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ABSTRACT 

The ability of convective flows in micro-scale confinement to direct chemical 

processes along accelerated kinetic pathways has been recognized for some time. 

However, practical applications have been slow to emerge because optimal results are 

often counterintuitively achieved in flows that appear to possess undesirably high disorder. 

Here we investigate the nature of these thermal instability driven Rayleigh-Bénard 

convective flows by altering the Rayleigh number and geometry of the cylindrical 

enclosure and thus identifying the chaotic flow regime. We then assess the ability of these 

flows to replicate DNA through polymerase chain reaction (PCR) across a broad ensemble 

of geometric states. The resulting parametric map reveals an unexpectedly wide chaotic 

regime where reaction rates remain constant over 2 orders of magnitude of the Rayleigh 

number, enabling robust convective PCR. 

With the new optimal design rules, we engineer a rugged, ultra-portable (300 g), 

inexpensive (<$20) bioanalysis platform for rapid nucleic acid-based diagnostics. The 

isothermal convective isothermal PCR format enables low power operation (5 V USB 

source). Time-resolved fluorescence detection and quantification is achieved using a 

smart-phone camera and integrated image analysis app. These advancements make it 

possible to provide gold standard nucleic acid-based diagnostics to remote field sites using 

consumer class quad-copter drones. 

The surprising interplay between reactions and micro-scale convective flows led 

us to consider adaptations beyond PCR. Specifically, we demonstrate that such flows, 
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naturally established over a broad range of hydrothermally relevant pore sizes, function as 

highly efficient conveyors to continually shuttle molecular precursors from the bulk fluid 

to targeted locations on the solid boundaries, enabling greatly accelerated chemical 

synthesis. Insights from this study has the potential to provide a breakthrough in our 

understanding of the fundamental biochemical processes underlying the origin of life. 

The phenomenon of particle resuspension plays a vital role in numerous fields and 

thus an accurate description and formulation of van der Waals (vdW) interactions between 

the particle and substrate is of utmost importance. An approach based on Lifshitz 

continuum theory has been developed to calculate the principal many body interactions 

between arbitrary geometries at all separation distances to a high degree of accuracy. The 

new formulation can now provide realistic interactions for various particle-substrate 

systems which can then be coupled with computational fluid dynamics (CFD) models to 

improve the predictive capabilities of particle resuspension dynamics. 

Finally, We analyze trajectories of micro sized particles subject to all relevant 

hydrodynamic forces and torques by coupling discrete element modeling with CFD. The 

results provide us with important design rules to construct membraneless microfluidic 

filtration channels where pressure driven transverse flows and curvature induced dean 

flows can be simultaneously harnessed to assist size based particle separation with high 

throughput. 
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DEDICATION 

To my grandmother for always believing in me. 

Big whorls have little whorls 

which feed on their velocity 

and little whorls have lesser whorls 

and so on to viscosity… 

- Lewis Richardson 
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CHAPTER I 

INTRODUCTION TO RAYLEIGH-BÉNARD CONVECTION AT 

MICROSCALE 

Introduction 

Convection is the collective motion of fluid due to its molecular motion (diffusion 

via Brownian motion) and large scale motion of bulk fluid volume (advection). 

Convective flows can be forced where the motion of fluid is driven by an external 

momentum source such as a fan. More interestingly, convection can be thermally driven 

where the motion of the fluid is caused by buoyancy forces that result from temperature 

gradient induced local density variations. This is called free or natural convection and it is 

a very important and common occurrence responsible for numerous physical phenomenon 

such as regulation of earth’s surface temperature, motion of the rocky mantle, cloud 

formation, crystal growth etc. 

Even though the concept of convection is quite old, the first quantitative 

experiments were performed by Henri-Bénard only around a century ago (1900) where he 

studied the stability of thin layer of fluid (wax) which was heated from below and open to 

the atmosphere on the top. His observations led to the depiction and quantification of 

periodic hexagonal cell pattern formation on the top layer of the fluid known as Bénard 

cells. It was later (1916) that Rayleigh provided a formal analysis of Bénard cells via 

hydrodynamic stability theory[1] on a Boussinesq fluid[2]. Since then, Rayleigh Bénard 

convective flows has been studied quite frequently and had many applications. 



2 

Convective flow polymerase chain reaction (PCR) 

Recently, it was shown that Rayleigh Bénard convective flows within micro-scaled 

cylindrical enclosures (mini lava lamps) can be harnessed to actuate biochemical reactions 

which replicate DNA via polymerase chain reaction (PCR)[3]. PCR is a very important 

tool in molecular biology which enables a sequence of DNA to be replicated across several 

orders of magnitude, generating billions of copies from a single molecule by cycling the 

PCR reagents through the prescribed temperatures. The PCR mixture is first heated to ~ 

95 ºC where the double stranded DNA molecule unwinds to two single stranded DNA 

molecules (Denaturation). The temperature is then lowered ~60 ºC where target specific 

primers (oligomers) bracket the region of amplification (annealing). Finally the 

temperature is increased to ~ 72 ºC where the polymerase enzyme extends the two single 

strands into two double stranded DNA molecules (extension). Thus in every subsequent 

cycle, the number of the target DNA molecules doubles, yielding a billion copies in just 

30 cycles. These heating and cooling steps are typically done in instruments called thermo-

cyclers (Figure 1 a) which are programmed to repeatedly change the temperature of heavy 

metallic blocks containing the PCR mixture. These are often bulky and slow taking more 

than an hour to complete the PCR thermal cycling. With recent advances in microfluidics, 

there have been constant efforts geared towards developing PCR systems that are faster 

and more efficient. In Rayleigh Bénard Convective PCR, the aqueous reaction mixture is 

confined in small (~millimeter sized) cylindrical enclosures whose bottom surface is 

maintained at higher temperature (~95 ºC) than the top (~55 ºC). The resulting circulatory 

convective flow drives the PCR mixture from the hot bottom region where denaturation 
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takes place to the top cooler region where annealing takes place, followed by the middle 

region where extension takes place, thus completing a PCR thermal cycle pseudo-

isothermally (Figure 1 b). 

Figure 1:  Pseudo-isothermal PCR in a simple Rayleigh Bénard convection cell as opposed to traditional 

thermo-cycling format. (a) Metallic blocks are programmed to heat and cool the PCR mixture repeatedly in 

thermo-cyclers. (b) PCR in a Rayleigh Bénard convection cell of diameter d and height h. The three steps 

of steps are sequentially executed as the PCR mixture is shuffled through the hot (bottom) and cold (top) 

regions of the cylindrical reactor repeatedly  

Even though the design and implementation of the convective PCR seems simple, 

the underlying physics and emerging thermal instability driven convective flow fields are 

quite complicated. Key insights about the stability modes of Rayleigh Bénard convective 

flows can be gained by performing linear stability analysis on the governing 

hydrodynamic equations (Navier-Stokes equations) coupled with the energy equations 

with Boussinesq approximation. Non dimensionalizing these equations with appropriate 
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scaling constants, forces out natural dimensionless parameters which ultimately governs 

the stability of the base flow state (no convective flow) and its transition to more intricate 

stable flow states upon perturbing the base state. 
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Where v*, p*, θ, t*, Re, Ra, and Pr; represents the dimensionless velocity, pressure, 

temperature, time, Reynolds number, Rayleigh number, and Prandtl number respectively. 

Reynolds number measures the relative magnitudes of inertial and viscous effects in the 

fluid. The two important dimensionless numbers for the Rayleigh Bénard flows are the 

Rayleigh and Prandtl numbers. Rayleigh number (Ra) expresses the ratio of the 

destabilizing buoyancy term (driving force for convection) to the stabilizing thermal and 

viscous diffusion term and can be cast as 

3g Th
Ra






 [1.2] 

Where g, h, ∆T, β, ν and α represents the acceleration due to gravity (9.8 m2/s), 

height of the fluid layer, temperature difference across h, thermal expansion coefficient, 

dynamic viscosity and thermal diffusivity of the fluid respectively. Prandtl number (Pr= 

ν/ α) on the other hand is the ratio of the viscous to thermal diffusion in the fluid and is 

only a property of the fluid. Therefore in convective PCR system the Pr is practically fixed 

and is determined by the fluid properties of the aqueous PCR reagent mixture which is 
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essentially water (Appendix B). In the original stability analysis of equations[1.1], the 

fluid layer was assumed to be infinitely wide with no bounding vertical walls. This 

simplified boundary condition enabled the equations to be recast into normal modes 

(Helmholtz’s equations) resulting in an eigenvalue problem which could then be solved to 

yield stability characteristics of the flow as a function of Ra (Appendix A). Critical values 

of Ra can be determined by analyzing the growth/decay of the normal modes subject to 

small perturbations to the stable base flow state. These solutions are also useful in 

examining the structure of the flow in systems with similar boundary conditions (such as 

both top and bottom free surfaces). The critical Rayleigh number (Rac) obtained from 

linear stability analysis for free (top) – free (bottom), free (top) - rigid (bottom) and rigid 

(top) - rigid (bottom) boundaries are 657.5, 1101 and 1708 respectively. However for more 

realistic scenarios and the convective PCR based application the side wall effect can no 

longer be neglected (instead of an infinitely wide fluid layer). This is only possible by 

solving equations [1.1] numerically for the prescribed boundary conditions. 

Spectrum of convective flow states 

We used computational fluid dynamics (CFD) to investigate the various flow 

regimes and its implication on convective PCR (Appendix C). Cylindrical reactors were 

used to perform convective PCR experiments as it was fairly easy to manufacture (see 

chapter II). This yielded only two geometric parameters (height (h), diameter (d)) to 

determine shape and size of the reactor. It was found that the final stable flow state in these 

micro-scaled reactors uniquely depends on the Rayleigh number (Ra) of the system and 
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cylinder aspect ratio (h/d) of the reactor. Thus tuning these two parameters (Ra and h/d) 

independently allowed us to access a spectrum of convective flow states within the system. 

Figure 2:  Bifurcation diagram of convective flow in micro-scaled reactors. For a given aspect ratio, the base 

flow state of no convective flow transitions to single rolled convective flow as the Rayleigh number is 

increased above the critical Ra (Rac1). Rac2, Rac3 and Rac4 represent the transition Rayleigh numbers for the 

emergence of non-axis symmetric, oscillatory and unsteady convective flows respectively. 

For example, for a given cylinder aspect ratio, at low Ra the buoyancy force is not 

strong enough to drive the flow. As Ra is increased above the critical Rayleigh number 

(Rac), the base state of no flow becomes unstable and a slight perturbation initiates a single 
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rolled axis symmetric flow which may be clockwise or counter clockwise depending on 

the initial disturbance. Upon further increasing Ra, the axis symmetric flow itself becomes 

unstable, and the flow stabilizes to non-axis symmetric flow (Figure 2). The flow at this 

stage exhibits chaotic fluid trajectories where the fluid elements no longer follow periodic 

closed paths. Upon further increasing the Ra the flow oscillates between the possible non-

axis symmetric flow state before it finally loses its single roll flow structure to enter the 

regime of unsteady flows and convective turbulence. 

Figure 3:  Ra - h/d parametric flow map reveals a spectrum of accessible convective flow states.  The shaded 

region in the map represents cylinders with volumes relevant for PCR. Within this region, different 

combinations of size (Ra ∝ h3) and shape (h/d) of the cylinder yields flows containing fluid elements with 

periodic, quasi-periodic and chaotic trajectories. 
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It should be noted that apart from the availability of single rolled convective flow 

structure, convective PCR also requires that the temperature distribution be fixed within 

the cylindrical reactor. This requirement “roughly” fixes the temperature of the top and 

bottom surface (∆T) along with fluid properties. Thus, the Rayleigh number of the system, 

for most parts depends heavily on the cylinder height (Ra ∝ h3). Based on the above 

analysis a Ra – h/d parametric map can be constructed exhibiting a spectrum of flow states 

and the transition boundaries separating them [4] (Figure 3).The geometry has to lie above 

the critical Ra line corresponding to the onset of flow and below the transition line 

corresponding to the onset of unsteady convective flow, such that the emergent flow is 

relevant for convective PCR. At the onset of convective flow the fluid elements follow 

closed periodic orbits within the reactor. As Ra is increased the convective flow becomes 

more disordered to the extent where fluid elements follow chaotic flow trajectories. This 

chaotic nature of the flow increases as the flow enters the unsteady regime. One can also 

change the aspect ratio of the cylinder at a given Ra to alter the flow paths. For a given 

Ra, the convective flows in wider geometries (smaller aspect ratio) generate flows which 

are more disordered when compared to taller geometries (higher aspect ratio). This can be 

attributed to a much stronger transverse flow (flow in the horizontal plane) component in 

the wider geometry (Figure 4). One would expect that the closed periodic flows in taller 

geometry where fluid elements experience quasi-periodic thermal profile might be better 

for convective PCR (as the fluid elements experience periodic thermal cycling profile 

similar to conventional thermo-cyclers) but our experiments and computational models 

surprisingly reveals a more counterintuitive result in which the reactions are actually 
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executed more efficiently in wider geometries with chaotic flow trajectories (where fluid 

elements experience chaotic thermal cycling profile) (Chapter II). Therefore it is of 

interest to analyze the chaotic nature of the emerging fluid trajectories in Rayleigh-Bénard 

convective flows. 

Figure 4:  Strong transverse flow component gives rise to more disordered flow trajectories in small aspect 

ratio cylinders. The secondary transverse flow i.e. the flow component in the plane perpendicular to the 

primary convective flow, is much stronger in the lower aspect ratio geometry yielding more disordered flow 

trajectories when compared to a higher aspect ratio geometry. 
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Chaotic flows 

Although complex dynamical systems had been studied quite rigorously (Henri 

Poincaré, Hadamard), the first comprehensive study of chaotic systems was done by 

Lorentz where he found that a certain system of linear differential equations (Lorentz 

equations) displayed extreme sensitivity to some initial conditions for a set of parametric 

values. Lorentz equations are actually a truncated form for Rayleigh Bénard 

hydrodynamics equations (eq. [1.1]) in two dimensions which has now become an 

archetypical model to study various chaotic systems (pattern forming systems, self-

organization and nonlinear dynamical systems). Such chaotic systems exhibit unique 

characteristic traits such as extreme sensitivity to initial conditions, deterministic 

unpredictability, emergence of strange attractors and fractal patterns among others. 

Chaos can also arise in fluid “flow” resulting in stretching, folding and distribution 

of fluid elements. Even if the velocity field is very well ordered and deterministic, the 

trajectories of fluid elements or tracers in the flow may be chaotic in the sense that nearby 

trajectories will separate exponentially in time. Chaotic flows are quite frequently 

encountered, playing crucial roles in a variety of physical phenomena such as fluid 

mixing[5, 6], accelerated biochemistry[7] and enhanced molecular transport. Study of 

chaotic mixing is important as it helps quantify the mixing efficiency and it also provides 

a visual analogue for chaos in area preserving maps. 

For efficient PCR, the convective flow must be single rolled and time independent. 

Even though the dynamical system representing the convective flow is at steady state, it 

is of interest to analyze another dynamical system  consisting of the individual fluid 
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elements in the flow. The phase space of this dynamical system is then the physical space 

in which the flow occurs. 

dx
u( x, y,z,t )

dt

dy
v( x, y,z,t )

dt

dz
w( x, y,z,t )

dt







   [1.3] 

Where x, y, z and t represent the position and time coordinates of a fluid element 

and u, v and w represents the components of the velocity vector field which are obtained 

by numerically solving the Navier stokes and thermal equations simultaneously (eq. [1.1]

). Equations [1.3] forms a non-integrable Hamiltonian system with three degrees of 

freedom, thus displaying features of Hamiltonian chaos[8]. The methods developed to 

study chaos in phase space variables can now be readily applied to study the dynamics of 

fluid elements in real space. Chaotic behavior is characterized by divergence of nearby 

trajectories in phase space. There are various methods to quantify chaos in such time series 

dynamical variable systems such as Lyapunov exponents, correlation dimension, 

Kolmogorov-Sinia (K-S) entropy, fractal dimensions, probability density of stretching and 

Poincare sections[7-9]. Here we quantify the chaotic strength of Rayleigh-Bénard 

convective flows both visually via Poincaré maps and quantitatively via Lyapunov 

exponents[10]. 
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Poincaré maps 

It is possible to study the extent of “mixing” or exchange among flow trajectories 

by using Poincaré maps. A Poincaré section for a three dimensional trajectory is defined 

as the collection of points obtained when this trajectory pierces a chosen plane. Poincaré 

maps can be derived using the velocity field of the trajectory. It can be readily understood 

that if a trajectory exhibits a periodic closed path, then the Poincaré section will show 

distinct islands corresponding to the three dimensional trajectory; however, if the 

trajectory exhibits no periodicity, then the Poincaré sections will contain a disordered 

collection of points, which is an indication of chaos. 

We have obtained Poincaré maps by finding the location of the point where a given 

streamtrace pierces the mid-plane of the cylinder along its height. The characteristics of 

the flow trajectories for the reactor geometries used to perform PCR at aspect ratio 3 and 

9 respectively were visualized using Poincaré maps, shown in (Figure 5 a, c). This analysis 

shows that for the cylinder with aspect ratio 9, the fluid elements follow tightly closed 

paths whose loci generate distinct Kolmogorov-Arnold-Moser (KAM) curves. 

Consequently, reagents are exposed to a thermal profile characterized by quasi-periodic 

oscillation between upper and lower extremes, as seen when temperature versus time is 

plotted following a fluid element. A much different flow field emerges at h/d = 3 (Ra = 

1.45 x 106)(Figure 5 a, c), appearing disordered in the sense that fluid elements follow 

complex 3D trajectories that do not produce well-defined KAM boundaries in the Poincaré 

map but instead yield a broadly distributed pattern consistent with the emergence of chaos. 

These effects disrupt the thermal profile’s periodicity and increase the reagent’s exposure 
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to intermediate temperatures. Thus, Poincaré maps can be used to qualitatively visualize 

the extent of mixing present in a flow. 

Figure 5:  Poincaré section provides a Stroboscopic map of circulating fluid trajectories.  (a, b) Poincaré 

maps for a single fluid element trajectory for cylinders with aspect ratio 9 and 3 respectively. (c, d) Poincaré 

maps for a collection of fluid trajectories for cylinders with aspect ratio 9 and 3 respectively. 
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Lyapunov exponents 

Lyapunov exponent (LE) measures the average exponential rate of divergence of 

nearby trajectories and is regarded as one of the most important measures to quantify 

mixing and deformation in fluid flows. Since LE depends on the spatial coordinates of the 

initial fluid element, the analysis results in a spectrum of Lyapunov exponents. The largest 

LE is positive for chaotic flows with its magnitude proportional to the chaotic strength of 

the flow. About 300 densely packed lagrangian fluid elements originating from the mid 

horizontal plane of the cylinder were tracked for 5 minutes (Figure 6 a). Each fluid element 

was paired with its nearest neighbor and the coordinates of the paired system was 

integrated in time (eq. [1.3]) to yield a time series representation of their separation 

distance. The finite time Lyapunov exponent was then calculated using eq. [1.4] with the 

separation distance being normalized after each time step. 

  
 1

11 n T / t

n

d n t
LE ln

n t d n t

 



  
  

   
 [1.4] 

Where LE is the Lyapunov exponent, ∆t is the time step, T is the total time the 

fluid elements are tracked and d is the separation distance between the pair of fluid 

elements. Initial separation distance and the time step (∆t) were independently varied to 

determine their optimum values for all further simulations. Repeating the procedure for 

all the fluid elements originating from the mid horizontal plane yielded a spectrum of LE 

(Figure 6 b) with the smallest and largest LE values corresponding to slowest and the 

largest rates of divergence of fluid element pair respectively (Figure 6 c, d). 
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Figure 6:  Lyapunov exponents quantifies the disorder in Rayleigh Bernard convective flows. (a) Fluid 

element trajectories originating from mid horizontal plane. (b) Spectrum of Lyapunov exponents resembles 

a Gaussian distribution. Time series separation data between initially close trajectory pairs yielding (c) 

maximum and (d) minimum Lyapunov exponents. (Cylinder volume = 10 μL, h/d = 5) 

The largest LE from the spectrum can then be used to quantify chaotic strength of 

the convective flow fields in cylinders of different shapes and sizes (Figure 7 a). Smaller 

aspect ratio cylinders (h/d<5) display a larger value of maximum LE for all cylinder sizes. 

A larger chaotic component in these cylinders facilitates efficient exchange of reagents 
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between flow trajectories enabling robust PCR. As the aspect ratio is further increased, 

the maximum LE decreases generating more ordered flow trajectories in these cylinders. 

In the convective format, the rate of global PCR amplification can be quantified by 

doubling time of the reaction i.e. the time taken for the DNA molecules to double in 

number. Thus, smaller doubling times corresponds to faster convective PCR reactions [11] 

(Chapter II). The decrease of the Max LE with cylinder aspect ratio is reflected in the 

increase in the doubling time verifying the role chaotic advection in enhancing convective 

PCR (Figure 7 b). 
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Figure 7:  Maximum Lyapunov exponents. The maximum LE decreases for convective flow in cylinders 

with higher aspect ratio. The decrease in the chaotic strength of the flow is accompanied by an increased 

doubling time of convective PCR.  

Conclusion 

These results prove that the chaotic flow acts in a way to enhance thermally 

actuated biochemical reactions by collectively exposing a large fraction of the reaction 

volume to favorable conditions resulting in smaller reaction times in the cylinder with 

smaller aspect ratio. In contrast, the cylinder with higher aspect ratio exhibits a quasi-

periodic behavior, which results in reagents getting stuck in unfavorable temperature 

zones, leading to larger reaction times. By modeling the flow and reactions simultaneously 
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using an unsteady solver, it is possible to observe the dynamics of the PCR reaction – the 

initial lag time, the exponential rise in DNA concentration, and finally, a saturation state 

when the primers have been depleted (Chapter II). 
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CHAPTER II 

MAPPING CHAOTIC FLOW STATES FOR ROBUST CONVECTIVE PCR* 

Introduction 

Thermal convection has emerged as a promising approach to enable rapid DNA 

replication the polymerase chain reaction (PCR) [12-15]. One of the most straightforward 

implementations of this concept involves harnessing Rayleigh Bénard convection, owing 

to the inherent simplicity of housing the aqueous reagent mixture in a microliter-scale 

enclosure (typically cylindrical in shape) heated from below (Figure 8). As discussed in 

Chapter I, The interplay between the destabilizing buoyancy force and restoring action of 

thermal and viscous diffusion in this configuration is expressed in terms of the 

dimensionless Rayleigh number (Ra = [gβ(T2 – T1)h3]/να; where β is the fluid’s thermal 

expansion coefficient, g is gravitational acceleration,T1 and T2 are the temperatures of the 

top (cold) and bottom (hot) surfaces respectively, h is the height of the cylindrical reactor, 

α is the thermal diffusivity, and ν is the kinematic viscosity). This quantity, coupled with 

the geometric parameter h/d, completely specifies the available flow states[14]. The 

convective arrangement confers an operational advantage because thermo-cycling is 

actuated pseudo-isothermally by maintaining a gradient between opposing fixed-

temperature surfaces, in contrast to conventional designs where the entire bulk volume 

must be repeatedly heated and cooled. But this outward simplicity is deceiving because 

*Reprinted with permission from “Microscale Chaotic Advection Enables Robust Convective DNA

Replication”, A. Priye, Y. A. Hassan and V. Ugaz, 2013, Analytical Chemistry, 10536-10541, Copyright 

2013 by American Chemical Society. 
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the internal flow fields generated under PCR conditions are not the closed 2D circulatory 

trajectories conventionally assumed. Instead, the fluid motion displays an unexpectedly 

rich complexity owing to the onset of chaotic advection in a regime of transition to 

convective turbulence even though the flow is inertially laminar (characteristic Reynolds 

numbers ~ 30 – 40). A subset of flow states in this regime are capable of significantly 

accelerating the reaction, yielding extremely rapid DNA replication rates and a 

counterintuitive finding that optimal reaction performance occurs under conditions where 

some of the most disordered flows are generated [14]. In this chapter, we seek to elucidate 

the role of chaotic advection and precisely quantify its interplay with the underlying PCR 

biochemistry throughout the entire 3D reactor volume. These new insights lead to 

discovery of an incredibly robust operating zone wherein DNA replication rates remain 

constant over two orders of magnitude of Ra, encompassing virtually all possible 

combinations of temperature and reactor volume associated with realistic PCR conditions. 
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Figure 8:  DNA replication via the PCR in a Rayleigh Bénard convection cell. Thermal-cycling is executed 

in a cylindrical reactor geometry of height h and diameter d by imposing a temperature gradient between the 

top and bottom surfaces. A 3-reaction model is depicted whereby a DNA replication cycle occurs as reagents 

are sequentially transported through temperature zones associated with annealing (top), extension (middle), 

and denaturing (bottom) processes. 

Residence time analysis 

DNA replication occurs when reagents are sequentially transported through 

temperature zones associated with each stage of the reaction (e.g., denaturation, annealing, 

and extension), and occupy each zone for a sufficient residence time. To analyze the 

residence times of the reagents in convective flow, the CFD model was used to generate 

the lagrangian temperature versus time history (Figure 9) experienced by an ensemble of 

over 300 randomly selected passive tracer trajectories during 5 min of convective PCR in 

cylindrical reactors of varying aspect ratio (h/d; here d was held constant at 1.5 mm). 
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Figure 9:  Thermal cycling profile of a fluid element in a tall and wide reactor. Fluid elements in the wider 

geometry (h/d = 3) experiences a more chaotic temperature variation when compared to fluid element in the 

taller geometry (h/d = 9). 

Our simulations reveal that reagents occupy the extension zone—the rate limiting 

step in PCR—for a longer time in tall narrow reactors where the flow is laminar (e.g., h/d 

= 9), whereas a higher frequency of entry is observed in wider geometries where chaotic 

advection predominates (e.g., h/d = 3) (Figure 10 b). Between these extremes, ensemble 

averages of the residence time and frequency of entry decrease and increase, respectively, 

with increasing aspect ratio. Residence times in the annealing and denaturing zones are 

relatively independent of aspect ratio (Figure 10 a,c), but the frequency of entry in both 

zones is higher in chaotic flows. These trends are also mirrored in geometric dependence 

of the averaged quantities. 
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Figure 10: Residence time analysis of fluid elements in a wide and tall reactor. (b) Periodic flows (h/d = 9) 

generate longer residence times in the extension temperature zone (left) whereas chaotic flows (h/d = 3) 

produce a higher frequency of entry (middle), with a gradual transition between extremes at intermediate 

geometries (right). Both flows yield similar residence times in the (a) annealing and (c) denaturing 

temperature zones, but the frequency of entry is greater in chaotic flows and the relative trends are 

maintained across the majority of the geometric parameter space.  

A key parameter is the number of complete replication cycles occurring over the 

course of each Lagrangian trajectory (i.e., representing sequential transport through 

annealing, extension, and denaturing zones). A much broader distribution (up to 15 

complete cycles) is obtained at h/d = 3, whereas no more than 5 complete cycles occur at 

h/d = 9 (Figure 11). These observations can be attributed to the convective flow field’s 
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increasingly chaotic characteristics at low aspect ratios, in contrast to the quasi-periodic 

motion evident in taller geometries [16]. Thus chaotic phenomena are fundamentally 

important because they drive two competing factors that govern PCR efficiency: (1) high 

aspect ratio (laminar, quasi-periodic) geometries are favorable because they deliver longer 

residence times in the extension zone, but (2) low aspect ratios (chaotic flow) are also 

favorable because they provide a higher frequency of entry and greater capacity to actuate 

complete replication cycles. 

Figure 11: Wider reactors are capable of executing more complete replication cycles than taller ones. 

Complete PCR cycles defined as trajectories sequentially traversing annealing, extension, and denaturing 

temperature zones, reveal that more complete cycles are executed under chaotic flow conditions.  
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Coupling reaction kinetics with convective flow 

We next incorporated reaction kinetics into the flow model to better understand 

the interplay between the intricate convective flow fields and DNA amplification rate. 

