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ABSTRACT 

 

This paper presents a three dimensional numerical simulation of free span 

pipelines under vortex-induced vibrations (VIV) and pipe-soil interactions. Pipeline is 

simplified as a tensioned beam with uniformly distributed tension. The tensioned beam 

equations are solved using a fully implicit discretization scheme. The flow field around 

the pipeline is computed by numerically solving the unsteady Navier-Stokes equations. 

Fluid domain is discretized using overset grid system consists of several computational 

blocks and approximate one million grid points in total. Grid points in near-wall regions 

of pipeline and bottom are of high resolution, while far field flow is in relatively coarse 

grid. Fluid-structure interaction (FSI) is achieved by communicating forces and motions 

between fluid solver and pipeline motion solver. Pipeline motion solver inputs drag and 

lift forces calculated by fluid solver, then computes displacements in both in-line and 

cross-flow directions and outputs new positions of pipeline back to fluid solver. Soil 

effect also plays an important role in this simulation. The pipe-soil interactions are 

modeled as mass-spring system with equivalent stiffness.  

Simulation results are compared with experiments for validation in three cases:  

(a) An isolated pipeline VIV in uniform current without boundary effect; (b) A pipeline 

horizontally placed close to plane boundary in uniform current at different gap to 

diameter ratios G/D; (c) A free span pipeline at specific gap-to-diameter ratio with 

respect to different reduced velocities. 
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NOMENCLATURE 

 

2D Two Dimensional 

3D Three Dimensional 

CFD Computational Fluid Dynamics 

D Pipeline Outer Diameter 

Ds Pipeline Damping 

DNS Direct Numerical Simulation 

E Young’s Modulus 

EI Bending stiffness 

FANS Finite-Analytic Navier-Stokes 

fn Natural Frequency 

FSI Fluid-Structure Interaction 

G Gap Depth between Pipeline and Seabed 

G/D Gap to Diameter Ratio 

I Moment of Inertia 

   Soil Horizontal Dynamic Stiffness 

   Soil Vertical Dynamic Stiffness 

L Pipeline Overall Length 

LES Large Eddy Simulation 

M Pipeline Unit Mass 

RANS Reynolds-Averaged Navier-Stokes 
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T Pipeline Axial Tension 

U Velocity of Current 

  Poisson’s ratio 

VIV Vortex-Induced Vibration 

 

 



 

vii 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION ................................................................................................................. iii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

NOMENCLATURE ........................................................................................................... v 

TABLE OF CONTENTS .................................................................................................vii 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ...........................................................................................................xii 

CHAPTER I  INTRODUCTION AND LITERATURE REVIEW ................................... 1 

CHAPTER II  NUMERICAL APPROACH ...................................................................... 5 

Pipeline Motion Solver ............................................................................................... 5 

Computational Fluid Dynamics Background ........................................................... 12 
Soil Model ................................................................................................................ 16 
Fluid-Structure Interaction ....................................................................................... 19 

CHAPTER III  VIV SIMULATION OF AN ISOLATED PIPELINE ............................ 22 

Experiment Background ........................................................................................... 22 

Grid Generation ........................................................................................................ 25 
Simulation Results .................................................................................................... 32 

CHAPTER IV  VIV SIMULATION OF A PIPELINE NEAR PLANE BOUNDARY .. 41 

Grid Generation ........................................................................................................ 42 

Simulation Results .................................................................................................... 45 

CHAPTER V  VIV SIMULATION OF A FREE SPAN PIPELINE .............................. 53 

Grid Generation ........................................................................................................ 53 
Simulation Results .................................................................................................... 57 



 

viii 

 

CHAPTER VI  SUMMARY AND CONCLUSIONS ..................................................... 62 

REFERENCES ................................................................................................................. 64 

 



 

ix 

 

LIST OF FIGURES 

 Page 

Figure 1 Static Validation Case for Pipeline Motion Solver .............................................. 8 

Figure 2 Comparison between Pipeline Motion Solver and Analytical Solutions ............. 9 

Figure 3 Dynamic Validation Case for Pipeline Motion Solver ........................................ 9 

Figure 4 Model Test Setup in OcraFlex ........................................................................... 10 

Figure 5 Pipeline Envelope by Numerical Simulation ..................................................... 11 

Figure 6 Pipeline Envelope by OcraFlex ......................................................................... 11 

Figure 7 Overset Grid ....................................................................................................... 13 

Figure 8 2D Cross Section Grid for VIV Calculation ...................................................... 14 

Figure 9 Fluid-Structure Interaction Procedure ............................................................... 19 

Figure 10 Overview of Fluid Domain .............................................................................. 20 

Figure 11 Force Mapping between Fluid Solver and Pipeline Motion Solver ................. 21 

Figure 12 Free Decay Test of Pipeline ............................................................................. 24 

Figure 13 Free Decay Result after Fast Fourier Transform ............................................. 24 

Figure 14 Overview of Fluid Domain for an Isolated Pipeline ........................................ 25 

Figure 15 Cross Section of Fluid Domain ........................................................................ 26 

Figure 16 Near Body Grid surrounding the Pipeline ....................................................... 27 

Figure 17 Circumferential Overset Grid .......................................................................... 27 

Figure 18 Overview of Grid after Refining ...................................................................... 28 

Figure 19 Near View of Grid after Refining .................................................................... 29 

Figure 20 Interpolation between Adjacent Blocks ........................................................... 30 



 

x 

 

Figure 21 Huge Grid Size Disparity between Adjacent Blocks ....................................... 30 

Figure 22 Hole Cutting of Overset Grid ........................................................................... 31 

Figure 23 Vortex Evolution in Uniform Current ............................................................. 32 

Figure 24 Pipeline Deflection .......................................................................................... 33 

Figure 25 Pipeline In-Line Motion History ...................................................................... 35 

Figure 26 Pipeline Cross-Flow Motion History ............................................................... 36 

Figure 27 Pipeline Motion History ................................................................................... 36 

Figure 28 Comparison of Cross-Flow Vibration .............................................................. 38 

Figure 29 Comparison of In-Line Vibration .................................................................... 38 

Figure 30 Simulation of Pipeline Trajectory at Stable State ............................................ 39 

Figure 31 Experimental Results of Pipeline Trajectory at Stable State ........................... 39 

Figure 32 Comparison of VIV Response Frequency ....................................................... 40 

Figure 33 Overview of Grid for Pipeline near a Plane Boundary .................................... 42 

Figure 34 Near view of Pipeline near a Plane Boundary ................................................. 44 

