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ABSTRACT 

 

Despite the wide range of ideal applications for LIBs, there is still room for 

improvement in their performance. While novel electrode materials are typically 

prohibitively expensive to develop and implement, changes to processing steps represent 

a cost-effective measure for improving the performance of LIBs that can be 

implemented almost immediately. Although each step of processing can impact the final 

microstructure of LIB electrodes, perhaps the most important step is the last: drying. 

This is when the final microstructure of the electrode is set. During this solvent 

evaporation stage, a non-uniform distribution of electrode constituents can develop in 

cases where the solvent evaporation rate exceeds that of the diffusion rate of the mobile 

electrode constituents. An even distribution of carbon black and binder throughout the 

electrode is crucial to ensuring the minimization of internal cell resistance, and therefore 

the maximum performance for a given electrode composition. In this work, we 

experimentally evaluate the impact of evaporation rate on the distribution of binder and 

carbon black in the electrode microstructure and the subsequent electrochemical 

performance.  

Chapter I introduces some basic concepts in Lithium-ion batteries and a literature 

overview of related concepts. Chapter II details the experimental procedures and 

equipment utilized in this study. Chapter III details the results of experimental evaluation 

of evaporate rate and a 1-D analysis performed to determine the resulting particle 

distribution as a function of drying rate. Chapter IV details the post-processing 
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calendering used on electrodes and its result on electrode performance. Lastly, Chapter 

V details the summary and future outlook for this work. 

My analysis has shown that a slower two-stage dry – as opposed to a high-rate 

single stage dry – allows for an optimal, more even volumetric distribution of binder and 

conductive additive, thus reducing cell resistance and improving electrochemical 

performance. 
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NOMENCLATURE 

 

𝐷𝐷0 Diffusion constant (m2/s) 

�̇�𝐸 Rate of evaporation front reduction (m/s) 

𝐻𝐻 Initial film height (m) 

𝑘𝑘 Boltzman constant (J/K) 

𝐾𝐾(𝜑𝜑) Sedimentation coefficient (-) 

𝑅𝑅 Particle/aggregate radius (m) 

𝑃𝑃𝑃𝑃 Peclet number () 

𝑇𝑇 Temperature (K) 

𝑡𝑡 Time (s) 

𝑡𝑡̅ Dimensionless time (s) 

𝑦𝑦 Vertical position in film (m) 

𝑦𝑦� Dimensionless film position (-) 

𝑍𝑍(𝜑𝜑) Compressibility (-) 

𝜑𝜑 Volume fraction (-) 

𝜑𝜑𝑚𝑚 Upper limit on particle volume fraction (-) 

𝜑𝜑0 Initial volume fraction (-) 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Increasing concerns about rising fuel prices, energy security, and climate change 

have given rise to interest in the adoption of renewable energy in place of traditional, 

petroleum-based fuels. The implementation and usage of renewable energies has been 

limited by a lack of effective storage and transportation mediums. Recent improvements 

in the energy density and durability of lithium-ion batteries (LIBs) have made them an 

increasingly attractive means of energy storage1, 2, 3, 4. Further improvements in lithium-

ion technology would increase the viability of renewable energy sources and thus assist 

in their widespread adaptation. For example, improvements in the capacity of LIBs 

would not only improve the effective range of electric vehicles5, 6, but also improve their 

cycle life by reducing the depth of discharge, which in turn increases the viability of 

LIBs for use in grid energy storage applications7. 

The performance of batteries, regardless of type, is dependent on the materials 

that form the positive and negative electrode, the choice of electrolyte, and the cell 

architecture4, 8, 9, 10, 11, 12. A typical LIB electrode is composed of a combination of Li-

containing active material, conductive additive, polymeric binder, and void space that is 

filled with an electrolyte. Typically, these cathodes are created by casting out and drying 

a thin film of a slurry containing these components. A number of studies have analyzed 

the impact of microstructural characteristics such as electrode thickness13, 14, 15, 16, 

1 

 



 

porosity17, active material particle size18, 19, 20, 21, conductive additives22, 23, 24, 25, 26, 27, and 

general composition28, 29, but little attention is paid to electrode processing.  

Electrode processing can be broken up into five main sections: dry powder 

mixing, wet mixing, substrate preparation, film application, and drying. When producing 

an electrode using these processing steps, the goal up until drying is to achieve a uniform 

slurry consisting of the active material, conductive additive, binder, and solvent. This 

uniform distribution is critical to optimal performance of LIBs30. A number of methods 

are used to achieve a uniform dispersion of components up to this point, including hand 

grinding, sonification, vortexing, etc. However, these efforts can be undone by the 

redistribution of mobile components during solvent evaporation. Should this occur, the 

uneven distribution of additive and binder could increase/decrease the local porosity and 

local electrode conductivity, which could lead to an increase in internal resistance and a 

decrease in performance. 

Drying of thin films has been an active field of study for over 40 years. However, 

the majority of the analysis has focused on the drying of colloidal suspensions such as 

latex films, with little or no studies focused on the impact of drying in battery electrodes. 

Many experimental studies neglect to even mention the type of drying utilized, or simply 

place their wet electrodes in an oven at high temperatures until dry31, 32, 33, 34. One study 

looked at the influence of solvent type (organic or aqueous) on the resulting 

microstructure as a result of the differing solvent evaporation rate35. Their study showed 

a direct correlation between the drying rate and the distribution of binder and conductive 

additive within the sheets. However, an apparent shortcoming of this study is the 
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thickness of the cells utilized (~1500 um) which is not realistic for most LIB 

applications. A recent study has demonstrated the impact of solvent evaporation rate on 

the favorable aggregation of conductive additives, but is lacking in terms of an 

experimental counterpart36.  

In thin film drying theory, three stages of the drying process exist35, 37, 38, 39, 40, 41. 