PCR kinetics in general is quite complicated with multiple reactions occurring 

simultaneously in each step. However, one can neglect dynamics at molecular scale and 

model the system from a mass action based kinetic framework to capture the amplification 

of DNA to a good approximation. The analysis presented here is based on a simplified 3-

reaction framework[17, 18] involving denaturation of the double stranded DNA template 

(dsDNA) into two single stranded constituents (ssDNA) at ~ 95 °C, annealing of target 

specific oligomers (primers) to each ssDNA strand at ~ 50 – 60 °C to generate annealed 

complexes (aDNA), and enzyme catalyzed incorporation nucleotide species at ~ 72 °C to 

synthesize the complementary strand yielding a completed dsDNA copy. We also 

introduced further complexity by incorporating reversibility into the denaturing and 

annealing steps (5-reaction model), and by considering side reactions associated with 

primer-dimer formation (7-reaction model). Although a complete description of PCR 

kinetics involves a complex network of multiple simultaneous processes (e.g., incomplete 

extension, polymerase deactivation, etc.), we focused our analysis on these simplified 

cases where rate constant data are readily obtainable[19]. 

Mass action kinetics 

The time evolution of individual species concentrations was simultaneously 

evaluated via equation [2.1], where rates of production and consumption of individual 
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species (ri) are expressed by equations [2.2] based on elementary mass action kinetics. 

The rate constants for individual reactions (Table 1) were multiplied by temperature 

mapping functions (Figure 12) to restrict individual reactions within their respective zones 

in the reactor. 

Figure 12: Gaussian temperature mapping functions. The rate constants for PCR relevant reactions are 

multiplied by Gaussian mapping functions to constrain the reactions within respective temperature range 

within the reactor. 
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Here Ci denotes the concentration of each individual species, ki represents the rate 

constant associated with each reaction, and v and Di denote fluid velocity and species 

diffusivity respectively. Gaussian mapping functions fi(T) were applied to localize each 

process within its respective temperature zone[18]. Chemical reactions were formulated 

as part of a reaction-diffusion balance that was simultaneously solved with the transient 

convective flow profile to obtain the time resolved evolution of individual species 

concentrations[14]. 
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Table 1: Simulated PCR kinetic models. 

Step Reaction T (°C) Rate constant 

3-reaction model 

Denaturing dsDNA  2(ssDNA) 92 – 97 kd = 10 s–1 

Annealing ssDNA + primer  aDNA 55 – 60 
ka = 5 x 105 M–1 

s–1 

Extension aDNA + dNTP  dsDNA 70 – 74 ke = 106 M–1 s–1 

5-reaction model 

Renaturing 2(ssDNA)  dsDNA 55 – 60 ¢kd
 = 106 M–1 s–1 

Reverse annealing aDNA  ssDNA + primer 92 – 97 ¢ka  = 100 s–1 

7-reaction model 

Primer dimer complex 2(primer)  dimer 55 – 60 
kpd = 5 x 103 M–1 

s–1 

Dimer dissociation dimer  2(primer) 92 – 97 ¢kpd  = 104 s–1 

The mean (Ti) and standard deviation (σi) parameters of the Gaussian distributions 

applied to each reaction in our model are summarized below in Table 2. 
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Table 2: Gaussian properties of the distribution. 

Step Reaction T (°C) Gaussian mapping function fi(T) 

3-reaction model Mean Ti (°C) Std. σi 

Denaturing dsDNA  2(ssDNA) 92 – 97 94 0.05 

Annealing ssDNA + primer  aDNA 55 – 60 58 0.05 

Extension aDNA + dNTP  dsDNA 70 – 74 72 0.025 

5-reaction model 

Renaturing 2(ssDNA)  dsDNA 55 – 60 58 0.05 

Reverse 

annealing 
aDNA  ssDNA + primer 92 – 97 94 0.05 

7-reaction model 

Primer dimer 

complex 
2(primer)  dimer 55 – 60 58 0.05 

Dimer 

dissociation 
dimer  2(primer) 92 – 97 94 0.05 

Initial concentrations of target DNA, primers, and dNTPs (Table 3) were estimated 

from experimental values (based on a 10 μL reagent volume) as follows. 
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Table 3: Initial concentration of species. 

Species 
Molecular weight 

(gm/mol) 

Initial mass 

(kg) 

Initial number of 

molecules (copies) 

dsDNA 194,700 2.14968 x 10–19 665 

Primers 8,250 5.40073 x 10–11 3.94286 x 1012 

dNTPs 89,100 1.94427 x 10–7 1.31429 x 1015 

Diffusivity of DNA 

In addition to the convective flow field, reagents are also transported by molecular 

diffusion. The diffusivity of DNA in free solution depends on its length and topology[20], 

and is characterized by parameters such as the contour length (length of uncoiled 

molecule), persistence length (p, measure of backbone rigidity), and radius of gyration 

(Rg, measure of coil size). The radius of gyration can be estimated from the Kratky-Porod 

equation[21], enabling diffusion to be captured by the Zimm model[22] (eq [2.4]) where 

kB is Boltzman’s constant, and T and µ are the temperature and the viscosity of the fluid. 

Even though there are more accurate models to compute the molecular diffusivity of DNA 

molecules[23], we have used the simplified Zimm model in our calculations due to its ease 

of implementation. This relationship expresses the length dependent diffusivity of each 

species, yielding results in agreement with experimentally measured values[24]. More 

recently, accurate DNA diffusivity data has been compiled [25]. 
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In our model, the persistence and contour lengths were assigned values of p = 50 

nm and lc = 85 nm (0.34 nm x number of base pairs) respectively for a 250 bp dsDNA 

molecule[26]. 

Doubling time of convective PCR 

Replication of a 250 bp dsDNA target was modeled, with the upper and lower 

surfaces of the cylindrical reactors held constant at 97 and 53 °C, respectively. Initial 

concentrations of individual species were selected based on conditions used in our 

previous experiments (Table 3). This model successfully captures the characteristic lag, 

exponential, and plateau phases of the PCR. In the early stages of PCR, there are only few 

ssDNA molecules resulting in a slower annealing rate than the denaturation rate which in 

turn leads to an initial depletion in the dsDNA concentration (lag phase). When sufficient 

amount of ssDNA molecules accumulates, the annealing rate increases leading to an 

exponential increase in the dsDNA concentration (exponential phase). The exponential 

growth is inhibited when the annealing rate decreases again due to depletion of available 

primers in the solution (plateau phase) (Figure 13). 
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Figure 13: Coupled flow and reaction kinetics of convective PCR reproduces a real time q-PCR like curve. 

The time evolution of each species involved in a 3-reaction PCR model (Table 1) under chaotic flow 

conditions (h/d = 3) captures the characteristic lag, exponential, and plateau phases of DNA replication, 

resulting in a 109 fold increase in target yield over the initial template loading in less than 20 min. 

In conventional PCR the concept of a cycling time can be precisely defined 

because the reaction is executed uniformly throughout the bulk. Since this quantity is not 

straightforward to determine in the convective format due to the multiplicity of thermal 

trajectories present, we instead express the replication rate in terms of a characteristic 

doubling time. Comparing the effects of kinetic model complexity reveals that doubling 

times remain essentially unchanged in all geometries with aspect ratio greater than 2 

(Figure 13 a). The slightly increased doubling time at very low aspect ratios when the 5 

and 7 reaction models are applied likely reflects the reduced residence times available in 

these geometries (particularly in the extension zone) that would favor side reactions 
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competing for ssDNA and thereby reduce the rate of target replication. The effect of DNA 

molecular diffusivity on the doubling time can be studied by introducing a dimensionless 

number called the Péclet number (Pe) which quantifies the strength of convective transport 

with respect to diffusive transport of DNA molecules (Pe = Ud/D, U is the average 

convective velocity and D is the diffusivity of DNA molecules). Our simulations reveal 

that the change in the target DNA diffusivity does not appreciably impact the doubling 

time. A sudden increase in the doubling time occurs at Pe~O (1) corresponding to 

unrealistic DNA diffusivity where the overall reaction rate decreases due to diffusion 

effects (Figure 13 b). We next evaluated the effect of initial concentrations of template 

DNA, primers, and nucleotides (Figure 13 c, d, and e) which were normalized with their 

experimentally determined initial concentrations. Increasing the amount of template DNA 

does not alter the doubling time, whereas kinetics are significantly slowed at normalized 

concentrations below 10–4 (i.e., the single copy limit). Replication is also sensitive to the 

initial primer concentration, with a decrease in doubling time of 1 – 2 orders of magnitude 

(to less than 20 s) as the normalized concentration is increased. Likewise, the initial 

quantity of nucleotides in the reagent mixture does not significantly affect replication 

except at very low concentrations. Collectively, new insights make it possible to rationally 

select optimal reagent formulations to maximize the DNA replication rate. 
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Figure 14: Sensitivity of doubling time on reaction model parameters.  (a) Increasing the complexity of the 

reaction model by addition of side reactions (Table 1) does not appreciably impact the replication rate. (b) 

The variation of doubling time with Péclet number (Ud/D) reveals a relatively constant replication rate over 

the full range of realistic parameter values (shaded region). Replication rates are also computed as a function 

of initial concentrations (normalized with respect to their experimentally determined initial values) of (c) 

template DNA, (d) dNTPs, and (e) primers to establish optimal ranges for the convective format. All 

simulations were performed in the chaotic flow regime (h/d = 3).  

Convective PCR experiments 

Cylindrical reactors were constructed from 0.5 inch dia. polycarbonate rod stock 

(Amazon Supply) by cutting them to lengths and machining holes to produce reactors with 

an aspect ratio of h/d= 3 at heights of h = 4.5, 6, and 7.5 mm. PCR experiments were 

performed to replicate a 237 base pair target from a λ-phage DNA template. A typical 100 

µL reaction mixture contained 10 µL of 10x buffer solution, 4 µL of 25 mM MgCl2, 10 
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µL of dNTPs (2 mM each), 67.8 µL of DI water, 3 µL of each forward and reverse primer, 

2 µL of template DNA  and 0.8 µL of KOD polymerase (2.5 units/ µL). The enzyme, 

buffer (buffer #1), MgCl2, and dNTPs were supplied with the KOD DNA Polymerase Kit 

(cat. no. 71085-3; Novagen). Reactors were first rinsed with a 10 mg/mL aqueous solution 

of bovine serum albumin (cat. no. A2153; Sigma-Aldrich) followed by Rain-X Anti-Fog 

(SOPUS Products), and dried. We found that these rinsing steps helped minimize 

adsorption at the sidewalls that may otherwise inhibit the reaction while also enhancing 

surface wettability so that reagents could be loaded without trapping air pockets inside the 

reactor. The lower surface of the polycarbonate reactor was sealed using three layers of 

aluminum tape (cat. no. PCR-AS-200; Axygen, Inc.), after which reagents were pipetted 

inside and the top surface sealed with another layer of tape. The reactors were then 

sandwiched between the preheated hot (95 °C) and cold (58 °C) plates of the convective 

device (Figure 15). After incubation for a desired time, the reactors were removed and the 

products were pipetted out of the wells for subsequent analysis by agarose gel 

electrophoresis (2 wt% gel (cat. no. 161-3107; Bio-Rad) with 1x TAE running buffer (cat. 

no. 141-0743; Bio-Rad)). Fluorescently stained DNA samples were prepared containing 

2 µL 100x SYBR Green I solution (Invitrogen/Molecular Probes), 2 µL DNA sample, 2 

µL 6x Orange Loading Dye (Fermentas), and 4 µL TAE buffer. Samples were run at 60 

V for 1 h with a 100 bp DNA ladder sizing marker (cat. no. 170-8202; Bio-Rad). A step 

by step instruction of lyntech setup can be found in the appendix (Appendix D). 



36 

Figure 15: Isothermal metal plates conforms to an appropriate convective PCR setup. The polycarbonate 

cylindrical reactors are sandwiched between preheated hot and cold plates. The temperature of the plates is 

controlled and monitored via a computer interface. 

Convective PCR global amplification map 

Finally, we evaluated our reaction model across a wide range of Ra and h/d to 

establish a parametric mapping in terms of the generation rate, a quantity representing the 

number of target DNA doubling events per hour (i.e., the reciprocal of the doubling time). 

These results reveal that some of the most rapid generation rates are achieved in quasi-

periodic laminar flow states immediately above the critical Ra associated with the onset 

of flow in the vicinity of 3 ≥ h/d ≥ 6 (Figure 16). These geometries have the smallest 

allowable height at a given aspect ratio, thereby enabling reagents to circulate quickly 

throughout the reactor. More significantly, a broad zone is evident within the central 
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chaotic flow regime where generation rates remain essentially unchanged. Although 

replication is not quite as fast as in the vicinity of the critical Ra, reactions nevertheless 

proceed rapidly enough to execute the equivalent of a typical 30 cycle PCR in 10 – 20 

minutes, consistent with our experiment results [14]. Remarkably, generation rates in the 

chaotic flow regime remain essentially constant over nearly two orders of magnitude of 

Ra, thereby encompassing virtually all possible combinations of temperature and reactor 

volume associated with realistic PCR conditions. We verified the robustness of PCR 

performed within the chaotic flow regime by amplifying a 237 bp fragment associated 

with λ-phage DNA in three different reactor geometries (h/d = 3, with h = 4.5, 6.0 and 7.5 

mm). All reactions were allowed to run for 12 min. Successful amplification was achieved 

in all three geometries within this accelerated reaction time (Figure 16), consistent with 

the predicted generation rate in this regime. More broadly, our predictions are 

corroborated by results from previous studies involving PCR under Rayleigh Bénard 

convection summarized in Table 4 and indicated on the parametric map in Figure 16. 
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Figure 16: Microscale chaotic advection enables robust DNA replication. Replication timescales expressed 

in terms of a generation rate (i.e., number of doubling events per hour) are simulated over a wide range of 

parameters. The parametric map reveals a zone in the chaotic flow regime where accelerated DNA 

replication is stably achievable over a span of two orders of magnitude in Ra, suggesting that reactors 

designed within this zone are capable of delivering consistent replication performance under virtually any 

combination of temperature and reactor volume associated with the PCR. Data points represent experiment 

results reported in literature (see Table 4). Symbols in the gel electropherogram correspond to amplification 

of a 237 bp λ-phage DNA target in 12 min reported in this work using three different reactor geometries. 
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Table 4: Overview of experiments reported in literature involving convective PCR under 

Rayleigh-Bénard convection. 

Reference Replication Target 
Reaction time 

(min) 

Symbol in 

Figure 16 

Priye, et al. [27] λ-phage DNA (237 bp) 12 , ,  

Priye, et al. [15] λ-phage DNA (237 bp) 10 – 20 ✚ 

Muddu, el al. [14] Human β-actin gene (295 bp) 10 

Yao, et al. [28] Calf thymus DNA (407 bp) 8 – 17 

Chou, et al. [29] 
pHBV-48, HCV plasmid, HIV-1 

vector pNL4-3 (122 to 222 bp) 
10 – 30 – 

Chang, et al. [30] Yellow head virus (67 bp) 10 – 20 
Off scale 

(h/d = 11.6) 

Krishnan, et al. 

[13] 

Influenza A Virus (191 bp),  

Human β-actin gene (295 bp) 
15 – 30 

Off scale 

(h/d >9) 

Ugaz, et al. [31] 
Influenza A Virus (191 bp),  

Human β-actin gene (474 bp) 
15 – 30 

Off scale 

(h/d >9) 

Krishnan, et al. 

[12] 
Human β-actin gene (295 bp) 90 

Off scale 

(h/d = 10) 

Comparison with 2D simulations 

We also evaluated our coupled flow and reaction model in 2D rectangular 

geometries. We remark that the boundaries of these kinetic regimes are mis-predicted by 

simplified 2D models. Since secondary flows cannot exist in 2D, the corresponding 

residence times and frequencies of entry in each reaction zone (Figure 17) are very 
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different than those obtained from a 3D model (Figure 10). Namely, fluid elements in 2D 

follow similar periodic trajectories at both h/d = 3 and 9, resulting in no sharp distinction 

between residence times or frequencies of entry into each reaction zone as compared with 

the 3D model. 

Figure 17: Convective flow under PCR conditions simulated using a 2D model. (a) Average residence times 

in each reaction zone display a much flatter distribution instead of the well-defined values obtained in the 

3D model. (b) A peak frequency of entry near zero in the denaturing and annealing data suggests that the 

majority of fluid elements remain trapped within closed paths that do not extend to the bottom and the top 

of the reactor respectively. Consequently, generation rates (i.e., number of doubling events per hour) in the 

Ra-h/d parameter space simulated using (c) 3D and (d) 2D  models are very different, with the 2D model 

unrealistically predicting DNA replication under conditions where the thermal driving force is insufficient 

to drive convective motion (i.e., below the solid line in each plot). 
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Surprisingly, the 2D model predicts that most fluid elements never enter the 

annealing and denaturing zones. Consequently, the corresponding parametric map of PCR 

generation rates constructed from a 2D analysis significantly mis-predicts the phenomena 

(Figure 17 c, d). Therefore the emerging chaotic effects are inherently three-dimensional, 

and cannot be fully captured by previously assumed simplified 2D view which may lead 

to unrealistic conclusions[17, 18]. 

Conclusion 

Our results reveal an incredibly robust regime where rapid DNA replication is 

achievable independent of specific reactor geometries and temperatures, addressing 

limitations that have been previously viewed as a major drawback of the convective 

thermos-cycling format. Because the convective flow field is inherently dependent on the 

geometric and thermal conditions imposed, it has been generally accepted that the 

versatility of convective PCR is limited because reactor geometries would need to be 

specifically matched to the biochemical requirements of individual reactions.. Our kinetic 

mapping contradicts this view, suggesting instead that a properly designed standard 

reactor geometry within the chaotic flow regime can be universally functional (e.g., 

analogous to conventional PCR tubes). 
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CHAPTER III 

SMARTPHONE ENABLED PORTABLE DNA DIAGNOSTICS 

Introduction 

The recent Ebola outbreak has exposed some of the key limitations facing current 

infectious disease management strategies, particularly when applied in remote 

underdeveloped areas. Existing approaches are highly resource intensive, relying on 

dispatching specially trained personnel to isolated locations where biological samples are 

collected and returned to dedicated laboratories for analysis. These inefficient channels 

become overwhelmed when field sites are not connected by a modern transportation 

infrastructure, introducing a considerable time lag between sample collection, diagnosis, 

and implementation of countermeasures. The resulting information flow is often 

extremely limited, delaying treatment of infected individuals and making it challenging 

for public health agencies to proactively formulate courses of action to effectively mitigate 

outbreaks. A need therefore exists for inexpensive and robust tools that can be broadly 

deployed to accelerate diagnosis, enable pinpoint delivery of therapeutics, and provide 

real-time data to better inform decision making. 

Nucleic acid-based approaches like the polymerase chain reaction (PCR) are 

generally considered to be diagnostic gold standards in terms of both sensitivity and 

specificity. But PCR is largely ruled out as a viable candidate for deployment in resource-

limited settings due to an unfavorable combination of (i) excessive electrical power 

requirements associated with repeated heating and cooling of reagents during thermo-
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cycling, and (ii) complexities involved with inexpensively implementing fluorescence-

based detection of the reaction products. Here we show how convective thermo-cycling 

can be leveraged to overcome these limitations, laying the foundation for a new generation 

of simple ruggedized PCR-based diagnostic platforms. The same natural convection 

phenomena at play in ordinary lava lamps enable the PCR to be isothermally executed 

using a single heater maintained at the reaction’s denaturing temperature. This inherently 

simple design dramatically reduces electrical power consumption and can be readily 

interfaced with a fluorescence detection system that exploits the versatility and 

connectivity ordinary smart-phones. These breakthroughs make it possible to construct 

ultra-portable, rapid, and quantitatively accurate DNA analysis systems for under $20 

($US)—a price point that makes widespread deployment truly feasible. 

Since its first introduction a little over a decade ago, convective thermo-cycling 

has remained an intriguing avenue to enable rapid PCR. But a crucial roadblock to 

practical implementation of this approach has been the inherent interdependence between 

the internal flow field and the reactor geometry (expressed in terms of the height, h, and 

diameter, d, of a cylindrically shaped configuration, Chapter I). The spatial temperature 

gradient established between the top (cool) and bottom (hot) surfaces of the reactor not 

only actuates the denaturing, annealing, and extension steps necessary to perform the PCR, 

it also supplies the driving force to physically transport reagents between these reaction 

zones. It has previously been assumed that this interplay implies a need to custom design 

reactor geometries to match the individual thermal requirements of each PCR assay to be 

performed (e.g., when different primers with different annealing temperatures are 
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employed), and that robustness is constrained by a need to maintain a specific orientation 

with respect to the gravitational driving force. We recently developed a 3D coupled flow-

reaction model that challenges this assumption, revealing an unexpectedly broad design 

space dominated by chaotic advection where reaction rates are greatly accelerated and 

remain essentially unchanged over virtually the entire range of realistic PCR condition[27] 

(Chapter II). Any reactor geometry selected within this regime is therefore universally 

functional (i.e., analogous to standardized PCR tubes and plates), making it possible to 

execute a 30 cycle PCR in 10 – 20 min regardless of temperature setpoints and spatial 

orientation. 

Figure 18: Single heater enabled convective PCR. Rayleigh Bernard convection enables PCR to be 

performed in a pseudo-isothermal manner with denaturing, annealing and extension reactions occurring at 

different temperature zones within the reactor. The top surface experiences heat loss (Q) to the surroundings 

(Ta) at a rate dependent on the convective heat transfer coefficient (hc). The PCR reactor is mounted on a 

single ceramic heater encased in polydimethylsiloxane (PDMS) for insulation.  
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Single heater design 

We wanted to leverage this new fundamental understanding to reduce the electrical 

power requirements associated with the repeated temperature changes needed to perform 

conventional thermocycling. Having found the optimum thermal and geometric 

parameters for the design and operation of convective PCR unit, we can now proceed to 

engineer a complete DNA analysis unit. Our previous two heater convective PCR setup 

[27, 32] was simplified by operating with only a bottom heater (Figure 18). We 

accomplished this by first selecting a cylindrically-shaped reactor geometry within the 

above mentioned chaotic advection design space, and then tuning its height h such that 

passive heat loss to the surrounding environment automatically imposes the desired 

annealing conditions at the top surface when the bottom is held at the denaturing 

temperature (Figure 18). 

Thermal management is achieved by using off the shelf ceramic resistors which 

convert current to heat via joule heating. A temperature sensor monitors the temperature 

of the resistor and regulates the flow of current through a MOSFET based feedback loop 

programmed to maintain the temperature at 95 °C by means of an Arduino based 

microcontroller (Figure 19 a). A polydimethylsiloxane (PDMS) casing around the resistor 

ensures insulation and efficient heat transfer to the reactor bottom. In this way, the PCR is 

actuated isothermally by maintaining a single heater at a constant temperature, drastically 

reducing electrical consumption to a level that can be supplied by standard 5 V USB 

sources that power ordinary consumer mobile devices and solar battery packs. The 

resulting vertical temperature gradient within reactor induces convective flow enabling 
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rapid PCR. The circuit also powers a blue LED light source for detection of PCR products 

in real time. Details of the circuit design and electronic parts for the single heater are 

provided in the following section. 

Figure 19: Circuit design for single heater. (a) Circuit board consisting of a ceramic heater and temperature 

sensor with a microcontroller programmed via Arduino interface. (b) The USB powered ceramic heater is 

able to reach the denaturing temperature (95 °C) in ~ 5 minutes. 
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Circuit design 

The isothermal heater, LED and LCD screen were operated via a microcontroller 

taken from the Arduino UNO R3 (Atmega328 - assembled) along with few other electrical 

components to ensure safe and smooth functionality of the circuit. Two 10 ohms ceramic 

wire wound resistors (Mouser electronics) in parallel functioned as heaters by converting 

current to heat. The Polydimethylsiloxane (PDMS) casing around the heaters provided 

good insulation and allowed the heaters to reach the desired set point (95 °C) much faster 

(Figure 19 b). One of the digital pins (D3) in the microcontroller was assigned to provide 

the heater 5V input voltage through a MOSFET. A temperature probe (tmp35) sensed the 

temperature of the heater and the signal was sent to one of the analog pins in the 

microcontroller (A5). This analog reading was converted into temperature which was 

continuously monitored to operate the heaters isothermally. The 16 MHz  quartz crystal 

resonator (Mouser electronics) with two 22pF capacitors (Mouser electronics) connected 

to the microcontroller generated a clock signal to control timing in the circuit. A low-

dropout (LDO) regulator (TLV2217-33) with two capacitors (10 and 47 µF; Mouser 

electronics) and a 100 ohm resistor (Mouser electronics) provided a constant 3.3 V to a 

blue LED (5mW. Ebay). A LCD (Nokia 5110) was connected to 6 digital pins (D6, D9, 

D10, D11, D12, D13) in the microcontroller and was used to display and monitor real-

time relevant circuit information such as the heater temperature and LED status. 

Capacitors were used in various locations to stabilize the voltage to within each device's 

specification. 
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Figure 20: Printed circuit board design. (a) Circuit diagram highlighting all the electronic components and 

their connection to the microcontroller. (b) Printed circuit board layout. 

The Arduino program (Appendix E) was written and compiled in Arduino 1.0.6 

integrated development environment (IDE) and was loaded into the microcontroller 

through an FTDI chip (Sparkfun). The final circuit and all the components were soldered 

on a printed circuit board (Figure 20 b) which was then encapsulated in a plastic case 
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designed and printed using FreeCAD and 3D printer (MakerGearM2) respectively (Figure 

21). The device can be powered by any 1A 5V power source such as solar battery packs, 

portable phone chargers, hand crank powered charger etc. A detailed part list of the circuit 

is provided in Table 5. 

Figure 21: 3D printed case compactly packages all components together while simultaneously providing a 

dark room environment. The case for the device was made in three parts keeping all the relevant design 

parameters in mind in openSCAD. An extrusion based 3D printer (MakerGear M2) was then employed to 

print the components of the case. The three components would easily snap into place, yielding a compact 

enclosure for the convective PCR setup.  
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Table 5: Electronic circuit board part list. 

Component Part name Purpose 
Cost per 
unit ($) 

Microcontroller Atmega328 

Embedded computer system to 
control and program 
input/output peripherals in an 
electronic circuit. 5.00 

Ceramic resonator 16 Mhz ceramic resonator 
Generates a clock signal for the 
microcontroller 0.20 

Ceramic resistor 
Wire wound 10 ohms ceramic 

resistors 
Converts current to heat via 
joule heating 0.36 

Temperature 
sensor 

TMP35 
Provides a voltage output that 
is linearly proportional to 
temperature (° C) 1.50 

LED 5 mm round blue LED, 5 mW 
Illuminates the reactor with 
blue light 0.02 

LCD Nokia 5110 LCD Displays text on the LCD screen 5.00 

MOSFET IRF 520 
Provides input voltage to the 
heaters 0.93 

Low-dropout (LDO) 
regulator 

TLV2217-33 
Drops the voltage down and 
regulates it 0.36 

Reset button Push button switch Resets the microcontroller 0.05 

Capacitors 2 22 pF capacitor For the ceramic resonator clock 0.05 

Capacitor 100 nF capacitor For reset programming switch 0.05 

Capacitors 0.1 µF, 100 µF capacitor 
To regulate power to 
microcontroller 0.05 

Capacitors 10 µF, 47 µF capacitor 
For low-dropout (LDO) 
regulator  0.05 

Capacitor 0.1 µF capacitor For LCD 0.05 

Capacitor 100 µF capacitor For ceramic heaters 0.05 

Capacitor 0.1 µF capacitor For temperature sensors 0.05 

Resistor 330 ohms For LCD back light 0.05 

Resistor 100 ohms For LED 0.05 

Resistor 10 k ohm Pull up resistor for reset switch 0.05 

Total estimated cost = 12.99 

Smart-phone based detection 

Successful nucleic acid amplification can be quantified either in real time via 

fluorescence detection or after PCR through gel electrophoresis requiring additional 
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instrumentation and time. Full diagnostic utility requires the ability to perform 

quantitatively accurate product analysis, but fluorescence-based approaches are often 

challenging to implement in a portable format due to issues associated with size, cost, and 

ruggedness. Smart-phones have become an ubiquitous handheld device which not only are 

an essential part of telecommunication but also provides state of the art imaging, 

computations and data analysis. They are extremely user friendly, thus eliminating the 

need for any prior user training requirements. These features have enabled smart-phones 

to emerge as promising analysis tool for point of care systems [33-35]. We incorporated a 

smart-phone to image the top of the convective reactor with a SYBR-PCR based 

fluorescence detection. The reactor is illuminated with a blue LED light source (480 nm, 

5 mW) coupled with an excitation band pass filter (480 nm) and the resulting fluorescence 

signal is filtered through emission band pass filter (520 nm) (Figure 22). This adaptation 

of smart-phones to flurophore based PCR detection required us create an image analysis 

application (“PCR to Go”) which allows the user to analyze the PCR products either at 

end point mode, yielding a yes-no type detection or in real time mode providing a more 

quantitative analysis (Figure 23). The app can access the phone’s optical hardware to fix 

the camera exposure time and focal length ensuring consistent lighting, a feature which is 

typically disabled for the inbuilt point and shoot camera type use. CMOS sensor array of 

the smart-phone camera then acquires images of the top of the convective PCR reactor 

which is enclosed in an opaque 3D printed case ensuring a dark room environment for 

consistent lighting (Figure 21). Imaging from the reactor top also ensures strongest 

fluorescent signal due to lower temperatures here. 



