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ABSTRACT 

With container-grown trees offered to the public in an increasing array of sizes, it 

is important to determine the effects of transplant on different size container stock. 

Transplant shock is a condition of physiological stress, which is a normal consequence 

of transplanting plants into conditions less favorable than those in the nursery. Clonal 

replicates of Vitex agnus-castus L., Acer rubrum L. var. drummondii (Hook. & Arn. ex 

Nutt.) Sarg., and Taxodium distichum (L.) Rich. were grown under common conditions 

in each of five container sizes #1, 3, 7, 25, or 45 (3.5, 11.7, 23.3 97.8, or 175.0 L, 

respectively) to minimize residual differences during production. Beginning June 2013, 

six trees of each container size and species were transplanted to a sandy clay loam field 

in College Station, Texas. To determine the extent of transplant shock, physiological 

stress was assessed through xylem water potentials and photosynthetic gas exchange 

rates. Changes in shoot growth of each tree were calculated along with root growth for 

two growing seasons. Utilizing industry standards, the initial costs of materials and labor 

were then compared with the size of trees two years post-transplant to determine return 

on investment for each container size.  

Responses observed in A. rubrum and V. agnus-castus indicted growth increased 

exponentially in #3 and #7 container-grown trees. Taxodium distichum recovered at 

much slower rates, with less rapid although still vigorous growth in #3 and #7 container-

grown trees. Data indicates all trees in #3 and #7 containers experienced less severe 

water stresses and required less time to return to normal transpiration rates than trees 
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grown in other containers. The reduced stress levels and increased growth rates 

correlated with greater percent changes found in root lengths of smaller container-grown 

trees. Economic analysis after two growing seasons indicated a greater increase in value 

for #3 and #7 container-grown trees versus losses in value for some #45 container-grown 

trees. In comparison with trees from larger containers, trees from smaller size containers 

exhibited reduced transplant shock, decreased establishment time and increased growth 

rates, thus creating a quicker return on investment for trees transplanted from the smaller 

container sizes. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

Nurseries over the years have produced trees in larger and larger container sizes 

(Arnold, 2004; Watson, 2004), and even large box stores, such as Walmart, Lowe’s, and 

Home Depot, now sell trees in up to 100-gallon containers. While debate continues over 

the relative merits of different container sizes (Watson, 2004), this could in part be due 

to the appreciation landscape industries and homeowners have for the instant impact 

large trees can provide, such as greater aesthetic value of larger trees (Kalmbach and 

Kielbaso, 1979; Schroeder, 2006), greater biomass present to withstand environmental 

anomalies (Nowak et al., 2007), less potential for accidental or malicious mechanical 

damage (Watson and Himelick, 2013), instant shade (Kalmbach and Kielbaso, 1979; 

Schroeder, 2006), and increase in property value (Maco and McPherson, 2003). 

However, larger trees cost more to grow and occupy a greater amount of nursery space 

resulting in higher prices for consumers (Watson and Himelick, 2013). Smaller container 

sizes are less expensive for consumers as nurseries expend less on materials, 

maintenance and square footage to produce smaller trees. Smaller container sizes, once 

transplanted to the field, reportedly have reduced transplant shock (Watson, 2004), are in 

a phase of growth more closely aligned with the exponential growth rate of young 

seedlings (Gilman and Dehgan, 1996), have been in containers for shorter times and 

have been upcanned (sequentially transplanted to larger containers) fewer times 

potentially reducing the chances of circling root development (Gilman and Kane, 1990), 
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and their smaller size makes for easier handling and staking (Watson and Himelick, 

2013). The benefits and costs of varying container sizes have yet to be fully evaluated to 

determine which container size affords the most advantageous opportunity for 

consumers. This leads to the question: How much time is required to establish various 

size container-grown trees in the landscape? 

Although container size establishment has been considered by several sources 

(Gilman et al., 1998, 2010; Gilman and Masters, 2010; Lambert et al., 2010; Struve 

2009), extensive research has yet to be conducted as is proposed herein. With trees being 

offered to the public in an ever increasing array of sizes, it is important to determine the 

times required for successful establishment of differing size stock and the trade-offs 

associated with initial size and establishment requirements. It is often generally accepted 

that smaller size planting stock establishes more quickly after transplanting than larger 

stock (Struve, 2009).  Gilman et al. (2010) also found that smaller trees established more 

quickly than larger trees, but only tested two sizes, which would not permit the 

development of predictive regression curves for establishment times or other factors.  

Lambert et al. (2010) investigated three sizes of containers for three species in forestry 

conditions, but no information was provided relative to the genotypic background of the 

plants, so size may have been confounded with genotypes.  The three genera studied 

were selected to represent different niches of the landscape industry and to eliminate 

genetic variation by using clonal materials. Clonal selections of Vitex agnus-castus, Acer 

rubrum var. dummondii, and Taxodium distichum were chosen due to their wide spread 
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use in our regional nursery trade and their representation of a variety of classes of 

landscape trees. 

1.1 Tree Background 

Vitex agnus-castus is a small multi-stem ornamental tree, almost shrub-like, 

known for its hardiness and attractive flowers. Vitex L. is a genus of 250 species 

distributed throughout the world (Dutta, 1970). Introduced to the United States in 1570, 

V. agnus-castus is used ornamentally as a shrub border or as a small specimen tree 

(Gilman and Watson, 1994). This species generally grows in humid habitats like stream 

banks and valleys, mostly on sandy soils, perched alluvial soils, and rocky areas. As a 

Mediterranean native, V. agnus-castus prefers warm, sunny habitats (Dogan, 2008). 

Though it is drought tolerant once established, it will grow faster with supplemental 

water, especially during initial transplant (Welch, 2008). Propagation is from cuttings in 

summer or winter (Welch, 2008). Although detailed research is lacking, Vitex seems to 

grow tap and lateral root systems with abundant fine roots (Long et al., 2012). The 

unnamed clone to be used in this study was selected for a profusion of large branched 

panicles of clear white flowers compared to the bluish or purplish colors of the species 

types. 

Acer rubrum is one of the most abundant and widespread trees in North America 

(Hutnick and Yawney, 1961).   Acer rubrum does very well in a wide range of soil types, 

with varying textures, moisture, soil pH, and elevation, probably more so than any other 

forest tree in North America (Hepting, 1971). While it can occur in rather extreme 

moisture conditions, both very wet and quite dry, its ideal conditions are in moderately 
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well drained, moist sites at low or intermediate elevations (Walters and Yawney, 1990). 

Its ability to thrive in a large number of habitats is largely due to an ability to produce 

roots to suit its site from a young age. In wet locations, red maple seedlings produce 

short taproots with long and developed lateral roots, while on dry sites they develop long 

taproots with significantly shorter laterals (Hutnick and Yawney, 1961). The roots are 

primarily horizontal, however, forming in the upper 25 cm of soil. Mature trees have 

woody roots up to 25 m long (Lyford and Wilson, 1964). They are very tolerant of 

waterlogging conditions, with one study showing that 60 days of flooding caused no leaf 

damage (Hosner and Boyce, 1962). At the same time, they are tolerant of drought due to 

their ability to stop growing under dry conditions by then producing a second growth 

flush when conditions later improve, even if growth has stopped for 2 weeks (Walters 

and Yawney, 1990). Acer rubrum is considered difficult to propagate from cuttings, 

however through the use of rooting hormones and appropriate media, successful 

propagation can be achieved (Hartmann et al., 2011). Acer rubrum var. drummondii 

represents a more southern and southwestern ecotype thought to be more heat and high 

pH soil tolerant than the species type (Arnold, 2008). The clone ‘Maroon’ to be used in 

this study is a selection by Dr. Edward McWilliams and Mr. Lynn Lowrey that produces 

attractive red fruit and flowers in abundance. 

Finally, Taxodium distichum, commonly known as baldcypress, is a tall, 

deciduous coniferous tree dominant in lowland river flood plains and swamps of the 

Southeastern United States (Wilhite and Toliver, 1990). Taxodium distichum can grow 

across a wide climatic range, due to its ability to handle a range of rainfall conditions 
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(Little, 1971). The most favorable soil characteristics vary but are typically fertile, fine 

textured, alluvial soils, allowing for effective drainage (Fowells, 1965). Taxodium 

distichum has a relatively high salt tolerance in comparison with other landscape trees 

(Denny, 2007). Allen et al. (1996) noted salt tolerance in Taxodium is probably due to 

relative ability to “exclude ions or effectively compartmentalize them in cell vacuoles”, 

citing a higher concentration of Na and Cl ions in the leaves of less tolerant genotypes. 

Taxodium distichum can establish on seasonally inundated fluvial sediment due to its 

ability to thrive in anaerobic, saline soil conditions (Wilhite and Toliver, 1990). 

Baldcypress seedlings develop a taproot (Williston et al., 1980), which can be 

maintained through maturity (Swanson, 1965). Older, naturally seeded baldcypress in 

swamps develop several descending roots that provide anchorage, and numerous lateral 

roots from which arise peculiar conical structures known as "knees" (Harlow et. al, 

2001). However, small knees have been observed on many trees not subjected to 

flooding (Brown, 1981) and it is not uncommon for T. distichum to produce knees in 

built environments.  

1.2 Transplant and Transplant Shock 

Improper planting has a profound effect on tree survival, health, and longevity. 

Up to 50% loss of trees within the first five years of planting is not uncommon due to 

problems that originate below ground in the soil and root system (Watson and Himelick, 

2013). Preparation for transplanting is the first step to establishing a healthy tree. For 

trees grown in containers, the planting hole should be no deeper than the root ball. 

Higher mortality and slower growth often result from trees with root systems planted 
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deeper than optimal (Arnold et al., 2005). Structural roots should be placed just below 

the surface on well-drained soils (Watson and Himelick, 2013), or on heavy soils at or 

slightly above grade (Arnold et al., 2005, 2007). The hole should be dug about 30 cm 

wider than the root ball and the sides of the hole broken down with a spade to widen the 

hole near the surface where root growth will be most rapid (Watson and Himelick, 

2013). Though many containers have been developed to prevent roots from circling 

around the interior of the containers, it is common practice to disrupt these circling roots 

by making several vertical cuts on the outside of the root ball prior to transplanting and 

to disrupt or remove matted roots at the bottom of the container (Harris et al., 2004). 

Without disruption, root growth of container-transplanted trees was one-quarter that of 

field-grown trees and resulted in reduced tree stability (Gilman et al., 2010). After 

placing the tree at the correct depth, the tree should be held in place while loose soil is 

added around the root ball. Watering immediately after transplanting helps the tree to 

counter stress as well as to settle the added soil (Watson, 1986). A slightly raised ring of 

soil surrounding the edge of the root ball will also help to create a basin that can be filled 

with water.   

Transplant shock is a condition of distress from injuries, depletion of nutrients, 

and impaired functions; a process of recovery; and a period of adaptation to a new 

environment (Rietveld, 1989). Stress is a normal consequence of handling, moving, and 

planting plants into a less favorable field or landscape environment than those 

experienced in the nursery. Transplant shock is exacerbated by root system loss during 

transplant, which results in a decrease in the tree’s ability to absorb water and mineral 
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nutrients, and causes the loss of stored compounds already present in the tree (Watson 

and Sydnor, 1987).  Transplant shock will persist until root regeneration begins. There 

are two types of root regeneration: elongation of existing root tips and initiation of 

adventitious roots and their subsequent elongation (Stone and Shubert, 1959). 

Overcoming transplant shock is largely dependent on the rate of elongation of existing 

roots, which is independent of the season of the year and occurs whenever soil moisture 

and temperatures permit (Struve, 2009). Root elongation is also inhibited in compacted 

soils and is made worse by the combination of soil compaction and low soil moisture 

content (Bennie, 1991). Stress caused by soil moisture deficit reduces root elongation 

and increases the effects of transplant shock. Transplanted trees often become drought 

stressed soon after planting, as the soil volume accessed by roots of a naturally 

established tree can be more than ten-fold that of a transplanted tree of the same shoot 

size (Burdett, 1990). Plant nutrient uptake is decreased under drought stress due to 

reduced transpiration (Yambao and O’Toole, 1984) and impaired active transport and 

membrane permeability (Hsiao, 1973) resulting in reduced water absorption. Nutrient 

uptake from the soil is also closely linked to soil moisture conditions. A decrease in soil 

moisture reduces the diffusion rate of nutrients from the soil towards the root surface 

(Marais and Weirsma, 1975). Drought stress following transplanting can be further 

exacerbated by poor acclimatization to the field environment (Rowe, 1964). In the 

nursery, trees are within close proximity of each other, sheltering each other from wind 

and are irrigated more frequently than when moved into the field (Watson, 1996). 
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1.3 Establishment 

The establishment period of a plant is of utmost importance to determining 

vitality, growth rates, and maintenance needs. There are several measures of plant 

establishment: re-establishment of growth (Watson, 1985; Gilman, 1997), resumption of 

a pre-transplant shoot elongation rate (Struve and Joly, 1992), restoration of shoot xylem 

water potential (Beeson, 1994; Beeson and Gilman, 1992; Gilman, 1992), and/or a return 

to pre-transplant photosynthetic rates (Richardson, 2002). Due to loss of roots from 

mechanical damage as well as physiological stresses, transplanted trees frequently 

experience a phase after planting in which growth is significantly reduced or suspended. 