Initially the particles are suspended in an ample amount of solvent, such that the solvent 

on the surface evaporates at an increasing rate until the top layer of liquid is gone. 

Following this stage, the solvent evaporating from the surface has to come from within 

the sheet. Thus solvent must migrate from the interior of the sheet to the top. This 

process occurs until the structure is consolidated, whereby a wetted solid structure exists 

where the particles have formed a 3D inter-connected network with solvent contained in 

the porous space. During the final stage of drying the structure no longer shrinks, with 

the remaining solvent diffusing to the surface of the sheet. 

Beyond the basic mechanics of thin film drying, there are additionally three 

distinct drying modes that have been observed42. In the first mode, the distribution of 

particles and solvent is homogenous, and every part of the thin film dries at the same 

rate. In the second mode, the vertical accumulation of particles occurs due to poor 

particle diffusivity43. A sheet of particles forms at the surface of the sheet and increases 

in thickness as the solvent evaporates. This involves a competition between an 

evaporative time scale and a diffusive time scale. The ratio of the diffusive time scale to 

the evaporative time scale can be expressed as the Peclet number: 
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where R0 is the particle/aggregate radius, μ is the viscosity of the solvent (kg/(m*s), H is 

the initial film height, E ̇ is the rate of evaporation front reduction (m/s), k is the 

Boltzman constant (J/K) and T is the temperature (K). Here, a value less than 1 indicates 

that vertical accumulation is less likely, with a value greater than one indicating a higher 

degree of vertical accumulation. 

Lastly, the third mode consists of the migration of a horizontal drying front 

across the surface of the drying film44, 45. Here drying begins at the edges of the sheet 

and propagates inward, potentially resulting in “coffee ring” formations, whereby 

particles accumulate at the edges of the drying front. In practice, a combination of the 

latter two methods is commonly observed. 

In this study, the effect of evaporation on microstructural formation and resulting 

electrochemical performance is evaluated. This determined via direct experimentation 

with the construction and electrochemical analysis of coin cells. Additionally, a 1-D 

model will be incorporated to elucidate the results of the study. 
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CHAPTER II  

NON-AQUEOUS PROCESSING IN LIBS 

 

Research into new and improved materials to be utilized in Lithium-Ion batteries 

necessitates an experimental counterpart to any computational analysis. Testing of 

Lithium-Ion batteries in an academic setting has taken on several forms, but the at the 

most basic level is the coin cell. Originally used for hearing aids in the 1950’s, today 

coin cells are commonly used in the development and evaluation of new and existing 

electrode materials. As one of the smallest form factors for batteries, these cells 

represent a simple and effective way to create batteries in an academic research setting. 

This chapter represents the steps partially developed by myself and utilized in the ETSL 

to manufacture coin cells for the evaluation of new and existing electrode materials. All 

equipment was selected by myself. 

Experimental Equipment 

Electrode processing can be broken up into five main sections: dry powder 

mixing, wet mixing, substrate preparation, film application, and drying, as illustrated in 

Figure 1.  
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Figure 1. Schematic overview of the steps utilized in the ETSL to create cathodes. 
 
 
 

The equipment and preparation stations utilized in this study are presented 

herein. A visual overview of the ETSL experimental facility can be seen in Figure 2.  

 
 

 
Figure 2. Panoramic view of ETSL experimental laboratory. 
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The electrode substrate and slurry preparation station is shown in Figure 3. The IKA 

tube mixer pictured ensures the uniform dispersion of the electrode components (active 

material, conductive additive, and binder) within the slurry.  

 
 

 

Figure 3. Electrode substrate and slurry preparation station. 
 

 

The binder preparation and dry powder mixing station is shown in Figure 4. The high 

accuracy of the Ohaus scale ensures accurate and high precision measurements for the 

determination of critical electrode properties, such as specific capacity. The digital 

micrometer (in case) allows for the determination of film thicknesses in increments of 

0.001 mm.  
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Figure 4. Binder preparation and dry powder mixing station. 
 
 
 
The vacuum oven and film applicator are pictured in Figure 5. 

 
 

 

Figure 5. MTI vacuum oven and Elcometer film applicator. 
 
 
 
The vacuum oven is capable of reaching temperatures up to 250oC with a pressure range 

of -0.1 Mpa~0 Mpa (atmospheric pressure). The oven allows for quick second-stage 

drying of electrode sheets, while also removing any bubbles present in the electrode 
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sheet surface. The film applicator (used in conjunction with the pictured doctor blade) 

ensure a smooth, even electrode casting. 11 preset traverse speeds are available, from 

0.5-10cm per second. Lastly, our coin cell crimper is pictured in Figure 6 within our 

glovebox. The glovebox has a pure argon environment with O2 and H2O levels 

maintained below 0.5 ppm at all times. The crimper (which seals coin cells) can be used 

on CR2032, CR2025, and CR2016 coin cells. 

 
 

 

Figure 6. Coin cell crimper pictured within glovebox. 
 
 
 
After finalizing the construction of the coin cells, they are electrochemically 

characterized via the usage of the ARBIN BT2000 and VMP3 systems shown in Figure 

7. 
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Figure 7. Arbin BT2000 battery cycler and Biologic VMP3 with 
Potentiostat/Galvanostat/EIS capabilities.  