52 

Figure 22: Real time fluorescent detection of convective PCR products via SYBR-PCR chemistry. A blue 

light source illuminates the convective PCR reactor and the images of the reactor top are taken with smart-

phone camera which are subsequently analyzed with  a built in image analysis app called PCRtoGo. 



53 

PCR to Go iPhone app 

The “PCR to go” application was written and developed in Xcode 5.0 using 

objective C. The core graphics and AVFoundation frameworks were incorporated from 

Apple’s iOS software development kit (SDK) to access and control advanced iPhone 

camera features such as control over the exposure time and focal length. This enabled 

images to be accessed via either the phones inbuilt library or the camera. A clip on 

magnifying lens (amazon supply) enabled a 10X optical zoom to the camera and the “PCR 

to go” app interface allowed an additional 6X digital zoom via SDK’s core graphics affine 

transformation framework, allowing the user to work with a maximum of 60X zoom. The 

focus and exposure were locked before image acquisition session enabling constant 

lighting. 

The app interface allows the user to automatically capture images at regular time 

intervals. User touch gestures were incorporated to select the desired area of interest for 

image analysis. The selected analysis area was converted into bitmap image data stored as 

a mutable date set containing 4 bits per pixel (one for each red, blue, green and alpha pixel 

values) corresponding to RGBA color space. The average, maximum and minimum 

RGBA pixel values for each image was calculated and could either be tabulated on screen 

or exported via email for further analysis. The average green pixel values was used for all 

fluorescence intensity analysis. These intensity values were transformed by the application 

of gamma correction to take into account the nonlinear fashion in which our eyes perceive 

luminescence. 
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Figure 23: PCR to Go iPhone app. The images can either be chosen from the built in photo library or be 

captured through the phone camera during operation. Before the image acquisition session, the camera 

exposure time and focus are locked to ensure uniform lighting in all images. The user can then choose the 

size and position of the analysis area (filter) within the chosen/captured images. The app then generates red, 

blue, green and alpha channels for each of the selected images and displays the average, maximum and 

minimum pixel values corresponding to each channel within the analysis area. These value can either be 

tabulated or plotted for product quantification 
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where Ioriginal is the original pixel intensity taken from the phone camera and Icorrected is the 

corresponding gamma corrected image. A value of 2.2 was assigned for γ in our 

calculations. The background intensity was then subtracted from all images by subtracting 

the intensity of the first image yielding a common intensity baseline for all real time PCR 

runs. The resulting quantitative PCR curve was fit into a typical sigmoidal curve equation 

given by eq. [3.2]. 
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where Imax, Io, t1/2 and k represent maximum fluroscence, background fluorescence, time 

required for intensity to reach half of the maximum value and slope of the curve 

respectively. I and t are the image intensity and the corresponding time respectively. 

Critical threshold (Ct) values were then determined by the intersection of the sigmoid 

curve with the critical threshold line (threshold value = 20). 

Lab on drone 

All components are integrated within an enclosure incorporating an 

interchangeable smart-phone cradle that ensures proper alignment of the camera and 

optical components independent of the specific mobile device employed (Figure 24). The 

instrument is incredibly lightweight (Table 6), making pinpoint deployment into remote 

field locations feasible using ordinary consumer-class quad-copter drones. Unprecedented 

ruggedness is achievable, as evident by successful in-flight PCR performed across 

different target/template systems while being carried as a drone payload (Figure 25 e). 
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Figure 24: Complete assembled device consisting of all relevant components. All components are integrated 

and housed in an enclosure incorporating an interchangeable smart-phone cradle that ensures proper 

alignment of the camera and optical components regardless of the type of mobile device employed. The 

PCB powers both the isothermal heater and blue LED through a 5V USB source such as a phone charger or 

solar battery packs. 
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The 3D Robotics IRIS+ quad-copter was used for aerial flight convective PCR 

tests. It is capable of providing a full flight time of 15 - 22 minutes with a payload of about 

400 grams (8 lbs). The heater base was preheated for 3 to 5 minutes and then the PCR 

reactor was secured on the heater base via clear adhesive tape (office tape). The device 

was tightly fastened to the drone via plastic disposable cuffs (commercial electric, 36 inch 

heavy duty ties). A 3200 mAh portable external battery charger (Vinsic Tulip, 5 V, 1 A) 

was used to power the convective PCR device while the drone was powered by an internal 

high capacity rechargeable flight battery which allowed us to fly the completely assembled 

convective PCR device and the attached iPhone 4 for about 17 minutes. The quad-copter’s 

two axis gimbal stabilization enabled steady control and motion as it was maneuvered 

around using the remote controller. The post flight PCR sample was collected and 

analyzed further after the drone landed (Figure 25). 

Table 6: Weight analysis of components of convective PCR device. 

Component Weight (grams) 

Phone (Iphone 4s) 140 

PLA Case 108 

Battery pack 83 

Printed circuit board and reactor 72 

Optics 30 

USB wire for power 10 

Total 443 
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Figure 25: Lab on drone and in-field testing.  (a) The convective PCR device with the circuit board, phone 

mount, iPhone, hand crank charger and IRIS+ quad copter. (b) Sample preparation and loading for in-field 

testing. (c) Ultra-portable design and implementation enables deployment of the convective PCR test unit 

via unmanned aerial drones to remote locations. (d) Post flight de-assembled device. (e) In flight PCR 

amplification of 1: 150 bp sequence of 16sRNA of Staphylococcus aureus (16 minutes) 2: 237 bp of lambda 

DNA (18 minutes). (f) Device in operation.  
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Detection limit and sensitivity of convective PCR 

The sensitivity of the device was tested by amplifying a 237 bp target DNA 

sequence of lambda DNA incorporating SYBR dye chemistry with varying initial copy 

number. The smart-phone optics was able to detect a rise in fluorescence intensity with a 

copy number as low as 1000 copies/μL (Figure 26 a, b, c), a level sufficient for many 

diagnostic assays and particularly impressive considering the simplified instrument 

format. Furthermore, the convective PCR device itself is sensitive to an initial copy 

number as low as 100 copies/μL (Figure 26 d) as verified by gel electrophoresis. 

Effect of tilting the PCR reactor 

Ruggedization is also an essential consideration in the context of portable field 

operation. The drone we used GPS to position and maneuver and hence are very stable. 

However, movement along the horizontal plan requires them to tilt. Variations in the 

reactor’s orientation with respect to the vertical direction therefore is an important 

consideration given the gravitational origin of the driving force for convective transport. 

Remarkably, coordinated experiments and simulations both reveal that reaction 

performance is not appreciably altered as the reactor’s tilt angle is increased, even to 

extreme nearly horizontal levels approaching 82° (Figure 27). This invariance with spatial 

orientation is a reflection of the chaotic transport regime’s inherent robustness where 

consistent results are predicted over orders of magnitude in the thermal driving force 

(Chapter II). 
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Figure 26: Smart-phone based PCR detection.  (a, b, c) Real time quantification of a targeted 237 bp segment 

of lambda DNA for 105, 104 and 103 initial DNA copy numbers respectively. (d) Gel electropherograms 

revealed that the convective PCR is capable of amplifying the targeted sequence from an initial copy number 

as low as ~100 copies/uL. (e) Average real time quantification using PCRtoGo app with gamma correction 

and corresponding sigmoidal curve fit. (f) Real time PCR run on a benchtop qPCR machine (Roche). 
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Thermo-cycling becomes degraded beyond 82° due to the onset of secondary 

circulatory flow patterns within the cylindrical reactor volume. This inhibits PCR 

significantly as the reagents are now trapped in closed fluid trajectories which do not get 

to sample the correct temperatures as was verified by post PCR analysis also (Figure 27 

c). 

Figure 27: Effect of tilt angle on convective PCR. (a, b) Simulation results reveal the tilt angle of the reactor 

from the vertical axis does not alter the replication doubling time and volume of the respective reaction 

zones. (c) Gel electropherograms confirm correct amplification products are preserved at different tilt 

angles. (d) Changing the tilt angle of the convective PCR cell does not change the temperature and velocity 

fields appreciably for angles less than 82º.  
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Effect of ambient temperature 

Since different environments would host different ambient temperatures, we 

quantified its effect of convective PCR efficiency by running the reaction in different 

environments. Ambient temperature conditions impact thermo-cycling performance by 

virtue of their influence on the thermal gradient established within the reactor. It was found 

that convective PCR is most efficient in cold environments (5 ºC) with the product yield 

decreasing as the ambient temperature increases (35 ºC). At even higher temperatures, the 

target is not amplified (Figure 28 a) as it becomes difficult to maintain the spatially distinct 

temperature zones required to actuate each stage of the reaction and these results are 

mirrored in the simulated doubling times (Figure 28 b). Further CFD analysis reveals that 

the drop in the PCR efficiency at higher ambient temperatures is due to the decrease in the 

volume of the extension reaction zone within the convective reactor (Figure 28 b). 

Figure 28: Effect of ambient temperature on convective PCR.  (a) Gel electropherogram quantifying the 

effect of ambient temperature on convective PCR (b) Simulation model predicts the reaction takes longer 

time when the ambient temperature is increased due to the decrease in extension volume in the reactor. 
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Modified computational fluid dynamics model 

Detailed formulation of the computational fluid dynamics and the PCR kinetic 

model has been discussed in Chapter I and II. For the single heater setup, the isothermal 

boundary condition at the reactor top was replaced with a convective heat loss term 

(Q=hc(Ttop - Tamb); hc is the convective heat transfer coefficient (1000 W/(m2K)); Ttop is the 

top boundary temperature and Tamb is the ambient temperature). There was no appreciable 

change in the velocity and temperature fields when the adiabatic side walls were replaced 

with conductive acrylic walls. The new model was used to test the effect of ambient 

temperature (Figure 28) and tilt angle (Figure 27) of the efficiency of convective PCR. 

Convective PCR experimental methods 

Cylindrical reactors were constructed from 1 inch dia. polycarbonate rod stock 

(Amazon Supply) by cutting them to lengths and machining holes to produce reactors of 

desired height (10 mm) and diameter (2.5 mm). Smartphone enabled real time PCR 

experiments were performed to replicate a 237 base pair target from a λ-phage DNA 

template with SYBR green PCR master mix (Table 7). Sensitivity to initial copy number, 

ambient temperature and inclination angles of convective reactor was established by 

replicating a 237 base pair target from λ-phage DNA template with KOD polymerase 

enzyme (Table 8). Detection of Ebola (Table 9) and Staphylococcus aureus (Table 

10Table 9) were performed with their respective PCR kits. Details of the individual PCR 

mix composition and protocol are listed below. 
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Table 7: Real time detection on the smartphone and benchtop qPCR machine. 

Reagent Volume (µL) Source 

SYBR master mix (2x) 50 SYBR Green PCR Master Mix, 

Applied Biosystems 

Forward primer (10 μM) 10 CTGAGGCCGGGTTATTCTTG 

(Amplicon size: 237 bp fragment 

of λ DNA)  

Reverse prime (10 μM) 10 CGACTGGCCAAGATTAGAGA 

(Amplicon size: 237 bp fragment 

of λ DNA) 

Lambda DNA  (1 μg/mL) 1 

PCR grade water 29 

Protocol: The hot start step (95 °C for 10 minutes) was performed in a regular 

thermocycler (Boimetra, Tpersonal) prior to the convective runs. All real time 

convective reactions were run for 20 minutes with the isothermal bottom heater 

maintained at 95 °C.   
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Table 8: Sensitivity to initial copy number, ambient temperature and inclination angles 

of convective reactor on the reaction. 

Reagent Volume (µL) Source 

Buffer solution #1 (10x) 10 KOD DNA Polymerase Kit (cat. 

no. 71085-3; Novagen) 

MgCl2 (25 mM) 4 KOD DNA Polymerase Kit (cat. 

no. 71085-3; Novagen) 

dNTPs (2 mM each) 10 KOD DNA Polymerase Kit (cat. 

no. 71085-3; Novagen) 

Forward primer (10 μM) 3 CTGAGGCCGGGTTATTCTTG 

(Amplicon size: 237 bp fragment 

of λ DNA)  

Reverse primer (10 μM) 3 CGACTGGCCAAGATTAGAGA 

(Amplicon size: 237 bp fragment 

of λ DNA) 

Lambda DNA  (1 μg/mL 

(107 copies/μL) stock 

solution diluted down to 

achieve different initial copy 

numbers) 

1 

KOD polymerase (2.5 

units/mL) 

0.8 KOD DNA Polymerase Kit (cat. 

no. 71085-3; Novagen) 

PCR grade water 67.8 

Protocol: No hot start required. The convective reactions were run for 20 minutes 

with the isothermal bottom heater maintained at 95 °C.   
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Table 9: Detection of Ebola 2014 virus strain. 

Reagent Volume (µL) Source 

qRT-PCR master mix 50 oasig OneStep qRT-PCR 

mastermix; Cat. # : OneStep-

oasig 150 

Primer/probe mix 5 EBOV_2014 Primer/Probe 

mix, genesig Cat. # : Path-

EBOV_2014-Standard 

Positive control 10 genesig Cat. # : Path-

EBOV_2014-Standard; 2 x 

104 copies/ µL 

RNAse/DNAse free water 35 (genesig Cat. # : Path-

EBOV_2014-Standard 

Protocol: One step amplification protocol was followed where the reagent 

mixture was held at 42 °C for 10 minutes for reverse transcription followed by 

95 °C for 2 minutes for enzyme activation. These constant temperature hold 

steps were accomplished in a regular thermocycler (Boimetra, Tpersonal) 

followed by convective reaction for 25 minutes with the isothermal bottom 

heater maintained at 95 °C. 
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Table 10: Detection of Staphylococcus aureus DNA. 

Reagent Volume (µL) Source 

Master mix 50 Johns Hopkins University 

Forward primer (10 μM) 5 5’ – TGG AGC ATG TGG 

TTT AAT TCG A – 3’ 

(amplicon size: 147 bp) 

Reverse primer (10 μM) 5 5’ – TGC GGG ACT TAA 

CCC AAC A – 3’(amplicon 

size: 147 bp) 

Probe 5 6FAM 5’ – CCT TTG ACA 

ACT CTA GAG ATA GAG 

CCT TCC C – 3’ 

Positive control (16S RNA) 1 Johns Hopkins University 

(Professor Charlotte Gaydos) 

5 x 104 copies/µL 

PCR grade water 30 

One step amplification protocol was followed where the reagent mixture was 

held at 42 °C for 10 minutes for reverse transcription followed by 95 °C for 2 

minutes for enzyme activation. These constant temperature hold steps were 

accomplished in a regular thermocycler (Boimetra, Tpersonal) followed by 

convective reaction for 25 minutes. 

Prior to reagent loading, convective reactors were rinsed with a 10 mg/mL aqueous 

solution of bovine serum albumin (cat. no. A2153; Sigma-Aldrich) followed by Rain-X 

Anti-Fog (SOPUS Products) and dried to minimize sidewall adsorption and enhance 

surface wettability. After loading reagents, reactors were then placed on the preheated (95 

°C) ceramic heater surface and secured using adhesive tape (office tape). The iPhone app 

was run in continuous mode to capture an images of reactor at one minute intervals. After 
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incubation for a desired time, the convective reactors were removed and the post PCR 

products were pipetted out for subsequent analysis by agarose gel electrophoresis using 

the FlashGel system (Lonza; cat # 95015-612). The post PCR samples contained 1µL 

FlashGel loading dye (Cat. # 50462) and 4 µL of DNA samples with a FlashGel DNA 

marker (100 bp – 4 kb, Cat # 50473) as a ruler. Samples were run at 280 V for 8 minutes 

and the separated DNA strands were imaged using standard smartphone camera. 

Comparison with other portable PCR based diagnostic tools 

It is worthwhile to evaluate how our instrument performs in the context of other 

efforts to develop portable rapid PCR-based diagnostic tools. A recently reported novel 

approach to reducing electrical power requirements leverages a solar focusing lens to 

passively establish the spatially distinct temperature zones needed to perform continuous 

flow PCR [36]. But electrical power is still required to circulate reagents through the 

microfluidic network using a syringe pump, post-PCR detection is achieved off-chip using 

a benchtop microscope, and effective operation is contingent upon availability of 

sufficient ambient sunlight. The suitcase-sized POCKIT system (GeneReach) is a 

commercial convective thermo-cycler, but is of limited utility for portable diagnostics due 

to the lack of an integrated battery and limited endpoint fluorescence detection. Palm PCR 

(Ahram Biosystems), a competing convection-based instrument, offers battery power but 

lacks integrated fluorescence detection. Other groups have demonstrated capillary-based 

convective real time PCR with integrated CCD-based imaging [29, 37], but these 

instruments are not portable and require a desktop computer for operation and data 
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analysis. Our system is not subject to these limitations, providing a rugged inexpensive 

platform ideally suited for field deployment. A $20 ($US) hardware cost achieved through 

the use of readily available parts breaks a significant price barrier, while the simplified 

imaging approach and device agnostic design makes it possible to leverage the growing 

used smart-phone marketplace to deliver affordable fluorescence detection. When 

combined with the use of a 3D printed enclosure it becomes possible for virtually anyone 

to build their own fully functional fluorescence-based thermo-cycling instruments, 

introducing exciting new possibilities for democratization of advanced diagnostic 

technologies. 

Conclusion 

Our instrument promises to overcome the significant time lag between sample 

collection, analysis, and implementation of response interventions that currently hinders 

infectious disease management due to finite availability of static laboratory resources. 

Convective thermo-cycling enables rapid PCR-based assays to be performed in a robust 

format using the same reagents employed in conventional protocols. Coupling this 

approach with smart-phone-based detection introduces extraordinary connectivity, 

making it possible to leverage existing communication networks to instantly deliver 

analysis results. Taken together, our technology’s unprecedented ruggedness, low cost, 

and portability introduces intriguing new possibilities for deployment of gold-standard 

PCR diagnostic tools. Fleets of consumer-class drones can be readily assembled and 

programmed to achieve pinpoint delivery and enable strain-specific surveillance of 
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virtually any infectious disease (the $250 –$500 retail price point of consumer-class 

drones is 10 – 20 fold less than the heavy-lift equipment currently envisioned for drone-

based cargo delivery). It is therefore conservatively feasible to assemble a “swarm” of 100 

drones (including associated batteries and charging equipment) for approximately $50,000 

that can be rapidly deployed via “pop up” field centers to support ~500 tests per day and 

enable coordinated distribution of testing and therapeutics. 
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CHAPTER IV 

CHAOTIC TARGETING AND ACCELERATION OF SURFACE CHEMISTRY 

IN PREBIOTIC HYDROTHERMAL MICRO-CAVITIES 

Introduction 

We have unexpectedly discovered a subset of complex flow trajectories that are 

highly favorable for PCR due to a synergistic combination of (1) continuous exchange 

among flow paths that provides an enhanced opportunity for reagents to sample the full 

range of optimal temperature profiles, and (2) increased time spent within the extension 

temperature zone—the rate limiting step of PCR. Extremely rapid DNA amplification 

times (under 10 min) are achievable in reactors designed to generate these flows. This 

surprising interplay between reaction and flow has led us to consider adaptations beyond 

the PCR. Specifically, it is well-known that analogous temperature gradients exist 

naturally in porous hydrothermal vents on the ocean floor, and that chemical reactions 

within these environments are likely to have played a crucial role in the origin of life by 

catalyzing prebiotic assembly of simple biomolecules to higher levels of complexity. 

RNA world theory 

The RNA world theory offers a widely accepted framework to explain spontaneous 

emergence of biochemical complexity from elementary building blocks likely to have 

been present under prebiotic conditions. Early studies focused on mechanisms by which 

lightning and UV radiation in the prebiotic atmosphere could catalyze synthesis of 
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abiogenic precursors[38, 39]. This view has since evolved to embrace the role of 

hydrothermal vent systems where disequilibrium pathways are naturally established by 

the inherently strong internal thermal and chemical gradients. Synthesis of simple organic 

monomers, for example, can be supported in these microenvironments via pH conditions 

that favor hydrogen-dependent redox processes similar to the CO2 reducing acetyl-CoA 

biochemical pathway[40, 41]. But attainment of the high-level structure and function 

associated with RNA and DNA would have required that these organic precursors 

experience sufficient enrichment to initiate polymerization[42]. This poses a conundrum 

because the incredibly dilute concentrations of these compounds in the prebiotic ocean 

strongly favor hydrolytic decomposition over polymerization[43-45]. Biochemical 

processes overcome these limitations by following catalyzed pathways so that kinetics are 

no longer governed solely by proximity among active sites in reacting species, leading to 

interest in mineral surfaces (e.g., clays) that naturally provide a combination of surface 

adsorption[46] and catalytic activity[47]. This view is supported by evidence that 

montmorillonite substrates are able to catalyze synthesis of both polypeptides (chains of 

amino acids)[48] and RNA oligomers (chains of nucleotides)[49] from organic precursors. 

Clay surfaces also inhibit competitive hydrolysis of active groups, enable rapid formation 

of peptide bonds, shield adsorbed species against degradation, and facilitate homochiral 

selection[50-52]. A variety of minerals such as montmorillonite[53], apatite[54], 

quartz[55], and zeolites[48] have therefore been examined in connection with prebiotic 

polymerization. 
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Figure 29: A hydrothermal conveyor based on chaotic thermal convection. Mineral formations near off-

ridge hydrothermal vents lining the ocean floor contain embedded pore networks with microenvironments 

that impose thermal and geometric conditions robustly capable of sustaining internal convective flow fields. 

These flows display a rich spectrum of 3D chaotic trajectories that continually shuttle chemical species from 

the bulk fluid to targeted sites on the pore surfaces where they experience accelerated adsorption and 

enrichment. The highly alkaline surroundings in off-ridge vents also produce strong pH gradients conducive 

to prebiotic chemical synthesis. 

Sub-sea hydrothermal vents 

Hydrothermal microenvironments often embed these same catalytically active 

minerals including montmorillonite (e.g., Middle Valley vent, Juan de Fuca Ridge)[56], 

kalonite (e.g., submarine vents along the Guaymas Basin on the East Pacific Rise)[57] and 

apatite (e.g., submarine vents along the Pacific Margin of central Mexico)[58]. This 

chemical richness becomes further enhanced in the vicinity of volcanic vents (e.g., black 

smokers) that emit a hot, acidic effluent (400 °C, pH 2 – 3) rich in dissolved transition 

metals. But highly alkaline hydrothermal environments (pH 9 – 11) can also be established 

via geochemical serpentinization, yielding hydrogen rich surroundings at relatively 
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moderate temperatures (150 – 200 °C). These unique characteristics, combined with the 

excess hydrogen’s ability to exothermically reduce carbon dioxide into methane, have 

made alkaline vents (e.g., Lost City vent, mid-Atlantic ridge) particularly intriguing 

candidates to support chemical processes associated with emergence of life (Figure 

29)[40, 59]. 

Hydrothermal mineral formations also contain intricate embedded pore 

networks[60, 61] with characteristic length scales ranging from µm to cm at aspect ratios 

(height (h) / diameter (d)) of 1 – 1,000 that establish a strong thermal driving force to 

initiate and sustain internal convective flows. These attributes have motivated previous 

efforts to explore the possibility that hydrothermal pore networks could function as 

molecular traps capable of concentrating molecules via the coupled action of laminar (2D) 

thermal convection and thermophoresis[62]. This trapping mechanism has been exploited 

experimentally to increase the probability of non-catalytic vesicular assembly[63] and 

polymerization[64], albeit within a relatively narrow window of hairline pore size scales 

(d ~ 100 µm). Emergence of unexpectedly complex 3D flow fields not captured by this 

laminar 2D picture has also been reported in microscale pore-like geometries[14]. These 

thermal instability driven flows, a subset of which exhibit chaotic advection, act over a 

much broader range of pore size scales extending far beyond the thermophoretic 

regime[65], raising the intriguing possibility that they could have functioned in a 

previously unappreciated way as highly efficient conveyors to achieve targeted surface 

enrichment of organic precursors. 
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We examined this possibility by quantifying the interplay between thermal 

convective transport and surface adsorption in a pore-mimicking cylindrical Rayleigh 

Bénard system across a broad range of size scales representative of hydrothermal 

microenvironments in off-ridge vent systems. Under these conditions, the accessible states 

of fluid motion can be mapped in terms of the aspect ratio (h/d) and the dimensionless 

Rayleigh number (Ra = [g β (T2 – T1) h3] / ν α, where β is the fluid’s thermal expansion 

coefficient, g is gravitational acceleration, T1 and T2 are the temperatures of the top (cold) 

and bottom (hot) surfaces respectively, h and d are the height and diameter of the 

cylindrical “pore”, α is the thermal diffusivity, and ν is the kinematic viscosity)[14]. Since 

surface adsorption of species present at dilute concentrations in the surrounding 

environment is predominantly governed by transport from the bulk fluid to the solid 

interface[66], we modeled the process via a liquid phase adsorption framework previously 

applied to describe prebiotic chemical synthesis on mineral adsorbates[43, 67]. Precursor 

molecules were assumed to be dispersed in water at 10–7 M and a vertical temperature 

gradient was imposed (bottom ~ 95 °C, top ~ 55 °C). An ensemble of 300 randomly 

distributed Lagrangian passive tracers were simulated in 3D during 5 min of flow, and the 

location where each trajectory penetrated a 50 µm adsorption boundary layer was recorded 

to obtain surface enrichment profiles. 

Targeted enrichment 
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Figure 30: Targeted enrichment is evident by anisotropic surface adsorption profiles. Computational 

simulations enable the extent of targeted enrichment, quantified in terms of a focusing fraction f, to be 

parametrically plotted in terms of the Rayleigh number and aspect ratio. The top of the panels in (i) through 

(iv) depict representative flow trajectories (left) and velocity distributions within a near-wall boundary 

region (right). The corresponding sidewall adsorption profiles are depicted at the bottom of each panel 

(individual realizations (left) and vertical distribution histogram (right)). Results are presented for 

representative values of f ranging from 1.0 (anisotropic adsorption localized near the upper and lower 

surfaces) to 0.4 (uniformly dispersed adsorption over the sidewalls). An experimentally obtained adsorption 

profile (v) reveals localized accumulation of fluorescent carboxylated microspheres near the upper and lower 

surfaces of the cell, in agreement with the simulations (Ra = 106, h/d = 5). Conditions relevant to 

thermophoretic trapping are denoted at the bottom of the parametric plot. Pore geometries associated with 

the flow trajectories are not depicted to scale in order to facilitate comparison between them. 
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The anisotropy of each profile was quantified in terms of a focusing fraction f 

expressing the relative amount of surface adsorption localized near the upper and lower 

boundaries, enabling a parametric map to be constructed depicting the extent of targeted 

adsorption achievable across a broad range of pore geometries (Figure 30). 