Figure 35 Relative Motion between Computational Blocks ............................................ 44 

Figure 36 Vortex Evolution of Pipeline near a Plane Boundary ...................................... 45 

Figure 37 Pipeline Deflection (Maximum Displacement 0.5D) ...................................... 48 

Figure 38 Cross-Flow Vibration History at G/D=1.0 ...................................................... 49 

Figure 39 Cross-Flow Vibration History at G/D=1.5 ...................................................... 49 

Figure 40 Cross-Flow Vibration History at G/D=2.0 ...................................................... 50 

Figure 41 Cross-Flow Vibration History at G/D=3.0 ...................................................... 50 

Figure 42 RMS Displacement at Different G/D ............................................................... 51 



 

xi 

 

Figure 43 Amplitude versus G/D ..................................................................................... 51 

Figure 44 Frequency versus G/D ..................................................................................... 52 

Figure 45 Free Span Pipeline Lying on the Soil Seabed .................................................. 53 

Figure 46 Overview of Flow Field for Free Span Pipeline .............................................. 54 

Figure 47 2D View of a Cross Section ............................................................................. 55 

Figure 48 Grid Scheme for Pipeline Embedded in the Soil ............................................. 56 

Figure 49 Envelopes of Free Span Pipeline (a) Cross-Flow Envelope in Real Dimension; 

(b) Amplified Cross-Flow Envelope; (c) Amplified In-Line Envelope .......... 57 
 

Figure 50 Vortex Shedding of Free Span Pipeline ........................................................... 58 

Figure 51 Free Span Pipeline Response Model (Veritas, 2006) ...................................... 58 

Figure 52 Numerical Simulation Compares with DNV Response Model ....................... 60 

Figure 53 Comparison of f/fn versus VR .......................................................................... 61 

 



 

xii 

 

LIST OF TABLES 

 Page 

 

Table 1 Dynamic Stiffness Factor for Pipe-Soil Interaction in Sand (Veritas, 2006) ...... 17 

Table 2 Dynamic Stiffness Factor for Pipe-Soil Interaction in Clay (Veritas, 2006) ...... 17 

Table 3 Modal Soil Damping Ratios (in %) for Sand (Veritas, 2006) ............................. 18 

Table 4 Modal Soil Damping Ratios (in %) for Clay (Veritas, 2006) ............................. 18 

Table 5 Parameters of an Isolated Pipeline ...................................................................... 23 

Table 6 Parameters of a Pipeline near Plane Boundary ................................................... 41 

Table 7 Parameters of a Free Span Pipeline ..................................................................... 54 

 

 



 

1 

 

CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Deep water pipelines are being laid on the seabed and used for offshore gas and 

oil transportation. Due to the unevenness of the seabed, part of a pipeline may become 

unsupported, which is called free span. A free span can also be caused by rock beams, 

artificial support, change of seabed topology and strudel scours (Veritas, 2006). As the 

currents passing by, periodic vortex shedding may lead to vortex-induced vibrations and 

finally cause fatigue damage (Blevins, 1977). Thus, predictions of VIV amplitude and 

frequency of free span pipelines are very important during the pipeline design process.  

In the past several decades, offshore slender body VIV has been widely 

investigated based on both experimental and numerical studies. Trim et al. (2005) tested 

a long riser of L/D=1400 in uniform and linearly sheared current. Both bare riser and 

riser with strakes were evaluated in model tests. The suppression effectiveness of strakes 

was highly affected by percentage coverage. Tognarelli et al. (2008) conducted real 

dimension experiments in the Gulf of Mexico. The fatigue damage was evaluated under 

various conditions such as hung-off operations, connected operations and drilling 

operations. Lehn (2003) set up a model test for 10m long pipeline with diameter of 

20mm. Different responses under varying current velocities were observed.  

In recent years, numerical simulation played a more and more important role in 

offshore VIV problem due to the development of computational techniques, which is 

considered as a valuable alternative of experiments. Newman and Karniadakis (1996) 
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investigated the flow induced vibration of a flexible cable under Reynolds number of 

100, 200 and 300. The parallel spectral element / Fourier method was consulted for 

solving the three-dimensional Navier–Stokes equations. Lucor et al. (2001) presented 

direct numerical simulation (DNS) results of flexible cylinder’s VIV subjected to linear 

and exponential sheared flow. Vortex dislocations and force distribution have been 

discussed based on simulation results. Meneghini et al. (2004) studied the hydroelastic 

interactions between flexible cylinder and surrounding fluid. A computational efficiency 

discrete vortex method (DVM) was applied. Pontaza et al. (2004) studied circular 

cylinder freely vibration using an unsteady Reynolds-Averaged Navier-Stokes (RANS) 

method. Some of the results were computed by using large eddy simulation (LES). 

Huang et al. (2007, 2008, 2011) used a time domain Finite-Analytic Navier-Stokes 

(FANS) method to accomplish three-dimensional numerical simulation of riser VIV 

under various environment conditions.  

Specifically, the VIV of a horizontal placed pipeline close to a plane boundary 

has been studied by several researchers. Bearman and Zdravkovich (1978) studied a 

circular cylinder placed at different heights above a plane boundary in wind tunnel. 

Smoke tunnel experiments were also included to visualize wake flow structures. Tsahalis 

(1983, 1984), Tsahalis and Jones (1981) discussed the influence of sea bottom proximity 

on VIV amplitude and frequency, as well as on the fatigue lives of suspended spans. 

Raghavan et al. (2009) tested influence of gap ratio over pipeline vibration amplitudes. 

Different phenomenon were observed at different gap to diameter ratios of G/D<0.65, 

0.65<G/D<3.0 and G/D>3.0. Most of these research works focused on experimental 
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study. The seabed gap-to-diameter ratio, G/D, is used for characterizing the effect of 

seabed proximity, where G is the distance between the seabed and the pipeline, and D is 

the outer diameter of the pipeline. In addition to effect of seabed proximity, pipe-soil 

interaction is another important factor that influences the oscillatory motion of pipelines. 

Yang et al. (2008) conducted experiments about VIV of a pipeline near an erodible 

sandy seabed. It was proved that free span pipeline VIV was highly influenced by the 

sand scour beneath the pipe.  

In recent years, numerical methods began to take part in simulating VIV of free 

span pipelines. Tsukada and Morooka (2013) used a nonlinear Finite Element Method to 

solve a two dimensional problem by ignoring the motion in the in-line direction. Gamino 

et al. (2013) calculated fluid-structure interaction by using a partitioned approach. 

