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ABSTRACT 

 

Entropy spectral analysis is developed for monthly streamflow forecasting, which 

contains the use of configurational entropy and relative entropy. Multi-channel entropy 

spectral analysis is developed for long-term drought forecasting with climate indicators. 

The configurational entropy spectral analysis (CESA) is developed with both 

spectral power and frequency as random variables. With spectral power as a random 

variable, the configurational entropy spectral analysis (CESAS) identical to the original 

Burg entropy spectral analysis (BESA) when the underlying process is Gaussian. Through 

examination using monthly streamflow from the Mississippi Watershed, CESAS and 

BESA yield the same results and two methods are considered equivalent or as one method. 

With frequency as a random variable, the configurational entropy spectral analysis 

(CESAF) is developed and tested using monthly streamflow data from 19 river basins 

covering a broad range of physiographic characteristics. Testing shows that CESAF 

captures streamflow seasonality and satisfactorily forecasts both high and low flows. 

When relative drainage area is considered for analyzing streamflow characteristics and 

spectral patterns, it is found that upstream streamflow is forecasted more accurately than 

downstream streamflow.  

Minimum relative entropy spectral analysis (MRESA) is developed under two 

conditions: spectral power as a random variable (RESAS) and frequency as a random 

variable (RESAF). The exponential distribution was chosen as a prior probability in the 

RESAS theory, and in the RESAF theory, the prior is chosen from the periodicity of 



 

iii 
 

 

streamflow. Both MRESA theories were evaluated using monthly streamflow observed at 

20 stations in the Mississippi River basin, where forecasted monthly streamflow shows 

higher reliability in the Upper Mississippi than in the Lower Mississippi.  

The proposed univariate entropy spectral analyses are generally recommended 

over the classical autoregressive (AR) process for higher reliability and longer forecasting 

lead time. By comparing two MRESA theories with the two maximum entropy spectral 

analyses (MESA) (BESA and CESA), it is found that MRESA provided higher resolution 

in spectral estimation and more reliable streamflow forecasting, especially for multi-peak 

flow conditions. The MRESA theory is more accurate in forecasting streamflow for both 

peak and low flow values with longer lead time than MESA. Besides, choosing frequency 

as a random variable shows advantages over choosing spectral power. Spectral density 

estimated by the RESAF or CESAF theory shows higher resolution than the RESAS or 

BESA theory, respectively, and streamflow forecasted by RESAF or CESAF is more 

reliable than that by RESAS or BESA, respectively.  

Finally, multi-channel entropy spectral analysis (MCESA) is developed for bi-

variate or multi-variate time series forecasting. MCESA theory is verified by forecasting 

long-term standardized streamflow index with El Nino Southern Oscillation (ENSO) 

indicator. SSI was successfully forecasted using multi-channel spectral analysis with 

ENSO as an indicator. The monthly drought series is forecasted for lead times of 4-6 years 

by MCESA.  
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1 INTRODUCTION 

 

Streamflow forecasting is the process of making estimates of streamflow volume 

or discharge in advance, based on available information. Streamflow forecasting plays an 

important role in flood control, reservoir operation and power generation, and provides 

useful information for water resources management. Timely streamflow forecasting 

enables civil protection authorities and public to make adequate preparation to reduce the 

impacts of floods or droughts. Based on the forecasting lead time, streamflow forecasting 

can be categorized as short-term forecasting for lead time less than 3 days, medium-term 

forecasting for 3 to 10 days, and long-term forecasting for longer than 10 days. Long term 

streamflow forecasting is important for reservoir storage and operation or water resources 

management and planning, while short-term forecasting is beneficial for flood warning 

and protection.  

There are generally two classes of forecasting: deterministic methods and 

stochastic methods. Deterministic methods combine all hydrological processes to estimate 

future streamflow through predictor input, such as rainfall and snowmelt. However, as the 

forecasting lead time gets longer, the hydrological processes become more stochastic and 

more uncertainties are associated to predictors. In long-term streamflow forecasting, 

stochastic methods are therefore recommended, and time series analysis is often used 

(Hipel and McLeod, 1994; Noakes et al., 1985).  

On the other hand, understanding time series characteristics of streamflow, such 

as seasonality and periodicity, is the key to improve the skill of streamflow forecasting. It 
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has been shown that spectral analysis is an efficient tool for characterizing the patterns of 

streamflow variation (Labat et al., 2005; Smith et al., 1998), identifying the periodicity of 

streamflow (Cengiz, 2011; Hameed, 1984; Sang et al., 2009; Sang et al., 2012), analyzing 

streamflow discontinuity (Adamowski and Prokoph, 2014), and examining the climatic 

influence on  streamflow variability (Andreo et al., 2006; Kuhnel et al., 1990; Prokoph et 

al., 2012). It has been shown that spectral analysis is capable of extracting significant 

information for understanding the streamflow process and prediction thereof (Fleming et 

al., 2002; Ghil et al., 2002; Labat, 2005; Marques et al., 2006; Molenat et al., 1999). Thus, 

spectral analysis helps improve the reliability of forecasting. 

Entropy, developed in thermodynamics, is a measure of system disorder. Since the 

development of Shannon (1948) entropy and the principle of maximum entropy (POME) 

(Jaynes, 1957a; b), the entropy theory has been widely applied in hydrology (Singh, 1997; 

2011; Singh et al., 2007). However, it was not used for forecasting until Burg in 1960s. 

The development of Burg entropy or maximum entropy spectral analysis (MESA) (Burg, 

1967; 1975) combines spectral analysis and time series analysis, and not only improves 

the resolution of the spectral density but also improves the reliability of prediction of 

streamflow. MESA has been applied to forecast hydrological series and it is recommended 

over classical methods (Krstanovic and Singh, 1989; 1991a; b; Singh, 2013a). Besides, 

there are other types of entropy, such as configurational entropy (Frieden, 1972; Gull and 

Daniell, 1978) and minimum relative entropy (Shore, 1979; 1981), that have been well 

known for signal processing and might be applicable to streamflow forecasting. This study 
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aims to develop methods based on these types of entropy to complete the entropy spectral 

theory for long-term streamflow forecasting. 

Configurational entropy spectral analysis (CESA) is sometimes also referred to as 

maximum entropy method 2 (MEM2) or spectral MESA (SMESA) (Katsakos-

Mavromichalis et al., 1985; Tzannes et al., 1985; Tzannes and Avgeris, 1981) since it is 

developed using the POME like Burg entropy spectral analysis (BESA). Superior to BESA, 

CESA is shown to not restrict to only AR process (Liefhebber and Boekee, 1987; 

Ortigueira et al., 1981). Configurational entropy has been later applied for spectral 

analysis and shown to have a better resolution than BESA for autoregressive moving 

average (ARMA) and moving average (MA) processes, and is comparable to BESA for 

the autoregressive (AR) process (Nadeu et al., 1981). On the contrary, Burg entropy 

appears to be better for white noise, as suggested by experiments on speech synthesis 

(Johnson and Shore, 1983; Katsakos-Mavromichalis et al., 1985). However, neither an 

explicit solution nor an equivalent extrapolation model had been developed until Wu 

(1983) used cepstrum analysis to derive an explicit solution for the configurational entropy.  

Minimum relative entropy (MRE) theory, also called minimum cross-entropy 

(MCE), was introduced by Kullback (1959), which is an information-theoretic measure of 

the dissimilarity between two distributions. Two decades later, Shore (1979; 1981) 

developed the MRE based spectral analysis (MRESA) as an extension of Burg’s maximum 

entropy spectral analysis, where the spectral power was considered as a random variable 

(Singh, 2013b). Later, another version of MRESA was developed by Tzaneess et al. 

(1985), considering frequency as a random variable. The MRE theory can determine the 
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spectra with the maximum value of kurtosis, which is the indicator reflecting the peskiness 

of the spectra (Endo and Randall, 2007). The MRE-based spectra are reported to have 

higher resolution and are more accurate in detecting peak location than other methods for 

spectral computation (Papademetriou, 1998). The theory refines the main frequencies and 

allows detection of very close peaks and does not create artificial peaks (Berger et al., 

1990). When linking to time series analysis, the MRESA theory is equivalent to linear 

prediction with the smallest Itakura-Saito distortion (Gray et al., 1981; Schroeder, 1982; 

Shore, 1981; Shore and Gray, 1982). Beside, MRESA theory reduces the number of 

predictor coefficients by relying on the prior information (Schroeder, 1982). However, the 

MRE theory has only been applied for forward modeling and for solving inverse problems 

in groundwater (Woodbury and Ulrych, 1993; 1996; 1998), but has not been applied to 

streamflow forecasting yet.  

1.1 Objectives 

The main objective of this study is to improve monthly streamflow forecasting 

using entropy theory as well as long term drought forecasting. In general, two types of 

entropy spectral analysis, maximum entropy spectral analysis (MESA) and minimum 

relative entropy spectral analysis (MRESA), are developed by two different random 

variables as shown in Table 1-1. As shown in the table, the configurational entropy 

spectral analysis (CESA) to be developed and Burg entropy spectral analysis (BESA) 

developed by Burg (1967; 1975) form to maximum entropy spectral analysis (MESA).  
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Table 1-1 Entropy spectral analyses used in the study 

Category Entropy 
Entropy spectral 

analysis 
Random variable 

Maximum entropy 

spectral analysis 

(MESA) 

Burg entropy (BE) BESA Frequency 

Configurational 

entropy (CE) 
CESA 

Spectral power 

(CESAS) 

Frequency 

(CESAF) 

Minimum relative 

entropy spectral 

analysis 

(MRESA) 

Relative entropy 

(RE) 

RESAS 
Spectral power 

(RESAS) 

RESAF 
Frequency 

(RESAF) 

 

The BESA was developed with frequency as a random variable, and will be 

revisited in the dissertation. Then the configurational entropy spectral analysis (CESA) 

will be first derived for streamflow forecasting in comparison with the Burg entropy using 

spectral power as a random variable (CESAS) and frequency as a random variable 

(CESAF). The minimum relative entropy spectral analysis (MRESA) will also be derived 

for two different procedures, one for considering spectral power as a random variable 

(RESAS) and the other for considering frequency as a random variable (RESAF). It is 

noted that when no prior information is given, RESAS and RESAF reduce to CESAS and 

CESAF respectively.  
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Finally, multichannel entropy spectral analysis (MCESA) will also be developed 

for long-term drought forecasting using climate indices.  

Thus, the specific objectives of the study are stated as follows: 

1. Develop configurational entropy spectral analysis with spectral power as a 

random variable for monthly streamflow forecasting 

2. Develop configurational entropy spectral analysis with frequency as a random 

variable for monthly high-streamflow and low-streamflow forecasting. 

3. Develop minimum relative entropy spectral analysis considering spectral 

power as a random variable for monthly streamflow forecasting. 

4. Develop minimum relative entropy spectral analysis considering frequency as 

a random variable for monthly streamflow forecasting. 

5. Compare the proposed entropy method with the classical AR method and Burg 

entropy spectral analysis, and compare maximum entropy spectral theories to 

minimum relative entropy spectral theories. 

6. Develop multichannel-spectral analysis for long-term drought forecasting 

1.2 Organization 

The dissertation is organized in the following manner. A brief introduction about 

the study is provided in the first section, followed by literature review of the existing 

techniques. Mathematical preliminaries are provided in the third section, which introduces 

the theories of time series analysis, spectral analysis, cepstrum analysis and Burg entropy 

spectral analysis (BESA). Sections 4 and 5 develop the configurational entropy spectral 

analysis (CESA) for monthly streamflow forecasting with entropy in the form of Shannon 
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entropy. Spectral power is considered as a random variable in Section 4, which yields 

BESA in the end. On the contrary, frequency is considered as a random variable in Section 

5. Sections 6 and 7develop two minimum relative entropy spectral analyses for monthly 

streamflow forecasting. In Section 6, spectral power is considered as a random variable, 

while in Section 7, frequency is considered as a random variable. Section 8 presents a 

comparison of the proposed four entropy spectral analysis methods. The multi-channel 

entropy spectral analysis is developed in Section 9 for long-term drought forecasting using 

ENSO teleconnections. The last section summarizes the dissertation.  
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2 LITERATURE REVIEW 

 

There exists a multitude of methods for streamflow forecasting, which may 

roughly be divided into two categories: deterministic methods and stochastic methods. 

Deterministic methods are process-driven methods that consider streamflow as the output 

of the watershed system. Streamflow is forecasted through the underlying hydrological 

processes in the watershed, which involve rainfall, interception, evapotranspiration, 

infiltration, soil moisture or groundwater storage. Stochastic methods are data-driven 

methods. They identify mathematical connections between input and output without 

considering physical mechanisms of the streamflow process.  

2.1 Deterministic forecasting methods 

Deterministic methods can be roughly divided into rainfall-runoff models, 

watershed models, and hydrologic model-based ensemble streamflow prediction (ESP) 

methods. Watershed models or ESP are dependent on rainfall-runoff modeling. Hence, 

determination of the relationship between rainfall and runoff constitutes basis for 

ensemble streamflow prediction system (Wang et al., 2011).  

Rainfall-runoff models can be categorized into lumped, semi-distributed, or 

distributed models (Sene, 2010; Singh, 1988). These models describe the rainfall and 

runoff relationship based on a combination of physically-based or empirical relations. A 

conceptual rainfall-runoff model can be used to forecast real-time streamflow, short-term 

streamflow and long-term streamflow. Thus, watershed models can be employed for 

forecasting. There are a large number of watershed models developed under different 
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conditions for different uses (Singh, 1995; Singh and Frevert, 2002a; b; 2006) For example, 

the simulation hydrology model (SIMHYD) (Chiew et al., 2002), the Systeme 

Hydrologique Europeen (SHE) (Abbott et al., 1986), TOPMODEL (Beven and Freer, 

2001; Beven et al., 1984) can be used for streamflow forecasting. Because each model is 

developed for specific watersheds or topographies, its application is limited. Besides, the 

uncertainty of future rainfall is another drawback with watershed models.  

ESP uses a conceptual hydrological model to forecast streamflow with weather 

information. A probabilistic forecast of future streamflow was provided by combining 

current snow, soil moisture, river and reservoir condition with historical meteorological 

data into model (Day, 1985). Wood et al. (2005) developed a climate model-based ESP 

approach for seasonal streamflow forecasting, of which precipitation and temperature 

produced from global spectral model were downscaled for use as forcing of the variable 

infiltration capacity hydrologic model. However, it was found that the accuracy was highly 

dependent on the determination of initial catchment state (Wood and Lettenmaier, 2008). 

Besides, applying ESP model required meteorological pre-processing, such as scale 

correction, under-dispersivity correction (Cloke and Pappenberger, 2009).  

2.2 Stochastic forecasting methods 

Stochastic methods have an advantage of using mathematical representation, as 

they avoid to represent the complex streamflow process under different conditions. 

Because of the difficulty of having an accurate knowledge of the streamflow process, 

stochastic methods became more popular in hydrology in the last two decades.  
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The stochastic methods fall into two categories, based on whether forecasting is 

done on other variables. One is the self-projecting approach, which entails univariate 

analysis and uses only past data to uncover its correlation to forecast future values. The 

other is cause-and-effect approach, which generates bi-variate or multivariate analysis by 

linking the series to be forecasted to one or more other series to which it is related. 

2.2.1 Univariate forecasting 

2.1.2.1 Time series model 

Time series analysis is often used for forecasting monthly streamflow (Hipel and 

McLeod, 1994; Noakes et al., 1985).The most widely used time series models are 

autoregressive moving average (ARMA) and its derivatives, including autoregressive 

(AR), autoregressive integrated moving average (ARIMA), periodic ARMA (PARMA) or 

periodic AR (PAR), seasonal ARMA (SARMA) or seasonal AR (SAR), and fractionally 

integrated ARMA (ARFIMA).  

AR and ARMA models are mathematically the simplest for time series forecasting, 

but their application is limited (Carlson et al., 1970; Haltiner and Salas, 1988; Jones and 

Brelsfor, 1967; Salas and Obeysekera, 1982). AR and ARMA were applied to forecast 

annual streamflow (Carlson et al., 1970; Hipel et al., 1977; Mcleod et al., 1977), but not 

directly applicable to streamflow with a time scale of less than 1 year. Because AR and 

ARMA were built under the assumption of stationary, though streamflow under 1 year 

usually exhibited strong seasonality or periodicity. Thus, ARIMA was developed to deal 

with the non-stationarity of the flow (Frausto-Solis et al., 2008). Instead, periodic models 

PAR or PARMA (Noakes et al., 1985; Salas and Obeysekera, 1992), SARMA (Salas et 
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al., 1982) were used for monthly streamflow forecasting. These models are sometimes 

even used for daily or shorter time scale streamflow forecasting (Abrahart and See, 2000; 

Toth et al., 2000). Later SARIMA was used to forecast monthly drought index with 2 or 

3 month lead time (Durdu, 2010; Mishra and Desai, 2005; Modarres, 2007). ARFIMA 

was developed to deal with streamflow with long-memory condition, and applied to 

simulate monthly flow (Montanari et al., 2000; Ooms and Franses, 2001). However, the 

underlying linear assumption of above methods is the drawback and sometimes limits their 

application (Elshorbagy et al., 2002). 

