
ERROR CORRECTION USING PROBABILISTIC LANGUAGE MODELS

A Dissertation

by

GOWRISHANKAR SUNDER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee Anxiao (Andrew) Jiang
Committee Members Yoonsuck Choe

Tie Liu
Head of Department Dilma M. Da Silva

May 2015

Major Subject: Computer Science & Engineering

Copyright 2015 Gowrishankar Sunder

ABSTRACT

Error Correction has applications in a variety of domains given the prevalence of errors

of various kinds and the need to programmatically correct them as accurately as possible.

For example, error correction is used in portable mobile devices to fix typographical errors

while taking input from the keypads. It can also be useful in lower level applications - to

fix errors in storage media or to fix network transmission errors. The precision and the

influence of such techniques can vary based on requirements and the capabilities of the

correction technique but they essentially form a part of the application for its effective

functioning.

The research primarily focuses on various techniques to provide error correction given

the location of the erroneous token. The errors are essentially Erasures which are missing

bits in a stream of binary data, the locations of which are known. The basic idea behind

these techniques lies in building up contextual information from an error-free training

corpora and using these models, provide alternative suggestions which could replace the

erroneous tokens. We look into two models - the topic-based LDA (Latent Dirichlet

Allocation) model and the N-Gram model. We also propose an efficient mechanism to

process such errors which offers exponential speed-ups. Using these models, we are able

to achieve upto 5% improvement in accuracy as compared to a standard word distribution

model using minimal domain knowledge.

ii

NOMENCLATURE

HMM Hidden Markov Model

LDA Latent Dirichlet Allocation

LSA Latent Semantic Analysis

SVD Singular Value Decomposition

ER Erasure Ratio

IID Independent and Identically Dist1ributed

BOW Bag of Words

POS Parts-of-Speech

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

NOMENCLATURE . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

1. INTRODUCTION . 1

1.1 Why is Error Correction Important? . 1
1.2 Natural Language Processing for Error Correction 1
1.3 What are Erasures? . 2
1.4 Erasures in English Text . 3
1.5 The Erasure Model . 4
1.6 Problem Definition . 5
1.7 Significance of Research and Its Challenges 5
1.8 Using Probabilistic Language Models 6
1.9 Related Work . 7

1.9.1 Topic-based Language Model 8
1.9.2 N-gram based Language Models 10

1.10 Experimental Data Used . 11
1.11 Brief Summary of Results . 12

2. A TOPIC-SENSITIVE WORD DISTRIBUTION MODEL BASED ON LATENT
DIRICHLET ALLOCATION . 14

2.1 Word Distribution Models . 14
2.2 Why Standard Word Distribution Models are not Sufficiently Accurate? . 15
2.3 Topic-sensitive Distribution Models . 16
2.4 An Illustrative Topic Model Example 16
2.5 Why use LDA? . 17
2.6 Applying LDA to Error Correction . 19

2.6.1 Building the Topic-specific Word Distribution 19
2.6.2 Ranking the Alternatives of an Error 20

iv

2.6.3 Enhancing LDA Topic Predictions Using Global Distribution Models 21
2.7 Experimental Results . 24
2.8 Conclusion . 29

3. N-GRAM GRAPH MODEL . 30

3.1 Standard N-gram Models . 30
3.1.1 Error Correction using N-gram Models 30
3.1.2 The Algorithm Explained . 32
3.1.3 An Illustration of Why Standard N-grams’ Inefficiency 33

3.2 N-gram Graphs - an Enhanced Version of the N-gram Model 33
3.2.1 N-gram Graph Definition . 34
3.2.2 Example of N-gram Graph . 34
3.2.3 N-gram Graph Implementation 35
3.2.4 Stemming to Improve N-gram Graph Model Cohesion 37

3.3 Experimental Results . 37
3.4 The Hybrid Model Explained . 39

3.4.1 Why Combine Results? . 39
3.4.2 Combining the Two Models . 40
3.4.3 Experimental Results . 40

3.5 Conclusion . 43

4. BINARY STREAMS AND OPTIMIZED HUFFMAN DECODING 44

4.1 Huffman Coding . 44
4.2 Prefix-based Elimination Technique Explained 45

4.2.1 Example . 46
4.2.2 Improving Performance using Enhanced Trie Representations . . . 48
4.2.3 Experimental Results . 49

4.3 Conclusion . 50

5. SUMMARY . 51

5.1 Machine Learning Approach for Hybrid Model 52
5.2 Removing the Word Boundary Assumption 52
5.3 Improving the N-gram Graph Model . 53
5.4 Parts-of-speech Tagging . 54

REFERENCES . 55

APPENDIX A. HUFFMAN CODES USED . 58

APPENDIX B. IMPLEMENTATION DETAILS 60

v

LIST OF FIGURES

FIGURE Page

2.1 Topic Distribution for alt.atheism in LDA 24

2.2 Topic Distribution for comp.os.ms-windows.misc in LDA 25

2.3 Topic Distribution for comp.sys.ibm.pc.hardware in LDA 26

2.4 Comparison of Accuracy for LDA Topic-Model vs Global Model 27

2.5 Accuracy Delta D vs Average Possible Decodings per Token 28

3.1 N-gram Graph for ABCACBADE and Lwin = 2 35

3.2 Accuracy vs. N-gram Window Size . 38

3.3 Average Accuracy vs. α . 41

3.4 Accuracy vs. Erasure Ratio . 43

4.1 Trie for a, ab, b, ba . 48

4.2 Running Time Comparisons . 50

vi

LIST OF TABLES

TABLE Page

3.1 Average Accuracy of all Error Correction Models 42

A.1 List of Huffman Codes Used . 59

vii

1. INTRODUCTION

Errors are present in all storage media and are one of the primary hurdles on the path

to efficient Data Storage. They occur in different formats originating from a variety of

sources. The characteristics of the errors vary depending on those of the source of the

error. We look into one of the most common sources of errors - random noise. Errors

originating from such random noise sources are difficult to fix since they do not follow

any patterns. This makes the task of correcting the errors all the more difficult.

1.1 Why is Error Correction Important?

The ability to correct errors accurately will improve the reliability of the underlying

system and so has numerous commercial and academic implications and is an active field

of research. Providing such ability in an automated way provides a seamless experience

to the end user wherein the presence of the error is totally hidden from them via the

correction mechanism in between. Such error correction systems are present everywhere,

right from the mobile devices which have text auto-correction capabilities to the nu-

merous complex systems on the internet starting from the search engine which suggests

corrections to our queries in order to get better results.

1.2 Natural Language Processing for Error Correction

There are multiple ways to look at the problem of error correction and Natural Lan-

guage Processing techniques is one of the them, although it has been gaining traction

pretty recently only. These techniques build models from the training corpora which

can be used to make accurate inferences on possible corrections for an error. Models

built this way utilize many attributes of the natural language, including the proximity of

words, their role/part of speech in the sentences, their relationships with their neighbors

1

etc... and their accuracy depends both on their ability as well as the semantic similarities

between the training data and the test data.

1.3 What are Erasures?

One of the major problems with error correction is identifying the presence and loca-

tion of errors. For example, given a stream of valid English tokens out of which a select

few are erroneous, it is hard to distinguish such errors from the correct ones as long as

they too are valid English words. NLP does provide a few tools to deal with such errors

which take into account the neighborhood of the words and identifies any outliers based

on their relationships. Some of the information that can be used to identify such errors

are

• Neighbourhood similarity - Reduced similarity with the closest neighbors of a given

word indicates that it is a possible erroneous token

• Temporal Similarity - Another possible similarity metric would be time-based. For

example, in a conversation happening during the day, if you come across a phrase

”Good Night”, this might probably point to something out of place.

• Topic Similarity - If a set of words are totally out of place wrt. the general topic

of the rest of the document or conversation, it could possibly mean the presence

of errors.

Although such means exist to narrow down on the possible error candidates, none

of them are deterministic and by using such detection mechanisms, we run the risk of

identifying false positives i.e. assume valid tokens to be errors and replace them with a

possible alternative thereby introducing an error. Such a scenario is detrimental to the

effective functioning of the error correction model.

2

In our research, we primarily focus on errors in binary data streams and only a specific

type of error, namely Erasures. An erasure is essentially a bit in the stream that is

unknown i.e. it could be either a zero or a one. Such errors provide both their presence

as well as their location which makes the task of error detection obsolete letting us

concentrate on the more important problem of fixing them. Erasures can happen during

network transmission wherein one of the bit in a packet of binary data was lost and so, is

filled with some sentinel value to be taken care of by the application. OCR software also

provide similar inputs wherein they are unable to exactly identify a particular character

and instead provide a list of possible characters with varying confidence.

1.4 Erasures in English Text

Erasures are more common in binary streams wherein a bit can go missing and needs

to be replaced as explained above. Attempting to correct such erasures needs work at

the binary level but we instead try to approach the same problem at a much higher level.

Assuming that the binary stream actually represents English text, we can replace these

erasures with multiple decodings of English tokens and using word distribution models as

described below, deduce the most probable correction for the erasure. Without loss of

generality, the English tokens are assumed to be built of only lowercase English alphabets

(a-z) along with a few other special characters.

