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ABSTRACT

In this work, I present a series of studies in the field of molecular photionization and

in a more general way, in the electron-molecule scattering processes area. It takes

as a starting point the study of well known molecular features in the photionization

of small molecules and reviews the usual approach to compare experimental and

theoretical cross sections and branching ratios. I then suggest a different theoretical

model which enables a better frame of reference for the comparison. This method is

based on the logarithmic derivative of the cross section. Also, a theoretical approach

has been taken to study the effect that rotational motion has on the dynamics of pho-

toionization between ionization and fragmentation, a series of equations are derived

to compute the 3D recoil frame photoelectron angular distributions for non-linear

molecules in the case where the axial-recoil approximation breaks down.

The main concepts and ideas relevant to most of the work presented are in-

troduced at the beginning of this work, even those that are part of the standard

literature in textbooks on the subject of scattering and collision theory, but being of

fundamental importance to the later developments of this thesis, are treated in a way

pertaining to the approaches taken in the analysis of results and in the elaboration

of the new theoretical findings presented in the rest of this work.

I introduced what I call the electronic factor, which is a Franck-Condon factor

that provides a common ground to compare experimental and theoretical branching

ratios. For that purpose, two approaches are taken, one considering first an expansion

of the matrix element of the dipole operator ~µ up to first order terms and second, an

extension where we also assume harmonic oscillator functions and the same frequen-

cies in the initial and final vibrational states. Later on this methodology has been

applied and analyzed for highly symmetric linear molecules and for a less symmetric

polyatomic molecule with encouraging results.

I also present photoionization studies on different target molecules, where the

different symmetries, number and type of atoms, and other properties derived from

these, of the chosen targets, allowed for a theoretical elaboration on a diverse number

of specific and more general ideas relative to molecular photoionization. Some of the

ideas explored are the effects that Cooper minima play on the deviation of Franck-

Condon behavior and how the contribution of individual partial waves are expressed
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in the total experimental (or theoretical) cross section. As a mean of comparison

between theory and experiment in this context, the electronic factor, F , derived

previously is used. Effects of symmetry and complexity of the molecules in these

studies are discussed.

Finally, I present studies of the effects of rotational motion on non-linear molecules

undergoing an ionization and later fragmentation. For this purpose, the previously

developed ideas for linear and diatomic molecules are extended into the general case

which allows one to treat a wider range of molecular targets incorporating any sym-

metry type and limited only by the computational resources available to treat big

systems. To demonstrate its usefulness we compute MFPADs for core C 1s pho-

toionization of CH4. I include the rotational motion by letting the pre-ionizing meta

stable state to have lifetimes from τ = 0 ps to ∞ ps, evidencing a better agreement

with experimental results than previous theoretical predictions where the axial-recoil

approximation was assumed.
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The orientation average was performed around a CH bond, that is a

C3 axis, in this plot pointing in the z direction, and the field of the

LP vector is also aligned with the C3 axis in this figures. The figure

at the left assumes a lifetimes of the state of 0 ps, and the figure at
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CHAPTER I

INTRODUCTION

Many, if not all of the studies at the molecular level of structure and dynamics have

a common ancestor in the pioneering works of Faraday and Maxwell [1, 2] 1, back

in the mid eighteen hundreds, that brought together the then independent fields

of electromagnetism and optics, setting the ground for a plethora of future work

to come in understanding the interaction of electromagnetic radiation with matter

in general. Maxwell’s equations set the foundation for a quantitative explanation

of common light-matter phenomena such as dispersion and refraction, and its use

extends to the semiclassical limit (assuming the interaction of classical radiation with

a quantum system). Maxwell’s relations in the international system of units (SI) are

given by,

∇×E +
∂B

∂t
= 0 (I.1a)

∇×H − ∂D

∂t
= J (I.1b)

∇ ·D = ρ̄ (I.1c)

∇ ·B = 0 (I.1d)

D = ε0εE, B = µ0µpH (I.2)

where E and D are the electric field vector and induction respectively, related by the

dielectric constant ε, and the permitivity of a vacuum ε0; H and B are the magnetic

field vector and induction respectively, related by the relative magnetic permeability

µp and the permeability of free space µ0; and finally, J is the electric current density

and the scalar ρ̄ represents the electric charge density. Once the relation between

this quantities is stablished and the theory of how electromagnetic waves propagate

into a medium derived (see for example [4]), the road is settled to move forward into

one of the most interesting applications from the wave theory of light involving its

1Many other scientists contributed to the fields of optics and electromagnetism whose work should
not be overlooked. For a more complete review on the historic development of these fields and the
minds behind it see reference [3]
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Table I.1: Photon and electron induced processes in atomic and molecular collisions.

Process Description

AB + hν → AB∗ Photoabsorption

AB + hν → AB+ + e− Photoionization

AB + hν → A + B Photodissociation

AB + hν → A + B+ + e− Dissociative photoionization

AB + e− → e− + AB Elastic scattering

AB + e− → 2e− + AB+ Electron impact ionization

AB + e− → AB− Electron attachment

interaction with matter, the photoelectric effect.

I.1 Scattering theory

Scattering is a process which in a broad sense refers to the interaction of two types of

objects or particles. The diversity and variety of phenomena that it encompasses is

such that it includes how different types of radiation can interact at the nuclear level

(e.g., the bombardment of α particles to gold foil, experiment that lead Rutherford to

the discovery of the nucleus in atoms), or at an electronic level to mention a few [5].

Scattering may involve redistribution or rearrangement of the constituents of the

initial particles. The simplest experiment of scattering is the potential scattering,

where a single particle interacts with a finite-range fixed force. If the two interacting

particles come with an unchanged structure the process is said to be elastic; in more

complicated and even realistic scenarios, where the incoming particles are somehow

changed after the collision, are called inelastic scattering [6]. Although many different

outcomes can be expected from the interaction of light (photons) or electrons with

matter, we mention here the most likely to be used or mentioned throughout this

work. Photoabsorption occurs when light of a certain frequency ν is absorbed by

an atom or molecule M bringing it into an excited state M∗. When the absorption

of light occurs into a repulsive state of a molecule and it dissociates into neutral

fragments the process is called photodissociation. If the photon absorbed, hν, by

the target excites an electron beyond the ionization limit, we have a photoionization

process [7]. A summary of these processes and other light and electron interactions

with matter is presented in Table I.1.
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Scattering in general can be classified in several ways and some have already

been mentioned. It is an inherently time dependent process, however through the

use of appropriate approximations and choosing the right boundary conditions a

time independent treatment can be formulated. The time dependent Schrödinger’s

equation that governs scattering has the form

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (I.3)

where the total Hamiltonian of the system, H, is the sum of the kinetic energy, H0,

and the interaction potential H ′ [6],

H = H0 +H ′. (I.4)

For a conservative system the Hamiltonian H is independent of t, and the time de-

pendence of the evolution of the system is given by the phase factor e−iHt. The

scattering experiment can be divided in three steps: first is the approach of the elec-

tron (or other particle) along a trajectory x(t); second, the interaction region, where

the description of the ‘trajectory’ might be very complicated; and third, the electron

leaving the scattering site through an almost straight outgoing trajectory. While

this orbit picture is adequate for the classical scattering, the quantum description is

closely parallel but instead of a trajectory x(t) following Newton’s equation of mo-

tion, there is a state vector |ψ〉 satisfying the time-dependent Schrödinger equation

(I.3). To better address the quantum scattering that concerns the work presented

here, let’s start by introducing the classical picture, that will lead into a more clear

explanation of the quantum case.

I.1.1 Classical scattering

As it was mentioned above, the scattering of classical particles by a central potential

or by each other is better described by the particle’s trajectory. The Hamiltonian

for that system is [8]

H =
p2

2m
+ V (r) (I.5)

where p is the momentum and m represents either the mass of the particle being

scattered by a central potential or the reduced mass of a two particle system in

the center of mass frame of reference. V (r) is the potential acting on the system
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and r represents the distance in the corresponding coordinate system between the

components of the scattering experiment. Assuming that the scattering event occurs

at an arbitrary time t = 0, the behavior of the orbit x(t) in the far past t→ −∞ as

it moves towards to the target approaches asymptotically a free trajectory xin(t) and

for the outgoing particle as t→ +∞ similarly approaches the asymptotic trajectory

xout(t) so that [5],

x(t) −−−−→
t→−∞

xin(t) (I.6)

x(t) −−−−→
t→+∞

xout(t) (I.7)

A scattering trajectory is said to be completely characterized when both in and out

asymptotes are known. It is important to note that just as for any pair of in and

out asymptotes there is a trajectory x(t), the opposite is not necessarily always true,

since there are potentials that can support a bounded orbit, not letting the particle

out, and will not become a free asymptotic trajectory. In a scattering experiment, one

cannot think of a single particle approaching a central potential or another particle,

and a more realistic picture is that of a beam of particles being sent towards a

target. The impact parameter b, defined as the distance of closest approach of the

asymptotic trajectory to the target, is not unique in such an experiment, neither

thus the azymuthal angle φ, and these quantities become a distribution rather than

a specific number. All the particles in the incoming ”tube” with element of area bdbdφ

go after the collision into a distribution cone of solid angle dφdθ sin θ. Following these

ideas is that the familiar scattering concept of cross section arises as a practical way

of reporting experimental results. A cross section is an area normal to the incident

direction containing all impact parameters that lead to scattering. It is important

to distinguish between two different but related quantities, the total cross section,

σ(E), which contains all elastic scattering events and a differential cross section,

dσ/dΩ, referring to scattering at a specific solid angle Ω, or in an inelastic process

the corresponding total, σij(E), and differential, dσij/dΩ, cross sections for scattering

from the ith to the jth internal states [9]. We have mentioned the angle θ above,

which is the magnitude of the deflection angle Θ modulo π, since experimentally it

is not possible to differentiate between positive or negative values of Θ, thus

θ = |Θ|, 0 < θ < π (I.8)
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It is clear then, that the trajectories with an impact parameter in the range from b to

b+db have an area 2πbdb and are deflected into the solid angle dΩ = 2π sin θdθ. From

this very intuitive definitions, the previously mentioned differential cross section in

terms of the intensity of scattering per unit solid angle, can be expressed as,

dσ

dΩ
= I(θ, E) =

∣∣∣∣ 2πbdb

2π sin θdθ

∣∣∣∣ =

∣∣∣∣ b

sin θdθ/db

∣∣∣∣ (I.9)

and consequently the total elastic cross section is then defined as the integral of

equation (I.9),

σ(E) =

∫
dσ

dΩ
dΩ = 2π

∫ π

0

I(θ, E) sin θdθ. (I.10)

It is noteworthy to observe that in the previous definition of the classical differen-

tial cross section given in Equation (I.9) there are two different possible sources of

singularities, that give rise to very well known effects. The first one happens when

there is backward scattering (meaning θ = π) or forward scattering (θ = 0) mean-

ing that sin θ vanishes, and is called the glory effect. The second one will happen

when there is a turning point in the θ vs. b curve, at which dθ/db = 0, which will

physically correspond to a point where the density of classical trajectories goes to

infinity, this is known as the rainbow effect (and is indeed related to the rainbow we

may see after a rainy day, see for example [9] or [10] and references therein). Also,

for particular types of potentials and forces acting on the system, there might be

defined or closed forms of the integral (I.10), for those cases one can refer to [8] for

additional information.

I.1.2 Quantum scattering

The quantum picture of scattering theory [8] can be formulated in close connection

to the classical one in some aspects, and although more elaborate, is also richer in

the possibilities of describing natural phenomena. We can move to the quantum

description of the scattering phenomena by identifying the state vector |ψ(t)〉 which,

just as the trajectories from Equations (I.6) and (I.7) follow Newton’s equation,

follows Schrödinger’s Equation (I.3). It is noteworthy that Schrödinger’s equation

contains complex valued functions and operators, and thus to remember the origin of

the convention of the imaginary unit, +i, in Equation (I.3) to come from the accepted

notion that e+ikr describes an outgoing spherical wave and e−ikr an incoming one [8].
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The main objective now is to solve Equation (I.3), for which we will use a form

of Green’s function method. First, we write four Green’s functions in the form of

propagators, (
i
∂

∂t
−H0

)
G±(t) = 1δ(t) (I.11a)(

i
∂

∂t
−H

)
G ±(t) = 1δ(t) (I.11b)

and establish the initial conditions,

G+(t) = G +(t) = 0 for t < 0 (I.12a)

G−(t) = G −(t) = 0 for t > 0 (I.12b)

With these equations and initial conditions in mind and considering that 1 stands

for the unit operator and δ(t) is the Dirac’s delta function, solutions for the Green’s

functions in Equations (I.11) can be written as,

G+(t) =

{
−ie−iH0t t > 0

0 t < 0
(I.13a)

G−(t) =

{
0 t > 0

ie−iH0t t < 0
(I.13b)

G +(t) =

{
−ie−iHt t > 0

0 t < 0
(I.13c)

G −(t) =

{
0 t > 0

ie−iHt t < 0
(I.13d)

Naming G and G as propagators results from the fact that they describe the propa-

gation of state vectors in time. If again we take Equation (I.3) as model, but using

the state vector |ψ0(t)〉 and non-interaction Hamiltonian H0, instead, then the oper-

ator G+ allows us to express the state vector |ψ0(t′)〉 for any time t′ later than t, in

terms of its value at t′ = t,

|ψ0(t′)〉 = iG+(t′ − t) |ψ0(t)〉 (I.14)
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By evaluating the limits

lim
t→0+

G+(t) = lim
t→0+

G +(t) = −i1 (I.15a)

lim
t→0−

G−(t) = lim
t→0−

G −(t) = i1 (I.15b)

it is easy to verify that in Equation (I.14) the state vector |ψ0(t′)〉 approaches |ψ0(t)〉
when t′ → 0+. In a similar way, we can see what happens in the past before the

collision, or in the future, after the interaction. We can view the whole scattering

process as the sum of three events, first there is an incoming state, approaching the

scattering center which can be described by some type of potential, second there is

an interaction, and finally there is an outgoing state. By taking advantage of the

Green’s function formulation presented above, we can define a state vector |ψin(t)〉
whose time development at t > t′ is governed by the free hamiltonian H0 but, that

at time t0, as seen in Equation (I.14), is equal to |ψ(t0)〉. This state is thus defined

by the limit

|ψin(t)〉 = lim
t′→−∞

iG+(t− t′) |ψ(t′)〉 (I.16)

in a similar way, the definition for an outgoing state vector |ψout(t)〉 governed by

H0 and equal to the exact complete state vector |ψ(t)〉 in the infinite future, can be

defined by the limit

|ψout(t)〉 = lim
t′→∞

−iG−(t− t′) |ψ(t′)〉 . (I.17)

The consequences of these two limits are known as the asymptotic conditions, and

guarantees that any |ψin(t)〉 in a Hilbert space is the asymptote of some actual

trajectory, and similarly, it guarantees that the actual complete state |ψ(t)〉 will

evolve into the out asymptote |ψout(t)〉.

Møller operators

It is convenient to introduce the operators Ω+ and Ω− which are called wave opera-

tors or Møller operators. These operators convert the free state |ψin(t)〉 and |ψout(t)〉,
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respectively, into the complete state |ψ(t)〉,

|ψ(t)〉 = Ω+ |ψin(t)〉 (I.18a)

|ψ(t)〉 = Ω− |ψout(t)〉 (I.18b)

A combination of (I.16), (I.17) with (I.14) leads to the accepted definitions for the

Møller operators,

Ω+ = 1− i
∫ ∞
−∞

dtG +(−t)H ′G−(t) (I.19a)

Ω− = 1 + i

∫ ∞
−∞

dtG −(−t)H ′G+(t) (I.19b)

Some relevant properties of this wave operators that will lead to an important result

are listed below in Equations (I.20) (for a more complete explanation look at [8]),

and take advantage of the previously stated definitions of Ω± and the Hermiticity of

H ′:

|ψin(t)〉 = Ω†+ |ψ(t)〉 (I.20a)

|ψout(t)〉 = Ω†− |ψ(t)〉 (I.20b)

Equations (I.20) together with (I.18) show that

|ψin(t)〉 = Ω†+Ω+ |ψin(t)〉 (I.21a)

|ψout(t)〉 = Ω†−Ω− |ψout(t)〉 (I.21b)

The S-matrix: scattering operator

At this point we can introduce an operator that will allow us to express the out

asymptotic state in terms of the in asymptotic state. By means of (I.18a) and

(I.20b) we get the relation we were ultimately looking for,

|ψout(t)〉 = Ω†−Ω+ |ψin(t)〉 = S |ψin(t)〉 (I.22)

where S = Ω†−Ω+. One of the most important properties of the S operator, is that

it conserves energy. As far as the asymptotic states are concerned, the actual energy

is simply the kinetic energy and we should expect that S commutes with the kinetic
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energy operator H0, rather than H, so that [S,H0] = 0. This has the implication

that the mean final energy for the corresponding out state |ψout〉 = S |ψin〉 is

〈ψout|H0 |ψout〉 =
〈
ψin

∣∣S†H0S
∣∣ψin

〉
(I.23)

This equality holds since the commutator of S with H0 has the implication that

H0 = S†H0S. The free Hamiltonian H0 has no proper eigenvectors, although the

choice of expanding in the “improper” momentum eigenvectors set |p〉 has proven to

be useful. In this context, the energy of a free particle of momentum p is Ep = p2

2m
.

In this manner, using the momentum representation as the basis, we can write for

the S operator the matrix elements as 〈p′|S |p〉 which is what we refer as the “S

matrix”. Although the above mentioned S matrix does not represent the amplitude

of a physical realizable process, the importance of this “improper” matrix elements

relies in providing a basis for the expansion of the proper matrix elements 〈ψ|S |φ〉,
which can be understood as representing the out state in terms of the in state as [5]

ψout(p) =

∫
d3p′ 〈p|S |p′〉ψin(p′) (I.24)

Another way of visualizing this “improper” S matrix elements is as the probability

amplitude that an in state of momentum p will lead into an out state of momentum

p′. To further explore the energy conservation mentioned above, let us take advantage

again of the commutator of S with the kinetic energy Hamiltonian H0 and see its

implications in its momentum-space matrix representation,

〈p′| [H0, S] |p〉 = (Ep′ − Ep) 〈p′|S |p〉 (I.25)

with the obvious implication that the S-matrix elements are always zero except when

Ep′ = Ep, leading to the momentum-space expression of energy conservation

〈p′|S |p〉 ∝ δ(Ep′ − Ep) (I.26)

The T -matrix formulation

In the absence of interactions S = 1, so a way of exploring the nature of the

momentum-space S matrix previously defined is to introduce the operator R in such

a way that S = 1 +R, that said, R represents the difference between the value of S
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and its value in the absence of interactions. And as with for the matrix elements in

S, we can write

〈p′|R |p〉 = −2πiδ(Ep′ − Ep)t(p′ ← p). (I.27)

The details of this expression can be read in Taylor [5], but the expression for the S

matrix becomes,

〈p′|S |p〉 = δ3(p′ ← p)− 2πiδ(Ep′ − Ep)t(p′ ← p) (I.28)

In Equation (I.28) the first term corresponds to the amplitude for the particle to

pass the interaction center without being scattered, and the second term is therefore

the amplitude for scattering the particle. As it was seen to happen in Equation

(I.25) for the S matrix, where the delta function caused it to be zero every time but

when energies between states were the same, the quantity t(p′ ← p) is only defined

when Ep′ = Ep. This statement can be understood as having t(p′ ← p) defined only

“on-shell” when |p′| = |p|, which is the reason that t(p′ ← p) is called the on-shell

T matrix. There is also the possibility of defining the matrix 〈p′|T |p〉 for all p′ and

p, and it is called the “off-shell T matrix”.

Evaluation of the on-shell T matrix determines the S matrix through Equation

(I.28) and is closely related to the scattering amplitude (which will be used among

other things to compute cross sections) by

f(p′ ← p) = −(2π)2m t(p′ ← p) (I.29)

and the off-shell T matrix will prove to be of great importance since it satisfies

the Lippmann-Schwinger equation which provides one of the variational integral

principles used to solve scattering problems, and the one we employ throughout this

work. Finally by means of Equations (I.28) and (I.29) the S matrix can be expressed

in terms of the amplitude as

〈p′|S |p〉 = δ3(p′ ← p) +
i

2πm
δ(Ep′ − Ep)f(p′ ← p) (I.30)

I.1.3 Variational methods

Variational methods are in general used to provide approximate solutions to a va-

riety of differential and integral equations. In that sense, variational methods can
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be classified into differential or integral forms. A variational principle is said to be

differential if its based on the differential equation and requires its trial functions to

satisfy boundary conditions of the problem. On the other hand, when a variational

principle is said to be of the integral form is based on the integral equation and most

important, the boundary conditions need not to be included in the trial function,

as they are taken into account through the Green’s function. From the methods to

be described in the next sections, the Kohn variational principle is of the differen-

tial form, and the Schwinger variation principle, based on the Lippmann-Schwinger

equation, is of the integral form [11]. As is the case with variational methods in a

diverse number of applications, the starting point is to guess a trial function, and

from there continue through a well defined procedure to modify the trial until this

variations converge within a certain criteria into the desired value or function. The

theoretical computation of the relevant quantities in scattering, such as the S, K or

T matrices, are based upon variational methods.

In a variational calculation of the ground state energy for a particle with Hamil-

tonian H, a trial function ζ(x) for the actual ground state wave function ψ0(x) needs

to be suggested. What follows, is to compute the functional [5]

ε[ζ] =
〈ζ|H |ζ〉
〈ζ| ζ〉

(I.31)

Some properties should be fulfilled by the computed functional, first, ε[ζ] should be

independent of the normalization of the trial function; also if ζex(x) is proportional

to the exact ground state wave function, that will imply that ε[ζex] is precisely the

ground state energy E0. The second property implies the functional ε[ζ] to be sta-

tionary with respect to variations of ζ(x) about the exact wave function, that is,

if

ζ(x) = ζex(x) + δζ(x) (I.32)

then

ε[ζ] = ε[ζex] +O(δζ)2 (I.33)

And lastly, the functional ε[ζ] has to be a minimum at the exact wave function,

besides being stationary. This last property allows to determine uniquely the best

function from a family of trial functions as the one for which ε[ζ] is a minimum.

The scattering variational methods are different from the usual energy varia-
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tional methods. The variational calculations to study electron-molecule scattering

and photoionization processes in molecules include the Schwinger variational method,

the R-matrix method and the Kohn variational method among others [12]. In the

present work, we use the Schwinger variational method, and therefore a more com-

plete description of it is given below together with brief outline of the other methods

mentioned above.

Schwinger variational method

The Schwinger variational principle [12] solves the Lippmann-Schwinger integral

equation instead of the Schrödinger equation to derive a stationary expression for

the scattering amplitude. The formalism can be applied in a number of different

ways, in terms of the K matrix, or tan ν for single-channel scattering, for example.

As defined by Taylor [5] the partial wave amplitude given in terms of the radial wave

function is given by,

fl(p) = − 1

p2

∫ ∞
0

ĵl(pr)U(r)ψl,p(r)dr (I.34)

where U(r) = 2mV (r), ĵl(pr) is the Riccati-Bessel function and the other quantities

take their usual meaning. To find the correct guess ζ for the wave function, the

Schwinger method starts from the functional,

α[ζ] = − 1

p2

(∫
drĵlUζ

)2∫
drζ(U − UG0U)ζ

(I.35)

where G0 ≡ G0
l,p is the free Green’s operator for angular momentum l and ζ(r) is a

trial function. Using the properties outlined in the previous section for variational

methods and its functionals, it can be shown [5] that the Schwinger variational

expression for the partial-wave amplitude is,

fl(p) = − 1

p2

(∫
drĵlUζ

)2∫
drζ(U − UG0U)ζ

+O(δζ)2 (I.36)

It has been shown elsewhere that the Schwinger variational principle is a powerful

formulation of the scattering problem, and that it has several advantages over other
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variational methods. One of the most important advantages for real applications,

is that the trial wave function need not to satisfy any specific asymptotic boundary

conditions [12–14]. Just as it was shown, the variational expression for the partial-

wave amplitude, the Schwinger variational expression for the T -matrix can be written

as [13],

〈φk|T |φ′k〉 =

〈
φk

∣∣∣U ∣∣∣Ψ(+)
k

〉〈
Ψ

(−)
k

∣∣∣U ∣∣∣φ′k〉〈
Ψ

(−)
k

∣∣∣U −UG0U
∣∣∣Ψ(+)

k

〉 (I.37)

where U is the potential and |Ψk〉 can be expanded in a set of basis functions |α〉 as

|Ψk〉 =
∑
α

aα(k) |α〉 (I.38)

Requiring that Equation (I.37) be stationary with respect to variation of the coeffi-

cients, aα(k), leads to the Schwinger variational expression

〈φk|T |φ′k〉 =
∑
α,β

〈φk|U |α〉 (D−1)α,β 〈β|U |φ′k〉 (I.39)

where (D−1)α,β denotes the (α, β) element of the matrix
〈
α
∣∣U −UG0U

∣∣β〉.
Kohn variational method

Just as the Schwinger variational method depends on the exact wave function sat-

isfying the integral Lippmann-Schwinger equation, the Kohn method is based on

solving the Schrödinger differential equation. In contrast to the Schwinger varia-

tional method, the Kohn method does not provide a stationary expression for the

amplitude itself, but for the tangent of the phase shift. Following Taylor [5], we start

again with a trial radial function ζ(r) that satisfies ζ(0) = 0 and with the asymptotic

condition:

ζ(r) −−−→
r→∞

1

p
sin(pr − 1

2
lπ) + τ cos(pr − 1

2
lπ) (I.40)

and where the exact radial function ζex(r) satisfies[
− d2

dr2
+
l(l + 1)

r2
+ U(r)− p2

]
ζex(r) = 0 (I.41)
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where we will call the term between square brackets D. It can be seen that the

constant term τex in Equation (I.40) for the exact wave function will be τex = 1
p

tan δl,

where δl is the exact phase shift. Considering the functional

β[ζ] = τ −
∫ ∞

0

drζ(r)Dζ(r) (I.42)

from the functional of Equation (I.42) and Equation (I.41) it follows that for the

exact radial function β[ζex] = τex = 1
p

tan δl. The stationarity of β[ζ] with respect to

arbitrary variations of the radial function about its exact value allows to write

β[ζ] = β[ζex] +O(δζ)2 (I.43)

which by simple substitution with the definition of the functional β at the exact

value of the radial function gives,

1

p
tan δl = τ −

∫ ∞
0

drζ(r)Dζ(r) +O(δζ)2 (I.44)

which is the expression for the phase shift from the Kohn variational principle. Equa-

tion (I.44) can be reduced to

1

p
tan δl ≈ −

1

p2

∫ ∞
0

drĵlUĵl (I.45)

when the trial function is taken to be the free radial function,

ζr =
1

p
ĵl(pr) −−−→

r→∞

1

p
sin(pr − 1

2
lπ) (I.46)

which has τ = 0. One important point to note and for which the full explanation

won’t be given here, but can be found elsewhere [5] is that the Kohn expression

with the free trial function ĵl is equivalent to the first Born approximation, and

the corresponding Schwinger expression is equivalent, under the same conditions, to

the second Born approximation, so that for a trial function the Schwinger principle

will give superior results than the Kohn method. The relation between these two

methods has been explored with more detail by Takatsuka et al. [15] and Lucchese

et al. [11] concluding and demonstrating that the Schwinger variational principle

is one rank higher than the Kohn principle, so that, if the same trial scattering
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wave function is used within these two principles, the Schwinger principle should

lead to a superior result. Also, it should not be overlooked the occurrence in the

Schwinger variational principle of a double integral involving the Green’s function

G0 (see Equations (I.37) and (I.36)) which, unless the trial function is relatively

simple, can prove to be difficult to evaluate specially on realistic applications. In any

case, that inconvenience should not prevent its use, since there are several numerical

approaches in solving the integral equations appearing from its application.