Pontaza et al. (2010) coupled a finite element model with computational fluid dynamics 

(CFD) code to study a free span pipeline attached to a pipeline end termination (PLET).  

This paper presents a three dimensional numerical simulation of free span 

pipelines under VIV and pipe-soil interactions. Pipeline is simplified as a tensioned 

beam with uniformly distributed tension. It is solved using a fully implicit discretization 

scheme. The flow field around the pipeline is computed by numerically solving the 

unsteady Navier-Stokes equations. Fluid domain is discretized using overset grid system 

consists of several computational blocks and approximate one million grid points in 

total. Grid points in near-wall regions of pipeline and bottom are of high resolution, 

while far field flow is in relatively course grid. Fluid-structure interaction is achieved by 

communicating forces and motions between fluid solver and pipeline motion solver. 
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Pipeline motion solver inputs drag and lift forces calculated by fluid solver, then 

computes displacements in both in-line and cross-flow directions and outputs new 

positions of pipeline back to fluid solver. Soil effect also plays an important role in this 

simulation. The pipe-soil interactions are modeled as mass-spring system with 

equivalent stiffness.  

Simulation results are compared with experiments for validation in three cases:  

(a) An isolated pipeline VIV in uniform current without bottom effect; (b) A straight 

pipeline horizontally placed close to plane boundary in uniform current, with different 

gap to diameter ratios G/D; (c) A free span pipeline VIV at specific gap-to-diameter 

ratio with respect to different reduced velocities.  
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CHAPTER II  

NUMERICAL APPROACH 

 

This Chapter introduces the numerical method for the pipeline VIV simulations, 

including structure motion solver development, CFD approach, fluid-structure 

interactions and soil model.  

 

Pipeline Motion Solver 

A deep water pipeline can be modeled as a tensioned beam in the in-line and 

cross-flow directions separately. The governing equations of a tensioned beam are 

described as: 
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Where x is the axial direction, y is the in-line direction, z is the cross-flow 

direction with the positive z-axis pointing upward, T is the axial tension, E is Young's 

modulus, I is the area moment of inertia,    and   are the external forces in y and z 

directions, M is the mass of pipeline in unit length and DS is the damping ratio. We apply 

finite difference scheme to discretize the governing equation in the in-line directions 

(discretization in the cross-flow direction follows the same scheme):  
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For other parameters except y and z, we consider them as constant. The 

discretization results are presented as: 
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where    is the length off a pipeline element. In this study, we discretize the 

pipeline into N=200 elements.    is the time step, and n denotes current time step. The 

same discretization scheme is applied for solving pipeline motion in cross-flow 

direction. Parameters T, EI, M,    are specified at the beginning of the computation. 

External forces    and    are obtained from the fluid solver. The only unknowns are 

pipeline displacements at each computational node.  
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Figure 1 Static Validation Case for Pipeline Motion Solver 

 

To verify the accuracy of this pipeline motion solver, we calculate a horizontal 

placed pipeline (Figure 1) with uniform vertical load on it. The length of the pipeline is 

100 m and the diameter is 1 m. The vertical forces are 10 N/m and 30 N/m respectively 

for two cases. Figure 2 illustrates the comparison between numerical solutions (colored 

points) and analytical ones. For both cases, our solutions exactly follow the analytical 

curve. The maximum displacement under 30 N/m is exactly three times of the maximum 

displacement under 10 N/m, which is reasonable in this linearly simplified case.  
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Figure 2 Comparison between Pipeline Motion Solver and Analytical Solutions 

 

Another case is used for justifying the validity of our motion solver in dynamical 

response. Figure 3 depicts a sketch of this dynamic validation case. A pipeline is 

horizontally placed with one end fixed on the wall and the other end being left free.  

 

Figure 3 Dynamic Validation Case for Pipeline Motion Solver 

 

We impose a vertically varying harmonic motion at the free end X(t)=A×sin(t). A 

is the amplitude of the motion, and t denotes time variable. For comparison purpose, we 
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calculate the same case using commercial software OrcaFlex, a package for dynamic 

analysis of offshore marine systems. The project setup is shown in Figure 4.  

 

Figure 4 Model Test Setup in OcraFlex 

 

A pipeline (yellow) is placed horizontally in the water. The left side boundary 

condition is set as fixed. Since OrcaFlex doesn’t provide a function that can directly 

define a motion at the end of the pipe, we connect the right side of the pipeline to the 

center of gravity of a ship (red). By imposing a vertical harmonic motion to the ship, the 

pipeline will vibrate at the same time.  

At a specific length and Young’s modulus, the vibration envelope presents 

pattern as shown in Figure 5, which is calculated by our motion solver. The envelope 

generated by OcraFlex is shown in Figure 6. The comparison shows a general agreement 
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between two calculations. The maximum vibration amplitude occurs at x/L=0.2, 0.5 and 

0.9 respectively.  

 

Figure 5 Pipeline Envelope by Numerical Simulation 

 

 

Figure 6 Pipeline Envelope by OcraFlex   
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Computational Fluid Dynamics Background 

The flow field is computed by numerically solving the unsteady, incompressible 

Reynolds-Averaged Navier-Stokes equations in time domain by means of the Finite-

Analytic Navier-Stokes (FANS) code, which is validated in several applications (Chen 

and Patel, 1988, 1989; Chen et al., 1990, 2013; Pontaza et al., 2004, 2005; Huang et al., 

2011, 2012). The turbulence is simulated by a large eddy simulation (LES) model.  

An overset grid (Meakin, 1999) is used in this study, for dynamically simulating 

pipeline motion in a uniform current. When complex geometry existing in a CFD 

simulation, it is hard to represent the whole fluid domain using a single contiguous grid, 

even unstructured. In general, different geometrical characteristics can be best described 

by different types of grid. A suitable approach is to divide the fluid domain into several 

subdomains and mesh each one with distinctive grid scheme. The subdomains are also 

referred to as blocks, which have overlapping areas at the interface between every two 

neighboring blocks. Information of flow field is communicated between adjacent blocks 

via interpolation at the fringe points, and some grid points may not be used in the 

simulation, which are called hole points (Petersson, 1999). Generally, overset grid is set 

up according to the following three steps: 

1. Grid generation; 

2. Hole cutting 

3. Interpolation 
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In some systems, some of these steps may be combined as one step. A typical 

overset grid is shown in Figure 7. The red grid is in polar coordinate and the green grid 

is in Cartesian coordinate. Generally, the grids can be structured, unstructured or a 

combination of both. The structured-curvilinear gird and Cartesian grid are always 

employed for simulate complex geometries. When several geometric components occur 

in a fluid domain, independent body-fitting curvilinear grids will be generated for each 

object separately, and being embedded into the same Cartesian background grid.  