Therefore, the re-establishment of shoot growth is most dependent on the rate and extent 

of root elongation outside the original planted root ball. The potential for root elongation 

is affected by the length of the growing season, as well as maintaining adequate soil 

moisture (Gilman, 1997). Stress associated with reduced gas exchange occurs when too 

little water causes stomatal closure, thus limiting CO2 uptake (Federer and Gee, 1976). 

Reduction of transpiration as stomata close during drought stress may also elevate leaf 

temperatures due to reduced evapotranspiration (Taiz and Zeiger, 2010). Plant growth is 

affected by loss of turgor pressure within the cells (Green and Cummins, 1974). When 

restoration of stomatal conductance and xylem water potential is achieved, growth can 

resume. In an experiment conducted by Gilman (2004), trees from containers irrigated 

three times a week during establishment grew faster and resumed water potentials 

quicker leading to a faster establishment versus those trees watered once every ten days 

with equivalent water volumes. Photosynthesis is one of the most basic measures of 
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plant productivity. In order to reduce water loss, trees close their stomata, thus 

decreasing photosynthetic rates during initial transplant establishment (Hsiao, 1973). 

Therefore, as an indicator of future growth, photosynthetic rates return to normal as trees 

begin to establish (Richardson, 2002). 

1.4 Cost Analysis 

The value of a tree, defined as its monetary worth, is based on people’s 

perception of the tree (Cullen, 2000). Arborists use several methods to develop a fair and 

reasonable estimate of the value of individual trees (Council of Tree and Landscape 

Appraisers, 2000; Cullen, 2005; Watson, 2002). The cost approach is widely used today 

and assumes that value equals the cost of production (Cullen, 2002). It assumes that the 

benefits inherent in a tree can be reproduced by replacing the tree and therefore, 

replacement cost is an indication of value (Cullen, 2000). Replacement cost is 

depreciated to reflect differences in the benefits that would flow from an “idealized” 

replacement compared with the older and imperfect appraised tree. The depreciated 

replacement cost method uses tree size, species, condition, and location factors to 

determine tree value (McPherson, 2007). The income approach measures value as the 

future use of a tree such as in fruit or nut production (The Appraisal Institute, 2000). In 

the absence of products, another approach could be based on the present value of future 

benefits the tree is likely to produce (Council of Tree and Landscape Appraisers, 2000).  

A number of benefits and their monetized values can be calculated for a tree in the 

landscape. Some benefits that have proven to improve the value of the tree are energy 

savings (McPherson and Simpson, 1999), atmospheric carbon dioxide (CO2) reductions 



10 

(McPherson et al., 2003), stormwater runoff reductions (Xiao et al., 2000), and 

aesthetics (Anderson and Cordell, 1988). Quantifying and totaling these benefits over 

time can provide an idea of a tree’s projected value, but are difficult to determine 

accurately, thus replacement costs are the typical value method assigned to most 

landscape trees. 
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CHAPTER II  

EFFECTS OF CONTAINER SIZE ON LANDSCAPE ESTABLISHMENT OF THREE 

TREE SPECIES 

With trees being offered to the public in an ever-increasing array of container 

sizes, it is important to determine the times required for successful establishment of 

differing size container stock and the trade-offs associated with initial size and 

establishment requirements.  

While debate continues over the relative merits of different container sizes, this 

could in part be due to the appreciation landscape industries and homeowners have for 

the instant impact large trees can provide, such as greater aesthetic value of larger trees 

(Kalmbach and Kielbaso, 1979; Schroeder, 2006), greater biomass present to withstand 

environmental anomalies (Nowak et al., 2007), less potential for accidental or malicious 

mechanical damage (Watson and Himelick, 2013), instant shade (Kalmbach and 

Kielbaso, 1979; Schroeder, 2006), and increase in property value (Maco and McPherson, 

2003). These larger trees cost more to grow and occupy a greater amount of nursery 

space resulting in higher prices for consumers (Watson and Himelick, 2013). Smaller 

container sizes are less expensive for consumers as nurseries expend less on materials, 

maintenance and square footage to produce smaller trees. Smaller container sizes, once 

transplanted to the field, have reduced transplant shock (Watson, 2004), are in a phase of 

growth more closely aligned with the exponential growth rate of young seedlings 

(Gilman and Dehgan, 1996), have been in containers for shorter times and have been 
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upcanned fewer times potentially reducing the chance of circling root development 

(Gilman and Kane, 1990), and their smaller size makes for easier handling and staking 

(Watson and Himelick, 2013). The benefits and costs of varying container sizes have yet 

to be fully evaluated to determine which container size affords the most advantageous 

opportunity for consumers. 

The establishment period of a plant is of utmost importance to determining 

vitality, growth rates, and maintenance needs. There are several measures of plant 

establishment: re-establishment of growth (Watson, 1985; Gilman, 1997), resumption of 

a pre-transplant shoot elongation rate (Struve and Joly, 1992), restoration of shoot xylem 

water potential (Beeson, 1994; Beeson and Gilman, 1992; Gilman, 1992), and/or a return 

to pre-transplant photosynthetic rates (Richardson, 2002). Due to loss of roots from 

mechanical damage, as well as physiological stresses, transplanted trees experience a 

phase after planting in which growth is significantly reduced or suspended. Therefore, 

the re-establishment of shoot growth is most dependent on the rate and extent of root 

elongation outside the original planted root ball. The potential for root elongation is 

affected by the length of the growing season, as well as maintaining adequate soil 

moisture (Gilman, 1997). Stomatal stress occurs when too little water causes stomatal 

closure, thus limiting CO2 uptake (Federer and Gee, 1976). Biochemical stress occurs 

when decreased xylem water potential in leaves affects plant growth (Hsiao, 1973). 

When restoration of stomatal conductance and xylem water potential is achieved, growth 

can resume. In an experiment conducted by Gilman (2004), trees from containers 

irrigated three times a week during establishment grew faster and resumed water 
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potentials quicker leading to a faster establishment versus those trees watered once every 

ten days. Photosynthesis is one of the most basic measures of plant productivity. In order 

to reduce water loss, trees close their stomata, thus decreasing photosynthetic rates 

during initial transplant establishment (Hsiao, 1973). Therefore, as an indicator of future 

growth, photosynthetic rates return to normal as trees begin to establish (Richardson, 

2002). 

It is often generally accepted that smaller size planting stock establishes more 

quickly after transplanting than larger stock (Struve, 2009), but formal studies are 

limited. Gilman et al. (2010) also found that smaller trees established more quickly than 

larger trees, but only tested two sizes, which would not permit the development of 

predictive regression curves for establishment times or other factors.  Lambert et al. 

(2010) investigated three sizes of containers for three species in forestry conditions, but 

no information was provided relative to the genotypic background of the plants, so size 

may have been confounded with genotypes.   

The objective of the current study was to identify initial stress expressed by three 

taxa among container sizes during landscape establishment and the amount of time each 

planting required to achieve establishment (recovery and resumed growth). 

2.1 Materials and Methods 

The three genera we used were selected to represent different niches of the 

landscape industry and to eliminate genetic variation by using clonal materials. Clonal 

selections of Vitex agnus-castus L. (an unnamed white flowering clone), Acer rubrum L. 

var. dummondii (Hook. & Arn. ex Nutt.) Sarg. ‘Maroon’, and Taxodium distichum (L.) 
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Rich. (unnamed test code clone TX8DD38) were chosen due to the widespread use of 

these species in the southern regional nursery trade and their representation of a variety 

of classes of landscape trees. Tip cuttings, 8-10 cm long, of each clone were taken from 

containerized stock plants developed and maintained in College Station, TX. The basal 

end of these cuttings was then dipped in a liquid rooting hormone (Dip n’ Grow® Inc., 

Clackamas, OR) containing indolebutyric acid (IBA) / naphthalene acetic acid (NAA) at 

a 3:1 concentrate (2,500 ppm IBA/ 1,250 ppm NAA) to water ratio for 5 seconds. 

Cuttings were placed in 36 cm x 51 cm x 10 cm deep flats (Kadon Corp., Dayton, OH) 

filled with course perlite (Sunshine Perlite #3 4cf SUGRPLITE Sun Gro Horticulture 

Canada Ltd., Seba Beach, AB, Canada) on an intermittent mist bench. Intermittent mist 

was applied at 16 min intervals for 20 s durations using reverse osmosis water from 1 h 

before sunrise to 1 h after sunset. Rooted cuttings were then potted in 3.5-L (#1) black 

plastic pots (Nursery Supplies, Inc., Kissimmee, FL) containing Metro-Mix 700 media 

(Sun Gro Horticulture Canada Ltd., Vancouver, BC, Canada). As cuttings grew, plants 

were transplanted to larger container sizes (11.7 L, 23.3 L, 97.8 L, and 175.0 L) 

according to ANSI Z60.1 (American Association of Nurserymen, 2004) standards and 

the process began again with additional cuttings until nine 3.5 L (#1), 11.7 L (#3), 23.3 L 

(#7), 97.8 L (#25), and 175.0 L (#45) plants of each species was achieved. These trees 

were amended with 15N -3.9P-9.9K controlled release fertilizer (Osmocote® Plus, Scotts 

Co., Marysville, OH) every six months at 6.53 kg•m3 and grown in a gravel-bottom 

nursery in College Station, TX (lat. 30°37'45"N, long. 96°20'34" W). When all container 

sizes were obtained, six trees of each size for each species were transported 3.5 km to a 
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sandy clay loam (66% sand, 8% silt, 26% clay, 6.0 pH) field in College Station, TX (lat. 

30˚37'45"N, long. 96˚20'34" W) in June 2013.  The trees were transplanted into the 

ground in a completely randomized design with each species being a separate but 

concurrent experiment at spacing of 6 m within rows x 7.3 m between rows with 4 rows 

of alternating seven to eight trees per row in each experiment. Each tree was transplanted 

into a hole as specified by general practice procedures, ANSI A300 (Accredited 

Standards Committee A300, 2014), and “The Practical Science of Planting Trees” 

(Watson and Himelick, 2013). Under each tree, two Dan PC Jet spray stakes with a 5.0 

GPH flow (NaanDanJain Irrigation, Inc., Pasco, WA) were connected to a polyethylene 

round tubing irrigation system (The Toro Company, El Cajon, CA). Irrigation was laid 

on a species by species and container size by container size within species basis. A 30.5 

cm (12”) soil moisture tensiometer (Spectrum Technologies, Inc., Aurora, IL) was 

installed at the edge of the root ball for one specimen of each container size of each 

species at a depth of approximately 20 cm.  

2.1.1 Water Stress and Photosynthetic Rates 

Water stress was determined through midday (1200 to 1400 hr) and pre-dawn 

(1600 to 1800 hr) xylem water potential readings (MPa). The leaf water potential (ΨL) 

method was utilized by detaching the leaf at the petiole for each reading, then inserting it 

into a nitrogen pressure chamber (PMS Model 610 pressure chamber system, PMS 

Instrument Company, Albany, OR). Selected leaves were healthy, fully expanded with 

no insect holes and located in full sun exposure. Measurements were recorded at two-

week intervals for the first two months following transplant, then once a month until the 
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end of the first growing season (October 2013), followed by every three months for the 

following growing season. Photosynthetic gas exchange readings were assessed at the 

same intervals as water potential measurements. These readings were comprised of the 

photosynthetic rate (µmol CO2 m-2s-1) and stomatal conductance (mol H2O m-2s-1) of the 

plant (LI-6400XT Portable Photosynthesis System, LI-COR, Inc., Lincoln, NE). 

Readings were determined utilizing leaves in the middle half of the tree, which were 

healthy, fully expanded with no insect holes and located in full sun exposure. Sample 

CO2 was set to 490 ppm and light was set to 1200 nm. 