I.2 Molecular photoionization

It was mentioned before that one of the possible outcomes of the interaction of

light with matter is the absorption of energy and, consequentially, the excitation of

matter. By looking at Table I.1 one of the processes depicted is the photoionization

of a molecule, in which a photon with energy greater than the ionization potential

of the molecule is absorbed by an isolated molecule, leading to ionization with the

emission of a photoelectron. In this sense, it is important to mention that the

study of molecular photoionization requires special methods due to the continuous

energy spectrum and the asymptotic boundary conditions required to describe the

photoelectron produced within the photoionization process [16]. The difference in

energy between the initial photon energy and the measured photoelectron kinetic

energy provides the energy difference between the molecule and the ion in its final

rotational, vibrational and electronic states. The study of photoionization processes

leads to understanding highly excited states of molecules, and so the understanding

of these states, the cross sections for their production and its dynamics are of great

use in fields including astrophysics [17], atmospheric chemistry [18], and materials

processing [19] among others.

I.2.1 Cross sections

As mentioned above, one important quantity to measure or compute is the photoion-

ization cross section. In the weak field limit, it is given by [16]

dσ

dΩk̂

=
4π2

cE
|Ti,f,~k|

2 (I.47)

15



where E is the photon energy ~ω, Ωk̂ is the solid angle in the direction of the unit

vector k̂ and c is the speed of light. The transition matrix elements between the

initial and final ionized states can be expanded as,

Ti,f,~k =

〈
Ψi

∣∣∣∣∣
N∑
j=1

exp
(
i
ω

c
ŝ · ~rj

)
n̂ · ∇rj

∣∣∣∣∣Ψ(−)

f,~k

〉
(I.48)

where N is the number of electrons, Ψi is the initial state of the system, and Ψ
(−)

f,~k
rep-

resents the final ionized state of the system, with the photoelectron having asymptotic

momentum ~k. Equation (I.48) gives the transition matrix element for the interaction

of the molecule with a single-frequency electromagnetic field.

I.2.2 Dipole approximation

It is important to observe that the exponential factor in Equation (I.48) has a value

tending to unity for small energies, less than 100 eV, so when that exponential factor

is replaced by 1, this is known as the dipole approximation, which leads to the

following expression for the dipole velocity matrix element [16]

TV
i,f,~k,n̂

=

〈
Ψi

∣∣∣∣∣∑
j

n̂ · ∇rj

∣∣∣∣∣Ψ(−)

f,~k

〉
. (I.49)

It is important to note that at higher photon energies the electric-quadrupole and

magnetic dipole transitions may contribute giving non-dipolar effects that can affect

the angular distributions of photoelectrons [16]. By integration of Equation (I.48)

over all angles ~k and averaging over all orientations of the polarization of light, it is

possible to obtain the total photoionization cross section,

σi,f =
π

cE

∫
dΩk̂

∫
dΩn̂|Ti,f,~k,n̂|

2 (I.50)

An alternative form of the transition dipole matrix elements given in Equation

(I.49) can be formulated when the exact eigenfunctions of the molecular Hamiltonian

are used for the initial and final states, and is called the length form [16]

T L
i,f,~k,n̂

= E

〈
Ψi

∣∣∣∣∣∑
j

n̂ · ~rj

∣∣∣∣∣Ψ(−)

f,~k

〉
(I.51)
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Of course, the differential cross section can then be constructed from either of the

two equivalent formulations of the transition dipole matrix element leading to,

dσL(V)

dΩ
=

4π2

cE

∣∣∣T L(V)

i,f,~k,n̂

∣∣∣2 (I.52)

Finally, a useful form of the differential cross section is the mixed form, which can

be constructed from this two transition dipole matrix elements in the form,

dσM

dΩ
=

4π2

cE
Re
{[
T L

i,f,~k,n̂

]∗
TV

i,f,~k,n̂

}
. (I.53)

The different forms of the cross section are also said to be different gauges. If all

forms have the same value, then the method used is said to be gauge invariant [16].

For methods that are not gauge invariant, the difference between them can be used

to estimate the minimum error in the calculations.

I.2.3 The Born-Oppenheimer approximation

The molecular Hamiltonian (including nuclei and electrons) is a much more com-

plicated expression than its atomic counterpart. When the spin is eliminated from

the Hamiltonian and only the one and two electron terms are kept, the molecular

Hamiltonian has the form,

H = − ~2

2m

∑
i

∇2
i −

∑
A

~2

2MA

∇2
A −

∑
A,i

ZAe
2

rAi
+
∑
A>B

ZAZBe
2

RAB

+
∑
i>j

e2

rij
(I.54)

In this expression, indices i and j are used to label electrons and A and B for nuclei,

whereas r and R are used for the distances between electrons and nuclei as labeled,

and all the other variables take the usual meaning. The solution to the corresponding

Schrödingier can in general not be obtained directly. As can be readily seen H

incorporates the electron kinetic energy and the electron-electron repulsion on the

first and last terms, the nuclear kinetic energy and the nuclear-nuclear repulsion, in

the second and fourth terms, and finally the electron-nuclear attractions in the third

term [7]. The Born-Oppenheimer approximation [20] consists in assuming that the

total wave function is separable into the nuclear and electronic components,

Ψmolecular(r,R) = ψe(r;R)χN(R) (I.55)
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Equation (I.55) implies that the motions of the electrons, with general coordinates

r, are unaffected by the momentum of the nuclei, with general coordinates R, and

that they depend only parametrically on the nuclear positions [7, 21]. Using this

product wave function in the Schrödinger equation, the total Hamiltonian, H , can

be written as the sum of electronic, He, and nuclear, HN, Hamiltonians,

H = He + HN. (I.56)

Thus, two independent expressions can be written for the electronic and nuclear

components,

Heψe = Eeψe (I.57a)

HNχN = ENχN (I.57b)

The Born-Oppenheimer separation is based on the relative velocities of the nuclei

and electrons, and thus on their relative masses.

In the study of molecular photoionization and electron-molecule scattering [22],

the Born-Oppenheimer approximation or adiabatic approximation consists of two

approximations, the decoupling of the electronic state of the molecular ion from the

nuclear motion, and the separation of the photoelectron and nuclear motions. It is

also usually assumed that the effects of rotation can be separated from the electronic

and vibrational motion and that by an appropriate orientational averaging of fixed

orientation results they can later be incorporated [16]. So, following Equation (I.55),

we can write in a very similar way the fixed-nuclei Hamiltonian depending only

parametrically on the geometry for the target initial state as

Ψi(r,R) = ψi(r;R)χi,v(R) (I.58)

where χi,v(R) is the vibrational wave function of the initial state with quantum

number v. Following this, the final state wave function can then be written as

Ψ
(−)

f,~k
(r,R) = ψ

(−)

f,~k
(r;R)χf,v′(R) (I.59)

where χf,v′(R) is a vibrational wave function of the final ion state f with quantum

number v′. An important result from the Born-Oppenheimer or adiabatic approx-
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imation is the form that the dipole velocity matrix elements (see Equation (I.49))

take, and are given by,

MV
i,f,~k,n̂

(R) =

〈
ψi(r;R)

∣∣∣∣∣∑
j

n̂ · ∇rj

∣∣∣∣∣ψ(−)

f,~k
(r;R)

〉
r

(I.60)

and

TV
i,v,f,v′,~k,n̂

=
〈
χi,v(R)

∣∣∣MV
i,f,~k,n̂

(R)
∣∣∣χf,v′(R)

〉
R
. (I.61)

With these expressions in mind, the total vibrationally specific cross sections can be

obtained from

σi,v,f,v′ =
π

cE

∫
dΩk̂

∫
dΩn̂

∣∣∣T L(V)

i,v,f,v′,~k,n̂

∣∣∣2 . (I.62)

The use of Equation (I.62) allows for the computation of the relative cross sections for

excitation to different final vibrational states, called branching ratios. The branching

ratios Bv′,v′′ for the excitation of the v′ state relative to the v′′ state can be defined

as,

Bv′,v′′ =
σi,v,f,v′

σi,v,f,v′′
. (I.63)

There are many conditions in which the dependence of the electronic matrix element

MV
i,f,~k,n̂

(R) on the molecular geometry R is very weak over a range of geometries. If

this assumption is true, the transition matrix element Ti,v,f,v′,~k,n̂ can be approximated

assuming the independence of MV
i,f,~k,n̂

(R) from R leading to the expression,

Ti,v,f,v′,~k,n̂ ≈Mi,f,~k,n̂(R0) 〈χi,v(R)| χf,v′(R)〉 (I.64)

where R0 represents a fixed geometry, usually the equilibrium geometry of the initial

state. This approximation is called the Frank-Condon approximation and will be

addressed in more detail in Chapter II.

Computing matrix elements

The computation of photoionization cross sections as described in the previous sec-

tion requires the computation of the dipole photoionization matrix elements. There

are several theoretical approaches towards this objective and also a number of numer-

ical techniques to implement such theoretical frameworks. Following the description

by Lucchese [16], we consider the problem that arises when continuum electrons are
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involved, as is the case with molecular photoionization, in which the one-electron

basis sets based on Gaussian functions do not provide an adequate description of

the scattering wave functions. In such a case, alternative ways for describing the

continuum functions must be used. One way of representing the scattering wave

functions is by means of single center expansions (SCEs) [11]. A SCE of a function

of the spherical coordinates f(r, θ, φ) is obtained by using the spherical harmonics

Ylm(θ, φ), which is a complete set of angular functions. So, an arbitrary function in

three dimensions can be written as

f(r, θ, φ) =
∑
lm

1

r
flm(r)Ylm(θ, φ) (I.65)

and

flm(r) = r

∫
sin θdθdφY ∗lm(θ, φ)f(r, θ, φ). (I.66)

It is important to note that in Equation (I.65) the expansion is in principle infinite,

however for obvious reasons, in computations the expansion has to be truncated at

some lmax value, which should be chosen to be large enough so that convergence is

achieved. For nonlinear molecular systems, a symmetry adapted harmonic basis set

is used and Equation (I.65) is written as

fpµ(r, θ, φ) =
lmax∑
l=0

npµl∑
h=1

1

r
fpµlh (r)Xpµ

lh (r̂) (I.67)

and the symmetry adapted functions Xpµ
lh (r̂) are expanded in terms of spherical

harmonics as

Xpµ
lh (r̂) =

l∑
m=−l

bpµlmhYlm(r̂) (I.68)

where p indicates the irreducible representation (IR) to which the functions belong in

the molecule’s point group, µ is the component of the pth IR that the functions belong

to, and npµl is the number of angular functions that can be constructed from the

spherical harmonics with the l index belonging to the µth component of the pth IR.

If all the functions are expanded using the SCE, then the Schrödinger’s equation for

the close-coupling expansion can be written as a set of integro-differential equations

for the radial functions, ultimately leading to the compact integral equation (for
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details see [16]),

|ψ〉 =
∣∣ψ0
〉

+ G(E)V |ψ〉 (I.69)

where the |ψ〉 is a vector of partial-wave radial functions. One approach to solve

Equation (I.69) is to employ the Schwinger variational method, described above. The

matrix elements given in Equations (I.49) and (I.51) can be written in a simplified

bracket notation as
〈
ψ̄i
∣∣ ψ〉 and then a variational expression can be written by

expanding the wave function in a basis set gi(~r) to give

〈
ψ̄i
∣∣ ψ〉 ≈ 〈ψ̄i∣∣ ψ0

〉
+
∑
i,j

〈
ψ̄i
∣∣GV

∣∣gi〉 (D−1)i,j
〈
gj
∣∣V ∣∣ψ0

〉
(I.70)

where Di,j = 〈gi|V − V GV |gj〉.

I.2.4 Resonances

Resonances are one of the most striking phenomena within molecular photoioniza-

tion and scattering. In the simplest case, a resonance leads to a sharp peak in the

total cross section as a function of energy [5]. Resonances are closely related to struc-

tural and dynamical properties of the target initial and final states. Although there

are different theoretical approaches to study resonant phenomena, they all have in

common the understanding that the sharp variation in the cross section at a certain

energy ER is somehow related to the existence of a nearly bound state of the colli-

sional system with energy ER. That means that when the projectile approaches the

target with energy ER there is the possibility of getting captured temporarily within

the potential of the target forming a metastable state and leading to a “resonant”

effect that can be observed as a rapid variation in the cross section. Analytically, it

has been shown [5] that as bound states of angular momentum l are related to poles

of the S matrix, sl(p) in the upper half plane {Im p} > 0; resonances of angular

momentum l are related to poles of the S matrix in the lower, negative, half plane

{Im p} < 0. This two relations clearly create a connection between bound states

and resonant states. However, one should note that the relation described between

resonant states and poles in the lower plane of p is not exact, and requires first, a

reasonable potential that allows continuation into the lower half of the plane {Im p}
and second that there are “mathematical artifacts” and other non-resonant effects

that may cause such poles without a resonance effect being observed, this is specially
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true for poles far from the real axis. Conversely there can be potentials displaying

resonant effects without any poles whatsoever in the S matrix.

There are some important quantities to know when characterizing resonances,

one of those is the phase shift, δ(p), which is defined as

δ(p) ≈ − arg

(
dF

dp

)
p̄

− arg(p− p̄) ≡ δbg + δres(p) (I.71)

where F is the Jost function (see [5, 8]) and p̄ = pR − ipI, with R standing for real

or resonance, and I for imaginary. The quantity δres is called the resonant phase

shift, and is the angle from the “horizontal” axis to the vector going from p to p̄. So,

as p increases past the location of the zero in the Jost function, the resonant part

of the phase shift, δres(p) increases from 0 to π. The closer the zero is to the real

axis, the more sudden is the increase. This rapid increase of δl(p) by π in Equation

(I.71) can be understood as the definition of a resonance of angular momentum l.

Furthermore, we can note that the behavior of the scattering partial cross section

σl(p) near a resonance will depend on the value of the background phase shift δbg,

σl(p) =
4π(2l + 1)

p2
sin2 δl(p) (I.72)

Just as all the equations related to the resonances have been shown to depend on

p, similar expressions can be derived in terms of E = p2

2m
, and the bound states

and resonant states can therefore be placed on the imaginary E plane as well. One

important quantity to look at is Ē,

Ē = ER − i
Γ

2
(I.73)

As a function of energy, which usually provides a more practical representation to

know than that in terms of p, the peak of a resonance will be expected to happen

at ER and will have an approximate width of Γ. When a resonance in potential

scattering is due to an angular momentum barrier it is known as a shape resonance.

Shape resonances in molecular photoionization

Shape resonances can be described as a one electron continuum state phenomenon in

which the ejected photoelectron is resonantly trapped by a potential barrier through
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which it eventually tunnels into the continuum. This dynamical centrifugal bar-

rier temporarily traps the electron in the region of the molecule. The barrier is

determined by both the sensitive interaction of the Coulombic screening and the

centrifugal forces acting on the ionized electron in the proximity of the molecule.

It is important to recall that such forces only produce shape resonance effects un-

der particular circumstances of symmetry and angular momentum of the continuum

channel. These centrifugal barriers occur in the perimeter of the molecule, because

there is where angular momentum is approximately a good quantum number thus

allowing the radial and angular motion to be decoupled [23]. This results in low

barriers due to the relatively weak attractive forces. Thus shape resonances usually

occur only at energies close to threshold and to depend sensitively on the characteris-

tics of the molecular potential. It is important to note that shape resonances are not

the only possible resonant processes above an ionization threshold. Other processes

that can induce a rise in the cross section in isolated molecules are multi electron

resonances, and shape resonances are a one-electron process, and even non-resonant

phenomena such as satellite thresholds can induce sudden rises in the cross section.

Although it has been more common to find shape resonances localized along bond

axes it should not be assumed that they will always be of σ symmetry, since there is

no fundamental reason to assume that. Piancastelli [23] mentions as the two main

criteria to assign a resonance as a shape resonance the following:

1. Confirm the one-electron character of the resonant process, the resonant en-

hancement should be exhibited only by the main line channel.

2. Perform the corresponding theoretical calculations for comparison.

Dehmer et al., [24] showed how shape resonances in molecular photoionization

induce strong coupling between vibrational and electronic motion over a spectral

range broader than the half-width (see second term of Equation (I.73)). This coupling

is enhanced by the time delay in the photoelectron escape. In the next chapters,

effects of this conclusion are shown to happen in the systems studied and to have

different degrees of impact on each case.
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I.3 Overview of research projects

I.3.1 Derivation of electronic factors as a framework for comparison

between theory and experiments of photoionization where non-

Franck-Condon behavior prevails

The Franck-Condon approximation is said to hold when the electronic transition ma-

trix elements do not depend on the geometry of the molecule. Deviations from the

Franck-Condon principle can have a variety of origins, such as shape resonances and

inter channel continuum coupling effects [25], auto ionization [26], geometry depen-

dent interference effects [27] and Cooper minima [28] among others. The evaluation

of the effects of such non-Franck-Condon features is of great use to characterize them,

and get a qualitative and quantitative estimate of their magnitude. There are sev-

eral methods for the evaluation of the Franck-Condon and non-Franck-Condon fac-

tors [29–31] for different systems (polyatomic molecules, harmonic oscillators, Morse

potentials, etc.). Here we derive, and in the following sections implement, two ap-

proximations to this problem, considering first an expansion of the matrix element

of the dipole operator ~µ up to first order terms and second, an extension where we

also assume harmonic oscillator functions and the same frequencies in the initial and

final vibrational states.

I.3.2 Study of the mechanisms of Franck-Condon breakdown on diatomic

linear molecules

The interpretation of the vibrational structure of photoelectron spectra is usually

made using the adiabatic approximation, in which the time scale of the ionization

process is assumed to be so short that the motions of the nuclei are effectively frozen

during this process, i.e. that the bond length remains basically constant during the

transition (see for example [32]). With the additional approximation that electronic

transition matrix elements do not depend on the geometry, i.e. the Franck-Condon

approximation, the relative intensity of ionization to different final vibrational states

of the same electronic state can be then understood by considering the overlap be-

tween the vibrational wave functions of the initial and final states.Observations of

how vibrational branching ratios vary as a function of photon energy from the cor-

responding Franck-Condon values provide a good indication of the geometry depen-

dence of a specific electronic transition. In this direction, we studied the molecular
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photoionization of N2 leading to the 3σ−1
g and 2σ−1

u ion states and CO leading to

the isoelectronic valence states. The vibrational branching ratios were computed

and the analysis of the ratios for these processes showed a breakdown in the Franck-

Condon approximation. Some of the deviations have been well documented as shape

resonances, but we also found by means of a partial wave analysis, that the partial

wave cross sections have an interference pattern similar to a Young-type interfer-

ence, which are related to molecular Cooper minima. Such features were also seen

to induce non-Franck-Condon effects in the vibrational branching ratios at higher

energies. The use of an electronic factor F , described in Chapter II of this work,

proved to be of great use to compare both experiments and theory.

I.3.3 Vibrationally specific photoionization cross sections from low en-

ergy electrons on low-symmetry molecular systems

The discovery that low-energy electron collisions with DNA can lead to single and

double strand breaks [33] has led to much interest in the study of such collisions

with molecules which are models for fragments of DNA [34] and more generally

of collisions with larger, low-symmetry molecular systems. We have studied such

low symmetry systems by specifically looking at the vibrational branching ratios in

the photoionization of acrolein for ionization leading to the X̃ 2A′ ion state. The

method outlined in Chapter II is employed to compute logarithmic derivatives of the

cross sections and to compare the theoretical data obtained in this work with the

experimental measurements done by our collaborators. From the analysis, we located

two shape resonances near photon energies of 15.5 and 23 eV in the photoionization

cross sections and they were demonstrated to originate from the partial cross section

of the A′ scattering symmetry. The use of the electronic factor F in this work

provided, furthermore, a qualitative reference for the strength of a shape resonance

and a measure of the sensitivity of the cross section to geometry changes in acrolein.

I.3.4 Effects of rotational motion between ionization and fragmentation

on non-linear molecules

One of the experimental methods widely used for studying photoionization dynam-

ics is the measurement of photoelectron angular distributions (PADs), being the

observables giving the best insight on the transition matrix elements A molecular

photoionization experiment is said to achieve “completeness” when it determines all
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the information needed for the theoretical description of such process, which means

to provide all the significant matrix elements or dynamic parameters [35]. There are

different experimental methods for obtaining the matrix elements from the PADs for

molecular ionization, depending on the frame of reference used. When a measure-

ment is done on a fixed-in-space oriented molecule, it is referred to as the molecular

frame photoelectron angular distribution (MFPAD) and if the direction of emission

of the recoil fragment is taken as reference it is named the recoil frame photoelec-

tron angular distribution (RFPAD). Non-linear systems, as mentioned above, show

special difficulties compared to linear molecules due to the extra angular and spatial

coordinate(s) that must be considered when studying the MFPADs and RFPADs.

Additional complications come into play when considering systems dissociating in

two fragments and those with dissociative lifetimes that are long compared to the

rotational period. Chapter V and Appendix A, a model is derived to predict the

effects of rotational motion between the ionizing events and fragmentation of non-

linear systems with lifetimes of the metastable molecular ions not short compared to

the rotational periods of the molecule. We considered as a relevant system to study

the C 1s ionization of the methane molecule, for which previous work has been done

without the consideration of the rotational effects, providing a suitable framework of

comparison.
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CHAPTER II

A SCALED FRANCK-CONDON FACTOR TO STUDY THE

MECHANISMS OF FRANCK-CONDON BREAKDOWN∗

II.1 Introduction

In the previous chapter we described molecular photoionization, and discussed some

of the methods and approximations required to deal with the continuous energy

spectrum and the asymptotic boundary conditions necessary to describe the photo-

electron produced within the photoionization process. In this chapter we explore in

more detail the transitions expected in a photoionization process, and how by means

of the Born-Oppenheimer approximation and the Franck-Condon approximation one

can simplify its study. Furthermore we discuss how the breakdown of the Franck-

Condon approximation can be used to characterize and identify different features

common in ionizing processes. We introduce the notion of an electronic factor, F ,

that provides a common framework to compare experimental and theoretical results,

helps to evaluate quantitatively the deviations from the expected Frank-Condon val-

ues for the vibrational branching ratios, and provides a qualitative measure of the

relative effect that features causing non-Franck-Condon behavior have in general.