2.1.2.2 Kalman filter 

Additional to the above time series methods, Kalman filter, also known as linear 

quadratic estimation, is an algorithm for forecasting future time series based on past 

observations developed by Kalman (1960). Kalman filter method operates recursively on 

noisy input data to produce a statistically optical estimate of underlying process. It was 

used for long-term periodic, daily, real-time forecasting, but all parameter matrices must 

be known (Bergman and Delleur, 1985a; b; Jimenez et al., 1989; Kitanidis and Bras, 1980a; 

b). Later, Ensemble transform Kalman filter (EnKF) approach is used to create initial 

uncertainties EPS forecast (Bishop et al., 2001; Cloke and Pappenberger, 2009; Reichle et 

al., 2002; Wei et al., 2006). However, standard implementation of EnKF is shown to be 

inappropriate because of the nonlinear states between the model and observed streamflow, 

and Clark et al.(2008) suggested transforming streamflow into log space. 
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2.1.2.3 Artificial neural networks 

An artificial neural network (ANN) model is constructed from a flexible 

mathematical structure, thus it identifies the complex non-linear relationship between 

input and output data sets without understanding the nature of the process. Later, the 

accuracy in forecasting short-term streamflow had been increased by wavelet analysis in 

conjunction with ANN, though it is limited to a lead time less than a week (Adamowski, 

2008; Kisi, 2009; 2010; Pramanik et al., 2011; Shiri and Kisi, 2010). ANN methods had 

an advantage in short-term forecasting (daily streamflow) over ARMA models, but they 

did not provide an explicit characterization and are unable to quantify physical conditions 

(Behzad et al., 2009; Frausto-Solis et al., 2008; Wu et al., 2009). 

2.1.2.4 Entropy spectral method 

The development of maximum entropy spectral analysis (MESA) by Burg (1967; 

1975) entailed time series forecasting with entropy theory. It had been employed for long-

term streamflow forecasting (Krstanovic and Singh, 1991a; b) and has been shown to have 

an advantage in long-term streamflow forecasting over traditional time series methods. 

Besides, the Burg-Levinson algorithm developed from MESA improved the prediction 

efficiency. However, due to the weakness in determining multi-peak spectral density for 

non-stationary conditions (Boshnakov and Lambert-Lacroix, 2012), MESA sometimes 

did not work well for monthly streamflow with strong seasonal and multi-periodic 

characteristics.  
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2.1.2.5 Nearest neighbor method 

The nearest neighbor method (NNM) is a local approximation method. It divides the 

process into many subsets, if which the process has similar patterns, and then locally 

forecasts with a nonparametric or parametric model. It is good at approximation of 

nonlinear dynamics, and thus has an advantage in forecasting streamflow. The 

nonparametric NNM was applied to rainfall-runoff forecasting and shown comparable to 

ARMA with exogenous input (ARMAX) (Karlsson and Yakowitz, 1987a; b; Yakowitz, 

1987). Later, it was found that the nonparametric NNM performed better than ARMA in 

one-step ahead daily discharge forecasting (Galeati, 1990) or is equivalent to ARMA for 

real-time flood forecasting (Toth et al., 2000). However, the nearest neighbor method is 

suited for large-sample time series and is limited to predict the values no higher than 

historic observations (Galeati, 1990; Karlsson and Yakowitz, 1987a; Toth et al., 2000).  

2.2.2 Multivariate forecasting 

Multivariate forecasting enables consideration of related variables, like rainfall, 

snowmelt, or other climate indices in streamflow forecasting. There are generally two 

categories that show how to use multi variables. One is by using a statistical relationship 

between climate series with streamflow (Chiew and McMahon, 2002; Sharma, 2000; 

Sharma et al., 2000; Westra et al., 2008), and the other by using a dynamic climate model 

(Wang et al., 2009). Involving climate indicators, a longer and more flexible range can be 

obtained for multi-variate forecasting, but the result is sensitive to the predictors so they 

should be carefully chosen. 



 

14 
 

 

Statistical relationships are widely used for multivariate forecasting. Regression 

analysis is one of the oldest methods for streamflow forecasting. Multiple regression 

models were developed to forecast monthly streamflow (Garen, 1992) or to forecast 

seasonal streamflow with snowpack, precipitation, and temperature(Pagano et al., 2009). 

With exogenous input, ARMA with exogenous input (ARMAX) model was used to 

forecast streamflow generated with additional rainfall input (Hannan and Kavalieris, 

1984). MESA with multi-channel spectral analysis was applied to real-time streamflow 

forecasting by considering rainfall and streamflow as a bivariate vector (Krstanovic and 

Singh, 1993a; b).  

A dynamic climate model was used to produce rainfall for forecasting seasonal 

streamflow by the Bayesian joint probability model (Wang and Robertson, 2011; Wang et 

al., 2009). It is a statistical approach for seasonal streamflow forecasting, where future 

streamflow was generated using Markov chain Monte Carlo samplings.  
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3 MATHEMATICAL PRELIMINARIES 

 

This section introduces background theories which are fundamental to the 

dissertation study. In the first part, time series analysis is introduced with basic concepts 

of autocorrelation and linear prediction. Spectral analysis is presented in the second part 

with its definition and link to the time series variable. Cepstrum analysis introduced in the 

third part, has never been applied in hydrology, and will be used for developing 

configurational entropy spectral analysis (CESA) and minimum relative entropy spectral 

analysis (MRESA). The last part reviews Burg’s maximum entropy spectral analysis 

(MESA). 

3.1 Time series analysis 

Consider observations of a random variable y over time t, and define yt (y1, y2, …, 

yT), a set of observations generated sequentially in time, t=1,… , T, where T is the total 

number of observations. 

For a stationary process, it has a constant mean estimated by 
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and a constant variance, defined by  
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For computational simplicity, data is often normalized as 

/)(* yyy          (3-3) 
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so that the mean of the y* values is 0 and the variance is 1. For simplicity, from now 

onwards the normalized data will be represented by y instead of y*.  

3.1.1 Autocovariance and autocorrelation function 

The autocovariance for a given lag n is defined as 
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when n=0, R0 becomes variance: 
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Autocorrelation is obtained by dividing the autocovariance by variance, and varies 

from -1 to 1. The larger absolute value of autocorrelation means the values of variable are 

more correlated. 
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Specially, when n=0, autocorrelation yields 

1/ 000  RR         (3-7) 

Then the n by n autocorrelation matrix  is defined as 
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It is seen from equation (3-8) that each element in the matrix is jiji  , . It is noted 

that the each descending diagonal from left to right is constant, thus the autocorrelation 

matrix   is a Toeplitz matrix. 

3.1.2 Spectral analysis 

The streamflow time series yt can represented with a wave-like function as the sum 

of sine and cosine functions as 
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 (3-9) 

where frequency Tkfk / . Equation (3-9) is also called Fourier series where αk, βk are 

the Fourier coefficients, which can be computed as 
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It is noted that when considering normalized data,
 
α0=0 and hence it can be ignored. 

Thus, spectral power at a given frequency is defined as  
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For each frequency fk, there is one corresponding spectral power. The highest 

frequency is 0.5 cycles per time interval since the smallest period is 2 intervals. For 

example, if the time interval is considered 1 month in the case of monthly streamflow, the 

smallest period of the cycle T is 2 months. Accordingly, f=1/T giving the largest frequency 

as 0.5. 

The frequencies Tkfk / are called harmonics of the fundamental frequency 1/N, 

and allow f to vary continuously from 0 to 0.5. Thus, with continuous frequency, the power 

spectrum is defined as 
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where  
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The spectral density is defined by dividing the power spectrum by variance, which 

is 

2/)()( fGfp          (3-14) 

where the variance 2 is computed from equation (3-2). Thus, spectral density can be 

considered as normalized power spectrum. 
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It is noted that the power spectrum or the spectral density can be linked with 

autocovariance/autocorrelation function, respectively, as follows:  
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It may note here that integration of G(f) over f between limits 0 to 0.5 is 
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and the integration of p(f) over f between limits 0 to 0.5 is 
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It can be found from equations (3-16) that the power spectrum or the spectral 

density is in the form of the Fourier transform of the autocovariance or autocorrelation. 

Thus, inversely, autocovariance or autocorrelation can be written using the inverse Fourier 

transform as: 
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3.1.3 Linear prediction 

Univariate time series forecasting predicts future events from past information. A 

linear prediction method assumes that the future series yT+t , for t>0, T>0 can be forecasted 

using a linear combination of past values, which can be written as  
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where aj is the prediction coefficient, and m is the model order. Equation (3-18) is also 

recognized as the autoregressive (AR) model.  

The mean squared error of prediction can be denoted as  
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Substituting nŷ  with equation (3-18) yields 
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where 10 a . It can be seen from equation (3-20) that to minimize the mean squared 

error, the right hand side of equation (3-20) must satisfy that 
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Thus,  
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It is noted that equation (3-21b) is called the Yule-Walker equation (Yule, 1927). 

The spectral density of the linear prediction is defined as 
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3.1.4 Levinson algorithm 

The prediction coefficient of Equation (3-21) can be computed from either 

Newton’s method or Levinson algorithm (Levinson, 1946). The Levinson algorithm, also 

called the Durbin-Levinson algorithm, is a recursive algorithm and has an advantage over 

Newton’s method as it involves the order of N2 operations with memory storage on the 

order of N, and is faster than the general Gaussian elimination procedure.  

The Levinson algorithm states that if yt is a zero mean stationary process with 

autocovariance function R such that R0>0 and 0hR  as h , then the forecasting 

coefficients jna ,  (nth order jth coefficient) and mean squared errors n  defined by 

equations (3-18) and (3-19) satisfy 11,1 a , 00 R , 
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and )1( 2
,1 nnnn avv   .        (3-24) 

By repeating equations (3-22), the coefficients are solved recursively from the values of 

previous order. The detailed proof can be found in most time series books, such as Box 

and Jenkins (1970) and Brockwell and Davis (1987). 
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3.2 Cepstrum analysis 

Cepstrum, by its definition, is the inverse Fourier transform of the logarithm of 

spectrum. It is a measure of the rate of change in the spectrum bands, and is an efficient 

technique along with spectral analysis for separation and recovery of time series, as the 

homomorphic characteristics of time series are reminiscent of the cepstrum (Oppenheim 

and Schafer, 2004). 

3.2.1 Definition 

For a given streamflow time series y(t), cepstrum can be computed using the 

following steps: 

First, taking the Fourier transform of the original series y(t), one obtains 
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where Y(f) is the Fourier transform of y(t).  

Second, taking the inverse Fourier transform of the log-magnitude of equation (3-

25) one obtains the cepstrum of the Fourier transform as 
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It is stated in equation (3-15) that the spectral density is the Fourier transform of 

the autocorrelation, )]([)( nFTfp  . Thus, the cepstrum of autocorrelation can be 

defined by the inverse Fourier transform of the log-magnitude of p(f), which yields 
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However, it is known that the spectral density by definition can also be written as 
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Thus, the following relationship between the cepstrum of the series and the cepstrum of 

the autocorrelation can be obtained: 
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3.2.2 Cepstrum analysis for finite data 

Consider only the positive part of the autocorrelation function )(n , for n>0 which 

is dependent on the one-sided autocorrelation instead of two-sided autocorrelation as 
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and let e(n) be the cepstrum estimated from )(* n , which is 
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where the spectral density p*(f) is obtained by Fourier transform from the positive half of 

)(n , for n>0. It is noted that p*(f) is analytical. Equation (3-30) ensures that ρ(n) is causal 

and stable. Thus, it is a minimum-phase function and for a minimum phase system the 

input and output are uniquely determined. It means if e(n) is considered as the output from 

equation (3-30) and ρ(n) as the input, e(n) can be uniquely determined from ρ(n). Let us 

define a two-sided output in the way such that  
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In such a way, )(ˆ n  can also be uniquely determined by )(n  and vice versa.  

Since p*(f) is analytical, )(*log fp  can also be considered as analytical. In such a 

case, following Oppenheim and Schafer (1975), there is the following relationship 

between the derivatives of z transformed )(ˆ n  and ρ(n): 
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By multiplying z on both sizes of equations, Oppenheim and Schafer (1975) show equation 

(3-33) is equivalent to 
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Then, the following equation can be obtained from equation (3-34): 
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Taking the inverse z transform of equation (3-32), one obtains  
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Dividing equation (3-34) by n, the relationship between input and output becomes 
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Transforming equation (3-37) with the use of equation (3-32), the autocorrelation 

function can be obtained from the following recursive formula (Oppenheim and Schafer, 

1975): 
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On the other hand, cepstrum e(n) can be obtained from the reverse relation of 

equation (3-38) as: 
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    (3-39) 

Thus, equations (3-38) and (3-39) explain the relationship between autocorrelation and 

cepstrum for finite time series. 

3.3 Burg entropy spectral analysis 

Burg (1967; 1975) defined entropy in the frequency domain and developed what 

is now called Burg entropy theory (BE). He developed “maximum entropy spectral 

analysis (MESA)” for time series forecasting, which is referred to as Burg entropy spectral 

analysis (BESA) in this study. BESA extends autocorrelation in a manner that maximizes 

the entropy of the underlying process. For a stationary random process BESA computed 

spectral power from autocorrelation of given lags, without assuming autocorrelation of 

unknown lags as zero (Edward and Fitelson, 1973). It had an advantage over classical 

methods in computational ease, the short and smooth spectra with a high degree of 

resolution, and the robustness of the estimates and their stability. As a result, it had been 

widely applied to spectral analyses of geomagnetic and climate indices, surface air 
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temperature, tide levels, precipitation, and runoff series (Currie, 1973; Dalezios and 

Tyraskis, 1989; Ghil et al., 2002; Hasanean, 2001; Padmanabhan and Rao, 1988; Pardo-

Iguzquiza and Rodriquez-Tovar, 2006; Sang et al., 2009; Sang et al., 2012; Tosic and 

Unkasevic, 2005; Wang et al., 2004). Besides, Burg (1967; 1975) modified the Levinson 

algorithm provided a new recursive method to compute the AR parameters, which was 

noted as Burg-Levinson algorithm. The development of BESA and the Burg-Levinson 

algorithm is reviewed in this section. 

3.3.1 Definition of Burg entropy 

Burg (1967; 1975) defines entropy as 

 



W

W

dffpfH )(ln)(        (3-40) 

where W=1/(2Δt) is the Nyquist fold-over frequency and f is the frequency that varies 

from –W to W, Δt is the sampling period, and p(f) is the spectral density function. Here f 

is treated as a random variable. For example, for monthly streamflow, the sampling period 

is 1 month, thus Δt=1month, and W=1/(2Δt)=0.5, and the frequency f varies from -0.5 to 

0.5.  

3.3.2 Specification of constraints 

From the definition of autocorrelation function 
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where N is usually taken from ¼ up to ½ of the total series. The basic assumption here is 

that the stationary time series being analyzed is a random or an unpredictable time series 

that is consistent with the measurement from equation (3-41). 

3.3.3 Determination of spectral density 

To obtain the least-biased spectral density, the entropy defined in equation (3-40) 

is maximized subject to equation (3-41) according to the principle maximum entropy 

theory (Jaynes, 1957a; b). The Lagrange function can be written as 
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Taking the partial derivative of L(f) with respect to p(f), and equating the derivative to 0, 

one gets 
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Thus, the spectral density becomes
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Let tfiez  2 .        (3-45) 

Then, tzdfidfteidz tfi     22 2  and 
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. Equation (3-44) can be 

written by replacing e-i2πfΔt by z , which is called z transform, expressed as 
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It is noted that the spectral density in equation (3-44) obtained from BESA is in 

the same form of linear prediction as shown in equation (3-22). Thus, by equating the two 

equations,  
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Thus, the following relationship between the prediction coefficient and Lagrange 

multipliers: can be found as 
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where as are the prediction coefficients and as* are their complex conjugates. 

3.3.4 Estimation of Lagrange multipliers 

The Lagrange multipliers can be computed by either inputting equation (3-46) into 

the constraint equation (3-41) or from equation (3-48) with the prediction coefficients first. 

Instead of using equation (3-46), substituting equation (3-47) into equation (3-41), one 

obtains 
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where PN=σ2/Δt. Multipling equation (3-46) by an
* and summing up for n from 0 to N, 
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Cauchy’s integral formula gives 
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Thus, the integration of equation (3-50) yields 
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Since PN is real, taking the conjugate of equations (3-52) yields 
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which can be written in matrix form as: 
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Equation (3-54) is the matrix form of equation (3-21). It is to be noted that the 

autocorrelation matrix is positive definite only if PN is positive, when PN=0, the matrix is 
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singular. Again, like the linear prediction method, PN and an can be solved for using 

Newton’s method, the Durbin-Levinson algorithm or the Burg-Levinson algorithm 

developed by Burg (1967). 