Our simulations reveal that highly focused enrichment (i.e., distribution profiles 

characterized by distinct bands near the upper and lower pore boundaries) is achievable 

over a wide spectrum of conditions ranging from periodic to chaotic advection (indicated 

by emergence of complex flow trajectories) [14]. The blue colored region near the bottom 

right corner of the map indicates conditions where the thermal driving force is not strong 

enough to initiate convective motion (i.e., molecular diffusion is the dominant transport 

mechanism). Periodic fluid trajectories are generated upon the onset of convective flow 

that promote strongly bimodal adsorption profiles (Figure 30, panel (i)). These profiles 

become distorted at higher Ra as the flow trajectories undergo a transition to chaos (Figure 

30, panel (ii)), although preferential accumulation near the upper and lower pore 

boundaries is retained. A further transition to unsteady behavior (i.e., convective 

turbulence) occurs Ra is further increased (Ra > 108; flows remain inertially laminar with 

characteristic values of the Reynolds number in the vicinity of 1 ~ 500), leading to 

uniformly distributed adsorption profiles (Figure 30, panels (iii, iv)). 

To confirm the role of the flow in generating targeted surface enrichment, we 

computed the velocity magnitude within a 750 µm layer adjacent to the sidewall surfaces, 

representing a characteristic molecular diffusion distance during the time scale of our 

simulations (upper right images in panels i – iv of Figure 30). The corresponding surface 



78 

enrichment profiles (lower left images in panels i – iv of Figure 30) would be expected to 

directly map with regions of zero velocity if adsorption preferentially occurred where the 

near-wall flow is stagnant. But our simulations show that no consistent connection can be 

made between the near-wall flow velocity and the location of targeted enrichment, 

validating the flow’s role in governing transport to the sidewalls. We experimentally 

verified the simulation predictions by coating the inner walls of cylindrical pore-

mimicking flow chambers with bovine serum albumin (BSA). The chambers were filled 

with an aqueous suspension of fluorescently tagged 1-µm dia. carboxylated microspheres, 

enabling adsorption profiles to be inferred by mapping their surface attachment due to 

binding with BSA[68]. Not only did we observe nearly complete transport of the dispersed 

microspheres to the sidewalls upon application of a convective flow, the resulting surface 

fluorescence profiles display targeted enrichment within discrete bands near the top and 

bottom of the chamber (Figure 30, panel (v)). Taken together, these results suggest a robust 

driving force for focused surface adsorption under hydrothermally relevant conditions. 

Surface reaction kinetic model 

We expanded our 3D flow simulations to incorporate a coupled kinetic model that 

enabled us to track the time-resolved surface concentration of adsorbed species at the 

sidewall boundaries. These results closely resemble the response to a step input of first 

order; C / Cmax = (1 – exp(– t / τ)), where C and Cmax are the instantaneous and final 

equilibrium (i.e., corresponding to saturation of active sites) surface concentrations 

respectively, t is time, and τ is a time constant. We also determined time-resolved surface 
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concentrations associated with purely diffusive transport by analytically solving the 

transient 2D diffusion equation in cylindrical coordinates (Appendix F). Time constants 

associated with convection (flow; τconv) and diffusion (no flow; τdiff) could then be 

extracted from these data. We evaluated our kinetic model across the same ensemble of 

flow conditions employed in our analysis of steady-state adsorption to generate the 

parametric map shown in Figure 31. These results reveal that pores displaying the fastest 

adsorption kinetics are characterized by the most disordered flow fields (Figure 31, panel 

(i)), and that the process progressively becomes slower as the flow trajectories recover 

periodicity (Figure 31, panels (ii) and (iii)). Comparison with Fig. 2 therefore suggests an 

intermediate regime (i.e., 1 < h/d < 4) spanning a broad parameter space (i.e., multiple 

orders of magnitude in pore size and thermal gradient) where targeted enrichment and 

adsorption kinetics can be simultaneously enhanced. 

In situ measurement of surface reaction kinetics 

Surface reactions are challenging to dynamically probe in situ at pore-like size 

scales, with the majority of experimental approaches focusing on characterization by 

periodic removal and analysis of reaction products (with limited temporal resolution) or 

by fluorescence-based methods (with limited and often nonlinear dynamic range). We 

overcame these limitations by introducing an electrochemically-based technique whereby 

the upper surfaces of pore-mimicking cylindrical cells were patterned with addressable 

100 nm thick microfabricated copper electrodes (Figure 32 a). In this way, surface-

mediated reactions within a pore can be represented by electrochemical dissolution of the 
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electrodes, an easily observable process that occurs slowly at neutral pH but becomes rapid 

in alkaline environments (Figure 32 b). 

Figure 31: Thermal convective transport greatly accelerates surface adsorption kinetics. Computational 

simulations incorporating a kinetic surface adsorption model enable the time-resolved surface accumulation 

of chemical species on the pore sidewalls to be quantified under conditions relevant to the prebiotic 

environment. A parametric plot reveals that adsorption kinetics are enhanced by up to 1,000 fold in the 

presence of thermal convection, and this enhancement correlates with the onset of chaotic advection in the 

corresponding flow trajectories. Conditions relevant to thermophoretic trapping are denoted at the bottom 

of the parametric plot. Pore geometries associated with the flow trajectories are not depicted to scale in order 

to facilitate comparison between them. 

These conditions mirror those encountered in alkaline off-ridge vent 

environments[69] within mineral formations embedding surface charge densities capable 

of generating electrostatic potentials that strongly favor biomolecular adsorption[70].Our 

electrode dissolution experiments therefore offer a versatile in situ platform to explore the 
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role of thermal convection in prebiotic scenarios where surface adsorption and catalysis 

depends on an interplay among pH, surface charge, and the local ionic environment[71]. 

The electrode-based format also provides considerable flexibility to impose specific 

surface chemistries via appropriate surface functionalization. 

Figure 32: An in situ probe reveals dramatically accelerated surface reaction kinetics via chaotic convective 

transport.  (a) Addressable Cu electrodes are patterned on a glass substrate affixed to the top surface of a 

pore-mimicking cylindrical flow cell enabling electrochemical dissolution to be viewed from above 

(drawing not to scale). (b) Anodic dissolution occurs slowly at neutral pH, but is accelerated under alkaline 

conditions (images of the anode taken after a 3 V potential was applied for 1 min, no convective flow 

imposed). (c) In the absence of convection (above), the anode surface is not visibly changed when a 3 V 

potential is applied in an aqueous solution containing a 100 base pair double-stranded DNA ladder (1 μg/mL, 

pH = 7). But dissolution progresses rapidly (below) when a convective flow is imposed that continuously 

transports negatively charged DNA toward the anode where the electrophoretically compacted film 

increases the local pH, favoring Cu dissolution. (d) Video recordings of the electrodes were analyzed to 

quantify anodic dissolution at the upper pore surface as a function of time in different pore geometries 

(symbols). These data were then used as inputs to a kinetic predictive model (lines). Insets show images of 

the anode corresponding to each condition. Scale: all electrodes are 500 µm wide  
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Pore mimicking test cells were loaded with an aqueous solution containing a 

mixture of double-stranded DNA fragments with lengths in the 100 – 1,000 base pair 

range, and electrode dimensions (500 µm wide, 1 mm inter-electrode spacing) were 

selected such that small potentials (3 V) could generate electric fields high enough to 

electrophoretically trap the negatively charged DNA at the anode[72, 73]. The resulting 

DNA film imposes a barrier against transport of electrochemically generated OH– ions 

into the surroundings, leading to a local increase in pH that acts to accelerate the rate of 

copper dissolution (Figure 32 c)[74]. The thermal convective flow’s ability to mediate 

surface reaction kinetics can then be monitored in situ by analyzing video recordings of 

the electrodes to quantify the dissolved mass of Cu as a function of time. These 

experiments reveal that dissolution progresses slowly under quiescent conditions but 

becomes dramatically accelerated when a convective flow is established (Figure 32 d), 

owing to transport of DNA from the bulk solution to the anode surface where it 

accumulates due to electrophoretic confinement. A kinetic rate constant was obtained by 

fitting data at Ra = 1.2 x 106, h = 6 mm yielding an order of magnitude enhancement under 

convective flow (experimental conditions producing much faster Cu dissolution could 

easily be attained, but the applied potential was quickly disrupted making kinetics difficult 

to quantify). This rate constant was subsequently applied to generate electrode dissolution 

predictions under other conditions in Figure 32 d, yielding time-dependent trends that 

closely mirror the sidewall surface adsorption kinetics in Figure 31 and validate our 

analysis in terms of a framework chiefly governed by transport from the bulk to the solid 

interface. 
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The role of chaotic flows in enhancing molecular transport 

 Collective insights gained from our experiments and simulations make it possible 

to elucidate the interplay between the bulk flow field, transport of material to the surface, 

and subsequent reactions. First, the results in Figure 30 indicate that flow states generating 

periodic trajectories most effectively achieve focused adsorption profiles, reflecting 

sustained circulation between the upper and lower boundaries achieved in both the 

periodic and chaotic regimes (Figure 30, panels (i) and (ii)). Disordered flows also 

effectively transport material to the surface, however localization is disrupted (Figure 30, 

panels (iii) and (iv)). The results in Figure 31, however, reveal that accelerated transport 

to the surface is favored in disordered flow states owing to their strong lateral velocity 

component (Figure 31, panel (i)), whereas periodic trajectories display slower kinetics 

(Figure 31, panels (ii) and (iii)). Comparing these results suggests two competing effects: 

circulatory flow states that display some degree of periodicity produce localized surface 

adsorption but accumulation occurs slowly, whereas disordered flow states yield the 

fastest surface accumulation but adsorption is not localized. 

To understand the interplay between these effects, we defined a figure of merit 

consisting of the product f · (τdiff / τconv). This parameter, plotted in Figure 33 a, reveals a 

zone at intermediate Ra and h / d where simultaneous targeted and accelerated adsorption 

is achievable. 
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Figure 33: Chaotic thermal convection simultaneously delivers targeted and accelerated surface 

accumulation under hydrothermally relevant conditions. (a) A parametric plot of the figure of merit f 

(τdiff / τconv) reveals a regime at intermediate Ra and h / d where simultaneous targeted and 

accelerated surface enrichment is achievable. This “sweet spot”, spanning orders of magnitude in 

thermal and geometric conditions, is characterized by chaotic flow trajectories. Phenomena in this 

regime are not solely explained by high values of the Péclet number Pe, which monotonically 

increases with Ra (above). The strength of the chaotic component is evident by increased values 

of the Lyapunov exponent λ, as compared with states at lower Ra or higher h / d where periodic 

trajectories predominate (below). (b) Mid-plane Poincaré sections at h / d = 2 confirm a transition 

away from closed flow trajectories toward disordered states in the chaotic regime (symbols at the 

left of each image map to the corresponding states in (a)). 
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Figure 34: Kinetic model predictions of electrode dissolution confirm that the fastest reaction rates 

occur in the chaotic regime.  Symbols coincide with those in Figure 33 (a). The predicted values of 

τdiff / τconv are consistent with the parametric map in Figure 31, validating our analysis in terms of a 

framework chiefly governed by transport from the bulk to the solid interface. 

The desirable features of flow states in this regime can be understood by recalling 

that targeted accumulation occurs when periodic circulatory flows are established within 

the pore (Figure 30), and that the process is accelerated in flows displaying a strong 

laterally-directed component (Figure 31). Chaotic flow states, inherently embedding 

quasi-periodic trajectories with a lateral (albeit not disordered) component, naturally fulfill 

both of these criteria. We validated this hypothesis by using our 3D simulations to quantify 

the chaotic nature of these flow states in terms of their Lyapunov exponent—a parameter 

representing the rate of divergence experienced by initially neighboring flow trajectories. 

When superimposed over the parametric plot in Figure 33 a, it becomes evident that the 

figure of merit “sweet spot” (the red colored zone) directly coincides with the chaotic flow 

regime. These flow states enable the global periodicity desirable for targeted accumulation 
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to be retained, but because the corresponding flow trajectories are not closed (i.e., 

following quasi-periodic limit cycles evident by the Poincaré plots in Figure 33 b) they 

also provide a lateral component that accelerates transport from the bulk to the surface. 

We used our kinetic model to compute time constants corresponding to the same range of 

flow states at h / d = 2 where Lyapunov exponents were determined (Figure 33 b, symbols 

are coded to match the conditions in panel (a)). These data reveal that chaotic thermal 

convection generates nearly a thousand fold enhancement in τdiff / τconv. Chaos therefore 

make simultaneous targeting and accelerated accumulation uniquely possible. 

Comparison with thermophoretic trapping 

To connect chaotic thermal convection introduced here with previous literature 

exploring thermophoretic trapping[62, 64], we first note that cavities formed within the 

cracks of mineral deposits[75-77] and voids encountered between pillow lavas[78] display 

characteristic size scales (mm to cm) that are closely aligned with the convective regime 

(thermophoretic effects predominate in hairline pores with d ~ 100 µm or less[64], 

indicated by the narrow hashed region at the bottom of the parametric plots in Figure 30 

and Figure 31). Convective transport therefore vastly broadens the range of geometries 

capable of supporting chemical synthesis to more fully encompass pore size distributions 

encountered in hydrothermally relevant mineral formations[60, 61]. It is also important to 

note that previous investigations of bulk reactions under thermophoretic trapping have 

implicitly assumed an infinite source of chemical precursors (i.e., “open top” pores) that 

imposes no inherent upper bound on achievable enrichment. We have not invoked this 
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assumption in our analysis because our aim is to consider surface catalyzed processes 

relevant to the prebiotic scenario (although we could do so and generate comparable 

enrichment levels). 

Another distinguishing feature of our work is that previous studies considered only 

bulk polymerization where accelerated kinetics are achieved solely by bringing reactive 

functional groups into close physical proximity (e.g., 100 µm diameter pores of length 5 

cm require local monomer concentrations in excess of 10–3 moles/m3 to synthesize 

oligomers long enough for self-replication (200-mer)[64]). Surface catalyzed processes, 

on the other hand, eliminate the need to attain these extreme bulk species concentrations 

because (i) the critical enrichment level is governed by saturation of catalytically active 

surface sites rather than bulk accumulation, and (ii) catalytic pathways inherently reduce 

required species concentrations by several orders of magnitude (e.g., surface 

concentrations of order 10–6 moles/m2 are sufficient to sustain catalytic condensation of 

40-50-mer polymer chains in similar sized pores[79]). Additionally, surface catalysis 

delivers more sophisticated chemical selectivity (e.g., clays such as montmorillonite have 

been shown to favor homo-chiral selection of nucleotides, a critical step in the formation 

of selective longer biomolecules[51, 52]). The ability of clay surfaces to simultaneously 

bring reacting species into close proximity and orient them into favorable positions has 

also been shown to increase the rate of condensation by a thousand fold[80]. The size 

scales and boundary conditions associated with thermophoretic trapping may therefore 

make it best suited to describe phenomena occurring in hairline cracks near the surfaces 
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of hydrothermal formations, whereas chaotic thermal convection may predominate 

throughout the bulk interior spaces. 

Computational modeling of hydrothermal pore system 

Geometries for 3D simulation of convective flow fields inside micro-scale 

cylindrical pores were created and meshed using Gambit (ANSYS). Non uniform 

hexahedral grids were generated and grid independent solution was verified. The finite 

volume solver of STAR-CCM+ (CD-adapco) was used to simultaneously evaluate the 

continuity, 3D Navier-Stokes, and energy conservation equations. The buoyancy driving 

force was incorporated via the Boussinesq approximation subject to adiabatic sidewalls 

and isothermal conditions at the upper and lower boundaries. Fluid with properties of 

water were applied and evaluated at the average of the top and bottom surface 

temperatures. Computed steady-state velocity and temperature fields were analyzed using 

Tecplot and Matlab. Bimodality of the sidewall surface adsorption distributions was 

expressed in terms of a focusing fraction f defined as 
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where P is an adsorption distribution function and h is the pore height. The fluid 

elements were tracked as the pierced the pore boundary (Figure 35). 
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Figure 35: Construction of pore boundary adsorption profile. The fluid elements are tracked as they are 

converted within the pore and the locations where the stream traces penetrate the boundary layer are mapped. 

Subsequently an adsorption profile is constructed to quantify the focusing fraction. 

A 50 µm mesh size was chosen as representative of the surface roughness (a 

conservative upper bound estimate). The computational domain of the cylindrical pore 

was divided into two sections, a central domain and a thin boundary domain (Figure 36 

a). The grid in the boundary domain was made finer to accurately resolve the near-wall 

flow trajectories and adsorption profile, transitioning toward a coarser grid near the pore 

center. We verified that the adsorption profiles and focusing fractions obtained were 

unaltered by decreasing the boundary thickness to small as 1 µm (Figure 36 b). These 

results validate our choice of adsorption layer thickness and ensure that our key results are 

not sensitively dependent on simulation parameters. 
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Figure 36: Grid independence on pore tracking profile.  (a) Computational domain of the cylindrical pore 

geometry. (b) Adsorption profiles and focusing fractions obtained at two different boundary thicknesses. 

Adsorption rates at the pore sidewalls Ra were represented by coupling the flow 

equations with a first-order kinetic model. 
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Here [A] represents the concentration of organic monomers in the solution, [B] is 

the concentration of the organic monomers on the pore surface, ka is the rate of adsorption 

and kd is the rate of desorption (characteristic values of ka = 100 s–1 and kd = 1 s–1 were 

selected; actual values depend on the specific surface area available for adsorption, which 

can vary by four orders of magnitude in natural environments from 0.025 m2/g (quartz) to 

750 m2/g (montmorillonite))[66]. The adsorbing species was assumed to be dispersed in 

water at 10–7 M  (typical concentrations of nucleotide and amino acid precursors in the 

primitive ocean are estimated to be ~ 10–6 – 10–9 M)[59, 64].  
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A simplified mass action kinetic model was also developed to capture 

electrochemical dissolution of the copper anode via the following coupled mechanism[81] 
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where the dissolution rate is given by R = k[Cu]2 [H2O]. The role of convective 

DNA transport from the bulk in increasing the local surface pH via electrophoretic 

confinement was incorporated by introducing a rate constant proportional to the time-

dependent local DNA concentration obtained in the simulation (k = k0[DNA], where k0 = 

10 [M3 s]–1 was selected based on fitting data at Ra = 1.2 x 106, h = 6 mm in Figure 32 d). 

The copper electrode was modeled as a 100 nm thick rectangular volume (500 µm x 3 mm 

surface area) positioned on the upper surface of the cylindrical pore-like volume. The 

bottom surface temperature was maintained at 80 °C and the initial bulk DNA 

concentration was 1 μg/mL matching experiment conditions. Both convective and 

diffusive (T = const. = 300 K) transport were simulated. 

BSA adsorption experiments 

Adsorption studies were performed using pore-mimicking transparent cylindrical 

acrylic cells (1.5 mm dia.) mounted in an apparatus that permitted the upper and lower 

surface temperatures to be independently controlled to impose a vertical gradient[65, 82]. 

The inner walls of each cell were coated with bovine serum albumin (BSA; cat. no. A2153; 

Sigma-Aldrich) by first sealing the lower surface using thin aluminum tape (cat. no. 

PCRAS-200; Axygen, Inc.) and rinsing the interior with water. A 10 mg/ml aqueous BSA 
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solution was then loaded, incubated for 5 min, and removed. Coating stability was verified 

using FITC-BSA (cat. no. A9771, Sigma-Aldrich) which revealed no change in the 

interior surface fluorescence before and after convective flow. A 10x aqueous dilution of 

1 µm dia. carboxylate-modified polystyrene microspheres (cat. no. L4655; Sigma Aldrich) 

was then pipetted into the cell and the top surface was sealed with aluminum tape. The 

filled cells were loaded into the convective apparatus after preheating the upper and lower 

surfaces to desired temperatures (top 55 °C; bottom 95 °C). The heaters were switched off 

after 15 min of convective flow, after which the cells were removed and allowed to cool 

under ambient conditions. The sealing tape was removed and the remaining liquid was 

dried by placing the cells in a 50 °C oven for 10 min. Adsorption profiles were imaged 

using an Olympus SZX-12 fluorescence microscope with GFP filter set, and the 

corresponding intensity data were extracted using ImageJ software. 

Copper dissolution experiments 

Copper film coatings (100 nm thick) were sputter deposited on glass microscope 

slides (cat. no. 12-550-A3, Fisher). Electrodes (500 µm wide, 1 mm inter-electrode 

spacing) were patterned on the copper coated slides using dry transfer film (Press-n-Peel 

Blue, Techniks, Inc.), followed by immersion for ~ 1 min in gold etchant (Transene) after 

which the remaining dry transfer film was stripped using acetone. Patterned glass slides 

were affixed to the upper surface of the cylindrical acrylic cells using cyanoacrylate 

adhesive, and electrical connections were made using conductive tape (xyz-axis 

Electrically Conductive Tape, 3M). Potentials were applied using a DC power supply 
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(E3612A, HP/Agilent). Electrode dissolution experiments were carried out in aqueous 

solutions of NaOH (pH = 11) and a 1 μg/mL 100 bp double-stranded DNA ladder at 

neutral pH (cat no. 170-8202, Bio-Rad). The bottom surface of the cells were sealed with 

aluminum tape and the assembly was heated from below using the same apparatus 

described above. Video recordings of the electrode dissolution process were acquired, 

converted to image sequences, and analyzed using ImageJ software. Dissolution was 

quantified within a region of interest overlaying the anode surface by converting the 

images to 8 bit grayscale and applying a black/white threshold of 160 out of 255. The total 

white pixel count was then calculated to determine the mass of copper dissolved as a 

function of time (Figure 37). 
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Figure 37: Time sequence of images depicting electrochemical dissolution of 500 µm-wide Cu electrodes 

under application of a 3 V potential in cylindrical pore-like micro-cavities. An aqueous solution containing 

1 μg/mL of a 100 base pair double-stranded DNA ladder is subjected to a convective flow by heating the 

lower surface of the pore to 80 °C. The chaotic convective flow accelerates anodic dissolution in all cases 

(data are shown for three different values of cavity height h with aspect ratio held constant at h/d = 2). At h 

= 8 mm the convective flow accelerates dissolution to such a degree that large sections of the electrode are 

removed, leaving an open circuit that prematurely arrests further dissolution. 
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Concentration of precursor molecules 

Determining the concentration of autotrophically generated organic monomers 

within hydrothermal microenvironments is challenging. Based upon knowledge of 

production and consumption rates and prebiotic concentrations of carbon and other 

available substrates (CO2, CO, NO3, phosphate, methane etc.), it has been estimated that 

corresponding concentrations of organic monomers could not be more than O(10–3 

M)[83]. Similar estimates suggest amino acid concentrations of O(10–7 M)[84]. More 

recent studies have suggested that maximum organic monomer concentrations would be 

in the millimolar range[59, 85]. Taking all these estimates into account, we assumed 

precursor molecules to be dispersed in water at a concentration of 10–7 M. 

Characterization of the chaotic flow field 

Although the dynamical system representing the thermal convective flow field is 

at steady state, it is of interest to quantify its chaotic characteristics by analyzing 

trajectories followed by individual fluid elements. Descriptors of chaotic phenomena 

generally seek to capture divergence from periodicity, and various methods are available 

to extract this information (e.g., Lyapunov exponent, correlation dimension, Kolmogorov-

Sinia (K-S) entropy, fractal dimension, probability density of stretching, and Poincare 

sections)[7-9]. We quantified the chaotic nature of the flow fields in our hydrothermal 

pore mimicking systems by calculating the Lyapunov exponent (λ), a parameter 

expressing the rate of exponential divergence experienced by nearby trajectories that is 

frequently used to quantify mixing and chaotic transport in fluids. 
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The steady-state 3D velocity field solutions we obtained computationally were 

analyzed to perform Lagrangian tracking of 300 randomly distributed flow trajectories 

originating from the mid-horizontal plane of the cylindrical pore domains for a period of 

5 min. Each fluid element was paired with its initially nearest neighbor, and the 

coordinates of the paired system were integrated to yield a time series representation of 

their separation distance. The finite time Lyapunov exponent was then calculated as 

follows, with the separation distance being normalized after each time step. 
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Here ∆t is the time step, T is the total time the fluid elements are tracked, and d is 

the separation distance between the pair of fluid elements. 

Initial separation distances and the time steps were independently varied to 

determine their optimum values. The Lyapunov exponent values should, in principle, only 

depend on initial and boundary conditions of the system and should remain independent 

of parameters like time step of integration (∆t) and initial separation distance between 

neighboring trajectories. We performed a sensitivity analysis and determined that time 

step values smaller than 0.25 s and initial separation distances smaller than d/50 (d is the 

pore diameter) did not alter the computed λ value. These optimized parameters was then 

applied toward subsequent analysis of all fluid elements originating from the mid 

horizontal plane to generate a spectrum of λ values. The maximum value of λ obtained 

from this spectrum was taken as a metric to quantify chaotic strength flow field. Pores 

with aspect ratios of h/d < 5 display high λ values over a wide pore size range, confirming 
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chaotic phenomena under these conditions. Values of λ decrease at higher aspect ratios 

where more ordered periodic flows prevail. 

Conclusion 

Our results point to chaotic thermal convection as a robust mechanism to explain 

emergence of complex bio-macromolecules from dilute organic precursors in the prebiotic 

milieu—a key unanswered question in the origin of life. While the ability of these flow 

phenomena to catalyze bulk homogeneous reactions has been established[3], their 

potential to tunably mediate chemical activity at the bounding surfaces has not been 

previously considered. This feature is particularly important in prebiotic scenarios 

involving coordinated surface adsorption and detachment mechanisms[86, 87]. We also 

remark that a diverse array of processes beyond prebiotic biochemistry can be catalyzed 

in hydrothermal microenvironments. Submarine igneous formations such as basalt lavas 

and ultramafic intrusions of the kind that host hydrothermal convective systems[40] play 

a key role in geothermal conversion of CO2 into stable carbonates[88] and partial 

reduction to formate, carbon monoxide, and methane. These reactions are accelerated 

within the pores of hydrothermal formations[78], suggesting a compelling role for the 

thermal convective phenomena described here in governing transport and reaction of CO2 

along pathways not captured in existing climate models. 
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CHAPTER V 

PARTICLE RESUSPENSION MODELING OF IRREGULAR PARTICLES AND 

SURFACES AT ALL SEPARATIONS* 

Introduction 

The phenomenon of submicron particle attachment and detachment on surfaces 

holds significance in many fields. Resuspended contaminants such as bioaerosols[89], 

aeroallergens[90], radionuclides, and carcinogens[91] have been shown to provoke 

adverse environmental and health effects. Resuspension studies are also important in 

determining the reliability of the silicon circuits in the fabrication of semiconductor 

microelectronic device[92] and the aerosolization of pharmaceutical powders in dry 

powder inhalers[93]. Among many aspects of resuspension modeling, a dominant concern 

is the accurate description and formulation of the van der Waals (vdW) dispersion 

interactions between the particle and the substrate. Such interaction between neutral 

bodies at nano and micro scale holds significance in various scientific fields such as 

adhesion, wetting, adsorption, colloidal phase equilibrium, collision rates, rheological 

properties and interfacial phenomena, thus raising the bars on the accurate predictive 

capabilities of the current description of vdW interactions. 

