP was added to both 
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human and dermal fibroblasts in a defined protein media. All SAP used during this paper 

was additionally tested on PBMC to ensure that the SAP was biologically active and 

inhibited the differentiation of monocytes to fibrocytes (Figure 52).  

To test SAP’s affect on fibroblasts in a longer proliferation assay, adult dermal and 

lung fibroblasts were grown in the presence of human serum containing different 

concentrations of SAP.  SAP was depleted from (Figure 53) and added to human serum. 

Both adult dermal and adult lung fibroblasts were allowed to proliferate for 9 days in 

serum containing different quantities of SAP. Counts of these fibroblasts revealed no 

significant differences between SAP treated and control cell proliferation (Figures 54 and 

55). Culturing fibroblasts in a defined, serum-free media supplemented with 30 and 60 

µg/ml SAP also revealed no changes in proliferation (Figures 56 and 57).  

Taken together, these results suggest the SAP does not have an effect on the 

morphology, proteome, secretome, or proliferation of adult dermal or lung fibroblasts 

when measured using these assays. These results suggest that SAP’s potent activity in 

inhibiting wound healing does not act through fibroblasts directly, and instead acts solely 

through fibrocytes, acts indirectly on fibroblasts, or acts on fibroblasts when mixed with 

other wound healing cytokines.  
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 SAP inhibits the differentiation of monocytes to fibrocytes, and slows wound 

healing when added to a wound. SAP’s affect on fibroblasts in a wound environment is 

unknown. We analyzed SAP’s affect on fibroblasts by examining adult lung and dermal 

fibroblast’s morphology, secretomes, proteomes, and proliferation by a series of visual 

inspections, gel analysis, and proliferation assays. In each case, SAP treatment of 

fibroblasts at biological concentrations did not yield differences in our assays.  

 These results suggest that in a wound, SAP either exerts its activity on fibrocytes 

or exerts its activity on fibroblasts only when activated by secondary signals. 

 

Discussion 
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Figures 

 
 

 
Figure 48. Fibroblasts under SAP stimulation show no morphological differences.  
(A) Lung fibroblasts and (B) dermal fibroblasts exposed to 10 µg/ml SAP for two days 
show no obvious morphological differences when compared to SAP-free controls. Images 
are representative of six separate replicates for both lung and dermal fibroblasts. Bar is 30 
microns.  

SAP Control B 

SAP Control 
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Figure 49. SAP stimulation causes no obvious change to fibroblast conditioned media 
or proteome when silver stained on an SDS-page gel.  
Band patterns from SAP stimulated (A) lung and (B) dermal fibroblasts and conditioned 
media on a silver stained SDS-page gel do not appear different when compared to band 
patterns from SAP-free fibroblasts and conditioned media. SAP was added to both dermal 
and lung fibroblasts at 10 µg/ml for 48 hours.  
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Figure 50. Two dimensional gel analysis reveals candidate proteins differences in 
SAP treated fibroblast proteomes.  
After 48 hour 10 µg/ml SAP stimulation, lung and dermal fibroblasts proteomes were 
separated by 2-D gel electrophoresis. A comparison of gels from (A) SAP-free controls 
and (B) SAP-treated samples in protein-free media or 10 µg/ml BSA, followed by mass 
spectrometry, revealed EDF-1 in lung fibroblasts and HSP-90b1 and vimentin in dermal 
fibroblasts as proteins potentially up or down-regulated by SAP.  
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Figure 51. Immunofluorescence for vimentin, HSP-90b and EDF-1 reveal no obvious 
differences between fibroblasts exposed to SAP.  
Immunofluorescence of fibroblasts treated with 10 µg/ml SAP or BSA reveals no 
significant differences for either (A-C) EDF-1, (D-E) vimentin, or (F) HSP-90b1. Bar = 
30 microns.  
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Figure 52. SAP inhibits monocyte to fibrocyte differentiation.  
SAP, as previously described, inhibits the differentiation of monocytes to fibrocytes. Mean 
± SEM, n=3.  
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Figure 53. SAP is depleted from human serum.  
Human serum was depleted of SAP, and was run a 4-20% SDS-page gel. Western blots 
were probed with anti-SAP antibody.  
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Figure 54. Lung fibroblast proliferation is not significantly affected by SAP 
concentration in human serum.  
Human serum was depleted of SAP and supplemented with 10, 30, or 60 µg/ml SAP. This 
serum was used to supplement RPMI to 10% total concentration (v/v). Fibroblasts grown 
in 10% serum which had been depleted or supplemented with SAP showed no significant 
changes in proliferation over 1-8 days when proliferation was measured by resuspending 
fibroblasts and counting them on a hemocytometer. Mean ± SEM, n=4. 
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Figure 55. Dermal fibroblast proliferation is not significantly affected by SAP 
concentration in serum.  
Dermal fibroblasts were allowed to proliferate and were counted as in figure 7. Mean ± 
SEM, n=4. 
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Figure 56. Lung fibroblasts proliferation in serum-free media is not affected by SAP 
concentration.  
Lung fibroblasts were grown in (A-B) serum-free media containing fibroblast growth 
factors or fetal calf serum (C-D) and supplemented with 30 or 60 µg/ml SAP. Media was 
supplemented with TGF-beta where indicated (B, D). Fibroblasts were counted every 48 
hours. 
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Figure 57. Dermal fibroblasts proliferation in serum-free media is not affected by 
SAP concentration.  
Dermal fibroblasts were grown in (A-B) serum-free media containing fibroblast growth 
factors or fetal calf serum (C-D) and supplemented with 30 or 60 µg/ml SAP. Media was 
supplemented with TGF-beta where indicated (B, D). Fibroblasts were counted every 48 
hours. 
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APPENDIX B 