2.1.2 Water Needs 

Irrigation was conducted on a species-by-species and container size-by-container 

size within species basis according to soil moisture levels. This resulted in five 

independent irrigation systems for each of the three species. The soil moisture levels 

were determined using 30.5 cm (12”) soil moisture tensiometers (Spectrum 

Technologies, Inc., Aurora, IL) installed at the edge of the root ball of one specimen of 

each container size of each species at a depth of approximately 20 cm. Water was 

applied when the tensiometer showed -20 kPa (a soil moisture tension empirically 

determined to be when transplant stress symptoms began to occur on these species) until 

it returned to “Wet” or <1 kPa of tension. A log was kept for each species and container 

size combination based on the liters per hour applied as governed by the tensiometer 

measurements. These data were then compiled with the natural rainfall for each month in 

order to determine total water needs of each tree. 
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2.1.3 Growth 

In order to determine growth over time and as a function of the individual tree, 

percent change in growth was employed. Measurements included: height from ground 

level to leaf tip, canopy width in two directions from widest point to widest point within 

and perpendicular to the rows, shoot extension of three branches, and trunk diameter at 

15 cm above the soil surface. Trunk diameters for Vitex agnus-castus followed ANSI 

Z60.1 (American Association of Nurseryman, 2004) regulations dictating a sum of the 

three largest trunk diameters divided by two (cm). Measurements were taken for each 

tree prior to transplant in early June 2013 and then at the end of each growing season in 

October. Using the differences in measurements, percent change was calculated and 

statistically analyzed. Three additional trees from each container size and species were 

destructively harvested in June 2013 to determine initial shoot and root biomasses prior 

to transplanting.  

Additionally, root growth following transplant was measured at the end of each 

growing season in October. A 1.5 m x 0.5 m swath extending out from the edge of the 

root ball to the length of the longest root was excavated using a compressed air 

excavation tool (Air-Spade, GuardAir® Corp., Chicopee, MA). Swaths were located at 

random on the north or south sides of half of the trees within each species and container 

size combination. In fall of the second growing season, the root growth on the opposite 

side of the tree was measured. Root counts and length of the longest regenerated root 

were then recorded.  
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Data were analyzed with statistical software (JMP 2009 and SAS 9.3, SAS 

Institute Inc., Cary, NC) using ANOVA to determine the significance (P≤ 0.05) of 

interactions and main effects for each species independently. Where interactions were 

not significant, observations were pooled to test main effects. When significant effects 

were found, regression analyses were used to determine significant differences (P≤ 0.05) 

among levels of quantitative data. Means were compared using least-squares means 

procedures for discreet data with significant effects. 

2.2 Results and Discussion 

2.2.1 Acer rubrum 

Pre-transplant dry masses confirmed significant differences between initial 

container-grown tree size trees (Table 2.1). Smaller container sizes had smaller masses 

while larger container sizes had greater masses. Pre-transplant stress measures provided 

a baseline with which to compare transplant shock effects (Table 2.2).  

The #1 A. rubrum were highly susceptible to herbivory, environmental changes, 

and salt damage from irrigation spray stakes. Four of the six samples died within the first 

month of transplant and the remaining two were consistently leaf bare or had few leaves 

from which to sample. By the end of the first growing season, only one #1 container 

grown tree remained. Therefore, data collection and observations were omitted for the 

#1 container-grown A. rubrum as is reflected in the findings below. 

Midday water potential for A. rubrum at the 8th day following transplant 

remained similar for all container sizes (Fig. 2.1). These more negative readings indicate 

higher levels of drought stress than found in subsequent measurements. Drought stress 
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sensitivity appears to be a more immediate effect of transplant stress, even when soil 

moisture is available. Perhaps this initial dip is related to poor movement of water from 

higher bulk density soil to the low bulk density root ball once irrigation falling directly 

on the rootball is depleted. Fifteen days after planting, midday water potentials began to 

diverge and differences among the trees grown in different containers became apparent. 

Of note, the 45-gallon container trees demonstrated reduced water stress at midday 

compared to 25-gallon container trees despite their larger biomass. Throughout the first 

growing season, represented in the left cluster of points (Fig. 2.1), the trees progressively 

exhibited reduced midday water stress following the initial peak stress immediately after 

transplanting. The exception occurs at the 78-day mark, which correlates with the hottest 

part of the first growing season (mean 38.3°C [101°F] over five days). During this 

period, trees from all container sizes experienced more negative water potentials 

followed by recovery with cool fall temperatures and rain at the 113th day after 

transplant. Readings taken during the second year exhibit reduced water stress levels 

with measurements across all container size trees clustered tightly and varying by less 

than 5 MPa throughout the season. Overall trends show the smaller container-grown 

trees (#3 and #7 gallon) were less water stressed when compared with larger container-

grown trees (#25 and #45 gallon) (Fig. 2.1). 
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Table 2.1. Root and shoot dry masses for Acer rubrum grown in various sized containers 
at the end of nursery production. 
 

Container size 
Root dry mass 

(g) 
Shoot dry mass 

(g) 
Root: shoot ratio 

(g·g-1) 
#3 40.83 ± 7.09z 49.30 ± 23.60 0.91 ± 0.30 

#7 66.37 ± 20.38 77.23 ± 32.04 1.04 ± 0.67 
#25 1782.00 ± 179.45 2237.70 ± 14.76 0.80 ± 0.08 
#45 4280.73 ± 184.83 4031.83 ± 138.96 1.06 ± 0.03 

 

zValues represent means ± standard errors of 3 observations. 
 
 
 
Table 2.2. Acer rubrum pre-transplant stress measures for each container size taken in 
nursery. 
 

Container size 
Mid-day 
(MPa) 

Pre-dawn 
(MPa) 

Stomatal 
conductance 

(mol H2O m-2 s-1) 
Net photosynthesis 
(µmol CO2 m-2 s-1) 

#3 -9.00 ± 1.18z -1.67 ± 0.88 5.12 ± 2.87 0.05 ± 0.03 
#7 -14.25 ± 2.66 -2.17 ± 0.75 9.02 ± 3.68 0.08 ± 0.05 

#25 -9.75 ± 1.75 -2.08 ± 0.58 10.75 ± 1.60 0.12 ± 0.02 
#45 -17.00 ± 2.72 -2.08 ± 0.86 12.40 ± 2.29 0.16 ± 0.07 

 

zValues represent means ± standard errors of 3 observations. 
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Fig. 2.1. Interactions among container sizes (#3, #7, #25, and #45) and days since 
transplant for mean midday water potentials of Acer rubrum. Symbols represent means 
(± standard errors) of n=6. Regressions are based on means and are presented when 
significant at P≤0.05. 

Recovery of water stress during pre-dawn hours was measured beginning at the 

8th day after transplant. Readings for container sizes were more variable at the 8th day 

than in subsequent readings (Fig. 2.2). Water stress recovery improved over the 

following 37 days until the 78th day at which point season high temperatures were 

recorded, impacting the ability of A. rubrum to recover from the previous day’s water 

deficits. During the second growing season, measurements indicate a tighter cluster of 

data for all container size trees as well as minor seasonal effects through spring, summer, 

and fall. Overall, #7 container-grown trees demonstrated a better recovery of water stress 
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than other container-grown trees with #45 container-grown trees demonstrating the 

poorest recovery. 

 

 
 
Fig. 2.2. Interactions among container sizes (#3, #7, #25, and #45) and days since 
transplant for mean predawn water potentials of Acer rubrum. Symbols represent means 
(± standard errors) of n=6. Regressions are based on means and are presented when 
significant at P≤0.05. 
 
 
 

Stomatal conductance of A. rubrum immediately following transplant was high 

for all container sizes followed one week later by a sudden decrease (Fig. 2.3). This 

aligns with research suggesting stomatal conductance is a delayed transplant stress 

mechanism (Guehl et al., 1989).   At fifteen days following transplant, stomatal 

conductance was close to 0 mol·m-2·s-1 in all container sizes indicating gas exchange 

was inhibited and the plant was experiencing water stress. Throughout the following 

readings for the first season, mean stomatal conductance increased likely allowing water 
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and carbon dioxide exchange to occur at higher levels. In the second growing season, 

there was a small decrease in stomatal conductance during the spring, which could be 

due to the succulent nature of new leaves.  Overall, stomatal conductance continued to 

increase over time with the smaller container sizes (#3 and #7 gallons) tending to allow 

greater gas exchange to occur which would be consistent with less comparative water 

stress. 

Fig. 2.3. Interactions among container sizes (#3, #7, #25, and #45) and days since 
transplant for mean stomatal conductance of Acer rubrum. Symbols represent means (± 
standard error) of n=6. Regressions are based on means and are presented when 
significant at P≤0.05. 

Photosynthetic rates of A. rubrum remained relatively high following transplant 

for all container sizes (Fig. 2.4). A decrease in net photosynthesis was not seen until 22 d 

following transplant, at which point photosynthetic rates were at their lowest throughout 
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the experiment. This decrease in net photosynthesis correlated with a decrease in 

stomatal conductance (Fig. 2.3) and an increase in water stress (Fig 2.1). Photosynthetic 

rates recovered during the remainder of the first growing season and did not appear to be 

affected by environmental temperatures in comparison to water potentials (Fig. 2.1 and 

2.2). During the second growing season, photosynthetic rates resumed at similar levels 

as seen immediately following transplant and at the end of the first growing season. 

During the fall readings of the second growing season, photosynthetic rates peaked. No 

significant correlation was found for container sizes, but readings through time were 

significant with an R2= 0.48. 

 
 

 
 
Fig. 2.4. Main effects on photosynthetic rates of Acer rubrum across all container sizes 
since days from transplant. Symbols represent means (± standard error) of n=6. 
Regressions are based on means and are presented when significant at P≤0.05. 
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Initial trunk diameters were within ANSI Z60.1 (American Association of 

Nurseryman, 2004) container size standards (Table 2.3). Percent change in growth 

during the first growing season was greater in the smaller container sizes (#3 and #7 

gallon) than in the larger container sizes (#25 and #45), which demonstrated close to 

zero percent change (Fig. 2.5). During the second growing season growth increased 

particularly in the #3 container-grown trees. Cumulative percent change in growth was 

highly significant with smaller container-grown trees (#3 and #7) increasing trunk 

diameter by approximately 350 and 200 times initial diameter, respectively.   

 
 
Table 2.3. ANZI Z60.1 container class regulations by height and caliper. 
 

Types 1 & 2  
shade trees 

Types 3 & 4 
small upright and 
spreading trees 

Shrub form and 
multistem trees* 

 

Minimum 
plant size 
(height/ 
caliper) 

Maximum 
plant size 
(height/ 
caliper) 

Minimum 
plant size 
(height/ 
caliper) 

Maximum 
plant size 
(height/ 
caliper) 

Minimum 
plant size 
(height) 

Maximum 
plant size 
(height) 

Container 
Class 

(#) 

12 in.z 4 ft. 12 in. 3 ft. N/A N/A 1 
2 ft. 6 ft. 18 in. 4 ft. N/A N/A 2 
3 ft. 6 ft. 2 ½ ft. 6 ft./ 1 in. 2 ft. 5 ft. 3 
4 ft. 7 ft. 4 ft. 7 ft./ 1 ¼ in. 3 ft. 6 ft. 5 
5 ft. 8 ft./1 ¼ in. 5 ft. 1 ½ in. 4 ft. 7 ft. 7 
6 ft. 1 ½ in. 6 ft./ ¾ in. 1 ¾ in. 5 ft. 8 ft. 10 

8 ft./ ¾ in. 2 in. 1 in. 2 in. 6 ft. 10 ft. 15 
1 in. 2 ½ in. 1 ¼ in. 2 ½ in. 7 ft. 12 ft. 20 

1 ¼ in. 3 in. 1 ½ in. 3 in. 8 ft. 14 ft. 25 
1 ¾ in. 3 ½ in. 2 in. 3 ½ in. 10 ft. 16 ft. 45 
2 in. 4 in. 2 ½ in. 4 in. 12 ft. 18 ft. 65 

2 ½ in. 5 in. 3 in. 5 in. 14 ft. 20 ft. 95/100 
 

zANZI Z60.1 standards are presented in American units, conversions to S.I. units: 1 in = 
2.54 cm, 1 ft = 0.305 m. 
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Fig. 2.5. Mean percent change in trunk diameter of A. rubrum, mean percent change in 
trunk diameter by container size (#3, #7, #25, and #45) over two growing seasons and 
the cumulative percent change. Symbols represent means (± standard error) of n=6. 
Regressions are based on means and are presented when significant at P≤0.05. 

At the end of the second growing season, #3 and #7 trees were half the diameter 

of #45 trees at approximately 40 mm to 80 mm (Table 2.4). However, given starting 

trunk diameters of 9.3 mm and 17.1 mm, the increase over two growing seasons for #3 

and #7 indicates establishment and return to normal growth. 