II.1.1 Ro-vibronic transitions

Transitions between two different electronic states of a diatomic molecule may also

involve changes in both vibrational and rotational state. The analysis of such tran-

sitions allows for the determination of equilibrium internuclear distances and disso-

ciation energies of the excited states produced. In this sense, each molecular state

contains electronic, Te, vibrational, Gv, and rotational, Fv(J), contributions to the

total energy [7]. The actual transition and energy difference between upper (single

∗“Reproduced in part with permission from “Mechanisms of Franck-Condon breakdown over a
broad energy range in the valence photoionization of N2 and CO” by J. A. López-Domı́nguez,
David Hardy, Aloke Das, E. D. Poliakoff, Alex Aguilar and Robert R. Lucchese, J. Elec-
tron Spectrosc. Relat. Phenom. 185 211-218 (2012). Copyright 2012, Elsevier B.V.”
[http://dx.doi.org/10.1016/j.elspec.2012.06.016]

27



primed) and lower (double primed) states will be given by,

hν = (T ′e − T ′′e ) + (Gv′ −Gv′′) + (Fv′(J
′)− Fv′′(J ′′)) (II.1)

II.1.2 The Franck-Condon approximation

As was mentioned in Chapter I, when Equation (II.1.2) is valid, it is assumed that

matrix element Mi,f,~k,n̂(R0) is independent of R. One important consequence of the

Franck-Condon (FC) approximation is that the branching ratios, defined in Equation

(I.63), are reduced to energy independent ratios of squares of vibrational overlap

integrals, and will have the form

BFC
v′,v′′ =

|〈χi,v(R)| χf,v′(R)〉|2

|〈χi,v(R)| χf,v′′(R)〉|2
(II.2)

Each of the integrals in the branching ratio BFC
v′,v′′ is called a FC overlap, and

provides an expression to determine the relative final state intensities as a function

of v. By looking at Figure II.1 this “overlap” takes a more physical meaning, since it

is clear as indicated by the blue arrow, that a transition between two vibrational levels

(from different electronic states) will be favored when there is an overlap between

the two vibrational envelopes. In the example depicted, such transition goes from

v′′ = 0 to v′ = 2, and purely from this perspective the probability of a transition

from v′′ = 0 to either v′ = 0 or v′ = 1 is very low, since there is a very small overlap

between the two vibrational wave functions. If an absolute probability is desired,

then the electronic matrix element is needed. In the evaluation of the FC overlap

integrals, symmetry is not always useful, since the symmetry of initial, i, and final,

f, electronic states may not be the same. If the overlap integral is to be non-zero,

both electronic states must belong to the same irreducible representation [36].

For diatomic molecules, the dependence of the overlap on the final electronic

and vibrational state can be determined qualitatively by looking at the electronic

potential energy curves, where usually the excited state equilibrium geometry is

displaced with respect to the initial ground state (see in Figure II.1 the displacement

labeled as q01). When there is a considerable overlap between an initial bound state

2Figure by Mark M. Somoza, used under the Creative Com-
mons: [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0
(http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0
(http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons
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Figure II.1: Franck-Condon principle energy diagram. Since electronic transitions
are very fast compared with nuclear motions, vibrational levels are favored when
they correspond to a minimal change in the nuclear coordinates. From the overlaps
depicted it is clear that the transition from v = 0 to v′ = 2 is favored.2
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and a final dissociative continuum state, a portion of the band spectrum will be

expected to be continuous. It is important to note that the square of the overlap

of initial and final states gives the probability of the transition to happen (we can

understand Equation (II.2), as a ratio of two probabilities).

In cases where the overlap is very small, near to zero, even if symmetry allowed,

its said to be FC forbidden, and as may be deduced from the qualitative definition

of the overlap integral, this will occur when the initial and final states have very

different equilibrium geometries. In contrast, there are many cases for polyatomic

molecules, within the FC approximation, where the cross sections leading to certain

vibrational states of the ion can be zero by symmetry, and thus, the transition will

be a forbidden one. In those cases if there is a break down of the FC approximation

it can lead to a vibronic transition induced by the lowering of the symmetry of the

molecule by the vibrational motion. This is known as a type ‘a’ vibronic transition

[37]. As expected those types of transitions are stronger near resonances in the

photoionization process. Breakdown of the FC approximation is not the only reason

that may lead to the observation of an otherwise forbidden transition. If it is due to

a breakdown in the Born-Oppenheimer approximation for the final ionic state, it is

known as type ‘b’ vibronic transition, and the molecular state is thus a mixture of

states with same vibronic symmetry but from electronic states of different symmetry

[16]. When there is a strong geometry dependence of an electronic transition moment

Mi,f,~k,n̂(R0), then the FC approximation no longer holds and breaks down. This

phenomena can happen for different reasons, one of the most prominent being that

the photoionization energies are near to the energies of resonant processes. Two

important examples that have become standards to exemplify this behavior are the

photoionization of N2 and CO, that will be addressed with detail in the next chapter

[16].

II.1.3 Franck-Condon factors

According to the FC principle the transfer of excitation in an electronic transition

occurs in a time that is short compared with that required for vibrational motion to

take place. Assuming that a transition moment Te′,e′′ varies slowly with internuclear

coordinates, q, the absolute probability, Pv′,v′′ for the transition mentioned before, is

given by [38],

Pv′,v′′ = [Te′,e′′ ]
2 |〈χi,v(R)| χf,v′(R)〉|2 (II.3)
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The second term of the product is referred to as the FC factor, and it is obvious

from Equation (II.3) that it will be proportional to Pv′,v′′ when Te′,e′′ is constant.

Theoretically, the evaluation of this FC factors requires to know the vibrational

wave functions for the initial and final states. These wave functions can be obtained

using a number of different assumptions and approximations of which the use of

a harmonic oscillator normal mode basis is probably the best known. Although

the use of the harmonic basis has proven its utility particularly at low energies,

it is clear that the assignment of normal-modes for individual states become more

difficult due to anharmonicity effects as vibrational energy increases, so that the use

of other approximations such as the Morse potential, or more complex functions are

required. In this context, there have been a number of functions proposed to evaluate

the FC factors. López et al. [31] suggested a model to calculate 1-D Morse functions

overlaps, using the Morse potential eigenstates. Starting from the one dimensional

Morse potential function,

V (x) = D[(1− e−βx)2 − 1], (x = R−Re) (II.4)

where D is the bonding energy and x = R − Re is the position with respect to the

equilibrium geometry, Re. The energy spectrum is described by Ev = −~2β2

2µ
(j− v)2,

with j =
√

2µD
β~ − 1/2. Taking this potential as a starting point, they define an

overlap integral f1,2, and consequently FC factors which depends on the number of

anharmonic phonons ν and other quantities defined within the Morse energy ex-

pression, to give an explicit formula (see Equation (20) on reference [31]). Different

approaches have been taken by Frank et al. [30], who started from a harmonic oscil-

lator potential and defined overlap integrals for diatomic molecules based on the so

called Bogoliubov algebraic transformations [30]. Also, using two one-dimensional

harmonic oscillators Castañeda and co-workers [39], derived an algebraic self con-

tained method to compute FC overlaps and factors in the form of sums of products

of Hermite polynomials. As can be seen, there are several methods for the evalua-

tion of the Franck-Condon and non-Franck-Condon factors [29–31, 39] for different

systems (polyatomic molecules, harmonic oscillators, Morse potentials, etc.). Here

we derive and implement two new approximations to this problem, considering first

an expansion of the matrix element of the dipole operator ~µ up to first order terms,

and second an extension where we also assume harmonic oscillator functions and the
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same frequencies in the initial and final vibrational states. This approach will be

tested later in Chapter III in the study of photoionization of systems of very high

symmetry and in the Chapter IV on a larger system with lower symmetry and in a

range of photon energies of more than 100 eV.

II.2 Theory

Within the Born-Oppenheimer or Chase approximation [22], widely used in molecular

photoionization theory (see Section I.2.3), both the bound electronic state and the

photoelectron wave function only depend on the position of the nuclei and not on

their momenta. Then, the initial state and final total scattering state wave functions

may, respectively, be written as [16],

Ψi(r, q) = ψi(r; q)χv,i(q) (II.5)

Ψ
(−)

f,~k
(r, q) = ψ

(−)

f,~k
(r; q)χv+,f(q) (II.6)

where r represents the electronic coordinates, q represents the generalized normal

mode nuclear coordinates, and χv,i(q) and χv+,f(q) are the initial and final state

vibrational wave functions, note these two equations are the same as Equations

(I.58) and (I.59) just with different selection of coordinates. Here, the (−) symbol

is used in the conventional way to denote an outgoing asymptotic wave within the

total scattering (Ψ
(−)

f,~k
(r, q)) or continuum (ψ

(−)

f,~k
(r; q)) states.

In photoionization, the transition matrix elements in the dipole length form can

be expressed as [40,41],

f
(f←i)
~k,n̂

= (k)1/2
〈

Ψi

∣∣∣ ~µ · n̂ ∣∣∣Ψ(−)

f,~k

〉
(II.7)

where ~k is the momentum of the photoelectron, n̂ is the direction of the polarization of

the light, and ~µ is the dipole operator. The (k)1/2 factor changes the normalization

of continuum functions Ψ
(−)

f,~k
from momentum to energy normalization [41]. Then

applying Equations (II.5) and (II.6) to the transition matrix element we get

f
(v+←v)
~k,n̂

=
〈
χv,i(q)

∣∣∣µ(~k, n̂, q) ∣∣∣χv+,f(q)〉
q

(II.8)
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where

µ
(
~k, n̂, q

)
=

〈
ψi(r; q)

∣∣∣∣∣∑
j

e~rj · n̂

∣∣∣∣∣ψ(−)

f,~k
(r; q)

〉
r

(II.9)

Then by using Equation (II.8), the vibrationally specific cross sections are obtained

by averaging over all orientations of the field and integrating over the emission di-

rection of the photoelectron, yielding the expression,

σv+←v =
π

cE

∫
dΩk̂

∫
dΩn̂

∣∣∣f (v+←v)
~k,n̂

∣∣∣2 (II.10)

where Ωĵ is the solid angle in the ĵ direction, c is the speed of light and E is the

energy of the photon. Thus, from this definition, the branching ratio Rv+j ←v/v
+
i ←v

for

the excitation of the v+
j state, relative to the v+

i state is defined as

Rv+j ←v/v
+
i ←v

=
σv+j ←v

σv+i ←v
. (II.11)

II.2.1 Breakdown of the Franck-Condon approximation

By considering the expansion of the dipole matrix element with respect to q around

the equilibrium internuclear distance q0 we obtain,

µ
(
~k, n̂, q

)
= µ

(
~k, n̂, q0

)
+

∂µ
(
~k, n̂, q

)
∂q


q0

(q − q0) + ... (II.12)

Introducing Equation (II.12) into the total cross section allows us to rewrite it as,

σv+←v =
1

4π

∫∫
dΩk̂dΩn̂

∣∣∣∣∣µ(~k, n̂, q0) 〈χv+,f(q)| χv,i(q)〉

+

[
∂µ(~k, n̂, q)

∂q

]
q0

〈χv+,f(q)| (q − q0) |χv,i(q)〉+ · · ·

∣∣∣∣∣
2 (II.13)

If this expansion is truncated at the first derivative and only the first order terms

are retained, Equation (II.13), when all vibrational integrals are real valued, can be

expressed as

33



σv+←v =

[
1

4π

∫∫
dΩk̂dΩn̂

∣∣∣µ(~k, n̂, q0)
∣∣∣2] 〈χv+,f(q)| χv,i(q)〉2

+

 1

4π

∫∫
dΩk̂dΩn̂2R

µ∗(~k, n̂, q0)

[
∂µ(~k, n̂, q)

∂q

]
q0


× 〈χv,i(q)| χv+,f(q)〉 〈χv+,f(q)| (q − q0) |χv,i(q)〉 .

(II.14)

For simplicity, we define the integral factors multiplying the vibrational wave function

matrix elements on Equation (II.14) as σ(0) and σ(1),

σ(0) =
1

4π

∫∫
dΩk̂dΩn̂

∣∣∣µ(~k, n̂, q0)
∣∣∣2

σ(1) =
1

4π

∫∫
dΩk̂dΩn̂2R

µ∗(~k, n̂, q0)

[
∂µ(~k, n̂, q)

∂q

]
q0

 (II.15)

where σ(0) is the total cross section at q0 and σ(1) is the first derivative of the total

cross section with respect to q at q0. Higher order terms coming from the original

expansion might be written as σ(j) with j > 1 and can provide more accurate ex-

pressions for the photoionization matrix elements if the µ(~k, n̂, q0) have significant

geometry dependence in the range of vibrational integrals. Now the total cross sec-

tion from Equation (II.13) can be rewritten in terms of Equation (II.15) to become,

σv+←v = σ(0) 〈χv+,f(q)| χv,i(q)〉2 + σ(1) 〈χv,i(q)| χv+,f(q)〉 〈χv+,f(q)| (q − q0) |χv,i(q)〉
(II.16)

When the Franck-Condon branching ratio is not zero, it is useful to write Rv+1 ←v/v
+
0 ←v

in terms of the Franck-Condon branching ratio

Rv+1 ←v/v
+
0 ←v

= R
(FC)

v+1 ←v/v
+
0 ←v
×

1 +
σ(1)

〈
χ
v+1 ,f

(q)

∣∣∣∣(q−q0)

∣∣∣∣χv,i(q)〉
σ(0)

〈
χ
v+1 ,f

(q)

∣∣∣∣χv,i(q)〉

1 +
σ(1)

〈
χ
v+0 ,f

(q)

∣∣∣∣(q−q0)

∣∣∣∣χv,i(q)〉
σ(0)

〈
χ
v+0 ,f

(q)

∣∣∣∣χv,i(q)〉
(II.17)
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where

R
(FC)

v+1 ←v/v
+
0 ←v

=

〈
χv+1 ,f(q)

∣∣∣ χv,i(q)〉2

〈
χv+0 ,f(q)

∣∣∣ χv,i(q)〉2 . (II.18)

Keeping only first-order terms, together with the already defined Franck-Condon

vibrational branching ratio in last equation, we have [42]

Rv+1 ←v/v
+
0 ←v

= R
(FC)

v+1 ←v/v
+
0 ←v

×

1 +
σ(1)

〈
χv+1 ,f(q)

∣∣∣ (q − q0)
∣∣∣χv,i(q)〉

σ(0)
〈
χv+1 ,f(q)

∣∣∣ χv,i(q)〉 −
σ(1)

〈
χv+0 ,f(q)

∣∣∣ (q − q0)
∣∣∣χv,i(q)〉

σ(0)
〈
χv+0 ,f(q)

∣∣∣ χv,i(q)〉


(II.19)

We can define the electronic contribution to the non-Franck-Condon behavior as

F =
σ(1)

σ(0)
, (II.20)

which using the first-order expansion in Equation (II.19) can be written as

F =

Rv+1 ←v\v
+
0 ←v

R
(FC)

v+1 ←v\v
+
0 ←v

− 1


×


〈
χv+1 ,f(q)

∣∣∣ (q − q0)
∣∣∣χv,i(q)〉〈

χv+1 ,f(q)
∣∣∣ χv,i(q)〉 −

〈
χv+0 ,f(q)

∣∣∣ (q − q0)
∣∣∣χv,i(q)〉〈

χv+0 ,f(q)
∣∣∣ χv,i(q)〉

−1 (II.21)

II.3 Harmonic approximation

Equations (II.20) and (II.21), provide a way to analyze experimental and theoretical

branching ratio data to emphasize the geometry dependence of the transition moment

and factor out the effects of the change in geometry and frequency of vibrations when

going from the initial state to the ion state. A more compact and easily applied form

can be obtained by assuming the same frequency for the initial and final vibrational

states and harmonic oscillator vibrational wave functions, for (1 ← 0/0 ← 0) and
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(2← 0/0← 0) reducing Equation (II.20) to [42]

F = ±
(

2R
(FC)
1←0/0←0

) 1
2

[
R1←0/0←0

R
(FC)
1←0/0←0

− 1

]
(II.22)

and

F = ±

(
R

(FC)
2←0/0←0

2

) 1
4
[
R2←0/0←0

R
(FC)
2←0/0←0

− 1

]
(II.23)

where the sign depends on the direction of displacement of the ion state potential

energy function from that of the neutral state. These expressions were derived as-

suming that q = ±1 correspond to the inner and outer classical turning points of the

initial state vibrational wave function. It is noteworthy from these expressions that

F = 0 corresponds to the Franck-Condon behavior, as can be seen from the terms in

the square brackets in Equations (II.21) to (IV.5), when Ri←0/0←0 = R
(FC)
i←0/0←0, for

i = 1, 2.

II.4 Conclusion

We showed how the F factor can be related to the deviation of the branching ratios

from their Franck-Condon value allowing the experimental data to be presented as

measured F factors. In particular, when F = 0, the Franck-Condon approximation

is valid. Then the deviation from zero indicates the extent of the breakdown of the

Franck-Condon approximation.
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CHAPTER III

MECHANISMS OF FRANCK-CONDON BREAKDOWN ON HIGHLY

SYMMETRIC MOLECULES∗

III.1 Introduction

We mentioned in Chapter II how the behavior of vibronic intensities within the

Franck-Condon approximation provides a good insight into the geometry depen-

dence of electronic transitions. In this chapter we explore this phenomena in close

connection to resonances but even more in connection to molecular Cooper mini-

mum [28,43]. The main focus is on highly symmetric systems, and for such purpose

we take as benchmarks the well known molecular photoionization of two isoelectronic

diatomic molecules: N2 and CO.

The molecular photoionization of N2 leading to the 3σ−1
g , 2σ−1

u ion states and CO

leading to the valence isoelectronic 5σ−1, 4σ−1 ion states is studied using theoretical

methods, and the results are compared with the experimental results obtained by our

collaborators giving a picture of the utility of the methods derived in this work [42].

The vibrational branching ratios were obtained in the 15 to 200 eV photoelectron

energy range. The analysis of the computed branching ratios for these processes

showed a breakdown in the Franck-Condon approximation in the range of energies

studied. Some of the deviations at lower energies are well documented as being due to

shape resonances, in such cases we found good agreement between the present work

and previous experimental and theoretical investigations of these photoionization

channels. Besides the shape resonances, both N2 and CO ionization showed that

the partial wave cross sections have an interference pattern similar to a Young-type

interference [44, 45], which are related to molecular Cooper minima [46–49]. Such

features are seen to induce non-Franck-Condon effects in the vibrational branching

ratios at higher energies.

The interpretation of the vibrational structure of photoelectron spectra is usually

∗“Reproduced in part with permission from “Mechanisms of Franck-Condon breakdown over a
broad energy range in the valence photoionization of N2 and CO” by J. A. López-Domı́nguez,
David Hardy, Aloke Das, E. D. Poliakoff, Alex Aguilar and Robert R. Lucchese, J. Elec-
tron Spectrosc. Relat. Phenom. 185 211-218 (2012). Copyright 2012, Elsevier B.V.”
[http://dx.doi.org/10.1016/j.elspec.2012.06.016]
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made using the adiabatic, or Born-Oppenheimer, approximation (see Section I.2.3),

in which the time scale of the ionization process is assumed to be so short that the mo-

tions of the nuclei are effectively frozen during this process, i.e. that the bond length

remains basically constant during the transition (see for example [32]). With the

additional approximation that electronic transition matrix elements do not depend

on the geometry, i.e. the Franck-Condon approximation (see section II.1.2), the rel-

ative intensity of ionization to different final vibrational states of the same electronic

state can be then understood by considering the overlap between the vibrational

wave functions of the initial and final states. Furthermore, the ratio of cross sections

between different final vibrational levels will then not depend on the photon energy.

Observations of how vibrational branching ratios vary as a function of energy from

the corresponding Franck-Condon values provide a good indication of the geometry

dependence of a specific electronic transition. Deviations from the Franck-Condon

principle can have a variety of origins, such as shape resonances and interchannel

continuum coupling effects [25], autoionization [26], geometry dependent interfer-

ence effects [27] and Cooper minima [28] among others. In this chapter we focus

on the breakdown of the Franck-Condon approximation related to the appearance

of Cooper minima in the photoionization total cross sections. This phenomenon is

characterized by a change of sign in a dipole matrix element as a function of photon

energy. Therefore at a Cooper minimum a particular matrix element goes through

zero, which in certain circumstances can be accompanied by a rapid change in the

photoelectron asymmetry parameter β [49, 50].

Originally Cooper minima were observed as an atomic phenomena [43] on multiple

atoms and later were studied in a more systematic manner for atoms throughout the

periodic table, finding them in ionization from subshells with nodes in their wave

functions [50]. As a molecular feature, a general review was presented by Carlson et

al. [49] who studied Cooper minima as a function of atomic number, subshell and

molecular environment for the case where the initial orbital is nearly atomic. Such

atomic-like Cooper minima are relatively insensitive to geometry and are thus not

expected to lead to the breakdown of the Franck-Condon principle. In contrast to

this case, there are also molecular Cooper minima which arise from the geometry

dependence of the initial or final state wave functions. Geometry dependence of

Cooper minima in molecules has been observed by Stephens and McKoy [46], and

others.
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The molecular photoionization of CO and N2 has been widely studied, both

theoretical and experimentally [28, 41, 51–58]. In particular, previous experiments

and theoretical studies of the vibrational branching ratios at low energy for the

X2Σ+
g state of N+

2 and X2Σ+ state of CO+ [52] and the B2Σ+
u state of N+

2 and

B2Σ+ state of CO+ [51] and high energy for the B2Σ+
u state of N+

2 [28] have been

performed. Here, along with our theoretical calculations, we include data from newly

measured high energy experimental vibrational branching ratios for the X and B

ion states of N+
2 and CO+ obtained from photoelectron spectroscopy (done by our

experimental collaborators at Louisiana State University), allowing for a consistent

treatment of the four states considered here [42]. The N2 and CO A states appearing

at intermediate ionization potentials are not considered in the present work where we

have focused on the electronic X and B states. These two states have very similar

ionic potential energy curves and are related by the fact that in the CO molecule

the X and B states are of the same symmetry and can be thought of as a linear

combination of the corresponding states in N2. In any case, the A states have been

extensively studied by other authors [52].

We proposed in Chapter II an alternative presentation of vibrational branching

ratios which is directly related to the logarithmic derivatives of the cross section with

respect to bond length (see Equations (II.19) to (IV.5)). This provides a mean to

compare the breakdown of the Franck-Condon approximation across systems with

differing frequencies and bond shifts upon ionization. We have additionally ana-

lyzed the resulting non-Franck-Condon behavior at higher energy in terms of Cooper

minima within the Cohen-Fano framework. Cohen and Fano [53] showed that pho-

toelectrons emitted from more than one atomic center can exhibit interference ef-

fects related to the well known Young’s double slit experiment [44]. Evidence of

interference phenomena may be seen from the total cross section reported there as

σ = σ0[1 + (sin kR)/(kR)] where σ0 is the atomic photoionization cross section (for

a hydrogen-like atom of atomic number Z∗), k is the electron wave vector and R the

internuclear distance.

More recently it has been reported that the photoionization of H2 and H+
2 oriented

perpendicularly to the polarization direction of the light exhibit a typical Young’s

double-slit interference pattern [45, 59–62]. Similar studies support the interpreta-

tion of the photoemission from homonuclear diatomic molecules, such as N2, in terms

of a double-slit experiment [63]. The case of heteronuclear diatomic molecules has
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been less explored, although also in the original work by Cohen and Fano [53], it

was proposed that for this type of systems the modulation interference will pro-

ceed approximately as sin 2kR since parity considerations have less relevance than

in the case of homonuclear systems. The recent work by Canton et al. [52] suggests

that having non identical centers, the interferences should differ from those coming

from homonuclear molecules (just like having two different slits in the Young’s ex-

periment), but that coherent emission of the electron wave is still possible given a

sufficiently delocalized ionized molecular orbital over the two nuclei.

The systems studied here, N2 and CO are a good benchmark for photoionization

studies, especially with respect to using molecular probes as interference modulators,

since both are small enough for accurate calculations providing a definitive interpre-

tation. Another interesting feature that makes these two molecules suitable for a

comparison between homonuclear and heteronuclear centers is the fact they are iso-

electronic, having basically the same electronic ground state configuration, 1σ2
g 1σ2

u

2σ2
g 2σ2

u 1π4
u 3σ2

g for N2 and 1σ2 2σ2 3σ2 4σ2 1π4 5σ2 for CO.

III.2 Calculations

In this study, we used a range of geometries (bond lengths) of N2 and CO including

the corresponding equilibrium values, RN−N/Å = 0.8763, 0.9206, 0.9649, 1.0091,

1.0534, 1.0977 (equilibrium), 1.1419, 1.1861, 1.2304, 1.2746, 1.3189 and RC−O/Å =

0.9179, 1.00194, 1.04396, 1.08598, 1.12800 (equilibrium), 1.17002, 1.21204, 1.25406,

1.29608, 1.33810 respectively. All the electronic structure calculations on the bound

states have been done with the MOLPRO suite of programs [64]. The systems were

studied at the Hartree-Fock (HF) level for both the initial and ion states. The

scattering calculations were performed using a single channel frozen-core Hartree-

Fock approximation (SCFCHF) with the ePolyScat suite of programs [65, 66]. For

these calculations, the maximum l in the partial wave expansion of the scattering

wave functions and orbitals is 75. The vibrational wave functions for the initial

χv(qi) and ion states χv+(qi) were taken to be the Morse oscillator eigenfunctions

with the parameter obtained from Herzberg and Huber [67]. The electronic factor F

was calculated using two approaches. First we directly computed F using Equation

(II.20), where the derivatives were computed by numerical differentiation. Second, we

computed F using Equation (II.22), where the branching ratios were computed using
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Equations (II.8) and (II.11) with the full q dependent transition matrix elements

and using Morse oscillators functions for the vibrational wave functions. These two

approaches for computing F should give the same values to the extent that the

oscillators are nearly harmonic and the higher order terms, which were neglected

in the derivation of Equation (II.22), are indeed small. Finally, the experimental

data was treated by using Equaiton (II.22) to express vibrational branching ratios

in terms of the F electronic factors. The experimental methods used to produce the

results that we show here in comparison of the theoretical calculations, were done by

the group of Professor Erwin Poliakoff in the Chemistry Department at Louisiana

State University, and the details can be found in reference [42].