MCF-7 CONDITIONED MEDIA SLOWS THE PROLIFERATION OF MDA-MB 

231 AND MDA-MB 435 CELLS 

 

Introduction 

 How tissues regulate their size is an important and fundamental problem in 

biology. Very little is known about the mechanism(s) that tissues use to regulate their size. 

While tissue size regulation is an important problem in human biology, population size 

regulation is an important problem for single celled organisms, such as bacteria or 

amoebas (307). The size of tissues and the density of single-celled organisms are both 

products of the total number of cells present, and the proliferation of those cells (307). 

Secreted molecules which slow proliferation in the cell population are called chalones 

(307). To date, the only chalone that has been identified to regulate the size of a tissue in 

humans is myostatin for muscle tissue (307).  

 While cancer is not a normal human tissue, there is some evidence that cancer 

regulates the overall number of cancer cells in the body. Sometimes, after a tumor is 

removed by surgery, cancer cells in distant metastases will proliferate and increase in size 

(308, 309). The surgery-induced metastasis growth occurs in both melanoma (310) and 

breast cancer (311, 312). That removing a large number of cancer cells from the body (in 

the form of the primary tumor) can cause a proliferation increase in remaining cancer cells 

suggests that cancer may regulate the total number of cancer cells in the body. Because 

these metastases are in distant tissues from the primary tumor, it also makes sense that this 
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hypothetical factor would have to be a soluble, secreted factor that travels through the 

bloodstream or the lymphatic system.  

 We wanted to determine if secreted factors from cancer could slow the growth of 

either that same cancer, or other cancers.  

 

Materials and methods 

Cell lines  

HEK-293 (250) cells (from the ATCC, Manassas, VA), normal adult lung 

fibroblasts (Lonza, Basel, Switzerland), normal adult dermal fibroblasts (Lonza), MCF-7 

(110) (Kind gift of Dr. Deanne Wallis), MDA-MB 231 (103) and MDA-MB 435 (105) 

and DCIS.com (111) and HELA cells (313) (kind gifts of Dr. Weston Porter) were cultured 

in growth medium (DMEM supplemented to 5% with U.S. origin fetal bovine serum 

(FBS) (Genessee scientific, San Diego, CA) and 100 U/ml penicillin (Lonza) and 

100 μg/ml streptomycin (Lonza) and 2mM glutamine (Lonza)). 

Each tumor cell line was tested for mycoplasma contamination using a PCR 

detection kit (MDBioproducts, St. Paul, MN) following the manufacturer’s instructions, 

and all work was done with cell lines containing undetectable levels of mycoplasma.  

 

Chalone proliferation experiments 

 Each experiment was broken into two stages. In the 1st stage, cells were used to 

generate conditioned media. For the 1st stage, all cells to be used for generating 

conditioned media were grown to ~80% confluency, and their media was removed and 
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replaced with protein-free media (PFM) (Composed of Fibrolife basal media (Lifeline Cell 

Technology, Walkersville, MD) supplemented with 10 mM HEPES (Sigma, St. Louis, 

MO), 1× non-essential amino acids (Sigma), 1 mM sodium pyruvate (Sigma), 2 mM 

glutamine (Lonza), 100 U/ml penicillin and 100 μg/ml streptomycin (Lonza)). The cells 

were allowed to condition this protein-free media for 48 hours, after which the media was 

removed from the cells and centrifuged at 1000 x g for 10 minutes to pellet any cells.  

In the 2nd stage, this conditioned media was placed on a different set of cells, which 

were then measured for proliferation. This conditioned media was added to 2nd stage cells 

at the ratios indicated with DMEM, supplemented with FCS to 5%, as described above.  

2nd stage cells were allowed to grow for the indicated length of time, then counted.  