 
 
 
Materials 

LiNi1/3Mn1/3Co1/3 with an average particle size of 8-12 µm, BET surface area of 

0.3-0.8 m2/g, and a density of 2.2 g/cm3 was acquired from Targray. The manufacturer 

suggested specific capacity is 155 mAh/g when cycled at 0.2C between 4.2-2.7 V. In 

practice, the highest achievable specific capacity corresponded to 145 mAh/g when 

cycled at 0.1C. Super C-65 (carbon black) with an aggregate size <1 um, BET surface 

area of 62.4 m2/g, and a density of 160 kg/m3 was acquired from TIMCAL. Kynar Flex 

2801 PVDF was supplied by Arkema, and 1.0 M LiPF6 in EC/DEC (1:1 by vol) was 

purchased from BASF. Anhydrous N-methylpyrrolidone (NMP) with less than 0.005% 

water content was purchased from Sigma-Aldrich. Lithium ribbon was obtained from 

Sigma-Adlrich.  
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Cathode and Coin Cell Preparation 

In this case the desired composition of the dried electrode is to be 70% NMC, 

20% Super C-65, and 10% PVDF. This composition is chosen to achieve discharge of 

cells at higher rates, but other compositions have been reported as well31, 46, 47, 48, 49, 50. 

Thus the preparation steps will use the appropriate quantities needed to create the desired 

51sheet. During the initial stage, 1.25 g of NMC and 0.25 g of Super C-65 are measured 

out and mixed in a mortar and pestle. This step serves to break up any large aggregates 

of active material or conductive additive and ensure that the active material and additive 

are uniformly mixed prior to wet mixing. The pre and post mixed samples can be seen in 

Figure 8.  

 
 

 

Figure 8. Pre (a) and post-mixed (b) NMC and Super C-65. 
 
 
 

During the second stage, the mixed powder is placed into an IKA Tube mixer 

with 5.5 ml of NMP and 16 6mm diameter glass balls. The minimum quantity of glass 

balls needed is dependent on the mixing ability of the components within the vial. 
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However, an upper limit exists due to the loss of slurry coating the glass balls after 

mixing. With too little slurry or too many balls, it will not be possible to extract enough 

of the electrode slurry to cast an electrode. In practice, 16 balls is sufficient to achieve a 

uniform dispersion and allow for more than sufficient slurry amount for casting. The 

amount of NMP required is based on the total surface area of the particles present in the 

dry mixture. For example, if the desired dry weight ratio of components was adjusted to 

include 10% Super C-65 as opposed to 20% (with 80% NMC and 10% PVDF), a 

significantly lower amount of NMP would be required: approximately 2.0 ml. Thus the 

determination of the appropriate solvent content in the initial mixing stage must be 

carefully determined when working with new desired sheet compositions. The slurry is 

then allowed to mix on the max setting until uniform, which corresponds to 

approximately 15 minutes. 1.25 g of a 10% PVDF by weight in NMP solution is then 

added to the tube, and allowed to mix for 5 more minutes. The mixing slurry can be seen 

in Figure 9. 
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Figure 9. Electrode slurry mixing on IKA mixer. A two-stage mix is utilized, where the 
solvent is mixed with the dry powder, and is again mixed after adding the 10% by 
weight binder solution. 
 
 
 

During the mixing stages, the electrode substrate is prepared. An aluminum 

substrate is used for cathodes, and a copper substrate is used for anodes. As the cathode 

is the focus of this study, the aluminum foil will be used as the substrate. During the 

manufacturing process, the aluminum foil is coated with a thin layer of oil to prevent 

self-adhesion when rolling the material. Thus prior to casting, the substrate must be 

cleaned. Here a rough scotch pad is used to physically etch the surface of the sheet, with 

acetone applied to the surface of the sheet. During the physical etching, the surface is 

roughened, allowing for greater electrode adhesion. The acetone serves to remove the oil 

from the surface alongside the physical etching. During etching, acetone is sprayed onto 

the surface of the sheet, and the sheet is etched using small circular patterns across the 

sheet. Acetone is routinely sprayed on the surface to keep it coated, and the sheet is 
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wiped with a paper towel as required to remove residue from the surface, as shown in 

Figure 10. 

 
 

 

Figure 10. Cleaned aluminum substrate with residue shown on paper towel. 
 
 
 
After etching both sides, the sheet is rinsed with D. I. water and isopropyl alcohol. If the 

water slides off of the sheet without beading, it is sufficiently oil-free such that the 

electrode slurry will adhere to the current collector well. If the water starts to bead, the 

sheet needs to be recleaned. 

After allowing the substrate to dry and the electrode slurry has finished mixing, 

the electrode is cast. It is important to proceed directly to casting after mixing the 

electrode slurry to prevent any potential settling of the slurry components (primarily the 

active material). If for some reason the slurry is left sitting for more than 5 minutes, it is 

remixed for another 15 minutes. The current collector must first be applied to the surface 

of the film applicator. To do this, a layer of isopropyl alcohol is sprayed on the surface, 
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and the electrode sheet is placed on top with the duller side face up. A paper towel is 

then used to flatten the foil such that it is completely flush with the applicator. After 

placing the foil, the slurry is ready to be poured onto the surface of the current collector. 

The slurry should be poured in a three inch line across the width of the sheet, 1 inch 

from the top, as shown below. It is not uncommon for the glass mixing balls to fall out 

of the vial onto the sheet. In this case the balls may simply be picked out with cleaned 

tweezers. To cast the slurry, an Elcometer film applicator and doctor blade are utilized. 

The film applicator has a mechanical arm that can be controlled to move forward at a 

desired rate. The doctor blade consists of an adjustable gap that allows slurry to pass 

through when slid over a surface. Thus as the mechanical arm pushes forward, it 

additionally pushes the doctor blade forward, leaving a cast electrode in its wake, as 

shown in Figure 11. 

 
 

 

Figure 11. Electrode slurry poured onto aluminum substrate before (a) and after casting 
(b). 
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The height of the doctor blade is set at 200 µm. After casting, the sheet is labeled and 

lifted from the surface of the applicator with a sheet of cardboard to prevent excessive 

bending of the cast electrode. Typically small bubbles will appear on the surface of the 

sheet, which are simply allowed to pop on their own. The electrode sheet can be dried in 

a number of ways, ranging from air dry to oven dry, or a combination of both methods. 