III.3 Results and Discussions

In Figures III.1, III.2, III.3 and III.4 we present the experimental and computed

electronic factors leading to the X and B states of N2 and CO. In each case we have

only considered the (0 ← 1)/(0 ← 0) ratio and we have used Equation (II.22) to

convert the experimental branching ratios to experimental electronic factors using

computed Franck-Condon branching ratios. In Figure III.1 we give the data for the

N+
2 X state, where we have converted the experimental data to electronic factors

using the computed Franck-Condon value of 0.0854. In this figure we see the strong

deviation from the Franck-Condon value at low energy with only a weak energy

dependence above 100 eV. In Figure III.2 we present the electronic factor for the

ionization leading to the X state of CO+ where we have used the computed Franck-

Condon branching ratio of 0.03713 to compute the experimental F . In this case,

there is both a strong resonance feature at low energy and a deviation from the

constant Franck-Condon at high energy. In Figures III.3 and III.4, the corresponding

electronic factors for ionization leading to the B states of N+
2 and CO+ are also

given. In case of the N+
2 B state, the Franck-Condon ratio used was 0.12478 and

in the case of the CO+ B state we used 0.36544. Plotted in terms of the electronic

factors (F ), the high energy deviations from the constant Franck-Condon result is

seen fairly similar for these two cases, in contrast to how these results appear when

the branching ratios are plotted [51] where there appears to be much less variation

in the case of CO at high energy when compared to the ionization to the N+
2 B

state. Here, we convert experimental branching ratios to the F factors by scaling the
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Figure III.1: Theoretical and experimental F factors for photoionization leading to
the N+

2 X2Σ+
g ion state. The analysis of the experimental data was based on the

computed R(FC) = 0.0854. The dot-dash gold line is the F factor computed using
Equation (II.22). The red line is the F factor computed using Equation (II.20).
The solid green line is the partial wave contribution to the F factor in Equation
(II.20) from partial waves that have Cooper minima. The dashed green line is the
contribution to F from the partial waves without a Cooper minimum. In this figure
experimental errors are approximately the same size as the symbols used to plot the
data.
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branching ratios relative to the Franck-Condon value by the factor
(
2R(FC)

)(1/2)
as

indicated in Equation (II.22). The relative errors are also scaled by the same factor.

The scatter in the experimental branching ratio data is nominal (i.e., relative errors

are on the order of 4-6 %), however the scaling used to compute the F factor leads to

larger experimental errors in the derived F values for the states which have the larger

Franck-Condon branching ratio, e.g. in the CO B state case where R(FC)=0.36544.
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Figure III.2: Theoretical and experimental F factors for the photoionization leading
to the CO+ X2Σ+ ion state. Experimental values were derive assuming R(FC) =
0.03713. The definitions of the lines are the same as in Figure III.1.

III.3.1 The effects of shape resonances in the photoionization branching

ratios of N2 3σg and CO 5σ orbitals

Both N2 and CO are known to have prominent σ∗ shape resonances which con-

tribute to the photoionization of the X (3σg)
−1 ground state of N+

2 and the X

(5σ)−1 ground state of CO+ [23, 24, 68–70]. Due to the sensitivity of the resonant

state energies to bond length, there are also significant non-Franck-Condon effects

in the corresponding branching ratios [28, 51]. These features appear in the present

calculations. The top panels of Figures III.5 and III.6 show the geometry depen-
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dence of the total fixed nuclei cross sections for these two molecules. At low energy,

the cross sections are rapidly changing with geometry, leading to the large devia-

tions of the electronic factor from zero seen in Figures III.1 and III.2. Qualitatively,

the geometry dependence of the shape resonance feature can be understood with

a particle-in-a-box model [71] with longer (shorter) bond lengths leading to lower

(higher) resonance energies. The one-electron photoionization processes for these

two isoelectronic molecules have very similar patterns, although all shared features

appear shifted to lower energies (by about 10 to 15 eV) in CO compared to the

corresponding features in N2. One reason for this shift can be the difference in equi-

librium bond lengths (RCO,eq = 1.12800Å and RN2,eq = 1.0977Å) which pulls the

shape resonance and other non-Franck-Condon effects to lower energies for the CO.

III.3.2 The effect of shape resonances in the photoionization of the N2

2σu and CO 4σ orbitals

In the ionization from the 4σ orbital in CO leading to the B state, we can also see

the effects of the shape resonance. In contrast, the ionization from the corresponding

2σu orbital of N2 does not have a shape resonance, since the 2σu → kσu channel is

symmetry forbidden and we have neglected interchannel coupling, leading to much

smaller non-Franck-Condon effects than in the case of ionization of CO leading to

the B state [51].

III.3.3 High energy non-Franck-Condon effects analyzed by partial waves

To understand the non-Franck-Condon effects at energies above the shape resonances,

it is helpful to consider the partial wave expansion of the cross sections. The total

molecular photoionization cross section as expressed in Equation (II.16) can also be

regarded as the sum of the contributions from different partial waves (l,m) (see for

example [5]) that can be written as,

σv+←v =
∑
l,m

σl,m. (III.1)

Any feature appearing in the total cross section may then be understood as

reflecting a similar behavior in one, several, or all of the partial waves contributions

σl,m. In Figure III.5, we see the geometry dependence of the total fixed nuclei cross
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Figure III.5: Total cross sections for the photoionization leading to the N+
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ion state at different values of internuclear distance R (top); and relevant partial
cross sections of the same transition for the σl = 1, 3, 5 and πl = 1, 3, 5 partial waves
(bottom) at the equilibrium bond length (Req = 1.0977Å).
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section and the important partial wave contributions to the N+
2 X state. At high

energies the geometry dependence mainly comes from the 3σg → kπu channel. We

show in Figure III.7 how the (l,m) = (3, 1) partial cross section shifts as a function

of the internuclear distance (similar behavior is observed in other partial waves not

shown here). The corresponding CO total and partial photoionization cross sections

leading to the corresponding X state are given in Figure III.6. Here we see that two

prominent partial waves with strong Cooper minima features are the (l,m) = (3, 1)

and (l,m) = (4, 0). In Figure III.8, we can again see strong dependence on the

internuclear distance in the (l,m) = (3, 1) and (l,m) = (4, 0) partial cross sections.

A reason for the weak geometry dependence in the photoionization leading to the X

state of N+
2 at around 100 eV compared to the corresponding dependence observed

for CO, is the lack (for symmetry reasons) of the (4, 0) partial wave being excited in

the N2 ionization, and being responsible a great part of the Franck-Condon departure

for CO in this channel. In Figures III.1 and III.2 we decompose the computed F

factors for ionization leading to the X states of N2 and CO into the contribution from

partial waves that do and do not contain Cooper minima. To compute the partial
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wave contributions to F , as defined in Equation (II.20), we partial wave expand the

derivative of the cross section found in the numerator but then divide it by the total

cross section. In this way the different partial wave contributions to F will sum to

the correct total value. For ionization leading to the X states of N2 and CO we see

that the deviations of F from zero are dominated by partial waves which contain a

Cooper minimum like structure.

A similar partial wave analysis has been performed for the ionization leading

to the B states of N2 and CO. In Figures III.3 and III.4 the electronic factor, F

(Equation (II.20)), was calculated separately for those waves containing a Cooper

minima and for those not exhibiting such Cooper minima. In the case of the CO

molecule, it can clearly be seen that the non-Franck-Condon behavior is due to a

large contribution from the Cooper minima but there is also a mixed effect from

non-Cooper-minima partial waves. One possible source for the non-Cooper-minima

non-Franck-Condon effects is the sensitivity of the orbital which is being ionized

to changing geometry. This is particularly true for the 5σ and 4σ orbitals of CO,
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which are ionized to produce the X and B states, that have lower symmetry than

the corresponding orbitals in N2. For the N2 photoionization from Figure III.3 it

is evident that almost all the non-Franck-Condon behavior comes from the Cooper

minima and not from other effects.

III.3.4 Cohen-Fano-like interference phenomena from diatomic molecules

photoionization

As a way of making a comparison between the Cohen-Fano interference phenomena

and the molecular Cooper minima in the photoionization of diatomic molecules, we

computed the cross sections using plane waves for the continuum rather than the

scattered waves discussed above. A comparison of plane wave and scattered wave

cross sections will allow us to consider the extent to which Cooper minima effects seen

in this system can be attributed the interference effects in the Cohen-Fano model of

photoionization.

In Figure III.9 a single partial wave obtained within the plane wave approxi-

mation exhibiting a Cooper minimum like phenomena was plotted as a function of

geometry. The cross section is highly geometry dependent as can be readily seen,

just as its scattered wave analogs (see Figure III.8) but featuring those minima at

higher energies. The geometry dependence of this partial wave is close to the Cohen-

Fano interference pattern [53] predicted for heteronuclear molecules (2keR ≈ lπ) with

l = 4. There are differences in the shape and position of the minima, that should

not be overlooked. Thus the non-resonant non-Franck-Condon behavior of the sys-

tems considered here can in large part be attributed to an interference phenomena

analogous to the Young’s Double slit experiment as mentioned elsewhere [47, 52, 54]

which appear as Cooper minima in the partial wave expansion.

III.4 Conclusion

The new experimental photoelectron data presented on the vibrational branching

ratios for the photoionization of the two outer valence σ orbitals of CO and N2 for

photon energies from threshold to 200 eV was analyzed by a comparison to computed

branching ratios. To assist in the comparison between theory and experiment, we

use the electronic factor F , which is defined as the logarithmic derivative of the cross

section with respect to a scaled bond length (see Chapter II).
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An analysis of the non-Franck-Condon behavior using the electronic factors in

these systems shows the effects of the much studied shape resonances at low photon

energy. At higher energy, we see the deviations from the Franck-Condon value that

have been previously described as being due to molecular Cooper minima [28, 55]

and as being due to interference from the ionization from two centers as described by

Cohen and Fano [53]. We find that in N2 and CO, these two descriptions are related

by the fact that the partial wave matrix elements obtained from decomposition of

the plane-wave matrix elements used in the Cohen-Fano analysis also have energies

at which they change sign which is the characteristic of a Cooper minimum. The

resulting minima of the plane-wave partial cross sections then correlate with the

oscillations in the total cross sections seen in the Cohen-Fano analysis. A comparison

of the four cases considered shows that, except for the X state of N+
2 , all have

similar F factors at high energy in the region of the Cooper minima or equivalently

the Cohen-Fano oscillations. A comparison of the X states for N+
2 and CO+ at

these energies shows that the (l,m) = (4, 0) partial wave in the CO cross section

makes a significant contribution to the geometry dependence of the cross section.

By symmetry this partial wave is not excited in the ionization leading the the X

state of N+
2 , so that the F factor is much reduced for N2 when compared to CO.
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CHAPTER IV

VIBRATIONALLY SPECIFIC PHOTOIONIZATION CROSS

SECTIONS FROM LOW-SYMMETRY MOLECULAR SYSTEMS ∗

IV.1 Introduction

In this chapter we study the molecular photoionization of acrolein, a low symmetry

molecule, in a range of photon energies ranging from 11 to 100 eV [72]. The vibra-

tional branching ratios in the photoionization of acrolein for ionization leading to the

X̃ 2A′ ion state were studied. Computed logarithmic derivatives (see Chapter II) of

the cross section and the corresponding experimental data derived from measured

vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were

found to be in relatively good agreement, particularly for the lower half of the range

of photon energies considered. We found two shape resonances near photon energies

of 15.5 and 23 eV in the photoionization cross section and we demonstrated they

originate from the partial cross section of the A′ scattering symmetry. It is impor-

tant to note that the wave functions computed at the resonance complex energies

are delocalized over the whole molecule. By looking at the dependence of the cross

section on the different normal mode displacements together with the wave function

at the resonant energy, a qualitative explanation is given for the change of the cross

sections with respect to changing geometry. The discovery that low-energy electron

collisions with DNA can lead to single and double strand breaks [33] has lead to much

interest in the study of such collisions with molecules which are models for fragments

of DNA [34] and more generally of collisions with larger, low-symmetry molecular

systems. The mechanism for the strand breaking is thought to be the resonant cap-

ture of the scattered electron, which can lead to bond breaking through dissociation

of the metastable negative ion. Of course the probability for this dissociative process

depends on the lifetime of the resonant state and the coupling to the vibrational

modes of the system. Although electron-molecule collisions and molecular photoion-

∗“Reproduced in part with permission from “Vibrationally specific photoionization cross sections of
acrolein leading to the X̃ 2A′ ionic state” by Jesús A. López-Domı́nguez, Robert R. Lucchese, K.
D. Fulfer, David Hardy, E. D. Poliakoff, and A. A. Aguilar, J. Chem. Phys. 141, 094301 (2014).
Copyright 2014, AIP Publishing LLC”. [http://dx.doi.org/10.1063/1.4893702]
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ization are not the same process, in many cases the same dynamical mechanisms

control them. This is because the short-range potential experienced by a scattered

electron and a photoelectron are very similar [73]. Moreover, larger systems have

much smaller shifts in the resonance energies between the electron scattering and

the photoionization, [73] thus the resonances found in the photoionization will be

very close to those that would be experienced in the electron scattering process.

Resonances or in particular shape resonances are one of the most interesting phe-

nomenon within molecular photoionization, and are closely related to structural and

dynamical properties of the target initial and final states (see Section I.2.4). A shape

resonance occurs when the ejected photoelectron is temporarily trapped in the region

of the molecule by a dynamical centrifugal barrier [23] and eventually tunnels or is

scattered out into the free continuum. In molecular photoionization, the time delay

produced by such metastable states formed by the target and the ejected electron

can induce strong coupling between electronic and vibrational motions [24], mak-

ing the electronic transition matrix elements very sensitive to geometry changes and

thus, leading to deviations from the expected Franck-Condon behavior [24, 74], as

mentioned before. In this chapter, we present a study of the valence shell photoion-

ization of acrolein, CH2=CHCHO, where theoretical calculations are compared with

experimental results (which were measured in the experimental group of Professor E.

Poliakoff at Lousiana State University) to better understand the resonant states and

the coupling of the resonances to the vibrational modes of the molecule. A combina-

tion of the measured vibrationally resolved spectra and theoretical geometry-specific

cross sections are analyzed together with computed resonant wave functions.

It has been shown that in the vicinity of a resonance there is a sudden rise in

the eigenphase sum, δ(E) [5, 75, 76]. The eigenphase sum is computed from the

eigenvalues of the scattering S-matrix [76]. An isolated pole in the S scattering

matrix in the complex energy plane, on the unphysical sheet at an energy, E from

Equation (I.73) is generally associated with a resonance [5,77] (see also [78] and [79],

which discuss exceptional cases where the existence of S matrices producing sharp

resonances with no poles in the unphysical sheet) and thus with a rising eigenphase

sum. To understand the qualitative behavior of a resonant state it is interesting

to see the spatial location, nodal structure, and extent of the resonant state. By

computing the Siegert state wave function [80–82] at the complex energy where

the resonance is centered, i.e., at a pole of the S-matrix, and if the resonance is
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sufficiently narrow, one expects the electron density of the state to be well localized

in a specific region (or bond) of the molecule [74]. This has been shown to be

particularly true for linear molecules and diatomics. Although a quantitative rule

for the relation between energy position of a shape resonance and bond length is not

possible (see [23]), for diatomics at least, a qualitative relation between these two

quantities holds, specifically for σ resonances (localized on the bond axis). The case

for polyatomic molecules turns out to be more complicated, and even sometimes the

specific localization of the dynamical barrier that causes the resonant state within

the molecule’s framework cannot be located with the same degree of certainty as

in diatomic (or linear) molecules. The greater number of vibrational degrees of

freedom may increase the number of modes coupled to a given resonant state, thus

complicating its analysis. Here, we address the issue of the extent to which we can

extract information such as geometry sensitivity from the photoelectron scattering

dynamics of the dipolar low-symmetry polyatomic molecule, acrolein.

IV.1.1 Molecular model of study: acrolein

In the X̃ 1A′ electronic ground state both s-cis and s-trans isomers of acrolein, also

known as 2-propenal or prop-2-enal, have a planar equilibrium structure with a Cs

symmetry point group and electronic configuration

(1a′)2(2a′)2(3a′)2(4a)2(5a′)2(6a′)2(7a′)2(8a′)2(9a′)2

(10a′)2(11a′)2(12a′)2(1a′′)2(13a′)2(2a′′)2.
(IV.1)

It is important to note that this ordering, based on the calculated Hartree-Fock

orbital energies (Koopmans’ theorem), suggests that the HOMO-1 and HOMO are of

a′ and a′′ symmetries respectively (see also [83, 84]), nevertheless it has been shown

that the first band in the photoelectron (PE) spectrum corresponds to ionization

from the oxygen in plane lone-pair (nO that is the 13a′ orbital) [85, 86] as opposed

to ionization from the π(C=C) molecular orbital (2a′′). The matter of the ordering

and energetics of the three HOMO’s has been extensively discussed [87, 88], and it

has been shown that Koopmans’ theorem breaks down in the case of the ordering

of ion states in acrolein, where relaxation is smaller in the 2A′′ (2a′′) ion state than

in the 2A′ (13a′) state, due in part to the bonding and non-bonding nature of the

two orbitals respectively and the strong localization of the nO orbital [89]. Acrolein

56



Table IV.1: Vibrational normal modes for the ground state under consideration in
the present study.

Mode Symmetry Assignment

ν9 a′ CH vinyl bending

ν10 a′ C-C vinyl stretching

ν11 a′ =CH2 rocking

ν13 a′ C=C-C bending

O

H

H

H

H

Figure IV.1: Structural formula of the s-trans-acrolein molecule.

has eighteen vibrational normal modes in the ground state (which are described

completely elsewhere [90–93]) of which the in-plane vibrations have A′ symmetry

and the out-of-plane vibrations have A′′ symmetry. We investigated the sensitivity

of the dynamics of the molecular photoionization from the 13a′ orbital of s-trans-

acrolein to the A′ vibrations indicated in Table IV.1.

In this study we have concentrated on the s-trans isomer of acrolein since the

experimental portion of the work was carried out at room temperature and it is well

known that the s-cis isomer’s zero-point level lies approximately 770 cm−1 above the

s-trans form, so that the s-cis form is only four percent of the population at room

temperature [94]. Throughout this chapter, we report theoretical results accom-

panied by experimental measurements for the photoionization dynamics of s-trans-

acrolein (which we will refer to as just acrolein for convenience), with the structure

shown in Figure IV.1, leading to the X̃ 2A′ ion state. The experimental and theo-
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retical results are compared within the framework of logarithmic derivatives of the

cross sections with respect to geometry, previously reported as the electronic factor

F [42] (see Chapter II), providing a better understanding of the relation between

experiment and theory.

IV.2 Calculations

The photoionization calculations were performed within the Born-Oppenheimer or

Chase adiabatic approximation [22] (Section I.2.3). In the Chase approximation the

electronic ground state and photoelectron wave functions depend parametrically on

the nuclear coordinates allowing for the initial and the final total scattering state

wave functions to be written as [16],

Ψi(r, q) = ψi(r; q)χν,i(q) (IV.2)

Ψ
(−)

f,~k
(r, q) = ψ

(−)

f,~k
(r; q)χν+,f(q) (IV.3)

which are Equations (II.5) and (II.6). A set of fixed nuclear positions were used to

compute the vibration-state specific transitions within the normal mode coordinates

(qi) in a wide range of values, from qi = −3 to qi = +3 in one unit steps, where

qi = ±1 corresponds to the classical turning point in the ith mode. The initial

and final electronic state wave functions were calculated at the Hartree-Fock level of

theory, using the augmented correlation-consistent polarized valence triple-ζ [95,96]

(aug-cc-pVTZ) basis set and were computed using the Gaussian09 suite [97].

The photoionization cross sections have been computed using the Schwinger vari-

ational method [98,99] (see Section I.1.3) with an lmax = 90 for the single-center ex-

pansion of the electronic wave functions within the single channel frozen core Hartree-

Fock approximation (SCFCHF) using the ePolyScat suite of programs [65, 66]. The

ground state of the acrolein molecule (cis- or trans- forms) and the final X̃ 2A′

electronic state belong to the Cs (planar) symmetry point group. The ionization po-

tential used for the calculation and to determine the photoelectron kinetic energies

was 10.11 eV [86,100,101] (some values in the references are within ±0.02 eV). The

photoionization calculations were performed for photon energies from 10.2 to 100

eV. Additionally, within this range of energies a search for poles of the scattering S

matrix in the complex plane were performed using a local exchange potential and
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the local adiabatic static model-exchange method (ASME) [102, 103]. The position

of the resonance structures in the cross sections and the computed poles from the

complex energy plane were compared. The wave functions of the resulting Siegert

states were plotted at the resonance energies and analyzed to better understand the

dynamics of the resonance.

As a means of comparing the theoretical and experimental results we computed

the electronic factor F and calculated its corresponding value from the experimental

results using Equations (II.20) and (II.22) [42] (see Chapter II) respectively,

F =
σ(1)

σ(0)
=

(
d

dq
lnσ(q)

)
q=0

(IV.4)

and

F = ±(2R
(FC)
1←0/0←0)1/2

[
R1←0/0←0

R
(FC)
1←0/0←0

− 1

]
. (IV.5)

In Equation (IV.4), σ(i) is the ith derivative of the computed total fixed nuclei cross

section with respect to the normal mode coordinate q evaluated at its equilibrium

q = 0. Thus F is the logarithmic derivative of the cross section with respect to the

coordinate q. For the analysis of the experimental data, Equation (IV.5) was used,

where the different R values correspond to the usual vibrational branching ratios for

the specified transition and the R(FC) are the expected Franck-Condon vibrational

branching ratio values. As explained elsewhere (see Chapter II and reference [42]),

Equation (IV.4) gives the same result as Equation (IV.5) when harmonic oscillator

vibrational states are assumed and the cross section is expanded as σ = σ(0) + qσ(1).

Note that F = 0 in Equation (IV.4) when σ is independent of geometry (that is

σ(1) = 0) and equivalently when R = R(FC) in Equation (IV.5).

The use of electronic factors to analyze non-Franck-Condon effects allows for

the interpretation of an observable, the vibrational branching ratio, which contains

contributions from a number of factors, in terms of a simple quantity with physical

significance, the logarithmic derivative of the cross section. There are two limitations

of this approach: the R(FC) factor must be non-zero and the assumed linear geometry

dependence of the cross section must be a good approximation. Within those limi-

tations, the F factor removes the structural effects, i.e., the shift in geometry upon

ionization, leaving only the differential geometry sensitivity of the cross section. In

the present study, this facilitates the analysis of non-Franck-Condon effects which
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Figure IV.2: Theoretical photoionization cross sections for ionization from the 13a′

orbital of acrolein, with the contributions from the A′ and A′′ scattering symmetries
and the corresponding total cross section.

are fairly weak, allows for the direct comparison of the non-Franck-Condon effects

in different modes, and allows for a decomposition of the sources of the non-Franck-

Condon into contributions from different partial waves. In other applications [42],

the electronic factors are also useful since they put branching ratios from different

vibrational quanta, e.g. ν = 1 and ν = 2, on the same scale.

IV.3 Results and Discussions

IV.3.1 Valence shell molecular photoionization of acrolein and electronic

factors

In Figure IV.2 we show the calculated total cross section for the photoionization

of acrolein from the 13a′ orbital leading to the X 2A′ ionic state, together with the

corresponding cross sections from the two scattering symmetries (A′ and A′′) present
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Table IV.2: Calculated poles of the S-matrix for the A′ scattering symmetry with
possible physical significance.

ERe/eV3 (hν/eV) EIm/eV4

5.39 (15.5) -2.24

12.9 (23.01) -3.78

73.8 (83.91) -11.13

in the process which add up to the total (solid line). From this plot, the presence of at

least one shape resonance at low energy is evident, peaking at around 16 eV, clearly

caused by the partial waves with A′ symmetry. The low energy peak actually is the

combination of two shape resonances that are close in energy. Additionally, there is a

much broader resonance which occurs at the high end of the energies investigated. In

Table IV.2, the corresponding resonance energies computed using the ASME model

are given.

In Figure IV.3 we present experimental electronic factors [42] in comparison to

computed values. To present the experimental data in this fashion we need to assume

values of the Franck-Condon R
(FC)
νi . In the results given we have used R

(FC)
ν9 = 0.096,

R
(FC)
ν10 = 0.18, R

(FC)
ν11 = 0.079 and R

(FC)
ν13 = 0.217, which were chosen in order to give

the best agreement between experiment and theory. From Figure IV.3 we see that

the resonances present in the low energy region, visible in Figure IV.2, have an effect

on the electronic factor values (and thus in the vibrational branching ratios), making

them depart from the expected Frank-Condon value (corresponding to an F = 0),

in that low energy region. Also, as important is the fact that the magnitude of that

deviation is not as large as that seen in F in smaller and more symmetrical systems

such as the prototypical examples of N2 or CO [42] shown in Chapter III. If we

take as reference the values of F found in [42] for the photoionization leading to the

N2 X
2Σ+

g ion state, we see that a strong and well defined resonance in N2 leads

to a large deviation from the expected Franck-Condon behavior with F = 0.4 in

the resonance. The value of |F | in acrolein, as seen from Figure IV.3, never goes

beyond 0.1 and most of the time is significantly smaller. In this sense, we can roughly

expect to see dramatic effects in the branching ratios when |F | > 0.2. It is evident

from Figure IV.3 that all the vibrational modes studied exhibit an effect due to the

low energy resonances, and thus a displacement from the expected Franck-Condon

value of F = 0, and a relatively good agreement with experiments up to the middle
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Figure IV.3: Comparison between experimental and theoretical results for the pho-
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electronic factors, given in Equations (IV.4) and (IV.5) and reference [42] for the vi-
brational specific modes, ν9, ν10, ν11 and ν13, as labeled in the plots.
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of the energy range considered here; at higher energies there is a larger scatter of

the measured branching ratios which makes it difficult to compare experiment to

theory. It is also important to note that the computed values of F in a given mode,

as given by Equation (IV.4), have an overall arbitrary factor of ±1 relative to the

experimental data. We have chosen the phase in each case to give the best overall

agreement between theory and experiment.