3.3.5 Levinson-Burg algorithm 

It is shown in Section 3.1.4 that the Levinson algorithm [equation (3-23)] uses the 

coefficient and error computed in the previous order into the computation of next order. 

Burg improved the Levinson algorithm by computing forward and backward prediction 

error together to update the coefficient of next order(Collomb, 2009; Lin and Wong, 1990). 

The forward prediction error can be defined as 

1121 ...   mmmm yyayaf        (3-55) 

and backward prediction error as 
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Then, the mean squared error can be computed from weighing forward and backward 

errors by 
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Minimizing equation (3-57), one has 
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Then Burg (1967) suggested to use equation (3-58) instead of (3-23a) to compute the 

prediction coefficients. 

3.3.6 Extension of autocorrelation 

Burg (1967; 1975) suggested the extension of autocorrelation under two 

circumstances. First, when matrix R(N) is singular, one can have 
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Thus, autocorrelation can be extended as 
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Otherwise, if matrix R(N) is non-singular, one can have 
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In this case, autocorrelation is extended as 
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3.3.7 Time series forecasting 

Time series can be forecasted using the coefficient of extended autocorrelation. To 

prove, let us assume a linear prediction equation as 
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The mean square error of prediction then becomes 
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If autocorrelation matrix is positive definite, one has 
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Thus, using equation (3-60),  
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Thus, by rearranging one obtains 
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It is clear that the minimum value occurs when bn=an and MSE becomes υN, which 

means that the forecast coefficients need to be equal to the coefficients associated with 

extended with autocorrelation so that prediction satisfies the least square prediction. 

3.4 Goodness of fit measurements 

Goodness of fit measures are needed to evaluate the performance of a model and 

the are given in this section.  
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3.4.1 Itakura-Saito distortion 

The performance of spectral estimation will be evaluated by Itakura-Saito 

distortion, which is a measure of the perceptual difference between an original spectrum 

and its estimate. The distortion is defined as 
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where p(f) represents the spectral density from FFT and )(ˆ fp is the estimated spectral 

density. The smaller value represents a better fit. 

3.4.2 Relative error 

The relative error, sometimes called absolute error, provides the average 

magnitude of differences between observed values and predicted values relative to 

observed values. It is computed as 
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where Qo(i) is the i-th observed streamflow; and Qf(i) is the i-th forecasted streamflow. It 

is noted that relative error is dimensionless. 

3.4.3 Root mean square error 

RMSE also represents the difference between observed and predicted values, 

however, it is scale-dependent. 
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where Qo(i) is the i-th observed streamflow; and Qf(i) is the i-th forecasted streamflow. 
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3.4.4 Coefficient of determination 

The coefficient of determination is defined as the square of the coefficient of 

correlation. It represent how well data fit the model. It ranges between 0 and 1, and its 

high values indicate better prediction. 
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where Qo(i) is the i-th observed streamflow, Qf(i) is the i-th forecasted streamflow,  and 

oQ and fQ are the average values of observed and computed discharges, respectively. 

3.4.5 Nash-Sutcliffe Efficiency 

The Nash-Sutcliffe efficiency coefficient, defined by Nash and Sutcliffe [1970], 

ranges from negative infinity to 1. Higher values of NSE represent more agreement 

between model predictions and observations, and negative values indicate the model is 

worse than the mean value as a predictor (Nash and Sutcliffe, 1970; Schaefli and Gupta, 

2007). However, it is known that r2 and NSE are more sensitive to extreme values than the 

observations near the mean (Legates and Davis, 1997; Legates and McCabe, 1999). 

Therefore, NSE leads to overestimation of peak flows and underestimation of low flows. 

Thus, a modified NSE was suggested by Krause et al. (2005) and Legates and McCabe 

(1999) for a better overall evaluation, which is 
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where Qo(i) is the i-th observed streamflow, Qf(i) is the i-th forecasted streamflow, and 

oQ  is the average values of observed discharge.  
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4 CONFIGURATIONAL ENTROPY SPECTRAL ANALYSIS WITH 

SPECTRAL POWER AS A RANDOM VARIABLE 

 

The maximum entropy spectral analysis was introduced in the previous section. 

One may noted that the definition of entropy Burg (1967) used was not the form often 

used. The Burg entropy is defined as the integration of the logarithm of the probability of 

frequency, however, the entropy often used is the expectation of the logarithm of the 

probability, which is in the form of Shannon (1948) entropy. Thus, one may wonder if it 

would be possible to use the form of Shannon entropy, which is called configurational 

entropy in spectral analysis introduced by Frieden (1972) and Gull and Daniell (1978), to 

derive the maximum entropy spectral analysis. Thus, in the following two sections, the 

maximum entropy spectral analysis will be developed using the configurational entropy 

with spectral power and frequency as a random variable in each section.  

4.1 Development of configurational entropy spectral analysis 

The configurational entropy spectral analysis (CESAS) is developed using spectral power 

as a random variable. Therefore, unlike the Burg entropy spectral analysis, the probability 

density function of spectral power is first obtained by maximizing entropy, and then the 

spectral density. It consists of the following steps: 1) define the entropy, 2) construct the 

constraints, 3) determine the probability density function, 4) determine the Lagrange 

multipliers, 5) determine the spectral power, 6) extend the autocorrelation or 

autocovariance, and 7) forecast streamflow. 
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4.1.1 Definition of entropy 

Consider the spectral power xk defined in equation (3-11) as a random variable. 

Let the streamflow time series be described by ),...,,( 21 nxxxx 


 and the joint probability 

density by )( xp
 . In order to determine the probability density, each p(xk) is considered 

independent identically distributed. Thus, entropy is defined as 
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However, it was shown by Gray (1977) if xk came from an N-dimensional Gaussian 

distribution, where the joint distribution is given by  
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where   is autocorrelation matrix defined in equation (3-8). Substituting equation (4-2) 

into equation (4-1) yields  
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It was shown in the section 3.1.2 that the autocorrelation is linked to the spectral density. 

Thus, replacing the autocorrelation in equation (4-3) with spectral density as shown in (3-

12), the entropy will yield as  



W

W

dffpfH )(ln)( , which is the Burg entropy. 

Nevertheless, how the configurational entropy spectral analysis yields Burg entropy 

spectral analysis will be shown through the derivation of maximum entropy theory. 

4.1.2 Specification of constraint 

First of all, the probability density function must satisfy that 
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The other constraints are constructed from the relationship between spectral power 

and autocorrelation. Let Sk denote the expected value of xk, written as 
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It is shown in Section 3.1.2 that autocovariance can be expressed as the inverse 

Fourier transform of Sk as 
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where )2exp( krk tfirc   , r is the lag, t  is taken as 1 month for monthly streamflow, 

and N is the largest lag for given autocorrelation or autocovariance, usually taken as ¼ or 

½ of streamflow length T. Substituting equation (4-5) into equation (4-6), the probability 

density function is linked to the autocovariance as 
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Thus, the autocovariance function from lag –N to N with equation (4-7) with equation (4-

4) are considered as 2N+2 constraints for applying the entropy theory.  

4.1.3 Determination of distribution of spectral power 

The probability density function is computed by maximizing entropy using the 

method of Lagrange multipliers. Using constraints in equations (4-4) and (4-7), the 

Lagrangian function can be written as 
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where λr are Lagrange multipliers. Taking the partial derivative with respect to )( xp
 , and 

equating the derivative to zero, one gets 
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Thus, the least-biased distribution of spectral power becomes 

]exp[)(
1

0 



n

k
rkk

N

Nr
r cxxp 

       (4-10) 

4.1.4 Determination of Lagrange multipliers 

It is noted from the equation (4-10) that the spectral power estimated by 

maximizing the entropy involves Lagrange multipliers. To compute the Lagrange 

multipliers, equation (4-11) is substituted into constraints equations (4-4) and (4-7). One 

obtains 
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and  
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It is shown that 2N+2 nonlinear equations need to be solved for computing the 

Lagrange multipliers. 

4.1.5 Determination of spectral power 

The expected spectral power can be computed from 
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Let ]exp[ 0A , then equation (4-10) can be written as 
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Integrating equation (4-14) for xk over 0 to infinite yields 
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Thus,   
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Thus, inputting equation (4-16) into equation (4-14) becomes multi-variate exponential 

distribution as 
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Thus, the spectral power can be solved for by inputting (4-17) into equation (4-13), 

which yields 


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It is noted that equation (4-18) is identical to that derived from the BESA in equation (3-

47).  
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4.1.6 Extension of autocovariance 

It is seen from equation (4-18) that the derived spectral power also follows the form of 

linear prediction defined in equation (3-22) as does BESA. Thus, equation (4-18) can be 

further expanded as 
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where )2exp( ktfirz   , and an are forecasting coefficients, which satisfy  







rN

k
krkr aa

0

*
2

1


         (4-20) 

Furthermore, the extension of autocovariance follows a linear extension as 

11211   mNmNNN RaRaRaR        (4-21) 

4.1.7 Forecast 

It is shown in Section 3.3.7 that using the coefficient for extending the 

autocorrelation in equation (4-22) to weigh the time series yields the least squared 

prediction (Burg, 1975; Krstanovic and Singh 1991b). Thus, for stationary normalized 

time series, forecasting follows the way of extending the autocorrelation or the 

autocovariance function as:  

11211   mTmTTT yayayay       (4-22) 

where m is the order of forecasting model, which, based on the number of previous lags, 

will be used for forecasting the future, and is identified by the Akaike information criterion 
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(AIC) or Bayesian information criterion (BIC) (Box and Jenkins, 1970; Hipel and McLeod, 

1994).  

4.2 Application 

4.2.1 Data description 

The proposed derivation of Burg entropy spectral analysis was verified using 

observed streamflows from the U.S. Geological Survey (USGS) website. Five stations 

were selected from Minnesota River, Upper Mississippi River, Iowa River, Des Moines 

River and Illinois River, which were listed in Table 1 along with their drainage areas and 

locations.  

 

Table 4-1 Selected stations from Mississippi River watershed 

Location Station Area (km2) Latitude Longitude
Minnesota River  05301000 10489 45°01'17" 95°52'05" 

Upper Mississippi River  05420500 221704 41˚46'50'' 90˚15'07'' 
Iowa River  05449500 1111 42°45'36" 93°37'18" 

Des Moines River  05476000 3237 43°37'06" 94°59'05" 
Illinois River  05543500 21391 41°19'37" 88°43'03" 

 

The selected five stations are distributed over the whole Mississippi River 

watershed, and the drainage area varies from 1,111 km2 to 221,704 km2. Thus, streamflow 

characteristics are quite different from station to station. Basic statistics of streamflow of 

Mississippi River are listed in Table 2 that shows that averaged monthly streamflow 

discharge varies from 9 m3/s to over 1700 m3/s and the standard deviation varies from 4.8 

m3/s to 570 m3/s. The average peak streamflow is 1.4 to 2.9 times the mean streamflow.  
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Table 4-2 Streamflow characteristics 

Location 
Mean 
(m3/s) 

Standard 
deviation 

(m3/s) 

Peak 
(m3/s) 

Peak/mean 

Minnesota River  67.0 15.8 105.4 1.6 
Upper Mississippi River 1693.8 566.1 2877.5 1.7 

Iowa River  9.3 4.8 26.8 2.9 
Des Moines River  13.7 9.1 37.0 2.7 

Illinois River  375.1 86.2 531.4 1.4 
 

4.2.2 Parameter estimation 

The coefficients of prediction by CESAS and BESA theories are computed for the 

Minnesota River, and are listed in Table 4-3. The prediction coefficients of BESA were 

estimated from the Levinson-Burg algorithm, while the prediction coefficients of CESAS 

were obtained by solving equation (4-20) numerically. As shown in the table, the 

difference was minimal for two methods, which is less than 0.001. However, the 

computing speed was faster using the Levinson-Burg algorithm for BESA. The recursive 

Levinson-algorithm is more efficient, as it involves the order of N2 operations with 

memory storage on the order of N comparing to the order of N3 operations by Newton’s 

method for solving nonlinear equations. 

 

Table 4-3 Prediction coefficients estimated using BESA and CESA 

Prediction coefficient BESA CESAS Difference 

a0 1.000 1.000 0.000 
a1 0.462 0.462 0.000 
a2 0.182 0.181 -0.001 
a3 -0.043 -0.043 0.000 
a4 0.153 0.153 0.000 
a5 -0.238 -0.237 0.001 
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Table 4-3 Continued  

Prediction coefficient BESA CESAS Difference 
a6 0.039 0.039 0.000 
a7 0.068 0.068 0.000 
a8 -0.078 -0.078 0.000 
a9 -0.033 -0.034 -0.001 
a10 -0.055 -0.054 0.001 
a11 0.036 0.036 0.000 
a12 0.686 0.686 0.000 

 

4.2.3 Results and comparison 

Streamflow was forecasted using equation (4-22) by CESAS. Figure 4-1 plots the 

forecasted streamflow in the Mississippi watershed with 90% confidence intervals. The 

forecasting lead year varied from 1 year to 3 years based on the characteristic of 

streamflow. For rivers like the Upper Mississippi River with sharp repeated peaks every 

12 months, CESAS was capable to forecast with high r2 over 0.9 for up to 3 year lead time. 

But for the Minnesota River, where peak streamflow is less significant, CESAS only 

forecasted for 1 year lead time with r2 of 0.766.  

Though forecasted streamflow did not fit the observed values exactly, most of the 

observed values fell inside the 90% confidence intervals. For example, the mean of 

forecasted streamflow in Minnesota River turned out as 63.1 m3/s, which was 5.7% less 

than the observed values. The peak flow in April was 93.4 m3/s, which was 11.3% lower 

than the observed value. Nevertheless, all the observations fell between the upper and 

lower 90% confidence intervals, as shown in Figure 4-1. However, there’s an exception 

for Iowa River. Streamflow in Iowa had an unexpected peak streamflow of 26.8 m3/s 

during the second lead year, which exceeded by 38.5% over the past peak streamflow. In 
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this case, the forecasted streamflow was 12.75 m3/s and the upper 90% was 17.1 m3/s, still 

smaller than the observed value. It implies that forecasted streamflows with CESAS were 

not able to capture the irregular changes in the time series and may miss some unexpected 

large peaks. 

On the other hand, CESAS was not good at forecasting streamflow in low flow 

season. It can be seen from Des Moines River plotted in Figure 4-1 that streamflow in this 

river does not monotonically decrease after the peak, but there is another small peak during 

the low flow season. In this case, CESAS forecasted streamflow higher than observation, 

and the differences between the observed values and the forecasted values became larger 

as lead time increased. As a result, the observed values fitted the lower 90% confidence 

intervals for the third lead year as shown in Figure 4-2.  

Forecasted errors are computed and plotted versus the lead time in Figure 4-2. It is 

seen from the figure that errors for the Upper Mississippi River had the most random 

pattern, which suggested that  forecasting by CESAS for this river was consistently well 

during the lead time of 3 years. However, forecasted errors for Iowa River and Des Moines 

River increase over time, which suggests that CESAS would not be valid for longer lead 

time forecasts for these rivers. 
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Figure 4-1 Forecasted streamflow with 90% confidence intervals 
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Figure 4-2 Forecasted errors using CESAS 
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The forecasted results for all five stations are summarized in Table 4-4. The results 

showed good forecasting by proposed CESAS. The RE values were around 0.1, which 

means that the forecasting error was around 10%. The r2 values for all the rivers were 

above 0.7, which was even higher than 0.9 for Upper Mississippi River. Besides, the NSE 

values for all cases were higher than 0.4.  

 

Table 4-4 Measures of forecasting results for five stations 

Location RE RMSE r2 NSE 
Minnesota River 0.083 7.320 0.766 0.484 

Upper Mississippi River 0.072 163.578 0.914 0.737 
Iowa River 0.129 3.091 0.872 0.675 

Des Moines River 0.106 4.661 0.729 0.576 
Illinois River 0.069 30.218 0.872 0.658 

 

The prediction coefficients obtained by BESA and CESAS methods were about 

the same, with differences less than 0.001. As a result, streamflows forecasted by the 

BESA and CESAS theories coincided, as shown in Figure 4-3. No difference was found 

in forecasting streamflow for an accuracy of 0.001 m3/s for rivers from the Mississippi 

watershed and BESA and CESAS methods shared the same confidence intervals as shown 

in Figure 4-3. The drawbacks of CESAS in forecasting irregular flow of dry season in Des 

Moines River and non-normal streamflow peak in Iowa River still occurred in the BESA 

forecasting. It suggested that the derived CESAS theory was completely identical to the 

BESA theory.  
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Figure 4-3 Streamflow forecasted using the CESAS and BESA methods 

 

4.3 Summary 
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one estimated from BESA. Besides, CESAS had the drawbacks as with BESA in 

forecasting streamflow in low flow season and unexpected peak flows. However, the 

prediction coefficient was estimated from solving nonlinear equations, and the computing 
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5 CONFIGURATIONAL ENTROPY SPECTRAL ANALYSIS WITH 

FREQUENCY AS A RANDOM VARIABLE* 

 

In this section, configurational entropy spectral analysis (CESAF) is developed 

with frequency as a random variable. Development of CESAF does not need the spectral 

power to be Gaussian as Burg’s (1967; 1975) BESA does. Liefhbber and Boekee (1987) 

showed that CESAF was not restricted to the AR process in contrast to BESA, which 

suggested that CESAF could be used for a wider range of streamflow conditions. It was 

found that the configurational entropy was shown to have better resolution than BESA for 

computing spectral density of autoregressive moving average (ARMA) and moving 

average (MA) processes, and comparable to BESA for that of the autoregressive (AR) 

process (Nadeu et al., 1981; Ortigueira et al., 1981). On the contrary, BESA appeared to 

be better for white noise, as suggested by experiments on speech synthesis (Johnson and 

Shore, 1983; Katsakos-Mavromichalis et al., 1985). However, due to the complexity in 

computing CESAF, it was not widely used until explicit solution was developed by Wu 

(1983), which requires the underlying process to be real, causal, and minimum phase. 