A common method reported in the literature is to simply place the wet electrode sheet 

into an oven at 120oC until dry.  

 After the cast electrode is dried, the quality of the sheet can be determined. A 

good sheet should have a uniform surface appearance and adhere to the current collector 

well. Sheet uniformity can be visually inspected, and adhesion can be tested by passing a 

spatula over the surface of the sheet and rolling the sheet around a pencil. If no flaking 

occurs in either step the electrode adhesion is typically sufficient. Typically flaking of 

the electrode sheet is caused by either poor etching of the substrate, or having to little 

NMP in the initial mixing stage. Alternatively, too much NMP can cause the sheet to 

display a higher degree of porosity, which is not desirable. Thus it is important to 

optimize the NMP content for each slurry composition. Lastly, a third pattern can be 

observed on the electrode surface, where pooling appears to occur. Interactions with the 

ambient conditions of the room (humidity, temperature, and any air movement) are the 

most likely causes for this behavior. By isolating the electrode sheet in the vacuum oven 

(whether drying at room temperature or at an elevated temperature) this pattern can be 

prevented. These scenarios are displayed in Figure 12. 
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Figure 12. Electrode sheets: a) with too little NMP, b) with too much NMP, and c) with 
non-uniform drying. 

 
 
 

After confirming the quality of the electrode sheet, electrodes can be punched 

from the sheet. Here a ½” hole punch is used to punch out the cathodes on top of an 

aluminum plate. A hard surface is needed to ensure that the cathode edges do not curl up 

whilst being cut. However, the metal must also be soft enough such that the edges of the 

punch are not dulled excessively. A punched out electrode can be seen in Figure 13. 

 
 

 

Figure 13. Electrode sheet shown with punched out cathode. 
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After punching the electrodes, the cells need to be further dried in a vacuum oven 

at 120oC overnight. The electrodes are then weighed and transferred directly to the 

glovebox antechamber. When transferring any items into the glovebox, the antechamber 

must be purged of any oxygen. Thus the vacuum is brought down to -1 bar, and then 

filled with Argon. This process is then repeated 1-2 more times, depending on the 

samples transported into the glovebox. A number of items necessary for making coin 

cells, including the electrolyte, separators, lithium ribbon, and coin cell crimper are 

already in the glovebox. Within the glovebox, the coin cell is then assembled. Before 

assembling the coin cell, the lithium counter electrode needs to be prepared. This 

counter-electrode consists of a cut disk of cleaned lithium stuck to the surface of a 0.5 

mm stainless steel spacer. To clean the lithium, a small portion of lithium is unrolled and 

a razor blade is used to scrape off the outer surface that has oxidized. A disc of lithium is 

then punched out using a hold punch, and is then pressed onto the surface of the 

separator. Small notches can be applied to the disc to improve adhesion if necessary. 

Typically this is necessary when excessive force is used whilst cleaning. This and the 

necessary components to make the coin cell can then be placed in a weigh boat. 

Moving on to cell construction, first the cathode is centered in the coin cell case. 

After, several drops of electrolyte are applied to the electrode surface. Enough 

electrolyte should be applied such that the electrode surface is wetted and a ring of 

electrolyte can be observed on the outer edge of the coin cell case. Then a single ¾” 

diameter separator is applied to the surface. Care must be taken to center the electrode 

and prevent bubbles from forming under the separator. Any bubbles that do become 
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trapped can be forced out using the flat edge of a pair of tweezers. If the electrode moves 

out of the center, the case can be grabbed by the lip and lightly tapped to force the 

electrode into position. An additional drop or two of electrolyte can be applied to allow 

for better movement of the electrode if it sticks to its original position. Next, the gasket 

is placed into the cell. After applying a few more drops of electrolyte, the lithium 

counter electrode may be placed, along with the wave spring. The cell is then filled to 

the brim with electrolyte and the cap is carefully placed on top. Care must be taken to 

avoid excessive loss of electrolyte. The cap can then be pressed down using a thumb, 

and then transported to the crimper using tweezers. After sitting the cell in the grooves 

of the crimpers, the pressure can be applied up to 900-1000 psi and then released. The 

cell should appear as shown in Figure 14, with no broken edges. An additional schematic 

of the placement of the cell components can be seen in Figure 15. 

 
 

 

Figure 14. Coin cell that has been (a) properly crimped and (b) improperly crimped. 
 
 
 
When the cell is not properly sealed, exposure to the atmosphere will cause swelling of 

the lithium, which will cause the cell to expand and pop open. 
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Figure 15. Coin cell components displayed in order of placement within cell. 
 
 
 

After the cell is crimped and transported out of the glovebox, it is ready to begin 

cycling. The cells are subjected to cycling between 4.2V and 2.8V at several rates. In 

order to cycle the cells, the C-rate must be determined. C-rate is the standard used to 

determine speed at which a cell is charged or discharged. At a rate of 1C, the applied 

current will be such that the cell is charged or discharged in 1 hour. A rate of 5C means 

1/5th of an hour, and a rate of C/5 would mean 5 hours. The specific capacity of the 

active material is given by the manufacturer as 155 mAh/g. Thus to determine the C-rate 

it is necessary to know the mass of active material in the completed electrode. With the 

weight of the foil known, this can be determined by simply subtracting the foil weight 

from the measured electrode mass and multiplying by the weight percentage of active 

material in the electrode. After acquiring this number, the cell can be cycled as shown in 

Figure 16. 
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Figure 16. Coin cells undergoing cycling (charge/discharge at different rates) on the 
Arbin system. 
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CHAPTER III  

EFFECT OF EVAPORATION 

 

The distribution of mobile electrode constituents after drying has a significant 

impact on the final electrode microstructure. The distribution of conductive additive and 

binder influences the electrical conductivity, porosity, and tortuosity of an electrode28. 