Recent works describing the interaction energy of particles with surfaces for 

resuspension modeling are based upon the Hamaker's approach, i.e. the summing the pair-

*Reprinted with permission from “Computations of Lifshitz–van der Waals interaction energies between

irregular particles and surfaces at all separations for resuspension modeling” A. Priye and W. H. Marlow, 

2013, Journal of Physics D: Applied Physics, 425306, Copyright 2013 by IOP Science. 
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wise fluctuating dipolar interactions in the molecules comprising both bodies. Here we 

show that this leads to an error in the estimation of the interaction energy and more 

importantly for resuspension calculation, errors in the interaction force when compared 

with the results incorporating the Lifshitz many body formulation and retardation effects. 

We address these issues by (i) developing a novel computational method to approximate 

the retarded Lifshitz interactions and (ii) applying this formulation to estimate the van der 

Waals adhesion between macroscopic bodies of arbitrary shapes such as rough surfaces 

and particles of various shapes. 

Hamaker two body interaction 

The origin of the atomic vdW interaction is the zero-point and thermal fluctuations 

in polarization of multipoles in atoms and can be calculated using the time independent 

perturbation of the wave-function of a single atom due to the presence of the second 

atom[94, 95]. The original treatment (also known as the Hamaker’s formulation) of vdW 

interaction between macroscopic bodies relies on the pairwise (two body) sum of all such 

atomic interactions within them[96, 97]. Following Hamaker’s approach for calculating 

these interactions results in separation of the functional form into a dependence on the 

system’s geometric part and a material dependent constant, known as Hamaker’s 

constant[98]. The Hamaker constant is used widely owing to its simple implementation 

and computational convenience and has been determined for a large number of materials 

[99]. However, this method suffers from several drawbacks. Firstly, the quasi static 

approximation which assumes that the polarization of the first molecule instantaneously 
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polarizes the second molecule becomes inaccurate at large distances as a consequence of 

finite propagation speed of the radiation from the electromagnetic fluctuations[100], also 

termed the “retardation” of the interaction.  Secondly, the internal states of two interacting 

molecules are modified by the presence of other neighboring molecules making the two-

body formulation imprecise for the computation of the total interaction energy for 

condensed media (Figure 38). A third deficiency in the sum-on-pairs interaction of 

Hamaker is its neglect of collective electromagnetic modes characteristic of the size and 

geometries of the interacting bodies, in addition to their compositions. 

Figure 38: Hamaker two body and Lifshitz continuum interactions. (a) Hamaker's pair wise summation 

technique where the presence of other molecules does not affect paired interactions. (b) Lifshitz many body 

interaction takes into account both the direct and indirect (screened) interactions providing a more accurate 

calculation procedure. 
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Lifshitz theory of interaction: a continuum formulation 

The correct treatment of such interaction lies in the continuum theory of dispersion 

forces (Lifshitz theory) which uses advanced statistical mechanics and quantum field 

theory to determine the interaction between two real dielectric half spaces treating the 

system as a continuum[101, 102]. The first direct measurements of such dispersion 

interaction between macroscopic bodies were performed by Derjaguin [103] and 

Kitchener[104]. More elegant experiments[105-114] have further tested and verified the 

Lifshitz theory to higher accuracy. 

The Lifshitz theory of vdW interactions may be derived by use of the fluctuation 

dissipation theorem[115] which relates the dissipative properties of the material to the 

resulting electromagnetic fluctuations at equilibrium through the material’s dielectric 

constant. Lifshitz theory was originally solved for interaction between two half spaces. 

Following the same formulation, analytic solutions for interactions between various 

simple geometrical setups have been derived[115]. Previous attempts of quantifying vdW 

interactions between curved surfaces relied on Derjaguin approximation[116] (also known 

as proximity force approximation) which relates the interaction energy between two 

curved surfaces to the interaction between planar geometries[117, 118]. However, the 

proximity force approximation is only accurate in the near contact region and it cannot be 

used to calculate interaction energies between arbitrary geometries. Other formulations 

tend to impose the pair wise summation of the Casmir-Polder retarded interactions[119] 

but like Hamaker’s formulation it employs the two body molecular interactions. There 

have been other recent attempts to compute the many body interaction between arbitrary 
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geometries using various mathematically involved techniques such as multiple scattering 

methods[120] and path integral formulation[121] which might not be readily amenable to 

calculation at all separation distances. Our formulation goes well beyond these methods 

and overcomes these limitations by numerically computing the pairwise sum of the many 

body Lifshitz interactions between arbitrary geometries to a good approximation at all 

separation distances. 

We are interested in the Lifshitz interaction between two spheres[122-124] for 

reasons that will be apparent later. The many-body vdW interactions between two spheres 

(from here on called Lifshitz spheres) was calculated using multipole expansion and 

spherical Bessel functions which turned out to be computationally intensive and slowly 

convergent[125]. An approximation to this formulation [126] made calculation of these 

interactions easier without much compromise on accuracy (KPW approximation). 

Alternatively, the many-body vdW interactions can also be calculated by implementing 

the iterated vdW interaction over discrete molecules (Drude molecular oscillators) in the 

two bodies[127, 128]. In this picture each individual molecule is considered as a point 

oscillator. The interaction energy between the two bodies is then simply the difference in 

the energies of interaction of the perturbed (with inter-body interactions) and unperturbed 

(without inter-body interaction) modes. This method has been used to calculate collision 

frequencies for gas borne clusters[129]. 
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Interaction between Lifshitz spheres: Formulation 

Lifshitz theory as originally formulated is not readily applicable for the interaction 

between irregular bodies since the asymmetry in the geometries does not facilitate closed-

form solutions. Calculations have shown to a high degree of accuracy that the total 

interaction energy for a single Lifshitz sphere interacting at a distance with a contacting 

pair of identical Lifshitz spheres in different orientations could be approximated by a 

simple sum over pairwise interactions between the remote sphere and each member of the 

contacting pair[130]. In other words, once the many body interactions have been correctly 

taken into account between two Lifshitz spheres, it is justified to calculate the total 

interactions by pairwise sum of these many body interactions that neglects the effects of 

the interaction of the contacting spheres on their interactions with the remote sphere. 

Therefore, we propose a numerical procedure where the irregular bodies (particles and 

surfaces) are discretized into numerous Lifshitz spheres and simple pair-wise sum would 

provide us an accurate many body Lifshitz interaction between them. 

We demonstrate and test our method by calculating the interactions between two 

macro spheres of diameter D, comprised of smaller Lifshitz spheres of diameter d (figure 

1.a). First, the many body Lifshitz non retarded interaction between the Lifshitz spheres

is calculated by the following expression. 
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Where ∆E is the Lifshitz interaction energy between two small nanometer sized 

Lifshitz spheres calculated using Langbein multipole expansion series solution[122], T is 
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the temperature, k is the Boltzmann’s constant, z is the center of mass separation between 

the two spheres and g(z,i) is expressed as a sequence of formulas (Appendix G) 

incorporating the system’s geometric parameters and dielectric constant evaluated on the 

imaginary frequency using the KPW approximation to accelerate the series 

convergence[126]. The integral incorporates all thermal wavelengths (n=(42kT/h)n, 

n=integer). 

It should noted that equation [5.1] is useful for values of z<<2c/, i.e. in the non 

retarded regime. To account for retardation at larger separation, the integral has to take 

into account the retardation factor f(,z)[131], where p=2z /c. For homogeneous spheres 

the point to point retardation integrated over two spheres turns out to be very close to the 

retardation evaluated when centers of the two spheres are taken into consideration[132]. 
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For resuspension studies it is of prime importance to determine the adhesive forces 

between the particles and the surface at very close proximity. This force must be calculated 

as the derivative of the scalar potential due to the vdW interactions which has not been 

addressed in any resuspension studies, to our knowledge. At very small separation 

distances where the inter molecular (oscillator) distances are comparable to the separation 

distance, the point dipole approximation of the continuum theory breaks down and the 

finite size effects of the molecules have to be taken into account to avoid singular behavior 
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of Lifshitz vdW potential near contact. The task is then to determine the dispersion 

interactions due to a general spherically symmetric polarizability density tensor for atoms 

instead of treating them as point dipoles. Here we have applied the formulation devolved 

in [128, 133], which uses self consistent field calculations (Hartee Fock method) to ensure 

that the dispersion energies remain finite at short range. From first principle analysis and 

physical arguments we arrived at the following the form of a spherically symmetric 

polarizability density tensor: 
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where r, ) is the spherically symmetric polarizability density tensor, I is the 

identity tensor, ao is the Bohr radius,  is introduced to account for atomic size effects and 

is frequency dependent polarization. Dispersion energies are small in nature and are 

completely negligible at short intermolecular separation in comparison with the 

tremendously large repulsive energies. Following this approach, both short range 

dispersion interactions along with orbital overlap repulsive interactions were calculated 

for a system of two interacting spheres[134], yielding analytic and nonsingular 

interactions at small separation distances which we have incorporated in our formulation 

to determine Lifshitz interactions at all practical separations for resuspension studies in a 

computationally feasible way. This phenomenological method can be used to calculate the 

vdW interactions at small separations but neglects electrostatics and hybridizations effects 

and any other effects due to chemical bonding[135]. As a practical question, the change is 

energy is likely to be small because the details of the interaction pertain solely to the 
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interacting surface atoms. As the separation between the spheres increases, molecular size 

effects become decreasingly important, and the short-range energy converges smoothly to 

the Lifshitz continuum energy. 

Interaction between Lifshitz spheres: Methodology 

Even though equation [5.2] requires integrating the function g(z,i) over the 

imaginary frequencies which itself is evaluated as sum of a doubly infinite series 

(Appendix G), the formulation is easily programmable, enabling us to calculate the many 

body retarded interaction energies between two small Lifshitz spheres at all relevant length 

scales. We can now populate two microscopic bodies with such nanometer sized Lifshitz 

spheres and calculate the pair-wise sum of all the interactions among them. To do this in 

a computationally feasible manner, we discretize the volumes of the two microspheres 

into computational grids of dimension L (Figure 39 a) and calculate the pair-wise sum of 

the Lifshitz interaction over all the computational grids in the two bodies by incorporating 

the volume density of smaller Lifshitz spheres in this packing. Our operational assumption 

is that we compensate for void fraction by a suitable multiplicative factor (based on the 

volume density of Lifshitz spheres). This is reasonable in a constant density system where 

mass and volume are proportional. The implementation of this algorithm automatically 

takes into account the mass corrections due to the void fractions in this arrangement and 

yields at least a partially averaged interaction over different filling configurations of the 

Lifshitz spheres. Furthermore, it was shown earlier that interaction energies between 
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Lifshitz spheres in different configurations don't vary significantly[130]. In principle, 

these Lifshitz spheres can populate any arbitrary shape geometry (Figure 39 c). 

Figure 39: Packing continuous media with nanometer sized Lifshitz spheres.  (a) The macroscopic sphere 

of diameter D (~ 1 - 100 microns) discretized into computational grid elements with grid size L. Each 

computational grid consists of Lifshitz spheres of diameter d (~1-10 nm). (b) Pair wise sum over the 

computational grids within the two macro-spheres produces an accurate estimation of the many body 

Lifshitz interactions between them. (c) The Lifshitz spheres, in principle can fill up any arbitrary geometry 

to yield the pair-wise many body interaction between them. 
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Although these interactions between spheres based on Langbein's formulations 

incorporate the many body, retardation and near contact effects, thus yielding approximate 

Lifshitz interaction at all separations, the equations do not yield a simple functional form 

with explicit distance dependence like in the Hamaker’s approach 
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Where, R is the radius of the equal sized spheres and Aham is the material dependent 

Hamaker constant obtained either from molecular polarizability data or empirically by 

fitting experimental data. A more precise Hamaker constant can be obtained from the 

Lifshitz's macroscopic picture for two interacting half spaces[136], which provides a 

lower bound for the interactions between two spheres[130] (Hamaker-Lifshitz approach). 
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Where  is the frequency dependent dielectric constant of the material and can be 

modeled as a real and monotonically decreasing function of the frequency ( on the 

imaginary axis in a damped harmonic oscillator form[137, 138]. The values of parameters 

in the eq. [5.7] are listed in Table 11[139]. 
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Table 11: Dielectric properties of polystyrene. 

eV g eV f eV 

6.35 0.65 14.6 

14 5 96.9 

11 3.5 44.4 

20.1 11.5 136.9 

For validation purposes we compare our formulation with the exact Lifshitz 

interactions, Hamaker-Lifshitz interaction and the Hamaker pair wise interaction between 

the two polystyrene microspheres (D = 1 micron). These calculations revealed that the 

solutions converge to the exact Lifshitz interactions as the relative size of the Lifshitz 

spheres is made larger with respect to microsphere, i.e. for lower values of D/d (Figure 

40), where d is the Lifshitz sphere diameter and D is microsphere diameter. At very close 

distances the collective effects become less important and the interaction is dominated by 

the short range molecular interactions which are not strongly dependent on the D/d ratio. 

It should be noted that scaling of these interactions is not linear with the volume of Lifshitz 

spheres. The exact interaction is obtained by taking all the many body interactions between 

the two spheres. As the number of Lifshitz spheres increases, fewer many body retarded 

interactions are taken into account, thus resulting in a deviation from the exact Lifshitz 

result at larger distances. Grid independence of solution was verified for values of D/d 

lower than 20. This convergence can be attributed to the consideration of more collective 

interactions when the sizes of the Lifshitz spheres are made big. Therefore, the largest size 

of the computational grid elements is only constrained by the smallest feature of the 

geometry that needs to be resolved in the micro-bodies. 
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Figure 40: Sensitivity analysis of interacting Lifshitz spheres. Interactions between 2 polystyrene micro-

spheres (1 micron in diameter) are calculated by different methods; Hamaker’s approach using (i) Hamaker’s 

constant and (ii)Hamaker-Lifshitz constant, (iii) exact many body Lifshitz retarded interactions and (iv) 

pair-wise retarded interactions between Lifshitz spheres comprising the two micro-spheres. The pair-wise 

interactions over the Lifshitz spheres converges to the exact many body Lifshitz interactions for sufficiently 

large Lifshitz spheres. 

 

 

Limitations of the model 

Discussion of the limitations of our formulations is important at this point. By 

packing the dielectric material with smaller Lifshitz spheres, we are ignoring the effects 

of surface resonances due to the actual material size[140]. This would appear to be 

responsible for the improvement in the model as the D/d ratio decreases in Figure 40. 
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Furthermore, these calculations are limited to dielectric materials. Conductors are not well 

described in this formulation which has been discussed earlier[141]. These interactions 

are based on Langbein’s formulation for two spheres which converges to Lifshitz result at 

small separation distances. For large separation distances, retardation becomes significant 

and has been introduced here in a phenomenological way in the form of a retardation 

factor. In recent years, several new treatments of Lifshitz theory for compact objects have 

been given [120, 121, 142-144].  While they are more general in formulation than 

Langbein’s earlier development based upon Drude oscillators and the Clausius-Mossotti 

equation, they share a similar basis in their development of the multipolar interactions that 

are the basis for Lifshitz interactions. In the scope of this study we have limited our focus 

to rigid particulate materials and surfaces. However the methods developed here are 

general and in future studies they can be extended to treat adhesion in the case of 

deformable bodies. We are treating the interacting bodies as electrically neutral, 

neglecting any electrostatic interactions between them. We are also only considering 

separation distances over which chemical bonding interactions are negligible. Condensate 

effects are not taken into account and the interacting material and the medium considered 

here are composed of homogenous dielectric material. 
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Figure 41: Modeling surface roughness with a sinusoidally varying roughness profile of a given amplitude 

and wavelength. The amplitude can be changed with respect to particle diameter to achieve different levels 

of surface roughness i.e. (b) high roughness, (c) moderate roughness and (d) low roughness. 

 

 

Interaction between a spherical particle and rough surfaces 

In resuspension studies, an important factor in the calculation of the adhesion force 

between the substrate and the particle is the surface roughness. Surface roughness can be 

determined by interferometric methods using an optical profilometer. Rough surfaces tend 

to decrease the adhesion forces by decreasing the effective area of contact and increasing 

the distance between particle and the surface[145, 146]. Unfortunately, the magnitude of 

these effects is not understood well. There have been previous attempts to quantify such 

effects by modeling surface roughness as semi hemispherical asperities[147] where the 

total vdW interaction was split into the sum of interaction of the particle with the flat 

surface and the hemispherical asperity. This model was later modified, incorporating more 

parameters to better represent the surface roughness[148, 149]. Other models tend to 
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impose the Hamaker’s integral formulation to other simple geometries (cones and 

hemispheres)[150, 151] and even more complicated geometries[152]. Fewer attempts 

have been made to formulate interactions between rough surfaces using the continuum 

approach. One such method treats roughness as a diffuse layer whose dielectric properties 

vary continuously between those of the surface and the medium[153]. The vdW 

interactions are then calculated using Lifshitz formulation for multi-layered system.  

We are now in a position to extend our formulation to calculate Lifshitz 

interactions in systems with irregular and rough surfaces. Although one can choose any 

profile to represent the surface roughness, for illustration purposes we select a sinusoidally 

varying rough surface with two parameters to tune the roughness (Figure 41 a), namely 

the roughness amplitude (A) and the roughness wavelength (λ). For modeling convenience 

we can relate the roughness wavelength to the roughness amplitude (λ = 4A). Both the 

particle and the surface are made of polystyrene separated by air. The rough surface is 

discretized into computational grids composed of smaller Lifshitz spheres of diameter 

1/10 the roughness amplitude (based on our previous grid independence study and 

sensitivity analysis), enabling us to capture the finest features of the sinusoidally rough 

surfaces. The roughness was taken in an area of 25 μm2 on the surface centered directly 

below the particle. The many body interactions were summed up between the 

computational grids comprising the surface and the spherical particle. Interaction energies 

were computed over a series of separation distances ranging from the equilibrium contact 

distance to 100 times the particle diameter. Points near the surface were taken to be more 

dense. These interactions were compared with the exact Lifshitz interactions and the 
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Hamaker-Lifshitz interactions between a spherical particle and a smooth surface. In the 

near contact region (0 - 20 nm) where retardation effects are less prominent, the Lifshitz 

interaction curve between a smooth surface and a spherical particle yields a constant slope 

(Figure 42 log-log scale). At separation distances farther from the surface, the slope of the 

interaction curve decreases due to retardation of interaction at these length scales (figure 

4). The Lifshitz-Hamaker interactions which do not take retardation into account has a 

constant slope at all separations. Interaction energies for systems with varying particle 

diameter (D = 1, 5 and 20 microns) and rough surfaces with sinusoidally varying 

roughness profile (A = 3, 10, 25, 50, 100, 500 nm) were analyzed (Figure 42). For surfaces 

with small roughness amplitude (A = 3 nm), the interaction energy deviates from that of 

smooth surface interaction in the near contact region. This deviation increases upon 

increasing the surface roughness amplitude. All rough surface interactions asymptotically 

converge to flat surface interactions at larger separation distances as the roughness features 

of the surface is not significant at these length scales and the surface can be treated as 

smooth. The distance at which this happens depends on the roughness amplitude and the 

size of the particle (Figure 42 a). 
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Figure 42: Variation of vdW interaction energies for different combinations of particle diameter and surface 

roughness profile. The roughness wavelength is taken to be proportional to the roughness amplitude (λ = 

4A). (a) The Interaction energy between a spherical particle and rough surface with various roughness 

amplitudes (A = 3, 10, 25, 50, 100 and 500 nm) on log-log scale. The 'LH-smooth' indicates the Interaction 

between two half spaces and 'smooth' indicates the Lifshitz interaction between a smooth surface with a 

spherical particle (b) Variation of the interaction energy between a surface of a given roughness amplitude 

and particles of different diameter (D = 1, 5 and 20 microns) as a function of the separation distance scaled 

by the particle diameter on a log-log scale. 
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Figure 42 b shows the analysis of these interactions as a function of the separation 

distance scaled by the individual particle diameter for each of the six roughness profiles. 

For the smallest roughness amplitude, the highest interaction energy is obtained for the 20 

micron dia. particle followed by 5 and 1 micron dia. particles. As the roughness amplitude 

is increased, the interaction energies decreases for the 20 micron particle in comparison to 

the smaller particles and the individual interaction energy curves cross over at a certain 

scaled separation which increases with the surface roughness amplitude. 

 

Particles with different shapes  

Our formulation can also be applied to study interactions of non-spherical particles 

with surfaces. In addition to random aggregates formed by collisional processes, many 

particles in nature are often formed by fracturing larger chunks of material into smaller 

pieces and differ quite significantly from their spherical counterparts (spheroid, cube, rod, 

disk, tetrahedron etc). Such shape factors can have significant impact on the interactions 

of particles with surfaces and to our knowledge these effects have not been quantified in 

any particle resuspension study. The objective of the following study is to analyze the 

effect of dissimilar particle shapes and their orientation on their Lifshitz interactions with 

a flat surface.  
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Figure 43: Geometrical configurations of particles of different shapes interacting with a flat surface.  (a) 

Spherical particle, (b) Cubical particle, cylindrical particle with major axis (c) parallel and (d) perpendicular 

to the surface, tetrahedron particle with base (e) near and (f) away from the surface. 

 

 

Geometrical shapes of particles considered are spherical, cubical, cylindrical 

(major axis aligned parallel and perpendicular to the surface) and a regular tetrahedron 

(with base facing towards and away from the surface) with varying characteristic lengths 

(Figure 43). The height of the cylindrical particle was taken to be 10 times its base 

diameter. The characteristic dimensions of all the particles were determined by making 

the volumes of different particles equal to the volumes of corresponding spheres of 

diameter 1, 5 and 20 microns. Particles and surfaces were composed of Lifshitz 

polystyrene spheres separated in air. The pair-wise sum of the retarded Lifshitz 

interactions was calculated for each of particle-surface system, from equilibrium contact 

distance to 1000 times the sphere diameter. The regular tetrahedron with its base facing 

the surface is orientated in such a way that most its mass (dielectric material) is near the 
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surface; therefore in the near contact region this configuration has the lowest energy 

(highest on the negative energy scale in Figure 44 a) whereas the interaction energy for 

the tetrahedron with its base facing away from the surface lies on the opposite end of the 

spectrum as most of its mass is distributed away from the surface. The interaction energies 

for other shapes (sphere, cube and cylinders) lie between these two extremes in the near 

contact region (Figure 44 a). The adhesive force of these particles with the surface can be 

determined by the gradient of their respective interaction energy curve i.e. the slope of the 

interaction curves in non log scales. These plots reveal that in the near contact region, the 

tetrahedron shaped particle with its base facing towards and away from the surface has the 

largest and the smallest slopes in magnitude respectively. The regular tetrahedron with 

base facing towards the surface, the cylindrical particle with its major axis perpendicular 

to the surface and the cubical particle experience the maximum adhesive force (maximum 

slope). Thus, it can be inferred that particles with flatter sides near the surface experience 

stronger adhesive force in the near contact region. Away from the surface where the 

distinguishable geometric feature of the particle is not significant, the interaction energy 

is found to depend only on the particle's aspect ratio. Particle shapes with aspect ratio ~ 1 

i.e. sphere, cube and tetrahedron, converge to identical interaction energies away from the 

surface whereas the cylindrical geometries with an aspect ratio of 10 seems to converge 

to a different interaction energy for the three characteristic dimensions. Such interactions 

involving high aspect ratio particles/fibers are quite significant, for example, the millions 

of high aspect ratio cylindrical setae (adhesive foot hair) on the toes of geckos enhance 
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the vdW interactions[154] between the foot and the walls enabling it to climb vertical and 

even inverted surfaces. 

 

 

 

Figure 44: Interactions of particles of different shapes, size and configuration (sphere, cube, cylinder and 

regular tetrahedron) with a flat surface. (a) The volume of the particles of the six different shaped particles 

were made equal to the volumes of corresponding spheres of diameter =1, 5, and 20 microns. The height of 

the cylinder is 10 times it base diameter. The interaction in the near contact and far field region depends on 

the particle’s shape and aspect ratio respectively for all three volumes. (b) Gradient of the interaction energy 

yields the adhesion force experienced by the particles. 
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Conclusion 

Having laid this foundation, we envision our future work to incorporate the results 

from this study to particle resuspension modeling. Current resuspension models either take 

the force/moment balance approach on the particle (Dynamic models) or treat the adhesion 

resuspension from a statistical approach (Energy accumulation models). In the dynamic 

models, all the forces and moments on the particles are calculated and resuspension is 

characterized when the detachment forces (fluid drag) exceeds the adhesive forces. Even 

though the flow near the surface is quite intricate due to turbulence and is itself a subject 

of greater study, Computational fluid dynamics (CFD) incorporating various turbulence 

models such as Large eddy simulations (LES) or Reynolds averaged Navier-Stokes 

equation (RANS) can be used to resolve the near wall turbulence effects, enabling us to 

determine the hydrodynamic forces acting of the particles residing in the viscous sub layer. 

The rigorous treatment of the many body vdW interactions at all separations can then be 

integrated as distance dependent parameterized field functions to complement the CFD 

models in determining the strength of adhesion in the near contact region (Figure 44 b). 

We would also be able to probe various systems with rough surfaces and nonspherical 

particles more accurately, a feature not captured by previous resuspension models. The 

inputs to the model are the frequency dependent dielectric data of the materials 

composting the surface, particles and the medium. The model can be extended to 

incorporate more general scenarios such as multilayer deposits with heterogeneous 

dielectric properties within the material and even to deformable bodies. We anticipate that 
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incorporation of this formulation to determine adhesive interactions in complex systems 

would improve the predictive capabilities of particle resuspension dynamics. 
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CHAPTER VI  

 

FLUID PARTICLE INTERACTIONS AND SIZE BASED PARTICLE 

 

 SEPARATION IN A MEMBRANE LESS MICROCHANNEL 

 

Introduction 

There is a critical need for advanced filtration methods adaptable for separation of 

cells and cell-sized components from blood, specifically offering the capability to rapidly 

process large volumes (> mL/min flow rates) [155, 156]. Microfluidic technologies 

provide a natural platform to address these challenges, but these methods generally take 

too long, making them impractical for routine use. Another key area where high-

throughput blood separation is important is the analysis of rare cell biomarkers relevant to 

cancer (e.g., circulating tumor cells (CTCs)). Microfluidic methods based on 

micromachined filtration structures that act either alone (to provide size-selective 

isolation)[157, 158], or in tandem with functionalized antibodies (to provide affinity 

capture) show considerable promise[159, 160], but also suffer from limitations inherent 

to the filtration-based design. Most notably, achievable flow rates are typically very small 

due to the large pressures that must be applied to inject a cell laden suspension through 

the tiny internal pore-like networks. Consequently, highly diluted cell suspensions must 

often be used (making it necessary to process even greater volumes due to the rare nature 

of CTCs), and large internal shear stresses make recovery of viable cells challenging 

unless extremely low flow rates are applied (further increasing the analysis time). 
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Passive separation in microfluidic systems without external equipment which 

purely relies on flow phenomena and channel geometry has been widely studied and 

applied to separate blood components[161-165], microorganisms[166, 167] and even rare 

cells[158, 168-171]. These soft lithography based  microfluidic devices lacks rigidity 

owing to the soft mechanical property of PDMS (polydimethylsiloxane) elastomer, often 

limiting the filtration performance due to the deformation of the channel structures[172]. 

The difficulty to fabricate complex microstructure geometries constrains further 

development of these systems.  

We have engineered a novel membrane-less microfluidic filtration device 

embedding complex microscale features fabricated by harnessing enzymatic activity of 

proteinase K on rigid biodegradable substrate Poly(lactic acid)[173]. The microfluidic 

architecture incorporates an embedded weir-like barrier separating two lanes with 

different depths, oriented parallel to the flow direction and extending along the entire 

centerline length of the microchannel (Figure 45). The channel was designed to employ 

the inertial effects in the curved section of the microchannel to separate particles by 

centrifugally transporting smaller sized particles across the barrier. 
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Figure 45: Mechanism of size based micro separator.  (a) Schematic of enzymatically machined micro 

separator with desired internal barrier enables the concentration and filtration of mixture size of sample. (b) 

Size-selective filtration depends on the gap of internal barrier. The sample stream mainly flows to inner loop 

of channel. Due to the curved microchannel segment and difference of channel depth, the transverse flow 

can carry small particles cross barrier into the outer loop. (c) Side view of a U-shaped microchannel 

fabricated using enzymatic etching. Scale bar = 100 µm. 