Table 2.4. Acer rubrum mean trunk diameter by growing season and container size. 

Container size 
Initial 
(mm) 

Season 1 
(mm) 

Season 2 
(mm) 

#3 9.34 ± 0.48z 16.75 ± 2.32 41.15 ± 5.51 

#7 17.05 ± 0.63 27.27 ± 2.73 48.47 ± 3.19 
#25 40.61 ± 0.34 50.90 ± 0.62 70.28 ± 1.97 
#45 55.24 ± 1.13 62.68 ± 1.35 80.71 ± 3.36 

zValues represent means ± standard error of 6 observations. 
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Similar results were seen for percent change in height of A. rubrum. The #3 

container-grown trees had a large amount of growth during the first season followed by 

slightly less during the second growing season (Fig. 2.6). The #7 container-grown trees 

demonstrated the reverse with a greater growth during the second growing season than 

the first. Overall, percent change in height was more pronounced in trees transplanted 

from smaller containers (#3 and #7) over both growing seasons than those from larger 

container sizes (#25 and #45). Increase in height was negligible for A. rubrum from 

larger container sizes and in fact was slightly negative during the first growing season 

for the #45 container-grown trees, most likely due to slight stress induced dieback of 

branches. This is more evident when analyzing the mean height of the #45 trees, as an 11 

cm decrease occurred between the initial height and the end of the first growing season 

(Table 2.5). In the second growing season the #45 trees increased 22 cm, indicating 

some recovery from transplant stress; the #3 and #7 increased by 79 cm and 71 cm, 

respectively. Given this growth, in combination with the greater growth seen in the trunk 

diameter (Table 2.4), establishment of the smaller container sizes during the first 

growing season was assumed. 



28 

Fig. 2.6. Mean percent change in height of A. rubrum by container size over two 
growing seasons and the cumulative percent change. Symbols represent means (± 
standard error) of n=6. Regressions are based on means and are presented when 
significant at P≤0.05. 

Table 2.5. Acer rubrum mean height by growing season and container size. 

Container size 
Initial 
(cm) 

Season 1 
(cm) 

Season 2 
(cm) 

#3 114.33 ± 4.43z 182.03 ± 13.98 261.2 ± 25.26 

#7 188 ± 6.35 232.00 ± 10.05 303.11 ± 14.47 
#25 348.5 ± 8.4 350.97 ± 11.43 398.78 ± 13.46 
#45 411.67 ± 9.2 399.22 ± 9.76 422.06 ± 13.37 

z Numbers represent means (± standard error) of n=6. 

For A. rubrum, sampling of root extension away from the root ball occurred 

during the first and second growing seasons. During the first growing season, all trees 

demonstrated no less than 200% change in root growth, however #3 container-grown 
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trees were less vigorous than the #7 as well as #25 and #45 container-grown trees. Yet, 

in the second growing season, percent change in root growth was greater in #3 container-

grown trees than the others. Overall, across both growing seasons, the #3 and #7 

container-grown trees extended their roots a greater percentage of initial size than did the 

larger container-grown trees. This root extension mirrors the percent increase in growth 

of the shoot system for both #3 and #7 container-grown trees (Fig. 2.5 and 2.6). It is 

understood that root growth is a function of the size of the tree; therefore the increase in 

mean root length by container size is reasonable (Fig. 2.7). Of interest is the increase 

from the initial transplant through the first growing season to the second growing season 

for #3 trees. By the end of the first growing season, the length of the roots for #3 trees 

was the same length as the initial #45 trees, furthermore, second growing season root 

length was 89 cm, greater than either the first growing season or second growing season 

for #45. The #3, #7, and #25 trees all grew by approximately 90 cm the second growing 

season, suggesting 90 cm a season would be a norm (Table 2.6).  Interestingly, by the 

end of the second growing season, root growth of the A. rubrum grown in #7 containers 

was nearly equal in spread to that of trees transplanted from #25 and #45 containers (Fig. 

2.8). 
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Fig. 2.7. Mean percent change in root length for A. rubrum by container size (#3, #7, 
#25, and #45) over two growing seasons and the cumulative percent change. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 
 

 
 

 
 
Fig. 2.8. Acer rubrum mean root length by container size (#3, #7, #25, and #45) from 
initial (inner circle) to season one (middle circle) to season two (outer circle). Symbols 
represent means of n=3.  
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Table 2.6. Acer rubrum mean root length by growing season. 

Container size 
Initial 
(cm) 

Season 1 
(cm) 

Season 2 
(cm) 

#3 13.35y 38.13±17.85z 127.00±27.86 

#7 17.15 75.37±12.23 165.95±11.01 
#25 27.95 90.57±3.69 180.34±27.40 
#45 38.10 103.30±3.040 180.34±34.67 

yIndicates initial diameter of the planted rootball from the various container sizes. 

zValues represent means ± standard errors of 3 observations. 

Acer rubrum, across all four container sizes, exhibited transplant stress during the 

first growing season based on water stress (Fig. 2.1 and 2.2), stomatal conductance (Fig. 

2.3), and photosynthetic rates (Fig. 2.4). However in the second growing season, trees 

from #3 and #7 containers resumed regular activity and growth.  The #25 container size 

appears to be near establishment while those from #45 containers still exhibit signs of 

lingering transplant stress, such as reduced growth rates (Table 2.4, 2.5, and 2.6). Acer 

rubrum grown in #3 and #7 containers additionally displayed large increases in trunk 

diameter following transplant, ending at half the trunk diameter of the #45 container-

grown trees. Height was increased by a greater percentage in the #3 and #7 container-

grown trees than the larger container sizes. Finally, it was found that trees from smaller 

container sizes (#3 and #7) extended their root system a further distance, proportionally, 

than did those from larger container sizes. This root extension could explain the greater 

growth rates and decreased stress measured with the transplanted smaller container-

grown trees. 
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2.2.2 Taxodium distichum 

Pre-transplant dry masses confirm significant differences among initial 

container-grown tree sizes (Table 2.7). Pre-transplant stress measures provided a 

baseline to understand transplant shock effects (Table 2.8).  

Taxodium distichum across all container sizes showed signs of drought stress 

within the first five days of transplant as indicated by the water potential values (Fig. 

2.9). Water potentials for all container sizes then gradually became more positive until 

the 84th day following transplant at which point all container sizes were affected by hot 

summer temperatures (mean 38.3°C [101°F] over five days), becoming more water 

stressed (Fig. 2.9). The elevated temperatures had a greater influence on trees from #3 

and #7 containers than the other container-grown trees. All trees recovered with the fall 

weather. Beginning in the second growing season, mid-day water potentials indicated #3 

and #7 container-grown trees were established in comparison with the remaining trees. 

Table 2.7. Root and shoot dry masses for Taxodum distichum grown in various sized 
containers at the end of nursery production. 

Container 
size 

Root dry weight 
(g) 

Shoot dry weight 
(g) 

Root: shoot ratio 
(g·g-1) 

#1 1.33 ± 0.12z 2.13 ± 0.42 0.65 ± 0.16 

#3 6.17 ± 0.83 13.40 ± 1.55 0.46 ± 0.07 
#7 298.97 ± 113.14 200.10 ± 17.80 1.47 ± 0.47 

#25 463.07 ± 518.19 864.13 ± 383.17 0.93 ± 1.34 
#45 744.37 ± 185.89 2035.50 ± 157.80 0.36 ± 0.06 

zValues represent means ± standard errors of 3 observations. 
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Table 2.8. Taxodium distichum pre-transplant stress measures for each container size 
taken in nursery. 

Container 
size 

Mid-day 
(MPa) 

Pre-dawn 
(MPa) 

Stomatal conductance 
(mol H2O m-2 s-1) 

Net photosynthesis 
(µmol CO2 m-2 s-1) 

#1 -15.83 ± 0.98z -6.42 ± 1.02 10.60 ± 3.39 0.08 ± 0.04 

#3 -11.25 ± 1.04 -4.33 ± 0.68 11.67 ± 6.50 0.12 ± 0.08 
#7 -15.33 ± 1.94 -7.17 ± 1.86 4.59 ± 2.75 0.07 ± 0.04 

#25 -17.83 ± 2.27 -7.42 ± 1.46 5.18 ± 1.31 0.04 ± 0.02 
#45 -17.92 ± 0.66 -9.08 ± 1.02 3.72 ± 1.84 0.04 ± 0.04 

zValues represent means ± standard errors of 6 observations. 

Fig. 2.9. Interactions among container sizes (#1, #3, #7, #25, and #45) and time since 
transplant in days for mean midday water potentials of Taxodium distichum. Symbols 
represent means (± standard error) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 
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Pre-dawn recovery of water stress was more variable among container sizes 

immediately following transplant. At 12 days following transplant, predawn water 

potential in plants of all container sizes, except #25, became more negative indicating 

plants could not recover from water stress as effectively (Fig. 2.10). The #25 container 

transplanted trees exhibited this decrease in recovery seven days later. Following the 

drop, plants in all container sizes began to recover more efficiently with the exception of 

the 84th day following transplant, which correlated with elevated August temperatures. 

At the beginning of the second growing season, pre-dawn water potentials were similar 

to levels seen at the end of the first growing season. However, T. distichum exhibited 

decreased water potentials measured during summer, correlating with high temperatures. 

Trees recovered once again in the fall months with onset of cooler temperatures and 

greater rainfall. Overall, the #7 container-grown trees were consistent in their reaction to 

water stress and appeared to recover better than the larger container sizes. The #3 

container-grown trees were similar in performance, corroborating mid-day water 

potential values (Fig. 2.9). 
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Fig. 2.10. Interactions among container sizes (#1, #3, #7, #25, and #45) and time since 
transplant in days for mean predawn water potentials for Taxodium distichum. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 
 

 
 

Trees from all container sizes restricted gas flow through reduced stomatal 

conductance following transplant. Of note, trees increased stomatal conductance around 

the 84th day following transplant, which is associated with a peak in summer 

temperatures as well as a decrease in water potential within all container sizes. 

Continued increase in stomatal conductance occurred through the end of the first 

growing season. Inexplicably, #25 container-grown trees’ means did not follow the 

pattern for the 120th day following transplant (Fig. 2.11). Beginning in the second 

growing season, #3 trees diverged from the remaining trees demonstrating levels 

expected when trees would be fully established. The #1 trees had low stomatal 

conductance in the spring of the second year, but by fall appeared to be trending toward 
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establishment as well. Consistent with mid-day and pre-dawn water potential data, the 

#25 and #45 trees continued to experience environmental stress indicating they were not 

yet established (Fig. 2.9 and 2.10). This would fit with the reports that Taxodium 

distichum is a slow growing tree (Wilhite and Toliver, 1990). Of interest, #7 trees, while 

established according to mid-day and pre-dawn water potentials, were not fully 

established according to stomatal conductance data from the second growing season. 

Instead, stomatal conductance was lowered in the spring than at the end of the first 

growing season. Increases in conductance over the season were minor resulting in 

ending stomatal conductance equivalent to the previous growing season’s ending rate.  

 

 
 
Fig. 2.11. Interactions among container sizes (#1, #3, #7, #25, and #45) and time since 
transplant in days for mean stomatal conductance for Taxodium distichum. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 
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Photosynthetic rates of T. distichum were not different among container sizes, but 

the main effects of time after transplant has an effect (R2= 0.44) (Fig. 2.12). 

Photosynthetic rates of T. distichum remained relatively high following transplant in all 

container sizes. This could be due to stored mineral nutrients from the nursery and 

internal water reserves that allowed continuance of photosynthesis despite elevated 

stress conditions. A decrease in net photosynthesis is seen at 12 d following transplant, 

correlating with a decrease in stomatal conductance. Photosynthetic rates continue to 

remain low through the growing season until cooler temperatures of autumn when 

photosynthesis of trees from all container sizes increase by approximately two fold. 

Photosynthetic rates appear to be more directly influenced by water potentials (Fig. 2.9 

and 2.10) than seasonal factors, as indicated by data through the 84th day following 

transplant. During the second growing season, photosynthetic rates resumed at lower 

levels compared to the end of the first growing season, yet increased to comparable 

levels by fall. The initial low levels of the second growing season suggest trees had not 

established by the beginning of the second growing season. These lower photosynthetic 

rates could also be due to restricted stomatal conductance (Fig. 2.11).  
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Fig. 2.12. Main effect of time since transplant in days across container sizes (#1, #3, #7, 
#25, and #45) for mean photosynthetic rates of Taxodium distichum. Symbols represent 
means (± standard errors) of n=6. Regressions are based on means and are presented 
when significant at P≤0.05. 