So, the primary assumption we make here is that the binary stream which is filled with

erasures is a representation of English tokens in some form. One of the most commonly

used binary codings for languages is the Huffman Code [9] It is an optimal prefix code

which uses variable-length code to represent different alphabets of a language, usually

based on their frequency of occurrence with the aim of reducing the overall length of the

code. In our case, we built the Huffman Code based on the frequency of each alphabet in

the training documents. A table consisting of the generated Huffman Codes is available

3

in the Appendix.

A stream of binary encoded English tokens with erasures among them could lead to

numerous possible decodings. Replacing each missing bit with either a one or a zero

would lead to its own possible decoding. So, for a binary stream with k erasures, we

have upto 2k possible decodings. Our aim is to select the most probable among them

that can replace the erroneous token while fitting into the remaining text and possibly

resemble the original text. Given the fact that Huffman coding is a variable-length code,

the possibilities are huge if we do not assume the knowledge of word boundaries in the

binary stream. To avoid this situation, it is assumed that the word boundaries in the

binary stream are known 1.

1.5 The Erasure Model

In all the test data that were used here, we introduced IID (Independent and Iden-

tically Distributed) erasures at random positions in the original Huffman-coded binary

stream. By this, we mean that the presence of an erasure at a particular position in the

stream has no effect on the position of erasures in the remaining stream. This closely

resembles how erasures are induced through random noise. The only constraint we place

on the erasures in a stream is the proportion of erasures as compared to the entire stream.

We denote this by ER - Erasure Ratio which equals the ratio of erasures to the

total bit-length of the stream. Higher the ER value, higher the number of erasures in

the binary stream. With more erasures, we get more possible alternatives for each word

which makes correction process that much harder. Hence, increasing ER values provides

a way to test the effectiveness of each of the model as will be seen in future sections.

1Please note that it is possible to apply similar language models without knowledge of the word
boundaries and the results would probably be similar across every known model and so, should not
hugely affect the improvements we show here. The resulting explosion in possible corrections would
make the models more complex though - so, we do assume this knowledge to keep the model simple

4

Erasure Ratio, ER =
number of erasures in the stream

binary-length of the stream

Based on these facts, a specific problem definition that is being solved here follows.

1.6 Problem Definition

A text stream consisting of a sequence of tokens is given. Each of the tokens is

constructed of a known alphabet set. The text is encoded as a binary stream, using

a pre-determined set of Huffman Codes. This encoded binary stream contains erasures

at random positions. The goal is to correct these erasures so that the resulting tokens

obtained by decoding them matches the original text as much as possible.

1.7 Significance of Research and Its Challenges

As mentioned earlier, the ability to fix errors (or erasures in our case) programmatically

goes a long way towards building a reliable data storage system. One of the challenges

of building such a generic correction model is to avoid or at least limit the use of any

prior knowledge of the data being corrected. This will go a long way in helping the

correction system to be applied to a wide variety of use cases. Most prior work in

this area use intrinsic knowledge of the data distribution in some form or another. For

example, web-scale error correction mechanisms used in search engines currently in place

take into account a lot of internet-related factors like the user’s profile, his geographic

location and temporal similarities etc. Although such knowledge is useful, it might not

be available in all scenarios and so, what we need more is a general model that can be

plugged into any domain with the least information. This is exactly what we are trying

to achieve through our research.

Our model is formulated in a way that is most conducive for alternate models to be

included. We have built a probability distribution based ranking model and the aggre-

5

gations performed are so aligned that including the results from a similarly normalized

model is straight-forward. In fact, we ourselves have built and experimented with a hybrid

model aggregating the results from two of our models and it has shown strong improve-

ments. This ability makes the model more generic in the sense that it allows for more

information to be included into the system as available. For example, if it is being applied

in a domain wherein a different evaluation system could provide better results, it could

directly be included into our model and the results should start reflecting the changes

there.

1.8 Using Probabilistic Language Models

Error Correction can be precisely solved using probabilistic Language Model ap-

proaches. Such models build a word probability distribution based on the available training

corpora and try to fit in unknown documents into this distribution. The initial distribu-

tion that is built drives the model in suggesting alternatives for potential errors. This

model makes practical sense in that the way the words are distributed in a corpora pretty

much defines the properties of the corpora and future documents which belong to similar

data would inherently follow similar word distribution. So, in spite of being a primitive

approach towards identifying alternatives, it works with great precision in many cases.

Our research uses two such models to correct errors (or erasures in our case).

• The first one is the Latent Dirichlet Allocation model which is a complex gen-

erative model that can identify topics of similar text and classify newer documents

accordingly. Using this model, we were able to classify newer text onto different

topics and using the word distribution in each of those topics, we arrive at the

best possible alternative. Although the underlying principle of correcting errors is

mostly similar to that of using a global distribution model, the major difference

is the use of topic-specific word distribution. The results have shown that this

6

method is more effective, probably due to the fact that it takes in more contextual

information while arriving at the results.

• The second model is the N-gram graph model which builds a graph with N-grams

as nodes. The N-grams use word relations wherein neighboring words in text form

N-grams. The graph model is a slight variation of the regular N-gram model since

neighbourhood exists between words which are not necessarily immediate neighbors

in the text. This modification helps the model perform better and also allows us

to generate the N-gram data from smaller datasets.

Both models depend on the word distribution in the training document as explained

above and they try to overcome the inherent noise in such plain distribution models by

using spatial similarity among words. The baseline to compare for each of the models

is a general word distribution model which only accounts for the overall frequency of

occurrence of each word across the entire training set.

As part of the research, we also came up with efficient methods to decode an erasure-

filled Huffman coded binary stream. It provides exponential speed-ups as compared to

regular decoding and has been helpful in testing the above to models on high ER values

using a reduced amount of processing power and time.

1.9 Related Work

Language models have been in use to predict and correct grammatical, spelling or even

contextual errors in multiple domains in various forms. For example, the auto-corrector

available in word processing software or even on hand-held devices are mostly depending

on an underlying language model that drives the results. Each such application has its

own set of constraints under which it needs to work. Similarly, they also run on a few

assumptions about the domain that they are being applied on.

7

1.9.1 Topic-based Language Model

Although global word distribution models work well in an abstract environment, they

are less efficient in utilising any other inputs available in the system. For example, they

do not take into account the spatial neighbourhood of other words when given a stream

of words. This is where a topic-sensitive model is more helpful as it is able to leverage

these signals to arrive at better results. Sophisticated topic models have been found to

be extremely effective in relating seemingly unrelated semantic constructs and variations

of such models have been extensively used in a wide variety of places.

Zweig et. al. [22] have tried using the Latent Semantic Analysis or LSA technique in

combination with other techniques including N-gram models, Neural Network models etc.

In fact, they have also used a linear combination of the results from two models, namely

the LSA model and the N-gram model, to arrive at a much better performing model

which is similar to what we have implemented towards the later part of the research.

Yuret at. al. [23] have proposed solutions towards generating corrections making use of

Wordnet training data and a thesaurus but it is pretty complicated, especially related to

the Thesaurus part and is not entirely applicable in a practical sense. An Entropy-based

Language model [5] provides a class-based abstraction helping in better predictions. In

such a model, an hierarchy of grammatical constructs is developed over which the general

N-gram models are run. This approach can provide marginally better results since the

hierarchical abstraction can help in isolating different N-grams to the level they belong

to thereby avoiding noise in other sections. This is very similar to the topic classification

we aim to implement to avoid noise from other topics.

The LDA model has been efficiently used in [20] to correct errors in Optical Recogni-

tion Software. OCR software do not always detect characters deterministically and hence,

are prone to errors based on similarity of characters (for example, hand-written versions

8

of characters ’i’ and ’j’ are pretty similar) But such software can associate a confidence

percentage to their detection and using knowledge of commonly misinterpreted charac-

ters, [20] have made improvements in correcting errors in the system. Essentially, they

have built an error model based on the probability of each character being misinterpreted

as another using which they are able to detect all possible corrections for a given word.

Armed with this information, they use the LDA model to rank such alternatives and

choose the best among them. Using this model, they have been able to reach upto 7%

improvement in accuracy as compared to global word distribution model, which reiterates

the fact that a topic-sensitive model will significantly outperform a global model in most

cases.

This model is in some ways similar to the approach we take to correct errors i.e.

instead of correcting errors in OCR recognition using topic distributions, we are trying to

correct erasures which are present in the binary representation. One of the drawbacks of

their approach is that the error model they have used is restricted to the OCR domain.

In other words, it is hard to arrive at such a probabilistic error model in every domain

although it might suit well for OCR software. This forms the fundamental difference

between our approach and theirs.

Topic-sensitive models are also being used in seemingly unrelated domains. For ex-

ample, Wenget. al. [19] have used TwitterRank based on topic similarity between user

tweets and their user-link topology information to measure influence among the users.

Given the ability of the LDA model to identify hidden relations among tweets, their mea-

sures of influence outperform those developed using he usual algorithms like PageRank[16]

and even Topic Sensitive Page Rank[7]. Similarly, a topic-based model has been used to

help improve Collaborative Filtering in Recommender Systems in [13] More recently, [14]

have used a modified version of LDA to classify Yelp user reviews by topics like ”price”

or ”service” based on which the ratings can be weighted better. Similarly, [8] have used

9

LDA to identify hidden subtopics in Yelp reviews to identify customer demands more

specifically.

These items depict the potential of the LDA model to identifying implicit relations

among words efficiently using which we can arrive at better results for error correction.

