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ABSTRACT 

Understanding flow leakage through different conduits (abandoned wells, fracture, 

faults, etc) has become an intensively investigated subject in the subsurface hydrology 

and petroleum engineering in recent years. This study represents an efficient 

mathematical model for estimating leakage rate by hydraulic head change evaluation 

through different conduits or leakage pathways coupled with an injection well. The 

leakage rate is estimated using Darcy’s law by evaluating hydraulic head change 

between the upper and the lower aquifers through leakage conduit (abandoned well and 

fracture). The analysis is conducted by solving the governing equations of fluid flow in 

the aquifer coupled with the flow through different conduits. The single-phase flow is 

considered which is capable of explaining both fluid and CO2 plume flow in an aquifer 

system by neglecting the variable density effect. The result is obtained in the Laplace 

domain and subsequently inverted to yield the real-time domain solution. The model 

developed here will significantly advance our understanding of the flow leakage process 

through different pathways; it helps accurately quantify the fluid leakage rate, and the 

leakage volume through them. For leakage pathways, the first analysis has been done 

considering an abandoned well coupled with an injection well and the later one involves 

a fracture coupled with an injection well. Because of the limited analytical solution or 

complex numerical solution, this new model provides an efficient way to estimate the 

leakage rate through both an abandoned well and also fracture coupled with an injection 
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well. The sensitivity analysis has been conducted to indicate the most sensitive 

parameters to the leakage rate through leakage pathways. 
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1. INTRODUCTION 

 

1.1 Motivation  

Groundwater quality is being threatened by numerous liquid wastes both in 

saturated and unsaturated zones. Capture and subsequent injection of these wastes into 

deep geologic formation is a means to reduce the expose of those wastes to the 

atmosphere. Various types of geologic formations are available for this kind of storage, 

which includes confined brine aquifer, depleted oil and gas reservoir and sometimes coal 

seams [Bachu and Celia, 2009; Bachu, 2000, 2008]. Among them, deep saline aquifers 

are the most popular ones as they have high storage capacity and also available 

throughout the world [Norbotten and Celia, 2006a, 2006b]. Important disposal methods 

include isolating the hazardous substances permanently (at least several hundred years) 

into a secluded deep brine aquifer. The risk of these contaminants leaked from the 

storage to the upper fresh water zone through different transmitting conduits is one of 

the great public concerns in geologic sequestration. Understanding the possible hydraulic 

communication through any conduits between the storage aquifers and the nearby 

freshwater aquifers is very important before the initiation of the disposal project 

[Norbotten et. al., 2005; Zeidouni et al., 2011].  

To understand this leakage potential, modeling tools are needed to estimate the 

leakage rate through leaky pathways along with an injection well, which is considered as 

a main driving force for leaking. The computational modeling of any problem involves a 

set of mathematical description that explains the physical approximation of the real field. 
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The solution from the model will help us get the answers to questions associated with the 

investigated problem. In our case, the question includes the amount of wastes that are 

going to be leaked through the leakage pathway and the time-dependent rate of leakage, 

the special extent of the hydraulic head distribution in the aquifers and the ultimate fate 

of the injected wastes. In this dissertation, I am motivated to investigate this matter to 

understand the leakage characteristics and the ultimate results of injected fluids in deep 

brine aquifers. 

Efforts have been given to understand the leakage rate through leaky pathways 

especially through fully penetrating abandoned wells [Javendel et al, 1988; Silliman and 

Higgins, 1990; Avci, 1994; Norbotten et al., 2004]. However, very few works have been 

done on non-penetrating well and vertical fractures. In addition, most of previous studies 

only considered the flow process occurred in the leaky pathway, and they did not 

specifically consider the flow process near the injection well, which was the driving 

force for leakage [Brikowski, 1993; Shan et al., 1995]. Therefore, to understand the 

combined flow processes of the injection well and the leaky pathway, I propose new 

models to signify the efficiency of geologic storage systems. 

1.2 Objectives 

The disposal or storage of unwanted fluids in deep saline aquifers for a long 

period is an important process for many applications in subsurface including 

environmental remediation of contaminant sites, nuclear waste storage, geological 

carbon sequestration and enhanced oil and gas recovery. Injection takes place into brine 

aquifers at depth of several hundred to a few thousand meters, below the deepest fresh 
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water aquifers. In case of oil and gas reservoirs, there is enough evidence that the traps 

have good isolation capacity by an impermeable cap rock as it can hold hydrocarbons for 

millions of years. In saline aquifers, this type of evidence is not available. From which it 

can be expected that leaky cap rock seal or impermeable layer may do leak from a lower 

aquifer to an upper aquifer and may eventually reach to the surface. Fluid migration 

from the storage to the upper surface increases the chances of discharging theses 

contaminants into rivers or lakes or mixing with the shallow fresh water zone.  For the 

safe storage or disposal, it is necessary to characterize and locate the leakage pathways 

so that operators can decide where to inject the unwanted fluids far away from leaks. 

Potential leaks may include abandoned wells, active wells penetrating partially to the 

seal, natural and artificial faults, and fractures. 

Despite the fact that many researches are currently conducted on geological 

sequestration of liquid wastes and CO2 gas, very few studies are focused on the 

estimation of the leakage rate through non-penetrating abandoned wells (ANW) and 

leaky fractures with the integrity of disposal or injection well, which will be one of our 

main objectives of this study.  In actual field setting, most of the faults and fractures are 

leaky in terms of fluid flow, and they have a finite hydraulic conductivity [Shan et. al., 

1995]. When unwanted wastes are deposited in a deep brine aquifer, if there are leaky 

faults, abandoned wells, improperly plugged boreholes or fractures nearby, they would 

become a potential threat to the upper aquifer or any other freshwater nearby. When 

fluid is leaking through the conduits through an impermeable layer, significant hydraulic 

head difference may be observed between the upper and the lower aquifers. Such a 
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hydraulic head change is our main point of interest as it can be used to infer about the 

leakage rate and characteristics of the leakage pathway. 

To achieve these goals, the following objectives are proposed in my dissertation: 

1. To develop a time dependent solution for hydraulic head change evaluation in the

storage and upper aquifers due to both injection and leakage through different 

transmitting conduits. 

2. To estimate the amount of leakage based on hydraulic head change evaluation

between the lower and the upper aquifers in a fractured or leaky aquifer-

aquiclude system. 

3. To conduct sensitivity analysis to check the sensitivity of the different parameters

in response to the leakage rate through different transmitting conduits. 

1.3 Organizations 

This dissertation is organized as four sections. The solutions of both problems 

(ANW and fracture) are presented as a journal paper format. Both problems are followed 

independently where each section is comprised of introduction, conceptual and 

mathematical models, results and discussions and finally conclusions. Section 1 

describes about the motivation and general reviews about the problems that I have 

solved. Section 2 provides the solution for the hydraulic head difference and leakage rate 

estimation for non-penetrating abandoned wells (ANW). Section 3 gives a solution for 

the leakage rate estimation and hydraulic head change evaluation through vertical 

fracture. Finally, the dissertation has ended with a brief summary with several 

conclusions in section 4. 
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2. ON THE FLUID LEAKAGE RATE AND HYDRAULIC HEAD EVALUATION OF 

ABANDONED NON-PENETRATING WELLS 

 

2.1 Introduction 

Injection of liquid wastes into deep earth system is not a new technology. In early 

1930s, the petroleum industry started to inject their by-products from oil & gas 

production into old abandoned wells [Javandel et al., 1988; Donaldson, 1964]. 

Hazardous waste producer companies first started to adopt this technique in 1950s 

[Donaldson, 1964]. According to US Environmental Protection Agency (EPA), 89% of 

total hazardous liquid wastes (about 9 billion gallon per year) were disposed in deep 

earth systems [EPA, 2001]. Such hazardous wastes mainly come from energy, 

petrochemical and chemical industries. The brine aquifers are selected for disposal of 

such waste products since they are regarded as unfit for any other use. 

 Class I wells are used to dispose municipal or industrial wastes such as metal, 

chemical, pharmaceutical and food production, commercial disposal, and municipal 

wastewater treatment. Class VI wells are used to dispose CO2 from industrial or energy 

related source wastes such as power plant, natural gas production, steel and cement 

production [EPA, 2001]. These wells are used to inject hazardous liquid wastes into 

deep, secluded rock formations, hundreds of meters below the deepest underground 

source of drinking water (USDW) [Federal Register, 1982]. Approximately 680 Class I 

wells are available in USA according to the current inventory of EPA website and also 6 

to 10 Class VI wells are expected to come by 2016. While choosing the disposal 
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location, the geology of the storage system plays a very important role. The injection 

zone should be separated by an impermeable ‘cap’ rock that separates the injection layer 

from the deepest drinking water zone [EPA, 2001]. As these liquid wastes are injected 

into the deep brine aquifers, it is important to understand the characteristics of the 

geologic formations of the injected brine aquifers. There might be a chance that the 

injected hazardous liquids or gases migrate to the potable water and eventually to the 

ground surface through abandoned wells, fractures and faults, thus posing a serious 

threat to our atmosphere, and becoming health risks to human and animals. There is a 

history of abandoned wells due to oil and gas exploration in USA, and such wells could 

act as potential pathways for leakage of hazardous wastes from the deeper to the 

shallower subsurface [Javandel et al., 1988; Office of Technology Assessment, 1983]. 

For example, a large volume of CO2- mixed water (approximately 150 to 360 kg 

CO2/min) leakage occurred through improperly plugged abandoned well which is drilled 

in 1935 into a fault zone above a CO2 storage reservoir at the Crystal Geyser in Utah [ 

Bachu and Celia, 2009; Bogen et al., 2005]. 