Percent change in trunk diameter of T. distichum was not significant (P≤0.05) 

among container sizes for the first growing season. Despite high stress conditions (Fig. 

2.9, 2.10, 2.11, and 2.12) during the second growing season, percentage change in trunk 

diameter was greater than in the first growing season for the #1, #7, and #25 trees (Fig. 

2.13). The #45 trees maintained close to zero percent change in trunk diameter across the 

two-year growing period, while #1 and #3 trees had significant increases in trunk 

diameter. The #3 trees displayed a mean of 850% change in diameter over two growing 

seasons. The #3 container-grown trees ended with a trunk diameter of 36.1 mm, 

equivalent to the starting trunk diameter of #25 trees (Table 2.9.). Also, #7 container- 
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grown trees ended with a trunk diameter of 50.6 mm, greater than the starting trunk 

diameter of #45 trees. The ending trunk diameters of #25 and #45 were equivalent at 67 

mm. 

 

 
 
Fig. 2.13. Mean percent change in trunk diameter by container sizes (#1, #3, #7, #25, 
and #45) over two growing seasons and the cumulative percent change for Taxodium 
distichum. Symbols represent means (± standard errors) of n=6. Regressions are based 
on means and are presented when significant at P≤0.05. 
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Table 2.9. Taxodium distichum mean trunk diameter by growing season and container 
size.  

Container size 
Initial 
(mm) 

Season 1 
(mm) 

Season 2 
(mm) 

#1 3.48 ± 0.58 z 7.96 ± 0.86 21.13 ± 3.3 

#3 3.98 ± 0.36 15.14 ± 1.58 36.07 ± 2.54 

#7 13.57 ± 0.3 22.98 ± 0.42 50.58 ± 3.1 
#25 33.27 ± 0.94 44.42 ± 1.02 67.33 ± 3.85 
#45 46.32 ± 1.15 53.11 ± 2.19 67.73 ± 2.69 

zValues represent means ± standard errors of 6 observations. 

Percent change in height for T. distichum was similar in pattern to percent change 

in trunk diameter (Fig. 2.13) however overall changes were of a lesser magnitude. The 

first growing season was once again insignificant (Fig. 2.14.). The #45 trees 

demonstrated a very slight negative percent change in height during the first growing 

season indicating some dieback of limbs; however it was not statistically different than 

that of trees from other containers during the first growing season. The presence of 

dieback is documented when analyzing the mean height of the trees from #45 containers, 

as a 3 cm mean decrease occurred between the initial height and the first growing season 

(Table 2.10). While in the second growing season the trees from the #45 containers 

increased 47 cm, indicating some recovery from transplant stress, although the #1 and #3 

trees increased by 52 cm and the #7 and #25 trees increased by 71 cm. Smaller container 

size trees (#1, #3, and #7) increased in height more so than larger container size trees 

(Fig. 2.14). Given this growth, in combination with the greater growth seen in the trunk 

diameter (Table 2.9) and height (Table 2.10), establishment of the smaller container 

sizes appears to have occurred more rapidly and was completed by the end of the second 



41 

growing season. However, they remained substantially smaller in canopy size than the 

trees from larger containers after two growing seasons. 

Fig. 2.14. Mean percent change in height by container sizes (#1, #3, #7, #25, and #45) 
over two growing seasons and the cumulative percent change for Taxodium distichum. 
Symbols represent means (± standard errors) of n=6. Regressions are based on means 
and are presented when significant at P≤0.05. 

Table 2.10. Taxodium distichum mean height by growing season and container size. 

Container size 
Initial 
(cm) 

Season 1 
(cm) 

Season 2 
(cm) 

#1 37.00 ± 2.50z 45.3 ± 3.74 97.54 ± 10.79 

#3 52.17 ± 2.06 97.78 ± 7.22 149.86 ± 10.57 

#7 105.33 ± 2.64 130.82 ± 8.34 201.08 ± 7.05 
#25 194.17 ± 3.34 201.5 ± 5.44 271.78 ± 5.68 
#45 245.5 ± 3.31 242.57 ± 7.56 289.98 ± 8.07 

zValues represent means ± standard errors of 6 observations. 
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At the end of the first and second growing seasons, analysis of the extension of 

the roots extending away from the root ball was conducted. The first growing season, 

trees from #7 and #25 containers had a larger percentage change than the trees from the 

#1 or #45 containers (Fig. 2.15). Although trees from #3 and #25 containers had similar 

extension in the first growing season, the second growing season trees from #3 

containers produced three times the percent change in root length compared to those 

from #25 containers (Fig. 2.15). The #3 trees produced 83 cm of growth between the 

first and second growing seasons, greater than #1, #7, and #25 trees (Table 2.11). 

Overall, across both growing seasons, the #3 and #7 container-grown trees extended 

their roots a greater percent of their initial size than did the #1, #25, and #45 container-

grown trees. Cumulative percent change in root length was similar among trees from #1, 

#25, and #45 containers.  A discrepancy exists between the rate of change for root length 

of #1 trees and the shoot growth of #1 trees (Fig. 2.14). However, root extension is 

consistent with the percent increase in growth of the shoot system for #3 container-

grown trees (Fig. 2.13 and 2.14). Since root growth is a function of the size of the tree, a 

general increase in root length from #1 to #45 is not unexpected (Fig. 2.16). The 

difference in tree size associated with different container stock were still apparent for 

root growth of T. distichum and are easily visualized in Fig. 2.16. This is in contrast to 

the apparent “catching up” of intermediate sizes of A. rubrum with larger containers and 

the much less noticeable differences in root growth from trees of various sizes for V. 

agnus-castus.   
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Fig. 2.15. Mean percent change in root length by container size (#1, #3, #7, #25, and 
#45) over two growing seasons and the cumulative percent change for Taxodium 
distichum. Symbols represent means (± standard errors) of n=6. Regressions are based 
on means and are presented when significant at P≤0.05. 
 

 
Table 2.11. Taxodium distichum mean root length by growing season and container size.  
 

Container size 
Initial 
(cm) 

Season 1 
(cm) 

Season 2 
(cm) 

#1 9.55 z 23.27 ± 7.43 54.61 ± 13.22 

#3 13.35 37.70 ± 9.33 120.23 ± 32.54 

#7 17.15 58.43 ± 15.44 132.08 ± 21.70 
#25 27.95  83.83 ± 5.27 148.17 ± 11.20 
#45 38.10 69.43 ± 11.87 179.49 ± 16.09 

 
zValues represent means ± standard errors of 3 observations. 
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Fig. 2.16. Taxodium distichum proportional mean root length by container size (#1, #3, 
#7, #25, and #45) from initial (inner circle) to season one (middle circle) to season two 
(outer circle). Symbols represent means of n=3. 

Across all five container sizes, T. distichum, across all five container sizes, 

exhibited transplant stress reactions during the first growing season based on water 

stress, stomatal conductance, and photosynthetic rates. However, in the second growing 

season, while #3 container trees resumed regular activity and growth, none of the T. 

distichum appeared to be fully established. Given their slower rate of growth, this could 

explain delayed establishment and growth. Trunk diameters increased more so in #3 

container-grown trees, but were still relatively low across all container sizes. Similar 

observations were found with the height of each container size as both #1 and #3 

container-grown trees increased height by over 100% of their initial transplant size at the 

end of the second growing season, but relative differences among trees from the various 

container sizes were still easily discernable. As with A. rubrum, the growth and stress 

reactions of the trees appear to be associated with the root growth. While #3 and #7 

container-grown trees increased their root growth by large percentages, there remain 

apparently different levels of growth still identifiable among container sizes. 

#1 #3 #7 #25 #45 

1.0 4.0 m 2.0 
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2.2.3 Vitex agnus-castus 

Pre-transplant dry mass readings confirmed differences among initial container-

grown tree sizes (Table 2.12). Pre-transplant stress measures provided a baseline to 

understand transplant shock effects (Table 2.13).  

Vitex agnus-castus showed high levels of water stress immediately following 

transplant in all container size trees as indicated by strongly negative midday water 

potentials (Fig. 2.17). At the 34th day following transplant, trees became less negative 

indicating less water stress for all container sizes (Fig. 2.17). This could be explained by 

the wet conditions surrounding the date of data collection with a cumulative rainfall of 

32.8 mm over three days. Again at the 82nd day following transplant, trees exhibited high 

levels of water stress associated with elevated summer temperatures (mean 38.3°C 

[101°F] over five days). Midday water potentials fluctuated greatly over the first 

growing season; however, in the second growing season midday water potentials were 

consistent over all three sample dates. Slightly depressed fall values could be related to 

early leaf senescence in V.agnus-castus trees during autumn 2014. Overall, trends 

indicated #3 trees best adjusted to water related stress and established quickly. 



 

 46 

Table 2.12. Root and shoot dry masses of Vitex agnus-castus grown in various sized 
containers at the end of nursery production. 
 

Container 
size 

Root dry mass 
(g) 

Shoot dry mass 
(g) 

Root: shoot ratio 
(g·g-1) 

#1 15.77 ± 6.31z 13.83 ± 6.99 1.20 ± 0.18 

#3 26.40 ± 3.64 42.27 ± 7.34 0.63 ± 0.03 
#7 151.70 ± 39.22 257.43 ± 42.84 0.58 ± 0.08 

#25 2144.97 ± 402.90 1598.23 ± 82.28 1.34 ± 0.18 
#45 4946.10 ± 189.60 3008.1 ± 78.58 1.64 ± 0.07 

 

zValues represent means ± standard errors of 3 observations. 

 

Table 2.13. Vitex agnus-castus pre-transplant stress measures for each container size 
(n=6) taken in nursery. 
 

Container 
size 

Mid-day  
(MPa) 

Pre-dawn 
(MPa) 

Stomatal conductance  
(mol H2O m-2 s-1) 

Net photosynthesis  
(µmol CO2 m-2 s-1) 

#1 -2.50 ± 1.05z -1.75 ± 0.76 2.55 ± 2.43 0.02 ± 0.02 

#3 -2.58 ± 0.80 -1.67 ± 0.52 5.78 ± 1.47 0.04 ± 0.01 
#7 -1.83 ± 0.41 -1.42 ± 0.38 5.27 ± 0.78 0.05 ± 0.01 

#25 -2.33 ± 0.68 -1.50 ± 0.55 7.35 ± 2.10 0.07 ± 0.04 
#45 -4.58 ± 0.92 -2.33 ± 0.82 7.32 ± 1.85 0.22 ± 0.39 

 

zValues represent means ± standard errors of 6 observations. 
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Fig. 2.17. Interaction among container sizes (#1, #3, #7, #25, and #45) and time since 
transplant in days for mean midday water potentials for Vitex agnus-castus. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 
 
 
 

Pre-dawn recovery of V. agnus-castus from the prior day’s water stress 

immediately following transplant was less negative for the #3 trees followed by #1 and 

#7 trees versus the remaining container size trees (Fig. 2.18). At the 34th day following 

transplant, recovery from water stress was less efficient for all container size trees. All 

trees resumed recovery at the subsequent measurement with #3 trees once again 

recovering best followed by trees from #1 and #7 containers. At the 82nd day from 

transplant, pre-dawn water potentials for all trees, except those from #7 containers, 

became more negative likely due to the higher daytime temperatures. At the end of the 

first growing season, all trees demonstrated relatively little pre-dawn water stress, 

recovering by >7 bar from mid-day readings. The second growing season, V. agnus-
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castus showed consistent readings across all container size trees. Averaged across both 

seasons, the #3 and #7 trees showed greater recovery from water stress than #25 and #45 

trees although this could be in part due to their lower mid-day water potentials (Fig. 

2.17). 

Fig. 2.18. Interaction among container sizes (#1, #3, #7, #25, and #45) and time since 
transplant in days for mean predawn water potentials for Vitex agnus-castus. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 

Mean stomatal conductance five days following transplant was reduced for all 

container sizes. However, seven days later, gas exchange was almost zero for all 

container sizes (Fig. 2.19). This is consistent with research indicating reduced stomatal 

conductance is delayed following transplant (Guehl et al., 1989).  Gradual increase in 

stomatal conductance occurs over the following readings, with some decline associated 
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with high temperature summer readings at the 82nd day following transplant. The second 

growing season stomatal conductance begins at a reduced rate. Stomatal conductance 

recovered in the subsequent readings. Over both growing seasons, #3 and #1 trees 

maintained high gas exchange rates. This is consistent with lower water stress levels 

(Fig. 2.17 and 2.18).  

Fig. 2.19. Interaction among container sizes (#1, #3, #7, #25, and #45) and time since 
transplant in days for mean stomatal conductance for Vitex agnus-castus. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 

Differences in photosynthetic rates for V. agnus-castus were not significant 

(P≤0.05) across container size but were significant across time (Fig. 2.20). 