 

 

We unexpectedly found that the difference in depths of the two parallel lanes 

provides a much stronger pressure gradient driving force to transport the smaller sized 

components in the flow across the barrier from the shallow lane to the deeper lane while 

constraining the larger components in the shallow lane. This arrangement when combined 

with the transverse centrifugal flow generated in the curved section of the microchannel 
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further enhances the separation[174]. When the interplay between these effects is 

considered, we found that performance can be enhanced beyond what is possible if either 

mechanism is applied alone. The mechanism of particle separation and quantification of 

separation efficiency were analyzed by tracking motion of fluorescent particles in three 

scenarios: (1) curved channel with equal depth, (2) straight channel with unequal depth, 

and (3) curved channel with unequal depth. A 3-D computational fluid dynamics model 

was developed to study the detailed features of the secondary flow and analyze the 

trajectories of particles under the influence of all relevant hydrodynamic forces in order 

to gain insights on the important design parameters to maximize separation efficiency. 

The CFD simulations also enabled us to determine impartant dimensionless parameters 

for which governs the separation efficiency in straigh channels. 

 

Secondary flow and hydrodynamic forces 

Flow of micron sized particles in microfluidic channels has been studied and 

described in terms of various hydrodynamic forces acting on it such as the drag force, 

shear induced lift force[175] (Saffman force), particle spin induced lift force (magnus 

force) [176], Dean vortex induced drag force, and other surface and body forces[177-179]. 

Centrifugally driven flow instabilities in the curved channel section results in the onset of 

counter rotating vortices in the plane perpendicular to primary flow direction. These 

secondary flow features, called Dean flow can be characterized in terms of a dimensionless 

number “Dean number”, κ (κ = (Dh/2R)0.5Re, where Dh is the channel hydraulic diameter 

for the entire channel cross section, R is the flow path radius of curvature of the barrier 
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lane (Figure 47 a), and Re is the Reynolds number with the hydraulic diameter as the 

length scale) which quantifies the relative magnitudes of inertial and centrifugal forces to 

viscous forces[174]. While there have been a number of particle separation studies which 

harness Dean coupled inertial migration of particles based on their size, only few of them 

employ a cross flow barrier pressure driven filtering mechanism demonstrating high 

throughput and separation efficiency[173, 180, 181].  

The trajectory of a particle can be described in a lagrangian sense by integrating 

all relevant hydrodynamic forces acting on it over time[182]. However, a complete 

description is not possible analytically as some forces act in a more intricate fashion 

requiring a two way coupling approach to resolve the motion of the particle. 

Computational fluid dynamics can provide a much higher resolved solution to particle 

fluid interactions by solving the problem numerically. Here we incorporate  all the relevant 

surface forces (Table 12) and torques (Table 13) experienced by the particle. This enabled 

us to resolve intricate fluid particle interaction phenomena such as inertial migration, inter 

particle collision and spin induced drag. The net force experienced by each particle is then 

given by eq [6.1]. 

particle

particle drag p vm g lr ls

dv
m F F F F F F

dt
           [6.1] 
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Table 12: Translational surface forces on the particles. 

Primary translational forces (Lagrangian particle tracking) 

Force Expression Comments 

Drag force 1

2
drag D p s sF C A v v

 

The drag force model was invoked to 

calculate the viscosity induced fluid 

resistance resulting in a translational 

motion of the particle. (Cd = drag 

coefficient; ρ = density of fluid (980 

kg/m3); Ap = projected area of the particle; 

vs = particle slip velocity). Schiller-

Naumann drag correlation which is 

suitable for spherical particles was 

incorporated for drag coefficient 

calculations [183]. 

Pressure 

gradient 

force 

P p staticF V P  
 

This arises due to local static pressure 

gradient in the fluid around the particle (Vp 

= particle volume; ∇Pstatic = gradient of the 

static pressure in the fluid phase).  

Virtual mass 

force 
p

vm vm p

dvDv
F C V

Dt dt


 
  

 

 

This is an inertia driven force due to 

particle acceleration around the fluid (Cvm 

= virtual mass coefficient (0.5 for spherical 

particles [184]); D/Dt = material derivative 

operator, v = fluid velocity; vp = particle 

velocity). 
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Table 13: Rotational surface forces on the particles. 

Secondary rotational forces (discrete element modeling) 

Force Expression Comments 

Rotational 

torque 
5

2

1

2

1

2

4

p R

p

R R

p

R

R C

v

C f (Re )

R
Re









   

   






 

The local fluid velocity field around the 

surface of the particle additionally imposes a 

rotational torque. The resulting change in 

angular momentum of the particle induces 

other forces which manifest in the form of 

lift and shear forces, causing the particle to 

migrate laterally in the plane perpendicular 

to the primary flow direction. Discrete 

element model (DEM) was invoked to 

calculate drag torque (Γ) on the particle. 

where (ρ = fluid density; Rp = particle radius; 

µ = viscosity; CR = rotational drag 

coefficient and is a function of rotational 

Reynolds number (ReR) [185]; v = fluid 

velocity; ωp = particle angular velocity and 

Ω = relative angular velocity of the particle 

with respect to the fluid (slip rotation)). 

Spin 

induced lift 

force 

21

2

s
lr p L

v
F R C





 

Spin induced lift force is caused due the 

particle spinning relative to the fluid [185] 

(CL = coefficient of rotational lift; Ω = 

relative angular velocity; vs = particle slip 

velocity).  

Shear 

induced lift 

force  

 3

ls p LS sF R C v  
 

Shear induced lift force (Saffman force) on a 

particle arises when there is a local velocity 

gradient in the direction perpendicular to the 

relative motion of the particle [175] (CLS = 

shear lift coefficient; vs = particle slip 

velocity; ω  = curl of fluid velocity (∇ x v)).  
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Discrete element modeling 

A 3-D computational fluid dynamics (CFD) model was formulated to analyze the 

intricate primary and secondary flow features and fluid-particle interactions in both curved 

and straight microchannels. The microfluidic channels were designed and meshed in 

gambit (ANSYS) with a mix of cartesian and curvilinear grid systems to account for both 

the straight and curved sections. A much finer grid was generated in the barrier region to 

resolve the strong cross flow and particle migration, resulting in ~ 5 x 104 computational 

cells. The length of the straight section was chosen such that the flow is fully developed 

before the curvature starts. Other geometric parameters was chosen to closely resemble 

the channels used in experiments (Figure 46).  

 

 

 

Figure 46: Geometric parameters and meshing of microchannel. Mixed grid system comprising of both 

cartesian and curvilinear coordinates were used for the respective sections of the channel. A much finer grid 

density was used in the barrier section.  
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Finite volume method (STAR-CCM+, CD-adapco) was used to solve complete 3D 

Navier-Stokes equations in a coupled flow solver. The domain fluid was water at constant 

density and all its properties were evaluated at room temperature. Fluid was injected at a 

constant flow rate at both the shallow and deep lanes of the channel which was assigned a 

“velocity inlet” boundary condition. The sidewalls were made non permeable with “no 

slip” velocity boundary condition. 

Lagrangian multiphase model was employed to introduce micron sized rigid 

particles with a density of 1 g/mL to match typical cell densities [186] at a flow rate of 

1.68 x 106 particles/mL in the computational domain. Gravity was invoked as the only 

body force acting on both the fluid and particle phases. The lagrangian framework allowed 

us to invoke the relevant translational hydrodynamic forces such as the drag force, 

pressure gradient force and virtual mass force in the form of sub-models. The discrete 

element modeling (DEM) capabilities of STARCCM+ allowed us to additionally resolve 

the rotational drag torques which enabled us to invoke spin and shear induced lift forces 

on the particles due to surrounding fluid [177], a feature not captured by traditional 

lagrangian particle formulations. DEM also enabled both the particle and fluid phases to 

be solved simultaneously by invoking two way coupling, yielding a more detailed 

resolution of the fluid-particle interactions. The inbuilt Hertz Mindlin contact model was 

invoked to further take into account friction, rolling and collisions between other particles 

and wall surfaces. Particles were injected randomly at the inlet of the shallow lane with an 

initial zero angular velocity (ωp) and linear velocity (vp). An implicit unsteady scheme 

was used to march the solution forward in time. Particles were removed from the 
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simulation domain once they reached the outlet and data files containing information about 

the particle position, residence time and velocities were extracted and further analyzed in 

MATLAB. 

 

Particle separation experiments 

To determine separation efficiency, separated particles were collected from two 

outlet streams and analyzed by Coulter counter and hemocytometer. Separation efficiency 

is quantitatively defined as the fraction of particles that cross the barrier Nb / (Ns+Nb) = 

(Cb x Vb) / (Cs x Vs+ Cb x Vb), where Nb and Ns are total number of particles collected in 

buffer stream and sample stream, respectively. Cb and Cs are particle concentration of 

buffer and sample stream measured by Coulter counter. Vb and Vs are total volume of 

buffer and sample collected at the same time. Key features of the underlying flow 

phenomena governing such filtration can be inferred from 3D computational fluid 

dynamics simulations. Particle fluid interactions were resolved using discrete element 

modeling (DEM) which enabled us to determine the 3D trajectories of particles under the 

influence of all relevant hydrodynamic forces and torques. Simulated separation 

efficiencies were then calculated, defined in the same manner as before.  

 

Separation in curved channel with equal heights 

First we analyze the particle separation efficiencies in a curved channel with equal 

depths on both sides of the barrier (inner and outer lanes: 40 µm deep, centerline barrier 

gap: 5 µm deep, radius of curvature: 500 µm). At low flow rates (κ = 2.3, Q = 0.1 mL/min), 
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centrifugal effects are not strong enough to disrupt the laminar flow along the channel. At 

higher flow rates (κ = 46.2, flow rate = 2 mL/min), two counter-rotating vortices are 

generated separately in both inner and outer lanes in the curved region (Figure 47 b) and 

the for most part, the fluids in the inner and outer lanes don’t mix significantly except after 

the curved section where curvature induced flow transports some fluid from the inner to 

the outer lane as revealed by injecting two different colored dyes into these streams (Figure 

48 a). Simulated 2 micron particles injected in the inner lane (flow rate = 2 mL/min) tend 

to circulate under the influence of secondary Dean flow with a very small fraction of 

particles crossing over the barrier, a result which was mirrored when monitoring the 

motion of fluorescent 2 micron particles under the same operating conditions (Figure 48 

b). When analyzing the separation efficiencies channel (cross section: 40-5-40 μm (inner-

gap-outer)) it was found that none of the particles migrate across the barrier at low flow 

rates. Even at higher flow rates, the separation efficiency is very low (5%), suggesting that 

the Dean flow in curved region cannot act alone as the major driving force to separate 

particles (Figure 48 c). 
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Figure 47: Even height curved channel. Curvature induced migration of particles in an even height curved 

channel with central barrier (inner and outer lanes: 40 µm deep, centerline barrier gap: 5 µm deep, radius of 

curvature: 500 µm) (a) Top view image illustrates that two streams labeled with blue (inner) and yellow 

(outer) dye don’t mix significantly and remain separated in their respective lanes except just after the 

curvature ends where the blue dye crosses over the barriers into the outer lane (flow rate = 2 mL/min). (b) 

Simulation of particle trajectories reveals the evolution of lateral  particle position under the influence of 

curvature induced Dean vortices as they are transported through the straight and curved sections of the 

channel (flow rate = 2 mL/min; particles color coded to represent initial distance from the barrier). Inset 

images of experiments performed at same operating conditions reveals similar migration pattern of 2 μm 

fluorescent particles. (c) Separation efficiency (particles in the outer lane/ total particles; at outlet) of 

particles remains very low even at higher flow rates suggesting that Dean vortices are not sufficient to 

efficiently separate particles (Particle dia. = 2 μm for all cases). 

 

 

Separation in straight channel with unequal heights 

In addition to the transverse secondary Dean flow, the viscosity difference between 

the two injected streams has been studied and applied to analyze diffusion coefficient of 

small molecules or biological samples[187]. However, parallel flows with a transverse 

pressure difference has not been widely studied. For the same flow rate at both inner and 

outer lane inlet with different depths, an initial pressure difference exists between shallow 
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and deep lanes in the entry region and can be described by 
3 3

12 1 1
barrier

s d

QL
P

w h h

  
   

 
 

where Q is flow rate, w is the width of barrier, L is the length of the channel, μ is the 

viscosity, hs and hd are the heights of shallow and deep lanes respectively. The multi-level 

lane design generates high enough pressure difference across the barrier (∆Pbarrier) to 

deliver a strong cross flow from the shallow to the deep lane. This was confirmed by 

examining the flow pattern of two dye labeled parallel streams in a straight channel with 

uneven lane depths (shallow lane: 20 µm, deep lane: 40 µm, centerline barrier gap: 7 µm 

deep, flow rate = 2mL/min), where the blue dye is transported across the barrier to the 

deeper end near the channel inlet (Figure 48 a). Simulated particle tracks reveals that the 

strong cross flow in the barrier region transports the particles near the barrier at the shallow 

lane (blue and green particles) while particles further away (red particles) from the barrier 

are transported downstream to the outlet under the influence of the channel pressure drop 

(∆Pchannel) without being separated. Similar migration trends are observed when paths of 

2 micron fluorescent particles were analyzed experimentally (Figure 48 a). For channels 

with unequal depths across the barrier (cross section: 20-7-40 and 30-7-40 μm (inner-gap-

outer)), it was found that the particle separation efficiencies dramatically increased when 

compared to even height channel with separation efficiencies going as high ~70% at low 

flow rates (0.1 mL/min) and dropping by 10-20% at higher flow rates (2.5 mL/min) 

(Figure 48 b).  
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Figure 48: Straight channel with uneven height. Barrier embedded in straight channels with height difference 

(shallow lane: 20 µm, deep lane: 40 µm, centerline barrier gap: 7 µm deep, radius of curvature: 500 µm) (a) 

Two parallel dye streams co-injected into the deep (yellow) and shallow (blue) channel reveals an immediate 

transfer of the blue dye from the shallow lane to the deep lane at the inlet suggesting a strong barrier cross 

flow (flow rate = 2 mL/min). The positions of the simulated particles evolve under the action of the barrier 

pressure drop (∆Pbarrier ,x direction) and the channel pressure drop (∆Pchannel ,z direction) and depending of 

their relative magnitudes, the particle may either cross the barrier or remain in the shallow lane. Fluorescent 

particle streak-lines confirm maximum particle migration form the shallow to the deep lane near the inlet in 

accordance with simulated particle trajectories (flow rate = 2 mL/min). (b) The separation efficiency 

(particles in the outer lane/ total particles; at outlet) of particles decreases as the flow rate increases for both 

channels with unequal depths (cross section: 20-7-40 and 30-7-40 μm (inner-gap-outer). 

 

 

At first, this seems to be in odds with the finding that ∆Pbarrier increases with flow 

rate which in turn should increase the separation efficiency. However, simulations also 

reveals that the pressure drop across the channel length (∆Pchannel) which drives the 

particles downstream, increases at a much faster rate with increasing flow rate (Figure 49 
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a). One can thus construct a dimensionless pressure drop ([∆Pbarrier/∆Pchannel] *[L/w]) to 

represent the tendency of a particle cross over the barrier to the deeper side as opposed to 

exiting the channel without being separated. This dimensionless pressure is larger for 

channels with a larger height difference between the shallow and deeper lanes (∆H) and 

decreases on increasing the flow rate (Figure 49 b). It was found that data points obtained for 

geometries with three different ∆H at five different flow rates tend to collapse in a linear 

fashion when viewed on the dimensionless pressure – separation efficiency plot (Figure 

49 c). Thus the dimensionless pressure which embodies information about both the 

geometric parameters of the channel (∆H, L, w) and the flow rate (Q) can ultimately 

provide important insights about design guidelines and operating conditions for 

manufacturing better separation devices.  

 

Separation in a channel featuring both a curved sections and unequal heights 

After separation these particles are focused near the barrier region in the deeper 

lane and therefore have a tendency to migrate back to the shallow lane once the barrier 

pressure equalizes near the channel outlet (Figure 50). Also, the particles in the shallow 

lane which are further away from the barrier don’t get separated as there is no mechanism 

to transport them towards the barrier. We therefore explored the addition of a curved 

region into this “free” movement zone to generate secondary flow that reinforces particle 

migration to enhance separation efficiency (shallow lane: 20 µm, deep lane: 40 µm, 

centerline barrier gap: 7 µm deep, radius of curvature: 500 µm, Q = 2 mL/min, κ = 44.25). 
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Figure 49: Separation efficiency as a function of dimensionless pressure in the channel.  (a) The rate of 

increase of the ∆Pchannel is much faster than the rate of increase of ∆Pbarrier with increasing flow rate. (b) A 

dimensionless pressure ([∆Pbarrier/∆Pchannel]*[L/w]; L and w represent the length and width of the channel 

respectively) can then be defined to assess the ability of an uneven height channel to separate particles. (c) 

Data points for flow in three different geometries at different flow rates tend to collapse linearly suggesting 

important channel design rules to obtain better separation efficiency.  

 

 

The added curved section redistributes the blue dye from the inner to the outer end 

of the deeper lane due to secondary Dean vortices which is also mirrored in the motion of 

fluorescent particles (Figure 51 a). The simulated velocity field gave us an overlook that 

the secondary flow was directed from inner lane towards the outer lane and the 
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symmetrical counter rotating vortices were present in both lanes (Figure 51 b). Thus, 

particles experience a centrifugal driving force which directs them towards the outer half 

of the curved flow path—an effect that is enhanced by the unequal depths on each side of 

the central barrier (Figure 51 c).  

 

 

 

Figure 50: Pressure drop across the barrier near the inlet of a channel with uneven heights increases with 

increasing flow rate and falls sharply down the channel length at a given flow rate. This supports the view 

that a large fraction of the particles are separated near the inlet where there is high barrier pressure drop. 

 

 

Along with the particles near the barrier (blue particles), particles away from the 

barrier (red particles) are also successfully separated as suggested by the simulated particle 

tracks (Figure 51 b). This is because the Dean vortices in the curved section transports 
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these particles from the outer edge of the inner lane towards the barrier where now under 

the influence of the barrier pressure they are able to cross over to the deeper end. The Dean 

vortices are also responsible for redistributing the separated particles focused near the 

barrier in the deep lane making it difficult for them to re-enter the shallow lane. The 

corresponding fluorescent particle tracks verify the particle migration from the shallow to 

the deep lane just after the curved section (Figure 51 b). Unlike other passive 

hydrodynamics in microchannels (i.e. diffusion dominated cross-flow filtration), the 

transverse barrier pressure driven by uneven height lanes provides a new separation 

mechanism simply affected by channel geometry and by introducing curvature induced 

secondary Dean vortices, lateral particle migration and separation efficiency can be 

enhanced up to 80 %, even at higher from rates (Q = 0.1 – 2.0 mL/min, κ = 2.2 – 44.25) 

making it ideally suited for high-throughput processing of large sample volumes (Figure 

51 d). For the range of operating flow rates and channel dimensions the resulting Dean 

numbers (κ) are suitable to generate and sustain two symmetric counter rotating vortices 

to enhance separation efficiency (Figure 52). 
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Figure 51: Curved channel with uneven height. Barrier embedded in a curved channel with height difference 

(shallow lane: 20 µm, deep lane: 40 µm, centerline barrier gap: 7 µm deep, radius of curvature: 500 µm, 

flow rate = 2mL/min). Blue dye injected into the shallow stream migrates to the deep lane and recirculates 

towards the outer edge as mirrored by the migration of fluorescent particles. (b) Simulated particle tracks 

suggest that even the particles away from the barrier (red) are separated as they are transported towards the 

barrier under the influence of (c) Dean vortices in the curved section. These secondary flow also defocuses 

the separated particles from the barrier vicinity in the deeper lane thus further increases separation efficiency. 

(d) The combined effect of uneven height across the barrier and curvature enhances the separation efficiency 

even at higher flow rates. 

 

 



 

141 

 

 

Figure 52: Secondary Dean flow in a curved microchannel. (inner and outer lanes: 40 µm deep, centerline 

barrier gap: 5 µm deep, radius of curvature: 500 µm). Secondary flow starts to appear in the curved section 

at low flow rates (Q = 0.1 mL/min, κ = 2.3) in the form of two symmetric counter rotating Dean vortices. 

These curvature induced symmetric rolls are stable under the operating flow rates of our interest and start to 

disrupt at higher flow rates (Q = 8 mL/min, κ = 138). (κ = (Dh/2R)0.5Re, where Dh is the channel hydraulic 

diameter, R is the flow path radius of curvature, and Re is the Reynolds number with the hydraulic diameter 

as the length scale)  

 

 

Conclusion  

We have demonstrated high throughput separation of distinct sized particles in 

curved and straight channels with a central barrier filter. This separation mechanism is 

distinct from conventional cross-flow filtration methods where devices are specifically 

designed to suppress inertial effects [158, 188-191]. The membrane less arrangement does 

not impose an excessive pressure drop and is less susceptible to clogging because the 

barrier is oriented parallel to the flow direction rather than perpendicular to it so that the 
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primary flow continually sweeps material downstream. This approach is most effective at 

high flow rates where the curvature-induced forces are maximized, making it ideally 

suited for high-throughput processing of large sample volumes.  
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CHAPTER VII 

EDUCATION: DNA REPLICATION USING MICROSCALE NATURAL 

CONVECTION* 

Introduction 

Microfluidics is an incredibly versatile field encompassing a host of disciplines 

including engineering, biotechnology, physics, chemistry, and microelectronics. As 

discussed in chapters I-III, one area where miniaturization has proven to be particularly 

impactful involves analysis of minute quantities of DNA. Here, a major challenge lies in 

the design of instrumentation used to perform a key step in the analysis. This step, the 

polymerase chain reaction (PCR), consists of a sequence of thermally activated 

biochemical processes that selectively replicate well-defined sub regions within a longer 

DNA strand.[192] The PCR is incredibly efficient (the number of DNA copies increases 

exponentially with each cycle; 2N after N cycles) and is straightforward to perform. 

Typically, a reagent mixture containing template DNA, primers, dNTPs, thermostable Taq 

polymerase enzyme, and buffering agents is dispensed into plastic reaction tubes or 

multiwell plates that are then inserted into a programmable thermocycling machine. This 

instrument has a single function: to repeatedly heat and cool the reagent mixture through 

30 – 40 cycles between temperatures corresponding to denaturation of the double-

stranded target DNA, annealing of primers to complimentary locations on the denatured 

*Reprinted with permission from “Education: DNA replication using microscale natural convection”, A.

Priye, Y. A. Hassan and V. Ugaz, 2012, Lab on a Chip, 4946-4954, Copyright 2012 by RCS publishing. 
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single-stranded fragments, and enzyme catalyzed extension to synthesize the 

complimentary strands. 

Microfluidic approaches have been widely explored to enable the PCR to be 

performed faster, less expensively, and with greater portability. One innovative 

methodology involves harnessing convective flows such as those initiated by the 

buoyancy driven instability that arises when a microfluidic enclosure is heated from below 

(Rayleigh-Bénard flow)[3, 13, 31, 193-197]. By applying a static temperature gradient 

across an appropriately designed reactor geometry, a continuous circulatory flow can be 

established that will repeatedly transport PCR reagents through temperature zones 

associated with each stage of the reaction (Figure 53). Thermocycling can therefore be 

actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed 

temperatures, eliminating the need to repeatedly heat and cool the instrument. The 

interplay between the destabilizing buoyancy force and the opposing action of thermal and 

viscous diffusion is expressed in terms of the dimensionless Rayleigh number (Ra = 

[gβ(T2–T1)h3]/να ; where β is the fluid’s thermal expansion coefficient, g is gravitational 

acceleration,T1 and T2 are the temperatures of the top (cool) and bottom (hot) surfaces 

respectively, h is the height of the fluid layer, α is the thermal diffusivity, and ν is the 

kinematic viscosity). 
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Figure 53: Thermal convection in a cylindrical chamber whose top and bottom surfaces are maintained at 

different fixed temperatures. If the temperature at the bottom surface is higher than at the top, a vertical 

density gradient is established within the enclosed fluid that is capable of generating a circulatory flow 

pattern. With the right choice of geometric parameters (height h and diameter d), the convective flow field 

can be harnessed to actuate PCR thermocycling when the top and bottom surfaces are maintained near 

annealing and denaturing temperatures, respectively (gravity acts vertically downward). 

Optimal design of convective thermocyclers involves selecting reactor geometries 

that generate circulatory flows capable of transporting reagents through the temperature 

field in a manner that maximizes the DNA replication rate. The geometric parameters that 

can be varied to accomplish this are the height (h) and diameter (d), or equivalently the 

aspect ratio (h/d). We have explored 3-D flow fields inside microliter convective PCR 

reactors over a range of different aspect ratios using computational fluid dynamics (CFD), 

and found that unexpectedly complex patterns can emerge. More importantly, our analysis 

has uncovered a subset of these complex flow fields that significantly accelerate the 
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reaction. Extremely rapid DNA replication timescales (under 10 min) are achievable in 

reactors designed to generate these flows.[14] 

Inspired by the conceptual simplicity of the convective thermocycler design and 

its ability to uniquely merge fundamental concepts in transport phenomena and 

biochemistry, we have formulated laboratory exercises that guide students through the 

process of designing, building, and operating microfluidic convective PCR thermocyclers. 

Here we describe our efforts to implement this educational experience in two different 

ways during the Spring 2012 semester. 

Hands-on convective PCR lab 

The molecular biology component was highlighted in a hands-on microfluidic 

convective PCR laboratory experience presented to students enrolled in a professional 

science master’s program in biotechnology (Texas A&M Professional Program in 

Biotechnology; ppib.tamu.edu). For this audience, we devised an experientially oriented 

assignment tailored toward a scenario of evaluating new technology (as might occur in a 

biotech company). Prior to beginning the lab experiment, the concept of convective PCR 

was presented in a lecture and reinforced by a video demonstration we produced.[198] 

DNA replication experiments were performed using dedicated convective PCR stations 

(Lynntech, Inc.) that incorporate a simple design for loading and mounting plastic 

cylindrical PCR reactors between independently controlled thermal plates (Figure 54 a, 

b). Each station interfaces with a Windows-based PC via a USB connection, and is 

operated by a custom designed software package that enables temperature profiles to be 
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easily input and monitored (Figure 54 c). All components are sufficiently portable to 

enable easy setup in virtually any lab or classroom environment. 

Reactions were performed in both convective and conventional thermocyclers to 

enable comparison of reaction time and replication efficiency. Each student was provided 

with a set of reagents to make a 50 µL PCR master mix, and students practiced loading 

and sealing the cylindrical cells with water before proceeding with the reagents (Figure 54 

d). Appropriate volumes were aliquoted into the convective cell, with the remainder 

retained for use as the conventional thermocycler control. Each student was given a 

different reactor geometry to evaluate. After starting reactions in a conventional 

thermocycler (T-Gradient; Biometra), students loaded the cylindrical cells with reagents 

and mounted them in the convective PCR instrument (Figure 54 e). Temperatures of the 

upper and lower surfaces (55 and 95 °C, respectively) were set and maintained via the 

instrument software. After a sufficient reaction time elapsed (~ 10 – 20 min), the cells 

were removed and the products were stored until completion of the conventional 

thermocycler reaction (1 – 2 h). Products were analyzed using agarose gel electrophoresis 

(Figure 54 f). 

A Keyence VW-6000 motion analysis microscope enabled flow patterns inside the 

convective PCR reactors to be directly visualized and recorded (Figure 54 g, h). 