The first part of the research consists of using the LDA model for error correction. We

can see that the model is able to perform pretty well without much interference once

given sufficient training data.

1.9.2 N-gram based Language Models

As stated earlier, their primary advantage of N-grams over other simpler language

models is their ability to expand the contextual range of information. This has been

previously used by others for various purposes. [12] have introduced similarity measures

for N-grams which could be used to identify the right alternative for a given erroneous

word and since it is a similarity measure, it does not hugely suffer from the limitations of

a plain N-gram model. They use a version of N-grams wherein the most granular item

in their N-grams is characters rather than whole words. This way, they have used this

similarity measure in parallel to other text similarity measures like Edit Distance.

[2] contains a few articles which work with web-scale N-grams to improve search

quality. One possible example where they are used is to auto-suggest alternative search

engine queries. These are handled using N-gram models built over previous valid search

queries. Although they are able to arrive at useful approximations in large-scale test

data as in the case of web queries, they are less effective when applied to errors in a

much smaller scale. In most such cases, the primary source of noise that deteriorates the

results is irrelevant words, which could be stop words, connectors or any other semantic

construct that does not add any new information to the models.

A variation of this model, namely the N-gram graph model, has been used recently

10

to rank similarities between a text and its summary. [6] have used a framework called

AutoSummENG that runs over such a graph to deduct similarities among a text and

its summary. It basically evaluates each possible summary for the text by measuring its

N-gram based similarity with the original text and the summary with the highest similarity

can be chosen to replace the original text. Although the problem here does not exactly

relate to effective text summarization, some ideas related to building the graph have been

utilized. We aim to build similar N-gram graphs and use the relationships among the

N-gram nodes to identify the most likely replacement for an error.

1.10 Experimental Data Used

We have used the English dataset from the Newsgroup Dataset 2 to test these models.

It is a collection of around 18,500 newsgroup articles classified into 20 different topics.

This specific dataset was chosen for the following reasons.

• The dataset is classified into 20 topics based on the original newsgroup topics,

which also is suited well to test the topic-based LDA model.

• This dataset has been widely cited and hence gives a good benchmark to test the

models. Specifically, the OCR-based paper [20] that uses LDA to correct errors

have also used this dataset.

The dataset is split into a training set consisting of approximately 11,500 documents

and the remaining documents forming the test set. This maintains an approximate

training set to test set ratio of 60 : 40 across all topics. All the models are preprocessed

on the training set and the resulting data structures are stored onto the file system.

On each invocation, the model is loaded onto memory and is instantly ready to start

correcting errors in the document.

2http://qwone.com/~jason/20Newsgroups/

11

Given that the articles have been collected from newsgroups, they have a lot of

email/web related metadata that needs to be filtered out so that we only have valid

English words. This pre-parsing is performed on each document before inducing into the

model so that the resulting text consists only of lower-case English alphabets and a few

special characters as mentioned earlier. The resulting data consists of around 1.5 million

words of which around 36,500 words are unique. This set only includes words that are

larger than 3 characters. The reasoning is that

• Smaller words are primarily stop words - words which do not add any contextual

information to either the LDA or the N-Gram model. Such words can be corrected

using a more general word distribution model.

• Given that these words constitute most of the noise in the models generated,

discarding them allows us to build more concentrated models which are able to

perform better error correction.

The experiments have been performed using Python. More information on the choice

of language and other tools can be found in the Appendix.

1.11 Brief Summary of Results

Below, we have listed the major improvements achieved through these models. We

have used the global distribution model as the baseline for comparisons since it is the

most widely used word distribution model.

• The LDA-model has been able to achieve upto 4% improvement in accuracy over

the global model.

• The N-gram graph model, essentially an improvement over the regular N-gram

model, has been experimented using various parameters. Although its performance

is not better than the global model, it complements the LDA-model well and so, an

12

Hybrid model has been constructed using a linear combination of the results from

the two models and this has shown upto 3% improvement over the LDA-model

itself.

• An optimized approach to decode Huffman-coded binary streams with erasures

has been developed. This has led to an exponential decrease in running time for

the decoding process which has enabled more efficient experiments on the other

models.

In the reminder of the thesis, we will describe each of these models in greater detail.

Section 2 explains the LDA model and its results. Section 3 outlines the N-gram model

and also the Hybrid model we developed which improves the previous model’s perfor-

mance. Finally, Section 4 explains the optimization over Huffman decoding with erasures

which was used in the experiments on the above two models.

13

2. A TOPIC-SENSITIVE WORD DISTRIBUTION MODEL BASED ON LATENT

DIRICHLET ALLOCATION

2.1 Word Distribution Models

In order to use NLP in error correction, one of the most commonly used models is

the statistical language models 1. Such models essentially provide a probability of any

phrase or semantic construct in a language occurring together. These models are mostly

built on training data that are assumed to closely match the semantic and contextual

characteristics of test data as well. The assumption is that the word distribution or their

frequencies remain the same across the documents which leads to the conclusion that

the model built over the training set can be used as a generative model for any future

document.

The preliminary version of the model consists of the frequency of each unique word

w across the training document and so, any word W is assumed to have a probability

of occurrence P (W) in any document2. To apply this to the error correction domain,

suppose we have a stream of words of which one of them is unknown, the probability

that the missing word is wi is given by P (wi) and so, of all the words in the dictionary,

the one with the highest probability of occurrence is assumed to be the missing word.

We should note here that in our erasure model, the erroneous word might have some

of its bits missing and replacing them might lead to a set of possible alternatives. So,

we only need to account for those words when comparing the probability and not the

entire vocabulary. But still, we can see that such a simple model will not be accurate

enough for larger corpora with a pretty large vocabulary since there might be more than

1A Language Model is a function that provides a probability of occurrence for each semantic construct
in the language

2This is similar to the N-gram model that will be discussed later. Specifically, this can be assumed
to represent a unigram model wherein the value of N is 1

14

a single word with similar frequency and the model does not provide much information

on choosing one among them.

A simple extension of the model is to expand the length of the semantic construct

from a single word to a stream of words3. For example, assuming a similar frequency

model has already been constructed which provides the probability of occurrence for a

word wi as P (wi), and given a sentence consisting words t0 through tn of which tj is

known to be an error where 0 <= j <= n, the probability that the word W is the right

alternative is given below. The word that results in the highest probability of the phrase

to be generated is taken as the alternative.

j−1∏
i=0

P (ti)× P (W)×
n∏

i=j+1

P (ti)

2.2 Why Standard Word Distribution Models are not Sufficiently Accurate?

Although this model seems to take in more contextual information while arriving at a

decision, it still suffers from the locality of its neighbourhood i.e. the neighbourhood of

each word is immediate and hence, the model does not take in a holistic view of much

larger neighborhoods like the whole document or even the class of documents. This

results in myopic decisions which might not work well in many cases.

For example, consider a sentence like the frog is swimming in the pond where the

emboldened text is missing. Going by the model above, the probability of the word

swimming correctly replacing the error depends not only on the words frog, pond which

help us deduce the correct word but it also takes into account the remaining words which

are mostly stop words or connectors which do not add any valuable information in the

correction process. But if we had taken a much larger semantic construct like the entire

paragraph or the whole document and assuming the entire document was written about

3This resembles the N-gram model mostly

15

ponds or frogs, arriving at swimming as the right alternative would have been much

easier. This is where a topic-sensitive model is much more accurate.

2.3 Topic-sensitive Distribution Models

A topic-sensitive distribution model can overcome the above problems by building the

frequency model specific to a topic. This way, the model inherently takes into account

the word distribution for the topic alone which helps in arriving at better corrections for

an error. In the example above, if the sentence occurred in a document under a topic

related to water bodies or frogs, deducing the correction to be swimming could have been

much easier. Building such a topic-sensitive model is not very different from the general

distribution model explained earlier. The only change is that the corpora is pre-classified

into topics and the models are built individually for each of the topic. To correct an

error, the topic of the entire document defines the model to use from where the rest of

the steps remain the same.

When given the right classifications, this model might be able to work well but we

might not always be able to clearly classify a training document into different topics. Even

if we are provided with that information, assuming the topic of a given test document

to be known significantly reduces the scope of the problem. For example, the sample

Newsgroup data that was used for testing comes classified into different topics which

might help in building the topic model but to be able to correct any given document, this

topic based model does not provide means to identify the topic of the given document,

which is required for the model to be effective.

2.4 An Illustrative Topic Model Example

To illustrate how a topic model could outperform a global word distribution model,

we will take a look at the example below.

A computer is a general purpose device that can be programmed to carry out a set

16

of arithmetic or logical operations automatically. Since a sequence of operations can be

readily changed, the computer can solve more than one kind of problem. Conventionally,

a computer consists of at least one processing element, typically a central processing

unit (CPU), and some form of memory. The processing element carries out arithmetic and

logic operations, and a sequencing and control unit can change the order of operations

in response to stored information. Peripheral devices allow information to be retrieved

from an external source, and the result of operations saved and retrieved.[21] 4

In the example above, assuming the words boldened are to be corrected, we know that

any document related to computers will have the words ”programmed” and ”processing”

with a much higher probability that any unrelated document. So, in an erroneous doc-

ument, we have a word to be fixed whose alternatives are processing, writing, running

based on the various possible decoding of the Huffman code and we know the probability

that the remainder of the document is regarding computers, we would give a higher rank

to ”processing” which in this case would be the right option. The challenge lies in being

able to identify the topic of the remainder of the document so as to make this prediction.