 

Cell counting 

 The 2nd stage cells were then imaged by an InCell 2000 microscope (GE 

Healthcare) and then counted by the image analysis program CellProfiler (200). Using 

either a 4x or a 10x lens, most of the surface area of a 96-well plate’s well was imaged, 

and these non-overlapping images were counted by different CellProfiler pipelines 

optimized to recognize the various morphologies of each of the indicated cell types. The 

CellProfiler pipelines are in the supplemental methods section.  
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 Conditioned media from MCF-7 cells was concentrated using a 10 kDa filter, and 

buffer exchanged using 20 mM sodium phosphate buffer. This was loaded on a 5 ml 

MonoQ anion exchange column on an AKTA chromatography system (GE Healthcare, 

Piscataway, NJ). The column was washed with 6 ml of 20 mM NaPO4 pH 7.4 buffer (first 

6 fractions), and bound proteins were then eluted with a 14 ml gradient of 0 to 0.3 M NaCl 

in 20 mM NaPO4 pH 7.4, collecting 0.5 ml fractions. Serial doubling dilutions of fractions 

were then mixed with MDA-MB 231 breast cancer cells for 72 hours, after which the cells 

were counted as above.  
 

Results 

 How tissues regulate their size is, for the most part, unknown. Secreted factors that 

regulate population size in cells are known as chalones. A chalone, myostatin, regulates 

the overall size of a muscle (307). However, no similar chalone has been identified in any 

other human tissue (307).  

 After a tumor is removed by surgery, distant metastases will sometimes increase 

in size due to proliferation of metastatic cancer cells (308, 309). Primary tumors visible to 

surgeons contain many more cancer cells than metastases. That metastatic cancer cells 

increase their proliferation rate following the removal of many cancer cells suggests that 

certain cancers may regulate the total number of cells in a manner similar to a normal 

tissue.  

 To determine if cancer cells secrete a factor that inhibits their own proliferation, 

we used cell lines to condition media (CM), and then placed that media onto cells of the 

Purification of CM 
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same type that were used to generate the CM. CM from normal adult lung fibroblasts, 

normal adult dermal fibroblasts, DCIS.com non-metastatic breast cancer cells, MCF-7 

non-metastatic breast cancer cells, MDA-MB 231 metastatic breast cancer cells, and 

MDA-MB 435 metastatic melanoma cells failed to slow the proliferation of the same type 

of cell at a 10% concentration of CM (Figure 58). DCIS.com CM slowed the proliferation 

of DCIS.com cells at a 50% concentration of CM, and a 100% concentration of CM from 

MDA-MB 231 cells slowed the proliferation of MDA-MB 231 cells. However, the 

concentrations of secreted factors in 50% and 100% CM would be unlikely to be reached 

in the bloodstream of a patient, and thus would be unlikely candidates for factors that 

could inhibit the proliferation of distant metastases in a cancer patient’s body. At 50% and 

100% concentrations of CM, nutrient deprivation and waste product accumulation could 

also slow the proliferation of cells.  

To determine if lower concentrations of CM could inhibit the proliferation cells, 

we took CM from 1st stage, CM-generating cells and added it to different types of 2nd 

stage, CM recipient cells, and measured the proliferation of these 2nd stage cells. CM from 

fibroblasts and DCIS.com cells failed to slow the proliferation of the metastatic cell lines 

MDA-MB 231 and MDA-MB 435 (Data not shown). However, MCF-7 CM at low 

concentrations slowed the proliferation of both MDA-MB 231 and MDA-MB 435 cells, 

even at low concentrations of CM (Figure 59). This effect was specific to MDA-MB 231 

and MDA-MB 435 cells, as MCF-7 CM did not slow the growth of adult lung fibroblasts, 

adult dermal fibroblasts, HEK-293 cells, DCIS.com cells, MCF-7 cells, or HELA cells 

derived from cervical cancer (Figure 59). These results suggest that the non-metastatic 
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breast cancer cells may secrete a factor that, at relatively low concentrations of CM is 

capable of slowing the growth of metastatic breast and melanoma cells.  

To see if the proliferation inhibiting factor in MCF-7 CM could be purified, CM 

was concentrated using a 10 kDa filter and placed on an anion exchange column. The 

fractions eluted from the column were then tested to see if they inhibited the growth of 

MDA-MB 231 cells. Fraction #16 inhibited the growth of MDA-MB 231 cells at 50% and 

10% concentrations, but failed to do so at the 25% concentration (Figure 60).  

Taken together, these results suggest that a secreted factor greater than 10 kDa 

from the non-metastatic breast cancer cell line MCF-7 CM modestly and preferentially 

inhibits the proliferation of metastatic breast and melanoma cells.  

Discussion 

Surgical removal of a primary tumor can sometimes lead to an increase in the 

proliferation of metastatic cells and the size of metastases (308, 309). This increase in size 

suggests that cancer cells may regulate their total population size within a human body by 

using a secreted, soluble factor, or chalone (307). Conditioned media from non-metastatic 

breast cancer cells can slow the proliferation of metastatic breast cancer and metastatic 

melanoma cells.  

“Mutational load” is a measurement of the total number of mutations in a cell. The 

mutational load of metastatic cells tends to be higher than of non-metastatic cells (314). 