To provide a better perspective on the non-Franck-Condon effects in the low

energy resonance in this system we show in Figures IV.4 and IV.5 the case of the

ν9 and ν10 modes respectively (see Figure IV.3 top left and top right panels) as the

corresponding normal mode coordinate qi varies from -2 to +2 in one unit steps.

Since the ν9 mode is a bending mode from the vinyl group (see Table IV.1), changes
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in q9 have no net effect in the length of the internuclear distances specially, thus a

displacement of the position of the resonance won’t be expected, but a change in the

magnitude of the cross section due to a changing lifetime is reasonable (as can be

readily seen from Figure 3), as the molecule distorts its shape. As for the ν10 plot

(Figure IV.5), although not as dramatic as in the previously mentioned examples of

diatomics, there is a displacement of the position of the low energy resonances as

q10 changes from q10 > 0 to q10 < 0 compared to what is seen for ν9 (Figure IV.4).

This observation is very reasonable since ν10 is a stretching mode (see Table IV.1)

and by increasing the size of the effective box that is trapping the electron a shift

in the position of the resonances to lower energies is expected. Looking at the A′

symmetry waves in Figures IV.4 and IV.5, one would expect to have zeros in the F

factor in Figure IV.3 at the energy values where the cross sections follow a Frank-

Condon behavior, i.e. where the cross section does not depend on geometry. The

apparent discrepancies between the actual position of the zeroes in the F factors and

the behavior of the A′ cross section can be explained by the contribution that the A′′

symmetry waves make to the total F factor where the magnitude of both scattering

symmetries are comparable, i.e., approximately between 30 and 45 eV.

IV.3.2 Orbitals analysis and MBS calculations

A qualitative understanding of the resonant states can be obtained by examining the

orbitals and resonant state wave functions involved. From the plot of the ionized

13a′ orbital in Figure IV.6 we see first that the orbital is more localized near to the

oxygen on what looks like a p-type orbital, and extends toward the carbonyl and

central carbon atom. That this orbital is primarily a lone pair on the O atom is

consistent with the fact that R(FC) are relatively small for all vibrations, since this

is neither a bonding nor an antibonding orbital. In Figure IV.7 the nodal structure

from the A′ resonance wave function with an energy near 23 eV suggests a centrifugal

barrier localized near the vinyl group. It has been shown that minimum basis set

(MBS) virtual orbitals of molecules [103] can often resemble the symmetry of one-

electron resonances. Thus to better understand this resonance, we computed the

MBS virtual orbitals of acrolein. As can be seen from comparing the resonance wave

function obtained at 23.01 eV and the MBS ninth virtual orbital in Figure IV.7,

they share a very similar structure, which can be characterized as an out-of-phase

combination of two σ∗ antibonding orbitals. This can be compared with the behavior
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of the lower energy resonance occurring near 15.5 eV shown in Figure IV.8. In this

case the resonant wave function obtained at 15.5 eV and the MBS seventh virtual

orbital are more localzed on the carbonyl group with a weaker in-phase contribution

on the vinyl group. The MBS calculation for the plotted virtual orbitas gave orbital

energies of 23.63 and 28.94 eV, for the seventh and ninth virtual orbitals respectively.

It is important to note that, as would be expected, the actual scattering resonances

are shifted to lower energies, since the MBS calculation corresponds to the neutral

molecule and to the use of a restricted basis set. It is also important to note that

there are many other A′ virtual MBS orbitals which do not correspond to resonances.

IV.4 Conclusions

The computed vibrational branching ratios were compared to experimental measure-

ments for the photoionization of trans-acrolein from the 13a′ orbital, leading to the

X̃ 2A′ ionic state. We found shape resonances near threshold and confirmed their

presence by computing the poles in the scattering S matrix. The electronic factor F

in this work allowed us to compare computed and measured results and provided a

qualitative reference for the strength of a shape resonance and a measure of the sen-

sitivity of the cross section to geometry changes in acrolein. It was observed, as we
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mentioned above, that as a molecule becomes more complex with lower symmetry,

the resonant states become more delocalized within the molecule, and their position

and widths become less sensitive to changes in specific normal modes. The com-

parison between experiments and theory for the photoionization of acrolein leading

to the X̃ 2A′ ionic state, showed a good agreement, especially in the low (near to

threshold) and mid-energy regions.
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CHAPTER V

EFFECTS OF ROTATION BETWEEN IONIZATION AND

FRAGMENTATION FOR NON-LINEAR MOLECULES

V.1 Introduction

V.1.1 Molecular frame photoelectron angular distributions

The study and understanding of molecular photoionization is of great importance

considering the number of phenomena directly or indirectly related to it. One of

the experimental methods widely used for studying photoionization dynamics is the

measurement of photoelectron angular distributions (PADs), being the observables

giving the best insight on the transition matrix elements [35]. It has being observed

that the PAD of the fragments on molecular photoionization can be peaked parallel or

perpendicular to the incident light beam. This anisotropy depends on the orientation

of the electronic dipole moment within the molecule, the polarization of the light

beam and in general on the dynamics of the specific dissociation process [104]. The

theoretical description of the one photon photoionization processes in first order of

time dependent perturbation theory involves a representation of the initial state

(prior to the interaction) and the scattering state when the photoelectron is leaving

the target [105]. The PAD, I(θk, φk), can be expanded in the spherical harmonics

basis, YLM(θk, φk),

I(θk, φk) ∝
Lmax∑
L=0

L∑
M=−L

BLMYLM(θk, φk) (V.1)

where the angles correspond to the orientation of the emitted particles after ion-

ization. The coefficients BLM depend on the dynamics of the photoionization, the

experimental geometry, the orbital from which the electron is ejected and the pho-

toionization energy [106].

A molecular photoionization experiment is said to achieve “completeness” when it

determines all the information needed for the theoretical description of such process,

which means to provide all the significant matrix elements or dynamical parameters

[35]. There are different experimental methods for obtaining the matrix elements
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from the PADs for molecular ionization, depending on the frame of reference used.

When the measurement is done on a fixed-in-space oriented molecule, it is referred

to as the molecular frame photoelectron angular distribution (MFPAD) and, can be

written as [105–110],

I(θk, φk, θn, φn) =
4π2

c
E

∑
L,M,L′,M ′

ALML′M ′YLM(θk, φk)YL′M ′(θn, φn) (V.2)

where θn and φn are the polar and azimuthal angles for the direction of the polar-

ization of the light. For linear molecules in the dipole approximation (see Section

I.2.2), the expression is limited by the constraints M = −M ′ and 0 ≤ L′ ≤ 2. For

the linearly polarized light induced photoionization, the MFPADs depend on the

angles giving the direction of emission (θk, φk) of the photoelectron in the molecular

frame, and on the polar angle θn describing the orientation of the molecular axis

with respect to the direction of polarization.

Measuring the MFPADs directly is not always possible. However, there are a

number of other methods that can give information which can be related to the

MFPADs. One way of measuring the MFPAD is through dissociative photoionization

(DPI). If the dissociation event is rapid in comparison to the rotation period of the

molecular ion, then the axial-recoil approximation (ARA) [104,111] (see Section V.1.2

below) may be valid [107]. This approximation assumes that the recoil direction of

the ionic fragment is along the molecular axis at the time of the initial ionization

[105, 111]. When the ARA is not valid it is necessary to take another frame of

reference. One approach is by measuring the recoil-frame photoelectron angular

distribution (RFPAD), which later can be related to the MFPAD. In the case of

non-linear molecules, which are the main subject of this chapter, even if the ARA

is still valid, when only two fragments are produced from photodissociation, it is

not possible to measure the MFPAD, and the RFPAD measurement is the only one

possible. This is due to the azimuthal angle giving the orientation about the recoil

axis, which cannot be determined when only two fragments are produced [105]. If

the molecule breaks into three or more fragments then the full MFPAD, as shown

below, can be determined, as long as the number of fragments minus one are detected

in coincidence with the photoelectron. The full MFPAD with linearly polarized light
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has the form [105,112],

I(θk, φk, θn, φn) =
∑
L=0,2

L∑
N ′=0

∑
N ′=0,±1,±2,···

F
(c)
LNN ′(θk)P

N
L (cos θn) cos(N ′φk −Nφn)

+
∑
L=0,2

L∑
N ′=0

∑
N ′=0,±1,±2,···

F
(s)
LNN ′(θk)P

N
L (cos θn) sin(N ′φk −Nφn)

(V.3)

where the FLNN ′ functions can be expanded in the usual Legendre polynomials,

PN ′

L′ (cos θk), and the coefficients CL′LN ′ depend on the dipole matrix elements TMiMf
lmµ

(defined elsewhere [41,108]) and are given by [109],

FLNN ′(θk) =
∑
L′

CL′NN ′P
N ′

L′ (cos θk) (V.4)

The mathematical expressions presented above and similar ones have been used to

study a variety of linear systems PADs in the molecular and recoil frames of reference

[35, 40, 108, 109, 113–118]. Lafosse et al., [108, 115] have studied the dissociative

photoionization (DPI) of O2 initially ionized to O+
2 in the B 2Σ−g , 3 2Πu and c

4Σ−u states that subsequently dissociate to O + O+ in various atomic states. The

analysis of the directions of the ion and electron velocity vectors allowed the authors

to determine a complete angular distribution I(χO+ , θe, φe) for each process, where

χO+ is the polar angle of the velocity vector of the O+ fragment referred to the axis

parallel to the direction of linear polarization, at the instant of the photoionization.

The inclusion of the effect of the molecular rotation gave a good agreement between

the theory and experiments.

The non-linear systems, as mentioned above, show special difficulties compared

to linear molecules due to the extra angular and spatial coordinate(s) that must

be considered when studying the MFPADs and RFPADs. Additional complications

come into play when considering systems dissociating in two fragments (See above)

and those with dissociative lifetimes that are long compared to the rotational period.

Several attempts have been made to study these systems [105,119–124] both exper-

imentally and theoretically. In this chapter, we develop similar expressions for the

MFPADs and RFPADs as the ones shown above for linear molecules. This mathe-

matical expressions will allow one to consider dissociative states where the lifetime of
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the metastable molecular ions is not short compared to the rotational periods of the

molecule and thus where the axial recoil approximation (see Section V.1.2) cannot

be used [108]. This consideration will extend the number of states which can be

studied and may improve the agreement between theory and experiment.

For linear systems, the effects of rotational motion on the derivation of the MF-

PADs results in the expression [108]:

Iµ0(θk, φk, θn, φn) =
∑
L′,L,N

Hµoτ
L′LNYL′N(Ωk̂)Y

∗
LN(Ωn̂) (V.5)

where the index µ0 represents the state of polarization of the light, Ωn̂ = (θn, φn) and

Ωk̂ = (θk, φk) define the orientation of polarized light and direction of emission of the

photoelectron respectively in the recoil frame, the YL′N and Y ∗LN are spherical har-

monic functions and the coefficients Hµoτ
L′LN (where τ is the lifetime of the ion state)

contain the information of the distribution of rotational states, the matrix elements

and several transformations involving the polarization of light and angular momen-

tum, the full details can be found elsewhere [108]. A smiler formalism is developed

in this chapter and later implemented in the study of the C 1s photoionization of

CH4.

V.1.2 Axial-recoil approximation

It was shown by Zare [104] that for photodissociation, unless the recoil velocity

is very large compared to the angular velocity of molecular rotation, the angular

distribution of products of a photodissociation will be modified by the molecular

rotation. He showed that if a molecular ensemble is randomly oriented having equal

M state populations the photofragment angular distribution is obtained by summing

over all the M sub levels of the initial state,

I(θ, φ) =
∑
M

∣∣∣∣∣∑
J ′M ′

RJ ′ 〈J 1, J ′ 0|M, 0〉 〈J 1, J ′ 0| 0, λ〉DJ ′

M ′Ω(φ, θ, 0)

∣∣∣∣∣
2

(V.6)

where RJ ′ is the ‘rotational term’ and DJ ′

M ′Ω(φ, θ, 0) is a rotational matrix as defined

elsewhere [125–127]. When explicit algebraic expressions are substituted for the

Clebsch-Gordan coefficients, the well known [128] expression for I(θ, φ) having the

form [1 + βP2(cos(θ)]/4π arises. The evaluation of the photo fragment distribution
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of Equation (V.6) requires the knowledge of the rotational radial term RJ ′ over the

range of permitted J ′ transitions. However, if the kinetic energy of the fragments is

much larger than the rotational energy it can be shown that RJ ′ is effectively a con-

stant over the rotational structure and can be taken outside of the sum in Equation

(V.6) leading ultimately [104, 111] to the reduced expression for the photofragment

angular distribution

I(θ, φ) =
∣∣D1

0λ(θ, φ, 0)
∣∣2 . (V.7)

Thus axial-recoil approximation is valid when RJ ′+1 = RJ ′−1. In Section V.2 we con-

sider the effects of rotation on the evaluation of molecular and recoil frame photoelec-

tron angular distributions when the effect of the rotational motion is not negligible,

that is when the axial-recoil approximation breaks down.

V.2 Theory: expressions for MFPADs and RFPADs 1

The analysis of the MFPADs for non-linear polyatomic molecules follows closely the

work that has been done previously for linear systems [107,108]. Here we will consider

MFPADs for elliptically polarized light. For the case that the light is either linearly

polarized or circularly polarized, the state of the light can be characterized by a

single parameter µ0. If the light is linearly polarized, the index µ0 = 0, if the light

is circularly polarized then µo = ±1. The index µ0 is defined for circularly polarized

light as being µ0 = +1 for left circularly polarized light having positive helicity, and

µ0 = −1 for right circularly polarized light with negative helicity. Throughout this

model we have used different coordinate systems for convenience depending on the

frame of reference used.

As mentioned above, if the lifetime of a molecular ion state represents a significant

fraction of the rotational period of the molecule, then the axial-recoil approximation

breaks down, and the effects of the rotational motion should be included when com-

puting the cross sections. For this purpose, we assume a Boltzmann distribution of

the rotational states [129], and followed a similar treatment as the one used for rota-

tional motion in photodissociation by Jonah [130], assuming that the population of

initial rotational states is thermal. After the molecule is ionized the density matrix

elements for the rotational states is propagated in time. A Poisson distribution is

assumed for the distribution of decay times.

1Full details of the derivation of the model can be found on Appendix A at the end of this work.
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V.2.1 Ionization of non-linear molecules and rotational state specific ma-

trix elements

Here we will consider the photoionization of non-linear molecules in the dipole ap-

proximation (see Section I.2.2), and later on, the analysis of the angular distributions

with respect to the direction of propagation of the light for two cases: linearly and

circularly elliptically polarized light. The dipole matrix elements for photoionization

going from an initial state i to a final state f by either polarized light or circularly

polarized light can be written as,

T
(ζ′,ζ′′)
λ,δ (ΩK , R̂) =

∑
l,m,n,µ

1√
2

{
B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)
}
I

(ζ′,ζ′′)
lmµ Y ∗ln(ΩK)Dl

m,n(R̂)

(V.8)

in this expression, the indices ζ ′ and ζ ′′ indicate a component of a degenerate set

of orbitals for the initial and final state respectively, and λ and δ are the angles

used to characterized the polarized light by the Stokes parameters (see Equation

(A.1) in Appendix A). This expression is already transformed from the molecular

frame (MF) into the field frame (FF) using the inverse transformation defined by

the Euler angles [126] R̂−1 = (−β, χ, γ). In the FF the direction of emission of the

photoelectron is defined by the coordinates ΩK = (θK , φK). The field is defined by

B, and the D’s are the usual rotational matrices defined elsewhere [125–127]. The

dipole matrix element of Equation (V.8) can then be written as:

I
(ζ′,ζ′′)
lmµ =

√
2

π
il
〈

Ψ
(i)
ζ′

∣∣∣ eµ ∣∣∣Φ(f)
ζ′′ψ

(−)
lm (~r)

〉
(V.9)

where the continuum scattering wave function ψ
(−)
~k

(~r) can be expanded as [41],

ψ
(−)
~k

(~r) =

√
2

π

∑
l,m

ilψ
(−)
lm (~r)Y ∗lm(Ωk) (V.10)

The rotational wave function for an asymmetric top, ψJ,MJ ,κ, can be written as a

linear combination of symmetric top wave functions φJ,MJ ,H [21],

ψJ,MJ ,κ =
∑
H

CJ
H,κφJ,MJ ,H (V.11)
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where the symmetric top wave functions have the well known form,

φJ,MJ ,H =

(
2J + 1

8π2

) 1
2

DJ
−MJ ,−H(R̂M) (V.12)

In this way, we can construct the rotation state specific matrix elements for the

transitions (ζ, J,MJ , κ ← ζ ′′, J ′′,MJ ′′ , κ
′′) using the asymmetric top wave functions

from Equation (V.11) for the specific rotational states to get,

T
(ζ,J,MJ ,κ←ζ′′,J ′′,MJ′′ ,κ

′′)
λ,δ (ΩK) =

∫ [
ψJ ′′,MJ′′ ,κ

′′(R̂)
]∗
ψJ,MJ ,κ(R̂)T

(ζ′′,ζ)
λ,δ (ΩK , R̂)dR̂

(V.13)

where by substitution of Equation (V.8) leads to the desired result.

V.2.2 Thermal average and propagation into time

In this section we assume that the population of initial rotational states is thermal,

and thus that under equilibrium it follows a Boltzmann distribution. This assumption

allows us to write the density matrix before the interaction with light similarly to

the treatment of the rotational motion in photodissociation by Jonah [130],

ρ =
1

giQ(T )


∑
ζ′′,J ′′

MJ′′ ,κ
′′

∣∣∣ψJ ′′,MJ′′ ,κ
′′Ψ

(i)
ζ′′

〉
gκ′′ exp

(
−EJ

′′,κ′′

kBT

)〈
ψJ ′′,MJ′′ ,κ

′′Ψ
(i)
ζ′′

∣∣∣
 (V.14)

where gi is the degeneracy of initial electronic states, Ψ
(i)
ζ′′ , and Q(T ) is the rotation

partition function for the initial state for an asymmetric-top molecule (see [131] and

Equation (A.33) in Appendix A) and gκ′′ is the nuclear-spin statistical weight, which

depends on the parities of the quantum numbers Kp and Ko, collectively labeled

here as κ, (which are the quantum numbers on the prolate and oblate limits of the

asymmetric rotor).

After the interaction with the light, with a field operator B as defined in Equation

(A.2) of Appendix A, we have the density matrix that propagates in time to give,

ρ′′(t) =
4π2E

c
exp

(
−iHrott

~

)
B∗ρB

(
iHrott

~

)
(V.15)
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where E is the photon energy and c is the speed of light.

V.2.3 MFPADs and RFPADs functional form

To evaluate Equation (V.15), we expand it into final states, which are rotational

eigenfuncitons of the rotational Hamiltonian, to give only the diagonal elements of

the density matrix for the ionization in the coordinate representation at a particular

time t after the excitation. Finally, the usual molecular frame photoelectron angular

distribution (MFPAD), I(ΩK , R̂), can be defined as the differential cross section

for the emission of the photoelectron in the direction ΩK for a fixed orientation

of the molecule in the field frame as defined by the Euler angles R̂. The usual

integrated target distribution [128] would be obtained by an orientation average of

the target [132], and thus, the final total cross section would be given by

σ =

∫
dσ

dΩK

dΩK =
1

8π2

∫ ∫
I(ΩK , R̂)dR̂dΩK (V.16)

and the total cross section at t = 0 would be given by

σ =

∫ ∫
ρ′′(ΩK , R̂,ΩK , R̂, t = 0)dΩKdR̂ (V.17)

and thus, the RFPAD I(ΩK , R̂, t) for the fragmentation after time t is related to the

diagonal matrix elements of the density by

I(ΩK , R̂, t) = 8π2ρ′′(ΩK , R̂,ΩK , R̂, t) (V.18)

Finally, assuming a Poisson distribution of decay times (1/τ) exp(−t/τ), the density

matrix can be averaged over decay time, to become,

Iτ (ΩK , R̂, t) =
1

giQ(T )

∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−Egs,J

′′,κ′′

kBT

)
W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′)

1 + iτ∆E(J′,κ′,J,κ)

~

(V.19)

where the explicit expression W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) and its solution can be viewed in detail in

Appendix A. The expression for the intensity from Equation (V.19) can be written

as,
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Iτ (ΩK , R̂, t) =
1

giQ(T )

∑
L′,L,N,NH

YL′,−NH (ΩK)E
(λ,δ)
L,N (R̂′′)

×
∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−Egs,J

′′,κ′′

kBT

)
×
H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′)

1 + iτ∆E(J,κ,J′,κ′)

~

(V.20)

where

H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′) =

4π2E

c

∑
l,p,q,l′

∑
q′′

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

[
(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ
× (−1)q−N+1 〈L′ NH , l − p| l′, NH − p〉

× 〈L′ 0, l 0| l′, 0〉 〈1 − q′, 1 q| L,N〉

×M (J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
(V.21)

or by defining H
(τ,T )
L′,NH ,L,N

as

H
(τ,T )
L′,NH ,L,N

=
1

giQ(T )

∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−Egs,J

′′,κ′′

kBT

)
H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′)

1 + iτ∆E(J,κ,J′,κ′)

~

(V.22)

we can write the intensity as

I(λ,δ)
τ (ΩK , R̂) =

∑
L′,L,N,NH

YL′,−NH (ΩK)E
(λ,δ)
L,N (R̂′′)H

(τ,T )
L′,NH ,L,N

(V.23)

suming over L′ and NH we can define G
(τ,T )
L,N (ΩK),

G
(τ,T )
L,N (ΩK) =

∑
L′,NH

YL′,−NH (ΩK)H
(τ,T )
L′,NH ,L,N

(V.24)
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then the final expression for the intensity becomes,

I(λ,δ)
τ (ΩK , R̂) =

∑
L,N

G
(τ,T )
L,N (ΩK)E

(λ,δ)
L,N (R̂′′) (V.25)

Lastly, by considering the polarization special cases, Equation (V.25), for the intensiy

becomes

I(µ0)
τ (ΩK , χ, γ) =

∑
L,N

G
(τ)
LN(Ωk)[YLN(χ, γ)]∗(−1)µ0+1 〈1 − µ0, 1 µ0| L, 0〉 (V.26)

V.3 Effects of rotational motion on the C 1s photoionization of CH4

V.3.1 Computation of the photoionization dipole matrix elements

The calculation of the dynamical photoionization matrix elements, I
(ζ′,ζ′′)
lmµ , from

Equation (V.8) leading to the C 1s (1a1)−1 state were computed using the Schwinger

variational method [12, 98] (see Section I.1.3). An lmax = 100 was used for the

single-center expansion of the electronic wave functions within the single channel

frozen core Hartree-Fock approximation (SCFCHF) using the ePolyScat suite of pro-

grams [65,66]. Using the Born-Oppenheimer or Chase adiabatic approximation [22]

(see Section I.2.3). Within this approximation, the initial and final total scatter-

ing state wave functions can be expressed as products of vibrational and electronic

wave functions, as shown previously in this work in Equations (I.58) and (I.59), and

elsewhere [16]. The initial and final electronic state wave functions, Ψi(r, q) and

Ψ
(−)

f,~k
(r, q) were calculated at the Hartree-Fock level of theory using the augmented

correlation-consistent polarized valence triple-ζ [95,96] (aug-cc-pVTZ) basis set and

were computed using the Gaussian09 program [97]. For this calculations a vertical

ionization potential (ionization from the C 1s) of 290.84 eV [133] was used.

V.3.2 MFPADs for CH4

In this section we will examine the MFPADs in the molecular frame for the CH4 C 1s

photoionization. The methane molecule has tetrahedral symmetry, since it belongs to

the Td point group, and therefore it has four equivalent C3 axis of symmetry and three

equivalent C2 axes. Each of the CH bonds lies on a C3 axis. In Figures V.1 through

V.8 the molecule is oriented so that one of the C2 symmetry axis coincides with the z
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cartesian axis. The ground state electronic configuration of CH4 is (1a1)2(2a1)2(1t2)6,

where the 1a1 orbital is essentially the atomic 1s orbital from the central carbon atom.

The MFPADs for the ionization from the 1a1 orbital were computed at pho-

toelectron energies Ek = 0.1, 1.09, 4.35 and 15.25 eV as described above. These

photoelectron kinetic energies are represented in that order in Figures V.1 to V.4

for ionization with linearly polarized light (LP), that is µ0 = 0 and in Figures V.5

to V.8 for ionization with right circularly polarized light (RCP), that is µ0 = −1.