Since CESAS turned out to be as the same method as BESA in the previous section, 

CESAS will be referred as BESA, and CESAF will be referred as CESA henceforth. In 

this section, the CESA theory is developed for monthly streamflow forecasting, and 

compared to the BESA for forecasting. 

                                                 
* This section is reprinted with permission from “Configurational entropy theory for streamflow forecasting” 
by Cui, H. and Singh, V.P., 2015, Journal of Hydrology, 521(0):1-17, copyright 2014 by Elsevier B.V.  
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5.1 Development of configurational entropy spectral analysis 

The development of configurational entropy spectral analysis (CESA) theory with 

frequency as a random variable and its application to streamflow forecasting involve 

following steps: (1) Define configurational entropy, (2) construct constraints, (3) derive 

maximum entropy-based spectral density, (4) compute the Lagrange multipliers, (5) 

extend the autocorrelation function, and (6) forecast streamflow time series. Cepstrum 

analysis is used to compute the Lagrange multipliers and relate them to forecasting 

coefficients.  

5.1.1 Definition of configurational entropy 

Let frequency f be considered a random variable, and the normalized spectral 

density p(f) be considered its probability density function (pdf). Then, configurational 

entropy, H(f), can be defined as (Frieden, 1972; Gull and Daniell, 1978): 





W

W

dffpfpfH )](ln[)()(       (5-1) 

where W is the Nyquist frequency. Equation (5-1) defines the entropy of the spectral 

density, which accounts for the uncertainty associated with streamflow in the frequency 

domain. In order to determine the least-biased p(f), configurational entropy is maximized 

subject to specified constraints.  

5.1.2 Construction of constraints 

Recalling the relation between spectral density and autocorrelation function 

introduced in Section 3, constraints can be defined in terms of the autocorrelation function 

as  
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where Δt is the discretization or sampling interval, and .1i  If n=0, equation (5-2) 

reduces to 
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It can be seen from equation (5-3) that p(f) can be considered as a probability density 

function of frequency f.  

5.1.3 Entropy maximizing  

To obtain the least-biased p(f), entropy is maximized using the method of Lagrange 

multipliers in which the Lagrangian function can be formulated as 
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 (5-4) 

where λn, n=0, 1, 2, …, N, are the Lagrange multipliers. Taking the partial derivative of 

equation (5-4) with respect to p(f) and equating the derivative to zero, one obtains: 
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Equation (5-5) yields the least-biased p(f): 
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nefp )1exp()( 2        (5-6) 

Equation (5-6) expresses the spectral density with Lagrange multipliers λn obtained 

by maximizing the configurational entropy.  
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5.1.4 Computation of Lagrange multipliers 

Unlike the spectral density of linear forecasting, either equation (3-21) of the AR 

process or equations (3-44) and (4-19) for the BESA theory, which were in the polynomial 

form, equation (5-6) is in the exponential form which is easier to manipulate. For 

computing the Lagrange multipliers efficiently, cepstrum analysis, which has not been 

used in hydrology, is used. Taking the logarithmic transform of equation (5-6) for 

computing the Lagrange multipliers, one obtains 
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Taking the inverse Fourier transform of equation (5-7), it becomes  
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It can be seen that the second part of the left side is the autocepstrum defined as equation 

(3-25), and the first part of the left side yields the delta function as 
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while the right side of equation (5-8) becomes 
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Thus, equation (5-8) can be recast with equations (5-9) and (5-10) as 


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snsn ne  )(        (5-11) 

where e(n) is the cepstrum of the autocorrelation and σn is the delta function. 
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Equation (5-11) then can be expanded as a set of N linear equations: 
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        (5-12) 

Equation (5-12) shows that the Lagrange multipliers can be determined from the 

values of cepstrum which entails the spectral density. However, as discussed in section 

3.2.2 for a finite length of data the autocepstrum can be estimated by the following 

recursive relation, stated in equation (3-36), as 

0,)]()()([2)(
1

1

 
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nknke
n

k
nne

n

k

      (5-13) 

In order to compute e(k), one needs autocorrelation from lag 0 to k. Thus, for given 

N lag autocorrelations, the cepstrum of autocorrelation can be computed up to lag N, and 

beyond this lag, the cepstrum is defined as 0. Then, the calculated cepstrum from lag 0 to 

T can be used to compute the Lagrange multipliers using equation (5-9). 

5.1.5 Extension of autocorrelation function 

For streamflow forecasting the autocorrelation needs to be extended beyond the N 

lag. It may be noted from equation (5-13) that the first n lags of cepstrum can be 

completely determined from the first n lags of autocorrelation and vice versa. Thus, it is 

possible to write the inverse relation between the autocorrelation and the cepstrum as 

shown in equation (5-13), which is  
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Therefore, with model order m determined, the autocorrelation function for n>N 

can be estimated as  

)()(
1

1

knke
m

km

k
n 





        (5-15) 

Equation (5-15) extends the autocorrelation function with the configurational 

entropy maximized. Surprisingly, the autocorrelation extends with a linear combination 

of past lags, which is the same with the BESA or the AR method. Thus, equation (5-15) 

can be also written as 

Nna
m

k
kknn 


 ,

1

        (5-16) 

with extension coefficients )(ke
m

k
ak  , and m is the model order. A proper model order 

needs to be determined so that the autocorrelation function is extended to as close as the 

observed function at the lowest possible order.  

5.1.6  Forecasting 

Equation (5-16) suggests that through entropy maximizing, the extension of 

autocorrelation is as a linear combination. Thus, streamflow again can be forecasted by 

weighting time series with the extension coefficients as 

Ttayy
m

k
kktt 


 ,

1

       (5-17) 

Equation (5-17) represents the forecast using the entropy-based extended autocorrelation, 

which satisfies least squared prediction as discussed in Section 3.3.7. 
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The computation procedure is shown in Figure 5-1 for forecasting yT+k , k>0, from 

given series y1, y2,…, yT. The computation steps are as follows: (1) For eliminating 

skewness and normalizing streamflow data, the Box-Cox transformation is recommended 

before applying the configurational entropy theory (Box and Cox, 1964; Jain and Singh, 

1986). (2) By entropy maximizing, the maximum entropy-based spectral density p(f) is 

obtained. (3) The cepstrum values e1, e2, …, eN are determined for computing the Lagrange 

multipliers. (4) The autocorrelation function is extended after lag N from ρN+1 onwards. 

(5) The extension coefficients an are determined and streamflow forecasting is done. (6) 

The forecast order m is identified by the Akaike information criterion (AIC) or Bayesian 

information criterion (BIC) (Box and Jenkins, 1970; Hipel and McLeod, 1994). 

 

Figure 5-1 Computation procedure 

Input y1, y2, …, yT Output yT+k, k>0

p( f)

ρ 1, ρ 2, …, ρN ρN+1, ρN+2, …

a1, a2, …, am

e 1, e 2, …, e N λ 1, λ 2, …, λ N

Maximizing 
entropy H(f)

Extending 
autocorrelation 
function

Forecasting streamflow

Cepstrum analysis



 

57 
 

 

5.2 Application  

5.2.1 Observed data and characteristics 

For evaluating the configurational entropy spectral analysis theory, monthly 

streamflow data from 19 river sites in the Mississippi River watershed, Tennessee River 

watershed, Missouri River watershed, Colorado River watershed and Texas-Gulf 

watershed, were obtained from the U.S. Geological Survey (USGS). Table 5-1 

summarizes the basic information about the data used.  

Greenbrier River is a tributary of New River in West Virginia, and belongs to the 

Mississippi River watershed. More than 100 years of streamflow data are available on 

Greenbrier River, where the average monthly streamflow during 1896-2012 is 57 m3/s. 

Pigeon River and Piney River are tributaries of Tennessee River, with average monthly 

streamflow of 34 m3/ and 9 m3/s, respectively. Four sites in the Mississippi River 

watershed were chosen: the center of the Upper Mississippi River, Cedar River, Big Black 

River, and Ouachita River. The Upper Mississippi River has a drainage area of 221,704 

km2, and average monthly streamflow of 1,395 m3/s; the Cedar flows into Upper 

Mississippi River and the others into Lower Mississippi River. Yellowstone River is a 

tributary of upper Missouri River, with an average monthly streamflow of 293 m3/s for 

1978-2013. Another station was chosen at lower Missouri River before it joins Mississippi 

River. It has a large drainage area of 814,814 km2 with an average monthly streamflow of 

839 m3/s.  
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Table 5-1 Basic information of streamflow data used 

No. River Station Area
(km2)

Latitude Longitude Record 
length 

Average
(m3/s)

Peak 
ratio*

Percentage** Peak 
month

1 Greenbrier 03185000 136 37˚45'38'' 81˚09'45'' 1896-2012 57 2.77 45.4% 3 
2 Pigeon 03461500 1725 35˚57'38'' 83˚10'28'' 1904-2012 34 2.17 31.9% 3 
3 Piney 03602500 500 35˚52'16'' 87˚30'05'' 1926-2012 9 3.05 43.5% 3 
4 Mississippi 05420500 221704 41˚46'50'' 90˚15'07'' 1875-2013 1395 2.17 38.0% 4 
5 Cedar 05457700 2730 43˚03'44'' 92˚40'25'' 1964-2013 23 2.97 43.0% 4 
6 Big Black 07290000 7283 32˚20'52'' 90˚41'49'' 1937-2013 109 3.41 49.8% 3 
7 Ouachita 07359002 4015 34˚25'34'' 92˚53'27'' 1929-2013 70 2.72 34.3% 1 
8 Yellowstone 06295000 103978 46˚16'00'' 106˚41'29'' 1978-2013 293 2.90 52.5% 6 
9 Missouri 06486000 814814 42˚29'09'' 96˚24'49'' 1953-2013 839 1.50 31.5% 7 

10 Upper 
Colorado 09095500 20684 39˚14'21'' 108˚15'56'' 1933-2012 8404 3.70 66.2% 6 

11 Yampa 09251000 8762 40˚30'10'' 108˚01'58'' 1905-2012 2892 4.18 73.8% 5 
12 Dolores 09180000 11862 38˚47'50'' 109˚11'40'' 1905-2013 1924 3.66 68.5% 5 
13 Green 09315000 116162 38˚59'10'' 110˚09'02'' 1895-2012 4674 3.30 60.4% 6 
14 San Juan 09355500 8443 36˚48'06'' 107˚41'55'' 1905-2012 2709 3.32 63.0% 5 
15 Little Colorado 09402000 68529 35˚55'35'' 111˚34'00'' 1905-2012 421 4.89 43.0% 4 

16 Lower 
Colorado 09427520 473193 34˚17'44'' 114˚08'22'' 1934-2012 38250 3.11 58.9% 6 

17 Trinity 08062500 21101 32˚25'35'' 96˚27'46'' 1924-2013 89 3.49 41.2% 2 
18 Brazos 08098290 78829 31˚08'02'' 96˚49'29'' 1957-2012 78 3.57 39.0% 5 
19 Colorado (TX) 08136700 62660 31˚29'37'' 99˚34'25'' 1968-2012 4 4.27 36.4% 6 

Peak ratio*=Peak/Average 
Percentage**=streamflow during peak three months 
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Seven stations were chosen on Colorado River: Upper Colorado River is located 

at the very upstream near the source where the average monthly streamflow is 8,404 m3/s. 

Green River is located near the junction with Colorado River with a drainage area of 

116,162 km2. Yampa, Dolores, and San Juan rivers are also tributaries of upper Colorado 

River with drainage areas of over 8000 km2. Little Colorado River is the main tributary of 

lower Colorado River and possesses low streamflow volume. The Lower Colorado River 

is located near the mouth, before entering the Gulf of California with a drainage area of 

473,193km2. Three gaging stations were selected from the Texas-Gulf watershed: Trinity 

River, Brazos River, and Colorado (TX) River. These three rivers experience different 

drought conditions, with an average monthly streamflow of 89 m3/s, 78 m3/s and 4 m3/s, 

respectively.  

Yearly average monthly streamflow box-plots are presented in Figure 5-2. The 

central box represents the medium 50% of data, where upper and lower boundary lines are 

75% and 25% percentile of data. The central line is the median of data and the solid line 

across the year is the mean of data. For the first nine rivers, except for Upper Mississippi 

River and Yellowstone River, (numbered 1, 2, 3, 5, 6, 7, 9), streamflow is distributed 

almost uniformly throughout the year, where streamflow occupies 30% to 40% of the 

yearly volume during the peak three months. The peak three months is referred to the three 

consecutive months with maximum streamflow. On the other hand, in rivers in the 

Colorado River basin (numbered 10, 11, 12, 13, 14, 16) streamflow is highly concentrated 

during the peak season (May-June), and after June or July, it drops down dramatically. 

For low flow rivers (numbered 17, 18, 19), the seasonal pattern is weak. Based on 
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consistency, seasonality, and peak characteristics the 19 stations (or rivers) can roughly 

be grouped into six categories as shown in Figure 5-3. The first category contains 

Greenbrier River (No. 1) with strong seasonality and 12-month periodicity, where the 

streamflow pattern is regular, and peak discharge and peak time are almost the same every 

year. The rivers (numbered 2, 3, 4, 5, 6, 7, 9) in the second category also exhibited strong 

seasonality and periodicity, but the peak time varied from year to year. The difference 

between the first two categories is the duration of peak season, which also can be seen 

from monthly hydrograph. Greenbrier River has a significantly large peak in March every 

year, reduces quickly from April. However, the duration of peak time in the second 

category may extend to 4 months and the peak may happen in any month within that period. 

For example, the annual peak of Missouri River in Figure 5-3 occurs in June, September, 

September, August, October, September, April in the row.  

It is noted that the upper Mississippi River (numbered 4) was found to exhibit a 

bi-modal probability distribution as evidenced by the observed changes in the timing and 

amplitude of flow peaks (Baldwin and Lall, 1999). Rivers in the third (numbered 8, 10, 

13, 14) and the fourth (numbered 11, 12, 16) categories have strong seasonality but the 

12-month periodicity is weaker compared to the first two categories. For rivers in the third 

category, the variation of peak streamflow is less than 20%, whereas for those in the fourth 

category, the variation of peak streamflow is larger. Thus, streamflow in the fourth 

category may involve periodicity of other frequencies. Rivers 15 and 19 with weak 

seasonality and periodicity belong to the fifth category, and rivers 17 and 18 with an 

irregular pattern belong to the sixth category.  
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Figure 5-2 Monthly average streamflow for selected sites 
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Figure 5-3 Streamflow time series of representative sites 

Other than periodicity, autocorrelation is intuitively seen from autocorrelation 

(ACF) and partial autocorrelation (PACF) plots. The ACF plots of the first three categories 

are similar, thus, ACF and PACF are plotted in Figure 5-4 for Upper Colorado River as a 
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the fourth category. Generally, the correlation is not weak for the first four categories and 

a 12-month periodicity can be found in the ACF plot. The plot shows more significant 
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autocorrelation in streamflow than for Lower Colorado River. For the last two category, 

the autocorrelation is not significant. Little Colorado River, representing the fifth category, 

has only significant autocorrelation at lags 1 and 12. Brazos River of the last category 

shows the weakest correlation, and it monotonically decreases to around zero with only 

first two lags outside the confidence bounds. As streamflow forecasting is based on the 

autocorrelation with the past series, the streamflow series with strong autocorrelation will 

be forecasted more reliably. Thus, one may expect that streamflow of the first four 

categories may be better forecasted, and one may be interested in how the configurational 

entropy theory performs for low streamflow forecasting with weak autocorrelation or 

seasonality. 