 Fluid leakage through abandoned wells is a primary safety and reliability concern 

in any kind of geologic sequestration. Much effort has been devoted for understanding 

the leakage rate through the leaky pathways, especially through abandoned wells [Avci, 

1994; Javandel et al., 1988; Silliman and Higgins, 1990; Nordbotten et al., 2004]. 

Different techniques have been proposed to investigate this matter in the literature. 

Javandel et al. [1988] established an analytical solution for transient leakage flow 

through an abandoned well due to a pressurized injection well from a lower to an upper 
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aquifer separated by an impermeable aquitard. The abandoned well is considered as a 

line source that fully penetrates both aquifers. Silliman and Higgins [1990] developed a 

leakage model under steady-state condition for a fully penetrating well that allowed flow 

between aquifers. Avci [1994] solved the same problem as Javandel et al. [1988] for 

both fully penetrating wells and improperly plugged boreholes. Avci [1994] identified a 

resistance term (Ω) for the abandoned well, which was regarded as an important factor 

for determining leakage rate but he did not provide a satisfactory explanation for that 

term. The analytical models of Silliman and Higgins [1990] and Avci [1994] adopted a 

line source approximation that neglected the effect of the leakage size. The leakage rate 

was controlled by the hydraulic head difference between the upper and the lower 

aquifers. Brikowski [1993] also developed a steady-state model for the leakage between 

aquifers through a cylindrical conduit or chimney of a nuclear testing site. Nordbotten et 

al. [2004] obtained an analytical solution to estimate the leakage rate through multiple 

abandoned wells, and their solution considered realistic multiple layers of aquifers and 

aquicludes. 

It appears to us that most of the previous studies only considered the flow 

process through the leaky pathway, and they did not specifically take into account the 

flow process near the injection well, which was the driving force for the leakage to 

happen [Brikowski, 1993; Shan et al., 1995]. To understand the combined flow processes 

near the injection well and through the leaky pathway, we propose an efficient model to 

understand the efficiency of the geologic storage system. In this study, we developed a 

semi-analytical solution to estimate the leakage rate through an abandoned non-
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penetrating well (ANW) by identifying hydraulic head change through the leakage 

pathway between the upper and the lower aquifers. The solution was obtained in the 

Laplace domain first and subsequently inverted numerically using the de Hoog algorithm 

[Hollenbeck, 1998]. A single-phase flow was considered. However, to our 

understanding, the model is also capable of explaining plume flow in storage aquifers, as 

the basic consideration in this matter would be by representing the injection of CO2 as an 

equivalent volume of saline water [Cihan et al., 2013; Nicot, 2008].  

2.2 Conceptual and mathematical models 

2.2.1 Conceptual model 

Figure 2.1shows a schematic diagram of leakage flow through an ANW that only 

cuts across an impermeable layer (aquiclude), which separates the upper and the lower 

aquifers. Since the lower aquifer is used for receiving the injected fluid, it is called the 

storage aquifer hereinafter. The system has two wells and they are located at a distance 

R. One is an injection well that fully penetrates the storage aquifer and the second is an 

ANW that just taps the impermeable layer and acts as a conduit for inter-formation flow. 

The aquifers are considered horizontally isotropic, homogenous and with constant 

properties. The coordinate system is set as follows.  The r´ axis directs to the radial 

distance from the injection well, the r axis originates from ANW. The z and z´ 

coordinates are vertical, positive upward and along the centerline of ANW for the 

storage and the upper aquifer respectively, and z=0 and z´=0 are located at the bottom 

boundary of the storage aquifer and the upper boundary of the upper aquifer, 

respectively (see Figure 2.1).  Here both radial and vertical flows are considered near 
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ANW for estimating the leakage rate. The liquid waste is injected through the injection 

well into the storage aquifer at a constant rate Q. The radius of the injection well is 

denoted as rw and the radius of the leaking ANW is described as rl. The cross section of 

Figure (2.1) shows up when all three wells are lying in a same line, but in real world 

they may be in a triangular manner which is shown in Figure 2.2. In that case, the 

monitoring well would not be available in cross section of Figure 2.1. Figure 2.3 

explains the flow analysis in the system where injection and leakage both are taking 

place in the lower aquifer and only leakage is occurring in the upper aquifer. 

 

 

 

 
Figure 2.1 Schematic diagram for analyzing leakage rate through ANW. 
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Figure 2.2 Top view of the system for analyzing leakage rate through ANW. 

2.2.2 Mathematical model 

The primary objective of the model is to estimate the leakage rate through ANW 

in response to the hydraulic head difference between the upper and the storage aquifers. 

To estimate the hydraulic head in the storage aquifer, two sources (the injection well and 

ANW) are considered. In fact, one can obtain the hydraulic head solution for each source 

(the injection well or ANW) first, then call the principle of superposition to obtain the 

total hydraulic head in the storage aquifer, if the initial and boundary conditions are 

satisfied properly. For the upper aquifer, only the leakage induced hydraulic head 

response is considered. For the purpose of notation, the storage and the upper aquifers 

are denoted as aquifers 1 and 2 respectively hereinafter. 
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Figure 2.3 Flow analysis in the system including injection through an injection well and 

leakage through ANW between two aquifers. 

 

 

 

After estimating the hydraulic head responses in both aquifers, the leakage rate 

(Ql) [L
3
/T] can be estimated through the hydraulic head difference of both aquifers by 

applying Darcy’s law as: 

2 12
( )

l l l
l

h h
Q r K

B



 ,        (2-1)

  

where h2 and h1 refer to the total hydraulic head [L] which includes fluid pressure head 

and the elevation head of the upper and the storage aquifers, Kl and Bl refer to the 

hydraulic conductivity [L/T] and length [L] of ANW, respectively. Eq. (2-1) implies that 
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flow inside ANW is Darcian. If this assumption does not hold, then one must use another 

adequate flow equation instead of Eq. (2-1). 

2.2.3 Estimating hydraulic head in the storage aquifer  

To get the hydraulic head response from the storage aquifer, the governing equation 

of fluid flow has been solved considering the injection well and the leaky ANW as two 

sources. Initially the model has assumed uniform hydraulic head all over the storage 

aquifer and such a uniform hydraulic head is treated as a zero reference head. 

Equations for the hydraulic head change due to injection can be expressed as: 

1 1

1

1 1 1I Ih h
r

r r r t

  
       

,          (2-1) 

where hI1 represents the hydraulic head from the storage aquifer due to injection [L], t is 

time [T],  is the diffusivity of the storage aquifer defined as sh SK 111 /  [L
2
T

-1
], 

where K1h and S1s are the horizontal hydraulic conductivity [LT
-1

] and specific storage 

[L
-1

] for the storage aquifer, respectively. 

The initial and boundary conditions are:  

1( , 0) 0Ih r t   ,           (2-2) 

1( , ) 0Ih r t  ,           (2-3) 

1
1 12 I

h

h
Q r B K

r






, when r rw  ,         (2-4) 

here Q represents the positive volumetric injected flux [L
3
T

-1
]; B1 is the thickness [L] of 

the storage aquifer. 
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The leakage through ANW can be regarded as a zero-depth penetrating well or a 

point sink in the storage aquifer with a rate to be determined. Because of the unique 

location of such a point sink (right at the upper boundary of the storage aquifer), one can 

call the image sink method by doubling the point sink strength to accommodate the 

effect of the upper boundary of the storage aquifer, and the image of the lower boundary 

z=0 is then at z=2B1. The point sink is treated as a Dirac Delta function in the governing 

equation of flow. Zhan et al. [2001] has used a similar approach to study flow to a 

horizontal well that is regarded as the superposition of an infinite number of point sinks.  

The governing equation for hydraulic head change due to ANW leakage then 

becomes: 

2
1 1 1

12
1 1 1 1

21 1 1
( ) ( ) ( )l l llz

h h

QKh h h
r r z B

r r r z tK K B
 



 
   

   
,      (2-5) 

where hl1 represents the hydraulic head due to leakage in ANW in the storage aquifer 

[L], r is the radius originated from ANW [L], z represents the vertical upward direction 

of the aquifer [L], Kz is the vertical hydraulic conductivity of the storage aquifer [L] and 

  is a Dirac delta function [L
-1

]. The negative sign before the delta function in Eq. (2-6) 

reflects the nature of a point sink. 

 The initial and boundary conditions are:  

1( , , 0) 0lh r z t   ,           (2-6) 

1( , , ) 0lh r z t  ,           (2-7) 

1 ( , 0, ) 0lh
r z t

z


 


,  r0 ,            (2-8) 
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1
1( , , ) 02

lh
r z tB

z


 


, lr r   .         (2-9) 

The total hydraulic head response from the storage aquifer can be estimated by 

applying the superposition principle for both injection well and ANW: 

1 1 1I lh h h   .         (2-11) 

2.2.4 Estimating hydraulic head response due to leakage in the upper aquifer 

 The leakage through ANW is a point sink for the storage aquifer, but is a point 

source for the upper aquifer. Following the same procedure for dealing with the point 

sink in the storage aquifer, the governing equation of flow in the upper aquifer can be 

described as: 

2
2 2 2

22
2 2 2 2

21 1 1
( ) ( ) ( )z l

h h

Qh h hK
r r z B

r r r z tK K B
 



      
   

,    (2-12) 

where h2 represents the hydraulic head response in the upper aquifer [L], K2h and B2 are 

the horizontal hydraulic conductivity [LT
-1

] and the thickness [L] of the upper aquifer 

respectively, Kz´ is the vertical hydraulic conductivity of the upper aquifer [L
2
] and  is 

the diffusivity of the upper aquifer [L
2
T

-1
] defined as sh SK 222 / , where S2s is the 

specific storage [L
-1

] of the upper aquifer. The positive sign before the delta function in 

Eq. (2-12) reflects the nature of a point source for the upper aquifer.  