 

Figure 7 Overset Grid 

 

Hole cutting and interpolation are accomplished by PEGSUS 4.0 (Suhs and 

Tramel, 1991). The exclusion of points is accomplished by defining a hole creation 

boundary within the red grid that will define the region within which all green grid 

points are to be blanked. The points in the green grid surrounding the blanked points are 

hole boundary points, and they receive flow field information interpolated from grid 
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points within the red block. Correspondingly, points on the outer boundary of the red 

grid receive flow field information interpolated from grid points within the green block. 

One advantage of using overset grid is that we can manipulate the resolution of a 

portion of the grid without changing the other parts. In this study, the computational grid 

is adjusted to very fine resolution near the pipeline outer boundary and sea bottom 

boundary, whereas the far field grid is relatively coarse.  

 

Figure 8 2D Cross Section Grid for VIV Calculation 

 

When dealing with pipeline VIV problem, we generally use three computational 

blocks to simulate the whole fluid domain: near body grid, wake grid and background 

grid. A typical cross section of this approach is shown in Figure 8. Near body grid (red) 

is generated in polar coordinate. The circular area covered by near body grid is the cross 

section of the pipeline, which is set as wall boundary during the CFD calculation. Wake 

grid (green) is generated in Cartesian coordinate right surrounding the near body grid. It 

provides grid that fine enough for vortex shedding and propagation in wake flow area 
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behind the cylinder. At the interface between near body grid and wake grid, the sizes of 

the grid from each block are of nearly same magnitude such that the accuracy of 

communicating the flow field information can be guaranteed. Outside the wake grid is 

the background grid (blue), which represents the rest area of simulated flow field. 

Background grid is always of coarse resolution because this is helpful for reducing the 

total grid points without hurting accuracy. Inside the background grid, there is a 

rectangular hole cut by wake grid. This follows the same hole cutting and interpolation 

method mentioned before. The grid scale at the inner boundary of background grid is 

approximately the same as the grid scale at the outer boundary of wake grid. This again 

ensures a smooth transition between two computational blocks.  

The two-dimensional meshing scheme mentioned above is used for discretizing 

the flow field at each cross section of the pipeline. Along the pipeline axial direction, we 

divide the flow field into many parallel layers. In our study, the current is propagating 

perpendicular to the axial direction in the in-line direction. There is no velocity change 

along axial direction. Thus, we can approach the spanwise direction with coarse grid.  

A dynamic grid scheme is also employed in this approach. As the pipeline 

moves, near body grid and wake grid will move at the same velocity. This synchronous 

movement ensures no gap between the pipeline outer boundary and fluid boundary. The 

background grid will be kept stationary at all times. Another advantage of overset grid is 

that there is no need to regenerate grid at each time step, which is a time consuming 

process of CFD calculation. We only need to move the existing blocks and determine the 

new interface between every two blocks.   
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Soil Model 

Pipe-soil interaction is modeled in accordance with DNV recommended practice 

for free span pipelines. The soil effect is significant both in the evaluation of the static 

equilibrium configuration and in the dynamic response of a free span pipeline. The soil 

is simplified as vertical and horizontal springs with equivalent stiffness and damping. In 

the in-line direction, the spring model is placed on both sides of the pipeline. In the 

cross-flow direction, the spring model is placed right below the pipeline. A general 

approach for vertical and horizontal dynamic stiffness is given as:  
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Where    is the vertical dynamic stiffness,    is the horizontal dynamic 

stiffness,    and    are dynamic stiffness factors which are given in Table 1 and Table 2 

for pipe-soil interactions in sand and clay.   is Poisson’s ratio,   /   is the mass ratio of 

the unit mass of pipeline over the unit mass of displaced water. D is the outer diameter 

of the pipeline. A medium sand type is selected in this study.  
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Table 1 Dynamic Stiffness Factor for Pipe-Soil Interaction in Sand (Veritas, 2006) 

Sand type 

   

(kN/ m
5/2

) 

   

(kN/ m
5/2

) 

Loose 10500 9000 

Medium 14500 12500 

Dense 21000 18000 

 

Table 2 Dynamic Stiffness Factor for Pipe-Soil Interaction in Clay (Veritas, 2006) 

Clay type 

   

(kN/m
5/2

) 

   

(kN/m
5/2

) 

Very soft 600 500 

Soft 1400 1200 

Firm 3000 2600 

Stiff 4500 3900 

Very stiff 11000 9500 

Hard 12000 10500 

 

In general, the axial dynamic soil stiffness is insignificant. However, when 

dealing with long free spans, an axial soil support model with stiffness should be 

considered. If there isn’t enough information to determine the axial dynamic soil 

stiffness, it may be chosen as equal to the lateral dynamic soil stiffness as mention above. 

Soil damping is also considered in our numerical model. For different types of 

soil, damping ratio ranges from 0.5% to 4%. The damping ratio differs according to soil 
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type and the length of pipeline lying on the soil. A value can be selected from Table 3 

and Table 4.  

 

Table 3 Modal Soil Damping Ratios (in %) for Sand (Veritas, 2006) 

Sand Type 

L/D (In-line direction) L/D (Cross-flow direction) 

<40 100 >160 <40 100 >160 

Loose 3.0 2.0 1.0 2.0 1.4 0.8 

Medium 1.5 1.5 1.5 1.2 1.0 0.8 

Dense 1.5 1.5 1.5 1.2 1.0 0.8 

 

Table 4 Modal Soil Damping Ratios (in %) for Clay (Veritas, 2006) 

Clay Type 

L/D (In-line direction) L/D (Cross-flow direction) 

<40 100 >160 <40 100 >160 

Very soft - Soft 4.0 2.0 1.0 3.0 2.0 1.0 

Firm - Stiff 2.0 1.4 0.8 1.2 1.0 0.8 

Very stiff - Hard 1.4 1.0 0.6 0.7 0.6 0.5 
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Fluid-Structure Interaction 

In this study, we achieve fluid-structure interaction relying on a partitioned 

approach: the equations governing the flow and the displacement of the pipeline are 

solved separately, with two distinct solvers (Bungartz and Schäfer, 2006). The basic 

procedure of FSI is illustrated in Figure 9. The pipeline motion solver is called by fluid 

solver as a subroutine. At each time step, we numerically solve the Navier-Stokes 

equation and obtain the velocity and pressure of the whole flow field. Drag and lift 

forces are calculated along pipeline surface and read by pipeline motion solver as input. 