These mutations lead to metastatic cancer cells that have a different metabolic 

environment and proteome than either normal tissue cells or non-metastatic cancer cells 
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(315, 316). That metastatic cancer cells have different proteomes suggests that metastatic 

cancer cells could respond differently to a chalone than either healthy tissue cells or non-

metastatic cells, and provide some basis for the specificity of MCF-7 CM in slowing only 

the growth of MDA-MB 231 and MDA-MB 435 cells.  
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Figure 58. Conditioned media from adult dermal fibroblasts, adult lung fibroblasts, 
DCIS.com cells, MCF-7 cells, MDA-MB 231 cells, and MDA-MB 435 cells does not 
inhibit the proliferation of same type of cell used to generate the conditioned media 
at low concentrations of conditioned media.  
Conditioned media from (A) adult dermal fibroblasts, (B) adult lung fibroblasts, (C) 
DCIS.com cells, (D) MCF-7 cells, (E) MDA-MB 231 cells, and (F) MDA-MB 435 cells 
does not inhibit the proliferation of same type of cell used to generate the conditioned 
media, at concentrations of conditioned media below 25% over 72 hours. 50% DCIS.com 
CM (C) slows the proliferation of DCIS.com, and MDA-MB 231 CM only slows MDA-
MB 231 proliferation at a 100% concentration. Values are mean ± SEM, n=3. * indicates 
p < .05 and ** indicates p < .01 compared to the CM-free control by a t-test.  
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Figure 59. Conditioned media from MCF-7 cells slows the proliferation of MDA-MB 
231 and MDA-MB 435 cells.  
Conditioned media from MCF-7 cells does not slow the proliferation of (A) HEK-293 
cells, (B) HELA cells, (C) adult dermal fibroblasts, (D) adult lung fibroblasts, (E) 
DCIS.com cells, or (F) MCF-7 cells at any concentration. Conditioned media from MCF-
7 cells slows the proliferation of (G) MDA-MB 231 and (H) MDA-MB 435 cells, even at 
low concentrations. Values are mean ± SEM, n=6. * indicates p < 0.5, ** indicates p < .01, 
and *** indicates p < 0.001 compared to the CM-free control by a t-test.  
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Figure 60. Conditioned media from MCF-7 cells, concentrated and eluted from an 
anion-exchange column, inhibits MDA-MB 231 proliferation.  
Conditioned media from MCF-7 cells, concentrated using a 10 kDa size filter, and eluted 
from an anion-exchange column results in a fraction 16 that inhibits MDA-MB 231 
proliferation at (A) 50% and (C) 10% concentrations, but not at (B) 25% concentrations. 
Values are mean ± SEM, n=2 
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APPENDIX C 

THE INTERNAL METABOLIC PATHWAYS OF MONOCYTES, 

METASTATIC BREAST CANCER AND METASTATIC MELANOMA CAN 

INHIBIT OR PROMOTE FIBROCYTE DIFFERENTIATION 

Introduction 

The metabolism of a cell is an essential component of a cell’s phenotype (317). A 

cell’s metabolism is determined not only by the internal pathways used to generate energy, 

but also by the extracellular environment of the cell. In the human body, many different 

metabolic environments exist, which differ by their levels of oxygen, their pH, and the 

presence of different levels and types of sugars. In the tumor microenvironment, low 

oxygen content leads to increased glycolysis, which lowers both glucose levels and pH 

through the secretion of lactic acid. Similar metabolic environments exist in areas of 

inflammation, like wounds and scar tissue (318).  

Monocytes are an immune system cell that differentiates into both macrophages 

and fibrocytes. Monocytes, macrophages and fibrocytes are found in the bloodstream, 

healing wounds, scar tissue, and in the tumor microenvironment. While some research has 

been done on the metabolic pathways used by different types of macrophages (318, 319), 

very little is known about the metabolic pathways necessary for fibrocyte differentiation.  

Within a cell, sugars can be processed by different metabolic pathways. In the 

presence of oxygen, human cells can process sugars by aerobic pathways like oxidative 

phosphorylation, producing CO2 as a byproduct. In anaerobic environments, or when 
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presented with glucose-like sugars, cells can use the glycolysis pathway, which results in 

the creation of 3-carbon waste products that can be excreted via fermentation or used as 

materials for growth within the cell.  

Cancer cells preferentially use glycolysis to produce energy, even in the presence 

of oxygen, a pattern termed “Warburg metabolism,” after Otto Warburg (320). Certain 

immune system cells, including macrophages, are capable of using Warburg metabolism 

in low oxygen environments, including areas of inflammation (318, 319, 321). Galactose 

is a 6-carbon sugar that differs in the position of the hydroxyl group on the 4’ carbon. 

When fed galactose instead of glucose, human cells increase their oxygen consumption 

and preferentially use oxidative phosphorylation rather than glycolysis to metabolize the 

galactose (322). 