As it was pointed out by Lucchese [107], the shape of the MFPADs can be, at least

qualitatively, understood by considering the angular momentum composition of the

initial orbitals and the angular momentum contributed from the different polariza-

tions of the ionizing light. For the case analyzed here, ionization from an s orbital,

results in the photoelectron leaving in a p wave, and the orientation of the MF-

PAD is determined by the orientation of the polarized light. If we look at the first

row of Figure V.1, where the lifetime of the pre-dissociative state is assumed to be

τ = 0 ps, implying the validity of the axial-recoil approximation (ARA), the MF-

PADs look different from what was ‘predicted’ above. As time increases, allowing the

meta-stable state to rotate before fragmentation, all the way to an assumed infinit

lifetime, τ = ∞ ps, at the bottom row of Figure V.1 the MFPAD shape becomes

more isotropic and in better agreement with the expected p wave shape. Williams et.

al. [134], have studied the dynamics of dissociation of methane after core ionization

by means of measured and computed MFPADs and RFPADs for the aforementioned

process. They found that the experimental data with high fragment kinetic energy

was in better agreement with the calculated RFPADs, and as they considered lower

kinetic energy the RFPADs show a deviation that indicates the fail of the axial-

recoil approximation. By including the effects of rotational motion, we are able to

explain that deviation. In Figure V.4 it is noticeable that even at a lifetime of τ = 0

ps, the MFPADs look a lot more like the p wave, only observed after letting the

pre-dissociative state to rotate when photoionization thames place at lower kinetic

energies (Ek = 0.1, 1.09, 4.25 eV).

For Figures V.5 through V.8, for circularly polarized light, results also coincide

with the effect predicted by Lucchese [107], when the ARA breaks down, showing

that as lifetime increases up to infinity, the MFPAD shows a completely uniform dis-

tribution of the ejected photoelectron, being a reflection of the isotropic distribution

of the initial, 1s, state. In the case of the figures with circularly polarized light, the
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same directions shown in the figures for LP, indicate the propagation vector.

V.3.3 RFPADs for CH4

To compute the RFPADs, it is necessary to include an average of the MFPAD over

the azimuthal angle about the recoil direction, and after this average we obtain the

expression [135],

I
(ion)
µ0,βR,αR

(θ′
k̂
, φ′

k̂
, θ′n̂, φ

′
n̂) =

∑
L′,L,Q

Hµ0,βR,αR

L′,L,Q YL′,Q(Ω′
k̂
)Y ∗L,Q(Ω′n̂) (V.27)

where the angles βR and αR define the recoil direction, and the coefficients Hµ0,βR,αR

L′,L,Q

are given by

Hµ0,βR,αR

L′,L,Q =
∑

J,NH ,N,P

H
(τ,T )
L′,NH ,L,N

[
4π(2J + 1)

(2L′ + 1)2

]1/2

〈J 0, L Q| L′, Q〉

× 〈J P, L N | L′, NH〉YJ,P (βR, αR)

(V.28)

where P = NH − N and H
(τ,T )
L′,NH ,L,N

is given in Equation (V.22). In Figure V.9 we

present the RFPADs for the C 1s photoionization of methane at a photoelectron

energy Ek = 4.35 eV, with the vector of polarization of the light in the direction

of one of the CH bonds, and averaged over that same axis, which on the figures

appears pointing in the z direction. It is noticeable how at a lifetime of τ = 0 ps

the RFPAD indicates an axial recoil behavior in the direction of the CH bond, but

as the lifetime of the pre-disociative state is increased to τ = 0.32 ps, exhibits a

breakdown of the ARA and shows a better agreement with the experiments [134],

revealing the importance that the rotational motion has on the specific dynamics of

photoionization from C 1s of methane at this particular energy.

V.4 Conclusions

We presented a theoretical model for computing MFPADs and RFPADs for non-

linear molecules that allows for the inclusion of the effect of rotational motion between

ionization and fragmentation. This model has proven to predict the photoionization

dynamics of the photoelectron through the three dimensional MFPADs for systems

where the axial-recoil approximation breakdown. The predicted MFPADs for the
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.1: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 0.1 eV for linearly polarized light (LP). In each column
the polarization vectors change: first parallel to the C2 axis in the z direction; sec-
ond, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.2: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 1.09 eV for linearly polarized light (LP). In each column
the polarization vectors change: first parallel to the C2 axis in the z direction; sec-
ond, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.3: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 4.35 eV for linearly polarized light (LP). In each column
the polarization vectors change: first parallel to the C2 axis in the z direction; sec-
ond, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.4: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 15.25 eV for linearly polarized light (LP). In each col-
umn the polarization vectors change: first parallel to the C2 axis in the z direction;
second, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.5: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 0.1 eV for right circularly polarized light (RCP). In each
column the propagation vectors change: first parallel to the C2 axis in the z direction;
second, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.6: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 1.09 eV for right circularly polarized light (RCP). In each
column the propagation vectors change: first parallel to the C2 axis in the z direction;
second, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.7: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 4.35 eV for right circularly polarized light (RCP). In each
column the propagation vectors change: first parallel to the C2 axis in the z direction;
second, perpendicular to the C2(z) axis and in the plane with two CH bonds; third,
perpendicular to a C3 axis but close to a CH bond, and fourth parallel to a C3 axis
(CH bond). Lifetimes of the pre-dissociative state are indicated for each row.
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τ/ps ‖ C2(z) ⊥ C2(z) ⊥ C3 near a CH ‖ C3

0

0.16

0.32

3.15

∞

Figure V.8: MFPADs for the photoionization of the C 1s orbital of CH4 molecule.
Results computed at Ek = 15.25 eV for right circularly polarized light (RCP). In
each column the propagation vectors change: first parallel to the C2 axis in the z
direction; second, perpendicular to the C2(z) axis and in the plane with two CH
bonds; third, perpendicular to a C3 axis but close to a CH bond, and fourth parallel
to a C3 axis (CH bond). Lifetimes of the pre-dissociative state are indicated for each
row.
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t = 0 ps t = 0.32 ps

Figure V.9: RFPADs for the photoionization from the C 1s orbital of CH4 molecule.
Results computed at Ek = 4.35 eV for linearly polarized light (LP). The orientation
average was performed around a CH bond, that is a C3 axis, in this plot pointing in
the z direction, and the field of the LP vector is also aligned with the C3 axis in this
figures. The figure at the left assumes a lifetimes of the state of 0 ps, and the figure
at the right of 0.32 ps.
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C 1s photoionization of methane were in good agreement with previous theoretical

predictions [134] when considering the validity of the ARA, and exhibit good agree-

ment with the experiments where the rotational motion is of considerable importance

when doing a propagation in time of the rotational states, letting the molecule rotate

a fraction of its computed rotational period. The computed RFPADs exhibit how

the ARA breaks down for low kinetic energy in the core photoionization of methane,

and how important is to consider, for this process, the rotational motion. This

model extends the possibilities of studying dynamics of photoionization of states of

polyatomic molecules where the ARA is often not a good approximation.
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CHAPTER VI

CONCLUSIONS

Throughout this work, we have explored different aspects of molecular photoioniza-

tion, and developed theoretical tools that proved useful in studies ranging from the

study of diverse mechanisms of Franck-Condon breakdown in vibrationally resolved

photoionization to the study of photoelectron dynamics of dissociative processes for

polyatomic non-linear molecules. We showed how the derived F factor can be related

to the deviation of the branching ratios from their Franck-Condon value, allowing

the experimental data to be presented as measured F factors. In particular, when

F = 0, the Franck-Condon approximation is valid. then the deviation from zero

indicates the extent of the breakdown on the Franck-Condon approximation. An

analysis of the non-Franck-Condon behavior of N2 and CO showed the effects of the

much studied shape resonances at low photon energy. At higher energy, we found

that deviations from the Franck Condon value due to molecular Cooper minima and

as being due to interference from the ionization from two centers as described by Co-

hen and Fano [53]. We found that in N2 and CO, these two descriptions are related

by the fact that the partial wave matrix elements obtained from decomposition of

the plane-wave matrix elements used in the Cohen-Fano analysis also have energies

at which they change sign which is the characteristic of a Cooper minimum.

In the lower symmetry system studied, it was observed that as a molecule becomes

more complex with lower symmetry, the resonant states become more delocalized

within the molecule, and their position and widths become less sensitive to changes

in specific normal modes.

Finally, we presented a theoretical model for computing MFPADs and RFPADs

for non-linear molecules that includes the effect of rotational motion between ion-

ization and fragmentation. This model can be used to predict the photoionization

dynamics of the photoelectron through the three dimensional MFPADs for systems

where the axial-recoil approximation breakdown. The model was tested for the core

photoionization of CH4. The predicted MFPADs for the C 1s photoionization of

methane were in good agreement with previous theoretical predictions [134] when

considering the validity of the ARA, and exhibit good agreement with the experi-
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ments where the rotational motion is of considerable importance when doing a prop-

agation in time of the rotational states, letting the molecule rotate a fraction of its

computed rotational period. The computed RFPADs exhibit how the ARA breaks

down for low fragment kinetic energy in the core photoionization of methane, and

how important is to consider, for this process, the rotational motion. This model ex-

tends the possibilities of studying dynamics of photoionization of states of polyatomic

molecules where the ARA is often not a good approximation.
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S. Kammer, O. Jagutzki, L. Schmidt, A. Czasch, T. Osipov, E. Arenholz,

A. T. Young, R. Dı́ez Muiño, D. Rolles, F. J. Garćıa de Abajo, C. S. Fadley,
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APPENDIX A

NOTES ON THE EFFECTS OF ROTATION, BETWEEN

IONIZATION AND FRAGMENTATION, FOR NON-LINEAR

MOLECULES

A.1 Ionization of non-linear molecules by elliptically polarized light

The present Appendix follows the unpublished notes of Professor Robert R. Lucchese

on the same topic for ionization of linear molecules by elliptically polarized light. It

is important to note that the final expressions and some intermediate equations have

been written for convenience in the way they appear at the FORTRAN codes written

for the purpose of doing this type of calculations.

First of all we will start to define the terms and parameters for the light. It follows

that the Stokes parameters (s0, s1, s2, s3) [8,136] can be parametrized in terms of the

angles λ and δ as

s0 = a2
1 + a2

2 = 1

s1 = a2
1 − a2

2 = cos2 λ− sin2 λ = cos (2λ)

s2 = 2a1a2 cos δ = 2 cosλ sinλ cos δ = sin (2λ) cos δ

s3 = 2a1a2 sin δ = sin (2λ) sin δ

(A.1)

so that matrix elements can be written as

T ∗fi = exp (iδ1)〈Ψi|B|Ψf〉

B = (~r · x̂FF ) cosλ+ (~r · ŷFF ) sinλ exp (iδ)
(A.2)

where δ1 is an overall phase in the elliptically polarized light.

Now, let’s consider the analysis of the angular distributions with respect to the

direction of propagation of light, for elliptically polarized light (EP). In this case

we take ẑFF to be the direction of light propagation and define the Euler angles

R̂ = (γ, χ, β) to be the angles that rotate the molecular frame (MF) into the field

frame (FF) (see [126], p. 77-81). The direction of the FF axes can then be given in
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terms of the MF axes according to

x̂FF = (cos γ cosχ cos β − sin γ sin β)x̂MF

+ (sin γ cosχ cos β + cos γ sin β)ŷMF − (sin γ cos β)ẑMF

ŷFF = (− cos γ cosχ sin β − sin γ cos β)x̂MF

+ (− sin γ cosχ sin β + cos γ cos β)ŷMF − (sin γ sin β)ẑMF

ẑFF = (cos γ sinχ)x̂MF + (sin γ sinχ)ŷMF + (cosχ)ẑMF

(A.3)

Then the field B defined in Equation (A.2) can be written as

B =
1√
2

{
B+

1∑
µ=−1

eµD
(1)
µ,−1(R̂)−B−

1∑
µ=−1

eµD
(1)
µ,1(R̂)

}
(A.4)

where

B± = cosλ± i sinλ exp (iδ) (A.5)

where the tensor operators eµ are defined as

eµ = rY1,µ(θe, φe)

√
4π

3
=


z for µ = 0

−x+iy√
2

for µ = 1
x−iy√

2
for µ = −1

(A.6)

Then, expanding the continuum wave function as [41],

ψ
(−)
~k

(~r) =

√
2

π

∑
l,m

ilψ
(−)
lm (~r)Y ∗lm(Ωk) (A.7)

where Ωk = (θk, φk). Then the needed matrix elements become (with ζ ′ and ζ ′′

indicating the components of a degenerate set of orbitals),

T
(ζ′,ζ′′)
λ,δ (Ωk, R̂) =

〈
Ψ

(i)
ζ′

∣∣∣B ∣∣∣Φ(f)
ζ′′ψ

(−)
~k

〉
=
∑
µ

1√
2
{B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)}
∑
l,m

I
(ζ′,ζ′′)
lmµ Y ∗lm(Ωk)

(A.8)

where

I
(ζ′,ζ′′)
lmµ =

√
2

π
il
〈

Ψ
(i)
ζ′

∣∣∣ eµ ∣∣∣Φ(f)
ζ′′ψ

(−)
lm (~r)

〉
(A.9)
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Now we need to rotate the expression given in Equation (A.8) into the FF where

the direction of emission of the photoelectron is defined by the coordinates ΩK =

(θK , φK), using the inverse of the transformation defined by the angles R̂ = (γ, χ, β),

i.e., we need to apply the Euler angles [137], R̂−1 = (−β,−χ,−γ) so that we have

Yl,m(Ωk) =
∑
n

Yl,n(ΩK)Dl
n,m(R̂−1) (A.10)

Then Equation (A.8) becomes

T
(ζ′,ζ′′)
λ,δ (ΩK , R̂) =

∑
µ

1√
2
{B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)}

×
∑
l,m,n

I
(ζ′,ζ′′)
lmµ

[
Yl,n(ΩK)Dl

n,m(R̂−1)
]∗ (A.11)

Then using (see [138], p.464),

Dl
m′,m(R−1) =

[
Dl
m,m′(R)

]∗
(A.12)

we have

T
(ζ′,ζ′′)
λ,δ (ΩK , R̂) =

∑
l,m,n,µ

1√
2
{B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)}I(ζ′,ζ′′)
lmµ Y ∗l,n(ΩK)Dl

m,n(R̂)

(A.13)

A.2 Asymmetric top wave functions and energy levels

The rotational Hamiltonian Ĥrot for an asymmetric top molecule can be written in

the principal axis system as ( [21], p.240 Equation 11-8),

Ĥrot = ~−2(AĴ2
a +BĴ2

b + CĴ2
c ) (A.14)

where the rotational constants A, B and C are defined by

D =
~2

2hcIedd
, D = A,B,C (A.15)

and Ieαβ is the αβ element of the moment of inertia matrix for the molecule in its

equilibrium configuration. Under the convention that the z axis is aligned to the
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axis for the smaller moment of inertia (Ieaa ≤ Iebb ≤ Iecc), the rotational Hamiltonian

becomes ( [21], p. 247, Equation 11-54),

Ĥrot = ~−2

{
(B + C)

2
Ĵ2 +

A− (B + C)

2
Ĵ2
z +

B − C
4

[(Ĵ+
m)2 + (Ĵ−m)2]

}
(A.16)

To solve for the energy levels we need the matrix elements of Ĵ2, Ĵ2
z , (Ĵ+

m)2, and

(Ĵ−m)2 which are given for the |J, k,m〉 representation as ( [21], p. 247),〈
J, k,m

∣∣∣ Ĵ2
∣∣∣J, k,m〉 = J(J + 1)~2 (A.17a)〈

J, k,m
∣∣∣ Ĵ2

z

∣∣∣J, k,m〉 = k2~2 (A.17b)〈
J, k − 2,m

∣∣∣ (Ĵ+
m)2

∣∣∣J, k,m〉
~2

= {[J(J + 1)− (k − 1)(k − 2)][J(J + 1)− k(k − 1)]}1/2

(A.17c)

and〈
J, k + 2,m

∣∣∣ (Ĵ−m)2
∣∣∣J, k,m〉

~2
= {[J(J + 1)− (k + 1)(k + 2)][J(J + 1)− k(k + 1)]}1/2

(A.17d)

From the matrix elements in (A.17) it follows that the rotational Hamiltonian

for an asymmetric top has nonvanishing matrix elements only between states having

the same J , m and, same k or with values differing by two units.

In this sense, the expression for the total energy for an asymmetric top can not

have a closed analytic form as the symmetric or spherical rotor one’s (there are some

expressions for low values of J or approximations for higher values up to around

J = 11) and will be expressed as EJ,κ from now on, and evaluated numerically from

the expression for the asymmetric top Hamiltonian and the matrix elements given

before in Equations (A.16) and (A.17) respectively.

The rotational wave function for linear molecules, symmetric tops and spherical
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tops ψrot = |J, k,m〉 can be expressed as,

ψrot(θ, φ, χ) = XJkme
imφeikχ

×

{∑
σ

(−1)σ
(cos θ

2
)2J+k−m−2σ(− sin θ

2
)m−k+2σ

σ!(J −m− σ)!(m− k + σ)!(J + k − σ)!

}
,

where,

XJkm =

[
(J +m)!(J −m)!(J + k)!(J − k)!(2J + 1)

8π2

]1/2

(A.18)

The index σ runs from 0 or (k −m), whichever is larger, up to (J −m) or (J + k),

whichever is smaller. The symmetric top rotational wave function can be rewritten

in the form of Equation (A.28) by noticing that the factor (2J + 1)/(8π2) is present

in Equation (A.18) within the explicit expression of the XJkm term, and by noting

that the DJ
−MJ ,−Mi(f)

(R̂M) in Equation (A.28) is just,

DJ
−MJ ,−Mi(f)

(R̂M) = DJ
−MJ ,−Mi(f)

(θ, φ, χ) = eiMJφdJ−MJ ,−Mi(f)
(θ)eiMi(f)χ (A.19)

where

dJ−MJ ,−Mi(f)
(θ) = [(J +MJ)!(J −MJ)!(J +Mi(f))!(J −Mi(f))!]

×
∑
σ

(−1)σ
(cos θ

2
)2J+Mi(f)−MJ−2σ(− sin θ

2
)MJ−Mi(f)+2σ

σ!(J −MJ − σ)!(MJ −Mi(f) + σ)!(J +Mi(f) − σ)!

(A.20)

And thus, we can write for non-linear or asymmetric tops, the rotational wavefunc-

tions as a linear combination of symmetric top wave functions (now represented by

φJ,MJ ,H) as,

ψJ,MJ ,κ =
∑
H

CJ
H,κφJ,MJ ,H (A.21)

which is the same equation as Equation (A.27) in the next section (but it has been

adopted the letter H to name the angular momentum number (which incorporates

the Ko and Kp used in other asymmetric top notations).
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A.3 Rotational state specific matrix elements

The normalization of the rotation matrices is determined by considering (see refer-

ence [126], Equation 3.125, p. 105 followed by Equation 3.105, p. 99 of the same

reference),

(DJ
MM ′)

∗DJ
MM ′ = (−1)M−M

′
DJ
−M,−M ′D

J
M,M ′

=
∑
J ′

(−1)M−M
′ 〈J −M,J M | J ′, 0〉DJ ′

0,0 〈J −M ′, J M ′| J ′, 0〉

(A.22)

So that ( [126], Equation 3.110, p. 101),∫ [
DJ
MM ′(R̂)

]∗
DJ
MM ′(R̂)dR̂ = (−1)M−M

′ 〈J −M,J M | 0, 0〉

× 8π2 〈J −M ′, J M ′| 0, 0〉
(A.23)

then using ( [137], Equation C.13c, p. 1056, followed by [126], Equation 3.111, p.

101),

〈J −M,J M | 0, 0〉 = (−1)J−0+M

√
1

2J + 1
〈J M, 0 0| J,M〉

〈J −M,J M | 0, 0〉 =
(−1)J+M

√
2J + 1

(A.24)

So, finally the normalization is (using the explicit coordinates; see reference [126],

Equation 3.113, p. 101),∫ [
DJ1
M1M ′1

(γ, χ, β)
]∗
DJ2
M2M ′2

(γ, χ, β)dγ sinχdχdβ =
8π2

2J1 + 1
δJ1,J2δM1,M2δM ′1,M ′2

(A.25)

So that functions √
2J + 1

8π2
DJ
MM ′(R̂) (A.26)

are normalized with respect to the integration over the usual three Euler angles. For

non-linear molecules, we have rotational wave functions of the form ( [126], Equation

6.54, p. 267),

ψJ,MJ ,κ =
∑
H

CJ
H,κφJ,MJ ,H (A.27)
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where φJ,MJ ,H is the wave function for a symmetric top, given by

φJ,MJ ,H =

(
2J + 1

8π2

) 1
2

DJ
−MJ ,−H(R̂M) (A.28)

where R̂M represents the Euler angles describing the orientation of the recoil frame

in the laboratory frame, i.e., in the field frame. The rotation R̂M then is just the

inverse of the rotation that takes the recoil frame into the field frame so that in terms

of the angles used in Equation (A.3) we have R̂M = R̂−1. Then using the relationship

given in Equation (A.12) we can write the rotational wave function given in Equation

(A.27) as

ψJ,MJ ,κ(κ′) =
∑
H(H′)

CJ
H(H′),κ(κ′)

(
2J + 1

8π2

) 1
2

[DJ
−H(H′),−MJ

(R̂)]∗ (A.29)

Then the rotation state specific matrix elements for the transitions (ζ, J,MJ , κ ←
ζ ′′, J ′′,MJ ′′ , κ

′′), are defined as

T
(ζ,J,MJ ,κ←ζ′′,J ′′,MJ′′ ,κ

′′)
λ,δ (ΩK) =

∫ [
ψJ ′′,MJ′′ ,κ

′′(R̂)
]∗
ψJ,MJ ,κ(R̂)T

(ζ′′,ζ)
λ,δ (ΩK , R̂)dR̂

(A.30)

and substituting Equations (A.29) and (A.13) into Equation (A.30) leads to

T
(ζ,J,MJ ,κ←ζ′′,J ′′,MJ′′ ,κ

′′)
λ,δ (ΩK) =

∫ ∑
H′

CJ ′

H′,κ′

(
2J + 1

8π2

) 1
2

[DJ
−H′,−MJ

(R̂)]∗

×
∑
H

CJ
H,κ

(
2J ′′ + 1

8π2

) 1
2

DJ ′′

−H,−MJ′′
(R̂)

×
∑
l,m,n,µ

1√
2
{B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)}

× I(ζ′′,ζ)
lmµ Y ∗l,n(ΩK)Dl

m,n(R̂)dR̂

(A.31)

A.4 Thermal average

Under thermal equilibrium we assume a Boltzmann distribution of states, which

allows us to write the density matrix before the interaction with the light according
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to Jonah [130] as

ρ =
1

giQ(T )

 ∑
ζ′′,J ′′,MJ′′ ,κ

′′

∣∣∣ψJ ′′,MJ′′ ,κ
′′Ψ

(i)
ζ′′

〉
gκ′′ exp

(
−EJ

′′,κ′′

kBT

)〈
ψJ ′′,MJ′′ ,κ

′′Ψ
(i)
ζ′′

∣∣∣


(A.32)

where gi accounts for the degenerate initial electronic states Ψ
(i)
ζ′′ and Q(T ) is the

rotational partition function for the initial state for an symmetric-top molecule [131],

Q(T ) =
∑
J ′′,κ′′

(2J ′′ + 1)gκ′′ exp

(
−EJ ′′,κ′′
kBT

)
(A.33)

here, gκ′′ is the nuclear-spin statistical weight, and depends on the parities of the

quantum numbers Kp and Ko, collectively labeled here as κ, (which are the quan-

tum numbers on the prolate and oblate limits of the asymmetric rotor). After the

interaction with the light, with a field operator B as defined in Equation (A.2) we

have,

ρ′ =
4π2E

c
B∗ρB (A.34)

where E is the photon energy and c is the speed of light. This propagates in time to

give

ρ′′(t) =
4π2E

c
exp(−iHrott/~)B∗ρB exp(iHrott/~). (A.35)

Expanding this in the final states gives,

ρ′′(t) =
4π2E

c

∑
J,MJ ,κ,K̂,ζ

J ′,MJ′ ,κ
′,K̂′,ζ′

∣∣∣ψJ ′,MJ′ ,κ
′Φ

(f)
ζ′ ψ

(−)

K̂′

〉

×
〈
ψJ ′,MJ′ ,κ

′Φ
(f)
ζ′ ψ

(−)

K̂′

∣∣∣ exp(−iHrott/~)B∗ρB exp(iHrott/~)
∣∣∣ψJ,MJ ,κΦ

(f)
ζ ψ

(−)

K̂

〉
×
〈
ψJ,MJ ,κΦ

(f)
ζ ψ

(−)

K̂

∣∣∣
(A.36)
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Since we are expanding in rotational eigenfunctions, we have (from evaluating the

Hamiltonian, Hrot, over the corresponding functions):

ρ′′(t) =
4π2E

c

∑
J,MJ ,κ,K̂,ζ

J ′,MJ′ ,κ
′,K̂′,ζ′

∣∣∣ψJ ′,MJ′ ,κ
′Φ

(f)
ζ′ ψ

(−)

K̂′

〉

×
〈
ψJ ′,MJ′ ,κ

′Φ
(f)
ζ′ ψ

(−)

K̂′

∣∣∣B∗ρB ∣∣∣ψJ,MJ ,κΦ
(f)
ζ ψ

(−)

K̂

〉
×
〈
ψJ,MJ ,κΦ

(f)
ζ ψ

(−)

K̂

∣∣∣ exp

{
−it
~

(EJ ′,κ′ − EJ,κ)
} (A.37)

where EJ ′,κ′ and EJ,κ are the energies of the final states with angular momentum

numbers and eigenstate indices J ′, κ′ and J, κ respectively.