 The initial and boundary conditions of flow in the upper aquifer are:  

2( , , 0) 0h r z t   ,         (2-13) 

2( , , ) 0h r z t  ,         (2-14) 
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2 ( , 0, ) 0
h

r z t
z


 


 ,    0 r  ,       (2-15) 

2
2( , , ) 02

h
r z tB

z


  


, lr r   .       (2-16) 

  Equations (2-2)-(2-5), (2-6)-(2-10) and (2-12)-(2-16) can be solved by 

successively applying the Laplace Transform with respect to t and the Fourier Transform 

with respect to z or z´. Moench [1997] and Zhan et al. [2001] have also adopted the same 

procedure for solving similar types of equations. 

In summary, the procedures are as follows. Firstly, to determine the semi-analytical 

solution for the model described by the equations (2-1)-(2-16); secondly, to determine 

the hydraulic head difference between the upper (h2) and the storage aquifers (h1) due to 

leakage; thirdly, to estimate the leakage rate (Ql) from the hydraulic head difference; 

fourthly, to investigate the sensitivities of different parameters on the leakage rate.  

2.3 Result and discussions 

For the convenience of system analysis, one defines the following dimensionless 

parameters: 
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After transforming all the equations into the dimensionless formats, one can 

apply the Laplace Transform and the Fourier Transform to get the hydraulic head 

response for both the storage and the upper aquifers in the Laplace domain. The detailed 

derivation is included in Appendix A. The solution for the hydraulic head response in the 

storage aquifer is: 

2 20
1 0 0 1

11

( )
2 ( ) 4 cos( )cos( ) ( )

2( )

D
D D D D DlD lD

nwD wD

K sR n
h K sr n z K K n srQ Q

s sr K sr


 





    ,

(2-17) 

where the over-bar represents the term in the Laplace domain hereinafter, s is the 

Laplace variable, K0 and K1 are the zero order and the first order modified Bessel 

function of the second kind respectively. The solution for the hydraulic head in the upper 

aquifer is: 

2 2

2 0 0 2
1

2 ( ) 4 cos( )cos( ) ( )
2

lD lD
D D D D D

nD D D D

Q Qs n s
h K r n z K K n r

T T


 

 





    .  (2-18) 

The dimensionless leakage rate through ANW can be estimated as: 

lDQ =

K0( s RD )

s srwDK1( srwD )

1

A
+ 2K0( srlD ) + 4

n=1

¥

Scos(
np

2
)cos(np zD )K0( K1Dn2p 2 + srlD ) +

2

DT
K0(

s

Dh
rlD ) +

4

DT
n=1

¥

Scos(
np

2
)cos(np ¢zD )K0( K2Dn2p 2 +

s

Dh
rlD )

, (2-19) 

where
2

1 12

l l

l h

K r
A

B K B
 is denoted as a leakage factor and it is a function of parameters of 

ANW and the storage aquifer. 
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The solutions obtained in the Laplace domain have to go through Laplace 

inversion to yield the solutions in the real-time domain. The complexity of the solution 

renders the analytical Laplace inversion unworkable, thus one has to rely on numerical 

Laplace inversion. Among a couple of numerical Laplace inversion algorithms, we select 

the de Hoog algorithm [Hollenbeck, 1985] because of its accuracy and robustness [de 

Hoog et al., 1982; Mahmoudzadeh et al., 2014; You et al., 2011]. 

2.3.1 Comparison with the Avci model [1994] with a fully penetrating abandoned 

well 

Eq. (2-19) explains the leakage rate through ANW and Eqs. (2-17) and (2-18) derive 

the resulting hydraulic head change in the lower and the upper aquifers respectively. The 

resulting equations are examined using a set of parameters listed in Table 2.1. The 

leakage rate mainly depends on resistance of flow, distance between injection and 

leakage pathway, injection rate and aquifer properties like transmissivity [Nordbotten et 

al., 2004; Avci, 1992, 1994]. 

Table 2.1 Aquifer and ANW parameters used in Figure 2.1. 

Parameters     Values Parameters         Values   

rl 0.2 m 

K2 0.1m/day

Kz 0.001m/day 

Kz´  0.001m/day 

z    40 m 

B1          40 m 

B2 40 m 

rw 0.1 m 

K1 0.1m/day

Kl 1000 m/day 

z´    -40m     

Bl 10 m 

Q 1000 m
3
/day
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The following is the discussion considering no vertical flow: 

Figure 2.4 explains the time-dependent leakage rate through ANW due to 

injecting fluids in the storage aquifer without considering the vertical flow. The radial 

distance between the injection well and ANW was varied, with R= 80 m, 160 m, or 240 

m. To compare with Avci [1994], the model in this study has been simplified by 

neglecting the vertical flow near ANW (when Kz and Kz´ of Eqn. (2-5) and (2-12) 

respectively are assumed zero) and the assumption of doubling the point sink strength. In 

addition, if we write the non-dimensional resistance of flow as
1

1
2 T

A
     in the 

solution and the initial hydraulic head difference between the two aquifers before the 

start of injection is considered negligible, Eq. (2-19) in our model becomes similar to the 

Avci equation [Avci, 1994] that is explained in Eq. (2-20). Avci [1994] solution is 

applicable to estimate the leakage rate through a fully penetrating well considering an 

injection well. 

The Avci [1994] equation for estimating leakage rate is described as: 

0

0 0

( )

1
( ) ( )

D

lD

lD lD
D D

K sR

sQ
s

K sr K r
T 



  
.      (2-20) 
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Figure 2.4 Time-dependent flow rate through leakage pathway by varying radial distance 

between the injection and leakage well for comparison. 

Another point to note is that when time is large or s is small, the first order 

modified Bessel functions of the second kind can be approximated as 

1

1
( )wD

wD

K sr
sr

 . Considering the above approximations, Figure 2.4 shows that the 

solution of this study exactly matches those of Avci [1994] (the dash lines representing 

the simplified case of this study by excluding the vertical flow). 

As expected, a higher leakage rate is observed when the distance between the 

injection well and the ANW is closer. Another feature exhibited in Figure 2.4 is that the 
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leakage rate through ANW does not reach constant over time for any case. Similar 

finding has been reported in the Avci [1994] model. To achieve the steady state solution 

of the study we have applied the following formula to get a transient solution of the 

leakage rate: 

lim t lim 0(t) [ ( )]lD s lDQ sQ s  ,       (2-21) 

where ( )lDQ s  is described in Eqn. (2-19). 

 

 

 

 
Figure 2.5 Time variation flow rate through leakage pathway by varying radial distance 

between injection and leakage pathway for steady state. 
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The solutions have been shown in Figure 2.5 where the result is observed for 10 

years and the distance between the ANW and the injection well is taken to be 80 m, 160 

m or 240 m. It is observed that the leakage rate achieves a maximum at very early time 

(within 1 day only) and finally it decreases to steady state with a longer period (about 

100 days). This may be explained as follows. The entire dynamic process depends on the 

hydraulic head (or pressure) propagation and dissipation. When the injection starts, 

propagation of hydraulic head buildup in the storage aquifer is quickly established near 

the injection, and leakage through ANW starts. When fluid is leaked through the storage 

aquifer into the upper aquifer, the hydraulic head starts to build up near the exit point of 

the ANW in that aquifer. Simultaneously, the hydraulic head will start to dissipate away 

from that exit point in the aquifer. After a certain time of injection, a maximum head 

difference between the storage and upper aquifers will be established, leading to a 

maximum leakage rate. After that, the head difference in the storage and upper aquifer 

over ANW starts to decrease to approach a small non-zero constant value under the 

steady state. 

The discussion considering vertical flow is as follows: 

 If we consider vertical flow near ANW, the leakage rate shows different results 

from Avci [1994] where the solution involves a fully penetrating well and does not 

consider vertical flow. The horizontal hydraulic conductivity is considered 0.1 m/d for 

both the upper and the lower aquifers and the distance between the injections well and 

ANW is kept at 80 m. The vertical hydraulic conductivity is varied as 0.001 m/d, 0.01 
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m/d, 0.1 m/d and the result is shown in Figure 2.6, which shows that when vertical 

hydraulic conductivity varies, the leakage rate changes significantly.  

 

 

 

 
Figure 2.6 Time-dependent variation flow rate through leakage pathway (ANW) by 

varying the vertical hydraulic conductivity. 
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Figure 2.7 Time-dependent flow rate through leakage pathway (ANW) by varying 

vertical hydraulic conductivity for comparison. 
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seems like the hydraulic head difference between the lower and the upper aquifer is 

observed higher in Avci’s case and smaller in this study, which eventually explains the 

leakage rate. 

Figure 2.8 Dimensionless hydraulic head difference over time by considering different 

vertical hydraulic conductivity to compare with Avci [1994]. 

2.3.2 Application of the solution 
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properties like diffusivity, transmissivity, radial distance between the injection well and 

ANW, the radius of ANW and leakage coefficients are tested to observe the 

susceptibility of the solutions to these parameters. For the simplicity of demonstration, 

both aquifers are arbitrarily assumed to have the same thickness and the same properties 

such as porosity, fluid viscosity and total compressibility.  These assumptions can 

certainly be relaxed to accommodate different aquifer parameters if needed. 

The wastes are injected at 1000 m
3
/day through an injection well into the storage 

aquifer and the hydraulic conductivity is assumed 1000 m/day for ANW. If ANW is an 

open pipe, the calculated value of the equivalent Kl can be expressed as
8

2

lw
l

rg
K 




, 

this is the maximal possible Kl value. Here w is the density of brine water (1000 kg/m
3
), 

g is the gravity (9.8 m/s
2
) and  is the viscosity of the brine water (0.5*10

-3
 Pa.s). The 

estimated value of maximum possible hydraulic conductivity is Kl=98000 m/s if we 

consider the abandoned well as an open pipe with a radius of 0.2 m. However, in our 

case, the well is filled partially with landfill material. The value of hydraulic 

conductivity for ANW is assumed as 1000 m/day or 1.1 cm/sec. The thickness of the 

storage aquifer or the upper aquifers is considered 40 m and the thickness of the 

impermeable layer is assumed 10 m in this study.  