Photosynthetic rates are highly variable in the first 95 days following transplant.  At 12 

days following transplant, however, all trees showed significantly lower photosynthetic 
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rates (Fig. 2.20), consistent with reduced stomatal conductance (Fig. 2.19). By the end of 

the first growing season, photosynthetic rates become consistent across container sizes 

and reduce likely due to decreased growth and leaf senescence in autumn (Sams and 

Flore, 1983). Photosynthetic rates resumed at similar levels in the second growing 

season and continue to increase to consistently elevated levels in summer and fall of the 

second season. Given the high photosynthetic rates and close groupings, this would 

suggest establishment of all container-grown trees by midway through the second 

growing season.  

 

 
 
Fig. 2.20. Main effects of photosynthetic rates across all container sizes by time since 
transplant in days for mean midday water potentials of Vitex agnus-castus. Symbols 
represent means (± standard errors) of n=6. Regressions are based on means and are 
presented when significant at P≤0.05. 
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Initial trunk diameters were based on ANSI Z60.1 (American Association of 

Nurseryman, 2004) container size standards at transplant. Percent changes in trunk 

diameter during the first growing season and second growing season were greater in V. 

agnus-castus from smaller container sizes (#1 and #3) than from the larger container 

sizes (#7, #25, and #45) (Fig 2.21). For #1 and #3 container-grown trees, the first 

growing season percent change in diameter was greater than the second growing season. 

Percent change was similar for the first and second growing seasons in #7, #25, and #45. 

Cumulative percent change in trunk growth of V. agnus-castus was substantial with 

smaller container trees (#3 and #7) increasing truck diameter by approximately 12 times 

the initial diameter. Smaller changes in trunk diameter were recorded for #7, #25, and 

#45 trees. Mean trunk diameters increased for all container sizes, but more so for the #3 

trees. The #3 trees ending trunk diameter was 72.2 mm, which was greater than the 

ending diameters of #7 trees and very similar to #25 trees (Table 2.14). Ending trunk 

diameters of #1, #3, and #7 in V. agnus-castus were all greater than the starting diameter 

for the #45 trees. Trunk diameters approximately doubled in growth for trees from the 

smaller container sizes (#1, #3, and #7) from the first growing season to the second 

growing season, for example, #1 trees increased by 18 mm during the first growing 

season and 31 mm the second. 
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Fig. 2.21. Mean percent change in trunk diameter for Vitex agnus-castus by container 
size (#1, #3, #7, #25, and #45) over two growing seasons and the cumulative percent 
change. Symbols represent means (± standard errors) of n=6. Regressions are based on 
means and are presented when significant at P≤0.05. 

Table 2.14. Vitex agnus-castus mean trunk diameter by growing season by container 
size. 

Container size 
Initial 
(mm) 

Season 1 
(mm) 

Season 2 
(mm) 

#1 3.95 ± 0.19z 21.02 ± 1.63 52.31 ± 4.57 

#3 5.91 ± 0.44 25.13 ± 2.37 72.2 ± 5.48 

#7 14.7 ± 0.69 29.41 ± 1.92 67.69 ± 4.59 
#25 25.11 ± 1.92 47.07 ± 2.39 78.83 ± 4.4 
#45 35.81 ± 1.89 54.26 ± 1.19 82.45 ± 3.92 

zValues represent means ± standard errors of 6 observations. 
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Similar patterns of change in height growth were found as in the percent change 

in trunk diameter for V. agnus-castus. Percent change in height was greater during the 

first growing season than the second growing season for #1 and #3 trees but reversed for 

the #7, #25, and #45 trees (Fig. 2.22). During the first growing season, percent change in 

height was less than zero for #25 and #45 trees indicating some terminal dieback due to 

transplant stress. Recovered growth during the second growing season brought 

cumulative growth across both seasons to less than 50% change in height for #25 and 

#45 trees. Conversely, #1, #3, and #7 trees increased in height by more than 100% with 

#1 trees increasing at approximately 325%. The increase in height from the initial to the 

end of the first growing season was exponential by container size, with #1 increasing in 

height more than the larger container sizes. The second growing season, this increase 

slows to become more linear. Ending heights for all V. agnus-castus were within 71 mm 

of each other after two growing seasons (Table 2.15.). Given the increase of the trunk 

diameter and height (Fig. 2.21 and 2.22) all container sizes of V. agnus-castus were 

likely established early in the first growing season. 
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Fig. 2.22. Mean percent change in height by container size (#1, #3, #7, #25, and #45) 
over two growing seasons and the cumulative percent change for Vitex agnus-castus. 
Symbols represent means (± standard errors) of n=6. Regressions are based on means 
and are presented when significant at P≤0.05. 

Table 2.15. Vitex agnus-castus mean height by growing season. 

Container size 
Initial 
(mm) 

Season 1 
(mm) 

Season 2 
(mm) 

#1 54.7 ± 3.2z 124.5 ± 4.2 228.2 ± 17.0 

#3 76.8 ± 3.3 153.7 ± 4.8 261.2 ± 9.2 

#7 135.5 ± 9.6 177.8 ± 4.6 284.5 ± 13.3 
#25 200.8 ± 5.9 198.6 ± 9.5 285.3 ± 21.1 
#45 266.2 ± 8.0 244.3 ± 5.8 299.3 ± 8.9 

zValues represent means ± standard errors of 6 observations. 
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Vitex agnus-castus is a reportedly fast growing tree (Arnold, 2008; Welch, 2008), 

which could explain the high percent change in root length during the first growing 

season. Of note is the low percent change in root length during the second growing 

season, which is close to zero in #7 and #45 trees (Fig. 2.23). While percent change was 

low, due to the large amount of growth the first growing season, mean root lengths show 

that trees from all container sizes extended roots into the surrounding soil by at least 100 

cm (Table 2.16). Cumulatively, the roots of V. agnus-castus extended large distances 

away from the initial root ball, even crossing with neighboring tree roots planted 6 m 

away. Percent change in root length was greatest in the smaller container sizes, #1, #3, 

and #7.  Visually represented it is easy to see that the root systems of Vitex agnus-castus 

are similar (Fig. 2.24). The #1 and #3 container tree roots were very similar in growth to 

the #45 and outperformed the #7 trees.  
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Fig. 2.23. Mean percent change in root length by container sizes (#1, #3, #7, #25, and 
#45) over two growing seasons and the cumulative percent change for Vitex agnus-
castus. Symbols represent means (± standard errors) of n=6. Regressions are based on 
means and are presented when significant at P≤0.05. 

Table 2.16. Vitex agnus-castus mean root length by growing season by container size. 
Numbers represent means (± standard errors) of n=3. 

Container size 
Initial 
(cm) 

Season 1 
(cm) 

Season 2 
(cm) 

#1 9.55y 123.6 ± 11.39z 275.17 ± 41.02z 

#3 13.35 138.87 ± 22.72 284.48 ± 23.05 

#7 17.15 158.33 ± 28.93 259.93 ± 42.56 
#25 27.95 146.43 ± 4.23 342.9 ± 26.07 
#45 38.10 182.87 ± 17.79 307.34 ± 23.05 

yValues in this column represent the original diameter of the planted rootballs which did 
not vary within a container size. 

zValues within this column represent means ± standard errors of 3 observations. 
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Fig. 2.24. Vitex agnus-castus mean root length by container size (#1, #3, #7, #25, and 
#45) from initial (inner circle) to season one (middle circle) to season two (outer circle). 
Symbols represent means of n=3.  
 

 
Vitex agnus-castus is a reportedly fast growing tree (Arnold, 2008; Welch, 2008), 

which could explain why, across trees from all five container sizes, mild transplant stress 

reactions occurred during the first growing season. In the second growing season, all 

container trees resumed regular activity and growth. Given the growth of the trees and 

their stress measures during the second growing season, it would appear all container 

sizes were established during the second growing season. However, #1 and #3 trees 

showed faster recovery during the first growing season with the result that by the end of 

the second growing season they were able to “catch up” to the #7, #25, and #45 

container-grown trees.  This “catch up” occurred due to the large percent changes in 

trunk diameter and height. Additionally, the high percent change in root length during 

the first growing season helps to explain the reduced stress levels, quick establishment, 

and large percent change in growth that occurred in the V. agnus-castus. This is 

consistent with reports that smaller size stock responds with rapid growth responses 

similar to the early seedling stages of development in trees (Gilman and Dehgan, 1996), 

even when they are cutting derived plants. 

#1 #3 #7 #25 #45 

1.0 4.0 m 2.0 
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CHAPTER III  

ECONOMIC COST ANALYSIS OF THE IMPACT OF 

CONTAINER SIZE 

Nurseries over the years have produced trees in larger and larger container sizes 

(Arnold, 2004; Watson, 2004). Retail garden centers and even large box stores, such as 

Walmart, Lowe’s, and Home Depot, that now sell trees in up to 100-gallon containers. 

While debate continues over the relative merits of different container sizes (Watson, 

2004), this could in part be due to the appreciation landscape industries and homeowners 

have for the instant impact large trees can provide, such as greater aesthetic value of 

larger trees (Kalmbach and Kielbaso, 1979; Schroeder, 2006), greater biomass present to 

withstand environmental anomalies (Nowak et al., 2007), less potential for accidental or 

malicious mechanical damage (Watson and Himelick, 2013), instant shade (Kalmbach 

and Kielbaso, 1979; Schroeder, 2006), and increase in property value (Maco and 

McPherson, 2003). However, these larger trees cost more to grow and occupy a greater 

amount of nursery space per tree over longer time frames resulting in higher costs of 

production for growers and higher prices for consumers (Watson and Himelick, 2013). 

Smaller container sizes are ultimately less expensive for consumers as nurseries expend 

less materials, maintenance, and square footage to produce smaller trees. Also, smaller 

container sizes, once transplanted to the field, have been reported to experience reduced 

transplant shock (Watson, 2004), are in a phase of growth more closely aligned with the 

exponential growth rate of young seedlings (Gilman and Dehgan, 1996), have been in 
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containers for shorter times and have been upcanned fewer times potentially reducing 

the chance of circling root development (Gilman and Kane, 1990), and their smaller size 

makes for easier handling and staking (Watson and Himelick, 2013). The benefits and 

costs of varying container sizes have yet to be fully evaluated to determine which 

container size affords the most advantageous opportunity for consumers.  

The value of a tree, defined as its monetary worth, is based on people’s 

perception of the tree (Cullen, 2000). Arborists use several methods to develop a fair and 

reasonable estimate of the value of individual trees (Council of Tree & Landscape 

Appraisers, 2000; Cullen, 2005; Watson, 2002). The cost approach is widely used today 

and assumes that value equals the cost of production (Cullen, 2002). It assumes that 

benefits inherent in a tree can be reproduced by replacing the tree and therefore, 

replacement cost is an indication of value (Cullen, 2000). Replacement cost is 

depreciated to reflect differences in the benefits that flow from an “idealized” 

replacement compared with the older and imperfect appraised tree. The depreciated 

replacement cost method uses tree size, species, condition, and location factors to 

determine tree value (McPherson, 2007).  

The income approach measures value as the future use of a tree such as in fruit or 

nut production (The Appraisal Institute, 2000). In the absence of such products, the 

income approach could be based on the present value of future economic, 

environmental, and health-well being monetary benefits the tree is likely to produce 

(Council of Tree & Landscape Appraisers, 2000).  For example, benefits that have 

proven to improve the value of the tree, including energy savings (McPherson and 
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Simpson, 1999), atmospheric carbon dioxide reductions (McPherson et al., 2003), storm 

water runoff reductions (Xiao et al., 2000), and aesthetics (Anderson and Cordell, 1988). 

Quantifying and totaling these benefits over time can provide an idea of a tree’s 

projected value, but require data outside the scope of this project, thus a deviation of the 

replacement cost method was utilized within this study. 

The objective of the current research was to determine the initial and replacement 

cost value of five different container sizes in three tree species at transplant and after two 

growing seasons in the landscape. 

3.1 Materials and Methods 

In analyzing the impact container size has on the value of the tree, the 

establishment cost of the tree was calculated and then compared to the replacement cost 

of the tree after two growing seasons. Using the difference, it was then possible to see 

the net value for each container size tree over time. The three taxa we utilized were 

selected to represent different niches of the landscape industry. Selections of Vitex 

agnus-castus L., Acer rubrum L. var. dummondii (Hook. & Arn. ex Nutt.) Sarg., and 

Taxodium distichum (L.) Rich. were chosen due to their wide spread use in the southern 

nursery trade and their representation of a variety of classes of landscape trees. 