Both electron transfer from the current collectors through the electrode and charge 

transfer at the surface of active material particles can be detrimentally impacted by an 

uneven distribution. Although short range conduction can be improved in some areas 

with higher concentrations of additive, a tradeoff exists between electrical conductivity 

and resistance to ion transfer: as more material is present (via reduced porosity), the 

amount of space available for ion transport is reduced, thereby increasing the difficulty 

of ion transport and impacting the power and performance capability of LIBs52, 53, 54. 

Microstructure and cell performance are probed to determine the impact of evaporation 

rate on particle distribution, and a 1-D model is adapted to elucidate the theoretical 

distribution with the electrodes. 

Electrode Drying 

In the penultimate processing stage the wet electrode film is dried. Both a single 

stage and two-stage drying approach was utilized. One sheet was immediately placed 

into a vac-uum oven (at atmospheric pressure) at 120oC for 1.5 hours, with the weight of 

the electrode sheet being measured every 15 minutes. The other sheet was allowed to dry 

at room temperature overnight. The electrode sheet was weighed directly after casting, 
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and after the 16 hour room tempera-ture dry. After this first step, the surface of the 

electrode sheet is still wet. Thus a second drying stage is utilized, where the sheet is 

placed into the vacuum oven at 70oC for 3 hours (or until dry), with the weight again 

being measured every 15 minutes. The weights of the electrode sheet were plotted as a 

percentage of the original electrode weight, before drying began. Thus the weight 

percent losses indicate the amount of solvent evaporating over time. The plots of the 

weight loss as a function of time for the sheets can be seen below in Figure 17. 

 
 

 

Figure 17. Comparison of total electrode sheet weights as a function of time for the 
oven drying stages. 

 
 
 
 Here, the initial drying stage for the slower case has already occurred. Thus this case 

starts at 80%. The slope for the accelerated single-stage sheet is higher than that of the 
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second stage of the two-stage sheet, indicating a higher rate of solvent evaporation. As 

expected, the loss percentage for each sheet becomes equivalent at the termination of 

drying. 

Microstructural Analysis 

Given the thin nature of the electrode sheets used in this study, separation of the 

electrode into multiple layers for local volume fraction analysis was not feasible. 

Although thicker electrode sheets could be utilized, efforts were taken to reduce any 

changes to drying dynamics that would be observed in LIB electrodes of typical 

thickness32. A number of advancements in electrode microstructure imaging exist such 

as XRT which allows for complete digital electrode reconstruction, but this detailed 

analysis is beyond the scope of this paper55, 56, 57, 58. However, the top and bottom 

surfaces of the electrode can be observed to give insight into the distribution of mobile 

components within the electrode. SEM images of the upper surface of the punched out 

electrodes can be seen in Figure 18. 
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Figure 18. SEM images of a) Two-stage dried electrode sheet zoomed out with 50µm 
scale, b) Two-stage electrode sheet zoomed in with 10µm scale, c) Accelerated single-

stage electrode sheet zoomed out with 50µm scale, and d) Accelerated single-stage 
electrode sheet zoomed in with 10µm scale. 

 
 

Immediately noticeable when comparing the two cases is the presence of a 

binder/additive coating on the surface of the two-stage electrode that is not present for 

the single-stage case. This initially indicates the presence of additional binder on the 

surface of the two-stage sheet, as compared to the single-stage sheet. However, if we 

assume the migration of additive with the binder, particle interactions in terms of surface 

area adhesion would likely restrict the ability of the binder to coat the active material. 

Thus assuming that vertical accumulation of binder and additive occurs not during the 
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two-stage, but during the single stage dry, it is likely that the additional binder and 

additive at the surface would cause local competition between the active material and 

additive with binder adhesion28, 59. Thus there is not enough binder to form fixed layers 

on the surface of the active material particles, limiting potential contact area between the 

conductive network and the active material particles. With the additional binder/additive 

on the surface of the electrode sheet, a gradient will have developed within the sheet, 

whereby a lower weight percentage of binder/additive will exist towards the bottom of 

the electrode. To verify that vertical accumulation is indeed occurring, SEM images of 

the bottom of the electrodes were examined, as shown in Figure 19. 

 
 

 

Figure 19. SEM images of the bottom side of a) Two-stage dried electrode with 40µm 
scale and b) Accelerated single-stage electrode with 50µm scale. 

 
 
 

As expected, the two-stage dried sheet can be observed to have more binder (shown as 

the lighter regions) at the bottom of the sheet than the quickly dried sheet. Without 

enough time for redistribution of particles, the bottom of the single-stage electrode is 
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lacking in binder, which could result in delamination. Both sheets exhibited sufficient 

adhesion during a 1mm bend test, where the electrode is wound around a 1mm rod, thus 

replicating the standard spirally-wound configuration found in wound cylindrical cells. 

Electrochemical Analysis 

In performing the electrochemical analysis, a separate electrode sheet was 

created and dried, apart from the electrode sheet utilized in the examination of the drying 

rate to ensure that the weighing process (taking the sheet in and out of the oven) had no 

effects on the final electrode. The impedance spectrum for the two-stage and single-stage 

electrodes can be seen in Figure 20. 

 
 

 

Figure 20. Electrochemical impedance spectroscopy data for each electrode sheet. Data 
shown is representative across multiple evaluated cells. 
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The high frequency intercept indicates the total ohmic resistance of the cell, which is 

primarily due to the electrolyte. With no differences in cell construction, the resistance 

shows little difference between the two cases. Moving into the lower frequency range, a 

single semicircle, followed by a tail can be seen for each sheet. The semicircle represents 

the internal resistance of the cell due to charge-transfer resistance at the electrode-

electrolyte interface, current collector resistance, and resistive contributions from the 

porosity and conductivity of the electrode. The increase in diameter of the semicircle for 

the single-stage dry indicates an increase in the overall charge transfer resistance. Given 

that the cell composition and electrical leads are maintained constant, the differences 

must be due to microstructural differences between the electrodes, namely the non-

uniform distribution of additive and binder. Additionally, the poor distribution of carbon 

would further amplify this effect throughout the electrode. With the reduced amount of 

binder present at the bottom of the single-stage electrode, reduced electrode adhesion is 

also expected, which reduces conduction between the electrode and current collector. 