2.5 Why use LDA?

This is exactly where the Latent Dirichlet Allocation or the LDA is helpful. The formal

paper on LDA explains it to be a three-level hierarchical Bayesian model, in which each

item of a collection is modeled as a finite mixture over an underlying set of topics. More

information on its structure and functioning can be found in [4]. It is fundamentally a

generative model that allows a set of observations to be explained by hidden classifications

which inherently explains why they are similar. This is closely related to our topic-based

model definition earlier where the hidden classifications are the topics we talked about.

4Wiki source shared under the terms of Creative Commons Attribution Share-Alike
license - http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_

Attribution-ShareAlike_3.0_Unported_License

17

This is the reason why LDA can be used to classify text into various topics. It is able to

build relationships among words across different documents based on their neighbourhood

similarity to some extent. LSA is a similar model that compresses associations among

words to be used as a distribution model. But it suffers from its inability to scale to

larger datasets where LDA is more accurate.

The LDA model assumes each document to be a mixture of topics rather than be-

longing to a single topic. This applies to both the training as well as test documents.

This relates well to practical cases since a document need not be specific to a single topic

alone. For example, a scientific document could also have references to mathematics,

economics and numerous other topics and so, classifying under the topic ”Science” alone

strips of other important information on the document. This is similar to the working of

Fuzzy Clustering Algorithms. It has the following major advantages as compared to

a plain topic-model.

• It does not require the documents to be classified into topics

• It is able to classify both the training and the test documents into different topics

as configured. This way, it removes the need to be predetermined grouping for

each topic

• It only uses a probability distribution of topics for a document and so, allows every

document to be a part of multiple topics. Using such a model for error correction

would allow words from multiple topics to influence the decision at varying levels

which might probably lead to better results.

• The number of topics to be classified is also flexible. This way, many levels of

abstractions of the topics can be created depending on the resources available as

well as the granularity of the available documents and topic information.

18

2.6 Applying LDA to Error Correction

LDA model is self-generative in that it can identify and classify the documents into

topics. Since data in general does not lend itself to be classified accurately into various

topics, this property of LDA is very useful in classifying even unknown documents. In

order to construct the model from the training documents, we only need to provide

the number of topics to be classified into and the model takes care of associating each

document to the various topics based on semantic relationships. Once the model is

built, any document to be corrected for errors is evaluated by the model resulting in

a probability of distribution across each topic. Using this information and a previously

built topic-specific word distribution, the alternatives are ranked for a given error and the

highest ranked alternative is used to replace the error.

2.6.1 Building the Topic-specific Word Distribution

To be able to use the LDA model to rank possible corrections for a given word, we first

need to have a topic-specific word distribution. Building such a distribution would allow

test documents to first be classified across the different topics with varying probabilities

using which we can rank the corrections. But given the fact that there is no assumption

of knowledge of topic classification, we first need to train the LDA model to be able to

classify even the training documents across different topics.

The LDA model is basically built over a bag-of-words, BOW representation of each

document. This means that the model does not concern itself with the spatial associations

between words within a document5. So, we build an individual BOW-representation of

each document and feed it into the trainer. Once all the documents are fed, the model

is ready to classify any future document. This is explained in Algorithm 1

Using the model constructed above, we re-run the training documents and based

5The N-Gram section that follows later tries to leverage this information

19

Algorithm 1 LDA Model Construction

procedure LDA(documents, num topics) . documents is the list of training
documents

documents to bow = φ . contains the documents as a bag-of-words
3: for each doc ∈ documents do

tokens = parse document(doc)
documents to bow =

documents to bow ∪ construct bow(tokens)
6: end for

lda model = build lda model(documents to bow, num topics) . build the
LDA model using the BOW constructs

return lda model
9: end procedure

on the topic distribution received, we build a topic specific word distribution model.

This has been explained in Algorithm 2. The resulting distribution topic spec dist =

P [word|topic] can be constructed as follows where we first build a frequency distribution

for the words among the topics and then normalize it to arrive at the required probability

distribution.

C[word|topic] =
∑
d∈D

P [topic|d]× C[word|d],∀topic ∈ T,∀word ∈ V

P [word|topic] = C[word|topic]∑
wi∈V

C[wi|topic]

2.6.2 Ranking the Alternatives of an Error

Once both parts of the model are built as described earlier, we can start using it

to correct the errors. The first step towards correcting any document is to retrieve its

topic distribution from the LDA model by feeding it the BOW representation of all the

error-free words in the document. Let us represent this distribution as P [topici|d] which

20

Algorithm 2 Building Topic-Specific Word Distribution

procedure Topic Distributions(documents, lda model) . documents is the
list of training documents

. lda model is the model built from above topic spec dist = None
3: for each doc ∈ documents do

tokens = parse document(doc)
bow repr = construct bow(tokens)

6: dist = lda model[bow repr]
for each topic ∈ dist do

for each token ∈ tokens do
9: topic spec dist[topic][token] = topic spec dist[topic][token] +

dist[topic] . This builds a count distribution of the words
end for

end for
12: end for

normalise(topic spec dist) . This step structures it as a probability
distribution from its current count distribution state

return topic spec dist
15: end procedure

represents the probability that the document d belongs to the topic topici. Then, the

erasures are run through a decoder which uses Huffman Codes and an English dictionary

to identify a subset of possible corrections. Then, using the distribution above, each

correction alt can be ranked with a probability of

P (alt) =
∑

topic∈T

P [alt|topic]× P [topic|d]

The highest ranked alternative is chosen to replace the erroneous token.

2.6.3 Enhancing LDA Topic Predictions Using Global Distribution Models

While building the topic distribution of a specific document to be corrected, we

can only use those words which are error free. But with higher values of ER and the

IID nature of the erasure distribution, the proportion of error-free words in a document

21

Algorithm 3 Error Correction Using LDA

procedure Correct Errors(doc, lda model) . doc is the document with
erroneous tokens

. lda model is the model built from above
3: tokens = parse document(doc)

errors = filter errors(tokens)
clean tokens = tokens - errors

6: bow repr = construct bow(clean tokens)
dist = lda model[bow repr] . Probability of the document occurring under each

topic
for each error ∈ errors do

9: possible decodings = Decode(error)
best = 0
for each token ∈ possible decodings do

12: rank =
∑

topici∈dist
dist(topici)× P (token|topici)

if rank < best then
best = rank

15: alternative = token
end if

end for
18: Replace error with alternative

end for
end procedure

22

reduces significantly to an extent where there are hardly a few words left error-free in

a document of about 500+ words. Given such a test document, the LDA model will

find it hard to associate the document with any topic and it will result in a more even

distribution of topics for the document thereby reducing its accuracy. To overcome these

issues, we include the following changes.

• Erasures with Single Replacements Given the fact that the errors we are dealing

with are erasures over a valid binary stream, not all replacements of the missing

bits would result in valid English words. For example, an erroneous binary stream

with k erasures will effectively have 2k possible bit replacements leading to that

many English words. But in reality, most of them are not valid words and in many

cases, we end up with a single valid alternative6. This can be directly included into

the model to build the topic distribution discarding the fact the token originally

had erasures.

• Corrections from a Global Word Distribution Model Another possible im-

provement is to use the correction based on a global word distribution model which

is built over the training documents without any topic classification. Although this

model has lesser accuracy compared to the topic model, it still provides a means

to build the topic distribution for the document using the LDA model. The distri-

butions obtained via using these suggestions have proven to be useful in achieving

higher accuracies. This change might skew the overall topic distribution towards a

global trend but applying it on the smaller scale of a document reduces this effect

and is able to provide better results.

6This also forms the basis for the optimisation proposed later in the research which was used to
efficiently prune possible decodings for a given token with erasures

23

2.7 Experimental Results

These models were tested out on the Newsgroup dataset described earlier. As part of

the experiments, we used a global distribution model as the baseline for comparisons. This

is similar to the baseline used by [20] and provides valuable insights into the functioning

of the model. The Newsgroup data is by itself split into twenty different topics with

documents split evenly across all of them, both in the test as well as the training dataset.

Although LDA provides for using varying number of topics, since we know the abstract

topics the data is split into, the experiments were run using twenty topics only.

To ensure that the LDA model was able to distinguish topics but still find connections

between the related ones, we ran the documents from three different topics through the

model and plotted the average probability of all the documents across each topic from

each of the original topics. The results show direct correlation between the original topics

and those generated by the LDA model. In Fig. 2.1 where the documents from the topic

”alt.atheism” have been plotted, we can see that topics 1 and 3 are very active.

Figure 2.1: Topic Distribution for alt.atheism in LDA

24

Topic 13 is also very active but it is active for most folders (probably because it

accounts for some subset of common words) and so, is less interesting. In Figures 2.2

and 2.3 however, two contrasting topics on computers have been plotted and we can

see that they are less active around 1 and 3 and rather, their activity shifts around the

topics 10to15.