Then, the motion solver computes pipeline velocity and displacement at each 

computational node and returns the information back to fluid solver for next step 

calculation. In this way, we achieve the FSI in a partitioned approach. 

 

 

Figure 9 Fluid-Structure Interaction Procedure 

 

For solving fluid domain, boundary conditions and initial conditions need to be 

specified. The surface of the pipeline is considered as the inner boundary of fluid domain, 

as shown in Figure 10. The pipeline position and velocity is presented so as to be 

moving boundary.  
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Figure 10 Overview of Fluid Domain 

 

For solving pipeline motion, external force should be calculated. From the results 

of CFD calculation above, we already have velocity and pressure information. By 

integrating along the pipeline surface, we can obtain normal and shear forces in both the 

in-line and cross-flow directions. It is noteworthy that we use relatively coarse grid for 

fluid domain because we assume the flow field doesn’t change severely along the axial 

direction. In most of our computational cases, 30 layers and 29 segments are enough for 

smoothly representing axial flow change. However, for pipeline motion solver, we 

generally divide the pipeline into 200 segments to accurately simulate its movement and 

profile. Figure 11 shows the mapping relationship between motions solver and fluid 

solver. When we map the force from fluid solver to the pipeline motion solver, 

interpolation and extrapolation are needed to acquire force information at every 

computational node.  
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Figure 11 Force Mapping between Fluid Solver and Pipeline Motion Solver 
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CHAPTER III  

VIV SIMULATION OF AN ISOLATED PIPELINE 

 

During the last several years, there are many VIV experiments being conducted 

and published on deep water slender bodies. MIT Vortex Induced Vibration Data 

Repository has collected some typical experiments and open to public. Their 

disseminating of the experimental data is helpful for benchmarking computer codes, 

developing new theories and gaining insights on what experiments have already been 

done and what needs to be done next and much more. Especially, the newly released 

data makes it possible to compare CFD simulation results with model tests in details.  

 

Experiment Background 

In this study, we compare our numerical simulation with the experiments 

conducted by ExxonMobil Upstream Research Company at Norwegian Marine 

Technology Research Institute. A 9.63 m long pipeline was vertically pinned to the test 

rig, which would rotate at a constant speed to generate uniform current. The pipeline 

diameter is 20 mm and thus the aspect ratio is L/D=482, which is considered long span. 

The other parameters are listed in Table 5 below. Weight in air, pretension and bending 

stiffness are necessary information for our numerical input.  
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Table 5 Parameters of an Isolated Pipeline 

Parameter Dimension 

Total length between pinned ends 9.63 m 

Outer diameter 20 mm 

Wall thickness of pipe 0.45 mm 

Bending stiffness, EI 135.4 Nm
2 

Young modulus for brass, E 1.025×10
11

 N/m
2
 

Axial stiffness, EA 2.83×10
6
 N 

Weight in air (filled with water) 6.857 N/m 

Pretension T 817 N 

 

 The pipeline natural frequency is another important parameter. We take free 

decay test to identify the natural frequency of a pipeline with geometric parameters listed 

above. At the beginning, the pipeline is horizontally placed at its balanced position. At 

t=0, an impulse load is applied on the pipeline. Then, the pipeline starts to oscillate due 

to structural stiffness. The amplitude of vibration gradually decreases due to structural 

damping. Record of the decay history is shown in Figure 12.  

 To figure out the natural frequency, Fast Fourier transform (FFT) is applied to 

time domain data. Figure 13 is the result after FFT. The pipeline natural frequency is 

about 1.9 Hz.  
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Figure 12 Free Decay Test of Pipeline 

 

 

Figure 13 Free Decay Result after Fast Fourier Transform 
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Grid Generation 

The first thing for numerical simulation is generating computational grid. As 

mentioned before, overset grid scheme is applied for our simulation. For an isolated 

pipeline placed in infinite fluid domain, we only use two blocks of grid: near body grid 

and wake grid. Figure 14 is an overview of the fluid domain with a pipeline placed 

inside. Red block consists 223860 (30×182×41) grid points and green block consists 

609030 (30×201×101) grid points. So, there are approximate 0.8 million 

computational nodes in this simulation. Along the axial direction (X direction in the 

figure), the fluid domain is divided into 30 layers. In other words, there are 29 elements 

in the axial direction, with each length of 16.5 diameters (Lelement/D=16.5).  

 

 

Figure 14 Overview of Fluid Domain for an Isolated Pipeline 

 

 

A two-dimensional view of the cross section is shown in Figure 15. The pipeline 

is placed in the middle of the fluid domain. We set the pipeline center at the original 
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point (y, z) = (0, 0). The flow inlet (right side) is 10D in front of the pipeline, while the 

flow outlet is 30D behind the pipeline. Both lateral sides are apart from the pipeline 

center for 10D. The uniform current propagates in the positive Y direction (in-line 

direction).  

 

Figure 15 Cross Section of Fluid Domain 

 

A near view of pipeline surrounding grid is illustrated in Figure 16. It is worth 

mentioning that the red area, which is denoted as near body grid, represents flow field 

around the pipeline, rather than the pipeline cross section itself. The inner boundary of 

the read area is the pipeline outer boundary. The near body grid includes 182×41 grid 

points, with 180 elements in circumferential direction and 40 elements in radial 

direction. In circumferential direction, 182 grid points create only 180 elements because 

node #182 coincides with node #2, while node #181 coincides with node #1. By doing 
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this, the near body grid boundaries (black lines in Figure 17) can read in flow 

information from the points they are overlapping.  

 

Figure 16 Near Body Grid surrounding the Pipeline 

 

 

Figure 17 Circumferential Overset Grid 
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The grid generated above is uniformly distributed over the whole field. However, 

for pipeline surrounding area, the flow changes dramatically. It requires finer grid to 

capture subtle changes, especially vortex generation and shedding. Thus, grid refinement 

is to be carried out. Figure 18 and Figure 19 express the grid after refining. As for near 

body grid, the size of the innermost element is 0.001D, while the outmost one is of 

0.05D. As for wake grid, the closer to the pipeline center, the finer grid we have. The 

size of wake grid elements ranges from 0.05D to 0.5D. 