Inserting Equation (A.32) for the initial density matrix it gives

ρ′′(t) =
4π2E

cgi

∑
J,MJ ,κ,K̂,ζ

J ′,MJ′ ,κ
′,K̂′,ζ′

J ′′,MJ′′ ,κ
′′,ζ′′

∣∣∣ψJ ′,MJ′ ,κ
′Φ

(f)
ζ′ ψ

(−)

K̂′

〉〈
ψJ ′,MJ′ ,κ

′Φ
(f)
ζ′ ψ

(−)

K̂′

∣∣∣B∗ ∣∣∣ψJ ′′,MJ′′ ,κ
′′Ψ

(i)

ζ̂′′

〉

× gκ′′

Q(T )
exp

(
−EJ

′′,κ′′

kBT

)〈
ψJ ′′,MJ′′ ,κ

′′Ψ
(i)
ζ′′

∣∣∣B ∣∣∣ψJ,MJ ,κΦ
(f)
ζ ψ

(−)

K̂

〉
×
〈
ψJ,MJ ,κΦ

(f)
ζ ψ

(−)

K̂

∣∣∣ exp

{
−it
~

(EJ ′,κ′ − EJ,κ)
}

(A.38)

Then, for the diagonal elements of the density matrix, for ionization in the coor-

dinate representation at time t after excitation,

ρ′′(ΩK , R̂,ΩK , R̂, t) =
1

giQ(T )

∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−EJ

′′,κ′′

kBT

)

× exp

{
−it
~

(EJ ′,κ′ − EJ,κ)
}
W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂)

8π2

(A.39)

115



where the term that has been summed over the magnetic sub levels is given by

1

8π2
W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂) =

4π2E

cgi

∑
MJ ,κ,MJ′ ,κ

′

MJ′′ ,κ
′′

[
T

(ζ,J ′,MJ′ ,κ
′←ζ′′,J ′′,MJ′′ ,κ

′′)
λ,δ (ΩK)

]∗
× T (ζ,J,MJ ,κ←ζ′′,J ′′,MJ′′ ,κ

′′)
λ,δ (ΩK)

×
[
ψJ,MJ ,κ(R̂)

]∗
ψJ ′,MJ′ ,κ

′(R̂)

(A.40)

we can note that the density matrix element is also diagonal in the final electronic

state, i.e., ζ = ζ ′. Now, the usual molecular frame angular distribution I(ΩK , R̂) is

defined as the differential cross section for the emission of the photoelectron in the

direction ΩK for a fixed orientation of the molecule in the field frame as defined by

the Euler angles in R̂. Then, the usual integrated target distribution [128] would be

obtained by an orientation average of the target [132],

dσ

dΩK

=
1

8π2

∫
I(ΩK , R̂)dR̂ (A.41)

and the final total cross section would be given by

σ =

∫
dσ

dΩK

dΩK =
1

8π2

∫∫
I(ΩK , R̂)dR̂dΩK (A.42)

So, the total cross section at t = 0 from the density matrix given in Equation (A.39)

would be

σ =

∫∫
ρ′′(ΩK , R̂,ΩK , R̂, t = 0)dΩKdR̂ (A.43)

Thus we can see that the RFPAD I(ΩK , R̂, t) for fragmentation after time t is related

to the diagonal elements of the density

I(ΩK , R̂, t) = 8π2ρ′′(ΩK , R̂,ΩK , R̂, t) (A.44)
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so that

I(ΩK , R̂, t) =
1

giQ(T )

∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−EJ

′′,κ′′

kBT

)
exp

{
−it
~

(EJ ′,κ′ − EJ,κ)
}
W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′)

(A.45)

Assuming a Poisson distribution of decay times (1/τ) exp (−t/τ), the density

matrix can be averaged over decay time using

∞∫
0

1

τ
exp

(
− t
τ

)
exp

(
−i∆Et

~

)
dt =

1

τ

∞∫
0

exp

[
−
(

1

τ
+
i∆E

~

)
t

]
dt

=
1

τ

(
1

τ
+
i∆E

~

)−1

∞∫
0

1

τ
exp

(
− t
τ

)
exp

(
−i∆Et

~

)
dt =

(
1 +

i∆Eτ

~

)−1

(A.46)

so that Equation (A.45) becomes

Iτ (ΩK , R̂, t) =
1

giQ(T )

∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−Egs,J

′′,κ′′

kBT

)
W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′)

1 + iτ∆E(J′,κ′,J,κ)

~

(A.47)

Expanding the T terms in Equation (A.40) by means of Equation (A.30) leads to

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

c

∑
MJ ,MJ′ ,MJ′′

∫∫
dR̂dR̂′ψJ ′′,MJ′′ ,κ

′′(R̂′)
[
ψJ ′,MJ′ ,κ

′(R̂′)
]∗

×
[
T

(ζ′′,ζ)
λ,δ (ΩK , R̂

′)
]∗ [

ψJ ′′,MJ′′ ,κ
′′(R̂)

]∗
ψJ,MJ ,κ(R̂)T

(ζ′′,ζ)
λ,δ (ΩK , R̂)

×
∑
H1,H′2

CJ∗
H1,κ

(
2J + 1

8π2

)1/2

DJ
−H1,−MJ

(R̂′′)

× CJ ′

H′2,κ
′

(
2J ′ + 1

8π2

)1/2 [
DJ ′

−H′2,−MJ′
(R̂′′)

]∗
(A.48)
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Expanding the additional rotational wave functions leads to

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∫∫
dR̂dR̂′

∑
MJ ,MJ′ ,MJ′′

[
T

(ζ′′,ζ)
λ,δ (ΩK , R̂

′)
]∗
T

(ζ′′,ζ)
λ,δ (ΩK , R̂)

×
∑
H′′3

CJ ′′

H′′3 ,κ
′′

(
2J ′′ + 1

8π2

)1/2 [
DJ ′′

−H′′3 ,−MJ′′
(R̂′)

]∗
×
∑
H′4

CJ ′∗
H′4,κ

′

(
2J ′ + 1

8π2

)1/2

DJ ′

−H′4,−MJ′
(R̂′)

×
∑
H′′5

CJ ′′∗
H′′5 ,κ

′′

(
2J ′′ + 1

8π2

)1/2

DJ ′′

−H′′5 ,−MJ′′
(R̂)

×
∑
H6

CJ
H6,κ

(
2J + 1

8π2

)1/2 [
DJ
−H6,−MJ

(R̂)
]∗

×
∑
H1

CJ∗
H1,κ

(
2J + 1

8π2

)1/2

DJ
−H1,−MJ

(R̂′′)

×
∑
H′2

CJ ′

H′2,κ
′

(
2J ′ + 1

8π2

)1/2 [
DJ ′

−H′2,−MJ′
(R̂′′)

]∗
(A.49)

Then combining terms and rearranging leads to

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∫∫
dR̂dR̂′

∑
MJ ,MJ′ ,MJ′′

κ,κ′,κ′′

H1,H′2,H
′′
3 ,H

′
4,H
′′
5 ,H6

[
T

(ζ′′,ζ)
λ,δ (ΩK , R̂

′)
]∗

× T (ζ′′,ζ)
λ,δ (ΩK , R̂)

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[
DJ ′′

−H′′3 ,−MJ′′
(R̂′)

]∗
DJ ′′

−H′′5 ,−MJ′′
(R̂)

×
[
DJ ′

−H′2,−MJ′
(R̂′′)

]∗
DJ ′

−H′4,−MJ′
(R̂′)

×
[
DJ
−H6,−MJ

(R̂)
]∗
DJ
−H1,−MJ

(R̂′′)

(A.50)

Now, since there are common terms in the previous equation, we can simplify
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by remembering in a geometric picture that since the DJ
mi,mj

objects are matrices

representing a rotation, then the product of two of them has to be a rotation itself.

By applying to Equation (A.50) the following rule ( [126] p.88; [125] p.63),∑
m2

DJ
m3,m2

(R̂2)
[
DJ
m1,m2

(R̂1)
]∗

=
∑
m2

DJ
m3,m2

(R̂2)DJ
m2,m1

(R̂−1
1 )

= DJ
m3,m1

(R̂−1
1 R̂2)

(A.51)

it follows that

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∫∫
dR̂dR̂′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

[
T

(ζ′′,ζ)
λ,δ (ΩK , R̂

′)
]∗

× T (ζ′′,ζ)
λ,δ (ΩK , R̂)

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×DJ ′′

−H′′5 ,−H′′3
(R̂′−1R̂)DJ ′

−H′4,−H′2
(R̂′′−1R̂′)DJ

−H1,−H6
(R̂−1R̂′′)

(A.52)

Now expanding the T ζi,ζfλ,δ terms we get

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∫∫
dR̂dR̂′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×DJ ′′

−H′′5 ,−H′′3
(R̂′−1R̂)DJ ′

−H′4,−H′2
(R̂′′−1R̂′)DJ

−H1,−H6
(R̂−1R̂′′)

×
∑
l,m,n,µ
l′,m′,n′,µ′

[
1√
2

{
B+D

(1)
µ′,−1(R̂′)−B−D(1)

µ′,1(R̂′)
}

× I
(ζ′′,ζ)
l′m′µ′Y

∗
l′,n′(ΩK)Dl′

m′,n′(R̂
′)
]∗

× 1√
2

{
B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)
}
I

(ζ′′,ζ)
lmµ Y ∗l,n(ΩK)Dl

m,n(R̂)

(A.53)

Now transforming the photoelectron emission direction into the recoil frame de-
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fined by R̂′′ using the relationship ( [126], p. 95, Equation 3.87),

Yl,n(ΩK) =
∑
p

Yl,p(Ωk)D
l
p,n(R̂′′) (A.54)

we get

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∫∫
dR̂dR̂′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×DJ ′′

−H′′5 ,−H′′3
(R̂′−1R̂)DJ ′

−H′4,−H′2
(R̂′′−1R̂′)DJ

−H1,−H6
(R̂−1R̂′′)

×
∑
l,m,n,µ
l′,m′,n′,µ′

[
1√
2

{
B+D

(1)
µ′,−1(R̂′)−B−D(1)

µ′,1(R̂′)
}
I

(ζ′′,ζ)
l′m′µ′

×
∑
p′

(
Yl′,p′(ΩK)Dl′

p′,n′(R̂
′′)
)∗
Dl′

m′,n′(R̂
′)

]∗
× 1√

2

{
B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)
}
I

(ζ′′,ζ)
lmµ

×
∑
p

(
Yl,p(ΩK)Dl

p,n(R̂′′)
)∗
Dl
m,n(R̂)

(A.55)
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which can easily be rearranged to

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∫∫
dR̂dR̂′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×DJ ′′

−H′′5 ,−H′′3
(R̂′−1R̂)DJ ′

−H′4,−H′2
(R̂′′−1R̂′)DJ

−H1,−H6
(R̂−1R̂′′)

×
∑
l,m,n,µ
l′,m′,n′,µ′

[
1√
2

{
B+D

(1)
µ′,−1(R̂′)−B−D(1)

µ′,1(R̂′)
}
I

(ζ′′,ζ)
l′m′µ′

×
∑
p′

Y ∗l′,p′(ΩK)Dl′

n′,p′(R̂
′′−1)Dl′

m′,n′(R̂
′)

]∗
× 1√

2

{
B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)
}
I

(ζ′′,ζ)
lmµ

×
∑
p

Y ∗l,p(ΩK)Dl
n,p(R̂

′′−1)Dl
m,n(R̂)

(A.56)

Summing over n and n′ using Equation (A.51) we get

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

c

∫∫
dR̂dR̂′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×DJ ′′

−H′′5 ,−H′′3
(R̂′−1R̂)DJ ′

−H′4,−H′2
(R̂′′−1R̂′)DJ

−H1,−H6
(R̂−1R̂′′)

×
∑
l,m,µ
l′,m′,µ′

[
1√
2

{
B+D

(1)
µ′,−1(R̂′)−B−D(1)

µ′,1(R̂′)
}
I

(ζ′′,ζ)
l′m′µ′

×
∑
p′

Y ∗l′,p′(ΩK)Dl′

m′,p′(R̂
′′−1R̂′)

]∗
× 1√

2

{
B+D

(1)
µ,−1(R̂)−B−D(1)

µ,1(R̂)
}
I

(ζ′′,ζ)
lmµ

×
∑
p

Y ∗l,p(ΩK)Dl
m,p(R̂

′′−1R̂)

(A.57)
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In order to perform the integrations indicated at Equation (A.57) we need to

write the equations in terms of three independent sets of angles, R̂′′, R̂′′−1R̂ and

R̂′′−1R̂′. This can be accomplished by rewriting some of the terms in the following

manner

DJ ′′

−H′′i ,−H′′j
(R̂′−1R̂) = DJ ′′

−H′′i ,−H′′j
(R̂′−1R̂′′R̂′′−1R̂)

=
∑
q′′

DJ ′′

−H′′i ,−q′′
(R̂′′−1R̂)DJ ′′

−q′′,−H′′j
(R̂′−1R̂′′)

DJ ′′

−H′′i ,−H′′j
(R̂′−1R̂) =

∑
q′′

DJ ′′

−H′′i ,−q′′
(R̂′′−1R̂)

[
DJ ′′

−H′′j ,−q′′
(R̂′′−1R̂′)

]∗ (A.58)

then the terms involving the field operators can be written as

D1
µ,±1(R̂) = D1

µ,±1(R̂′′R̂′′−1R̂)

=
∑
q

D1
µ,q(R̂

′′−1R̂)D1
q,±1(R̂′′)

(A.59)

leading to

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∑
l,m,µ,p
l′,m′,µ′,p′

q,q′,q′′

∫∫
dR̂dR̂′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

× (2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×DJ ′′

H′′5 ,q
′′(R̂′′−1R̂)

[
DJ ′′

H′′3 ,q
′′(R̂′′−1R̂′)

]∗
×DJ ′

−H′4,−H′2
(R̂′′−1R̂′)

[
DJ
−H6,−H1

(R̂′′−1R̂)
]∗

×
[

1√
2

{
B+D

1
q′,−1(R̂′′)−B−D1

q′,1(R̂′′)
}

× D1
µ′,q′(R̂

′′−1R̂′)I
(ζ′′,ζ)
l′m′µ′Y

∗
l′,p′(ΩK)Dl′

m′,p′(R̂
′′−1R̂′)

]∗
× 1√

2

{
B+D

1
q,−1(R̂′′)−B−D1

q,1(R̂′′)
}

×D1
µ,q(R̂

′′−1R̂)I
(ζ′′,ζ)
lmµ Y ∗l,p(ΩK)Dl

m,p(R̂
′′−1R̂)

(A.60)
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Making a change in the integration variables from R̂ and R̂′ to R̂′′−1R̂ and R̂′′−1R̂′

respectively and re-labeling the variables of integration back to R̂ and R̂′ one can

then rewrite Equation (A.60) as

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
32π4E

cgi

∑
l,m,µ,p
l′,m′,µ′,p′

q,q′,q′′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

(8π2)3

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[

1√
2

{
B+D

1
q′,−1(R̂′′)−B−D1

q′,1(R̂′′)
}
I

(ζ′′,ζ)
l′m′µ′Y

∗
l′,p′(ΩK)

]∗
× 1√

2

{
B+D

1
q,−1(R̂′′)−B−D1

q,1(R̂′′)
}
I

(ζ′′,ζ)
lmµ Y ∗l,p(ΩK)

×
∫
dR̂
[
DJ
−H6,−H1

(R̂)
]∗
DJ ′′

−H′′5 ,q′′
(R̂)D1

µ,q(R̂)Dl
m,p(R̂)

×
{∫

dR̂′
[
DJ ′

−H′4,−H′2
(R̂′)

]∗
DJ ′′

−H′′3 ,q′′
(R̂′)D1

µ′,q′(R̂
′)Dl′

m′,p′(R̂
′)

}∗
(A.61)

The two integrals have the same functional form and can be evaluated to give,

X
(J,J ′′,l,H6,H1,H′′5 )

µ,m,q′′,p,q (−1)−H
′′
5−q′′ =

1

8π2

∫
dR̂
[
DJ
−H6,−H1

(R̂)
]∗
DJ ′′

−H′′5 ,q′′
(R̂)D1

µ,q(R̂)Dl
m,p(R̂)

(A.62)

Then, by using first, Equation 3.125 on p. 105 and then Equation 3.105 on p. 99, of

123



Zare’s book [126] we get,

X
(J,J ′′,l,H6,H1,H′′5 )

µ,m,q′′,p,q (−1)−H
′′
5−q′′ =

1

8π2

∫
dR̂
[
DJ
−H6,−H1

(R̂)
]∗ [

DJ ′′

H′′5 ,−q′′
(R̂)
]∗

× (−1)−H
′′
5−q′′D1

µ,q(R̂)Dl
m,p(R̂)

=
1

8π2

∫
dR̂
∑
K,K′

[〈J −H6, J
′′ H ′′5 | K,H ′′5 −H6〉

× DK
H′′5−H6,−H1−q′′(R̂)

× 〈J −H1, J
′′ − q′′| K,−H1 − q′′〉]∗

× (−1)−H
′′
5−q′′ 〈1 µ, l m| K ′, µ+m〉

×DK′

µ+m,q+p(R̂) 〈1 q, l p| K ′, q + p〉
(A.63)

Using the integral of a product of rotational matrices ( [126], Equation 3.113, p.

101), ∫
dΩ
[
DJ1
M ′1M1

(R)
]∗
DJ2
M ′2M2

(R) =
8π2

2J1 + 1
δJ1J2δM ′1M ′2δM1M2 (A.64)

the function X
(J,J ′′,l,H6,H1,H′′5 )

µ,m,q′′,p,q (−1)−H
′′
5−q′′ can be expressed as

X
(J,J ′′,l,H6,H1,H′′5 )

µ,m,q′′,p,q (−1)−H
′′
5−q′′ = (−1)−H

′′
5−q′′

∑
K

1

2K + 1

× 〈J −H6, J
′′ H ′′5 | K,H ′′5 −H6〉

× 〈J −H1, J
′′ − q′′| K,−H1 − q′′〉

× 〈1 µ, l m| K,H ′′5 −H6〉 〈1 q, l p| K,−H1 − q′′〉

(A.65)

by noting that µ + m = H ′′5 − H6 and that q + p = −H1 − q′′ it follows that the

dependence of this X functions on H6 and H1 is dropped since they themselves are

not independent from the other variables related to X. So it can be rearranged for

convenience to,

X
(J,J ′′,l,H6,H1,H′′5 )

µ,m,q′′,p,q =
∑
K

1

2K + 1
〈J −H6, J

′′ H ′′5 | K,H ′′5 −H6〉

× 〈J −H1, J
′′ − q′′| K,−H1 − q′′〉

× 〈1 µ, l m| K,H ′′5 −H6〉 〈1 q, l p| K,−H1 − q′′〉

(A.66)
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to eliminate the direct dependence on H6 and H1, Equation (A.66) is rewritten as

X
(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q =
∑
K

1

2K + 1
〈J µ+m−H ′′5 , J ′′ H ′′5 | K,µ+m〉

× 〈J q + p+ q′′, J ′′ − q′′| K, q + p〉

× 〈1 µ, l m| K,µ+m〉 〈1 q, l p| K, q + p〉

(A.67)

To compute (A.67) some Clebsch-Gordan (CG) coefficients most be evaluated, and

must be re-written in such a way that they conform to the order that the used

subroutine, CLEBG(J2, J3, M1, M2, F, J1MIN), requires. To do this, lets look at

each CG coefficient separately, first

〈J µ+m−H ′′5 , J ′′ H ′′5 | K,µ+m〉

note that in the program the variables Mum = µ + m is defined. Using Equation

C.13b of Messiah’s book [137] it can be expressed as

(−1)J−K+H′′5

(
2K + 1

2J + 1

)1/2

〈K µ+m, J ′′ −H ′′5 | J, µ+m−H ′′5 〉

which is the form to be used in the program. In a similar way, in the program we

defined qp = q + p, and

〈J q + p+ q′′, J ′′ − q′′| K, q + p〉 = (−1)J−K−q
′′
(

2K + 1

2J + 1

)1/2

× 〈K q + p, J ′′ q′′| J, q + p+ q′′〉
(A.68)

For the other two CG coefficients involved in evaluating Equation (A.66) we have,

〈1 µ, l m| K,µ+m〉 = (−1)1−K+m

(
2K + 1

2(1) + 1

)1/2

〈K µ+m, l −m| 1, µ〉

〈1 q, l p| K, q + p〉 = (−1)1−K+p

(
2K + 1

2(1) + 1

)1/2

〈K q + p, l − p| 1, q〉
(A.69)

When substituting these previously rearranged terms into Equation (A.67) we end
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up with,

X
(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q =
∑
K

(−1)H
′′
5−q′′+m+p

(
2K + 1

3(2J + 1)

)
× 〈K µ+m, J ′′ −H ′′5 | J, µ+m−H ′′5 〉

× 〈K q + p, J ′′ q′′| J, q + p+ q′′〉

× 〈K µ+m, l −m| 1, µ〉 〈K q + p, l − p| 1, q〉

(A.70)

and in a very similar way for
[
X

(J ′,J ′′,l′,H′4,H
′
2,H
′′
3 )

µ′,m′,q′′,p′,q′

]∗
the dependence on H ′4 and H ′2 can

be removed leading to

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
=

[∑
K

(−1)H
′′
3−q′′+m′+p′

(
2K + 1

3(2J ′ + 1)

)
× 〈K µ′ +m′, J ′′ −H ′′3 | J ′, µ′ +m′ −H ′′3 〉

× 〈K p′ + q′, J ′′ q′′| J ′, p′ + q′ + q′′〉

× 〈K µ′ +m′, l′ −m′| 1, µ〉 〈K p′ + q′, l′ − p′| 1, q′〉
]∗

(A.71)

where, in the program notation, the variables MuPmP = µ′+m′ and pPqP = pP+qP

have been used. It should be noted that in Equation (A.71) the value of X is real,

and the complex conjugate notation is employed only to make more easy to follow

where this quantity fits into the rest of the equations. So that Equation (A.61) can

be rewritten as

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
l,m,µ,p
l′,m′,µ′,p′

q,q′,q′′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[

1√
2

{
B+D

1
q′,−1(R̂′′)−B−D1

q′,1(R̂′′)
}
I

(ζ′′,ζ)
l′m′µ′Y

∗
l′,p′(ΩK)

]∗
× 1√

2

{
B+D

1
q,−1(R̂′′)−B−D1

q,1(R̂′′)
}
I

(ζ′′,ζ)
lmµ Y ∗l,p(ΩK)

×X(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
(A.72)
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Let’s define a function Z
(q,N)
λ,δ as

Z
(q,N)
λ,δ (R̂′′) =

1

2

{
B+D

1
q′,−1(R̂′′)−B−D1

q′,1(R̂′′)
}∗ {

B+D
1
q,−1(R̂′′)−B−D1

q,1(R̂′′)
}

(A.73)

From the definition of B± = cosλ± i sinλeiδ and Equation (A.1) it follows that

B∗+B− = (cosλ− i sinλe−iλ)(cosλ− i sinλeiδ)

= cos2 λ− i cosλ sinλeiδ − i sinλ cosλe−iδ − sin2 λ

= cos 2λ− i cosλ sinλ(cos δ + i sin δ + cos δ − i sin δ)

= cos 2λ− i2 cosλ sinλ cos δ

= s1 − is2

(A.74)

in a similar way

B∗+B+ = 1− s3

B∗−B+ = s1 + is2

B∗−B− = 1 + s3

(A.75)

So that the Z
(q,N)
λ,δ (R̂′′) can be written in terms of the Stokes parameters (see Equation

(A.1) as

Z
(q,N)
λ,δ (R̂′′) =

1

2

{
(1− s3)

[
D1
q′,−1(R̂′′)

]∗
D1
q,−1(R̂′′)

− (s1 − is2)
[
D1
q′,−1(R̂′′)

]∗
D1
q,1(R̂′′)

− (s1 + is2)
[
D1
q′,1(R̂′′)

]∗
D1
q,−1(R̂′′)

+ (1 + s3)
[
D1
q′,1(R̂′′)

]∗
D1
q,1(R̂′′)

}
(A.76)

By using the next property of rotation matrices ( [126], Equation 3.125 p. 105),

[
DJ
MK(R)

]∗
= (−1)M−KDJ

−M −K(R) (A.77)
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we can rewrite Equation (A.76) as

Z
(q,N)
λ,δ (R̂′′) =

1

2

{
(−1)q

′+1(1− s3)D1
−q′,1(R̂′′)D1

q,−1(R̂′′)

− (−1)q
′+1(s1 − is2)D1

−q′,1(R̂′′)D1
q,1(R̂′′)

− (−1)q
′−1(s1 + is2)D1

−q′,−1(R̂′′)D1
q,−1(R̂′′)

+ (−1)q
′−1(1 + s3)D1

−q′,−1(R̂′′)D1
q,1(R̂′′)

} (A.78)