Additionally, five container sizes, 3.5L (#1), 11.7L (#3), 23.3L (#7), 97.8L (#25), and 

175.0L (#45), were selected as demonstrative of a range of typical container sizes 

purchased in the landscape trade. Clonal selections of these trees grown using as similar 

inputs as possible were transplanted and monitored over the course of two growing 
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seasons in a sandy clay loam (66% sand, 8% silt, 26% clay, 6.0 pH) field in College 

Station, TX (lat. 30˚37'45"N, long. 96˚20'34" W) beginning June 2013.  

3.1.1 Initial Costs 

In order to analyze the cost of the various sizes of the containerized trees, data 

were collected from 185 different nurseries located across 21 states. Nurseries were 

contacted and requested for wholesale prices of all container sizes available in Acer 

rubrum ‘Summer Red’ or ‘Red Sunset’, Taxodium distichum, and Vitex agnus-castus 

‘Shoals Creek’.  Although not all nurseries carried all sizes of each species, data from a 

minimum of twelve nurseries were acquired for each species and container size 

combination. 

Labor and installation costs are included in analyzing the initial cost of a tree. 

RSMeans is the industry standard source for accurate and expert information on 

materials, labor, and construction costs (Reed Business Information, Norcross, GA). 

RSMeans has been adopted over time as the industry standard, thus labor and materials 

costs were determined utilizing this information. Labor and installation both by hand and 

using machinery were compiled for each container size from the RSMeans data. 

Additionally, twelve companies for each container size were contacted and asked to 

contribute their installation costs to corroborate the data from RSMeans benchmarks.  

Finally, maintenance costs were determined by using maintenance records during 

the two growing seasons for each container size and species. These records were then 

compared to RSMeans for projected maintenance costs per container size over time. 
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Maintenance included such practices as fertilizing, weeding, pest control, pruning, and 

watering. 

3.1.2 Equivalent Costs 

To determine the equivalent costs at the end of two growing seasons, data were 

collected from the locally grown trees after two growing seasons. Final height and 

caliper in October 2014 were utilized to determine ANSIZ60.1 (American Association 

of Nurseryman, 2004) container size approximations. Utilizing the ending container 

sizes, prices were designated from the mean prices obtained from wholesale growers. 

Additionally, cost of installation and maintenance were extrapolated for the ending 

container size of each tree. By subtracting the ending container size collective costs from 

the beginning container size collective costs it was possible to see a net gain or loss in 

value over two growing seasons. 

Data were analyzed using statistical software (JMP 2009 and SAS 9.3, SAS 

Institute Inc., Cary, NC) using ANOVA to determine the significance of interactions and 

main effects for each species independently. Where interactions were significant, 

Student’s t-test was used to compute individual pairwise comparisons between initial 

and ending values. When significant effects were found, a paired t-test comparison was 

used to indicate values that are significantly different (P≤ 0.05). 
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3.2 Results and Discussion 

3.2.1 Initial Costs 

Prices for a range of commercial container production were obtained. Similar 

price trends existed for all three species (Fig 3.1). Costs begin close to zero for the #1 

container-grown trees and then slowly increase in price until the #15 container-grown 

trees. Immediately after reaching the #15 container-grown tree stage, the wholesale price 

per tree increases at a much greater rate. While V. agnus-castus is slightly less expensive 

in the smaller container-grown trees, it becomes much more expensive in the larger 

container-grown trees than the other two species. The change in slope at the #15 point 

would indicate that #15 is the price point at which nursery growers must increase the 

prices at a higher rate to offset extra supplies, labor, and inventory carrying costs 

required to maintain larger container sizes. Similar trends are observed with the costs to 

transplant each container-grown tree (Fig. 3.2). The cost to transplant increases 

gradually with each container size. The #15 container size trees indicate another 

breaking point as the cost to transplant by hand is more cost-efficient than by machinery 

until this point. In the following #25 and #45 trees, machinery would be necessary to 

efficiently transplant these trees. Additionally, the #45 container trees are eight times 

more expensive to transplant than #1 container trees.  
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Fig. 3.1. Mean wholesale prices of container sizes for three tree species (A. rubrum, T. 
distichum, and V. agnus-castus) in 2013 where n≥12.  

 
Fig. 3.2. Mean labor and materials cost for installation of various container sizes in 2013 
(excluding wholesale cost of tree). 
  

 
The maintenance costs for each container size were determined using general 

practices tree owners would implement during a normal year. This included fertilization, 

pest control, weeding, pruning, and watering. Fertilization, pest control, and weeding 
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remained constant across all container size trees (Fig 3.3). However, the cost of pruning 

increases exponentially indicating that larger container size trees require greater input to 

maintain pruning. Finally, watering costs are relatively similar across all container sizes; 

however, a slight increase can be found in the watering costs of larger container sizes. 

Despite the larger numbers of liters applied to larger container-grown trees, the current 

low cost of water mitigates the impact of this difference. If in future years the cost of 

water increases, more substantial differences in cost of watering different container-

grown trees would become apparent.  

Fig. 3.3. Mean maintenance costs of various container sizes for three tree species (A. 
rubrum, T. distichum, and V. agnus-castus) over a two year period when looking at 
fertilization, pest control, weeding, pruning, and watering. 
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3.2.2 Equivalent Costs 

In order to predict the ending value of each tree, height and caliper of each tree at 

the end of the second growing season were compared to ANSIZ60.1 (American 

Association of Nurseryman, 2004). Given the different growth rates of the three species 

of tested trees, the value varies dependent on species. 

 Greatest container size changes for A. rubrum occurred in the #3 and #7 

container size trees which ended the second growing season at a mean #15 and #20 

container-grown tree, respectively (Fig. 3.4). In the meantime, #25 and #45 container-

grown trees ended with very little change from their initial container sizes. Both #25 and 

#45 container-grown A. rubrum ended the second season with only one of the six 

repetitions increasing their equivalent container size. 

 

  
 
Fig. 3.4. Equivalent mean container size of Acer rubrum from transplant to end of 
second growing season for #3, #7, #25, and #45 container-grown trees; n = 6. Means of 
ending container sizes topped by the same letter are not significantly different at P≤0.05. 
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 These equivalent container sizes were then used to predict the gain or loss for the 

two growing seasons.  The price of the tree at planting was compared against the price 

equivalent of the tree at the end of the second growing season (Fig. 3.5A). The #3 and #7 

container-grown trees had the greatest increase in price while the #25 barely increased 

and #45 had no increase in price equivalent. Analyzing the cost to install the initial 

container size versus the cost to install the ending container size after two growing 

seasons also indicated that while the costs are low for the smaller container sizes, it was 

also more cost efficient to plant the smaller container sizes (Fig. 3.5B). Finally, 

maintenance costs increased across container sizes for the two growing years; however if 

the ending equivalent container size had been initially transplanted, a slight increase in 

savings can be seen in the smaller container sizes while there is minimal change in the 

larger container size trees (#25 and #45) (Fig. 3.5C). This information allowed analysis 

of the overall value of the tree. The value of the tree increased the most in the smaller 

container sizes for A. rubrum, yet the ending value was still not equal to the value of the 

#45 container-grown trees (Fig. 3.5D). Therefore, while overall gains are largest in #3 

and #7 container-grown tree (Fig. 3.5E.), initially transplanted #45 trees still maintain 

the greatest overall value after two growing seasons. Trends over longer time frames are 

unknown.   

The stress and initial growth rates of A. rubrum greatly influenced ending gallon 

sizes at the end of the two growing season study. The increased container sizes 

ultimately increased the wholesale cost of the equivalent tree, the cost of labor, and the 

cost of maintenance. Therefore, overall value of the tree was increased, although the 
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final value of the smaller container sizes did not catch up to or surpass that of the larger 

container sizes for A. rubrum. However, the gain or loss trees from each container helps 

to present the overall picture. Smaller container-grown A. rubrum produce a greater gain 

for homeowners over a two growing season time frame after transplant to the landscape 

than did trees from larger container sizes. 

For T. distichum, the greatest container size changes occurred in the #3 and #7 

container size trees which ended the second growing season at a mean size of #11 and 

#22 container-grown trees (Fig. 3.6). In the meantime, #1, #25, and #45 container-grown 

T. distichum ended with very little change from their initial container sizes. The #25 

container-grown T. distichum ended the second season with only one of the six 

repetitions increasing their equivalent container size and #45 trees did not have any 

increase in container size equivalents. One of the six #1 container-grown trees in 

Taxodium distichum died during the two years, which was calculated as a #0 container 

tree, likely decreasing the mean equivalent of the remaining container sizes. Mortality 

was greater in the #1 container-grown trees most likely due to their small size, which 

exposed them to more drift of salinity in the irrigation water from the mini-spray-stakes 

used during irrigation.   
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Fig. 3.5A. Mean change in wholesale cost of Acer rubrum from transplant to the end of 
the second growing season for #3, #7, #25, and #45 container-grown trees. B. Mean 
change in of Acer rubrum of installation from transplant till the end of the second 
growing season for #3, #7, #25, and #45 container-grown trees. C. Mean change in 
maintenance costs of Acer rubrum from transplant till the end of the second growing 
season for #3, #7, #25, and #45 container-grown trees. D. Mean change in value of Acer 
rubrum from transplant till the end of the second growing season for #3, #7, #25, and 
#45 container-grown trees. E. Mean gain or loss in dollars of Acer rubrum from 
transplant till the end of the second growing season for #3, #7, #25, and #45 container-
grown trees. Means of ending container sizes topped by the same letter are not 
significantly different at P≤0.05. 
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Fig. 3.6. Mean change in container size equivalents of Taxodium distichum from 
transplant to the end of the second growing season for #1, #3, #7, #25, and #45 
container-grown trees. Means of ending container sizes topped by the same letter are not 
significantly different at P≤0.05. 

 
 
 
These equivalent container sizes were then used to predict the gain or loss for the 

two growing seasons for T. distichum.  The price of the tree at planting was compared 

against the price equivalent of the tree at the end of the second growing season. The #3 

and #7 container-grown trees had the greatest increase in value while the #1 and #25 

barely increased and #45 had no increase in price equivalent (Fig. 3.7.A). Despite these 

increases in cost equivalence, only the #3 container-grown trees resulted in price 

equivalence greater than the actual price at planting. The #45 container-grown trees 

remained the most costly to initially purchase, but retained the greatest cost equivalent at 

the end of the two growing seasons despite no increase in size equivalent. Analyzing the 

cost to install the initial container size versus the cost to install the ending container size 

after two growing seasons also indicated that while the costs are low for the smaller 

container sizes, it was also more cost efficient to plant the smaller container sizes as 
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greatest savings on transplant costs occur in the #3 and #7 container-grown trees (Fig. 

3.7.B). Finally, maintenance costs of T. distichum were relatively equal across container 

sizes for the two growing years; however, if the ending equivalent container size had 

been initially transplanted, a slight increase in savings can be seen in the #7 container-

grown trees while there is minimal change in the remaining trees (Fig. 3.7.C). The 

summation of this information allowed analysis of the overall value of the tree. The 

value of the tree increased the most in the #3 and #7 container sizes for T. distichum 

(Fig. 3.7.D), yet the ending value was still not equal to the value of the larger trees 

transplanted from #45 containers. Therefore, while overall gains are largest in T. 

distichum from #3 and #7 containers (Fig. 3.7.E), initially transplanted #45 trees still 

maintain the greatest overall value. However, because the #45 container-grown trees did 

not increase in size, money put into maintenance over the two years was considered a 

loss, as it did not generate an output in increased growth. Similar losses are seen in the 

#1 and #25 container-grown trees.  
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Fig. 3. 7. A. Mean change in wholesale cost of Taxodium distichum from transplant to 
the end of the second growing season for #1, #3, #7, #25, and #45 container-grown trees. 
B. Mean change in of installation of Taxodium distichum from transplant till the end of 
the second growing season for #1, #3, #7, #25, and #45 container-grown trees. C. Mean 
change in maintenance costs of Taxodium distichum from transplant till the end of the 
second growing season for #1, #3, #7, #25, and #45 container-grown trees. D. Mean 
change in value of Taxodium distichum from transplant till the end of the second 
growing season for #1, #3, #7, #25, and #45 container-grown trees. E. Mean gain or loss 
in dollars of Taxodium distichum from transplant till the end of the second growing 
season for #1, #3, #7, #25, and #45 container-grown trees. Means of ending container 
sizes topped by the same letter are not significantly different at P≤0.05. 
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Slow recovery and growth ultimately impacted the economic cost analysis. 