 

 

Figure 18 Overview of Grid after Refining 
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Figure 19 Near View of Grid after Refining 

 

Specifically, we try to make the near body grid size at the outer boundary as 

close as the size of wake grid nearby. In Figure 20, red and green elements are 

approximately in the same size. The two blocks communicate with each other according 

to the following rules: red node 1 locates inside the green element ABCD, such that it 

receives flow information by interpolating the value of node A, B, C and D. Similarly, 

green node C can acquire information from red nodes 1, 2, 3 and 4. In this way, the two 

blocks can exchange any information during simulation. However, if we use grid shown 

in Figure 21, distortion may happen during the interpolation. There are so many red 

points in element ABCD that linear interpolation cannot guarantee each point receive 

true value of flow field information, especially when the flow changes dramatically in 

this element. Thus, grid structure shown in Figure 21 should be avoided.  
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Figure 20 Interpolation between Adjacent Blocks 

 

 

Figure 21 Huge Grid Size Disparity between Adjacent Blocks 
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The next step is to exclude wake grid points that inside near body grid. In CFD 

simulation, grid points represent where flow exists. In this study, pipeline occupies the 

space inside near body grid. Thus, the wake grid should be blanked from that area. We 

use a circle of near body grid to cut a hole in wake grid. Figure 22 shows the results after 

cutting. Remaining zigzag green grid forms the inner boundary of the wake grid and will 

receive information from near body grid. 

 

      

Figure 22 Hole Cutting of Overset Grid 
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Simulation Results 

The pipeline VIV response in a uniform current of 0.42 m/s is analyzed. This is a 

typical current speed that could occur in real offshore area. At the beginning, the 

pipeline is straightly placed in still water. When the simulation starts, we gradually 

increase the velocity of current from zero to target value. As the current passing by, 

vortex begins to shed from the pipeline surface. Figure 23 illustrate the vortex evolution 

procedure. Meanwhile, the pipeline begins to deflect towards the in-line direction, as 

shown in Figure 24. The maximum displacement occurs at the middle section, with 

amplitude of roughly 2.5D. 

  

  

Figure 23 Vortex Evolution in Uniform Current 
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Figure 23 Continued

Figure 24 Pipeline Deflection 
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Figure 24 Continued 

The pipeline deflection history in the in-line and the cross-flow directions are 

shown in Figure 25 and Figure 26 separately. We choose the middle section (x/L=0.5) 

displacement as a representative because the amplitude there is maximum. In Figure 25, 

as the simulation starts, the pipeline deflects in the in-line direction very quickly. About 



 

35 

 

0.5s later, the middle section deflection reaches 1.5D. At that time, the pipeline 

structural restoring force surpasses the fluid force and retrieve the pipeline back to 1.0D 

over the next 0.5s period. Then, the external fluid force dominates again and lead the 

pipeline directly to its equilibrium position 2.5D. After 3.0s, the pipeline is stabilized 

2.5D apart from its original position and oscillates slightly around its equilibrium point.  

In the cross-flow direction, the pipeline begins to vibrate after 1.0s. The average 

vibration amplitude is about 0.5D. Figure 27 characterizes the process in Y-Z plane. 

Horizontal axis represents the in-line direction and the vertical axis represents the cross-

flow direction. We can see exactly how the pipeline begins to deflect and reaches it 

stable status. It first goes straightly to 1.5D in the in-line direction with trivial transverse 

displacement. Then, it turns back and deviates slightly to the negative Z direction. After 

that, the pipeline travels toward downstream direction immediately, and the transverse 

vibration becomes significant. 

 

Figure 25 Pipeline In-Line Motion History 
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Figure 26 Pipeline Cross-Flow Motion History 

 

 

Figure 27 Pipeline Motion History 

 

A comparison is carried out between numerical simulation and experimental 

results. Figure 28 compares the cross-flow vibration time history. We take a snapshot 
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from the range 4.2s~7.2s of our numerical simulation. However, the physical model test 

has a longer starting period. The model test reaches its stable status after several minutes. 

Thus, we intercept a piece of data from the experiment at stable state and translate it to 

range 4.2s~7.2s for comparison purpose. In Figure 28, blue line is the experimental 

result and the red one is the numerical simulation. It can be observed that both 

amplitudes are of 0.5D magnitude. Also, the vibration frequencies are very close. Figure 

29 shows the comparison of the in-line time history. Originally, the in-line vibration of 

numerical simulation oscillates around 2.5D as mentioned before. In this figure, we 

translate the plot to Y=0 by subtracting average displacement, again, for comparison 

purpose. The vibration amplitudes and frequencies are similar. The numerical simulation 

is not quite stable that there is still noticeable deviation over time.  

Normalized vibration amplitude y/D and z/D are compared between numerical 

simulation and model tests in Y-Z plane. Figure 30 and Figure 31 show pipeline 

trajectories at stable state. The current propagates from negative-y to positive-y 

direction. Blue line represents experimental data and the red line represents numerical 

simulation results. The vibration amplitude is around 0.5D in the cross-flow direction, 

and 0.2D in the in-line direction. A good agreement can be observed from this 

comparison. To compare the VIV frequencies, we take Fast Fourier transform (FFT) to 

convert the data from time domain to frequency domain. Figure 32 shows the results 

after FFT. The peak frequencies occur at around 2.9 Hz for both cases. 

 



 

38 

 

 

Figure 28 Comparison of Cross-Flow Vibration 

 

 

Figure 29 Comparison of In-Line Vibration 
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Figure 30 Simulation of Pipeline Trajectory at Stable State 

 

Figure 31 Experimental Results of Pipeline Trajectory at Stable State 
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Figure 32 Comparison of VIV Response Frequency 
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CHAPTER IV  

VIV SIMULATION OF A PIPELINE NEAR PLANE BOUNDARY 

 

When a slender body is placed closed to a plane boundary, the VIV response will 

be quite different from that of an isolated pipeline. The effect of plane boundary 

proximity on vortex shedding has been experimentally studied by several researchers. 

The experiments conducted by Bearman and Zdravkovich (1978) revealed that for gap to 

diameter ratio G/D>0.3 the Strouhal number was almost constant. Angrilli et al. (1982) 

noticed that as the gap to diameter ratio decrease, the vortex shedding frequency would 

increase correspondingly. Pontaza et al. (2010) observed that in the range of 

0.0<G/D<0.3, there was no classic vortex shedding. The vortex shed from the pipeline 

was absorbed by the opposite vortex generated by the plane wall. In general, G/D is the 

key parameter affects vortex shedding of pipeline near wall. In our study, we consider a 

pipeline of L/D=150 parallel arranged close to plane boundary. Gap to diameter ratio 

ranges from 1.0<G/D<3.0. The other parameters are listed in Table 6.  