Lastly, the tail represents the resistance associated with the diffusion of ions within the 

electrode60. Here the slope of the tail is indicative of the resistance, with an increase in 

slope indicating an increase in diffusion resistance. The diffusion resistance for the two-

stage sheet is slightly higher than that of the single-stage sheet, likely owing to slight 

differences in porosity. However, this contribution towards the overall cell resistance is 

minimal. 

To further probe the electrochemical impact of drying rate on the microstructure 

of the cathodes, rate and cycling performance were probed. The cycling performance of 
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the electrode sheets can be observed in Figure 21. The plotted data represents the 

average case for three coin cells constructed from each electrode sheet. At the lower 

rates (C/10, C/5) the single-stage and two stage electrodes have no significant difference 

in cell performance. As the rate is further increased, the difference in performance 

between the two cases rises to 2% at 1C, 4% at 2C, and 11% at 5C. As the rate of 

discharge increases the impact of the difference in charge transfer is apparent. As the 

cells are further cycled, a notable capacity drop-off is observed for the single-stage sheet, 

leading to capacity retention of approximately 91% for the two-stage sheet, and 78% for 

the single-stage. 

 
 

 

Figure 21. Specific capacity as a function of cycle number and discharge rate for coin 
cells made from the two-stage and single stage electrode sheets. The cycling consisted of 

five cycles of C/10, C/5, 1C, 2C, 5C, and 10C, followed by 100 cycles at 1C. 
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This reduction in capacity retention can be attributed to the difference in internal 

resistance as previously mentioned, along with adhesion to the current collector during 

cycling61. 

The discharge curves at 1C and 5C for each electrode can be seen in Figure 22. 

As expected, the two-stage electrode outperforms the single-stage electrode at both rates 

in terms of specific capacity. The IR drop (shown as the lower voltage plateau) for the 

single-stage electrode is larger than that of the single stage, likely due to the differences 

in internal resistance as previously mentioned. Thus the two-stage electrodes have a 

higher energy density than that of the single-stage sheet, corresponding to a 3% and 14% 

percent difference at rates of 1C and 5C, respectively. 

 
 

 

Figure 22. Discharge curves at 1C and 5C for each examined electrode, with an upper 
voltage limit of 4.2V and a cutoff voltage of 2.8V. Data shown is representative across 

multiple evaluated cells. 
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Physics Based Modeling of Drying 

Clearly the rate of evaporation has an impact on the distribution of mobile 

components within the electrode, which further impacts the electrochemical performance 

of cells. Given a basic understanding of the drying dynamics in a simplified case, a 1-D 

analysis was used to identify an appropriate range of drying conditions that result in 

appropriate uniformity of electrodes. The migration of particles during evaporation from 

a thin film as shown below in Figure 23. 

 
 

 

Figure 23. Sketch of evaporation from the electrode slurry. 
 
 
 
Here the active material is represented as the large, red spheres, the black spheres 

represent conductive additive, the tan background represents the binder dissolved in 

solvent, and the dark region near the surface is a region of increased binder 

concentration. The top surface recedes due to evaporation, causing the binder and 

additive to accumulate at the surface. 
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The evaporation follows a convection diffusion equation, where the vertical volume 

fraction of particles at a given time is given as62, 63, 64, 65, 66, 67 

 

1 [ ( ) [ ( )] ]dK Z
t Pe y d y
φ φφ φ φ

φ
∂ ∂ ∂

=
∂ ∂ ∂  

where 𝜙𝜙 is the volume fraction, 𝑡𝑡̅ is the dimensionless time and 𝑦𝑦� is the distance from 

the bottom of the film. The compressibility of the dispersion 𝑍𝑍(𝜙𝜙) accounts for the 

diffusive driving force as a result of an increase in particle chemical potential. Here it is 

given the functional form  

1( )
m

Z φ
φ φ

=
−  

which accounts for divergence when reaching the packing limit 𝜙𝜙𝑚𝑚 of the particles. The 

sedimentation coefficient 𝐾𝐾(𝜙𝜙) accounts for the reduction in particle diffusion 

coefficient as a result of inter-particle hydrodynamic interactions. To have appropriate 

limits at low volume fractions, the sedimentation coefficient is taken as64, 68, 69, 70 

6.55( ) (1 ) .K φ φ= −  

The dimensionless time and distance are scaled as a function of the film height 𝐻𝐻 

and the evaporation rate �̇�𝐸are given as 
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No flux conditions exists at the upper and lower boundaries of the sheet, leading 

to 

0,     ( ) [ ( )] ,dy K Z
d y

φφ φ φ
φ

∂
=

∂                  

1 ,     ( ) [ ( )] .dy t K Z Pe
d y

φφ φ φ φ
φ

∂
= − =

∂  

As the drying time increases, the top layer decreases in height, as noted by the 

decreasing upper limit of y/H. At time t=1, the sheet will be fully dried, however the 

imposed limit on the upper volume fraction prevents this from ever being reached. Thus 

we cannot fully “dry” the sheets, merely predict the distribution of particles based upon 

the longest drying time achievable. Regardless, this model provides a qualitative 

measure of particle distribution. 

In applying this analysis to electrode slurries, the slurries are assumed to be 

uniform, such that migration of binder due to solvent evaporation is accompanied by the 

migration of conductive additive that is suspended in the solution. The drying of the 

sheets is assumed to be uniform in the drying direction, such that the evaporation front 

proceeds at a constant rate across the entire electrode sheet. Active material particles are 

assumed to be uniformly distributed with minimal settling, due to the viscosity of the 

slurry. However, the size of the particles prevents redistribution following the migration 

of binder and additive.  