 

Figure 5-4 Autocorrelation and partial autocorrelation plot of representative sites 
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5.2.2 Spectral analysis 

The spectral density is another method to check the periodicity by looking for the 

frequency of spectral peaks. Thus, the method, which can find the location of spectral 

peaks correctly, should be preferred for streamflow forecasting. Figure 5-5 shows spectral 

densities computed for streamflow using the configurational entropy spectral analysis 

(CESA) in comparison with the Burg entropy spectral analysis (BESA) and by fast Fourier 

transform (FFT). Six representative rivers were selected to show the ability of CE to 

estimate the spectral density; however, these six-categories are not the same as the 

previous six groups. The first two groups represent the uni-peak spectral density cases. It 

can be seen from the spectral density obtained by FFT of Upper Colorado River that there 

is a unique peak at frequency 1/12th. For this case, both CE and BE detected the same as 

by the FFT. On the other hand, though the spectral peak at frequency 1/12th was significant, 

there was another suspected peak near frequency 1/4th in the spectral density of Greenbrier 

River. Rivers 3 and 7 also belonged to this group. For this group, CESA still yielded the 

peak at the right frequency, but the one by BESA had shifted toward frequency 1/10th. 

The third and fourth groups showed a multi-peak spectral case, but the major peak 

was still at frequency 1/12th. Rivers 2, 4, 6, 7, 10 belonged to the third group, where the 

second peak was not significant, and rivers 5, 8, 9, 14, and 15 belonged to the fourth group 

with more than three peaks. It implied that streamflow of the third group contained 12-

month and 6-month periodicities, while streamflow of the fourth group exhibited 12-

month, 6-month, 4-month and 3-month periodicities. However, the most significant period 

was still 12-month. Burg (1967) cautioned about the use of BESA for multi-peak spectral 
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cases. Thus, it would be interesting to determine how CESA would perform in this case. 

It is seen from the Mississippi River and Missouri River plots that CESA treated the 

spectral density as a uni-peak case and found the peak frequency at 1/12th, but for BESA 

the peak shifted dramatically. How it influenced streamflow forecasting would be 

discussed in the next section. 

The last two groups showed significantly different spectral patterns. The spectral 

plot of Little Colorado River contained three peaks at frequencies 1/12th and 1/6th and 1/4th; 

however, the most significant peak was no longer at frequency 1/12th. Two peaks at 

frequencies 1/12th and 1/6th were detected by CESA, but with a wrong sequence. However, 

BESA yielded the spectral peak at frequency 0.15, which was shifted by 0.016. Colorado 

River (Texas) had a similar result. Referring to the ACF plot of the Brazos River 

streamflow, no significant periodicity was found, which implied that no significant large 

peak was expected in the spectral plot. As a result, the spectral density obtained by the 

FFT did not have one significantly large peak but consisted of generally decreasing multi-

peaks-a pattern generally yielded by CESA, BESA led to uni-modal spectral density, with 

a wrong location for the spectral peak. To conclude, except for the fifth group, CESA 

performed better than BE. We now examine if this would lead to better streamflow 

forecasting. 
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Figure 5-5 Spectral density of representative sites 
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5.2.3 Evaluation  

The configurational entropy theory was applied to forecast streamflow as shown 

in Figure 5-6, with 90% confidence intervals, where the dotted line represents observed 

values and the solid line the forecasted values. The forecast statistics are given in Table 5-

2 and the goodness of fit criteria in Table 5-3.  

First, consider Greenbrier River from the first group. Since streamflow of this river 

exhibits strong seasonality, periodicity, consistency, and high autocorrelation, streamflow 

should be forecasted with high accuracy. CESA used a 12 order model to successfully 

forecast with a 48-month lead time, with an estimated average of 57 m3/s compared to the 

observe average of 58 m3/s. The forecasted hydrograph fitted observations well with r2 as 

high as 0.929. The peak error of the first year (2009) was less than 1%, and from the 

second year afterward, the peaks forecasted subsequently were about 5%-10% less than 

observed peaks. 
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Figure 5-6 Forecasted streamflow with 90% confidence intervals  
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Table 5-2 Forecasting statistics for the entropy method 

No. River Station Model order Leading time
Average Standard deviation Peak 

Obs. Est. Obs. Est. Obs. Est. 
1 Greenbrier 03185000 12 48 58 57 35 18 116 97 
2 Pigeon 03461500 13 24 1132 1047 593 541 2399 1906 
3 Piney 03602500 13 24 326 319 197 199 758 632 
4 Mississippi 05420500 13 36 52693 54109 19453 19714 91768 93330 
5 Cedar 05457700 12 12 764 777 451 385 1604 1451 
6 Big black 07290000 11 36 4235 3958 3179 2845 10497 8928 
7 Ouachita 07359002 13 12 2732 2644 928 925 3806 3757 
8 Yellowstone 06295000 10 24 7164 7268 5504 5652 20771 21266 
9 Missouri 06486000 11 36 21458 21688 9250 7642 43241 33520 

10 Upper Colorado 09095500 12 60 8349 8258 8899 8107 36822 30344 
11 Dolores 09180000 12 36 37100 39347 27511 28143 129985 95156 
12 Yampa 09251000 10 48 3207 3435 3503 4770 14836 16598 
13 Green River 09315000 13 48 5194 5375 3711 3749 14091 11616 
14 San Juan 09355500 12 36 3455 3390 3357 2138 11397 8782 
15 Little Colorado 09402000 12 24 340 339 571 300 2069 1147 
16 Lower Colorado 09427520 11 24 40701 45843 33889 40005 125822 126604
17 Trinity 08062500 11 12 3267 3232 1470 1719 5262 6253 
18 Brazos 08098290 3 12 69 68 42 13 238 88 
19 Colorado (Texas) 08136700 6 24 0.21 0.23 0.15 0.10 0.70 0.38 
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Table 5-3 Goodness of fit measures 

No. River 
Configurational entropy spectral analysis 

RE RMSE 
(m3/s)

r2 NSE PE 

1 Greenbrier 0.137 9.3 0.929 0.773 -0.101 
2 Pigeon 0.247 323.1 0.690 0.456 -0.206 
3 Piney 0.177 65.3 0.886 0.683 -0.167 
4 Mississippi 0.138 9725.1 0.739 0.540 0.017 
5 Cedar 0.126 75.7 0.969 0.838 -0.095 
6 Big black 0.205 924.8 0.913 0.755 -0.150 
7 Ouachita 0.122 427.1 0.769 0.616 -0.013 
8 Yellowoston 0.178 1233.7 0.948 0.760 0.024 
9 Missouri 0.194 5356.1 0.655 0.539 -0.225 

10 Upper Colorado 0.354 3319.8 0.859 0.749 -0.176 
11 Dolores 0.347 13749.1 0.743 0.672 -0.268 
12 Yampa 1.068 2329.8 0.548 0.310 0.119 
13 Green River 0.343 1695.2 0.787 0.599 -0.176 
14 San Juan 0.495 1633.2 0.757 0.545 -0.229 
15 Little Colorado -3.882 488.1 0.238 0.139 -0.446 
16 Lower Colorado 0.400 16341.6 0.757 0.547 0.006 
17 Trinity 0.346 1168.1 0.311 0.258 0.188 
18 Brazos 0.437 42.5 0.011 0.016 -0.628 
19 Colorado (Texas) 0.642 0.148 0.056 0.054 -0.457 
 

Similar to the first category, forecasting in the third category was done well. 

Referring to Figure 5-5, the 12-month periodicity was observed for Upper Colorado River. 

Using CESA, streamflow was forecasted up to 60 months ahead (RE of less than 0.35) 

with r2 of 0.859 and NSE of 0.749. For forecasting for the first 24 months, RE was less 

than 0.15, and r2 was higher than 0.90. The forecast error in the average streamflow was 

only 1.2%, and the peak was forecasted about 10%-22.5% less. For the remaining rivers 

(4, 11 and 14) in the third category, streamflow was accurately forecasted with a 36-month 

lead time (RE of less than 0.36). The peak values were forecasted satisfactorily with no 
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shift in time, though Yampa River was an exception. Peak streamflow of Yampa River 

used to occur more often in May, but during 1999 and 2001, the observed peak shifted to 

June. CESA did not recognize this change, as it honored the 12-month periodicity.  

Forecasting streamflow of rivers in the fourth category was similar to the second 

one. Thus, it was less accurate than in the third category due to the inconsistency from 

year to year. It can be seen for rivers 8, 12, 13 and 16 that peak streamflow varied more 

than 20% from year to year. CESA forecasted streamflow of Yellowstone River and 

Lower Colorado River with a 24-month lead time (RE of less than 0.40), of Dolores River 

with a 36-month lead time (RE of less than 0.35), and of Green River with a 48-month 

lead time (RE of less than 0.34). For forecasting one-year ahead of time, RE computed for 

above rivers was less than 0.17. The overall r2 values were over 0.7 and NSE larger than 

0.5.  

Forecasting for the first four categories can be considered as satisfactory (RE of 

less than 0.30), although some drawbacks may be noted. The most challenging is to 

forecast low streamflows due to weak seasonality and periodicity, and low autocorrelation. 

Streamflow for rivers numbered 15 and 19 are forecasted with lead times of 24 months 

and 36 months. The NSE values were only 0.139 and 0.054. At least the average were 

forecasted accurately, where error was less than 2.5% and 9% for rivers 15 and 19, 

respectively. For Trinity and Brazos Rivers in the last category, forecasting was most 

difficult. These two rivers were irregular. Again, CESA was accurate in forecasting the 

average value, where the difference between the forecasted mean and the observed mean 

was less than 2%.  
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Analyzing the forecast residuals. Figure 5-7 shows a Q-Q plot of the forecast 

residuals versus the normal distribution. If the errors fitted the 45˚ line, it was safe to 

conclude that the residuals followed the normal distribution. The Q-Q plot shows that the 

residuals for rivers 3 and 18 are left skewed, and for rivers 5 and 9 they are slightly left 

skewed. Except these rivers, other residuals fitted the normal distribution well, and 

therefore CESA performed well. 

 

 

Figure 5-7 Q-Q plot of forecasting residuals 
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5.3 Comparison with BESA 

The forecasted streamflows by two maximum entropy spectral analysis theories 

were plotted in Figure 5-8.  

 

 

Figure 5-8 Comparison between CESA and BESA 
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For Greenbrier River the spectral peak shifted in the BE spectral estimation. As a 

result, the loss of detecting the periodicity led to less accurate forecasts. As shown in the 

first figure in Figure 5-8, BESA appropriately forecasted streamflow that matched the 

observed values during the first year (r2= 0.89), but was in general not able to forecast 

after 24 months (r2 lower than 0.50). It can be seen from the plot of variation of NSE over 

the forecast lead time in Figure 5-9 that the NSE value dropped faster in the beginning of 

the second year and became below 0.5 from the third year onwards for BESA, while that 

for CESA was consistently around 0.7 over the years. As a result, the goodness of fit 

measures for Greenbrier River were much lower for BESA.  

Upper Colorado River and Green River had similar resolutions in estimating the 

spectral density for both BESA and CESA, as both were uni-peak spectral densities. BESA 

performed as well as CESA as shown in Figure 5-8, with NSE values of 0.523 and 0.687, 

respectively. However, as the lead time increased, NSE computed for BESA decreased 

faster than for CESA, as shown in Figure 5-9. Thus, for streamflows with unique 

periodicity, where there is uni-peak spectral density, both BESA and CESA forecasted 

streamflow accurately. But for longer lead-times, CESA was more consistent than BESA.  
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Figure 5-9 Nash-Sutcliffe coefficient against lead time for Greenbrier River, 

Upper Colorado River and Green River 
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It was shown in the previous section that streamflow of Mississippi River in the 

third category was correctly forecasted using CESA, but the spectral peak shifted by 

BESA. As a result, BESA forecasted peak streamflow during 1999 one month early but 

during 2000 one month late. We believe that it was due to the failure in detecting the 

location of spectral peak. The shift by BESA in forecast was also observed for Big Black 

River, Cedar River and Lower Colorado River, which belonged to the same spectral group 

as Mississippi River. For Mississippi River whose spectral density showed a multi-peak 

pattern, CESA is recommended over BESA. However, Missouri River was an exception 

to the above group. Though BESA failed to determine its spectral peak, streamflow was 

reasonably forecasted nonetheless. The NSE value for BESA was 0.511, which is 

comparable to 0.539 for CESA. The reason may be found from its “n”-shaped hydrograph. 

The peak streamflow of Missouri River lasted about 4 to 5 months, and the hydrograph 

was not as sharp as of other rivers. Thus, streamflow forecasting was less focused on peak 

time, which reduced the burden for BESA.  

The performance of BESA in forecasting low streamflow was not satisfactory (RE 

higher than 0.7 and r2 lower than 0.3). BESA was unable to forecast streamflow which 

remained flat after April, 2011, for Brazos River and showed small fluctuations for 

Colorado River (Texas). It showed that forecasted values were not correlated to the 

observed values and BESA was not valid for low streamflow forecasting. Though the 

predicted peaks for Brazos River were 53.5% lower than observed values in February, 

2012, forecasts by CESA satisfactorily mimicked the streamflow pattern during the 

forecast period from October, 2010-December, 2011 with r2 higher than 0.37, Besides, the 
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NSE values of CESA were positive and were larger than the negative values of BESA as 

shown in Tables 5-3 and 5-4. Thus, using CESA is suggested over BESA for low 

streamflow forecasting.  

 

Table 5-4 Goodness of fit measures by Burg entropy spectral analysis 

No. River 
Burg entropy spectral analysis 

RE RMSE (m3/s) r2 NSE PE 
1 Greenbrier 0.458 20.7 0.646 0.457 -0.162 
2 Pigeon 0.221 342.1 0.653 0.447 -0.264 
3 Piney 0.333 106.9 0.693 0.523 -0.335 
4 Mississippi 0.210 11430.0 0.640 0.408 -0.086 
5 Cedar 0.321 211.7 0.759 0.548 -0.208 
6 Big black 0.276 1115.8 0.873 0.688 -0.246 
7 Ouachita 0.133 404.6 0.793 0.590 -0.039 
8 Yellowoston 0.871 180.3 0.000 -0.264 -0.418 
9 Missouri 0.190 5148.2 0.635 0.511 -0.261 

10 Upper Colorado 0.593 4527.7 0.738 0.687 -0.209 
11 Dolores 3.433 6070.2 0.000 -0.994 -0.097 
12 Yampa 0.527 19233.0 0.497 0.664 -0.361 
13 Green River 0.418 1850.8 0.746 0.523 -0.237 
14 San Juan 0.255 2245.0 0.540 0.345 -0.307 
15 Little Colorado -8.583 474.9 0.279 0.017 -0.406 
16 Lower Colorado 0.758 23308.1 0.506 0.300 -0.139 
17 Trinity 0.536 1738.0 0.355 0.212 -0.397 
18 Brazos 0.436 42.5 0.000 -0.196 -0.551 
19 Colorado (Texas) 4.872 0.990 0.000 -3.956 0.037 

 

5.4 Discussion 

Based on consistency, seasonality and periodicity of observed data, 19 rivers were 

categorized into six different groups. The possible reasons for observing different 

characteristics are analyzed in this section.  
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It may be recalled that streamflow of rivers in the first two groups during the peak 

three months was between 30% and 50% of the annual volume, while that of the third and 

fourth groups was more than 60%. This pattern of streamflow may be influenced by 

geographical factors. In the first two groups, rivers are mainly from the watersheds of 

Mississippi River, Tennessee River and Missouri River, where precipitation over the year 

is sufficient and nearly uniformly distributed, and rivers are dry during low water periods. 

Another reason which makes Greenbrier River unique in the first group may be its non-

artificiality. There is no dam or artificial hydraulic structure on this river, and thus the 

streamflow maintains a regular pattern, which makes it highly predicable. On the contrary, 

for Colorado River precipitation is concentrated during summer and it is unlikely to 

maintain high streamflow during the dry season. As a result, monthly hydrographs of 

rivers in the first two groups are fatter than that of Colorado River. These seasonal patterns 

are satisfactorily forecasted by CESA. The forecasted streamflow during March-May was 

34%-45% for the rivers in first two groups, and forecasted streamflow during May to July 

was 53%-77% for the rivers in the Colorado River watershed.  

In order to analyze the effect of drainage areas of the selected sites, the relative 

drainage area was computed by dividing the site drainage area by the total drainage area 

of the river. In general, the larger relative drainage area was, the closer to the mouth the 

selected site was. Thus, sites 1, 2, 3, 5, 6, 7, 10, 11, 14, and 18 were upstream near the 

source, and sites 4, 8, 9, 12, 13, 15, 16, 17, and 19  downstream near the mouth. It was 

found that the peak ratio was correlated to the relative drainage area, as shown in Figure 

5-10. Though the data points were scattered, the peak/average ratio was larger for 
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downstream than upstream sites. It may be explained as follows. First, as the site went 

downstream, more and more water from different tributaries joined the mainstream, and 

as a result the flow variance increased. On the other hand, the water source for the 

upstream site was constant, which led to less flow variance. One may notice that river sites 

considered to be upstream fell into the first three groups, where streamflow was more 

consistent, had stronger seasonality and periodicity than other groups. The river sites in 

the fourth group, where the peak was inconsistent from year to year, were more likely to 

be downstream.  

Furthermore, the uni-peak spectral density condition (river sites 1, 3, and 10) can 

only be satisfied at the upstream sites, where the source of the water was unique or simple. 