Table 6 Parameters of a Pipeline near Plane Boundary 

Parameter Dimension 

Total length between pinned ends 1.9 m 

Outer diameter 12.7 mm 

Bending stiffness, EI 125.0 Nm
2 

Weight in air 3.038 N/m 

Pretension T 400 N 
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Grid Generation 

Before CFD calculation, computational grid should be prepared for the fluid 

domain. Again, we use overset grid scheme for the simulation. For a pipeline close to a 

plane boundary, we use four blocks: near body grid, wake grid, background grid and 

near wall grid. Figure 33 is an overview of the whole field. Near body grid (red) consists 

of 223860 (30×182×41) grid points, which is the same as we dealt with isolated 

pipeline. The wake grid (green) consists of 366630 (30×121×101) grid points. The 

total number of this wake grid is less than that of the isolated case because we shrink the 

range of wake grid and add background grid instead to simulate far field flow. 

Background grid (blue) consists of 316680 (30×116×91) points. A rectangular hole is 

cut by the wake grid in background grid. In addition, we also have a near wall grid 

(black) of 88830 (30×141×21) point. Thus, the total grid points are nearly 1 million.  

 

Figure 33 Overview of Grid for Pipeline near a Plane Boundary 

 

A closer view of the near wall grid is shown in Figure 34. For the layer right 

above the wall, we set the grid size as 0.001D. As it departs from the wall, the grid size 
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gradually increases and reaches to 0.025D at its upper boundary, which is the same as 

the size of the background grid at that location. This is for interpolation accuracy 

consideration as we discussed before.  

In this case, we are going to dynamically simulate the pipeline VIV response and 

its relative motion to the wall. Thus, a dynamic grid scheme is applied. During the whole 

simulation process, the background grid and the near wall grid will be kept immobile at 

their original positions. However, the pipeline position should be updated at each time 

step. Thus, the near body grid and the wake grid will move together with the pipeline at 

the same speed towards the same direction. Figure 35 illustrates the relative motion of 

four blocks. The figure on left shows a snapshot of G/D=1.5 and the figure on right 

shows a snapshot of G/D=0.7. All the grids are kept to their original shape and size. The 

only difference is that the red block and the green block move downwards and make a 

new hole in the background grid. A lower limitation is set on the near wall grid boundary 

that no grid can exceed it. In the right one of Figure 35, part of the green grid points that 

already exceed the lower boundary have been blanked.  
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Figure 34 Near view of Pipeline near a Plane Boundary 

 

 

   

Figure 35 Relative Motion between Computational Blocks 
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Simulation Results 

The pipeline is exposed to sea bottom uniform current of 0.5 m/s. The distance of 

pipeline to the wall is set to be G/D=1.0, 1.5, 2.0, 3.0 respectively. Figure 36 is the 

vortex evolving process at G/D=1.0. At the beginning, vortices shed from both sides of 

the pipeline at the same rate. Then, the vortices develop to 2S pattern and travel toward 

downstream direction. Meanwhile, the plane boundary also generates vortex in counter-

clockwise direction, which cancels the clockwise vortex (pink one) shed from the pipe. 

In wake flow, the vortices are immediately dissipated and merged into the uniform 

current. In the in-line direction, the pipeline maximum deflection is 0.5D, as shown in 

Figure 37, which is very close to its original position. 

Figure 36 Vortex Evolution of Pipeline near a Plane Boundary 



46 

Figure 36 Continued.  
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Figure 36 Continued.  
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Figure 37 Pipeline Deflection (Maximum Displacement 0.5D) 

 

 

The time histories of the pipeline cross-flow vibrations are plotted in Figure 38-

41. The pipeline starts from static and reaches its steady state after 10s. First, we notice 

that for smaller gap to diameter ratio, the VIV amplitude is not symmetric about its 

original position. For G/D=1.0, the positive amplitude is Z=0.84643 and the negative 

amplitude is Z=-0.7111. This may due the pipeline proximity to the seabed. As the 

pipeline goes toward seabed, the fluid in the gap would be compressed and becomes a 

cushion to reduce the pipeline vibration amplitude. For G/D=1.5, the VIV amplitudes are 

Z=0.80094 and -0.76483 respectively. Even though we can still detect the disparity, but 

the difference is not as large as that of G/D=1.0. For, G/D=2.0 and G/D=3.0, the positive 

and negative amplitudes become almost the same, which is as symmetric as the VIV of 

an isolated pipeline.  
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Figure 38 Cross-Flow Vibration History at G/D=1.0 

 

 

 

Figure 39 Cross-Flow Vibration History at G/D=1.5 
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Figure 40 Cross-Flow Vibration History at G/D=2.0 

 

 

Figure 41 Cross-Flow Vibration History at G/D=3.0 

 

The simulation reveals that as G/D increase, the VIV amplitude will increase as 

well, which was also proved by some other researchers before (Tsahalis and Jones, 

1981). The maximum amplitudes, as we plotted above, don’t follow this rule because the 

maximum values are generated with randomness in every simulation. Thus, we take root 
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mean square of the whole vibration history to eliminate this randomness. Figure 42 

depicts the whole pipeline root mean averaged profile. Figure 43 shows the relationship 

of averaged amplitudes at middle section of the pipeline versus gap to diameter ratio. 

Both of them prove that as the G/D increase, the VIV amplitude will increase as well.  

 

Figure 42 RMS Displacement at Different G/D 

 

 

Figure 43 Amplitude versus G/D 
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In addition, the simulation results shed some light on the relationship between 

VIV frequency and gap to diameter ratio. Figure 44 shows this relationship. As G/D 

decrease, the VIV frequency increase significantly.  

 

Figure 44 Frequency versus G/D 
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CHAPTER V  

VIV SIMULATION OF A FREE SPAN PIPELINE 

 

Grid Generation 

A free span pipeline lying on the soil seabed is depicted in Figure 45. Total 

length of the pipeline in this simulation is L/D=300, with two ends fixed at point A and 

point D. Two sides of the pipeline are partially embedded in the soil along segment AB 

and segment CD. The depth of embedded pipeline is defined as vertical penetration. In 

this simulation, we set initial vertical penetration as 1/4 of the pipeline diameter. More 

parameters are listed in Table 7.  