For the demonstration of the result, we use a set of parameters for this study, which 

is noted in Table 2.1. To describe the effect of those parameters on the leakage rate, a 

wide range of values has been chosen to test the robustness of the solution. It is notable 
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that the very high or very low values there may not be applicable to the real field 

situation for this problem.  

However, the purpose is to observe the behavior or the sensitivities of these 

parameters on the leakage rate. For example, the range of values of transmissivity ratio 

is taken as from 0.001 to 100. According to Table 2.1, the transmissivity for this study is 

estimated as 1 and the values are varies as low as 0.001 to as high as 100 to observe the 

response of transmissivity ratio to the leakage rate of this system. When the value of 

transmissivity ratio is too small like 0.001(assuming hydraulic conductivity of upper 

aquifer K2 decreases compared to lower aquifer K1), it is difficult to observe any leakage 

rate from the lower to the upper aquifer, which is explained in Figure 2.11. Similarly, 

other parameters are also varied to see the behavior of the leakage rate.   

The estimated values for both the diffusivity ratio D and the transmissivity ratio TD 

are 1 using the values from Table 2.1. The radial distance between the injection well and 

ANW is R= 80 m. A range of values for D  of 0.001, 0.1, 1, 100 and TD of 0.001, 0.1, 1, 

and 100 are used to plot Figure 2.9-2.11 respectively.  
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Figure 2.9 Estimation of leakage rate over time for a range of values of D. 
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Figure 2.10 Hydraulic head variation in the upper aquifer over time for a range of values 

of D. 
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aquifer remains the same), the time needed for a given hydraulic head increase induced 

by the injection well to reach ANW will increase as well. 

 

 

 

 
Figure 2.11 Time variation leakage rate with the change of TD. 
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Figure 2.12 Time variation leakage rate with the change of A. 
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a range to observe the response of the parameter to the leakage rate. The results indicate 

that the leakage rate through ANW is increasing with the increment of the leakage 

factor. A close look of Figure 2.12 shows that the change in the leakage rate due to the 

change in the leakage factor is notable, especially when the A value is small. When the 

value of A gets higher (between 0.05 and 1), the change in the leakage rate becomes very 

small and is nearly negligible. The estimated value for A is 0.5 from Table 2.1 assuming 

the hydraulic conductivity 1000 m/day for the ANW. The value of hydraulic 

conductivity of ANW is taken considering the abandoned well filled with partially 

backfilled material. As the estimated value of A is high in our model, the influence of 

changing the value of A on leakage rate seems negligible which is observed later on 

sensitivity analysis. Another notable point is that the leakage factor (A) used in this study 

is inversely proportional to the resistance (Ω) of the Avci model [Avci, 1994], if we 

assume
1

1
2 T

A
    . In case of the Avci model, the leakage rate is observed to 

increase with the decrease of resistance, which is consistent with our findings here.  

2.3.3 Sensitivity analysis of the parameters and their discussion 

Sensitivity analysis is a technique used to assess the impact of certain parameters on 

the result to see the response due to change in certain parameters. The normalized 

sensitivity method has been used by many investigators before including the recent 

studies of Yang and Yeh [2009] and Wen et al. [2011]. The normalized sensitivity 

coefficient of a dependent parameter (in this case the leakage rate) in response to the 

relative change of given parameters can be expressed as: 
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,
,

lD i
i j j

j

Q
xX

x





,         (2-22) 

where Xi,j  presents the normalized sensitivity coefficient of the  jth parameter xj at the ith 

time step and QlD is the dependent variable at the ith time step. To simplify the right 

hand side of the partial derivative in Eq. (2-22), a finite-difference formula is used: 

, , ,
( ) ( )j j jlD i lD i lD i

j j

Q Q Qx x x

x x

  


 
,       (2-23) 

where xj is a small positive increment selected as 0.01xj [Yang and Yeh, 2009; Wen et 

al., 2011]. The sensitivity analysis estimates the relative error in the output due to very 

smaller changes in the input parameters. The higher the magnitude of the relative error, 

the more sensitive the parameter is. 

Figure 2.13 represents the temporal distribution of a normalized sensitivity (same 

unit as QlD ) analysis of different parameters on the leakage rate and the parameters are 

set as RD= 1, A= 0.5, D= 1, rlD= 0. 2, rwD= 0.1, TD= 1. The sensitivity analysis shows 

that the transmissivity ratio (TD) and the dimensionless radial distance (RD) from the 

injection well to ANW produce the highest sensitivity magnitude. The dimensionless 

leakage radius (rlD) produces medium sensitivity magnitude. The rest of the parameters 

rwD, D and A yield the lowest or negligible sensitivity magnitudes. rlD and TD show 

positive responses while RD produces a negative response on the leakage rate.  
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Figure 2.13 Plots of the normalized sensitivity of the parameters RD, A, TD, D, rlD, rwD 

versus time. 
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Figure 2.14 Time variation leakage rate with the change of the leakage radius (rl) for the 

case study. 
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Brikowski [1993].  
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Figure 2.15 Time variation leakage rate with the change of transmissivity ratio (TD) for 

the case study. 
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rate is small. Therefore, one may conclude that the leakage rate is most sensitive to the 

change of TD when TD is in the middle range between 0.01 and 10. 

Figure 2.16 Time variation leakage rate with the change of radial distance between 

injection and ANW (R) for the case study. 

Figure 2.16 explains the time-dependent leakage rate by varying the radial distance 

between the injection well and ANW and the values are taken as R= 40 m, 80 m, 400 m, 

800 m, 1600 m. When the radial distance (R) is closer, the leakage rate gets higher 

through ANW and the leakage rate decreases with the increase of R. The pattern of 

change is similar for different R values (see Figure 2.16). 
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2.4 Summary and conclusion 

In this study, a simple and efficient mathematical model is presented for detection of 

potential leakage rate through ANW based on hydraulic head change evaluation between 

the upper and the lower (storage) aquifer considering an injection well. The analysis is 

conducted by solving the governing equations of flow coupled with the flow through 

both injection and leaky ANW. The point source method is introduced to the main 

equation to describe the leakage flow through ANW. The Laplace transform method is 

used to get the solution in the Laplace domain for both the leakage rate and the hydraulic 

head difference between the aquifers. The obtained solution can be used for single-phase 

flow where variable density effect is not considered. Here, analysis on how to detect the 

leakage pathway is not revealed. Future work is recommended based on this solution. 

Several conclusions have been drawn from this study: 

(1) A coupled model of ANW along with an injection well has been developed to 

predict the leakage rate and the hydraulic head response through ANW due to 

inter-formation flow between the lower (storage) and the upper aquifer by 

applying the principle of superposition at the storage aquifer for both the 

injection well and ANW. 

(2) The governing equations of flow along with boundary and initial conditions are 

solved to get the transient solution and the results have been verified by 

comparing with the solution of the Avci model [1994] for the special case of a 

fully penetrating abandoned well. Avci [1994] provided a physically undefined 

resistance term (Ω) in his solution but failed to provide a plausible explanation of 
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that term. The solution developed in this study includes a leakage factor (

2

1 12

l l

l h

K r
A

B K B
 ) which can be easily estimated from the properties of the storage 

aquifer and ANW. 

(3) The leakage through ANW is a function of both the rock and fluid properties of 

the aquifer and the hydraulic head distribution in both the storage and the upper 

aquifers. A sensitivity analysis is conducted to reveal the most sensitive 

parameters of the model in response to both the leakage rate and the hydraulic 

head difference. It is found that the leak radius (rl), transmissivity ratio (D), and 

radial distance between the injection well and ANW (R) are the most sensitive 

parameters affecting the leakage rate whereas the rest parameters have much less 

influence on the leakage rate. 
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3. ON THE FLUID LEAKAGE RATE OF A SINGLE FRACTURE

3.1 Introduction 

Leakage through fractures becomes a primary safety concern for geologic 

sequestration. Recently, saline sedimentary aquifers isolated by sedimentary cap rock 

have been used as potential sites for the geologic disposal of various unwanted waste 

fluids and CO2 from different industries. Stratigraphic and structural trappings are 

usually used for the containment of these unwanted fluids and CO2. These trappings are 

able to assure the longevity of the retention and isolation of the liquid wastes in the 

storage formation [Selvadurai, 2012; Celia et al., 2009]. In oil and gas reservoirs, there 

is enough evidence that the trappings have good isolation capacity as it can hold 

hydrocarbons for millions of years. In saline aquifers, this type of evidence is not 

available. It can be expected that the unwanted fluids and gas may leak through weaker 

fractures from the storage site to the upper aquifer and may eventually migrate to the 

ground surface. Evidence has been found that CO2 saturated water seeps to the surface in 

the case of active springs and geyser in the Paradox Basin in Utah through fault and 

fractures [Bachu et al., 2009; Shipton et al., 2005]. 

Deep storage aquifers are usually separated by an impermeable cap rock from the 

shallow fresh water aquifers. When any fluid wastes and CO2 are injected into a storage 

aquifer, the strength of the cap rock prevents the leakage from the storage to the upper 

fresh water aquifer. However, the buildup pressure due to injection of fluids may change 

the effective stresses in cap rock and cause differential movement in the cap rock. This 



40 

movement may generate new fractures or reactivate existing fractures [Gor et al., 2013]. 

These fractures may act as a potential pathway for injected materials to escape from the 

storage to the upper geologic media [Rutqvist, 2002].Very few works have been done on 

the estimation of leakage rate through fractures, as the problem is complex to handle. 