Here we show that restricting monocytes to oxidative phosphorylation lowers 

fibrocyte differentiation and lowers the ability of fibrocyte potentiators to increase 

fibrocyte differentiation. Low oxygen environments lower fibrocyte differentiation, but 

also appear to increase the effect of fibrocyte potentiators and decrease the effect of 

fibrocyte inhibitors. It seems that glycolysis is the preferred energy metabolism pathway 

of fibrocytes, which fits well with the presence of fibrocytes in healing wounds and poorly 

vascularized scars.  
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Sugar-free DMEM (Sigma, St. Louis, MO) was supplemented with 10 mM HEPES 

(Sigma), 1× non-essential amino acids (Sigma), 1 mM sodium pyruvate (Sigma), 100 

U/ml penicillin (Lonza), 100 μg/ml streptomycin (Lonza), 2mM glutamine (Lonza), and 

to 4,500 μg/ml of glucose or galactose (Sigma).  

Cell culture 

MDA-MB 231 breast cancer cells, MDA-MB 435 melanoma cells, and adult 

dermal fibroblasts (Lonza) were cultured in regular DMEM was supplemented to 5% with 

U.S. origin fetal bovine serum (FBS) (Genessee scientific, San Diego, CA) and 100 U/ml 

penicillin (Lonza) and 100 μg/ml streptomycin (Lonza) and 2mM glutamine (Lonza). 

Conditioned media (CM) 

Media was conditioned by addition to cells for 48 hours, after which the CM was 

removed, clarified by centrifugation for 10 minutes at 1000 x G, and added to PBMC at 

the indicated concentrations.  

PBMC culture 

PBMC were acquired and cultured, stained, and counted as previously described 

(239). 

Materials and methods 

Sugar media 
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 PBMC were cultured in a 0% oxygen incubator for 5 days in the indicated 

conditions.  

 

Results 

 The metabolic environment of a cell largely determines that cell’s phenotype 

(317). Several different metabolic environments exist in the human body, comprised of 

variations in amount of oxygen, pH, and amount of sugar present (323). Several different 

metabolic pathways exist within the cell to generate energy, including pathways that make 

use of oxygen, or different types of sugars (324). The environment that surrounds a tumor, 

also known as the cancer microenvironment, has a relatively low pH due to the lactic acid 

produced by anaerobic respiration, as a result of the largely anoxic environment (325). 

Similar environments can be found in healing wounds and other sites of inflammation 

(326). Additionally, it has been argued that poorly vascularized scar tissue also represents 

an anoxic and more acidic environment (327). In each of these environments, fibrocytes 

can differentiate and help to form scar tissue.  

 

Galactose supplemented media restricts fibrocyte differentiation 

The sugars present in the extracellular environment of the cell can determine which 

metabolic pathways that cell is capable of using. Glucose can be metabolized by aerobic 

respiration in the presence of oxygen, and by glycolysis in the presence or absence of 

oxygen. Galactose is preferentially metabolized through aerobic metabolism in the 

presence of oxygen (318, 322). To determine if fibrocytes were capable of differentiating 

Anoxic environment 
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when restricted to different metabolic pathways, we incubated PBMC with media 

containing 4500 µg/ml of either glucose or galactose. Monocytes differentiate into 

fibrocytes with peak efficiency around ~4500 µg/ml of glucose (328), and that lowering 

the glucose concentration leads progressively to fewer and eventually to no fibrocytes. 

PBMC in media supplemented with galactose formed significantly fewer fibrocytes than 

in media supplemented with glucose (Figure 61A). Interestingly, PBMC supplemented 

with galactose were also resistant to fibrocyte potentiation by trypsin, while in media 

supplemented with glucose, trypsin potentiated fibrocyte differentiation as previously 

observed (239) (Figure 61A). Media supplemented with galactose also lowered fibrocyte 

differentiation and trypsin-induced fibrocyte potentiation from purified monocyte 

populations (Figure 61B). Galactose itself does not inhibit fibrocyte differentiation, and 

PBMC differentiated into fibrocytes in media supplemented with 2250 µg/ml glucose and 

2250 µg/ml galactose (Figure 61C). These results indicate that monocytes differentiate 

into fibrocytes significantly more readily when they are using the glycolysis pathway, 

when compared to using the oxidative phosphorylation to obtain ATP from galactose.  

Galactose supplemented media restricts cancer conditioned media from inhibiting 

fibrocyte differentiation 

 Conditioned media from metastatic breast cells, metastatic melanoma cells, and 

fibroblasts potently inhibits fibrocyte differentiation, while conditioned media from non-

metastatic breast cancer cells does not inhibit fibrocyte differentiation to the same degree. 

Galectin-3 binding protein (LGALS3BP) is the primary active factor that inhibits fibrocyte 
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differentiation in metastatic breast and melanoma conditioned media. SLIT-2 is the active 

factor that inhibits fibrocyte differentiation in fibroblast conditioned media (329).  

 To determine whether cancer cells and fibroblasts secrete fibrocyte-inhibitory 

activity when using either glycolysis or oxidative phosphorylation to produce ATP, we 

cultured MDA-MB 231, MDA-MB 435, and adult dermal fibroblasts with media 

supplemented with galactose or glucose. Fibroblasts secreted potent fibrocyte inhibitory 

active into media supplemented with either glucose or galactose. MDA-MB 231 metastatic 

breast cancer and MDA-MB 435 metastatic melanoma cell lines each secreted 

significantly less fibrocyte inhibitory activity into galactose-supplemented media when 

compared to glucose-supplemented media (Figure 62). 