Thus, streamflow at the upstream sites was more likely to keep the uni-periodicity, say 

12-month periodicity, than the downstream sites. Though river sites 2, 5, 6, 7 were 

upstream, their streamflows had multi-spectral peaks. However, the spectral peak of 

frequency other than 1/12th was not comparable to the largest peak. Due to the complexity 

of tributaries providing water to the downstream stations, the river flows hardly kept uni-

periodicity at the downstream sites. The spectral densities of streamflows of rivers 4, 8, 9, 

12, 12, 13 that had multi-spectral peaks were categorized to be from downstream sites. 

For these rivers, 6-month, 4-month, and even 3-month as well as 12-month periodicities 

were detected from the spectral density plot. CESA neglected small peaks when estimating 

the spectral density, as a result, it ignored other monthly periodicities when forecasting 

streamflow. Thus, the forecasted streamflows for uni-periodicity rivers were more 

accurate with NSE higher 0.75 than multi-periodicity rivers with NSE higher 0.60. As a 
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result, the accuracy of forecasting streamflow was influenced by the relative drainage area. 

The upstream streamflow was forecasted with higher r2 and NSE, as shown in Figure 5-

10. The r2 value for forecasting upstream was about 0.84, and was larger than 0.75 for 

forecasting downstream.   

 

 

Figure 5-10 Forecasting characteristics related to relative drainage area 
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Consistency of climate condition may be another reason influencing the accuracy 

of forecast. The forecasted peak time was 1 month earlier for rivers 2, 7, and 9, and was 1 

month late for rivers 3 and 6. The streamflow peaks observed for these rivers were not 

constantly the same over the years, but changed by a month or two due to the change in 

the distribution of precipitation or change of temperature. However, both CESA and 

BESA are based on the information from the past values, which implied a 12-month 

periodicity observed from data. Thus, streamflow forecasts using both these theories had 

peaks repeated every 12 months so that the location was consistent with the peak location 

that occurred in the previous year. The reason for the shift in the peak location was the 

change in input. It is known that the sources of tributaries of Upper Mississippi River and 

Upper Colorado River are snowmelt as well as rainfall. Thus, the occurrence of 

streamflow peak was not fixed but may shift due to different combinations of rainfall and 

snowmelt. The forecast theories discussed in this part did not consider rainfall or snowmelt 

as input, hence streamflow forecasting in the peak season affected by the change of climate 

condition might have bias as compared with observed values. However, the multi-channel 

spectral analysis with incorporation of climatic phenomena will be developed in Section 

IX to see how forecasting can be improved with additional climate information. 

5.5 Summary 

Configurational entropy spectral analysis was developed for monthly streamflow 

forecasting in this section. The development of CE theory linked time series, spectral 

analysis and cepstrum analysis, and provided a new approach for solving the 

autoregressive coefficient with autocepstrum. 
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The spectral density computed from the proposed CESA had higher resolution than 

from BESA. For uni-peak cases, both CESA and BESA determined the spectral density 

well and the spectral peak was obtained at frequency 1/12th. For multi-peak cases, the two 

theories produce different results. CESA ignored non-significant peaks and yielded uni-

peak with 1/12th frequency. On the contrary, BESA detected multi-spectral peaks but the 

whole spectral density is shifted. Thus, for streamflow forecasting, CESA was preferred, 

as the right peak location is an important criterion for periodicity. For computing spectral 

density for low streamflow, the spectral density obtained by CESA was consistent with 

the one obtained from Fourier transform, while BESA was unable to detect its pattern. 

The streamflow forecasted by CESA was more accurate for upstream than 

downstream. CESA theory forecasts with less than 30% error for lead times up to 60 

months for rivers located upstream and up to 48 months for downstream rivers. The 

streamflows located near upstream are found to possess stronger seasonality and 

periodicity and had more regular patterns than streamflow downstream. Thus, the 

streamflow forecasted for upstream locations can be more reliable for longer lead time.  

Furthermore, CESA was comparable to BESA for forecasting streamflow with a 

strong unique periodicity, though CESA led to longer lead time forecasting than BESA. 

For streamflow with multi-periodicity, CESA had an advantage over BESA. The 

streamflow peaks forecasted by BESA were more often shifted than by CESA. For low 

streamflow forecasting, where BESA was not valid any more, CESA satisfactorily 

detected weak seasonality for low streamflow and the forecasted series fluctuates as do 

observations and hence is suggested over BESA. 
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However, if streamflow was uncorrelated to its past pattern, then both CESA and 

BESA were unable to forecast. With the change in the source of streamflow, the 

occurrence of streamflow peak may change. The two theories were not able to track the 

change but forecast the peak repeated with the periodicity detected from the spectral 

density. As a result, the peak location forecasted by both theories may be either earlier or 

later than observed. Both theories rely on the autocorrelation of data itself, and forecasting 

is based on its past series. Without additional input information, neither method was 

capable of detecting the sudden change. 

  



 

84 
 

 

6 MINIMUM RELATIVE ENTROPY SPECTRAL ANALYSIS WITH 

SPECTRAL POWER AS A RANDOM VARIABLE 

 

The minimum relative entropy (MRE), also called minimum cross-entropy (MCE), 

was introduced by Kullback (1959), which is an information-theoretic measure of the 

dissimilarity between two probability distributions. Two decades later, Shore (1979; 1981) 

developed the minimum relative entropy spectral analysis (MRESA) as an extension of 

Burg’s maximum entropy spectral analysis, where the spectral power was considered as a 

random variable. Later, another version of MRESA was developed by Tzaneess et al. 

(1985) considering frequency as a random variable.  

The MRESA theory can determine the spectra with the maximum value of kurtosis, 

which is an indicator reflecting the peakedness of spectral density (Endo and Randall, 

2007). The MRESA-based spectra are reported to have higher resolution and are more 

accurate in detecting peak locations than other methods for spectral computation 

(Papademetriou, 1998). The theory refines the main frequencies and allows a detection of 

very close peaks and does not create artificial peaks (Berger et al., 1990). When linking to 

time series analysis, the MRESA theory is equivalent to linear prediction with the smallest 

Itakura-Saito distortion (Gray et al., 1981; Schroeder, 1982; Shore, 1981; Shore and Gray, 

1982). Beside, MRESA theory reduces the number of predictor coefficients by relying on 

the prior information (Schroeder, 1982). However, the MRESA theory has only been 

applied for forward modeling and for solving inverse problems in groundwater 
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(Woodbury and Ulrych, 1993; 1996; 1998), but has not been applied to streamflow 

forecasting yet.  

In this and the following sections, the minimum relative entropy spectral analysis 

is developed for monthly streamflow forecasting. The MRESA is derived by assuming 

spectral power as a random variable in this section, and is abbreviated as RESAS. 

6.1 Development of minimum relative entropy spectral analysis 

Assuming each spectral power xk , defined as equation (3-11), as a random variable, 

the development of RESAS theory consists of the following steps: 1) define the relative 

or cross entropy, 2) construct the constraints, 3) assume a prior distribution of spectral 

power, 4) determine the probability density function of spectral power, 5) determine the 

Lagrange multipliers, 6) determine the spectral power, 7) extend the autocorrelation or 

autocovariance function, and 8) forecast streamflow. 

6.1.1 Definition of relative entropy 

Let the streamflow time series be described by a single state ),...,,...,,( 21 nk xxxxx


 in 

domain D. If each xk is considered to be a random variable, then the joint probability 

density function )(xq
  can be used to describe the whole streamflow series. In order to 

determine the probability density function )(xq
 , each q(xk) is considered independent and 

identically distributed: 





n

k
kn xqxqxqxqxq

1
21 )()()()()( 


     (6-1)

 

Then, the relative entropy is defined as 
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
D

xdxpxqxqpqH


)](/)(ln[)(),(       (6-2) 

where )(xq
  is the posterior probability density function, and )( xp

  is the prior probability 

density function. It is noted that 0)( kxq  and 0)( kxp  for any Dxk . It is interesting to 

note that when there is no prior given or given prior is uniform, the minimization of 

equation (6-2) yields 
D

xdxqxqqH


)](ln[)()( max , which is equivalent to the maximum 

entropy theory derived in equation (4-1). In order to obtain the least-biased posterior 

distribution )(xq
 , the relative entropy is minimized subject to given constraints. 

6.1.2 Specification of constraints  

First of all, the probability density function must satisfy that 

1)( 


D

xdxq          (6-3) 

The other constraints are constructed from the relationship between spectral power 

and autocorrelation. Let Tk denote the expected value of xk, written as 





D

kk xdxqxT )(         (6-4a) 

Since the probability of each frequency is independent of each other, the integration of 

equation (6-4a) can be done separately as  

kkkkj jjkkk

nj

n

j
jk

D

kk

dxxqxdxxqdxxqx

dxdxdxxqxxdxqxT



 










)()()(

)()( 2
1

1 
     (6-4b) 

where the second integration yields 1)(   kj jj dxxq . It is known that the mean spectral 
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power Tk is the Fourier transform of autocovariance Rr. Vice versa, the autocovariance can 

be expressed as the inverse Fourier transform of Tk as 





n

nk
rkk

n

k
kkr cTtfirTR

1

)2exp(  , NrN      (6-5)
 

where )2exp( krk tfirc   , r is the lag, t  is taken as 1 month for monthly streamflow, 

and N is the largest lag for given autocorrelation or autocovariance, usually taken ¼ or ½ 

of streamflow length T. Substituting equation (6-4a) into equation (6-5), the probability 

density function can be linked to the autocovariance as 





D

n

k
rkkr xdxqcxR

1

)(


, NrN        (6-6) 

Thus, the autocovariance functions from lag –N to N, along with equation (6-3), are 

considered as 2N+2 constraints for applying the RESAS theory.  

6.1.3 Hypothesis on prior distribution 

Before minimizing the relative entropy, a distribution of the prior )( xp
  should be 

hypothesized from prior information about data. Any kind of distribution can be taken as 

a prior distribution. The uniform, exponential, normal, and gamma distributions are taken 

as the prior distribution.  

If the prior distribution is given as multivariate exponential distribution, then p(xk) 

can be written as exponential distribution with the expected spectral powers Sk at each 

frequency, which is 

)exp(
1

)(
k

k

k
k S

x

S
xp         (6-7) 



 

88 
 

 

where the expected spectral powers kkkk xdxpxS  )(
 
is the prior information about the 

spectral power.  

If the prior spectral powers identically follow the normal distribution, the prior 

distribution can be expressed as    

]
2
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exp[

2

1
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2

k

kk

k

k

Sx
xp




       (6-8) 

where Sk and σk are the mean and standard deviation of xk, respectively.  

 If the prior spectral power is given to follow the gamma distribution, then prior 

distribution can be written as 

kkk

k

x
k
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k exxp 
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/1

)(

1
)( 


       (6-9) 

where θk and ηk are the given shape and scale parameters of the gamma distribution of the 

prior spectral power kkkS  . 

6.1.4 Determination of distribution of spectral power 

The posterior probability density function is then derived by minimizing the cross 

entropy using the method of Lagrange multipliers. Using constraints in equations (6-3) 

and (6-5), the Lagrangian function can be written as 
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   (6-10) 

where λr are Lagrange multipliers. Taking the partial derivative of equation (6-10) with 

respect to )(xq
 , and equating the derivative to zero, one obtains 
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Thus, the posterior distribution of spectral power becomes 
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Equation (6-12a) is the joint posterior distribution that is determined from the prior and 

the Lagrange multipliers. If we assume the posterior probability distributions of spectral 

power xk are identically independent of each other, the posterior probability distribution 

can be written by multiplying the probably of each spectral power as 
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 (6-12b) 

Thus, dividing each probability distribution by )exp( 0 , the probability distribution of 

the specific spectral power xk can be written as 

]exp[)()( 0
rkk

N

Nr
rkk cx

n
xpxq 



 


      (6-13) 

It can be seen from equation (6-13) that no matter what prior is chosen, the posterior 

distribution belongs to the exponential family but is sensitive to how the prior distribution 

is chosen.  

6.1.5 Determination of Lagrange multipliers 

The Lagrange multipliers can be numerically solved by inputting equations (6-12) 

into equations (6-3) and (6-6), respectively, as 
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and 
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Since the probability distribution of each frequency is independent of the other, equation 

(6-14) becomes 
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which is equivalent to 

 



k

rkk

N

Nr
rk dxcxxp )exp()()exp( 0       (6-16b) 

and equation (6-15) yields 
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Thus, the Lagrange multipliers are estimated by solving equations (6-16) and (6-

17) with 2N+1 nonlinear equations using the Newton-Raphson method. A FORTRAN 

code for solving these equations can be found in Woodbury (2004). 
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6.1.6 Determination of posterior spectral power 

The posterior spectral power is needed to extend the autocovariance and can be 

obtained by inserting equation (6-13) in equation (6-4b) as 

k
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   (6-18) 

Equation (6-18) does not lend itself to an analytical solution for posterior spectral power, 

except for the prior using uniform and exponential distributions. When no specific prior 

distribution is assumed, the posterior expected spectral power from equation (6-18) is 

determined from steps explained in equation (4-14)-(4-19), which yields 
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where 



N
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rkrk cu  . When the prior distribution is given as exponential for each 

frequency, with expected spectrum power Sk for each frequency, then the prior becomes 
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Inputting equation (6-20) into the posterior distribution equation (6-12), the result 

becomes 
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where 



N

Nr
rkrk cu  , the same as previously defined. It can be seen from equation (6-21) 

that the posterior distribution of spectral power is in the form that is transformable to the 

exponential distribution as )exp( x  , where 
k

k S
u

1
  can be considered as the 

exponential parameter of each distribution. Thus, λ0 needs to satisfy that 
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k k
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)exp( 0  so that equation (6-21) forms the multivariate exponential 

distribution as  
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and the posterior distribution of each frequency is 
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Thus, the expected posterior spectral power at each frequency becomes 
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6.1.7 Extension of autocovariance 

The next question is how the autocorrelation or autocovariance can be extended 

by the RESAS theory. From the previous sections, spectral power is obtained by 

minimizing the relative entropy, subject to the constraints given as autocovariance 

functions of lag r ≤ N. For lag r larger than N, the autocovariance function can be obtained 

from the spectral power according to the Wiener–Khinchin theorem, which says that the 
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autocovariance function satisfies the Fourier transform relation with the spectral power. 

Thus, using the spectral power obtained from equation (6-18), the autocovariance to be 

extended can be written as 
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, j>0 (6-25) 

Equation (6-25) is the straight-forward mathematical expression of how the 

autocovariance can be extended under the RESAS theory. It can be seen from equation (6-

25) that the extended autocovariance can be estimated from the Lagrange multipliers and 

the hypothesis on the prior distribution. However, the extension of autocovariance cannot 

be explicitly solved for. 

On the contrary, the autocovariance or autocorrelation function can be extended in 

a more convenient way. Shore (1981) discussed that RESAS theory is equivalent to linear 

prediction with the smallest Itakura-Saito distortion with respect to the nontrivial prior 

used. It suggests that the autocovariance to be extended under the RESAS theory follows 

the linear form like BESA. It can be seen from comparing equation (6-18) to equation (6-

19) that the only difference between the spectral power obtained by RESAS and BESA is 

on the first term of the denominator. Thus, by combining 1/Sk with λ0, equation (6-20) can 

transferred to the form similar to that due to BESA, which is  
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where 
r'  are modified Lagrange multipliers equaling  
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rr  ' , r=1, …, N        (6-27b) 

Equation (6-26) shows that with the modified Lagrange multipliers, the spectral power is 

in the form of inverse polynomials similar to the BESA theory shown in equation (4-19). 

Thus, equation (6-27) can be further expanded as 
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where )2exp( ktfirz   , an are forecasting coefficients, and σ2 is the gain satisfying the 

Yule-Walker equation (Yule, 1927). Equation (6-28) shows that the spectral power 

obtained by RESAS satisfies the form of linear prediction discussed in section 3.1.2 

[equation (3-22)]. Thus, autocorrelation can be extended with linear combination of past 

lags using the prediction coefficients as  

11211   mNmNNN RaRaRaR       (6-29) 

The prediction coefficient can be computed from the Lagrange multipliers. Equating the 

two equations on the right hand side of equation (6-28), the denominator becomes 
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From equation (6-30), the modified Lagrange multipliers can be expressed by the 

convolution of forecasting coefficients as 
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Thus, prediction coefficients are solved from nonlinear equation (6-31). 

6.1.8 Forecast 

As discussed in sections 3.3.7 and IV.1.7, time series can be forecasted by 

weighting past series using coefficients computed from equation (6-31) as 

11211   mTmTTT yayayay        (6-32) 

where m is the order of forecasting model, which, based on the number of previous lags, 

will be used for forecasting the future, and is identified by the Akaike information criterion 

(AIC) or Bayesian information criterion (BIC) (Box and Jenkins, 1970; Hipel and McLeod, 

1994).  