Visualization was accomplished by loading an aqueous dispersion of 10 μm florescent 

polystyrene beads (Fluoresbrite YG; Polysciences) into the convective reactors to serve as 

tracers. Blue laser pointers (available for under $20 US each at amazon.com) mounted on 

portable camera tripods provided an inexpensive and highly effective illumination. The 



148 

video images from the Keyence motion analysis microscope were projected onto a screen 

using an LCD projector so that the internal convective flow field could be easily 

visualized. If flow visualization is to be performed for a long period of time, it is 

recommended to density match the fluid to the microspheres (e.g., using sucrose) to reduce 

sedimentation. 

Since the students were experienced with PCR through prior coursework, they 

were therefore asked to critically evaluate both technical performance (in terms of raw 

speed, sensitivity, specificity, etc.) and practicality from a product and end-user standpoint 

(in terms of operator input, sample and instrument preparation, turn-around time between 

runs, cost of components and consumables, etc.) in comparison with traditional 

instruments. They were also asked to make recommendations about what improvements 

could be made to make this device competitive with existing technology. Questions from 

the assessment assignment included the following. 

Initial impression: Describe your initial impression of this technology based on 

hearing about it in the lecture (before attempting it in the lab).  What advantages and 

disadvantages did you foresee?  What questions did you have in your mind about the 

technology? 
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Figure 54: Design of the convective PCR laboratory experience presented to students enrolled in a 

professional science master’s program in biotechnology.  (a) Individual convective PCR stations used in the 

hands-on lab activity. (b) Cylindrical transparent reactors with various geometries (d ~ 1 – 2 mm, h ~ 1 – 2 

cm) are clamped between upper and lower heating plates. (c) Reaction temperatures are controlled and 

monitored using a software interface in a USB connected PC. (d) PCR reagents are prepared and sealed 

inside the cylindrical reactors, after which (e) they are loaded into the heating device. (f) After the convective 

and control reactions are complete, the products are analyzed using gel electrophoresis (lane M: 100 bp 

ladder, lane C: control reaction run in conventional thermocycler; lanes 1,2: two independent reactions run 

in the convective thermocycler at h/d = 6. (g) Flow visualization is performed using a portable motion 

analysis microscope by loading a cylindrical reactor with an aqueous suspension of fluorescent bead tracers. 

(h) The microscope’s video image can be projected to reveal the internal flow patterns.  
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Using the instrument: Briefly discuss your experience in operating the instrument 

(sample loading, software operation, etc.).  In your opinion, would an average lab 

technician be able to operate a system like this?  Why or why not? 

Performance: Compare the performance of the instrument with conventional PCR 

thermocyclers.  Would you characterize it as better or worse than the conventional 

instrument (and by how much)?  Briefly explain your answer. 

Final impression: Having completed the lab, describe how your impressions of 

convective PCR technology have changed.  Describe how using the device was similar or 

different than you expected.  What areas are the most promising?  What aspects could be 

improved? 

Future applications: In what markets or application areas (if any) could you 

envision this instrument being used? Briefly explain. What barriers could you foresee to 

entry into these markets? 

Initial impressions conveyed skepticism because the concept was in a research 

stage, as opposed to a commercial product. Some comments included “I was skeptical 

about the convective PCR technology when I first heard about it.  If it was so 

advantageous, why was it not already in the market?”; “It did not occur to me that 

convection currents could be used for PCR.  The major question in my mind is why has 

this technology not been commercialized yet?”; and “It was tough to imagine that PCR 

can be done in such less time.” 

After completing the lab, however, the students’ impressions changed to focus on 

the simplicity of operating the device.  It should be noted, however, that these perspectives 
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were shaped by the student’s prior hands-on knowledge of performing PCR in a molecular 

biology lab setting. Comments along these lines included “This is a great lab to take, but 

you have to know and understand to take away this lab’s implications. If you have never 

mixed together a PCR reaction and waited on a thermocycler, then you won’t understand 

how significant this technology is.” and “I see the entire practical lab experience in front 

of me. The concept and the steps are clear to me which is a testament to the simplicity of 

the instrument.” It was also evident that being able to actually see the internal flow field 

within the reaction chamber using fluorescent bead tracers effectively conveyed the 

operating principles of the device, as expressed in comments like “It was simply amazing 

to actually see the movement of the sample based on different aspect ratios.” and “One 

specific thing that comes to my mind when I think about the experience is the circulation 

of the fluid within the cell shown with the help of fluorescent beads.” 

These responses helped catalyze a discussion about issues involved in successful 

commercialization of basic research. This is a process that involves multiple steps on a 

myriad of levels, each with its own considerations. Often research that appears promising 

in the lab is not ultimately successful as a commercial product for reasons that may have 

little to do with the scientific or technical merits of the innovation. The students (and 

instructor) came away with an increased awareness of these issues, and a greater focus on 

this aspect is planned in future labs targeted at this audience. 

Some challenges were encountered in tailoring the content to the appropriate 

audience, and adjusting the scope of the hands-on activities to fit the time constraints of 

the allotted class period. We dealt with this by performing some rinsing and preparation 
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steps prior to beginning the lab.  This needs to be considered, however, when evaluating 

student comments about the device operation. Some timing issues also arise when students 

simultaneously run reactions using different geometries in which the reaction needs to be 

performed for different lengths of time. We found that it was desirable to have all students 

begin their reactions simultaneously to ensure synchronized timing, especially with a 

larger class size. The video introduction to convective PCR was helpful because students 

can watch it additional times outside of class to help familiarize them with the fundamental 

concepts. The lab protocol incorporates downtime during the gel electrophoresis analysis 

that can be used to demonstrate the flow patterns inside the reactors using fluorescent 

beads. Alternatively if time is short, the gel separations can be performed by the instructor 

and results returned to the students at the next class period. 

Computational simulation of microscale thermal convection 

The undergraduate implementation focused on computational simulation of 

microscale convective flow fields as part of a three class-period module in the 

undergraduate core fluid mechanics class in the Department of Chemical Engineering at 

Texas A&M (incoming Junior-level students), part of a three course transport sequence 

covering momentum, heat, and mass transport. The first class period consisted of a two-

part lecture aimed at presenting the fundamental concepts underlying buoyancy driven 

convective flows. First, students were introduced to PCR biochemistry and its application 

in molecular biology. Reference to DNA analysis in the context of forensics and infectious 

disease surveillance was incorporated to help students connect the concepts with real 
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world applications and identify how this set of tools can be applied in a variety of 

important and relevant ways. We also emphasized the timely tie-in with broader ongoing 

research throughout the microfluidics community (including our own research group) and 

pointed out how this represents a “non traditional” application of fluid mechanics. The 

second part of the lecture then presented fundamental aspects of buoyancy driven 

convective flows, using the design of lava lamps as a relatable illustrative example. This 

content was designed to integrate with other coursework in the transport sequence. Some 

key learning outcomes included: 

 Apply the conservation of momentum in the case of a buoyancy driving force, and

compare the resulting governing equations with the case of pressure driven flows 

previously studied in the course. 

 Define and explain the Boussinesq approximation, whereby thermal variations in

density are only considered in the buoyancy source term where a linear temperature 

dependence is assumed (ρ = ρ0[1 – β(T – T0)]; ρ is the fluid density and the subscript 

0 refers to a reference state). 

 Demonstrate ability to non-dimensionalize the momentum balance to obtain the

Rayleigh number, analogously to how the origin of the Reynolds number was 

presented earlier in the course. 

 Demonstrate ability to apply the conservation of energy and show how it is coupled

with the momentum balance through temperature. 

 Explain how the fluid properties and temperatures associated with PCR constrain the

problem, leaving geometry (h and d) as the key adjustable parameter. 
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 Identify appropriate boundary and initial conditions to fully specify the mathematical

problem. 

 Appreciate that the complexity of the resulting system of nonlinear partial differential

equations requires computational tools to solve. 

The second and third class periods were held in the computer lab (Figure 55). 

During the first half of the second class period, students were introduced to CFD and the 

considerations involved in creating computational models. Some of the concepts 

emphasized included application of numerical differentiation within discretized domains 

and a comparison between finite element and finite difference schemes, connecting with 

related coursework in numerical methods; and an overview of computational modeling, 

focusing on the importance of grid/mesh generation and highlighting tradeoffs between 

accuracy and computation time. The heat conduction equation was presented as an 

archetypical problem to illustrate application of the finite difference scheme in a 2D 

domain. Common solution algorithms were also discussed. We then showed how this 

basic framework can be applied to the more complex set of coupled PDEs associated with 

the convection problem. A key point we repeatedly emphasized was  that the underlying 

physics and governing equations remain identical to those previously presented in class. 

Although not a comprehensive treatment, this basic knowledge equipped the students to 

appreciate the CFD “toolbox” and its usefulness to solve complex 3D problems. Ideally, 

these facets of the problem would dovetail with a dedicated numerical methods course in 

the curriculum, with microfluidic thermal convection offering a convenient archetypical 

problem to help establish this connection. 
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Figure 55: Design of a Computational fluid dynamics laboratory for undergraduate students. Hands-on CFD 

modeling exercise delivered to an undergraduate fluid mechanics class. Students worked in teams of two to 

simulate the velocity and temperature fields inside various convective reactor designs and evaluate which 

ones may be best suited for PCR. 

With this background, the students proceeded to set up their own computational 

models of microscale natural convection in a cylindrical geometry heated from below 

during the second half of the class. 3D models were created using STAR-CCM+ software 

(CD-adapco), following a step-by-step procedure outlined in a lab manual we distributed 

to the students. We selected STAR-CCM+ owing to its enhanced flexibility to handle 

biochemical reaction kinetics relevant to PCR, and because a 3D model is necessary to 
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fully capture the flow phenomena (2D models can also be constructed using COMSOL 

multiphysics [17, 199]). The partial differential equations governing conservation of mass, 

momentum, and energy are cast in terms of dimensionless variables (v*, p*, θ, t*, Re, Ra, 

and Pr; representing velocity, pressure, temperature, time, Reynolds number, Rayleigh 

number, and Prandtl number respectively). 
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   [7.1] 

We found that providing students with a basic model as a starting point, with a pre-

generated mesh geometry and pre-entered solver parameters not relevant to the physics, 

allowed class time to be used more efficiently. Students were responsible for correctly 

specifying the buoyancy driving force term, boundary conditions, and reactor dimensions. 

Finally, an assignment was distributed during the remaining class period that asked 

students to simulate the steady-state velocity and temperature fields associated with 

microscale thermal convection, and evaluate the effect of employing different cylindrical 

geometries by scaling the reactor dimensions to match given aspect ratios. A unique set of 

geometric conditions was assigned to each team, but algfl were chosen to include flows 

associated with regimes near the onset of convective motion, uniform circulatory flow, 

and chaotic advection. This enabled students to practically judge the significance of 

geometric parameters in the model in determining the steady state flow field. Finally, a 

subset of the assigned convective flow fields were experimentally demonstrated in class 
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using the aforementioned portable motion analysis system to validate the results of the 

computational simulations. 

We would like to emphasize that our goal in the context of this exercise was not to 

provide CFD training in one or two lectures. Our objectives were more focused: (1) to 

show how the governing differential equations and boundary conditions are implemented 

in a computational package, (2) to demonstrate how a driving force different from pressure 

driven flow can be applied, and (3) to use the simulation as a visualization tool to see the 

results of a problem that cannot be treated analytically. While it is not realistic to expect 

that the students will possess significant expertise in CFD simulations after completing 

this exercise, the micro-scale Rayleigh Bénard problem offers several uniquely attractive 

features that make it well-suited as a vehicle to introduce these concepts. First, it provides 

an unusually rich complexity of flow phenomena extending beyond conventional pressure 

driven laminar flow through a microchannel of rectangular cross-section (this is not 

always the case, but speaking in general).  Second, since only the Rayleigh number and 

aspect ratio need to be varied to access these diverse flow regimes, construction of the 

CFD geometry is greatly simplified. In fact, this feature allowed us to assign multiple 

cases to each group of students using the same computational geometry (i.e., the same 

height to diameter ratio), albeit with different physical dimensions (i.e., different 

combinations of h and d yielding the same h/d). In other words, the same aspect ratio can 

yield different flow regimes depending on the value of h because this parameter also 

determines the Rayleigh number. This unique feature allows the focus of the assignment 
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to be directed away from geometry construction/meshing, so that the physics can be better 

emphasized. 

Cognitive assessment 

Although a variety of assessment methodologies can be applied to evaluate student 

perceptions associated with this kind of coursework (e.g., see the review by Marsh [200]) 

we found that evaluation strategies specifically pertinent to virtual laboratories (i.e., 

computational labs) were not as widely documented. Some relevant examples we 

considered include those of Wolf [201] (evaluated student perceptions of a computer lab 

by comparing pre-lecture, post-lecture, and post-lab assessments) and Dalgarno, et. al. 

[202] (combined personal interviews with written responses to survey questions on a seven 

point Likert scale). Recently, Koretsky et. al. [203] described a methodology involving a 

set of free response questions presented after completion of the exercise. These survey 

questions were crafted to assess cognitive skills, content knowledge, critical thinking, 

simulation design, and situated nature. We selected this approach because the questions 

were simply designed yet framed in a way that evoked reflective responses (as opposed to 

ranking on a fixed point scale). This provided flexibility for us to group the responses into 

categories based on what we intended to be the most important aspects of the experience. 

We therefore felt that the reflective nature of this assessment instrument provided the most 

straightforward path to evaluate the cognitive impact of this exercise [204]. 
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Cognitive impact was assessed by asking students to communicate their 

perceptions in a post assignment reflection consisting of the following free response 

questions. 

1. What do you think the instructor intended for you to learn by doing the

computational modeling exercise? 

2. How would you explain this computational experience to an undergraduate student?

3. When you close your eyes and picture this computational exercise, what do you see?

4. Did the exercise influence your interest in fluid mechanics? If so, how (did it make

it more interesting or less interesting) and why? Would you like to see more or less 

of these kinds of activities? 

Responses were categorized based on the focus and learning outcomes of the 

computational assignment (each response could be assigned to multiple categories). A 

binary coding was then used to obtain a numerical score representing the responses in each 

category (1 if the response satisfied the category’s criteria, 0 otherwise). Cognition was 

quantified based on the number of different categories addressed. 

Question #1: “What do you think the instructor intended for you to learn by doing 

the computational modeling exercise?” Representative responses to this question 

included. 

 They intended for us to learn how changing the height and diameter changes the flow

 For students exposure to course material in practice

 Highlight how useful software can be for complex engineering problems

 How to implement what we learned in the course
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 They wanted us to see the connection between courses such as fluids and numerical

methods

 To see real world applications of the use of fluid dynamics

 That these computations are complex and can only be solved using CFD

 That we must rely on numerical methods to solve complex differential equations

 The instructor wanted us to see an example of fluid dynamics in real world

applications

Overall, the responses recognized that the instructor’s intent was to relate the 

modeling exercise to real world applications and future professional environments 

(situated nature), and to connect with material presented in class (specific content) (Figure 

56 a). Approximately 40% of the responses demonstrated high cognition, based on the 

criterion of simultaneously addressing both of these categories. An example of a high 

cognition response was “The instructor wanted us to learn how to use the concepts taught 

in class for real world applications. Computational modeling is necessary to solve difficult 

problem that can’t be solved analytically.” Whereas an example of a low cognition 

response was “They intended for us to learn how to input specifications for a fluid and run 

its corresponding model.” 

Question #2: “How would you explain this computational exercise to an 

undergraduate student?” Representative responses to this question included. 

 Exercise is very advanced but enjoyable

 Changing the height and diameter of the cylinder changes the flow

 After spending a semester learning the principles of fluid mechanics as well as

applying it to pipe flow problems, this exercise allows you to compute and visualize

flow fields through a simulator



161 

 I will explain it with a lava lamp example

 The exercise uses supercomputers to calculate fluid flow due to temperature

differences

 Confusing but easier to understand when looking at the visuals to see the overall

concept

 I would describe the math behind the calculations

Here, the majority of responses focused on connecting the exercise with current 

and future coursework in chemical engineering (specific content), with lower but 

approximately equal mention of ambiguity, lab skills and simulation design (Figure 56 b). 

In contrast to Question #1, only one response emphasized the real word application of the 

exercise. Again, approximately 40% of the responses demonstrated high cognition, based 

on the criterion of simultaneously addressing 3 out of the 4 categories (excluding situated 

nature). An example of a high cognition response was “Conceptually a first year college 

student should be familiar with convection. I would explain this exercise by describing the 

fundamental fluid flow equations: conservation of mass, momentum and energy and the 

temperature dependence of the density. I would describe the numerical procedure involved 

in the assignment and explain why computers are necessary to solve the problem.” 

Whereas an example of a low cognition response was “I would explain it the same way it 

was explained to me in class.” 
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Figure 56: Student cognition was assessed through a series of three free response questions (n = 19). (a) 

Question #1: “What do you think the instructor intended for you to learn by doing the computational 

modeling exercise?” High cognition responses simultaneously addressed themes in the situated nature and 

specific content categories. (b) Question #2: “How would you explain this computational exercise to an 

undergraduate student?” High cognition responses simultaneously addressed themes in three of the 

following four categories: specific content, lab skills, ambiguity, and simulation design.  
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Figure 57: Student cognition was assessed through a series of three free response questions (n = 19) 

continued. Question #3: “When you close your eyes and picture this computational exercise, what do you 

see?” High cognition responses simultaneously addressed themes in the representation and physical system 

categories. 

Question #3: “When you close your eyes and picture this computational exercise, 

what do you see?” Representative responses to this question included. 

 I see rectangular box with arrows representing flow field

 The colors in the flow field and some cases would produce an 8 like flow field

 Velocity profile of the fluid

 Lava lamp, blobs falling and rising

 A plot with slowly converging lines

Responses to this question overwhelmingly centered on visualization of the 

internal convective velocity and temperature profiles obtained in the computational 

simulations (representation) (Figure 57). Three responses related these patterns to other 

scenarios (e.g., the flow pattern in a lava lamp) and two of them described the computer 
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interface. A high cognition response was therefore defined as simultaneously addressing 

the representation and physical system categories, a criterion satisfied by only 3 out of 19 

responses. An example of a high cognition response was “I see the flow patterns generated 

by the computer program and how it matches with the lava lamp and the DNA synthesis 

example presented in class.” Whereas an example of a low cognition response was “An 

interesting flow diagram.” 

Question #4: “Did the exercise influence your interest in fluid mechanics? If so, 

how (did it make it more interesting or less interesting) and why? Would you like to see 

more or less of these kinds of activities?” Representative responses to this question 

included. 

 All of sudden fluid mechanics seems very interesting to me, I would like to have more

class periods dedicated to this

 It helps to put our class work into live action and see where our knowledge is leading

us

 It’s nice to see actual videos and moving things, as opposed to just equations

 It was interesting to see how changing a few parameters could greatly change the flow

field

 I learned that fluid mechanics is more than just pipe flow problems with pressure

difference as the driving force

 Yes, It made it more interesting. I never thought fluid mechanics application outside

the class until this exercise. I would like to see more.

 I wish I could have set the entire problem myself in the program but due to lack of time

I know this was not possible
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This question was not intended assess cognition, but instead captured overall 

student satisfaction with the computational exercise. Responses to this question were 

overwhelmingly positive, revealing that the CFD simulations seem to particularly excite 

student interest because it allowed them to actually “see” what they have been learning in 

the lecture. These impressions are consistent with broader student feedback we have 

received from recent graduating senior exit interviews where a desire for increased hands-

on exposure to simulation tools was expressed. 

Figure 58: Microfluidic convective PCR bridges the physical, chemical, and life sciences in a uniquely 

relatable way. This incredible versatility enables educational experiences to be tailored toward a broad 

spectrum of audiences ranging from elementary school, to undergraduate, to graduate levels. Its portability 

and simplicity make it feasible to embed in a classroom setting. 
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A key conclusion from our cognitive assessment is that the hands-on 

computational exercise effectively reinforced course content, highlight connections with 

other courses in the curriculum, and demonstrate practical applications of the fundamental 

material presented in class. Interestingly, however, there appeared to be conflicting 

perceptions of practical application. This aspect was the most highly recognized in 

students’ perception of the instructor’s learning objectives (Question #1), but was the least 

recognized in students’ perception of how they would explain the exercise to peers 

(Question #2). We also conclude that cognition could be improved by incorporating 

companion design or hands-on experiment components (Question #3). An additional 

challenge is that limited class time is available for students to become proficient using the 

computational software. For this reason, and due to introductory transport focus of the 

course, we did not include thermally actuated biochemical reactions in this simulation 

exercise. But this component can be readily incorporated, and we plan to do so in future 

courses with lesson plans focusing on the reaction kinetics of PCR and mass transfer of 

the biochemical reagents. This will ultimately enable students to evaluate a series of 

reactor designs to estimate thermal residence times and quantify reaction product yields. 

Conclusions 

There is currently a drive to incorporate more experiential and cross-disciplinary 

activities into science and engineering education.[205, 206] These active discovery-

oriented experiences excite students and bolster understanding of fundamental concepts. 

Microfluidics offers an ideal platform on which to base these activities owing to its 
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inherently low cost and portability, overcoming barriers that have previously hindered the 

ability to embed sustainable high impact learning activities in the classroom, particularly 

in large classes.[207, 208] But it is also important to assess cognitive impact in order to 

justify the effort and expense involved in crating these experiences. 

The problem of microscale convective PCR provides a particularly effective 

vehicle to connect concepts bridging the physical, chemical, and life sciences. Part of this 

appeal stems from the rich complexity of flow phenomena that can be accessed in 

relatively simple geometries. Looking ahead, we envision that this foundation can be 

readily integrated throughout our undergraduate chemical engineering transport sequence 

and beyond because its strong multidisciplinary focus provides considerable flexibility to 

tailor instructional content across a range of target audiences (Figure 58). For example, 

we leveraged the portable flow visualization system to demonstrate micro-scale 

convective flows (micro-scale lava lamps) to students at a local elementary school during 

a recent science-themed event. This relatable activity, uniquely enabled by microfluidics, 

helped make the students aware of buoyancy and convection phenomena in nature. These 

research-connected experiences also create new opportunities for graduate students and 

postdocs to become deeper partners in the educational process (i.e., beyond traditional 

assignment-focused grading roles) by communicating their own scientific discoveries to a 

broader audience. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

Conclusion 

In this dissertation, both computational and experimental tools have been used to 

investigate the intricate features of the micoscale flows. Most of the content (Chapter I-

IV, VII) focusses on harnessing microscale Rayleigh-Bénard convective flows to perform 

biochemical reactions and enhance surface chemistry. 

Recently, Ebola has become a major worldwide health concern. With the outbreak in 

Africa, and isolated cases on other continents, the need for an affordable, rapid and 

portable diagnostic solution has been repeatedly stressed and is one of the most critical 

issues confronting global health. Unfortunately, the current conventional PCR 

instrumentation needed to perform “gold standard” DNA-based diagnostic tests is bulky, 

slow, and expensive, making it unsuitable for resource limited settings in developing 

countries where dedicated laboratory facilities are not available. 

We have tried to address this need by coupling an innovative thermal convention based 

PCR system with a versatile smart-phone based detection unit enabling speedy diagnostics 

(10-20 minutes). PCR, a very important tool in molecular biology, requires repeated 

heating (~ 95 ºC, denaturing) and cooling (~ 55 ºC, annealing) of the reagents. Rayleigh-

Bénard convective flows are able to execute these thermally actuated biochemical 

reactions in a pseudo isothermal fashion by driving the reagents from the hot to the cold 

regions repeatedly in a microscale cylindrical enclosure under a vertical temperature 
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gradient. By altering the geometry of the enclosure (aspect ratio) and thermal boundary 

conditions (Rayleigh number), one can select convective flow states that exhibit periodic, 

quasi-periodic or chaotic trajectories. Computational fluid dynamics (CFD) studies reveal 

that reactors with smaller aspect ratios generate disordered flow fields (reflected by 

chaotic trajectories) that display a greater capacity to actuate PCR in convective format. 

Furthermore, coupling a PCR kinetic model with the CFD model reveals a wide range of 

cylindrical geometries exhibiting chaotic advection capable of enabling robust convective 

PCR. 

With these new optimal design rules, we introduce an inexpensive, rapid, ultra-

portable bio-analysis platform for nucleic acid-based diagnostics and surveillance of 

infectious disease. Our approach exploits the unique ability to isothermally execute PCR 

via a single miniature heater, dramatically reducing electrical consumption to a level 

provided by ordinary 5 V USB sources that power consumer mobile devices (even using 

solar or hand crank action). Time resolved fluorescence detection is achieved via a smart-

phone camera and integrated image analysis app. These advancements make it possible to 

build a complete DNA analysis system for under $20 ($US) that can deliver results in 10 

– 15 min. Our instrument is incredibly robust and lightweight, enabling pinpoint

deployment of gold standard nucleic acid-based diagnostics to remote field sites using 

commercially available quad-copter drones. We also demonstrate in-flight analysis, 

suggesting potential to obtain an unprecedented dynamic picture of outbreaks that can 

inform improved resource deployment strategies. 
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Microscale Rayleigh-Bénard convective flows can also be found naturally within 

the pores of sub-sea hydrothermal vent systems. These porous mineral formations embed 

richly complex microenvironments capable of catalytically polymerizing monomers and 

orchestrating fundamental electrochemistry central to prebiotic evolution of metabolic 

processes. But a unified framework explaining how surface-mediated synthesis can be 

orchestrated by the interplay among physical, chemical, and thermal processes within 

these catalytically active networks remains elusive. We explored the emerging convective 

flows in hydrothermally relevant pore sizes and discovered that they have the capacity to 

act as highly efficient conveyors to continually shuttle molecular precursors from the bulk 

fluid to targeted locations on the solid boundaries where they assemble into membrane-

like films capable of electrochemically generating pH gradients. We quantitatively 

mapped the enrichment of biomolecular species achievable via this process, and 

introduced an in situ approach to directly probe its influence on surface reaction kinetics. 

Our results suggest that chaotic thermal convection may supply a previously 

unappreciated driving force to support emergence of early bioenergetic pathways—a key 

unanswered question in the origin of life. 

Our simple convective flow PCR system was also leveraged to create an innovative 

educational experiences that excite and empower students by helping them recognize how 

interdisciplinary knowledge can be applied to develop new products and technologies that 

benefit society. We created novel hands-on activities that introduce chemical engineering 

students to molecular biology by challenging them to harness microscale natural 

convection phenomena to perform DNA replication via the PCR. Experimentally, we 
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constructed convective PCR stations incorporating a simple design for loading and 

mounting cylindrical microfluidic reactors between independently controlled thermal 

plates. A portable motion analysis microscope enabled flow patterns inside the convective 

reactors to be directly visualized using fluorescent bead tracers. We also developed a 

hands-on CFD exercise based on modeling microscale thermal convection to identify 

optimal geometries for DNA replication. A cognitive assessment revealed that these 

activities strongly impact student learning in a positive way. 

Apart from the investigation of microscale convective flows, the dissertation also 

works towards development of a new adhesion model for particle resuspension modeling. 

The phenomenon of particle resuspension plays a vital role in numerous fields. Among 

many aspects of particle resuspension dynamics, a dominant concern is the accurate 

description and formulation of the van der Waals (vdW) interactions between the particle 

and substrate. Current models treat adhesion by incorporating a material dependent 

Hamaker's constant which relies on the heuristic Hamaker's two body interactions. 

However, this assumption of pair wise summation of interaction energies can lead to 

significant errors in condensed matter as it does not take into account the many body 

interaction and retardation effects. To address these issues, an approach based on Lifshitz 

continuum theory of vdW interactions was developed to calculate the principal many body 

interactions between arbitrary geometries at all separation distances to a high degree of 

accuracy through Lifshitz's theory. We applied this numerical implementation to calculate 

the many body vdW interactions between spherical particles and surfaces with 

sinusoidally varying roughness profile and also to non spherical particles (cubes, 
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cylinders, tetrahedron etc.) orientated differently with respect to the surface. Our 

calculations revealed that increasing the surface roughness amplitude decreases the 

adhesion force and non spherical particles adhere to the surfaces more strongly when their 

flatter sides are oriented towards the surface. Such practical shapes and structures of 

particle-surface systems has not been previously considered in resuspension models and 

this rigorous treatment of vdW interactions provide more realistic adhesion forces between 

the particle and the surface which can then be coupled with CFD models to improve the 

predictive capabilities of particle resuspension dynamics. 