 

Anoxic culture conditions also restrict fibrocyte differentiation 

 To determine if different concentrations of oxygen influence fibrocyte 

differentiation, we cultured PBMC in 21% and 0% oxygen. PBMC incubated in 21% 

oxygen formed significantly more fibrocytes (Figure 63A). In oxygen-free environments, 

cells cannot use oxidative phosphorylation and are restricted to glycolysis. In this 

environment, it appears that fibrocytes are also less likely to form.  

 

 

PBMC cultured in anoxic conditions are less responsive to SAP’s and MDA-MB 231 

CM’s fibrocyte inhibition 
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 To determine if PBMC cultured in hypoxic conditions respond differently to 

factors that inhibit or promote fibrocyte differentiation, we cultured PBMC in 21% and 

0% oxygen with fibrocyte potentiators lumican and NaCl, and fibrocyte inhibitors SLIT-

2, SAP, and MDA-MB 231 CM. While fewer fibrocytes formed in the anoxic 

environments (Figure 63A), each of NaCl and lumican potentiated slightly more fibrocytes 

when compared to the number of fibrocytes in the anoxic control (Figure 63). Similarly, 

SLIT-2, SAP, and BC CM each inhibited fibrocyte differentiation with slightly less 

potency (Figure 63).  

 

Discussion 

 Cell phenotype is largely a product of cell metabolism (317). Cell metabolism is 

partially a product of internal catabolic processes, and is partially product of the 

extracellular environment. The role that metabolism plays in monocyte biology is 

especially interesting, because monocytes can differentiate into heterogeneous cell types 

with different internal metabolic processes, including macrophages and fibrocytes (318, 

319, 321). Monocytes also exist in a variety of extracellular environments, from healing 

wounds to fibrotic scars to tumors.  

Here we show that both internal and extracellular metabolic processes effect 

fibrocyte differentiation. Monocytes are less likely to differentiate into fibrocytes if they 

are deprived of the glycolysis pathway. Similarly, monocytes are less likely to become 

fibrocytes if restricted exclusively to glycolysis in a 0% oxygen environment. Fibrocyte 

inhibitors are less able to inhibit fibrocytes in a 0% oxygen environment, and fibrocyte 
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potentiators appear slightly more effective at potentiating fibrocytes in a 0% oxygen 

environment, suggesting that monocytes restricted to glycolysis are less susceptible to 

inhibition and more susceptible to potentiation.  

Cancer’s Warburg metabolism has been well documented, and forcing MDA-MB 

231 and MDA-MB 435 cells to use oxidative phosphorylation lowers the fibrocyte 

inhibition of their CM. This is not a universal effect, as fibroblasts do not suffer a loss of 

fibrocyte inhibitory activity when forced to use oxidative phosphorylation.  

Taken together, these results suggest that the metabolic environment within a 

monocyte and in the extracellular environment of the monocyte can greatly influence the 

differentiation of that monocyte not only into macrophages, but also into fibrocytes.   
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Figure 61. Glycolysis is essential for fibrocyte differentiation.  
(A) PBMC were cultured with media containing glucose or galactose and 50 ng/ml trypsin. 
(B) Monocytes were cultured with media containing glucose or galactose and 50 ng/ml 
trypsin. (C) PBMC were cultured in media containing equal parts glucose and galactose. 
Values are mean ± SEM, n=8 for (A), n=2 for (B), and n=4 for (C). * indicates p < 0.5 by 
a t-test. 
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Figure 62. MDA-MB 231 and MDA-MB 435 secrete less fibrocyte inhibitory activity 
when restricted to oxidative phosphorylation.  
(A) Adult dermal fibroblasts, (B) MDA-MB 231 cells, and (C) MDA-MB 435 cells were 
cultured in media containing glucose or galactose. This media was then placed on 
fibrocytes, which were cultured and counted as in Figure 1. Values are mean ± SEM, n=6. 
* indicates p < 0.5, ** indicates p < .01, and *** indicates p < 0.001 compared to the CM-
free control by a t-test. 
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Figure 63. PBMC cultured in anoxic conditions are slightly less susceptible to 
fibrocyte inhibition.  
(A) PBMC were cultured in environments containing either 21% oxygen or 0% oxygen 
with the indicated concentrations (B) NaCl, (C) lumican, (D) SLIT-2, (E) SAP, and (F) 
MDA-MB 231 conditioned media. Values are mean ± SEM, n=6. * indicates p < 0.5, ** 
indicates p < .01, and *** indicates p < 0.001 compared to the control by a t-test. 
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APPENDIX D 

MDA-MB 435 CM, MDA-MB 231 CM, AND LGALS3BP POLARIZE 

MACROPHAGES TOWARDS AN M2 PHENOTYPE 

 

Introduction 

 Metastatic breast cancer conditioned media (CM) and metastatic melanoma CM 

inhibit monocyte-to-fibrocyte differentiation. The active factor in this inhibition is 

galectin-3 binding protein (LGALS3BP), which also inhibits fibrocyte differentiation. 