6.2 Data description 

As shown in Figure 6-1, 20 stations in the Mississippi River watershed were 

selected to apply the RESAS theory. Observed streamflows were downloaded from the 

U.S. Geological Survey (USGS) website. The stations are listed from upstream to 

downstream in Table 6-1 along with their drainage areas, locations and record lengths.  
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Figure 6-1 Selected stations on Mississippi River watershed 
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Table 6-1 Selected stations from Mississippi River watershed 

Location Name Station 
Area 
(km2) 

Latitude Longitude Record length Tributary 

Upper Mississippi River 
upstream 

UMU 05227500 15903 46°32'26" 93°42'26" 1945-2013  

Minnesota River upstream MNU 05301000 10489 45°01'17" 95°52'05" 1942-2013 Minnesota 
Minnesota River 

downstream 
MND 05330000 41958 44°41'35" 93°38'30" 1934-2013 Minnesota 

Upper Mississippi River 
center 

UMC 05420500 221704 41˚46'50'' 90˚15'07'' 1875-2013  

Iowa River upstream IU 05449500 1111 42°45'36" 93°37'18" 1940-2013 Iowa 
Iowa River downstream ID 05465500 32375 41°10'41" 91°10'55" 1958-2013 Iowa 

Des Moines River upstream DMU 05476000 3237 43°37'06" 94°59'05" 1930-2013 Des Moines
Des Moines River 

downstream 
DMD 05490500 36358 40°43'40" 91°57'34" 1969-2013 Des Moines

Illinois River upstream ILU 05543500 21391 41°19'37" 88°43'03" 1919-2013 Illinois 
Illinois River downstream ILD 05568500 40968 40°33'11" 89°46'38" 1939-2013 Illinois 
Upper Mississippi River 

downstream 
UMD 07010000 1805222 38°37'44" 90°10'47" 1932-2013  

Missouri River MS 06934500 1353269 38°42'35" 91°26'19" 1957-2013 Missouri 
Ohio River OH 03611500 525768 37°08'51" 88°44'27" 1928-2013 Ohio 

White River upstream WU 07077000 60606 34°47'40" 91°26'41" 1949-2013 White 
White River downstream WD 07289000 2964241 32°18'54" 90°54'21" 2008-2013  

Big Black River BB 07290000 7283 32˚20'52'' 90˚41'49'' 1937-2013 Big black 
Buffalo BU 07295000 466 31°13'37" 91°17'44" 1942-2009 Buffalo 

Ouachita River upstream OUU 07359002 4015 34˚25'34'' 92˚53'27'' 1929-2013 Ouachita 
Ouachita River downstream OUD 07367005 39622 32°30'01" 92°07'11" 2007-2013 Ouachita 

Lower Mississippi River 
downstream 

LMD 07374000 2915848 30°26'44" 91°11'30" 2004-2013  
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Mississippi River is the largest drainage system in North America, with many 

tributaries. The stations for Upper Mississippi River upstream (UMU), the Upper 

Mississippi River center (UMC), the Upper Mississippi River downstream (UMD) and the 

Lower Mississippi downstream (LMD) are on the main stem of the Mississippi River, and 

other stations are on its tributaries as noted in Table 6-1. For each tributary, one upstream 

station and one downstream station were chosen, if possible. The name of a station ending 

with the last letter U represents upstream, while letter D means downstream. Usually, 

Mississippi River can be divided into upper, middle and lower reaches. The Upper 

Mississippi (LM) is the part from head-waters to the confluence with the Missouri River, 

where the first 11 stations were selected. The middle Mississippi runs from downriver of 

Missouri (MS) to the Ohio River (OH), and the last 7 stations are from the Lower 

Mississippi (LM), which runs from the Ohio to the Gulf of Mexico. For simplicity, the 

MS and OH are categorized into the LM, thus, 11 UM stations and 9 LM stations are 

considered. 

The selected 20 stations are distributed over the whole Mississippi River watershed, 

which is more than 3,000 km in length and covers a drainage area of over 2,981,000 km2. 

As shown in Table 6-1, the drainage areas of selected stations vary from 466 km2 to 

2,915,858 km2. Thus, streamflow characteristics are quite different from station to station. 

Basic statistics of streamflow of Mississippi River are listed in Table 6-2 that shows that 

average monthly streamflow discharge varies from 8 m3/s to over 20,000 m3/s over the 

whole watershed and the flow at the downstream reach is naturally larger than that from 

the upstream reach. The average peak streamflow is 1.3 to 7.9 times the mean streamflow, 
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and the peak over mean ratio is found to be generally larger for streamflow of the LM than 

of the UM. On the same tributary, the peak/mean ratio is also larger for a downstream 

station than an upstream station.  

 

Table 6-2 Streamflow characteristics 

Name 
Mean 
(m3/s) 

Peak 
(m3/s) 

Peak/mean 
Significant 

period* 
UMU 77.1 133.6 1.7 12, 6, (4, 3) 
MNU 67.0 105.4 1.6 12, 6, 4, 3 
MND 149.8 388.4 2.6 12, 6, 4, 3 
UMC 1693.8 2877.5 1.7 12, 6 

IU 9.3 26.8 2.9 12, 6, (4, 3) 
ID 304.8 513.6 1.7 12, (6, 4) 

DMU 13.7 37.0 2.7 12, (6, 4, 3) 
DMD 154.2 326.6 2.1 12, 6 
ILU 375.1 531.4 1.4 12, 6, 3 
ILD 638.5 929.2 1.5 12, 6, 3 

UMD 6920.0 10408.4 1.5 12, (6) 
MS 3376.4 4426.9 1.3 12, 6 
OH 8723.4 18325.5 2.1 12 
WU 6929.9 11992.4 1.7 12 
WD 21596.4 41762.4 1.9 12, 6 
BB 132.3 415.0 3.1 12, 6, 4 
BU 8.6 17.4 2.0 12 

OUU 90.9 145.5 1.6 12, 6, 4, 3 
OUD 546.7 1079.3 2.0 12 
LMD 616.4 4874.3 7.9 12 

 

6.3 Periodicity analysis 

Streamflow periodicity is a strong index for forecasting long-term streamflow. One 

of the efficient ways to detect periodicity is by transferring the time series data into 

frequency domain. The historical data 50 to 100 years long, before the year 2000, was 
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divided into 10-20 sub-sets so that one set of series contained at least five years of 

streamflow data. For each data sample of data, the spectral density was estimated by the 

Fast Fourier transform, which was plotted in Figure 6-2.  

It can be seen from the figure that the 12 month periodicity was observed to be the 

most significant of all the stations in the Mississippi watershed. It was found that there 

were five types of spectral density obtained for the Mississippi River. The first type was 

uni-peak (fk=1/12) spectral density observed at OH, White River upstream (WU), Buffalo 

River(BU), Ouachita River downstream (OUD), and LMD, which were all from the LM. 

The second was the double significant peak observed at fk =1/12 and fk =1/6, although the 

peak at 1/6 was not large compared to the peak at 1/12. The stations of UMC, Des Moines 

downstream (DMD), MS and White River downstream (WD) belonged to the second type, 

while UMD was somehow between the first and second types. The third type of spectral 

density was observed at Big Black River (BB) for having significant peaks at fk =1/12 and 

fk =1/4. The spectral density obtained for Illinois River belonged to the fourth type with 

significant peaks at fk =1/12 and fk =1/3. The last type of spectral density was significant 

at all four periodicities, which was the case with the Minnesota River having one large 

peak at 1/12 and small peaks at fk =1/6, fk =1/4 and fk =1/3. The significant periodicity is 

tabulated in the last column of Table 6-2 that shows that in general the periodicity is almost 

consistent during the same stream, but the upstream reach may have more significant small 

peaks than the downstream reach.  
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Figure 6-2 Spectral densities for different periodicities 

 

6.4 Hypothesis on prior distribution 

It was already shown in the previous section that the hypothesis on the prior 

distribution may considerably influence the final estimation of the spectral density and 
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hence further influence streamflow forecasting. Thus, it was necessary to determine which 

prior was proper for the observed series. To test the prior distribution hypothesis, one may 

impose the constraint from the expected spectral power using equation (6-3) and (6-4a). 

The Lagrangian function can be written as 
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Thus, the poster distribution )(
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xq will have a form of  
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Equation (6-35) is the posterior distribution obtained through the minimum relative 

entropy, and the Lagrange multipliers can be solved by inputting equation (6-35) into 

equations (6-3) and (6-4a). If the posterior probabilities of powers xk are assumed to be 

identically independent to each other, the probability distribution of each power can be 

written as 

]exp[)()( 0
krkk x

n
xpxq 


       (6-36) 

The probability of the spectral power at different frequencies was estimated with the 

prior as uniform, exponential, normal or gamma distribution. The posterior probability 
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was evaluated with the Kolmogorov-Smirnov test using spectral values obtained from the 

historical data, and the result is shown in Table 6-3, where 1 represents the rejection of the 

probability distribution, otherwise 0. For all stations the probability density function 

estimated with the gamma prior probability was accepted by the test at all frequencies 

 

Table 6-3 Hypothesis test on choosing the prior probability density for specific 

frequency (1=reject, 0=accept) 

Station Frequency Uniform Exponential Normal Gamma 

UMU 

1/12 1 1 1 0 
1/6 0 0 1 0 
1/4 1 1 1 0 
1/3 1 0 1 0 

MNU 

1/12 1 1 1 0 
1/6 0 0 1 0 
1/4 1 0 1 0 
1/3 1 1 1 0 

UMC 

1/12 1 1 1 0 
1/6 1 1 1 0 
1/4 1 0 1 0 
1/3 1 0 1 0 

ILU 

1/12 0 1 1 0 
1/6 1 1 1 0 
1/4 1 0 1 0 
1/3 1 0 1 0 

UMD 

1/12 1 1 1 0 
1/6 1 0 1 0 
1/4 1 0 1 0 
1/3 1 0 1 0 

OH 

1/12 1 1 1 0 
1/6 1 0 1 0 
1/4 1 0 1 0 
1/3 1 0 1 0 
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Table 6-3 Continued 

Station Frequency Uniform Exponential Normal Gamma 

BB 

1/12 0 1 1 0 
1/6 0 1 1 0 
1/4 1 0 1 0 
1/3 0 0 1 0 

BU 

1/12 0 1 1 0 
1/6 0 0 1 0 
1/4 0 0 1 0 
1/3 0 0 1 0 

 

On the other hand, the exponential probability prior was more possibly accepted for 

spectral powers at small frequencies, except for fk=1/12. The uniform probability 

distribution as prior was rejected for almost all stations for the UM (Figure 6-3), but was 

accepted for the LM (Figure 6-4). The OH and BU in Figure 6-4 both showed that spectral 

density was only significant at fk=1/12. Thus, it is reasonable to use uniform prior to 

determine the probability of those insignificant peaks. Though the posterior with normal 

prior seemed to fit the observed histogram at fk=1/12 and fk=1/6 in Figure 6-3 and of fk 

=1/12 in Figure 6-4, the null hypothesis that the spectral power fitted the normal 

distribution, was rejected for p-values lower than 0.001 for all cases.  
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Figure 6-3 Posterior probability densities of spectral powers at frequencies 1/12, 1/6, 1/4 and 1/3 estimated with 
different priors for Upper Mississippi River 
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Figure 6-4 Posterior probability densities of spectral powers at frequencies 1/12, 1/6, 1/4 and 1/3 estimated with 
different priors for Ohio River and Buffalo River 
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When considering spectral powers of all frequencies as a vector x

, the final result 

of whether the multi-dimensional posterior probability density passes the Kolmogorov-

Smirnov test was summarized in Table 6-4. Based on the test result, the exponential 

distribution and gamma distribution as priors passed the Kolmogorov-Smirnov test. 

However, the exponential distribution as a prior has an advantage over the gamma 

distribution in one less parameter and explicit derivation. In the case of streamflow, the 

exponential distribution has n-less parameters than the gamma distribution for multi-

variate case. It is shown from the derivation of equations (6-20)-(6-24) that using the 

exponential distribution as a prior can be simply linked to the linear prediction. Thus, the 

exponential distribution was chosen for streamflow forecasting. It is noted that the result 

for WD, OUD, and LMD were left blank due to the lack of historical observations. 

 

Table 6-4 Hypothesis test on choosing the prior probability density (1=reject, 0=accept) 

Name Uniform Exponential Normal Gamma 
UMU 1 0 1 0 
MNU 1 1 1 0 
MND 1 0 1 0 
UMC 1 0 1 0 

IU 1 0 1 0 
ID 1 0 1 0 

DMU 1 0 1 0 
DMD 1 0 1 0 
ILU 1 0 1 0 
ILD 1 0 1 0 

UMD 1 0 1 0 
MS 1 0 1 0 
OH 1 0 1 0 
WU 0 0 1 0 
WD - - - - 
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Table 6-4 Continued 

Name Uniform Exponential Normal Gamma 
BB 0 0 1 0 
BU 0 0 1 0 

OUU 0 0 1 0 
OUD - - - - 
LMD - - - - 

 

6.5 Evaluation 

6.5.1 Spectral density estimation 

The spectral density for the forecasted series was estimated using RESAS and 

BESA and compared to FFT in Figure 6-5.  

It was found that the spectral density estimated was not exactly the same as that 

estimated from historical data. For example, the one obtained from historical data of the 

Illinois River was found to be significant at fk=1/12, 1/6 and 1/3, but here only peak at 

1/12 was significant, even 1/6 was comparably small. They were not exactly the same, as 

the streamflow time series was influenced by other time associated factors, like climate, 

and may show different characteristics under different conditions. 
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Figure 6-5 Estimated spectral densities by RESAS and BESA comparing to FFT
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It can be seen from the results of Table 6-5 that the Itakura-Saito distortion values 

for RESAS are smaller for all cases than for BESA. The value of Itakura-Saito distortion 

by BESA was 1.3 to 75 times of that by RESAS. Thus, it suggested that RESAS theory 

provides higher resolution spectral density than BESA does. Furthermore, it was 

interesting to note that the Itakura-Saito distortion was larger for the upstream reach than 

for the downstream reach, which suggests that the difference in detecting the spectral 

density by two entropy methods for the upstream is larger than for the downstream. It 

agrees with the Kolomogorov-Smirnov test that shows the uniform distribution prior is 

more possibly accepted for the downstream reach than for the upstream reach.  

 

Table 6-5 Itakura-Saito distortion obtained by RESAS and BESA theories 

Name RESAS BESA 
UMU 2.919 13.296 
MNU 1.187 34.180 
MND 1.606 9.475 
UMC 0.942 13.356 

IU 0.071 5.323 
ID 2.510 10.754 

DMU 1.995 25.579 
DMD 2.904 8.570 
ILU 0.505 20.933 
ILD 1.356 33.325 

UMD 1.917 49.393 
MS 1.981 2.644 
OH 0.235 2.783 
WU 0.429 2.062 
WD 0.631 563.501
BB 0.472 4.056 
BU 1.250 33.181 

OUU 0.651 16.724 
OUD 0.873 1.958 



 

111 
 

 

Table 6-5 Continued 

Name RESAS BESA 
LMD 0.922 1.547 

 

It was shown from the periodicity analysis that streamflow in the Mississippi River 

possesses strong yearly periodicity and the main frequency is fk=1/12. It can be seen from 

the spectral density plot in Figure 6-5 that the RESAS theory did not miss the peak at 

fk=1/12 but BESA sometimes did. For example, at UMC, UMD, LMD, MND, and BU, 

the largest peak determined by BESAS was at fk=1/6 (1/3 for MND), which should stick 

to fk=1/12. These stations were found in the downstream reach, suggesting that the RESAS 

theory was more reliable in detecting the peak location than BESA for estimating the 

spectral density for downstream reaches. For upstream stations, like UMU and ILU, both 

BESA and RESAS were both correct in the timing of spectral peaks. But the amplitude of 

the spectral density estimated by RESAS was closer to FFT than by BESA. 

It was found that RESAS theory sometimes may miss small peaks when peaks are 

close to each other. For example, the spectral density of BU had an insignificant peak at 

fk=1/3, but RESAS did not capture it at all. The spectral peaks for OUD from the largest 

to the smallest were at fk=1/12, 1/24, 1/8, 1/16, 1/6, 1/4.5, but the spectral density obtained 

from RESAS combined small peaks and had two peaks at fk =1/12 and ¼. Nevertheless, 

the RESAS spectral density more agreed with that observed from historical data and 

extracted and selected the most significant frequencies. On the contrary, for this case 

BESA did not capture any peaks at all.  
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The difference in the behavior of two entropy methods was due to the prior 

information imposed on the RESAS. For given limited autocorrelation series or not clear 

series, RESAS used a prior guess additional to the BESA. With the prior, the RESAS 

could select the important information from the given autocorrelation for detecting 

spectral peaks, but BESA could not. The prior information could be free from the limited 

information. Again, the RESAS was superior to BESA for imposing the prior information.  