 

Figure 45 Free Span Pipeline Lying on the Soil Seabed 

 

The middle section is suspended between point B and C. The free span length is 

half of the total length. A gap-to-diameter ratio G/D=2.0 is chosen in this test. The soil 

model is also incorporated at the bottom boundary below the gap. So, when the VIV 

amplitude exceeds the depth of the gap, our FSI solver allows the pipeline to dig into the 
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bottom and to interact with soil model, rather than hitting on a solid wall. Otherwise, the 

sudden change of pipeline motion may cause unphysical results. An overview of the 

whole flow field is shown in Figure 46. In addition to the four computational blocks 

built before, we add another two blocks: gap grid (yellow) of 41412 (17×116×21) 

points and wall grid below gap grid (black) of 35955 (17×141×15) points.  

Table 7 Parameters of a Free Span Pipeline 

Parameter Dimension 

Total length between pinned ends 3.8 m 

Outer diameter 12.7 mm 

Bending stiffness, EI 130.0 Nm
2 

Weight in air 3.038 N/m 

Pretension T 500 N 

 

 

Figure 46 Overview of Flow Field for Free Span Pipeline 

 

A typical cross section is shown in Figure 47. It is almost the same as we used 

for the pipeline near wall case. The only difference is that we add the gap grid that 
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serves as part of background flow. For the segments of pipeline embedded in the soil, we 

need to generate different computational grid. A different scheme is displayed in Figure 

48. For this part, we still divide the flow field into four blocks, but all of them have to be 

cut by the boundary layer between water and soil. As the pipeline moves up and down, 

the grid around it can be regenerated at each time step. If the pipeline completely moves 

out of the trench, then, as depicted in Figure 47, a fully covered grid will be generated 

again surrounding the pipeline. 

 

 

Figure 47 2D View of a Cross Section 
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Figure 48 Grid Scheme for Pipeline Embedded in the Soil 
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Simulation Results 

As bottom currents passing by, the pipeline begins to deflect in the in-line 

direction and vibrate in the cross-flow direction. Figure 49(a) shows the profile of 

pipeline VIV responses in real dimension. In Figure 49(b), we stretched the cross-flow 

direction by a scaling factor 30. This figure records the motion history of pipeline VIV. 

When the pipeline goes downward, two sides are stopped by soil sea bed. When the 

pipeline goes upward, the whole pipeline will leave the seabed. The in-line displacement 

is illustrated in Figure 49(c). Maximum displacement is about 0.25D, which occurs at 

the center of the pipeline.  

 
Figure 49 Envelopes of Free Span Pipeline (a) Cross-Flow Envelope in Real 

Dimension; (b) Amplified Cross-Flow Envelope; (c) Amplified In-Line Envelope 
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Vortex shedding is visualized in Figure 50. A 2S pattern is again observed in this 

test. However, unlike the vortex shedding along an isolated pipeline, near bottom 

vortexes disappear very quickly in the wake flow and mix into bottom current. This 

vortex energy dissipation may be caused by the friction of bottom boundary. 

 

Figure 50 Vortex Shedding of Free Span Pipeline 

 

Figure 51 Free Span Pipeline Response Model (Veritas, 2006) 
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For free span pipeline response, DNV provides two models: response model and 

force model. The response model is used for free span response dominated by VIV, and 

the force model is suitable for modeling response under hydrodynamic loads like wave 

loads. In this study, we only consider the effect of sea bottom uniform currents and 

neglect waves. Thus, a response model is used for justifying the numerical results here. 

In Figure 51: 
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Here,         
   is the reduced velocity at which cross-flow VIV of significant 

amplitude (0.15D) starts.              is a correction factor for seabed proximity, which 

is chosen as 1 for G/D=2 in this test.               accounts for the pipeline location in 
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trench. In this study, the free span part is out of trench, so                .    is the 

current flow velocity ratio,             ,    is the current velocity and    is the 

significant wave induced velocity. In this study, since we neglect the wave effect,    . 

       /      is the frequency ratio, which is measured as 2.0 in our test. KC is the 

Keulegan-Carpenter number. Other parameters can be interpreted from Figure 51.  

In our test,         
    ,     

      ,     
      , 

    

 
     . Figure 52 gives the 

comparison between numerical results and DNV response model for 2<VR<16. A 

general agreement is observed. Also, f/fn versus VR of numerical simulation in Figure 53 

agrees with published experimental studies (Tsahalis and Jones, 1981; Raghavan et al., 

2009). 

 

Figure 52 Numerical Simulation Compares with DNV Response Model 
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Figure 53 Comparison of f/fn versus VR 
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CHAPTER VI  

SUMMARY AND CONCLUSIONS 

 

Vortex-induced vibrations of free span pipelines have been investigated in many 

previous experimental studies, but numerical simulations, especially CFD and FSI, have 

only been applied recently in this area. In this thesis, we first developed a pipeline 

motion solver by discretizing tensioned beam equations. Later, we coupled the motion 

solver with a three-dimensional CFD solver to simulation fluid-structure interactions. A 

soil model was also included to account for pipe-soil interactions. Overset grid and 

dynamic grid techniques are incorporated in the CFD approach to facilitate time-domain 

simulation of arbitrary pipeline motion without the tedious and time-consuming grid 

regeneration.  

First, a static test and a dynamic test were conducted to validate the motion 

solver. Theoretical solutions and results output by commercial software were used for 

comparison. A general agreement has been achieved. Then, an isolated pipeline VIV is 

simulated and compared to experimental data. The simulations show similar responses 

for a series of tests, including comparisons of pipeline trajectory, VIV amplitude and 

frequency in both the in-line and the cross-flow directions.  

Next, the pipeline VIV near a plane boundary was studied. The influence of the 

gap to diameter ratio G/D on VIV response has been discussed. In the range of G/D<3.0, 

as G/D increase, the VIV amplitude will also increase, and the vibration frequency will 
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decrease, which were also observed by other researchers. An asymmetric vibration 

amplitudes have been detected for pipeline VIV at G/D=1.0 and 1.5.  

What’s more, the FSI solver was employed for the simulation of a free span 

pipeline VIV including the effect of pipe-soil interactions. The influence of reduced 

velocity VR on VIV amplitude is investigated for 2<VR<16 for a free span pipeline lying 

on soil bed at a gap-to-diameter ratio G/D=2.0. The numerical results match the DNV 

recommended curve. Also, fitted curve of dimensionless frequency f/fn is very close to 

other published experimental data. These results further demonstrated the validity of our 

FSI solver.   

In conclusion, a fully three-dimensional CFD approach for deep water free span 

pipeline VIV with motion solver and soil model has been presented. The pipeline VIV 

response is computed in according to the unsteady, incompressible Navier-Stokes 

equations in conjunction with a large eddy simulation model. The validity and 

effectiveness were demonstrated by several experimental studies. The numerical 

simulation results shed some light on the free span pipeline VIV problems.  
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