Selvadurai [2012] developed a steady state analytical solution to estimate the leakage 

rate through a fracture.  In this study, Selvadurai [2012] used a potential theory to solve 

the Laplace equation of steady-state flow through a finite-width vertical fracture 

connecting the storage and the upper aquifers. No injection wells were involved and the 

no time-history of the leakage rate can be obtained because of the steady-state nature of 

the problem. 

The objective of this paper is to develop a mathematical model that can quantify 

the time-dependent (transient) leakage rate based on the hydraulic head change 

evaluation through a finite-width vertical fracture between the storage and leaky aquifers 

coupled with an injection well. To achieve this objective, the hydraulic head response 

from the storage and the upper aquifers is firstly determined, from which the hydraulic 

head difference is estimated and the leakage rate can be computed using Darcy’s law. 

The solutions are developed in the Laplace domain first and subsequently evaluated in 

the time domain by a numerical Laplace inversion algorithm. A sensitivity analysis is 

performed to investigate the leakage rate in response to the relative change of parameters 

of the aquifers and the fracture. 
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3.2.1 Conceptual model 

Figure 3.1 shows a schematic diagram of leakage through a finite-width vertical 

fracture that cuts across the impermeable layer or aquiclude, which is lying in between 

the upper, and the lower or storage aquifers. The system consists of one injection well 

which is used to inject fluid waste into the storage aquifer and one fracture through 

which leakage occurs. The fracture is regarded as a series of vertical abandoned non-

penetrating wells (ANWs). The leakage rate and hydraulic head response through each 

individual ANW are calculated and finally the superposition principle is called to get the 

total response of leakage through a vertical fracture. The coordinate system is set as 

follows: the r´ axis directs to the radial distance from the injection well, the r axis 

originated from a selected ANW. The z and z´ coordinates are vertical, positive upward 

and along the fracture for the storage and the upper aquifer respectively. The origins z=0 

and z´ =0 are located at the bottom boundary of the storage and the upper boundary of 

the upper aquifer, respectively. The radial distance between the injection well and the i-

th ANW is Ri. Here i represents the number index of a series of narrow vertical segments 

or ANWs. Both radial and vertical flows are considered near the vertical fracture. The 

fluid waste is injected into the storage brine aquifer at a constant rate Q. The aquifers are 

considered horizontally isotropic, homogenous with constant properties. 

3.2 Conceptual and mathematical models
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Figure 3.1(a) 

Figure 3.1(b) 

Figure 3.1(c) 

Figure 3.1 Schematic diagram for analyzing leakage rate through fracture (a) cross 

section of the system, (b) top view of the fracture assuming a series of ANWs and (c) top 

view of the fracture segments from the injection well. 
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The radius of injection well is denoted as rw and the radius of ANW is considered as 

rl, which is uniform for all the considered ANWs. If the vertical fracture has a width of 

w and an aperture b, and the fracture is discretized into N uniform segments, then the 

horizontal area of each individual segment for leakage is wb/N. If each segment of the 

fracture is treated as an ANW with the same horizontal area for leakage, then one has

Nwbrl /2  , or
N

wb
r l


 . For instance, if w=10 m, b=0.001 m, and N=100, one has rl

= 0.005 m. If the number of segments (N) changes from 100 to 20, then one has rl = 

0.012 m. If the number of segments (N) becomes 5, then one has rl = 0.025 m. 

3.2.3 Mathematical model 

The mathematical model is built to analyze and to estimate the leakage rate 

through the vertical fracture in response to the hydraulic head difference between the 

upper and the storage aquifers. Since the vertical fracture is regarded as a series of 

ANWs, the leakage rate through each ANW has to be estimated first. The challenge is 

that the leakage rates through those ANWs could be different because the distances 

between the injection well and those ANWs are different. As one can see from Figure 

3.1(c), the segment (or ANW) at the one edge of the fracture has the shortest distance 

from the injection, thus the injection well will affect that segment the most. When 

moving away from the one edge of the fracture towards the other edge, the distance 

between the fracture segment and the injection gets greater, thus the injection well will 

impose gradually lesser influence on those segments. This is particularly true when the 

fracture is very close to the injection well. When the fracture is reasonably far from the 
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injection well, the variation of distances between the injection well and different 

segments of the fracture becomes a minor issue, consequently the leakage rates through 

those ANWs are expected to be very similar to each other. 

 To estimate the leakage rate through a single ANW, the primary objective is to 

find the hydraulic head difference between the storage and the upper aquifers. To 

estimate the hydraulic head in the storage aquifer, the hydraulic head response two 

sources (injection well and leakage through fracture) are considered. If the initial and 

boundary conditions are satisfied properly, one can obtain the hydraulic head response 

from each source and then use the principle of superposition to obtain the total hydraulic 

head response inside the storage aquifer. For the upper aquifer, only the hydraulic head 

response from the leakage is considered.  

In this study, the storage and the upper aquifers are denoted as aquifer 1 and aquifer 

2, respectively. After estimating the hydraulic head responses from both aquifers, 

Darcy’s law is used to estimate the leakage rate (Ql) [L
3
/T]. The detailed mathematical 

expressions involving an injection well and a single ANW have been explained in 

chapter 2, which can serve as a starting point for this study. 

3.3 Analytical results and discussions 

The equations are non-dimensionalized by using a set of parameters that are to the 

previous chapter and is listed in this chapter for reference.  
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After that, the hydraulic head response for both the storage and the upper aquifers are 

obtained by applying the Laplace Transform to time and the Fourier Cosine Transform 

to the vertical coordinate respectively. The general solution for the dimensionless 

hydraulic head (h1iD) response from the storage aquifer due to injection and leakage at a 

point right below the i-th ANW in the storage aquifer can be expressed as: 

2 20
1 0 0 1

11 1 1

( )
2 ( ) 4 cos( )cos( ) ( )

2( )

N N
iD

iD lijD D D lijDljD ljD

nwD wD j j

K sR n
h K sr n z K K n srQ Q

s sr K sr


 



 

      ,

            (3-1) 

where j=1,2,3,….  represent a number of series ANWs; n=1,2,3,…; the over-bar sign 

( ) represents the variable in the Laplace domain and s is the Laplace variable; K0 and 

K1 are the zero-order and the first-order modified Bessel functions of the second kind 

respectively, QljD represents the dimensionless leakage rate through the j-th ANW, K1D is 

the ratio of vertical (Kz) and horizontal conductivity (K1h) of the storage aquifer and zD 

represents the dimensionless vertical distance from the bottom of the storage aquifer to 

the sink point. The first term in equation (3-1) explains the hydraulic head response in 
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the storage aquifer due to injection and the rest of the terms describe the hydraulic head 

response due to leakage. Two points are notable in equation (3-1). Firstly, the principle 

of superposition is used to account for the contribution of N ANWs, which are used to 

simulate the leakage effect of the vertical fracture. Secondly, the leakage rate through 

each ANW (QljD) may be different. 

 The general solution for the hydraulic head response of the upper aquifer at a location 

right above the i-th ANW due to leakage is defined as: 

2 2
02 0 2

11 1

2 4
( ) cos( )cos( ) ( )

2

N N

iD lijD D D lijDljD ljD
D DD nj j

s n
r n z K K n srQ Qh K

T T


 





 

      ,  (3-2) 

where TD represents the transmissivity ratio of the upper aquifer to the storage aquifers 

and K2D describes the ratio of vertical (Kz) and horizontal conductivity (K2h) of the upper 

aquifer and zD´ represents the vertical distance from the upper boundary of the upper 

aquifer to the source point. The expression for the leakage rate through the i-th ANW 

can be explained as: 

2 20
0 0 1

11 11

2 2
0 0 2

11 1

( )1
2 ( ) 4 cos( )cos( ) ( )

2( )

2 4
( ) cos( )cos( ) ( )

2
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iD
lijD D D lijDliD ljD ljD

ni j jwD wD
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D D nDj j

K sR n
K sr n z K K n srQ Q Q

A s sr K sr

s n
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           , (3-3) 

where RiD represents the dimensionless radial distance between the injection well and the 

i-th segment of fracture (or the i-th ANW), parameter 
hl

ll

KBB

rK
A

11

2

2
 , which is denoted 

as a leakage factor in our model represents a function of parameters of leakage pathway 

and the lower aquifer. One complexity embedded in equation (3-3) is that the 
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determination of liDQ depends on ljDQ , j=1, 2…N. In another word, the determination of 

leakage rate in one specific ANW depends on the leakage rates through the rest ANWs 

which themselves are unknown as well. If one discretizes the fracture into N of ANWs, 

then one needs N equations like above equation (3-3) to solve the problem.  To illustrate 

the procedure of problem solving, we use the example shown in Figure 3.1(c) as an 

example. 

Figure 3.1(c) shows an example of discrete the fracture into 5 identical segments or 

ANWs, thus N=5. If the fracture width is w and aperture is b, then the radius of the 

ANW is 
5

wb
r l  . While estimation of the leakage rate for any single segment, the 

influence of leakage rate from other segments are also included. For example, if the 

leakage rate in segment 1 (Figure 3.1(c)) is calculated by using equation (3-3), the 

influence of leakage rate from segments 2-5 are also considered. By changing i=1 to 5 in 

equation (3-3), one can write 5 equation with 5 unknowns liDQ , i=1, 2, 3, 4, 5.  

For better understanding, the system of equation (3-3) can be rewritten in a matrix 

format: 
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This system of equations can be solved using matrix inversion or iterative method in 

MATLAB program.  