Figure 2.2: Topic Distribution for comp.os.ms-windows.misc in LDA

25

Figure 2.3: Topic Distribution for comp.sys.ibm.pc.hardware in LDA

It also shows that since the two topics are related, they have strong coherence among

themselves. This shows how the LDA model is able to classify topics. Similarly, plotting

different sets of topics from the original dataset shows coherence among related topics

and discord among non-related topics. It is also to be noted that these clear demarcations

arise only after removing most of the stop words and other shorted words (shorted than

4 characters) As expected, such words add little contextual information and in fact, add

noise to the system thereby negatively impacting the functioning of the LDA model.

The primary metric we used to compare performance of the LDA model was the

accuracy of the model. We define Accuracy as

Accuracy =
number of accurate corrections

total number of erroneous tokens

While calculating the errors, we only consider words which have more than one

possible valid English decoding This is because for words with no more than one

possible decoding, no model is needed to correct them and so, does not add any value

26

to the results7.

The tests have been conducted on a set of 50 files randomly chosen across the test

dataset topics with erasures induced into their Huffman coded streams. We have tested

the models across a wide range of ER values from 0.01 to 0.50 Please note that although

any data with an ER value of more than 0.25 is mostly corrupted beyond proper recovery,

we have tested such ER values to ensure that the model is able to perform under heavy

stress and also understand the dynamics of the model with higher ER values. We were

able to see around 2% to 4% improvement in accuracy on average over the global word

distribution model as shown in Figure 2.4.

Figure 2.4: Comparison of Accuracy for LDA Topic-Model vs Global Model

We define Daccuracy as the difference between the accuracy of the LDA model from

7Please do note that such words are more common for lower ER values and are very useful in cases
like 2.6.3

27

the global model i.e. Daccuracy = accuracylda−accuracyglobal We can see that as the ER

value increases, this difference increases as well meaning that the LDA model becomes

more efficient that the global model as ER increases. This can be explained by the fact

that as ER increases, there are more erasures within the Huffman code of a single word

which in turn increases the number of possible decodings. With more choices, the ability

of the model to choose the right alternative is tested more and we can see that the LDA

model is better suited in performing this task. This is supported by the plot inf Figure

2.5

Figure 2.5: Accuracy Delta D vs Average Possible Decodings per Token

With regards to the running time or other resource constraints placed by using the

LDA model, we have pre-loaded the LDA model into a serialized object which can be

loaded onto memory at will and the reminder of the process does not add any significant

resource requirement. All the tokens in the document are parsed twice, once to build the

28

topic distribution and finally to correct the errors and so, this model can be seamlessly

used in applications to correct errors in a document.

2.8 Conclusion

The results have been very promising and shows that accounting for the topics in

the document does improve performance of the model. The LDA is model is successful

in classifying documents in an automated way and this has been used to correct errors

in the documents accurately. Although an improvement of 3% to 4% does not seem

significant, considering the fact that the original models themselves are able to achieve

close to 85% accuracy at the bare minimum (refer to Figure 2.4), any improvement is

significant. We should also note the fact that the model does not assume any knowledge

of the characteristics of the text and can be ported to almost any domain with minimal

modifications.

29

3. N-GRAM GRAPH MODEL

By definition, an N-gram is a contiguous sequence of N items from a given sequence

of text or speech. The items can be phonemes, syllables, letters, words or base pairs

according to the application. When we build the distribution information of all such N-

grams across the training data, we end up with a model that is able to tell us how frequent

is a particular N-gram. Using this data, we can run a similar algorithm as with the topic

model where we can form different N-grams using each of the possible corrections of the

erroneous token with its neighboring text and depending on the most probable N-gram

that can be formed, we can decide on the correction to use. Although this seems rather

simple, using N-gram model has its own share of issues that we ran into. So, we had to

switch to a much broader N-gram Graph model which has been explained later. Before

going into all of them, we will look into how N-grams are currently being used for various

language-related problems.

3.1 Standard N-gram Models

3.1.1 Error Correction using N-gram Models

We will now look into how a standard N-gram model can be used for error correction

and the issues we faced using such a model. One of the most important decision that

needs to be taken before building the model is the value of N . Higher the value of N ,

more complex the model will get and could possible be able to perform better. But blindly

increasing N might not translate into better performance for the following reasons.

• While building an N-gram model with such an increased range, we will eventually

include a lot of stop words or irrelevant words into the N-grams. This way,

• Increasing N will result in an exponential increase in the number of unique N-grams

30

to deal with. Besides requiring additional resources, this might reduce the relevance

of important tokens in the text as there is simply a flooding of possible N-grams

for every correction.

At the same time, a smaller value of N will not add enough information in the model

which would mean lesser effectiveness of the model. So, arriving at the sweet spot for

the value of N is one of the most important tasks. We tried building such an N-gram

model with various values of N to see which works best but ran into a few issues.

• Source Data There are multiple sources of N-gram frequency data for English

available online. Given that English text does not differ much in terms of the

possible N-grams or their distributions, we could use them directly. I tried using

the Google N-Gram Data (http://storage.googleapis.com/books/ngrams/

books/datasetsv2.html) but due to its sheer volume, I skipped it. As an al-

ternative, I tried using the sample data provided by Linguistic Data Consortium

(https://www.ldc.upenn.edu/data-management/providing) which provides

a 5M N-gram sample. Both these sources had two issues, one being the presence

of numerous stop words in a majority of N-grams which is understandable since

they have been built over web data which is bound to have such noise. The second

problem is that one we opt to work with trigrams or longer N-grams, we need to

analyse a much larger dataset which might not be scalable.

• Building Custom N-gram data Given the issues mentioned above to leverage

N-gram data available online, we built our own N-gram model using the training

data we were using. In this case, it would be the same Newsgroup data. Building

the N-gram model from the training documents will follow the same process as

described later at 5 After the model is built, we can use this model in place of

31

the topic distribution for the document and the topic-specific word distribution as

described in 3 A more detailed explanation is given in Algorithm 4

3.1.2 The Algorithm Explained

Algorithm 4 Error Correction using N-gram

procedure N-gram Correction(doc, ngram model, N) . doc is the document
to be corrected

. ngram model is the model built from above
3: tokens = parse document(doc)

errors = filter errors(tokens)
clean tokens = tokens - errors

6: for each token ∈ errors do
possible decodings = Decode(error)
best = 0

9: for each token ∈ possible decodings do
ngram = Construct N-gram(token, N) . Construct an N-gram

using the error’s surroundings
if P [ngram] < best then

12: best = P [ngram]
alternative = token

end if
15: end for

Replace error with alternative
end for

18: end procedure

But using this model of N-grams failed to improve the results as compared to the

baseline of the global word distribution model. Even increasing the values of N in

hopes of increasing context for each N-gram did not result in any improvement.

So, we had to move to an alternative approach.

32

3.1.3 An Illustration of Why Standard N-grams’ Inefficiency

One way to look into the possible reasons for the failure of the N-gram model is that

when we construct an N-gram with each possible alternative replacing an error, not many

samples exist from the training data for each such N-gram generated. This translates

into failure during the ranking phase since none of the alternatives have a clear advantage

and so, we end up choosing an alternative at random resulting in the reduced accuracy.

For example, if we are fixing ”super fast computers” using 2-grams where fast is the

word to be fixed, the 2-gram training samples built from the data might probably have

”fast computers” and ”super fast” once but ”super cute” a couple of times. In such a

scenario, we are bound to choose ”cute” as the replacement which is incorrect and there

is no way to distinguish fast to be clear winner. The problem here is that the counts

of very specific 2-grams are much lower which makes the decision-making tough and

error-prone.

3.2 N-gram Graphs - an Enhanced Version of the N-gram Model

N-gram Graph provides an opportunity to avoid the problem of exponential increase

in the possible N-grams when N is increased while at the same time, providing means

to leverage the information available through such an increased window. The trick lies

in not generating unique N-grams for each co-occurrence. Rather, the model accounts

for the cumulative co-occurrences of two words to form an N-gram like construct. This

way, there is no explosion in the state space of the N-gram model but still, it is able

to account for a wider context, thereby being able to attain possibly better results. We

need not worry about increasing the context range based on the resource constraints it

will place. A formal definition of the graph model follows.

33

3.2.1 N-gram Graph Definition

The graph G consists of a set of vertices V each of which is the unique word in the

vocabulary of the model. The graph also has a set of undirected edges, E each of which

has an associated weight W connecting any of the two vertices in V. Lwin is the size

of the window within which all words are assumed to be related to each other. So, for

any two vertices v1, v2 ∈ V , if there is an edge ∈ E in between them, then the weight

associated with the edge, W1,2 = W2,1 is given by the total number of occurrences of the

two words represented by v1andv2 within a distance of Lwin across any of the documents

in the training set. More formally,

W1,2 = W2,1 =
∑
d∈D


1, if abs(p1 − p2) ≤ Lwin.

0, otherwise

∀p1 ∈ probe(d, v1),∀p2 ∈ probe(d, v2)

where D is the entire set of training documents and probe(d, v1) returns the list of

positions in d where the word v1 occurs. An example of a N-gram graph is explained

below to give a better picture of its functioning.

3.2.2 Example of N-gram Graph

Figure 3.1 shows a sample N-gram graph constructed with a window size Lwin of two

for the stream of words ABCACBADE where each unique alphabet represents a unique

word. In the actual implementation, words are stemmed to their appropriate roots so

that the N-gram state space is reduced and more associations are allowed to form.