Ending gallon size equivalents of T. distichum was similar to initial gallon size for all 

container sizes. While greatest changes occurred in #3 and #7 container-grown trees, 

neither surpassed the #25 or #45 container-grown trees after two growing seasons. 

Similar findings were determined from the wholesale costs of trees, the labor necessary 

to install the trees, and maintenance. In the combined output of these measures, we see 

that the overall value of the tree increased for #3 and #7 container-grown trees as well as 

the gain over the two growing seasons. Losses in net value occurred in the remaining 

container-grown trees. 

Greatest container size changes occurred in V. agnus-castus, with the #3 and #7 

container size trees indicating they had the greatest increase in container size differences 

over the two growing seasons (Fig. 3.8). The initial #3 and #7 container-grown trees 

ended at mean #36 and #28 container size trees, respectively. In the interim, #1 and #25 

container-grown trees ended with lesser changes from their initial container sizes and 

#45 increased the least. Ending container sizes were very close among the #3, #7, #25, 

and #45 container-grown trees. 
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Fig. 3.8. Mean change in container size of Vitex agnus-castus from transplant to the end 
of the second growing season for #1, #3, #7, #25, and #45 container-grown trees. Means 
of ending container sizes topped by the same letter are not significantly different at 
P≤0.05. 
 

  
Gains or losses for the two growing seasons were then projected from the 

obtained container sizes.  The price of the tree at planting was compared against the 

price equivalent of the tree at the end of the second growing season. The V. agnus-castus 

from #3 containers had the greatest increase in price while the #1, #7, and #25 container-

grown trees had similar increases (Fig. 3.9.A). Overall, #3 and #25 container trees had 

similar ending values for final container sizes, but #3 container trees would save 

homeowners the most money from transplant given the higher initial purchasing and 

planting costs of the #25 container trees.  The #45 container-grown trees had no 

increased value for the price equivalent value of the ending tree. Analyzing the cost to 

install the initial container size versus the cost to install the ending container size after 

two growing seasons also indicated that while the initial costs of trees were low for #1, 

#3, and #7 container-grown trees, it was also more cost efficient to plant the smaller 
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container sizes in terms of installation costs (Fig. 3.9.B). Maintenance costs were 

substantial across container sizes for the two growing years. However if the ending 

equivalent container size had been initially transplanted, a slight increase in savings can 

be seen in the #3, #7, and #25 container-grown V. agnus-castus while there is minimal 

change in the #1 and #45 container size trees (Fig. 3.9.C). This information allowed 

analysis of the overall value of the tree. The overall value of the tree increased the most 

in the smaller container sizes for V. agnus-castus, with ending values of #3 and #25 very 

close to that of the #45 (Fig. 3.9.D). The #1 and #7 container-grown trees end above the 

initial value of the #25 container-grown trees.  A slight decrease in value of the #45 

container-grown trees occurred after two growing seasons. For V. agnus-castus, ending 

values of #3 container-grown trees actually surpassed that of those from #45 containers, 

reflective of the high gains that #3 container-grown trees produced (Fig. 3.9.E). Gains 

were positive in transplanted #3, #7, and #25 container-grown trees, with a slight loss in 

#45 container-grown trees after two growing seasons in the landscape.  

 Greatest changes in economic cost analysis also occurred in V. agnus-castus. 

Overall increase in ending gallon size was pronounced for #1, #3, and #7 container-

grown trees, with increases occurring in all but some of the trees from the #45 

containers. This was reflected in the wholesale cost of the tree, installation costs, and 

maintenance with #25 showing changes similar to the smaller container sizes in many 

cases. Value increases occurred in the #1, #3, #7, and #25 with #3 or #7 demonstrating 

the greatest increases in value and overall gain across the three species and under the 

tested conditions. 
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Fig. 3. 9. A. Mean change in wholesale cost of Vitex agnus-castus from transplant to the 
end of the second growing season for #1, #3, #7, #25, and #45 container-grown trees. B. 
Mean change in of installation of Vitex agnus-castus from transplant till the end of the 
second growing season for #1, #3, #7, #25, and #45 container-grown trees. C. Mean 
change in maintenance costs of Vitex agnus-castus from transplant till the end of the 
second growing season for #1, #3, #7, #25, and #45 container-grown trees. D. Mean 
change in value of Vitex agnus-castus from transplant till the end of the second growing 
season for #1, #3, #7, #25, and #45 container-grown trees. E. Mean gain or loss in 
dollars of Vitex agnus-castus from transplant till the end of the second growing season 
for #1, #3, #7, #25, and #45 container-grown trees. Means of ending container sizes 
topped by the same letter are not significantly different at P≤0.05. 
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CHAPTER IV  

CONCLUSION 

 

Nurseries over the years have produced trees in larger and larger container sizes 

(Arnold, 2004; Watson, 2004), and even large box stores,  such as Walmart, Lowe’s, and 

Home Depot, now sell trees in up to 100 gallon containers. While debate continues over 

the relative merits of different container sizes (Watson, 2004), the benefits and costs of 

varying container sizes had yet to be fully evaluated to determine which container size 

affords the most advantageous opportunity for consumers. With trees being offered to 

the public in an ever-increasing array of sizes, it is important to determine the 

requirements for successful establishment of differing size stock and the trade-offs 

associated with initial size and establishment requirements in terms of growth and costs. 

The establishment period of a plant is of utmost importance to determining 

vitality, growth rates, and maintenance needs in the landscape. There are several 

measures of plant establishment: re-establishment of growth (Watson, 1985; Gilman, 

1997), resumption of a pre-transplant shoot elongation rate (Struve and Joly, 1992), 

restoration of shoot xylem water potential (Beeson, 1994; Beeson and Gilman, 1992; 

Gilman, 1992), and/or a return to pre-transplant photosynthetic rates (Richardson, 2002). 

It is often generally accepted that smaller size planting stock establishes more quickly 

after transplanting than larger stock (Gilman et al., 2010; Lambert et al., 2010; Struve, 

2009), but formal studies are limited. The value of a tree, defined as its monetary worth, 

is based on people’s perception of the tree (Cullen, 2000). Arborists use several methods 
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to develop a fair and reasonable estimate of the value of individual trees (Council of 

Tree & Landscape Appraisers, 2000; Cullen, 2005; Watson, 2002).  

The objective of this thesis was to identify initial stresses expressed by three taxa 

from various container sizes during landscape establishment and the recovery and 

resumed growth exhibited by each of the taxa in each container size. Furthermore, this 

thesis looked to determine the initial and replacement cost values of five different 

container sizes in each of the three tree species at transplant and after two growing 

seasons in the landscape. 

Effects across container sizes between taxa were not analyzed as each species 

constituted a separate, but concurrent experiment. Acer rubrum, across all four container 

sizes, exhibited transplant stress reactions during the first growing season based on water 

stresses, stomatal conductance, and photosynthetic rates. However, in the second 

growing season, #3 and #7 container trees resumed regular activity and growth.  The A. 

rubrum trees from #25 containers appeared to be near establishment while the #45 still 

exhibits signs of lingering transplant stress. Acer rubrum transplanted from #3 and #7 

containers additionally displayed large increases in trunk diameter, ending at half the 

trunk diameter of the #45 container-grown trees. Height was increased by a greater 

percent in the trees from #3 and #7 containers than those from larger containers. Finally, 

it was found that smaller container size (#3 and #7) trees extended their root systems a 

further distance, proportionally, than did the larger container sizes. This root extension 

could explain the greater growth rates and decreased stress rates found in the 

transplanted smaller container-grown trees. The stress and initial growth of the A. 
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rubrum greatly influenced ending gallon size equivalents by the end of the two growing 

season study. The increased container size equivalents ultimately increased the 

wholesale cost of the equivalent tree, the cost of labor, and the cost of maintenance. 

Therefore, overall value of A. rubrum was increased, although the final value of the 

smaller container sizes did not surpass that of the larger container sizes during the two 

growing seasons following transplant. However, the gain or loss each container size 

experienced helps to present the overall picture. Smaller container-grown A. rubrum 

produce a greater return on investment for homeowners over a two growing season time 

frame. 

 Taxodium distichum, across all five container sizes, exhibited transplant stress 

responses during the first growing season based on water stress, stomatal conductance, 

and photosynthetic rates. However, in the second growing season, while #3 container 

trees resumed regular activity and growth, none of the T. distichum appeared to be fully 

established. Given their slower rate of growth, this could explain delayed establishment 

and growth. Trunk diameters still increased by a larger amount in #3 container-grown 

trees, but were relatively low across all container sizes. Similar observations were found 

with the height of T. distichum from each container size as both #1 and #3 container-

grown trees increased height by over 100% of their initial transplant size after the second 

growing season. As with A. rubrum, the growth and stress reactions of the trees can be 

explained by the root growth. While trees from #3 and #7 containers increased their root 

growth by large percentages, there remained apparent size differentials still identifiable 

among trees from the various container sizes. This slow recovery and growth ultimately 
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impacted the economic cost analysis. Ending gallon size of trees was similar to the 

initial gallon size for all container sizes. While greatest changes occurred in #3 and #7 

container-grown T. distichum, neither surpassed the trees from #25 or #45 containers 

grown trees. Similar findings were determined from the wholesale costs of trees, the 

labor necessary to install the trees, and maintenance costs. In the combined output of 

these measures, we see that the overall value of T. distichum increased for trees 

transplanted from #3 and #7 containers as well as the gain over the two growing seasons. 

Net loss occurred in the remaining sizes of container-grown T. distichum.  

Vitex agnus-castus is a reportedly fast-growing tree (Welch, 2008), which could 

explain why, across all five container sizes, mild transplant stress responses occurred 

during the first growing season. In the second growing season, all V. agnus-castus from 

all container sizes resumed regular activity and growth. Given the growth of the trees 

and their stress measures during the second growing season, it would appear all 

container sizes of V. agnus-castus were established by the second growing season. 

However, #1 and #3 trees showed faster recovery resulting in a period of time in which 

they were able to “catch up” to the #7, #25, and #45 container-grown trees.  This “catch 

up” occurred due to the large percent changes in trunk diameter and height. Additionally, 

the large percent change in root length during the first growing season helps to explain 

the reduced stress levels, quick establishment, and large percent change in shoot growth 

that occurred in V. agnus-castus. Greatest changes in economic cost analysis also 

occurred in V. agnus-castus. Overall increase in ending gallon size was pronounced for 

#1, #3, and #7 container-grown trees, with increases occurring however in all container 
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sizes. This was reflected in the wholesale costs of the trees, installation costs, and 

maintenance, with trees from #25 containers showing changes similar to the smaller 

container sizes. Value increases occurred in the #1, #3, #7, and #25, with trees from #3 

containers demonstrating the greatest increase in value and overall gain.  

All three taxa ultimately underwent less stress and recovered according to stress 

measures quicker in the smaller container sizes. The #1 container-grown trees are an 

exception as it appeared this size stock was too susceptible to changes in the 

environment, perhaps due to the much smaller initial biomasses (Tables 2.1, 2.7, and 

2.12), as well as susceptibility to salt damage from irrigation and herbivory. In all three 

taxa, the #3 container-grown trees outperformed the remaining container sizes in most 

measures of growth and experienced quicker recovery in physiological stress measures. 

The large percent changes in trunk diameter, height, and root length across all three taxa 

indicates potential ability of #3 container-grown trees to outperform and overcome initial 

differences compared to larger container size trees within a relatively short period of 

time. Paired with the economic cost analysis, #3 container-grown trees consistently 

increase in value and provide economic gains for the owner. In contrast, the #45 

container-grown trees consistently demonstrated higher stress levels, lower relative 

growth rates, and minimal increases in value over the two years of the experiments. The 

#45 container-grown trees, in fact, often produced no gain or even losses for the owner 

and rarely increased in size beyond their initial #45 container equivalents.  

It would be the recommendation at the end of this study based on economic 

returns for smaller container-grown trees larger than #1 container-grown trees but less 
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than #45 container-grown trees to be transplanted. The greatest relative returns occurred 

at the #3 container size trees, but benefits can be derived from the #7 and #25 container-

grown trees as well. The advantages of trees from #25 and #45 were for immediate 

impacts of size in the landscape, but if clientele are willing to wait a few years for the 

desired landscape effects the smaller size materials are likely more cost effective.  
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NOMENCLATURE 

 

ANSI American National Standards Institute 

Arn.  George Arnott Walker 

Hook.  William Hooker 

IBA Indole-3-Butyric Acid 

L. Carl Linnaeus  

LWP Leaf Water Potential 

NAA Naphthalene Acetic Acid 

Nutt. Thomas Nuttall 

Rich. Achille Richard 

Sarg. Charles Sprague Sargent 

SAS Statistical Analysis System 
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