Expanding now the matrix products into Clebsch-Gordan coefficients we have

Z
(q,N)
λ,δ (R̂′′) =

1

2

{
(−1)q

′+1(1− s3)
∑
L

〈1 − q′, 1 q| L, q − q′〉 〈1 1, 1 − 1| L, 0〉DL
q−q′,0(R̂′′)

− (−1)q
′+1(s1 − is2)

∑
L

〈1 − q′, 1 q| L, q − q′〉 〈1 1, 1 1| L, 2〉DL
q−q′,2(R̂′′)

− (−1)q
′−1(s1 + is2)

∑
L

〈1 − q′, 1 q| L, q − q′〉

× 〈1 − 1, 1 − 1| L,−2〉DL
q−q′,−2(R̂′′)

+ (−1)q
′−1(1 + s3)

∑
L

〈1 − q′, 1 q| L, q − q′〉 〈1 − 1, 1 1| L, 0〉DL
q−q′,0(R̂′′)

}
(A.79)

Rearranging terms and defining N = q − q′ we have,

Z
(q,N)
λ,δ (R̂′′) =

1

2
(−1)q−N+1

∑
L

〈1 − q′, 1 q| L,N〉

×
{

(1− s3) 〈1 1, 1 − 1| L, 0〉DL
N,0(R̂′′)

− (s1 − is2) 〈1 1, 1 1| L, 2〉DL
N,2(R̂′′)

− (s1 + is2) 〈1 − 1, 1 − 1| L,−2〉DL
N,−2(R̂′′)

+ (1 + s3) 〈1 − 1, 1 1| L, 0〉DL
N,0(R̂′′)

}
(A.80)

Note that Equations (A.65) and (A.66) have the following constraints on some of the
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indices in the sums

q + p = −H1 − q′′

q′ + p′ = −H ′2 − q′′
(A.81)

so that by equating previous definitions on q′′ and using the definition of N we get,

q + p+H1 = q′ + p′ +H ′2

q − q′ = p′ − p+H ′2 −H1

N = p′ − p+H ′2 −H1

(A.82)

so, primed indices q′′, q′ and p′ can be written as

q′′ = −H1 − q − p

q′ = q −N

p′ = N + p−H ′2 +H1

(A.83)

also for convenience we will define the quantity NH as,

NH = −N +H ′2 −H1 (A.84)

and it immediately follows that,

p′ = p−NH (A.85)

Then Equation (A.72) can be rewritten as

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
l,m,µ,p,q
l′,m′,µ′,N

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[
I

(ζ′′,ζ)
l′m′µ′

]∗
I

(ζ′′,ζ)
lmµ Yl′,N+p−H′2+H1

(ΩK)Yl,−p(ΩK)(−1)p

×X(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
Z

(q,N)
λ,δ (R̂′′)

(A.86)
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And by using the relation YLM(θ, φ) =
(

2L+1
4π

)1/2 [
DL
M0(φ, θ, χ)

]∗
(see [126], Equation

3.94, p. 97), it can be expressed as

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
l,m,µ,p,q
l′,m′,µ′,N

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[
I

(ζ′′,ζ)
l′m′µ′

]∗
I

(ζ′′,ζ)
lmµ

(
2l′ + 1

4π

)1/2 [
Dl′

N+p−H′2+H1,0
(ΩK)

]∗
×
(

2l + 1

4π

)1/2 [
Dl
−p,0(ΩK)

]∗
(−1)p

×X(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
Z

(q,N)
λ,δ (R̂′′)

(A.87)

Considering Equations (A.77), and then taking the products of the ‘paired’ rotation

matrices and expressing them as Clebsch-Gordan coefficients (which is equivalent to

use Equation (A.22)), it follows that

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
l,m,µ,p,q
l′,m′,µ′,N

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[
I

(ζ′′,ζ)
l′m′µ′

]∗
I

(ζ′′,ζ)
lmµ (−1)N+p−H′2+H1

(
2l′ + 1

4π

)1/2(
2l + 1

4π

)1/2

×
∑
L′

〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉

× 〈l′ 0, l 0| L′, 0〉DL′

−N+H′2−H1,0
(ΩK)

×X(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
Z

(q,N)
λ,δ (R̂′′)

(A.88)

Finally this expression can be rearranged and the rotation matrix left expressed as

a spherical harmonic function ( [126], Equation 3.93, p.97 and Equation 3.98, p97)
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to have

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
l,m,µ,p,q
l′,m′,µ′,N

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[
I

(ζ′′,ζ)
l′m′µ′

]∗
I

(ζ′′,ζ)
lmµ (−1)N+p−H′2+H1

(
2l′ + 1

4π

)1/2(
2l + 1

4π

)1/2

×
∑
L′

〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉

× 〈l′ 0, l 0| L′, 0〉
(

4π

2L′ + 1

)1/2

Y ∗L′,−N+H′2−H1
(ΩK)

×X(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
Z

(q,N)
λ,δ (R̂′′)

(A.89)

leading to

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
l,m,µ,p,q
l′,m′,µ′,N

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

×
[
I

(ζ′′,ζ)
l′m′µ′

]∗
I

(ζ′′,ζ)
lmµ (−1)p

∑
L′

[
(2l′ + 1)(2l + 1)

4π(2L′ + 1)

]1/2

× 〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉

× 〈l′ 0, l 0| L′, 0〉YL′,N−H′2+H1
(ΩK)

×X(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q

[
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

]∗
Z

(q,N)
λ,δ (R̂′′)

(A.90)

Now define the terms

M
(J,J ′′,l,H′′5 ,H6,ζ′′,ζ)
q′′,p,q =

∑
µ

I
(ζ′′,ζ)
lmµ X

(J,J ′′,l,H′′5 ;H6)

µ,m,q′′,p,q[
M

(J ′,J ′′,l′,H′′3 ,H
′
4,ζ
′′,ζ)

q′′,p′,q′

]∗
=
∑
µ′

[
I

(ζ′′,ζ)
l′m′µ′

]∗
X

(J ′,J ′′,l′,H′′3 ;H′4)

µ′,m′,q′′,p′,q′

(A.91)
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and

E
(λ,δ)
L,N (R̂′′) =

1

2

√
2L+ 1

4π

{
(1− s3) 〈1 1, 1 − 1| L, 0〉DL

N,0(R̂′′)

− (s1 − is2) 〈1 1, 1 1| L, 2〉DL
N,2(R̂′′)

− (s1 + is2) 〈1 − 1, 1 − 1| L,−2〉DL
N,−2(R̂′′)

+ (1 + s3) 〈1 − 1, 1 1| L, 0〉DL
N,0(R̂′′)

} (A.92)

with this definition Equation (A.80) can be rewritten as

Z
(q,N)
λ,δ (R̂′′) = (−1)q−N+1

∑
L

〈1 − q′, 1 q| L,N〉
√

4π

2L+ 1
E

(λ,δ)
L,N (R̂′′) (A.93)

For specific values of L, explicit formulas for the E
(λ,δ)
L,N (algebraic expressions for

some specific values of the Clebsch-Gordan coefficients can be found elsewhere (for

example [126], p.57-61) can be written as:

Eλ,δ
0,0 (R̂′′) =

1√
3

1√
4π

(A.94a)

E
(λ,δ)
1,N (R̂′′) =

1√
2

√
3

4π
s3D

(1)
N,0(R̂′′) (A.94b)

E
(λ,δ)
2,N (R̂′′) =

√
5

4π

{
1√
6
D

(2)
N,0(R̂′′)− s1

2

[
D

(2)
N,2(R̂′′) +D

(2)
N,−2(R̂′′)

]
+
is2

2

[
D

(2)
N,2(R̂′′)−D(2)

N,−2(R̂′′)
]}

(A.94c)

The W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) can now be written as
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W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
L′,L,N

YL′,N−H′2+H1
(ΩK)E

(λ,δ)
L,N (R̂′′)

×
∑
l,p,q,l′

∑
H1,H′2,H

′′
3 ,H

′
4,H
′′
5 ,H6

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2l′ + 1)(2l + 1)

(2L+ 1)(2L′ + 1)

]1/2

× CJ ′′

H′′3 ,κ
′′ · CJ ′′∗

H′′5 ,κ
′′ × CJ ′

H′2,κ
′ · CJ ′∗

H′4,κ
′ × CJ

H6,κ
· CJ∗

H1,κ

× (−1)p+q−N+1 〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉

× 〈l′ 0, l 0| L′, 0〉 〈1 − q′, 1 q| L,N〉

×M (J,J ′′,l,H′′5 ,H6,ζ′′,ζ)
q′′,p,q

[
M

(J ′,J ′′,l′,H′′3 ,H
′
4,ζ
′′,ζ)

q′′,p′,q′

]∗
(A.95)

This definition of W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) can be rearranged in such a way that the only

terms containing H ′′3 , H
′
4, H

′′
5 and H6 are placed together, as it is done in the program.

W

(
J,J ′,J ′′

κ,κ′,κ′′

)
λ,δ;(ζ,ζ′′) (ΩK , R̂

′′) =
4π2E

cgi

∑
L′,L,N

YL′,N−H′2+H1
(ΩK)E

(λ,δ)
L,N (R̂′′)

×
∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2l′ + 1)(2l + 1)

(2L+ 1)(2L′ + 1)

]1/2

CJ ′

H′2,κ
′ × CJ∗

H1,κ
· (−1)p+q−N+1

× 〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉

× 〈l′ 0, l 0| L′, 0〉 〈1 − q′, 1 q| L,N〉

×
∑
H′′5 ,H6

CJ ′′∗
H′′5 ,κ

′′ · CJ
H6,κ
·M (J,J ′′,l,H′′5 ,H6,ζ′′,ζ)

q′′,p,q

×
∑
H′′3 ,H

′
4

CJ ′′

H′′3 ,κ
′′ · CJ ′∗

H′4,κ
′ ·
[
M

(J ′,J ′′,l′,H′′3 ,H
′
4,ζ
′′,ζ)

q′′,p′,q′

]∗
(A.96)

By performing the indicated products on M and M∗, and the corresponding sums

over H ′′3 , H
′
4, H

′′
5 and H6 a transformation is carried taking M

(J,J ′′,l,H′′5 ,H6,ζ′′,ζ)
q′′,p,q and
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[
M

(J ′,J ′′,l′,H′′3 ,H
′
4,ζ
′′,ζ)

q′′,p′,q′

]∗
to M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q and

[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
respectively.

Now defining H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′LN ;(ζ,ζ′′) as

H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′LN ;(ζ,ζ′′) =

4π2E

cgi

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2l′ + 1)(2l + 1)

(2L+ 1)(2L′ + 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)p+q−N+1 〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉

× 〈l′ 0, l 0| L′, 0〉 〈1 − q′, 1 q| L,N〉

×M (J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
(A.97)

Looking at Equation (A.97) for H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′LN ;(ζ,ζ′′) we have some CG coefficients that need

to be re-expressed for convenience by using Equation C.13b of Messiah’s book [137]

(or Equation 2.26 of [126]), in order to use the CLEBG(J2,J3, M1, M2, F, J1MIN)

subroutine. Let’s define NH = −N +H ′2 −H1 so that,

〈l′ −N − p+H ′2 −H1, l p| L′,−N +H ′2 −H1〉 = 〈l′ NH − p, l p| L′, NH〉 (A.98)

and re-expressing it, leads to,

〈l′ NH − p, l p| L′, NH〉 = (−1)l
′−L′+p

(
2L′ + 1

2l′ + 1

)1/2

〈L′ NH , l − p| l′, NH − p〉

(A.99)

and in a similar way

〈l′ 0, l 0| L′, 0〉 = (−1)l
′−L′

(
2L′ + 1

2l′ + 1

)1/2

〈L′ 0, l 0| l′, 0〉 (A.100)

by introducing this equivalent expressions for the CG coefficients appearing in Equa-

tion (A.97) we get (note that the summation over H1 and H ′2 can be dropped for a
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summation over q′′ since H1 = −(q′′ + q + p) and H ′2 = NH +N +H1),

H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′NHLN ;(ζ,ζ′′) =

4π2E

cgi

∑
l,p,q,l′

∑
q′′

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q−N+1 〈L′ NH , l − p| l′, NH − p〉

× 〈L′ 0, l 0| l′, 0〉 〈1 − q′, 1 q| L,N〉

×M (J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
(A.101)

So that the intensity from Equation (A.47) can be written as,

Iτ (ΩK , R̂, t) =
1

giQ(T )

∑
L′,L,N,NH

YL′,N−H′2+H1=−NH (ΩK)E
(λ,δ)
L,N (R̂′′)

×
∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−Egs,J

′′,κ′′

kBT

)
×
H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′)

1 + iτ∆E(J,κ,J′,κ′)

~

(A.102)

or defining H
(τ,T )
L′,NH ,L,N

as

H
(τ,T )
L′,NH ,L,N

=
1

giQ(T )

∑
ζ,ζ′′

J,J ′,J ′′

κ,κ′,κ′′

gκ′′ exp

(
−Egs,J

′′,κ′′

kBT

)
H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′)

1 + iτ∆E(J,κ,J′,κ′)

~

(A.103)

we can write the intensity as

I(λ,δ)
τ (ΩK , R̂) =

∑
L′,L,N,NH

YL′,−NH (ΩK)E
(λ,δ)
L,N (R̂′′)H

(τ,T )
L′,NH ,L,N

(A.104)

suming over L′ and NH we can define G
(τ,T )
L,N (ΩK),

G
(τ,T )
L,N (ΩK) =

∑
L′,NH

YL′,−NH (ΩK)H
(τ,T )
L′,NH ,L,N

(A.105)
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then the final expression for the intensity becomes,

I(λ,δ)
τ (ΩK , R̂) =

∑
L,N

G
(τ,T )
L,N (ΩK)E

(λ,δ)
L,N (R̂′′) (A.106)

A.5 Symmetry test for H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′NHLN ;(ζ,ζ′′)

In this section we explore the relation that changing the signs on variables NH and N

and complex conjugation of the quantity H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′NHLN ;(ζ,ζ′′) has on the origin expression

of itself. This symmetry test will be useful for the program as it can be taken as

a simple test of the “correctness” of its computation, to certain extent. Let’s start

with the original expression, that was outlined before on Equation (A.101)

H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′NHLN ;(ζ,ζ′′) =

4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q−N+1 〈L′ NH , l − p| l′, NH − p〉 〈L′ 0, l 0| l′, 0〉

× 〈1 − q′, 1 q| L,N〉

×M (J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
(A.107)

Some useful relations from the previous section are:

NH = −N +H ′2 −H1

p′ = N + p−H ′2 +H1

(A.108)
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Taking the complex conjugate on both sides and changing N to −N and NH to −NH

we get (notice that NH − p = −p′, too),H
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q+N+1 〈L′ −NH , l − p| l′,−p′〉 〈L′ 0, l 0| l′, 0〉

× 〈1 − q′, 1 q| L,−N〉

×
[
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

]∗
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

(A.109)

Now by means of equation C.13d of Messiah [137], we can bring back the CG coeffi-

cients to the original form,H
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q+N+1(−1)L
′+l−l′ 〈L′ NH , l p| l′, p′〉

〈L′ 0, l 0| l′, 0〉 (−1)2−L 〈1 q′, 1 − q| L,N〉

×
[
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

]∗
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

(A.110)
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Now, swapping J and J ′, κ and κ′, q and q′, p and p′, l and l′, H ′2 and H1 on (A.110)

we getH
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l′ + 1)

(2l + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q
′+N+1(−1)L

′+l′−l 〈L′ NH , l
′ p′| l, p〉

〈L′ 0, l′ 0| l, 0〉 (−1)2−L 〈1 q, 1 − q′| L,N〉

×
[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

(A.111)

By applying C.13c and C.13a from [137] we getH
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l′ + 1)

(2l + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q
′+N+1(−1)L

′+l′−l(−1)l
′−l−NH

×
(

2l + 1

2l′ + 1

)1/2

〈L′ −NH , l p| l′, p′〉

× (−1)l
′−l
(

2l + 1

2l′ + 1

)1/2

〈L′ 0, l 0| l′, 0〉

× (−1)2−L(−1)2−L 〈1 − q′, 1 q| L,N〉

×
[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

(A.112)
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Grouping phases and common terms in Equation (A.112) can be rearranged toH
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q
′+N+1(−1)L

′+l′−l−NH 〈L′ −NH , l p| l′, p′〉

× 〈L′ 0, l 0| l′, 0〉 〈1 − q′, 1 q| L,N〉

×
[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

(A.113)

Applying C.13d from [137] we get,H
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q
′+N+1(−1)L

′+l′−l−NH (−1)L
′+l−l′

× 〈L′ NH , l − p| l′,−p′〉 〈L′ 0, l 0| l′, 0〉 〈1 − q′, 1 q| L,N〉

×
[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

(A.114)

since −p′ = NH − p and q′ = q −N , it leads toH
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ =
4π2E

c

∑
l,p,q,l′

∑
H1,H′2

(2J + 1)(2J ′ + 1)(2J ′′ + 1)

×
[

(2L′ + 1)(2l + 1)

(2l′ + 1)(2L+ 1)

]1/2

× CJ ′

H′2,κ
′ · CJ∗

H1,κ

× (−1)q−NH+1 〈L′ NH , l − p| l′, NH − p〉

〈L′ 0, l 0| l′, 0〉 〈1 − q′, 1 q| L,N〉

×
[
M

(J ′,J ′′,l′,κ′′,κ′,ζ′′,ζ)
q′′,p′,q′

]∗
M

(J,J ′′,l,κ′′,κ,ζ′′,ζ)
q′′,p,q

(A.115)
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So, multiplying both sides by (−1)NH−N will return the original expression for

H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′) on the right, thus,

(−1)NH−N

H
(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,−NH ,L,−N ;(ζ,ζ′′)

∗ = H

(
J,J ′,J ′′

κ,κ′,κ′′

)
L′,NH ,L,N ;(ζ,ζ′′) (A.116)

A.6 Polarization special cases

The field dependent term given in Equation (A.92) can be simplified in the case

of linear or circularly polarized light. With linearly polarized light, λ = 0 so that

s1 = 1 and s2 = s3 = 0. Giving for Eλ,δ
L,N (see Equation (A.94)):

E
(LP )
0,0 (R̂′′) =

1√
3

1√
4π

=

√
1

3
Y00(χLP , γLP )

E
(LP )
0,0 (γLP −

π

2
,
π

2
, π − χLP ) =

1√
3

1√
4π

E
(LP )
1,N (R̂′′) = 0

E
(LP )
2,N (R̂′′) =

√
5

4π

{
1√
6
D

(2)
N,0(R̂′′)− 1

2

[
D

(2)
N,2(R̂′′) +D

(2)
N,−2(R̂′′)

]}
(A.117)

Then from NotesMPI.doc we have

χ =
π

2
, γ = γLP , β = π − χLP (A.118)

and R̂′′ = (γ, χ, β) we have,

E
(LP )
0,0 (γLP −

π

2
,
π

2
, π − χLP ) =

1√
3

1√
4π

(A.119)
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E
(LP )
2,0 (γLP −

π

2
,
π

2
, π − χLP ) =

√
5

4π

{√
1

6
D

(2)
0,0(γLP −

π

2
,
π

2
, π − χLP )

− 1

2

[
D

(2)
0,2(γLP −

π

2
,
π

2
, π − χLP )

+D
(2)
0,−2(γLP −

π

2
,
π

2
, π − χLP )

]} (A.120)

In summary, writing the angular funcitons in terms of the two angles that char-

acterize the direction of the polarization of light (χLP , γLP )

E
(LP )
0,0 (χLP , γLP ) =

√
1

3
Y00(χLP , γLP ) (A.121a)

E
(LP )
2,N (χLP , γLP ) = (−1)N+1

√
2

3
Y2,−N(χLP , γLP )

= −
√

2

3
[Y2,N(χLP , γLP )]∗ (A.121b)

Or using the Clebsch-Gordan coefficients we can write a single formula

E
(LP )
L,N (χLP , γlp) = −〈1 0, 1 0| L, 0〉 [YL,N(χLP , γLP )]∗ (A.122)

For circularly polarized light we have s3 = ∓1 and s1 = s2 = 0, where the top sign is

for left hand circularly polarized light (LCP) and the bottom sign is for right hand

circularly polarized light (RCP). Alternatively we can write s3 = −µ0 where µ0 = 1

for LCP (positive helicity) and µ0 = −1 for RCP (negative helicity). Then, the E
(λ,δ)
L,N

can be written as:

E
(CP )
0,0 (R̂′′) =

1

2

√
2L+ 1

4π
{(1− s3) 〈1 1, 1 − 1| 0, 0〉 (1)

+(1 + s3) 〈1 − 1, 1 1| 0, 0〉 (1)}

=
1

2

√
1

4π

{
(1− s3)

(
1

3

) 1
2

+ (1 + s3)

(
1

3

) 1
2

}
=

1√
3

1√
4π

(A.123)
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E
(CP )
1,N (R̂′′) =

1

2

√
2 + 1

4π

{
(i− s3) 〈1 1, 1 − 1| 1, 0〉D(1)

N,0(R̂′′)

+(1 + s3) 〈1 − 1, 1 1| 1, 0〉D(1)
N,0

}
= −µ0

1√
2

√
3

4π
D

(1)
N,0(R̂′′)

(A.124)

E
(CP )
2,N (R̂′′) =

1

2

√
2(2) + 1

4π

{
(i− s3) 〈1 1, 1 − 1| 2, 0〉D(2)

N,0(R̂′′)

+(1 + s3) 〈1 − 1, 1 1| 2, 0〉D(2)
N,0

}
=

1√
6

√
5

4π
D

(2)
N,0(R̂′′)

(A.125)

Or using the Clebsch-Gordan coefficients we have,

E
(CP )
L,N (γ, χ, β) =

1

2

√
2L+ 1

4π

{
(1− s3) 〈1 1, 1 − 1| L, 0〉D(L)

N,0(R̂′′)

+(1 + s3) 〈1 − 1, 1 1| L, 0〉D(L)
N,0(R̂′′)

} (A.126)

Analizing each case (s3 = 1 or s3 = −1) it follows only one of the terms in the

rhs will remain (that is the one with either (1− s3) or (1 + s3) in front) giving thus

the simplified expresion in terms of µ0

E
(CP )
L,N (γ, χ, β) = 〈1 − µ0, 1 µ0| L, 0〉

√
2L+ 1

4π
D

(L)
N,0(γ, χ, β)

= 〈1 − µ0, 1 µ0| L, 0〉 [YLN(χ, γ)]∗
(A.127)

So, taking µ0 = 0 for the linearly polarized case, we can combine Equations

(A.126) and (A.127) into a single formula,

E
(µ0)
L,N (χ, γ) = (−1)µ0+1 〈1 − µ0, 1 µ0| L, 0〉 [YLN(χ, γ)]∗ (A.128)

where for LP light we use (χLP , γLP ) in place of (χ, γ). Now Equation (A.106) can
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be written as

I(µ0)
τ (ΩK , χ, γ) =

∑
L,N

G
(τ)
LN(Ωk)[YLN(χ, γ)]∗(−1)µ0+1 〈1 − µ0, 1 µ0| L, 0〉 (A.129)

A.7 Rotational effects with elliptically polarized light

In the general elliptically polarized case, it is also possible to rewrite the angular

functions into a simpler form. Firs, in analogy to the Q±N(χ) functions defined in

earlier publications [35] for N ≥ 0

Q±N(χ) = 3(−1)N

√
(2 +N)!

4!(2−N)!

[
d

(2)
N,2)(χ)± d(2)

N,−2(χ)
]

(A.130)

We now define the functions U
(±)
N (χ, γ) as

[
U

(±)
N (χ, γ)

]∗
=

√
15

32π

[
d

(2)
N,2)(χ)± d(2)

N,−2(χ)
]
e(−iγN) (A.131)

So that

d
(2)
N,±2(χ) =

√
8π

15

[
U

(+)
N (χ, γ)± U (−)

N (χ, γ)
]∗
e(iγN) (A.132)

Note that again, for N ≥ 0 we have,

U
(±)
N (χ, γ) = (−1)N

√
4!(2−N)!15

9(2 +N)!32π
Q±N(χ)e(iγN)

= (−1)N

√
5(2−N)!

4(2 +N)!π
Q±N(χ)e(iγN)

(A.133)

Then Equation (A.94) becomes (see references [127], p. 60 Equation 4.30 or [125],
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p. 59 Equation 4.1.25),

E
(λ,δ)
2,N (γ, χ, β) =

√
5

4π

1√
6
D

(2)
N,0(R̂′′)

−
√

5

4π

s1

2

[
e(−iγN)d

(2)
N,2(χ)e(−2iβ) + e(−iγN)d

(2)
N,−2(χ)e(2iβ)

]
+

√
5

4π

is2

2

[
e(−iγN)d

(2)
N,2(χ)e(−2iβ) − e(−iγN)d

(2)
N,−2(χ)e(2iβ)

]
=

1√
6

[Y2,N(χ, γ)]∗ − e(−iγN)

√
5

4π

s1

2

[
d

(2)
N,2(χ)e(−2iβ) + d

(2)
N,−2(χ)e(2iβ)

]
+ e(−iγN)

√
5

4π

is2

2

[
d

(2)
N,2(χ)e(−2iβ) − d(2)

N,−2(χ)e(2iβ)
]

(A.134)

From the equation of d
(2)
N,±2(χ) in terms of U

(±)
N (χ, γ) we can substitute to obtain,

E
(λ,δ)
2,N (γ, χ, β) =

1√
6

[Y2,N(χ, γ)]∗ − s1

2
(A.135)
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