34

A

B C

D E

4

3

1

1

2

1

1

Figure 3.1: N-gram Graph for ABCACBADE and Lwin = 2

Similarly, we can build the graph covering the entire dataset and the resulting graph

denotes the associations among the various tokens. In the same example we used for the

topic model (2.4), if we build the N-gram graph over this text after applying stemmers

as explained below, we can see that we build strong associations between the words

”computer” and ”process” and ”program” which will help increase the edge weights

among those vertices resulting in a higher probability in the model below.

3.2.3 N-gram Graph Implementation

As mentioned earlier, the N-gram Graph model has two steps similar to the LDA

model, the first being the construction of the model from the training data and the

second being the correction of errors based on information from the model. A detailed

algorithm explaining the two steps is given below. One can notice the strong similarity

between the methods mentioned here and those under the LDA model. This way, we

have the probability associated with each alternative as follows. As in the topic model,

we choose the alternative which has the highest probability.

P (alt) =
∑
w ∈ DWw,alt∀wwithin distance Lwinfrom alt

35

Algorithm 5 N-gram Graph Construction

procedure N-gram Graph(documents, Lwin) . documents is the list of training
documents

ngram graph = φ . represents the N-gram Graph model
3: for each doc ∈ documents do

tokens = parse document(doc)
for each token ∈ tokens do

6: for each neighbor ∈ tokens do
if abs(position[neighbor] - position[token]) ≤ Lwin then

ngram graph[neighbor][token] += 1
end if

9: end for
end for

end for
12: return ngram graph

end procedure

Algorithm 6 Error Correction using N-gram Graph

procedure N-gram Correction(doc, ngram graph, Lwin) . doc is the
document to be corrected

. ngram graph is the model built from above
3: tokens = parse document(doc)

for each token ∈ tokens do
if token == error then

6: possible decodings = Decode(token)
best = 0
for each neighbors ∈ tokens do

9: rank = 0
if abs(position[neighbor] - position[token]) ≤ Lwin then . If the two

tokens fall within the Window limit
rank+ = ngram graph[neighbor, token]

12: end if
if rank < best then

best = rank
15: alternative = token

end if
end for

18: Replace token with alternative
end if

end for
21: end procedure

36

3.2.4 Stemming to Improve N-gram Graph Model Cohesion

Even though the N-gram graph does away with most resource constraints associated

with a regular N-gram model, the number of unique words is still large. Apart from the

resource constraint, having a larger vocabulary also reduces the accuracy of the model in

many ways. For example, the same word could be expressed in different forms across the

corpora - singular/plural mutations or different tenses of the verb etc. This would mean

much stronger and more cohesive relationships between two words, which are actually

related closely, would fail to develop since each might be in a different forms at their

co-occurrences and so, their bond strength diffuses across these different forms in the

N-gram graph.

To avoid this, we have used the Stemmed version of all the words in the vocabulary.

Stemming essentially means reducing the words to their base or root forms. For example,

all forms of a noun (singular/plural) would have the same stemmed root and the same

applies to verbs and other semantic parts of speech. This effectively reduces the number of

unique words or the nodes in the graph to a much more manageable 21,500 as compared

to the 36,500 unique words in their raw form. Maintaining a graph with these many

nodes is still challenging but is more probable now.

3.3 Experimental Results

• Initial tests based on the N-gram graph model revealed that the accuracy in most

cases is comparable to the global word distribution model and some times even

worse. All these experiments were run with Lwin set to 5. This was pretty disap-

pointing since pentagrams were hard to build in the plain N-gram version but we

expected it to perform well. Setting the window size to 5 should have probably

achieved the same effects but for some reason, it did not make any difference.

37

• Naturally, the next option was to try out different values for Lwin Given that only

the number of edges in the graph are bound to increase as Lwin increases, we were

able to try values ranging from 1 to 50, with the version with Lwin = 50 taking up

60 MB of space on the memory when built fully. Again, the results did not match

the expectation that a higher value of Lwin would result in better performance.

The accuracies were again comparable to the global distribution model only and in

fact, higher Lwin values resulted in even further deterioration. This can be seen in

Figure 3.2 The graph also plots the results from Hybrid Model results which has

been discussed in detail in a later section (Section 3.4).

Figure 3.2: Accuracy vs. N-gram Window Size

One of the possible reasons for this poor accuracy of the N-gram graph model could

be the purity of the training data. We are currently using the Newsgroup data to build the

38

N-gram graphs. We are using the same data for both the models so that it will allow us to

compare the results directly. But the potential problem with this data is the significant

presence of noise. Since this data has been extracted from the web, especially from

newsgroup articles, it is almost impossible to completely remove all unwanted characters

and headers.

Although such noise would affect the performance of all the models, its effect is

more pronounced for the N-gram graph model since it takes into account the spatial

neighbourhood of tokens more seriously which invariably means that such noise would

limit the efficiency of the graph constructed. For the other models, the inferences are

made at a global level which mitigates this problem. So, what was in fact perceived as

a possible strong point of the N-gram graph model turns out to be its biggest drawback

on such noisy data. Sample experiments with a much cleaner but smaller dataset showed

that its performance does improve as the training data quality increases.

3.4 The Hybrid Model Explained

3.4.1 Why Combine Results?

With the above said restrictions, we wanted to check if the union of the accurate

corrections from the LDA model and the N-gram graph model would provide better

results. This way, a particular error not corrected by the LDA model could be corrected

by the N-gram graph model or vice versa. This could be possible, even though the

accuracy of the N-gram graph model is not matching the LDA, if the errors they are able

to fix differ i.e. the two models supplement each other resulting in an enhanced result.

For this to work, we require that

• The unified model, called the Combined Model from hereon, outperforms the

LDA model - without this, there is no point in building the hybrid model. If the

errors the two models correct are closely coupled and the uncorrected ones are

39

mostly same, this would result in the combined model not being any better than

the LDA model.

• The second problem is that even if the union is found to be better, we still need

to find a way to mathematically decide the best model for each case and choose

the right one. Because choosing the wrong model could actually deteriorate the

results further from the current LDA benchmarks.

3.4.2 Combining the Two Models

Given that both the LDA model and the N-gram graph model provide a ranking

based on the probability of each alternative replacing the error, we decided to use the

normalized ranking from each of the model and use a linear combination of the values to

arrive at a new set of rankings. Our assumption is that this linear combination would be

able to leverage the best results from both the models. So, we ended up using a model

as follows:

P (alt) = αPN−gram(alt) + (1− α)PLDA(alt)

Of course, the issue with this model is to be able to detect the weightage given to

each of the models represented by α - the weight given to the results from the LDA

model. Provided that we have sufficient data to train on, we could possibly run this

model over different training sets and determine the best possible weight that gives the

most accuracy.

3.4.3 Experimental Results

We ran the experiments on this hybrid model using training data generated with

varying Erasure Ratios. The first part of the experiment was to identify the ideal value

for α For this, we ran the tests on Erasure Ratios between 0.01 to 0.50, each ratio with

40

a set of 50 files containing erasures strewn over 3000 tokens. The best value for α was

identified as the one which had the highest average accuracy over all Erasure Ratios.

Weights ranging from 0 (completely N-gram) to 1 (completely Topic Model) were

tested in increments of 0.025 and it was identified that an α value of 0.475 would be ideal

resulting in an average accuracy of 94.06%. The graph in Figure 3.3 shows the variation

in the average accuracy across all the weights. It can be seen that a predominant change

in the accuracy happens only towards the right end of the graph where the N-gram model

is given the most weightage and so, the average accuracy dips as expected.

Figure 3.3: Average Accuracy vs. α

Having figured out the ideal value to assign for α, we used this value to combine

results from the LDA model and the N-gram graph model and the results have been

plotted below. As mentioned earlier, although this primitive aggregation model is not

able to match the results from the combined model, it is still able to better the results

41

from the LDA model by atleast 2% Given the fact that this aggregation model is pretty

naive and also the N-gram model could perform better if provided with cleaner data, such

an hybrid model could well have another 2% to 3% improvement in accuracy. Compared

to the global word distribution model, this model provides more than 4% more accuracy

even including Erasure Ratios of upto 0.5. This can be seen from Table 3.1.

Table 3.1: Average Accuracy of all Error Correction Models

Global 89.86%

LDA 91.61%

N-gram 86.87%

Combined 95.80%

Hybrid 93.43%

42

Figure 3.4: Accuracy vs. Erasure Ratio

3.5 Conclusion

The results were not as expected for the N-gram graph model. But we were still able

to leverage useful information from the model to enhance the Topic-model. The fact that

the N-gram model works better only with smaller window sizes indicates that the Topic

model is using a broader contextual information and the N-gram model is supplementing

it with more localised information derived from its smaller window size. An improvement

of around 2% in accuracy over the Topic model is significant indeed considering the fact

there is very little extra work going into the building the N-gram model itself.

43

4. BINARY STREAMS AND OPTIMIZED HUFFMAN DECODING

Both the models described earlier depend on efficiently decoding the alternatives for

an erroneous token. The research also includes some improvements on this part so that

the models can seamlessly integrate into other applications without placing any large

resource constraints. So, this warrants a separate section. We will first look into a few

interesting properties of the data we are dealing with. Then, we will see how we can

leverage those properties to our advantage.