The governing equation was solved using a finite element solver, at Peclet 

numbers of 0.1 and 1, respectively corresponding to the accelerated and two stage drying 
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schemes. Here the only factors that change are the temperature, solvent viscosity, and 

the evaporation rate. The solvent viscosity changes as a function of temperature, along 

with the evaporation rate, which is defined as the rate at which the upper surface of the 

film recedes during evaporation. Although two mobile phases are present, the radius of 

the Super-C65 was utilized in this analysis, as the additive will likely be the limiting 

factor in mobility. Super-C65 carbon black tends to aggregate, with a primary particle 

size of approximately 100nm71. The initial volume fraction of binder and additive was 

evaluated to be approximately 20% in the electrode slurry. The upper limit was chosen 

as 64%, corresponding to the maximum volume fraction for random close packing72, 73. 

The volume fraction distribution for 𝑃𝑃𝑃𝑃 = 1 is shown below in Figure 24. 

 
 

 

Figure 24. Volume fraction distribution of binder/conductive additive as a function of 
drying time for the accelerated drying rate, where 𝑃𝑃𝑃𝑃 ≈ 1. 
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The evolution of the particle distribution can be seen from t=0 to t=0.5, the point 

where drying is 50% complete. A t=0, the slurry is fully wet, with the volume fraction of 

the binder/additive constant at 20%. Here the sheet remains at the initial casting height, 

as noted by the range of volume fraction data. As the time increases to t=0.1, the solvent 

begins to evaporate from the surface, leaving an increased concentration of 

binder/additive on the surface of decreasing height. As time increases further, the 

vertical accumulation of components becomes more apparent. A measure of 

redistribution occurs, as noted by the increase in volume fraction at the bottom of the 

sheet. However, a large gradient still exists within the sheet, where the majority of the 

binder/additive is in the upper half of the sheet. This additionally indicates a reduction in 

porosity towards the surfaces of the sheet, due to the increased content of 

binder/additive. The volume fraction distribution for Pe=1 is shown below in Figure 25. 
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Figure 25. Volume fraction distribution of binder/conductive additive as a function of 
drying time for the accelerated drying rate, where Pe≈0.1. 

 
 
 
The evolution of the volume fraction distribution follows the same trend found 

for Pe=1, whereby the thickness of the sheet decreases as evaporation occurs, and the 

volume fraction of additive/binder increases towards the top of the sheet. However, 

whereas the diffusion rate was too slow for the case of Pe=1, here it is ample enough to 

allow for the redistribution of electrode components during drying, preventing the sharp 

increase in volume fraction shown for the case where Pe=1. Here the particle 

distributions are much more uniform at every given time as compared to the quickly 

dried sheet. The volume fraction at the bottom of the sheet increases with time, as the 

particles have enough time to diffuse through the sheet as opposed to remaining near the 
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surface. Given the relative performance of the two cases, it is clear that a more uniform 

distribution of conductive additive and binder is needed in order to maximize the 

potential of an electrode with a given composition. 

In order to broaden the results of this study and create an guideline for the 

optimization of electrode microstructures during the drying stage, the previous analysis 

was extended to a range of Peclet numbers (0.1, 0.5, 1, and 2) and a range of initial 

volume fractions (0.05, 0.1, 0.15, and 0.2) in order to account for varying film 

characteristics and volume fraction of mobile constituents. In a practical lab setting, the 

primary factors effecting the Peclet number are the ambient temperature, the solvent 

viscosity, particle radius and film height. Alteration of these quantities will increase or 

decrease the Peclet number. Changes to the volume fraction can be easily achieved by 

simply altering the desired weight percentages of components in the final, dried 

electrode. Particle size is altered by simply choosing a different additive type, are taking 

steps – such as milling –  to reduce the particle size of an existing additive. Casting 

height will have a direct impact on the initial and final film height, although the final 

height will also be impacted by the composition of the slurry.  

In analyzing the volume fraction distributions for these cases, a factor 

representing the normalized deviation of volume fraction from the average volume 

fraction for the semi-dried sheets was utilized. This factor is defined as the standard 

deviation of the volume fraction divided by the average volume fraction, at t=0.5. As the 

distribution of particles follows an increase in volume fraction towards the top of the 
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sheet, an increase in the normalized deviation indicates a higher degree of vertical 

accumulation. The plotted results can be seen in Figure 26. 

 
 

 

Figure 26. Normalized deviation of binder/additive volume fraction as a function of 
Peclet number and initial volume fraction of carbon/additive in the electrode slurry. 

 
 
 
For a constant initial volume fraction, the normalized deviation of volume 

fraction increases up to between 15% and 35%. Regardless of the content, vertical 

accumulation will still occur with the final amount of additive present at the top surface 

of the sheet only limited by the total amount of binder/additive present in the sheet. 

However, at the lower volume fraction (0.05 and 0.1) the normalized distribution is less 

than that of the 15% and 20% initial volume fraction cases. Essentially, the larger the 

concentration of the binder/additive in the initial slurry and the higher the Peclet number, 
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the greater degree of vertical accumulation will occur. Thus in order to maximize the 

uniformity of electrode sheets with given mobile constituents, the rate of evaporation 

and the initial film height must be controlled. For example, a thicker sheet will need to 

dry at a lower rate than a thinner sheet with the same composition in order to maintain a 

constant Peclet number and reduce the non-uniformity of the electrode. 
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CHAPTER IV  

EFFECT OF CALENDERING 

 

An optional post-processing step, known as calendering, can additionally be 

applied to the dried and punched electrodes, prior to constructing the coin cell. 