Finally, we employ discrete element modeling to analyze trajectories of micro 

sized particles subject to all relevant hydrodynamic forces and torques. The results provide 

us with important design rules to construct membraneless microfluidic filtration channels 

where pressure driven transverse flows and curvature induced Dean flows can be 

simultaneously harnessed to assist size based particle separation with high throughput. 

Future work 

Quantification of chaos in convective flows 

In Chapter I, we visualized the onset of chaotic advection via Poincaré sections 

and quantifed the convective flow’s chaotic strength by calculating the Lyapunov 

exponents. However, study of chaos in such microscale flow systems is fairly new, and 

further investigation can provide additional insights about the flow characteristics. There 

are other parameters available to quantify chaos in such time series dynamical variable 
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systems, including the correlation dimension and the box dimension. The correlation 

dimension has been used extensively in literature to characterize chaotic attractors[209]. 

The advantage of using this method is that one can quantify the chaotic nature of the flow 

field from a one-dimensional time series data representing the flow field. Thus, nonlinear 

time-series and chaos analysis techniques can be used to gain insight about the  the 

dynamical nature of the flow field in these systems. The box counting method is another 

metric uset to quantify the extent of mixing in flows[210]. Tracer particles are initially 

positioned within a small segment of the flow domain which is divided into numerous 

small boxes. As the flow evolves and the tracer particles spread, they occupy an increasing 

number of boxes. The rate of increase of box occupancy (box entropy) provides an 

estimate of the rate of mixing and stretching statistics in the system. In future work, we 

would like incorporate these two techniques in our study of Rayleigh-Bénard convective 

flows to not only quantify the chaotic streingth of the system but also the rate at which 

chaotic advection emerges. This would provide us with information about time required 

for such systems to evolve into a chaotic strength. 

Refinement and enhancement of the convective PCR device 

While our convective PCR device has a simple design and is fairly easy to operate, 

we want to pursue additional modifications to to improve its performance and reliabiltiy. 

Firstly, sample loading can be simplified. Currently, the user needs to use thin pipette tips 

to inject the PCR mixture into the cylindrical reactor followed by carefully sealing the 

reactor top with an adhesive film. We want to make this step easier to perform by users 
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who may not have specialized training. One way to achieve this would be to use a novel 

capillary-based approach that is self-sealing and requires minimal manual sample 

handling. The operator need only place a drop of the PCR reagents on the outer surface of 

a disposable reactor cartridge pre-filled with oil after which the fluid is passively drawn 

into the reactor with the aid of a capillary “sipper” that also seals the reagents inside the 

chamber by leaving a thin layer of transparent oil on top. In preliminary work, we have 

tested a promishing oleophilic porous sipper that is capable of driving the oil out of the 

reactor while simultaneously drawing in the aqueous PCR reagents (Figure 59).  

Figure 59: A capillary sipper passively draws the reagents into the convective PCR reactor with minimum 

fluid handling. The cylindrical reactor is pre-filled with oil (lighter than water) and a drop of aqueous PCR 

mixture is placed on top. An oleophilic porous polymer scaffold then selectively draws the oil out of the 

reactor while simultaneously driving the PCR mixture in.  Subsequently, the top of the reactor is sealed with 

tape and the reactor is inverted leaving a thin layer of oil on top to prevent evaporation of PCR mixture 

during the reaction. 
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Another area for improvement is reduction/elimination of air bubble formation 

during the course of convective PCR runs. These bubbles tend to nucleate at sharp corners 

and other micro features within the reactor and mostly migrate to the reactor top making 

it difficult to perform fluorescence based smart-phone detection of amplified products 

because they can obscure the acquired images. Additionally, if the air bubbles become too 

large, they can disrupt the convective flow pattern resulting in PCR failure. There are 

several possible avenues to address these issues. First, sealing the reactors under pressure 

may help to suppress any initial bubble formation. Secondly, a bonding interface cladding 

[211] can be applied which adopts an ‘inking and place’ operation to transfer the cladding 

material onto the acrylic surface of the reactor. This would ensure that all surface defects 

are covered with the cladding material. Third, and perhaps most promising, is construction 

of reactors using injection molding, as opposed to the current machining process. Molding 

processes are envisioned to be used for mass production, and are likely to significantly 

reduce sidewall roughness that generates bubble nucleation sites. These modifications 

suggest strong potential to significantly reduce bubble formation while convective PCR 

and thus improve operational reliability. 

Particle resuspension modeling 

We developed new adhesion model which allows the vdW interactions between 

particles and surfaces of arbitrary shapes to be calculated for all separation distances. In 

future studies we would like to incorporate this formulation into CFD codes to provide a 

comprehensive physics-based description of particle resuspension and deposition 
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phenomenon. The deposited particles reside in the viscous sub-layer where they are 

subjected to turbulent bursts. The dynamical relationships between the inner region of 

intense turbulence production and the large scale, less active outer layers needs 

considerable understanding and there are many modeling approaches such as multi 

equation turbulence models, large eddy simulation (LES) and direct numerical simulation 

(DNS) to capture the transient near wall flow. Futrue studies aimed at employing different 

near wall turbulence models with LES technique will be able to completely resolve the 

large scale motion while characterizing the small scale flow with a physics based model. 

A local averaging scheme can also be implemented to ensure that these models can be 

applied to complex geometries. The adhesion force determined using the approach 

developed here would then be an input to this CFD model to accurately capture the 

dynamics of the particle near the surface. 

For deformable bodies, the problem of adhesion on surfaces is descirbed by JKR 

and DMT models in contact mechanics. JKR model is valid for large, soft bodies with 

high surface energies while the DMT model is more appropriate for small, hard solid 

particles with low surface energies. However both models are limited to smooth spherical 

surfaces and these theories use the mean adhesion force (statistical approach) for 

deformation calculations. Futrue studies can improve upon the implementation of these 

existing contact mechanics-based deformation models by calculating the cluster 

interactions and thus allowing the clusters to change their relative positions and deform. 

Taken together, these additions should provide major improvements to current particle 

resuspension modeling formulations. 
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APPENDIX A 

LINEAR STABILITY ANALYSIS OF RAYLEIGH-BÉNARD CONVECTION 

Rayleigh Bérnard instability develops when a fluid in a gravitational field has a 

temperature gradient in the direction of gravity. The buoyancy forces on the less dense 

hotter fluid at the bottom works against the viscous and thermal dissipation leading to an 

unstable top heavy arrangement. The governing equations describing the motion of the 

fluid are given by: 

Continuity equation 

( ) 0u
t





 


 [8.1] 

Momentum equation 

( )

2
ˆ ˆ

3

ji
ij ij i j

j i

u
u u p f

t

uu
u e e

x x

f g



  



 
       

  

  
           



   [8.2] 

Energy equation 

( )

viscous heating

cond

v

cond

E
u E Q p u

t

E c T

Q k T







 
       

 



  



   [8.3] 

The Boussinesq approximation states that fluid properties such as viscosity, thermal 

conductivity and thermal expansion coefficient don’t change significantly on changing the 
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temperature of the fluid. Furthermore, the density of the fluid is also assumed constant 

everywhere except in the buoyancy force term where it is assumed to vary linearly with 

temperature. 

(1 ( ))o oT T           [8.4] 

On substituting eq. [8.4] into the continuity equation (eq. [8.1]) 

( ) 0

(1 ( ))
( (1 ( )) ) 0

(1 ( ))
( ( )) 0

( ( )) 0

1

o o
o o

o
o

o

u
t

T T
T T u

t

T T
u u T T

t

T
u u T T

t




 
 




 




 



  
   



  
    




    





0u     [8.5] 

On substituting eq. [8.4] into the momentum equation (eq.[8.2]) 

2

2

Neglect because .  is 

( )

ˆ

ˆ(1 ( )) ( ) (1 ( ))

( ) ( ) ( )
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  
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  
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       
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

 
           

  

    
        

       

2

small compared to .

ˆ ˆ ( )o z o z o

g

p ge ge T T u



         

  2ˆ ˆ( ) ( )z z o

o

u p
u u ge ge T T u

t
 



  
         

  

     [8.6] 

On substituting eq. [8.4] into the momentum equation (eq. [8.3]) 
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 

2
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( ( ))
( ( ( )))
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( )

v
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o
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o
o

o v
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t

T T T T
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

 
    

 

   
      

 

 
       

 

 

2T
u T T

t



   


   [8.7] 

Therefore the Boussinesq equations reduce to 

0u   

2ˆ ˆ( ) ( )z z o

o

u p
u u ge ge T T u

t
 



  
         

  

 

2T
u T T

t



   



We can now use linear stability analysis to analyze the solutions to these equations for 

small perturbations to the base flow state of no fluid motion at the onset of convective 

motion. Then the base flow condition are: 

 

0

0,0,0b

z l top

z bottom

u

T T

T T











The base flow satisfies the continuity equation. Analyzing the energy (eq. [8.7]) and 

momentum equations (eq. [8.6]) 

2

0 steady state

b

T
u T T

t



   


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2 0T   

2 2 2

2 2 2

0 No horizontal temperature gradient

0
T T T

x y z



  
  

  
 

2

2
0

T

z





    [8.8] 

1 2

0

1

z l top
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top bottom

T C z C

T T

T T

T T

T C l T





 







 

1

top bottom bottom topT T T T
C

l l


 
      

dT

dz
      [8.9] 

b bottom oT T z T z        [8.10] 
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
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 ˆ ˆ1 ( )z o o z

p
e T T ge
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 


  



b oT T z 

 1o

p
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 


 



 
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p z
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2

2
b o o

z
p p g z




 
   

 
  [8.11] 

Eq. [8.11] provides the vertical pressure distribution at the base flow state. Now we 

introduce a small perturbation to the base flow state equations. 

2

2

b

b o

b o o

u u u u

T T T T z T

z
p p p p g z p






  

    

 
      

 

Substituting these in the continuity (eq. [8.5]), momentum (eq. [8.6]) and energy 

equations (eq. [8.7]) 

0u    [8.12] 
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Thus the equations of motion for the perturbed quantities become 

0u   [8.14] 

2
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o

u p
ˆge T u

t
 



 
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
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2

z

T
u T
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 


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
  [8.16] 

Equations [8.14], [8.15] and [8.16] determine the evolution of perturbed quantities. 

These equations can be solved by some vector algebra manipulation followed by normal 

mode analysis. Some useful vector identities 
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   
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Taking curl of eq. [8.15] 
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Taking curl of eq. [8.17] 
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 The z component of eq. [8.18] becomes 
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The z component of perturbed energy equation becomes 
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Eliminating Temperature from eq. [8.19] and eq. [8.21]. First take the time derivate of 

eq. [8.19] 
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From eq. [8.16] 
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   
 [8.24] 

Non-dimensionalizing the eq. [8.24] 

2 2 2 2
z xy zu g u

t t
  

   
         

   
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 



   
       
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*2 *2 *2 * *2 *

* * xyPr U Ra U
t t

   
       

   
 [8.25] 

Pr



  [8.26] 

4g d
Ra




  [8.27]

Solution to eq. [8.25] can be obtained by separation of variables. Since these equation 

are linear (constant coefficients), they can be cast as normal modes. 
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D
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



   2 2 2 2 2 2 * 2 *D Pr k D k D k U Rak U        [8.28] 

Eq. [8.28] is an eigenvalue problem and can be solved to yield the stability 

characteristics as a function of Ra. 
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APPENDIX B 

VARIATION IN PROPERTIES OF WATER WITH TEMPERATURE 

Table 14: Properties of water as a function of temperature. 

Temp. 

(˚C) 

Kinematic 

viscosity 

(m2/s) 

Thermal 

expnasion 

coefficient 

(1/K) 

Prandtl 

Number 

Density 

(kg/m3) 

Specific heat 

(KJ/(Kg.K)) 

Thermal 

diffusivity 

(m2/s) 

30 8.01E-07 0.000303 5.43 995.7 4179 1.394E-07 

35 7.3E-07 0.000345 4.885 994.1 4178 1.396E-07 

40 6.58E-07 0.000385 4.34 992.3 4179 1.399E-07 

45 6.06E-07 0.00042 3.95 990.2 4181 1.401E-07 

50 5.53E-07 0.000457 3.56 988 4182 1.404E-07 

55 5.14E-07 0.000486 3.275 986 4183 1.406E-07 

60 4.74E-07 0.000523 2.99 983 4185 1.41E-07 

65 4.44E-07 0.000544 2.775 980 4188 1.413E-07 

70 4.13E-07 0.000585 2.56 978 4191 1.415E-07 

75 3.89E-07 0.000596 2.395 975 4194 1.418E-07 

80 3.65E-07 0.000643 2.23 972 4198 1.421E-07 

85 3.46E-07 0.000644 2.095 968 4203 1.426E-07 

90 3.26E-07 0.000665 1.96 965 4208 1.428E-07 

95 3.11E-07 0.000687 1.855 962 4213 1.431E-07 

100 2.95E-07 0.000752 1.75 958 4219 1.435E-07 
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APPENDIX C 

CFD MODELING OF RAYLEIGH-BÉNARD CONVECTIVE FLOWS 

A 3-D computational flow model was formulated to examine and analyze the 

Rayleigh Bénard convective flow induced in microfluidic cylindrical cells. The 

geometries were created and meshed in Gambit (non uniform hexahedral grids) and grid 

independence of solutions was verified. A finite volume solver (STAR-CCM+, CD-

adapco) was used to simultaneously solve the continuity equation, 3D Navier-Stokes 

equations and the energy equation with the Boussinesq approximation in consideration of 

the buoyancy driven forces to obtain the flow field for the prescribed boundary conditions 

(bottom = 97 °C and top = 53 °C). The sidewalls of the reactor were made insulating with 

no slip and no penetration (u = 0) boundary conditions. Water was used as fluid with its 

properties evaluated at an average temperature of the top and bottom surfaces. Both steady 

state and transient velocity and temperature fields were obtained and further analyzed in 

Tecplot and Matlab. For the reaction kinetic model, the species transport equation was 

solved with the coupled transient flow equations to obtain a time resolved evolution of 

individual reagent concentration. A step by step meshing and simulation instructions are 

provided below. 

Mesh Generation 

Gambit (ANSYS) was used for creating and meshing the cylindrical geometries. 

Journal files (.jou) were written with the instructions that create and mesh the PCR reactor 
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of a given height and diameter (Figure 60).  The mesh density is specified on the edges. 

Quadrilateral elements are used to mesh the complete volume. The volume inside is made 

a fluid continuum and the faces are identified as boundaries. All the parameters can be 

changed in this journal file and then it can be read by Gambit compiler to create and mesh 

the any desired geometry. 

Figure 60: PCR reactor meshing instructionsAll cylindrical reactors were created and meshed in Gambit. 
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Finite volume solver 

Once the geometry is made, meshed and exported, it will then was imported into 

CFD Solver (STARCCM+). The objective of the solver is to obtain a solution to the 

following equations for PCR relevant boundary and initial conditions. 

Continuity equation 

0
u v w

x y z

  
  

  
   [9.1]

Navier-Stokes Equations 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1

1

1

x
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z

u u u u p u u u
u v w f

t x y z x x y z

v v v v p v v v
u v w f

t x y z y x y z

w w w w p w w w
u v w f

t x y z z x y z










        
         

        

        
         

        

        
         

        

   [9.2]

Energy equation 

2 2 2

2 2 2p

T T T T T T T
C u v w k

t x y z x y z


        
        

         
    [9.3] 

In the above equations fx , fy are 0, but due to the buoyancy driven forces, we can 

invoke the Boussinesq approximation and therefore 

( )z of g T T      [9.4] 

where g, β, ρ are the acceleration due to gravity, thermal expansion coefficient of 

water and density of water respectively and T and To are the fluid and reference 

temperature respectively. This buoyancy term was added by incorporating it as a 

momentum source term in the field function in the Navier-Stokes equations. 
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Once the solver converged, the flow fields were extracted as data files and post-

processed using Tecplot and MATLAB. 
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APPENDIX D 

CONVECTIVE THERMAL-CYCLING PROTOCOL 

The following convective PCR protocol is based on amplification of a short target 

sequence (237 bp) of lambda phage DNA. KOD polymerase enzyme kit was used to 

amplify the target sequence. A step by step instruction is presented in the following 

section. 

Procedure 

Conventional thermo-cycler: 

1. After the reagents have been thawed from their frozen state, pipette appropriate

amounts of each reagent in that sequence into a micro-tube. Add the 

polymerase enzyme at the very end. 

2. Place the micro tubes with the reagent mixture in the thermo-cycler wells and

follow the following thermo-cycling protocol: 

Steps Temperature °C Hold time (s) 

1 96 10 

2 95 10 

3 60 30 

4 72 30 

5 72 300 

6 4 Pause 

X 30
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3. After the thermo-cycling, remove the micro-tubes from the thermo-cycler and 

pipette the products out for analysis using gel electrophoresis.  

Convective flow thermo-cycler: 

1. Before loading the reagent mixture, seal the bottom of the convective cells with 

thin aluminum sheets. Rinse the cell walls with a 10 mg/ml aqueous solution 

of bovine serum albumin followed by Rain-X Anti-Fog. This is done minimize 

adhesion of reagents on the cell walls.  

2. After the reagents have been thawed from their frozen state, pipette appropriate 

amounts of each reagent in that sequence into a micro-tube. Add the 

polymerase enzyme at the very end.  

3. Transfer the reagents with the help of a micro pipette into the convective cells. 

Seal the top of the cell with aluminum sheet and ensure that no air bubbles 

show up. 

4. Clamp the convective cells between the top and the bottom heating plates 

(Figure 61) of the convective device tightly and run the lynntech software 

through the computer interface (Figure 62) to maintain the temperature of the 

top and bottom plate as 55 °C and 95 °C respectively. 

5. After running the reaction for desired time (15 -30 minutes), remove the top 

aluminum sheet and pipette the products out of the convective cells into 

another micro tube for analysis using gel electrophoresis. 
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Figure 61: Convective PCR apparatus.  (a) Individual convective PCR stations used in the hands-on lab 

activity. (b) Cylindrical transparent reactors with various geometries (d ~ 1 – 2 mm, h ~ 1 – 2 cm) are 

clamped between upper and lower heating plates. 

Software operation: 

1. Set Operation Mode Selector to “Man” (7). In manual mode the user can set

each heater temperature individually. 

2. Input temperature (˚C) for single or both heaters in the heater input boxes (2,

12).  Press “Board” (9) to update temperature for selected test unit. Heaters 

will heat to the input values and remain at that temperature until values are 

changed.  

3. Logging temperature data can be performed by the user pressing “Log Data”,

the box will turn red, and temperature data will now be logged.  To stop the 

data logging press “Log Data” again. 

4. The temperature variation of the two heaters can be viewed under the “Plots”

tab. 

5. When the operation is completed, set the Operation Mode Selector to “Off”.

This will disable the heaters. 
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Figure 62: Lynntech isothermal heater software. Operation of the COM0190 software in 

manual mode 

 

 

Gel electrophoresis analysis: 

1. Prepare a 2 wt % agarose gel by heating 10 g of agarose with 500 ml of 1x 

buffer on a stirring hot plate until the solution becomes clear.  

2. Load the agarose gel into the casting tray and insert the comb and let the gel 

set for 30 minutes.  

3. Remove the comb and add 1x TAE buffer until the gel is submerged.  

4. Prepare fluorescently stained DNA samples by mixing 2 µL 100x SYBR Green 

I solution, 2 µL PCR product from convective cells/thermo-cycler, 2 µL 6x 

orange loading dye and 4 µL TAE buffer. 
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5. Add DNA samples into the wells and run the separation at 60 V for 1 h with a

100 bp DNA ladder sizing marker. 

6. Remove the gel and photograph it under UV light to view results.
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APPENDIX E 

 ARDUINO CODE FOR SINGLE HEATER DESIGN 

The following arduino code was developed to maintain the temperature of the 

ceramic heaters at 95 °C in the circuit described in chapter III. 

void Lcd Character(char character) 

{LcdWrite(LCD_D, 0x00); 

for (int index = 0; index < 5; index++) 

{LcdWrite(LCD_D, ASCII[character - 0x20][index]);} 

LcdWrite(LCD_D, 0x00);} 

void LcdClear(void) 

{for (int index = 0; index < LCD_X * LCD_Y / 8; index++) 

{LcdWrite(LCD_D, 0x00);} 

void LcdInitialise(void) 

{pinMode(PIN_SCE,   OUTPUT); 

pinMode(PIN_RESET, OUTPUT); 

pinMode(PIN_DC,    OUTPUT); 

pinMode(PIN_SDIN,  OUTPUT); 

pinMode(PIN_SCLK,  OUTPUT); 

digitalWrite(PIN_RESET, LOW); 

digitalWrite(PIN_RESET, HIGH); 

LcdWrite(LCD_CMD, 0x21);  // LCD Extended Commands. 

LcdWrite(LCD_CMD, 0xBf);  // Set LCD Vop (Contrast). //B1 

LcdWrite(LCD_CMD, 0x04);  // Set Temp coefficent. //0x04 

LcdWrite(LCD_CMD, 0x14);  // LCD bias mode 1:48. //0x13 

LcdWrite(LCD_CMD, 0x0C);  // LCD in normal mode. 0x0d for inverse 

LcdWrite(LCD_C, 0x20); 

LcdWrite(LCD_C, 0x0C);} 

void LcdString(char *characters) 

{while (*characters) 

{LcdCharacter(*characters++);} 

void LcdWrite(byte dc, byte data) 
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{digitalWrite(PIN_DC, dc); 

digitalWrite(PIN_SCE, LOW); 

shiftOut(PIN_SDIN, PIN_SCLK, MSBFIRST, data); 

digitalWrite(PIN_SCE, HIGH);} 

void gotoXY(int x, int y) 

{LcdWrite( 0, 0x80 | x);  // Column. 

LcdWrite( 0, 0x40 | y);  // Row. 

} 

void setup(void) 

{Serial.begin(9600); 

LcdInitialise(); 

LcdClear(); 

pinMode(3, OUTPUT);//Pin to MOSFET is output 

pinMode(5, OUTPUT);//Pin to LED is output 

pinMode(4,OUTPUT);//Pin to Relay laser control 

digitalWrite(3, LOW);//MOSFET OFF 

digitalWrite(5,LOW);//LED OFF 

digitalWrite(4,LOW);//Nothing to the relay 

} 

long previousMillis = 0; 

int H=1; 

void loop(void) 

{gotoXY(25,0); 

LcdString("PCR2GO");  // LCD display 

Serial.print("Uptime (s): "); 

Serial.println(millis() / 1000); 

float voltage, temperature; 

voltage = analogRead(PIN_TMP); //read in analog value 

temperature =((voltage*(5.0/1024))/0.01)+15; //calibration for temperature sensor 

itoa(temperature,strBuffer,10);  

gotoXY(0,1); 

LcdString("Temp = ");  // LCD display 

gotoXY(45,1); 

LcdString(strBuffer); // Calibrating temperature changing voltage to temp and display it. 

gotoXY(70,1); 

LcdString("C");  // LCD display  

unsigned long currentMillis = millis(); 

gotoXY(0,2); 

LcdString("Time = ");  // LCD display 

gotoXY(45,2); 
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itoa(((currentMillis)/1000),strBuffer,10); 

LcdString(strBuffer); 

gotoXY(70,2); 

LcdString("s");  // LCD display  

if (H==1) 

{gotoXY(0,5); 

LcdString("LED t= ");  // LCD display 

gotoXY(45,5); 

itoa(((currentMillis-previousMillis)/1000),strBuffer,10); 

LcdString(strBuffer); 

gotoXY(70,5); 

LcdString("s");  // LCD display 

} 

// LASER OPERATION 

///////////////////////////////////////////////////// 

if (H==1) 

{if(((currentMillis - previousMillis)/1000) > (7-1))  

{previousMillis = currentMillis; // save the last laser Pulse 

Serial.println("Toggled Laser Pulse"); 

Serial.println(millis() / 1000); 

digitalWrite(3, LOW);//MOSFET OFF 

gotoXY(0,3); 

LcdString("HEAT OFF        "); 

gotoXY(0,4); 

LcdString("LED ON          "); 

digitalWrite(4,HIGH);//RELAY ON 

delay(5*1000); //5 seconds wait 

gotoXY(0,4); 

digitalWrite(4,LOW);//RELAY OFF 

LcdString("LED OFF          ");}} 

Serial.println(analogRead(4)); 

//HEATER OPERATION 

 ///////////////////////////////////////////////// 

int Heat;//Pulse width of output 

if(temperature < 90 )//If temp is less than 97 

{gotoXY(0,3); 

LcdString("HEAT ON < 90"); 

Heat=255; //100% 

} 
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else if(temperature <= 97 && temperature >= 90       { 

H=1; 

gotoXY(0,3); 

LcdString("HEAT ON 93 97"); 

Heat=225; //88% 

} 

 

else//If temp is greater than 97 

{gotoXY(0,3); 

LcdString("HEAT ON > 97"); 

Heat=0; } 

delay(1000);//1000ms delay until next temperature sensing} 
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APPENDIX F 

SERIES SOLUTION OF TWO DIMENSIONAL DIFFUSION EQUATION IN 

 CYLINDRICAL COORDINATES 

The time resolved species concentration dynamics without convective flow can be 

obtained by solving the diffusive transport equation in cylindrical coordinates. 

2

2

1 1

( ,0)

( , ) 0

i

C C C C
D r D

t r r r r r r

C r C

C R t
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    
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



 [10.1] 

where C is the species molar concentration and D is the diffusivity of the species. 

Our initial condition is that the concentration is uniform throughout the cylindrical pore 

(at t = 0) and our boundary condition assumes that the concentration is 0 at curved surface 

(for t > 0). Analytical solution to the above partial differential equation can be obtained 

appby separation of variables i.e. assuming C = R(r) x T(t) thus converting the partial 

differential equations into two ordinary differential equations. 

2 0
T

DT
t




 


  [10.2] 
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where λ is an arbitrary constant. The first order differential equation gives an 

exponential solution and the second order differential equation is the Bessel's equation of 

order zero and can be solved using power series. The constants in the series solution can 

be determined from the initial and boundary conditions. Combing the two solutions 
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provides an analytic form for the transient concentration profiles of the organic molecules 

within the cylindrical pore transported purely by diffusion. 
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The surface concentration (kg/m2) is then the species mass diffused to the surface 

per unit curved surface area. 
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where MW is the molecular weight of the species. 
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APPENDIX G 

MANY BODY INTERACTION BETWEEN TWO LIFSHITZ SPHERES 

Let R1 and R2 denote the radii of the two interacting spheres, z denotes the centre 

of mass separation between the two spheres and is the real, monotonically 

decreasing dielectric function evaluated at imaginary frequencies  for material s. 

Let, 
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For even values of m 
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R
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 

 





 
  
 

 
  
 
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For even values of m 

1

1

( , ) (1, ) ( 1, ),
m k

j

a k m a j a k m j
 



    

1

1

( , ) (1, ) ( 1, )
m k

j

b k m b j b k m j
 



  

For odd values of m 

1

1

( , ) (1, ) ( 1, ),
m k

j

a k m a j b k m j
 



  

1

1

( , ) (1, ) ( 1, )
m k

j

b k m b j a k m j
 



    

with 

 
2

1

1
( ,2 ) ( ,2 )

k

k

P a k b k
k



  


 
  

 
      [11.5] 

2

2 2
1

1 1 1
( , )

8 sinh ( ) cosh ( )
n

v

g z i P Q 


  





    
     

    
    [11.6] 

Finally, the interaction energy between the two spheres is given by: 

1

2
( ) ( ,0) ( , )

2 4
n

kT h
E z g z g i z d



 




          [11.7] 

1< k m
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