4.1 Huffman Coding

As mentioned earlier, Huffman Coding is a variable length coding scheme. We are

assuming the input to be consisting of English words which will be encoded via Huffman

coding. Since erasures in the binary stream can be replaced by all possibilities and since

Huffman coding is a variable length coding, if the word boundaries are unknown, the

number of possible decodings could explode and no meaningful assertion can be made

for the corrections. Given that we are trying to correct entire documents which might

consist of upto 500 words at times, erasures in a few words could lead to exponential

number of possible decodings for the entire document.

To avoid this scenario, it is assumed that the word boundaries are known in the binary

stream and no erasures are induced in those regions. This restricts the effects of erasures

only to the corresponding words and does not affect the rest of the documents. Without

this assumption, the entire decoding process would become much more complicated

since an erasure in some token at the beginning of the document could affect the way

the entire document is decoded and thereby lead to increased resource constraints and

reduced accuracy of all the correction models in general.

We should also note that not all of the replacements of an erasure lead to valid

44

decodings. Given the variable length nature of Huffman codes, it is possible that some

of the replacements of the erasure bits could lead to invalid decodings within the same

token. This inherently reduces the number of possibilities thereby leading to better results

from the correction models. This is more prevalent in smaller words which are induced

with more erasures as many of the replacements would lead to invalid decodings as seen

in an example in Section 4.2.1.

4.2 Prefix-based Elimination Technique Explained

We also use an English dictionary that was built using all the words in the training

and the test data. Given the fact that both the models mentioned earlier do not have

means to rank an alternative that was never seen before - both models would assign such

an alternative a probability of occurrence of zero - we have taken the liberty of building

a dictionary which will contain all the valid words. This makes the process of verifying

the validity of a word much simpler.

As an added advantage, we use this information to effect a prefix-based elimination of

the alternatives as they are generated. When an erasure is found, the algorithm tries to

replace it with both a zero bit and a one bit. But as we saw earlier, not all of them lead

to valid Huffman decodings. But we can effect an even more stricter filtering process if

we take into account all the valid English words that are allowed.

We store the entire dictionary in a Trie data structure which allows prefix lookups.

Then, while incrementally building the alternatives for a given word, if at any particular

point, the prefix of the word built so far does not match any of the valid words, we

know that any further processing of the stream with its current erasure replacements is

not going to lead to any valid English word. This allows us to prune a large chunk of

possibilities even before they are completely decoded.

More formally, while working with a partially decoded bit stream which has the bits

45

corrected for the first i erasures of the k erasures in all, if the partially decoded word is

not a prefix of any valid English word stored in a pre-computed dictionary of valid words,

further replacements of the remaining k − i positions can be ignored thus saving 2k−i

operations. To implement this optimization, a Trie data structure that supports prefix

operations, is used to hold the dictionary of English words. The prefix checks in such a

structure can be performed in O(L) where L is the length of the prefix. This optimization

results in significant running time improvements.

4.2.1 Example

Figure 4.1 explains how this works with a very simple trie. Let the trie have the

following words inserted into it - a, ab, b, ba The Huffman code for the characters are

given by {a→ 0 b→ 10} If the binary stream contains a token in the form ??? where ?

represents an erasure or a missing bit, we have k = 3 erasures leading to 23 = 8 possible

alternatives which are

1. 000 → aaa

2. 001 → INVALID

3. 010 → ab

4. 011 → INVALID

5. 100 → ba

6. 101 → INVALID

7. 110 → INVALID

8. 111 → INVALID

46

Algorithm 7 Optimized Huffman Decoder

procedure Decode Stream(stream, index, prefix, node, dict)
. stream is the Huffman coded binary stream

3: . index represents the position in the stream
. prefix represents the English text decoded so far from stream

. node represents the node inside the English Trie that has been reached
6: . dict represents the dictionary of all English words

if node = φ then . If the Trie node is invalid, no decoding possible
return φ

9: end if
if index = stream → length then . End of binary stream reached

if node → leaf = True then
12: word = prefix + node → value

if IS VALID(word, dict) = True then
return word

15: end if
end if
return φ . Return NULL if any of the conditions fail

18: end if
if node → leaf = True then

prefix = prefix + node → value
21: if IS PREFIX VALID(prefix, dict) = True then

return Decode stream(stream, index, prefix, node → root)
end if

24: return φ
end if
results = {}

27: if stream → index = ERASURE then
results = results ∪ Decode stream(stream, index+1, prefix, node→ chil-

dren[0])
results = results ∪ Decode stream(stream, index+1, prefix, node→ chil-

dren[1])
30: else if

thenresults = results ∪
Decode stream(stream, index+1, prefix, node→ children[stream→ idx])

end if
33: return results

end procedure

47

Using the prefix-elimination, we can see that one of the INVALID states 2 will never be

reached as its prefix 00 is itself invalid. This has been shown in Figure 4.1 where the

node in RED represents the state from which we can eliminate the INVALID state 001

even before decoding it completely. This is a rather simple example but similarly, the

prefix-elimination optimisation will help prune out a majority of replacements even before

they are traversed thereby leading to exponential speed-ups.

Figure 4.1: Trie for a, ab, b, ba

φ

a

$ b

$

b

a

$

$

4.2.2 Improving Performance using Enhanced Trie Representations

As we can see, the algorithm essentially depends on the trie being able to retrieve

query results efficiently, both for full word queries as well as prefix searches. But using a

traditional implementation of Trie caused a few problems due to the scale of the dataset.

• It was using a lot of memory which impacted performance of the overall system.

• It was also not the best representation of the dictionary that was possible. As

explained below, an alternate representation saves both memory as well as improves

performance.

48

Given these issues, we switched to using Directed Acyclic Word Graph or DAWG

[1] which is a finite state automaton that provides the same functionality as any other trie

but does it more efficiently. Switching to this implementation improved the performance

of the decoder by a factor of 10. We tested the improved decoder over a set of 3,000

tokens filled with erasures at an ER of 0.25 thus having more than 30,000 valid decodings.

The decoder supported by a plain Trie took 4.2 seconds to complete the processing

whereas the DAWG-based decoder took less than 0.5 seconds to complete the same task.

The DAWG-based dictionary was also better compressed as it took less than 20 MB of

memory when written to disk as compared to the 27 MB taken by the regular trie.

4.2.3 Experimental Results

To test the effectiveness of this approach, we ran the decoder using the optimisation

over a set of 3,000 words encoded in Huffman code with erasure induced at an ER value

ranging from 0.01 to 0.50. This leads to a significantly large number of erasure-filled

words for higher ER values, each of which having numerous possible replacements based

on the erasure replacements alone.

Running these different files against a decoder which uses the prefix-based elimination

and one that does not (standard Huffman decoder), we can clearly see the positive impact

of using the optimisation in Figure 4.2. In fact, for ER values greater than 0.28, the regular

decoder was unable to complete the process within an hour and so, all experiments for

the standard decoder with ER values greater than 0.28 were skipped from testing. For

the same reason, the language models described in the earlier chapters could not have

run for higher ER values without this optimisation. As expected, the prefix-elimination

scheme leads to tremendous speed-ups.

49

Figure 4.2: Running Time Comparisons

4.3 Conclusion

Although the enhancements is pretty straight forward and nicely fits into the Huffman

Trie model itself, it does go a long way in helping to test larger datasets using lesser

resources. The same idea could be extended to cases where the word boundaries are

unknown in which case we need to use some form of memoization to cache previous

results but still, the core idea will remain the same.

50

5. SUMMARY

Errors are pretty common in the domain of Data Storage and so, error correction is

an active field of research. Many such ideas involve some assumption about the data

which is used to build better results. For example, [20] have used the error model of

the OCR software as the basis for their performance metrics. Our aim was to achieve

an improved accuracy in such error correction using little or no assumption and we have

made significant progress.

• We have achieved this goal to some extent, having displayed upto 5% improvement

as compared to a global word distribution model with no major assumption on the

characteristics of the data.

• We have also developed a model to efficiently decode Huffman codes with errors

at random positions using a modified version of the Trie data structure. This

optimisation can be used in any scenario wherein erroneous Huffman codes are to

be decoded.

• We have seen that language models do not necessarily behave as expected as in

the N-gram model. However, extensive experiments have proven that even such

seemingly inefficient models can help complement a much better model resulting in

improved accuracy. Given the characteristics of our model’s output as probabilities,

it also lends well to be combined with other language models.

However, there is definitely more room for improvement and we believe the models

developed here can be expanded much more to achieve better results. Some of the

possible improvements or future steps have been listed below.

51

5.1 Machine Learning Approach for Hybrid Model

The hybrid model is still, on average, 2% below in accuracy as compared to the best

possible result combining the N-gram graph model and the LDA-model. One possible

improvement would be to use a more complex underlying aggregator than the simple

linear aggregator used for the hybrid model currently. One possible option is to use a

learning model which when fed sufficient data could produce better results approaching

closer to the best accuracy possible. Given the fact that generating errors is much easier

with the available training data, such a model could be trained extensively before being

tested.

Learning to Rank [18] is a supervised learning approach which fits well into our

requirements. This approach is able to learn from trained rankings based on features

provided and will be able to predict future rankings. In our case, the features are the

weights given by the LDA-model as well as the N-gram graph model and the ranking

involves binary classification - either right or wrong. RankSVM[10] is an application

of the Learning to Rank approach using an underlying Support Vector Machine. This

has been proved to work well in web-ranking and we tried using this model for our

purpose. Initial experiments with a reduced set of training data has shown that such a

trained model can achieve accuracy within the range of the global distribution model.