Calendering is the process of compressing an electrode to reduce its porosity. Thus the 

energy density of the electrodes in increased, and the performance is typically improved, 

due to better contact between components and improved electrode adhesion  to the 

current collector52, 74, 75, 76, 77, 78. However, it is possible during the compression process 

that the effects of particle distribution can be offset, as particles are forced closer 

together. 

Traditionally electrode sheets are calendered via the usage of a rolling machine, 

where a cast electrode sheet is rolled through two metal cylinders with a pre-set gap 

width. In addition to being a good post-processing step, calendering can also help to 

gauge the adhesion of cast electrode sheets. Generally speaking, if the electrode peels or 

flakes from the current collector whilst calendering, then the cell will likely have poor 

performance, especially during cycling. Although the traditional method of rolling has 

the added benefit of allowing for the calendering of entire electrode sheets – the main 

reason this method is utilized in industry – the equipment itself is useful only in this 

application. Thus a multi-purpose lab-press is used to calender punched out electrode on 
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a singular basis. Here the electrode is placed between two stainless steel spacers, and 

pressure of 4MPa is applied, as shown in Figure 27. 

 
 

 

Figure 27. Lab press shown with electrode sample on stainless steel spacer. 
 
 
 
The calendered electrode can be seen in Figure 28, next to an uncalendered electrode. 
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Figure 28. Punched out uncalendered (a) and calendered (b) electrodes. 
 
 
 
A pressure of 4MPa was arbitrarily chosen after determining that this pressure yielded 

optimal results in terms of performance on a separate benchmark study. The reasoning 

for this optimal pressure is directly linked to the porosity of the electrode as a function of 

calendering pressure, and is beyond the scope of this current work. 

 SEM images of the calendered electrode for the two-stage and single-stage dry 

can be seen below in Figure 29. 
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Figure 29. SEM images of a) Two-stage dried, calendered electrode sheet zoomed out 
with 50µm scale and b) Accelerated single-stage, calendered electrode sheet zoomed out 

with 50µm scale. 
 
 
 
Immediately noticeable is the degree of compaction, as compared to the uncalendered 

samples. In addition to pushing the components closer together, noticeable cracking of 

the active material particles occurred in both cases, as shown in Figure 30. 

 
 

 

Figure 30. SEM image with cracking NMC particle with a 20µm scale. 
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The electrochemical impact of these microstructural changes can be observed looking at 

the electrochemical impedance spectrum of the electrodes. Figure 31 displays the EIS 

data for the two calendered electrodes, compared alongside with the EIS spectrum for 

the uncalendered electrodes. 

 
 

 

Figure 31. Electrochemical impedance spectroscopy data for calendered and 
uncalendered electrode sheet for each drying speed. Data shown is representative across 

multiple evaluated cells. 
 
 
 
Immediately noticeable is the significantly smaller semicircle present for the calendered 

cases, which indicates both a lower charge transfer resistance and electrode/current 

collector interface impedance. Amongst themselves, the two-stage sheet still exhibits a 
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lower internal resistance as compared to the single-stage dry. The cycling performance 

of the calendered electrodes can be seen in Figure 32. 

 
 

 

Figure 32. Specific capacity as a function of cycle number and discharge rate for coin 
cells made from the calendered two-stage and single stage electrode sheets. The cycling 
consisted of five cycles of C/10, C/5, 1C, 2C, 5C, and 10C, followed by 100 cycles at 

1C. 
 
 
 
Compared to the non-calendered samples, the calendered sheets display increases in 

capacity at each rate. However, these sheets exhibit capacity retentions of 85% for the 

slowly dried case and 68% for the quickly dried sheet, while the uncalendered sheets had 

retentions of 91% and 78%, respectively. The difference between the two calendered 

cases is likely linked to the previous analysis of particle distribution. The increase in 
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capacity fade as compared to the uncalendered sheet can be linked to the cracking of 

NMC particles as a result of the compression. During cycling cracks can form in the 

active material particles that hinder performance. By starting this cycling with cracks 

already established, a greater degree of crack propagation will likely occur, thus 

reducing capacity retention79, 80. 
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CHAPTER V  

SUMMARY AND FUTURE RECOMMENDATIONS 

 

 The influence of evaporation rate on microstructure formation in LIB electrodes 

has been explored through an experimental approach coupled with 1-D analysis. For 

accelerated electrode drying, a non-uniform distribution of binder and conductive 

additive develops that results in poor cycleability and reduced electrochemical 

performance. The theoretical distribution indicates that vertical accumulation of additive 

and binder will occur when the drying rate is too high, as denoted by the Peclet number 

for the given drying conditions. With calendering, the performance of cells is greatly 

improved, but the effects do not negate the impact of microstructure formation during 

drying. Taken as a whole, the results of this work can be generalized and used to 

optimize the fabrication of LIB electrodes with a number of different chemistries.  

 Further studies could look into further optimizing the drying time of LIB 

electrodes. In this case an optimal two-stage dry was utilized, however experimental 

time constraints limited the number of trials that could be performed. Additionally, 

different drying schemes could be utilized that incorporate IR or UV light.  

 The development of a model specifically tailored to the multi-component nature 

of an LIB electrode slurry needs to be developed that will enable better understanding of 

the drying dynamics present. Particle interactions will likely play a large role in the 

migration of mobile constituents81, a factor that is not captured with the model presented 

herein. Furthermore, such a model could be used to accurately predict the volumetric 
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distribution of components on an individual basis, which could be instrumental in 

elucidating the full impact of particle distribution on critical electrode properties, such as 

conductivity, porosity, and tortuosity, to name a few. 

 Lastly, any work of this nature should be experimentally verified. Although 

evidence suggests the feasibility of the utilized 1-D analysis, XRT can be utilized to map 

out the volume fraction of an entire electrode. Although there was not sufficient time to 

include this analysis in this work, further research is pending. 
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