 The total leakage rate through fracture can be expressed as: 

1 2 3 4 5

1

.........
N

lD liD l D l D l D l D l D

i

Q Q Q Q Q Q Q


       .       (3-5) 

Equation (3-5) represents the expression for the leakage rate through a single 

fracture from the storage to the upper aquifers in the Laplace domain. The analytical 

inversion of the Laplace solution is not possible because of the complexity of the 

solution and therefore numerical Laplace inversion will be used to get the solution in the 

real time domain. Among all the available numerical inversion, the de Hoog algorithm 

[1982], which is known for its accuracy and robustness, is used to invert the Laplace 

domain solution to the real time solution [Hollenbeck, 1998; You et al., 2011]. Wang and 

Zhan [2015] provided a detailed review on different inverse Laplace transform methods. 

3.3.1 Comparison of the model  

Equation (3-5) explains the total leakage rate through a vertical fracture (combined 

effect of leakage through all disintegrated segments). The resulting equations are 
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examined using a set of parameters listed in Table 3.1. The wastes are injected at 1000 

m
3
/day through an injection well into the storage aquifer and the hydraulic conductivity 

is assumed 1000 m/day for each ANW. In this study for the demonstration, we assume 

the width of the fracture w=2 m, the thickness b=0.001 m and it is disintegrated into five 

segments N=5. The estimated value of radius of ANW as rl=0.01 m which is already 

explained in section 2.1. 

 

 

 

Table 3.1 Base parameters used for the fracture study. 

 

Parameters     Values Parameters         Values 

 

w                     2 m 

b                     0.001 m 

rl                     0.01 m 

K2                   0.1 m/day
 

Kz                   0.001 m/day                            

z                      40 m 

B1                          40 m 

B2                              40 m 

 

 

rw                        0.1 m 

K1                       0.1 m/day
 

Kl                              1000 m/day 

Kz´                        0.001 m/day                             

z´                          -40m                                     

Bl                              10 m 

Q                        1000 m
3
/day 

 

 

 

 

 As ANW is an open pipe, the calculated value of the equivalent Kl can be expressed 

as
8

2

lw
l

rg
K 




, this is the maximal possible Kl value. Here w is the density of brine 

water (1000 kg/m
3
), g is the gravity (9.8 m/s

2
) and  is the viscosity of the brine water 

(0.5*10
-3

 Pa.s). The estimated value of maximum possible hydraulic conductivity is 
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Kl=245 m/s if we consider the abandoned well as an open pipe with a radius of 0.01 m. 

However, in our case, the well is filled partially with landfill material. The value of 

hydraulic conductivity for ANW is assumed as 1000 m/day or 1.1 cm/sec. The thickness 

of the storage aquifer or the upper aquifers is considered 40 m and the thickness of the 

fracture is assumed 10 m in this study.  

Previous works on leakage from a deep subsurface storage aquifer found that the 

leakage rate is a function of resistance of flow, distance between the injection well and 

the leakage pathway, the injection rate and aquifer properties like transmissivity [Avci, 

1992, 1994; Nordbotten et al., 2004; Javandel et al., 1988].  

As there are very few works available for estimating the leakage rate through a 

facture, it is not easy to compare with previously established work. However, in our 

case, it becomes easier to compare the leakage through a fracture with an abandoned 

well, if the fracture width is reduced to the same scale as the radius of an ANW. Under 

such a special condition, the result of this study may be tested against previous model 

established by Avci [1994].  

The following is the discussion considering no vertical flow: 

Figure 3.2 explains the time-dependent leakage rate through ANW due to 

injecting fluids in the storage aquifer without considering the vertical flow by varying 

the radial distance between the injection well and ANW and the values are taken as R= 

80 m, 160 m, 240 m. To compare with Avci [1994], the model in this study has been 

simplified by neglecting the vertical flow near ANW (when Kz and Kz´ of Eqn. (2-5) and 
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(2-12) respectively are assumed zero) and the assumption of by doubling point sink 

strength.  

 

 

 

 
Figure 3.2 Time-dependent leakage rate through a thin fracture by varying the radial for 

comparison with Avci [1994] fully penetrating well. 

 

 

 

In addition, if a non-dimensional resistance of flow appears as
1

1
2 T

A
     in 

the solution and the initial hydraulic head difference between the two aquifers before the 

start of injection is considered negligible, Eq. (3-3) in our model becomes similar to the 
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Avci equation [Avci, 1994] that is explained in Eq. (3-5). Avci [1994] solution is 

applicable to estimate the leakage rate through a fully penetrating well considering an 

injection well.  

Another consideration we have to take care that when the time is large or s is 

small, the first order modified Bessel functions of the second kind can be explained as 

1

1
( )wD

wD

K sr
sr

 . Considering the above assumptions, the solution of this study 

exactly matches with Avci [1994] solution, which is observed in Figure 3.2. Avci [1994] 

equation for estimating leakage rate can be explained as follows: 

0

0 0

( )

1
( ) ( )

D

lD

lD lD
D D

K sR

sQ
s

K sr K r
T 



  
.      (3-5) 

 

As expected, a higher leakage rate is observed when the distance between the 

injection well and the ANW is closer. Another feature exhibited in Figure 3.2 is that the 

leakage rate through ANW does not reach constant over time in any case. Similar 

finding has been reported in the Avci [1994] model. To achieve the steady state solution 

of the study we have applied the following formula to get the transient solution: 

lim lim 0(t) [ ( )]lD lDQ sQ s   ,      (3-6) 

where ( )lDQ s  is described in Eqn. (3-3). 
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Figure 3.3 Time variation flow rate through leakage pathway by varying radial distance 

between injection and leakage pathway for steady state. 

 

 

 

The steady state solutions have been shown in Figure 3.3 where the result is 

observed for 1 years and the distance between the ANW and the injection well is 

maintained 8 m, 16 m and 24 m. It is observed that the leakage rate achieves the peak 

point at very early time and finally it decreases to the amount of steady state with a 

longer period (about 10 days).  

The following is the discussion considering vertical flow: 
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 If we consider vertical flow in our model, the leakage rate shows different from 

Avci [1994] where the solution involve fully penetrating well and vertical flow is not 

considered which is explained in Figure 3.3. The horizontal hydraulic conductivity is 

considered 0.1 m/d for both the upper and the lower aquifers and the distance between 

the injections well and ANW is kept 8 m. The vertical hydraulic conductivity is varied as 

0.001 m/d, 0.01 m/d, 0.1 m/d and the result is shown in Figure 3.4. It seems like when 

vertical hydraulic conductivity varies the leakage rate changes significantly.  

 

 

 

 
Figure 3.4 Time-dependent flow rate through leakage pathway by varying vertical 

hydraulic conductivity of ANW. 
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The Avci [1994] solution is also added to Figure 3.4 to compare the study by 

varying vertical hydraulic conductivity same as before. The result is shown in Figure 3.5 

where it is observed that Avci’s solution predicts higher leakage rate than this study. 

 

 

 

 
Figure 3.5 Time variation flow rate through leakage pathway by varying vertical 

hydraulic conductivity of ANW. 

 

 

 

From Figure 3.5, it is visible that the leakage rate in the Avci model is higher than 
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lower and the upper aquifer should be higher in case of Avci [1994] than this study. 

Therefore, the Avci model will predict a higher leakage rate than this study. To support 

this fact, we plot hydraulic head difference between the upper and the lower aquifer for 

the same aquifer and impermeable layers thicknesses in Figure 3.6. It seems like the 

hydraulic head difference between the lower and the upper aquifer is observed higher in 

Avci’s case and smaller in this study, which eventually explains the leakage rate. 

 

 

 

 
Figure 3.6 Dimensionless hydraulic head difference over time by considering different 

vertical hydraulic conductivity to compare with Avci [1994]. 

10
-6

10
-4

10
-2

10
0

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
D


h

lD

 

 

K
z
=0.001 m/d ANW

K
z
=0.01 m/d ANW

K
z
=0.1 m/d ANW

 Avci



 

57 

 

3.3.2 Application of the solution  

For the purpose of demonstration, we will choose a special configuration of the 

vertical fracture in such a way that the connection of one edge of the fracture with the 

injection is perpendicular to the strike direction of the fracture (see Figure 3.1(c)). The 

fracture width is w = 2 m with an aperture b = 0.001 m and it is discretized along the 

strike direction into i=1, 2, … N segments (or ANWs), started with i=1 at the one edge 

of the fracture that is closest to the injection well.  

 

 

 

 
Figure 3.7 Time variation dimensionless leakage rate through fracture for different levels 

of fracture segmentation. 
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The radial distance between the injection well and the center of the first segment is 

denoted as R1, and the distance between the injection well and the i-th segment is 

denoted as Ri, with R1 is the shortest.It is noted that, in this study the fracture is 

discretized into 5 segments for the easier and faster computation of the problem. 

However, it can be discretized into any segments and the results must be similar to each 

other.  

 

 

 

 
Figure 3.8 Time variation dimensionless leakage rate through fracture by varying the 

values of TD. 
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To observe that, the fracture is segmented to 5, 10 and 15 sections and the resulted 

leakage rate is observed in Figure 3.7. The figure reflects that though the fracture is 

segmented into different sections, the resulted leakage rate is observed with a very small 

difference. 

The application of the resulted solution can be tested on this model by using a set of 

parameters for the aquifers that is noted in Table 3.1. Here the result is tested by 

assuming that the fracture disintegrated into five segments that are comparable to a 

series of five ANWs, which have the same radius. Both the storage and upper aquifers 

have the same thickness and the same porosity and compressibility. These assumptions 

can certainly be relaxed by accommodating different aquifer parameters if needed. The 

result is observed for 1 year. 

The multiple values of aquifer properties like diffusivity and transmissivity ratios 

are used in this model to observe the susceptibility of the solutions to these parameters. 