Monocytes also differentiate into macrophages. Macrophages have several distinct 

phenotypes which are morphologically similar. M1 macrophages are pro-inflammatory 

and are found in response to infection (47, 48). M2 macrophages are anti-inflammatory 

and are often found in cancer microenvironments acting as myeloid derived suppressor 

cells (MDSC) (46). M2a macrophages are associated with scar tissue formation (49-52).  

 M1 macrophages secrete low levels of IL-10 and high levels of IL-12 (46). M2 

macrophages secrete high levels of IL-10 and low levels of IL-12 (46). M2 macrophages 

also express CD163, CD172, CD206, and CD169 (46). M2a macrophages secrete 

moderate amounts of IL-10 and IL-12, but high amounts of IL-4, and are produce 

fibronectin (46).  
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Materials and methods 

Cell culture 

 Cancer cell lines were cultured and CM was generated as previously described 

(Chapter V).  

 

PBMC culture 

 PBMC were cultured as previously described (Chapter IV). After 7 days, PBMC 

were stained for macrophage markers as previously described (Chapter IV). CD172 

(Biolegend) and CD169 (Biolegend) were used at 5 µg/ml.  

 

ELISA 

 ELISA was performed as previously described (Chapter IV).  

 

Results 

 Metastatic breast and melanoma conditioned media (CM) inhibits monocyte-to-

fibrocyte differentiation (Chapter V). LGALS3BP, the active ingredient in MDA-MB 231 

and MDA-MB 435 CM, also inhibits monocyte’s differentiation into fibrocytes. We 

wanted to find out if MDA-MB 231 CM, MDA-MB 435 CM, or LGALS3BP biased 

monocyte differentiation to macrophages. Macrophages have a morphologically similar 

but phenotypically distinct subtypes, including M1, M2, and M2a macrophages, involved 

in inflammation, anti-inflammatory, and wound healing processes, respectively (46). M1, 
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M2, and M2a macrophages display different surface markers and secrete different proteins 

(46).  

 To determine if cancer CM or LGALS3BP biased macrophage differentiation, we 

added MDA-MB 231 CM, MDA-MB 435 CM, or LGALS3BP to PBMC and stained the 

resulting macrophage populations for M2 and M2a macrophage markers. 231 CM, 435 

CM, and LGALS3BP did not significantly increase fibronectin or CD163 staining, but 

significantly increased CD206 staining (Figure 64). 231 CM increased CD172 staining, 

and both 231 and 435 CM increased CD169 staining (Figure 64). These results suggest 

that cancer CM and LGALS3BP bias macrophages towards an M2, or anti-inflammatory, 

phenotype.  

 To determine if cancer CM affected the secretion profile of macrophages, we 

added cancer CM to PBMC, then probed the PBMC CM by ELISA for IL-10 and IL-12. 

IL-10 is an anti-inflammatory cytokine, and IL-12 is a pro-inflammatory cytokine. 

Interestingly, 231 CM, 435 CM, and OVCAR-8 CM inhibited fibrocyte differentiation, 

contained large quantities of LGALS3BP, and yet lowered IL-10 concentration (Figure 

65). MCF-7, SW-1088, and PANC-1 increased IL-12 secretion (Figure 65).  

  

Discussion 

 MDA-MB 231 CM, MDA-MB 435 CM, and LGALS3BP inhibit fibrocyte 

differentiation from monocytes. The effect of MDA-MB 231 CM, MDA-MB 435 CM, 

and LGALS3BP on monocyte to macrophage differentiation is unclear. While surface 

markers on macrophages suggest that MDA-MB 231 CM, MDA-MB 435 CM, and 
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LGALS3BP bias macrophages towards an M2 phenotype, the secretion profile of 

macrophages exposed to MDA-MB 231 CM or MDA-MB 435 CM is low in anti-

inflammatory IL-10. More experiments are necessary to break this deadlock.    
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Figure 64. MDA-MB 231 CM, MDA-MB 435 CM, and LGALS3BP bias 
macrophages towards an M2 phenotype.  
MDA-MB 231 CM, MDA-MB 435 CM, and LGALS3BP were added to PBMC. After 7 
days, PBMC were stained for CD163, CD172, CD206, CD169, and fibronectin. Values 
are mean ± SEM, n=4. * indicates p < 0.5 compared to the control by a t-test. 
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Figure 65. MDA-MB 231 CM and MDA-MB 435 CM lower IL-10 secretion from 
macrophages.  
Cancer CM was added to PBMC as in figure 1, after which PBMC CM was analyzed by 
ELISA for (A) IL-10 and (B) IL-12. Values are mean ± SEM, n=2. 
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APPENDIX E 

CO-CULTURE OF FIBROBLASTS AND PBMC RECAPITULATES FIBROSIS 

IN VITRO 

 

Introduction 

 Fibrosing diseases are involved in 45% of deaths in the US (20). Chronic, non-

healing wounds affect more than 6.5 million US patients per year, which is approximately 

2% of the population, and cost more than $25 billion to treat (17). Both healing wounds 

and fibrosing diseases involve the formation of scar tissue, and scar tissue forms through 

interactions between fibroblasts and immune system cells like macrophages and fibrocytes 

(287). Recapitulating the interactions between fibroblasts and fibrocytes in-vitro has been 

a major goal of the fibrosis community.  