We strongly believe that larger training sets and a well-tuned learner could perform even

better, possibly overtaking the linear aggregator that has been used. There are also other

available approaches towards classification like ”Ensemble Learning” [15] using multiple

decision trees which could be used.

5.2 Removing the Word Boundary Assumption

One of the key assumptions of the models used here is the knowledge of the word

boundaries in an erasure-filled bit stream. The primary purpose of this restriction was

52

to reduce the complexity of the model. As mentioned earlier, if knowledge of the word

boundary is not available, the variable length nature of Huffman Coding would lead to an

explosion in the possible alternatives for a bit stream. We should note that such changes

would mostly affect the performance of the global distribution model to the same extent

as our models, if not worse. So, it does not offer any significant advantage for our models

over the baseline model.

If this knowledge is not available, we could run a dynamic programming algorithm

similar to the Viterbi algorithm for Hidden Markov Models, wherein the hidden states

would be the alternatives for erroneous tokens (individual tokens are identified in such a

sequence when a word delimiter character has been decoded). Although this might not

scale for a really large sequence of words with a lot of erasures, it does offer improvement

over the brute-force version of trying every possibility for K erasures, where K might be

pretty large as it corresponds to the entire document.

5.3 Improving the N-gram Graph Model

The current version of the N-gram graph that has been constructed is pretty naive.

This is one of the reasons for it being outdone by even the global distribution model in

many cases. Although its combination with the LDA-model is able to give better results,

there is still room for improvement of the model in both its construction as well as its

usage. For example, it does not account for the distance between the tokens within the

same window which might be an important signal that could be leveraged. Similarly, while

applying the distribution from the graph model to the data, distance between the tokens

could be used. Given that it has been separately used in effective ”Similarity Detection

in Text Summarisation”[6], it definitely holds potential to provide better results.

53

5.4 Parts-of-speech Tagging

Given that we are working with regular English tokens in the data, using Parts-of-

Speech tags to determine better alternatives for an erroneous token is a good option.

Specifically, the training data gives us insights into the various possible transformations

of the POS (Parts-of-Speech) tags as we move across the sentences. So, each alternative

would lend to a different transformation chain across the sentence and we could choose

the one with the highest probability based on the data gathered from the training data.

Given that the LDA-model and the N-gram model also work with probabilities, the POS

tag based model could as well be included into the Hybrid model.

Although this does assume the presence of a robust tagger which is able to deduce

tags of specific words using minimal contextual information from the sentence (since

surrounding words could also be erroneous), it definitely lends well to include the results

into the Hybrid model. In the worst case that the effects of such a model are mostly

detrimental, both the linear combination as well as the ML-based versions of the Hybrid

model could simply neglect its results after being trained.

54

REFERENCES

[1] Dawg-Python. https://pypi.python.org/pypi/DAWG-Python. Accessed:

2014-20-11.

[2] SIGIR ’10: Proceedings of the 33rd International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, New York, NY, USA, 2010. ACM.

606100.

[3] Steven Bird. Nltk: The Natural Language Toolkit. In Proceedings of the COL-

ING/ACL on Interactive Presentation Sessions, pages 69–72. Association for Com-

putational Linguistics, 2006.

[4] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation.

The Journal of Machine Learning Research, 3:993–1022, 2003.

[5] Stanley F Chen. Performance Prediction for Exponential Language Models. In

Proceedings of Human Language Technologies: The 2009 Annual Conference of

the North American Chapter of the Association for Computational Linguistics, pages

450–458. Association for Computational Linguistics, 2009.

[6] George Giannakopoulos and Vangelis Karkaletsis. Summarization System Evaluation

Variations based on N-gram Graphs. ACM Transactions on Speech and Language

Processing Vol. 5(3), pages 1–39, 2008.

[7] Taher H Haveliwala. Topic-sensitive Pagerank. In Proceedings of the 11th Interna-

tional Conference on World Wide Web, pages 517–526. ACM, 2002.

[8] James Huang, Stephanie Rogers, and Eunkwang Joo. Improving Restaurants by

Extracting Subtopics from Yelp Reviews. Yelp Dataset Challenge, 2014.

55

[9] David A Huffman et al. A Method for the Construction of Minimum Redundancy

Codes. Proc. IRE, 40(9):1098–1101, 1952.

[10] Thorsten Joachims. Optimizing Search Engines using Clickthrough Data. In Pro-

ceedings of the eighth ACM SIGKDD international conference on Knowledge Dis-

covery and Data Mining, pages 133–142. ACM, 2002.

[11] Eric Jones, Travis Oliphant, and Pearu Peterson. Scipy: Open Source Scientific

Tools for Python. http://www. scipy. org/, 2001.

[12] Grzegorz Kondrak. N-gram Similarity and Distance. In String Processing and Infor-

mation Retrieval, pages 115–126. Springer, 2005.

[13] Yehuda Koren. Factorization Meets the Neighborhood: A Multifaceted Collaborative

Filtering Model. In Proceedings of the 14th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 426–434. ACM, 2008.

[14] Jack Linshi. Personalizing Yelp Star Ratings: A Semantic Topic Modeling Approach.

Yelp Dataset Challenge, 2013.

[15] Richard Maclin and David Opitz. Popular Ensemble Methods: An Empirical Study.

arXiv preprint arXiv:1106.0257, 2011.

[16] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The Pagerank

Citation Ranking: Bringing Order to the Web. Stanford InfoLab, 1999.

[17] Radim Rehurek, Petr Sojka, et al. Software Framework for Topic Modelling with

Large Corpora. University of Malta, 2010.

[18] Andrew Trotman. Learning to Rank. Information Retrieval, 8(3):359–381, 2005.

[19] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: Finding Topic-

sensitive Influential Twitterers. In Proceedings of the Third ACM International

Conference on Web search and Data Mining, pages 261–270. ACM, 2010.

56

[20] Michael L Wick, Michael G Ross, and Erik G Learned-Miller. Context-sensitive

Error Correction: Using Topic Models to Improve OCR. In Document Analysis

and Recognition, 2007. ICDAR 2007. Ninth International Conference on, volume 2,

pages 1168–1172. IEEE, 2007.

[21] Wikipedia. Computer — wikipedia, the free encyclopedia, 2015. [Online; accessed

10-April-2015].

[22] Wen-tau Yih, Geoffrey Zweig, and John C Platt. Polarity Inducing Latent Semantic

Analysis. In Proceedings of the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning, pages

1212–1222. Association for Computational Linguistics, 2012.

[23] Deniz Yuret. Word Sense Disambiguation by Substitution. In Proceedings of the

4th International Workshop on Semantic Evaluations, pages 207–213. Association

for Computational Linguistics, 2007.

57

APPENDIX A

HUFFMAN CODES USED

Here, we have listed the Huffman Code that was used for encoding the English text

in the test data to a binary stream. The codes were built using the dataset used for

the remaining sections. As stated earlier, we have only accounted for lowercase English

alphabets to keep the code lengths smaller and so, all the text is assumed to be of

lowercase. Apart from these characters, we also included two special characters, namely

’ (apostrophe) and - (hyphen) which frequently occurs with compound words. Please

note that we have not accounted for any other punctuation symbols or word delimiters

like spaces or dots since the assumption is to work within word boundaries.

58

Table A.1: List of Huffman Codes Used
ASCII Character Huffman Code

’ 11101100

- 111111001

a 1001

b 1111111

c 00010

d 10100

e 001

f 111000

g 011101

h 11110

i 0110

j 0001101101

k 11101101

l 10101

m 111010

n 0101

o 1000

p 011111

q 0001101110

r 0000

s 0100

t 1011

u 111110

v 0111101

w 011100

x 000110101

y 000111

z 0001100011

59

APPENDIX B

IMPLEMENTATION DETAILS

The entire system was implemented using Python. Python does have its own draw-

backs, the most important of them being the fact that it is comparatively slower than

other languages, especially C/C++. The reasons to have chosen Python as the language

are:

• Python is extremely flexible. Given that its not a strongly typed language, it allows

for moving around the modules and modifying on the fly based on the changing

dependencies.

• Python also has an extremely useful set of libraries - many of which were critical

in building the models efficiently. If not for these libraries, extra hours would have

been needed to implement the functionalities.

Following are the important list of libraries that were used in the development.

• scipy and numpy [11] was used primarily for holding the N-gram graph model using

an efficient sparse-matrix representation. It was also used for other miscellaneous

works including plotting the graphs etc...

• Natural Language Toolkit - NLTK [3] was used for language processing in various

stages - tokenization, stemming, stopword removal etc...

• ldagensim - Latent Dirichlet Allocation [17] was used to build the LDA models. It

is a handy library to build LDA models, including modules to generate bag-of-words

representation and necessities for the LDA model.

60

• DAWG-Python [1] library was used to build the English dictionary, as mentioned

earlier. It provided immense speedups to the word look up process and given the

complexity of the underlying DAWG implementation, this library was very helpful

in avoiding them.

As we can see, the rich library was one of the major motivating factors for choosing

Python and it was definitely the right decision as many of these essential libraries did not

have any equivalents in other languages, even including Java.

61