Both the diffusivity ratio and the transmissivity ratio are 1 as we assume hydraulic 

conductivity to be same for both aquifer and R1 is kept at 8 m. A ranges of values for the 

transmissivity ratio TD= 0.1, 1, 10, 100 and the diffusivity ratio D = 0.01, 1, 10, 100 are 

used to plot Figure 3.5-3.6 respectively, where TD and D are the ratios of transmissivity 

and diffusivity of the upper aquifer to the storage aquifer, respectively.  
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Figure 3.9 Time variation dimensionless leakage rate through fracture by varying the 

values of D. 

 

 

 

Figure 3.5 explains that leakage rate through fracture increases with the increasing 

of TD. When the transmissivity of the upper aquifer increase respect to the lower aquifer 

(results in a higher TD value), it becomes easier to transmit fluid through fracture from 

the lower to the upper aquifer and higher leakage rate is observed in the upper aquifer. 

When TD=1, the leakage rate is estimated about ~0.35% of the injection rate and when 

TD=0.01, the leakage rate is nearly negligible. When the value increases to TD=100, the 

leakage rate is estimated about ~0.6% of the injection rate.  
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Figure 3.6 shows that the leakage rate through fracture is much less sensitive to 

variation of the diffusivity ratio (D), as one can see that the leakage rate varies very 

mildly when D changes over a few orders of magnitude. A close look at an enlarged 

portion of Figure 3.6 indicates that the leakage rate decreases when D increases, though 

the changes are very small. When diffusivity ratio increases, which is equivalent to say 

that the diffusivity of the storage aquifer decreases (if the diffusivity of the upper aquifer 

stays the same), it takes longer time to transmit the signal of the hydraulic head change 

from the source (injection well) to the signal (the vertical fracture). In addition, it implies 

that the magnitude of hydraulic head change at point a in Figure 3.1 at a given time is 

smaller when the diffusivity of the storage aquifer is smaller, which results in slightly 

less leakage rate through fracture. 

The estimated value of leakage coefficient (A) is 0.00125 where
hl

ll

KBB

rK
A

11

2

2
  and 

all the parameters value are explained in table 3.1. Figure 3.7 shows the leakage rate as a 

function of time for different cases of A values of 0.00005, 0.0005, 0.005, 0.05, 0.5, and 

5. The leakage rate increases with the A value. A notable point from Figure 3.7 is that, 

when the value of A gets higher (from 0.05 to 1), the changes in the leakage rate are 

smaller and nearly negligible. The changes in the leakage rate are notable when the value 

of A is smaller (from 0.00005 to 0.005); the leakage rate varies between approximately 

0.05% to 0.35% of the injection rate. As the estimated value of A in this model from 

Table 3.2 is as high as 0.00125, a small change of A affect the leakage rate greatly. The 

same conclusion is also drawn later in sensitivity analysis. 
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Figure 3.10 Time variation dimensionless leakage rate through fracture by varying the 

values of A. 

 

 

 

3.3.3 Flow analysis along the width of the fracture 

Figure 3.8 and 3.9 represents the leakage rate distribution along the strike of the 

fracture after 100 days from one edge to the other of the fracture (from segment 1 to 5 in 

Figure 3.1(c)). The shortest radial distance between the injection well and the fracture 

(R1) is kept at 8 m and 40 m respectively.  
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Figure 3.11 Leakage variation along the strike of fracture from segment 1 to 5 when the 

distance is 8m. 

 

 

 

It is observed from Figure 3.8 that when R1=8 m, the leakage rate variation is 

minimal along the strike direction. When the distance increases to R1=40 m (Figure 3.9), 

the leakage rate along the fracture does not change at all. Overall, the flow variation 

along the strike direction of the fracture is minimal unless the fracture is extremely close 

to the injection well, which is unlikely to happen in actual applications. Because if a 

vertical fracture connecting the storage and upper aquifers is indeed extremely close to 

the injection well, then the injection operation must be shut down to avoid the inevitable 

leaking problem. The finding in this section is encouraging and it actually simplify the 
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mathematical model greatly because one can apply a uniform leakage rate (albeit still 

unknown) for all the segments (or ANWs) of the fracture. More specifically, ljDQ  (j=1, 

2, 3, N) in above equation (3-3) are all identical and can be taken out of the summation 

sign. Therefore, one can directly solve ljDQ  from equation (3-3) and the matrix equation 

(3-4) is not needed.  

 

 

 

 
Figure 3.12 Leakage variation along the strike of fracture from segment 1 to 5 when the 

distance is about 40 m. 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.234

2.2341

2.2342

2.2343

2.2344

2.2345

2.2346

2.2347

2.2348

2.2349

2.235

Width of fracture w(m)

Q
l (

m
3
/d

)

 

 

Q
1
 (R

1
)

Q
2
 (R

2
)

Q
3
 (R

3
)

Q
4
 (R

4
)

Q
5
 (R

5
)



 

65 

 

3.3.4 Solution applicability of fracture with variety apertures and with inclined 

surface 

The solution of this model can also be used to predict the flow rate when fracture 

has variety apertures along the width. To handle this type of situation we discretize the 

fracture into segments, where each segment has a slightly different aperture. Each 

segment is solved by using our established model and the superposition principle is 

applied to get the total leakage response from the fracture. The Figure 3.10 describes a 

top view of the fracture with different apertures along the width of the fracture. . 

 

 

 

 

Figure 3.13 Top view of the fracture with different apertures along the width. 

 

 

 

The solution is also applicable to inclined fracture. The leakage response through 

fracture in this study is estimated based on the hydraulic head response between the two 

aquifers, which eventually depends on the length of the impermeable layer. So, even 

though the fracture is inclined, if the length of the inclined surface is known, the leakage 

rate can easily be estimated from it. 
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3.3.5 Sensitivity analysis of parameters and their application to the solution 

The normalized sensitivity analysis has been widely used in leaky aquifer problem as 

it helps us to compare the sensitivity output with respect to one parameter with the 

another sensitivity output with respect to another parameter. Here volumetric leakage 

rate is the output result whose sensitivity is going to be evaluated by assessing the 

impact of some certain input parameters. The normalized sensitivity method has been 

used by Wen et al. [2011], Huang and Yeh [2007] and Yang et al. [2009] in their 

analysis and mentioned it as an attractive way to observe the response of different 

parameters to the output result. According to them, the normalized sensitivity coefficient 

of the leakage rate in response to relative change in given parameters can be expressed 

as: 

,

,

lD p

p q q

q

Q
xX

x





,         (3-7) 

where Xp,q  presents the normalized sensitivity coefficient of the q-th parameter xq at the 

p-th time step and QlD is the dependent variable at the p-th time step. To simplify the 

right hand side of the partial derivatives equation (7), Yeh [1987] introduces a finite 

difference formula is used to approximate as follows: 

, , ,
( ) ( )q q qlD p lD p lD p

q q

Q Q Qx x x

x x

  


 
,       (3-8) 

where xq is a small positive increment chosen as 10
-2

*xp [Yang and Yeah, 2009; Wen et 

al., 2011]. The main objective of the sensitivity analyses is to observe the relative error 

on the output parameter due to small increase in the parameters. The influence of 



 

67 

 

uncertainties in the input parameters on the outputs will determine the sensitiveness of 

the parameters. When the magnitude becomes higher, the parameter becomes more 

sensitive.  

 

 

 

 
Figure 3.14 Plots of time dependent dimensionless normalized sensitivity of the 

parameters R1D, A, D, rwD, TD. 
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produces the largest sensitivity magnitude. The parameter dimensionless radial distance 

from injection well to the edge of fracture (R1D) produces second largest sensitivity 

magnitude. The parameter A produces the third largest sensitivity to the leakage rate. 

The parameter D and rwD generate minimal sensitivity to the leakage rate. Thus, Figure 

3.10 can conclude that volumetric leakage rate is very sensitive to transmissivity ratio 

(TD) and the radial distance between the injection well to the edge of the shortest 

distance to the fracture (R1D), leakage factor (A) and is not sensitive to the rest of the 

parameter in our study. 

 

 

 
Figure 3.15 Time variation (1 year) leakage rate through fracture by varying the values 

of TD. 
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As transmissivity ratio (TD) and the dimensionless radial distance between the 

injection well to the edge of the shortest distance to the fracture (R1D) are the two major 

sensitive parameters in response to leakage rate and leakage factor (A) and fracture 

aperture (b) produce medium sensitive parameters to the leakage rate, now various 

values of these four parameters will be tested to see the response of the leakage rate. The 

leakage rate is maintained as before 1000 m
3
/day and the rest of parameters are used 

from Table 3.1. The leakage rate is observed for 1 year.  

In Figure 3.15, the most sensitive parameter transmissivity ratio of 0.001, 0.01, 0.1, 

1, and 10,100 has been tested on the leakage rate. It can be inferred from the Figure 3.11 

that when the TD value is too small (value between 0.001 to 0.01) and too high (value 

between 10 to 100), the leakage rate changes are small. When the value of TD lies in 

between 0.01 to 10, there is a notable change in leakage rate from about 0.5 to 5.5 

m
3
/day through fracture.  

Figure 3.16 represents the time dependent leakage rate for various radial distance 

from the injection well to the edge of the fracture R1= 8 m, 24 m, 40 m, 80 m, 160 m. It 

is understandable that the leakage rate is observed higher when fracture is closer to 

injection well and the leakage rate is observed smaller when the distance increases. 

Similar observation is made from Figure 3.12, when the radial distance between the 

injection well and the fracture is only 8 m, the leakage rate is observed about ~3.5m
3
/day 

and when the distance increases to 160 m, the leakage rate is observed around ~2 m
3
/day 

at the end of 1year. 
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Figure 3.16 Time variation (1 year) leakage rate through fracture by varying the values 

of R1. 

 

 

 

Figure 3.17, explains the leakage rate variation on the basis of changing leakage 

factor (A). The estimated value of A from Table 3.1 is 0.00125. The values are taken as 

decimal increment as 0.0000125, 0.000125, 0.00125, 0.0125, 0.125, 1.25 and 12.5. 