 

Materials and methods 

PBMC culture 

 PBMC were cultured as previously described (194).  

 

Fibroblast culture 

 Adult dermal fibroblasts (Lonza) were cultured in growth medium (DMEM 

supplemented to 5% with U.S. origin fetal bovine serum (FBS) (Genessee scientific, San 

Diego, CA) and 100 U/ml penicillin (Lonza) and 100 μg/ml streptomycin (Lonza) and 

2mM glutamine (Lonza)). 



 

248 

 

 

 

Co-culture 

 800 fibroblasts and 50,000 PBMC were cultured for five days in SFM ((Composed 

of Fibrolife basal media (Lifeline Cell Technology, Walkersville, MD) supplemented with 

10 mM HEPES (Sigma, St. Louis, MO), 1× non-essential amino acids (Sigma), 1 mM 

sodium pyruvate (Sigma), 2 mM glutamine (Lonza), ITS-3 (Sigma) 100 U/ml penicillin 

and 100 μg/ml streptomycin (Lonza)). on a tissue culture treated into a 96-well plate well 

(BD Falcon). Conditioned media was saved after the 5-days for ELISA.  

 

ELISA 

Conditioned media from PBMC cultured in SFM with or without cytokines was 

centrifuged at 1000 x g for 10 minutes to pellet cell debris. Capture antibody against 

collagen-1 (Mouse, Sigma C2456) was diluted 1:10,000 in PBS and left on immunosorp 

plate (Nunc) overnight. Plates were then washed 4x with PBS (0.05% tween) and blocked 

with 2% BSA for 1 hour. Plates were then washed 4x with PBS (0.05% tween) and CM 

was added to each well for 2 hours. Plates were then washed 4x with PBS (0.05% tween) 

and incubated with detection antibody against collagen-1 (Rabbit, Abcam 34710) diluted 

1:10,000 in PBS for 1 hr. Plates were then washed 4x with PBS (0.05% tween) and 

incubated with donkey anti-rabbit HRP (Jackson) diluted 1:5000 in PBS for 30 minutes. 

Plates were then washed 4x with PBS (0.05% tween) and the reaction was quantified with 

TMB, quenched with 1 N HCl, and read via spectrophotometry at 450 and 570 nm.  
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Cell-based ELISA 

 Cell-based ELISA was performed as above, with the following adjustments. No 

capture antibody was necessary, and standard 96 well plates (BD Falcon) were used. Cells 

were fixed with 95% ethanol for 15 minutes. Detection antibody was anti-collagen 6 

(Rabbit, Novus biologicals).   

 

Aniline-blue staining 

 Aniline blue staining was performed via a kit, following the manufacturer’s 

instructions (Sigma). Wells were analyzed by spectrophotometry at 455 and 505 nm.  

 

Results 

 Fibrosing diseases are involved in 45% of deaths in the US (20). Fibrosis is defined 

by interactions between fibroblasts and immune system cells like macrophages and 

fibrocytes, which together form scar tissue inappropriately in organs (287). Recapitulating 

this interaction between fibroblasts and fibrocytes in vitro is a major goal of the fibrosis 

research community.  

 We have developed an in vitro method of co-culturing fibroblasts and PBMC that 

displays increased collagen when stained with either collagen-1 or -6 antibodies or aniline 

blue staining (Figures 66 and 67). Co-culture also increases the amount of collagen-1 

secreted by fibroblasts and macrophages, as measured by ELISA (Figure 68). Both the 
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measurements of secreted and deposited collagen—and aniline blue staining—are 

sensitive to the signaling molecules in the culture media.  

 

Discussion 

 Fibrosing diseases and chronic, non-healing wounds are serious medical problems. 

Scar tissue is the cause of fibrosing diseases, and is the key to healing chronic wounds. 

Here we have recapitulated some of the interactions between fibrocytes and fibroblasts 

that form scar tissue.   
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Figure 66. Co-cultured fibroblasts and PBMC increase in collagen deposition.  
(A) PBMC, (B) fibroblasts, and (C) the co-culture of fibroblasts and PBMC shows 
different levels of collagen staining from a cell-based ELISA depending on whether a 
cytokine is present or absent. n=1.  
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Figure 67. Co-cultured fibroblasts and PBMC increase in collagen deposition.  
(A) PBMC, (B) fibroblasts, and (C) the co-culture of fibroblasts and PBMC shows 
different levels of collagen from aniline blue staining depending on whether a cytokine is 
present or absent. n=2.  
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