Similar type of observation has been made as previous that when the value is small 

(0.0000125 ~ 0.0125) the leakage rate is significant (0.25 to 3.5 m
3
/day). When the value 

gets higher (0.0125 to 12.5), there is a minimal change in leakage rate is observed. 
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Figure 3.17 Time variation (1 year) leakage rate through fracture by varying the values 

of A. 

 

 

 

3.4 Conclusions 

In this study, a simple and efficient semi-analytical solution is presented for 
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solving the governing equation of single-phase flow coupled with the flow through both 

injection and leaky fracture. Several conclusions have been made from this study: 

(1) A coupled model of a vertical fracture along with the injection well has been 

developed to estimate the leakage rate through fracture by evaluating hydraulic 

head difference between the storage aquifer and the upper aquifer. Superposition 

principle has been applied to get the hydraulic head response at the storage 

aquifer for both injection well and fracture. 

(2) The main assumption includes the fracture is disintegrated into narrow vertical 

segments, where the leakage response through each segment is comparable to the 

leakage response through an ANW. On the base of the assumption, it can be 

concluded that the leakage through fracture is a combined response of leakage 

through a series of ANWs. The equations are solved for fluid flow through a 

single ANW coupling with an injection well first and then superposition principle 

is called to combine the leakage through a series of ANWs, in other words the 

leakage through a vertical fracture according to our assumption. 

(3) The governing equation of fluid flow has been solved along with initial and 

boundary equations to get the transient leakage response through a vertical 

fracture. The accuracy of the result is evaluated by comparing the solution with 

Avci [1994] fully penetrating well by assuming a narrow fracture in our model. 

(4) The leakage variation along the strike of the fractures is insignificant if the 

distance is not too close to the fracture. The leakage rate through each segment 

gets identical and the solution becomes simpler. 
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(5) The leakage rate through fracture is a function of both rock and the fluid 

properties of the aquifers. A sensitivity analysis is conducted to reveal the most 

influential parameters on the leakage rate. The investigation found out that 

transmissivity ratio (TD) and the radial distance between the injection well, the 

shortest edge of fracture (R1D) and leakage factor (A) are mostly influential to the 

output leakage rate. 
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4. SUMMARY, CONCLUSIONS AND RECOMMENDATION 

 

4.1 Summary and conclusion of the study 

The main purpose of this dissertation is to investigate the hydraulic head evaluation 

and leakage rate through different transmitting conduits based on hydraulic head 

difference between the two aquifers (the upper and the lower). Darcy’s law has been 

used to establish a relationship between hydraulic head difference and leakage rate. To 

investigate this matter, firstly hydraulic head response from each aquifer is estimated by 

using governing equation of flow along with some boundary conditions. After estimating 

the hydraulic head difference between the storage and upper aquifer, the time varying 

leakage rate is approximated by using a relationship between hydraulic head gradient 

and leakage rate which is explained by Darcy’s law. The solution is obtained in Laplace 

domain and analytic inversion of these equations seemed impossible. Therefore, 

numerical inversion has been used to get the time varying leakage rate and hydraulic 

head difference between the aquifers. Two types of transmitting conduits (ANW and 

fractures) have been evaluated in this study. The summary from both results can be 

described as follows: 

1) A new and efficient solution for estimating leakage through ANW and fracture 

over time (transient solution) is introduced in this study. 

2) The solution can also predict hydraulic head distribution in both the storage and 

the upper aquifer. 
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3) The solution developed in this study includes a leakage factor (
2

1 12

l l

l h

K r
A

B K B
 ) 

which can be easily estimated from the properties of the storage aquifer and 

leakage pathways. Previous major study introduced a resistance term (Ω) in his 

solution [Avci, 1994] but failed to provide a plausible explanation of that term. 

4) The leakage occurrence can be detected by observing the hydraulic head change 

in the monitoring well, which is installed in the upper aquifer. 

5) Sensitivity analysis is performed to find the most sensitive parameters to the 

leakage rate. Of them in both cases transmissivity ratio and the radial distance 

between the injection well plays a very important role on leakage rate estimation. 

4.2 Contribution 

The contributions are summarized as follows: 

1) This dissertation introduced an efficient transient model to estimate liquid waste 

leakage through an abandoned non-penetrating well (ANW) and fracture that acts 

as a transmitting conduit between the storage and the upper aquifers. 

2) Usually numerical solutions are complex to handle and need standardized 

analytical or semi-analytical solution to check the accuracy of the result. The 

developed solution can be used to check the precision of numerical solutions. 

4.3 Future scope 

The future scope from this study is explained as below: 

1) There might be a chance that multiple leakage pathways (multiple abandoned 

wells and fractures) are present in the overlying impermeable rock. The 
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methodology should be extended by using superposition principle to the multiple 

leakage pathways to get the total response from the leakage pathways. 

2) Constant head injection is used to inject waste through injection well. It is much 

safer than constant flux injection. Because constant flux injection generates so 

much pressure in the storage aquifer that may cause artificial fracture through 

cap rock. Future work can be extended based on the constant head injection 

coupled with the leakage pathways. However, the system gets complex as mixed 

type boundary generates from constant head injection and leakage through 

leakage pathway. So new methodology should be developed to solve this 

problem. 

 



 

77 

 

NOMENCLATURE 

 

   hI1  Hydraulic head at the storage aquifer due to injection, [L] 

   hl1 Hydraulic head at the storage aquifer due to leakage in ANW, [L] 

   h1 Hydraulic head at the lower aquifer due to injection and leakage in ANW, [L] 

   h2 Hydraulic head at the upper aquifer due to leakage in ANW, [L] 

   r´ Radius originated at injection well, [L] 

   r  Radius originated at ANW, [L] 

   rw Radius of injection well, [L] 

   rl Radius of ANW, [L] 

   R Radial distance from injection well to the center of ANW, [L] 

   Aquifer diffusivity of the storage aquifer, [L
2
/T] 

 Aquifer diffusivity of the upper aquifer, [L
2
/T] 

   t Time, [T] 

   B1  Thickness of the storage aquifer, [L] 

   B2 Thickness of the upper aquifer, [L] 

   K1h Horizontal hydraulic conductivity of the lower aquifer, [L/T] 

   K2h  Horizontal hydraulic conductivity of the upper aquifer, [L/T] 

   Kz  Vertical hydraulic conductivity of the upper aquifer, [L/T] 

   Kz´ Vertical hydraulic conductivity of the upper aquifer, [L/T] 

   Q Volumetric injection rate through injection well, [L
3
/T] 

  Ql Volumetric leakage rate through ANW, [L
3
/T] 
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   S Storativity, [1/L] 

   b  Aperture of fracture, [L] 

   w  width of fracture, [L] 

   s  Laplace transform variable 

   z  Vertical length, [L]  

   K₀ Zero order modified Bessel function of the second kind 

   K₁ First order modified Bessel function of the second kind     

Subscripts: 

    l Leakage   

   D Dimensionless  

   I  Injection 

   i  Number of ANW 
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APPENDIX  

 

The solution for equation (2-2) satisfying boundary conditions (2-3)-(2-5) in 

dimensionless form can be written as: 

0
1

1

( )

( )

D
I D

wD wD

K sR
h

s sr K sr
 .                  (2-A1) 

The solution for equation (2-6) satisfying boundary condition (2-7)-(2-10) in 

dimensionless form can be written as [Moench, 1997; Zhan et al., 2001]: 

1
0

( , )cos( )l D n D n D
n

h H r s z




 ,                  (2-A2) 

where n= nn=0, 1, 2, 3, … 

Substituting equation (2-A2) into dimensionless form of (2-6), multiplying by cos(n zD) 

and integrating from 0 to 1 in the zD direction will result in: 

0
0

1 1
( ) 4 ( ) 0DlD

D D D

H
r sH rQ

r r r
 


  

 
, when n=0 ,              (2-A3) 

2 2

1

1 1
( ) ( ) 8 ( )cos( ) 0

2

n
D n DlD

D D D

H n
r K n s H rQ

r r r


  


   

 
, when n>0.             

(2-A4) 

Equation (2-A3) and (2-A4) are the radial modified Helmholtz equation and the solution 

is achieved with the help of table 8.5 of Arfken and Weber [1995]: 

0 02 ( )DlD
H K srQ  ,                  (2-A5) 

2 2

0 1
1

4 cos( )cos( ) ( )
2

n D D DlD
n

n
H n z K K n srQ


 





   , n>1.                         (2-A6) 
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Substituting equation (2-A5) and (2-A6) into equation (2-A1), the solution is obtained 

for 1l Dh  

2 2

1 0 0 1
1

2 ( ) 4 cos( )cos( ) ( )
2

l D D D D DlD lD
n

n
h K sr n z K K n srQ Q


 





    .            (2-A7) 

Now the general solution for dimensionless hydraulic head in Laplace domain of the 

lower aquifer ( 1Dh ) is obtained by substituting equations (2-A1) and (2-A7) into 

dimensionless form of equation (2-11): 

2 20
1 0 0 1

11

( )
2 ( ) 4 cos( )cos( ) ( )

2( )

D
D D D D DlD lD

nwD wD

K sR n
h K sr n z K K n srQ Q

s sr K sr


 





   

.                     (2-A8) 

Similarly, equation (2-12) along with boundary condition (2-13)-(2-16) can be solved as: 

2 2

2 0 0 2
1

2 ( ) 4 cos( )cos( ) ( )
2

lD lD
D D D D D

nD D D D

Q Qs n s
h K r n z K K n r

T T


 

 





   .        (2-A9) 

Finally, substituting the equations (2-A8) and (2-A9) in dimensionless form of equation 

(2-1), the result can be obtained for dimensionless leakage rate lD
Q  at ANW which is 

presented in equation (2-19). 