6.5.2 Streamflow forecasting result 

The forecasting results for all stations are tabulated in Table 6-6. For all the stations, 

r2 exceeded 0.7 and NSE was higher than 0.5. The NSE value was 0.737 for the UM and 

was 0.689 for the LM. This was due to different changes in the patterns of streamflow 

hydrograph, timing and amplitude of the peaks. Due to the stochastic streamflow behavior, 

though streamflow may not be forecasted exactly, all observations fell inside the 90% 

confidence intervals in Figure 6-6. As is shown in Figure 6-6, streamflow in the LM is 

less constant and regular than in the UM. Comparing the hydrograph between the UMC 

and the BB, it was found that the hydrograph pattern of streamflow varied from year to 

year in the BB, but remained similar in the UMC. The regular pattern of streamflow of the 

UM is clearly shown in the streamflow of Illinois River downstream (ILD) in Figure 6-6, 

which monotonically increases from September to March, then decreases. But the 

streamflow of the BB in the LM fluctuates during the low-flow season, though it still 

increases to peak in March. Besides, the forecasted errors plotted in Figure 6-7 showed 

more randomness in the UM than LM. Thus, the RESAS theory forecasts streamflow of 

the UM with higher reliability than that of the LM.  
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However, the UM is found to exhibit a bi-modal probability distribution, as 

evidenced by the observed changes in the timing and amplitude of flow peaks (Baldwin 

and Lall, 1999). Due to the stochastic nature of observations, no method is capable of 

forecasting the stochastic series exactly, and RESAS theory is no exception. For example, 

the peak timing at UMC was shifted from April to March in the last lead time in Figure 6-

6. However, the RESAS forecast captured the first two peaks in April, but missed the last 

one that shifted to March. The streamflow of MND observed changes in the amplitude of 

peak flow. The relative error of the RESAS forecasted peaks and observed value were 

15%, 1% and 11% for each lead time as shown in Figure 6-7, which was acceptable.  

Table 6-6 Forecasting results of RESAS 

Name RMSE (m3/s) r2 NSE 
UMU 11.4 0.872 0.724 
MNU 4.2 0.922 0.702 
MND 31.6 0.891 0.671 
UMC 108.2 0.962 0.816 

IU 2.2 0.777 0.608 
ID 26.6 0.964 0.829 

DMU 3.1 0.883 0.674 
DMD 32.4 0.913 0.700 
ILU 21.0 0.938 0.788 
ILD 38.5 0.942 0.783 

UMD 353.1 0.963 0.814 
MS 61.2 0.993 0.920 
OH 1721.5 0.842 0.645 
WU 1210.1 0.723 0.545 
WD 3618.9 0.754 0.544 
BB 45.7 0.822 0.624 
BU 0.6 0.981 0.869 

OUU 10.2 0.927 0.748 
OUD 111.3 0.794 0.621 
LMD 340.3 0.981 0.874 
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Figure 6-6 Forecasted streamflows using RESAS with 90% confidence interval 
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Figure 6-7 Forecasted errors by RESAS
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6.6  Summary 

This section developed the RESAS theory for monthly streamflow forecasting 

with spectral power as a random variable. The theory was applied to streamflow observed 

in the Mississippi River basin. Through analysis of the probability distribution of spectral 

power using historical series, the exponential distribution and gamma distribution prior 

fitted observations. However, using the exponential distribution prior had n-less 

parameters than using the gamma distribution. Furthermore, an explicit solution was 

derivable and the linear prediction was applicable when using the exponential distribution. 

Thus, the exponential distribution was chosen as a prior to apply the RESAS theory for 

forecasting streamflow.  

Imposing the prior probability density on the spectral power, the RESAS theory 

had higher resolution in estimating the spectral density than BESA. The RESAS theory 

led to much smaller Itakura-Saito distortion than BESA, suggesting that the spectral 

density obtained by the RESAS theory was closer to FFT than BESA. However, the 

difference between the FFT and the two entropy methods is higher for streamflow at the 

upstream reach than at the downstream reach. The spectral density estimated by BESA 

sometimes shifted the peak, but the RESAS theory did not miss the largest peak at fk=1/12, 

which is the main frequency of streamflow of the Mississippi River. The RESAS theory 

is also capable of estimating the spectral densities when peaks were close to each other 

while BESA cannot. 

Applying RESAS theory, the Upper Mississippi streamflow was forecasted with 

higher accuracy than the Lower Mississippi streamflow. This was because the change of 
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hydrograph and timing and amplitudes of peaks were more constant than for the Lower 

Mississippi River.   
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7 MINIMUM RELATIVE ENTROPY SPECTRAL ANALYSIS WITH 

FREQUENCY AS A RANDOM VARIABLE 

 

In the previous section on minimum relative entropy spectral analysis, there is a 

minor drawback that it suffers from restrictions on the nature of the process and 

dependence on the form of the assumed prior probability density function (Shore, 1981; 

Tzannes et al., 1985). Besides, an inadequate prior may lead to poor performance of 

RESAS, sometimes even worse than BESA without a prior assumption (Zhuang et al., 

1993). The prior in Section 6 was selected by fitting 50-100 years of historical data, which 

may not always be available. When historic information is lacking, the selection of prior 

will be difficult. To overcome the restriction on the prior, Tzannes et al. (1985) developed 

a general method of minimum relative entropy spectral analysis with frequency as a 

random variable, thus abbreviated as RESAF. Later, it was found that RESAF is not 

restricted to the AR process; with different choices of prior, it can also be applied to a 

moving average (MA) or autoregressive and moving average (ARMA) series (Liefhebber 

and Boekee, 1987). When no specific prior is imposed, RESAF is equivalent to 

maximizing the configurational entropy spectral analysis (CESA) in Section 5. The 

RESAF theory is developed with frequency as a random variable in this section. The 

RESAF theory combines spectral analysis and cepstrum analysis with time series analysis 

for monthly streamflow forecasting. 
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7.1 Development of minimum relative entropy theory 

Let monthly streamflow time series y(t) be denoted as y1,…, yT, where T is the total 

time period. Transferring to the frequency (f) domain, the information on streamflow is 

stored in the spectral density q(f). Since the integration of spectral density over the limits 

of frequency equals 1, q(f) can be treated as a probability density function of frequency (f) 

as a random variable. Thus, the development of minimum relative entropy theory contains 

the following steps: (1) define the relative entropy, (2) specify constraints, (3) derive 

minimum relative entropy-based spectral density, (4) compute the Lagrange multipliers, 

(5) extend the autocorrelation function, and (6) forecast streamflow. 

7.1.1 Define the relative entropy 

Let frequency f be the random variable, and the normalized spectral density be 

considered as its probability density function. The relative entropy, defined as in Tzannes 

et al. (1985), can be written as 

 dffpfqfqpqH )](/)(ln[)(),(      (7-1) 

where p(f) and q(f) are normalized prior and posterior spectral density functions. The prior 

spectral density p(f) is hypothesized from the observed periodicity of streamflow, and the 

least biased posterior spectral density q(f) is estimated by minimizing equation (7-1). 

When no prior is given, p(f) is taken as 1, and then the minimization of equation (7-1) is 

equivalent to maximizing the CE of  dffqfqqH )](ln[)()( max
, the same as 

shown in equation (5-1).  
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7.1.2 Specification of constraints 

Similar to MRES, the minimization of the relative entropy is again subjected to 

constraints defined by autocorrelation. However, in this case, the constraints are formed 

in a more straightforward manner. Using the Fourier transform relationship between the 

autocorrelation and the spectral density stated in Section 3.1.2, the constraints can be 

written as  





W

W

r dftfirfq )2exp()(  , -N≤r≤N     (7-2) 

where ρr is the autocorrelation of lag r, W is the Nyquist frequency, Δt is the sampling 

interval taken as 1 month (as monthly streamflow will be forecasted), and N is the largest 

lag where the autocorrelation can be correctly given from the observed time series data. It 

is noted that N is normally taken from 1/4 up to 1/2 of the length according to the 

periodicity of streamflow (Krstanovic and Singh, 1991b). 

It is noted that when r=0, equation (7-2) reduces to 





W

W

fq 1)(          (7-3) 

which satisfies the assumption of taking q(f) as a probability density function of frequency 

f.  

7.1.3 Estimation of spectral density 

The least-biased estimate of the spectral density can be obtained by minimizing 

the relative entropy subject to equation (7-2). Using the Lagrange multipliers method, the 

Lagrangian function can be formulated as 
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])2exp()([)](/)(ln[)()( r

N

Nr

W

W

r

W

W

dftfrifqdffpfqfqfL    
 

 (7-4) 

where λr, r=0, 1, 2, …, N, are the Lagrange multipliers. Taking the partial derivative of 

equation (7-4) with respect to q(f) and equating the derivative to zero, one obtains: 

dftfrifpfq
fq

fL N

Nr
r

W

W








)}2exp(1)](/)({ln[0
)(

)(    (7-5) 

Thus, by rearranging equation (7-5), the posterior distribution can formulated as 

]1exp[)()( 2 tfri
N

Nr
refpfq 


        (7-6) 

Equation (7-6) is the posterior spectral density obtained by minimizing the entropy 

based on prior information and given constraints. It is determined by solving the Lagrange 

multipliers and with the hypothesis on the prior. If the prior is white noise, the prior 

spectral density is constantly 1 for all frequencies, thus, the posterior density becomes 

]1exp[)( 2 tfri
N

Nr
refq 


         (7-7) 

which is equivalent to the solution obtained by maximizing the CE.  

7.1.4 Computation of Lagrange multipliers 

The Lagrange multipliers can be solved for numerically by inputting equation (7-

6) into equation (7-2), which yields 

 
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W

W

tfri
m
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rr dftfirefp )2exp(]1exp[)( 2   , -N≤r≤N  (7-8) 

Another way to determine the Lagrange multipliers is by cepstrum analysis, like 

in CESA. Burr and Lytle (1986) and Wu (1983) showed how to combine MREF with 
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cepstrum analysis for estimating the explicit solution of Lagrange multipliers. Taking the 

inverse Fourier transformation of the log-magnitude of equation (7-6), one obtains 
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It can be seen from equation (7-9) that there are two terms relating to the spectral density 

that can turn to the cepstrum of autocorrelation, which is also called autocepstrum. Let the 

prior cepstrum of autocorrelation be denoted as ep(n), which is transferred from the prior 

spectral density as 





W

W

tfni
p dfefpne 2)(log)(        (7-10a) 

and let eq(n) denote the posterior cepstrum of autocorrelation transferred from the posterior 

spectral density as 





W

W

tfni
q dfefqne 2)(log)(        (7-10b) 

Then, doing the integration of both sides of equation (7-9), one gets 


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where δn is the delta function defined as: 



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
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Equation (7-11) can be expanded as a set of N linear equations: 
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Equation (7-13) enables to solve for the Lagrange multipliers in a more straight-forward 

manner than do nonlinear equation (7-8). Thus, the Lagrange multipliers can be estimated 

from the summation of two autocepstrums, the prior and posterior autocepstrums. The 

prior autocepstrum can be obtained from the observed periodicity of streamflow. When 

no prior is given, the cepstrum ep equals 0 and diminishes, and the solution of equation (7-

13) becomes the one derived using the CESA, equation (5-12). On the other hand, the 

posterior cepstrum can be obtained from the given lags of N autocorrelation as 
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However, based on the discussion of the relationship between autocepstrum and 

finite length of autocorrelation in Section 3.2.2, there is a recursive relation for 

autocepstrum that can be estimated from the autocorrelation defined as 
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qq      (7-15) 

It is seen from equation (7-15) that the nth lag of cepstrum eq(n) is dependent on 

the previous n-1 lags of cepstrum and n-lag of autocorrelation. Thus, for given N lag 

autocorrelations, the cepstrum of autocorrelation can be computed up to lag N.  
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7.1.5 Extension of autocorrelation  

The inverse relationship of equation (7-15) between autocorrelation and 

autocepstrum was stated in equation (3-37) as (Liefhebber and Boekee, 1987; Nadeu, 1992; 

Wu, 1983): 
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       (7-16) 

It is seen from equation (7-16) that the autocorrelation of n-th lag can be estimated from 

n cepstrums. Thus, for autocorrelations beyond lag N, it can be extended one by one using 

equation (7-16), in which manner 1N  is extended from 
1 , 

2 , …, N  using N+1 

cepstrums and is used to extend to 2N ，and so forth. Thus, the autocorrelation of N+k 

th lag can estimated from N+k cepstrums as 
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where m is the model order and eq(j) represents the posterior cepstrum obtained by MREF 

satisfying  
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It is noted from equation (7-18) that the posterior cepstrum is estimated from the prior and 

the Lagrange multipliers, which can be further equal to 

)()()()( jjpq jeje          (7-19) 

For different j values, the posterior cepstrum becomes 

01)0(  pq ee , when j=0       (7-20a) 
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jpq jee  )( , when 1<j<N       (7-20b) 

)()(' jeje p , when j>N       (7-20c) 

since 0j  when j≠0, and j  does not exist for j>N. Thus, replacing the cepstrum with 

equation (7-20), equation (7-17) can be written as 
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where m is the order of model. Equation (7-20) is the extension of autocorrelation beyond 

the given lag N using RESAF. It is noted from equation (7-21) that when no prior is given, 

the first term diminishes and yields that derived from CESA.  

7.1.6 Forecasting 

Streamflow is forecasted in the manner that autocorrelation function is extended. 

It can be seen from equation (7-21) that autocorrelation of lag N+k is extended from the 

previous m autocorrelations combined with m autocepstrums of autocorrelations. In the 

same manner, streamflow can be forecasted from previous m observations using m 

autocepstrums using equation (7-21) (Oppenheim and Schafer, 1975; Wu, 1983). Thus, to 

forecast streamflow, equation (7-21) can be written as a time series, where the input data 

changes to yt and cepstrum c(n) is used instead of e(j): 
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where c(j) is the cepstrum of the time series defined by 
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It is noted that )(2)( nCne  as shown in equation (3-28), and one can write 

equation (7-23) as 
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When no prior is given, ep is 0, thus, equation (7-24) reduces to  
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Again, the order of forecasting model m is identified by the Akaike information criterion 

(AIC) or the Bayesian information criterion (BIC) (Box and Jenkins, 1970; Hipel and 

McLeod, 1994).  

The same 20 sets of streamflow data from the Mississippi River watershed used in the 

Section 6 were used to apply the MREF theory in this section.  

7.2 Hypothesis on prior spectral density 

To apply the RESAF theory, the prior hypothesis was constructed from periodicity 

discussed in Section 6.3. It was noted from the previous section that streamflow in the 

Mississippi River watershed has periodicities of 12 months, 6 months, 4 months, and 3 

months with different degrees of significance. It is noted that the main periodicity of the 

Mississippi River is 12 month, and the periodicity is constant for the same river reach. The 

periodicity of small frequencies like 3 months or 4 months is less significant in streamflow 

for the downstream reach than for the upstream reach, and also less significant for the 

Lower Mississippi than for the Upper Mississippi. Thus, the prior spectral density was 
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assumed like a background noise for the six types of prior hypothesis, as stated in Table 

7-1 and plotted in Figure 7-1. 

Table 7-1 Hypothesis on the prior spectral density 

No. of Prior Prior spectral density 

Prior 1 (CE) p(f)=1 

Prior 2 p(f)=0.01, p(1/12)=1 

Prior 3 p(f)=0.01, p(1/12)=1, p(1/6)=0.6 

Prior 4 p(f)=0.01, p(1/12)=1, p(1/6)=0.2, p(1/4)=0.2 

Prior 5 p(f)=0.01, p(1/12)=1, p(1/6)=0.2, p(1/3)=0.2 

Prior 6 p(f)=0.01, p(1/12)=1, p(1/6)=0.2, p(1/4)=0.2, p(1/3)=0.2 
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Figure 7-1 Six types of prior hypotheses 

 

Prior 1 was defined by a condition when no prior information is given, thus, the 

spectral density was constantly 1. In this case, the RESAF was equivalent to the CESA 

theory. Priors 2-6 were constructed by combining the background noise p(f)=0.01 and the 

spectral peak at a specific frequency. Prior 2 was defined by the unique peak condition 

with assumed peak p(f)=1 at f=1/12, which may be applied at most of the stations in the 

Lower Mississippi. Prior 3 had two significant periodicities at frequencies 1/12 and 1/6, 
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however, the spectral peak at frequency 1/6 was assumed to be 0.6 not 1 with lower 

significance than at frequency 1/12. The streamflow observed in the main Mississippi 

River was prone to prior 3, prior 4 and prior 5 correspond to adding small spectral peaks 

at frequency of 1/3 or 1/4, which can be applied in the middle of the Mississippi River 

watershed. The last prior spectral density was composed of four peaks at all possible 

periodic frequencies, which was observed at Minnesota River (MN) and upstream 

Ouachita (OUU) River. The periodicity of streamflow is retabulated in Table 7-2, 

suggesting prior from the periodicity information.  

 

Table 7-2 Periodicity of each station and suggested prior 

Name Location Station Periodicity 
Suggesting 

prior 

UMU 
Upper Mississippi 

upstream 
05227500 12, 6, (4, 3) Prior 3 

MNU Minnesota upstream 05301000 12, 6, 4, 3 Prior 6 
MND Minnesota downstream 05330000 12, 6, 4, 3 Prior 6 
UMC Upper Mississippi center 05420500 12, 6 Prior 3 

IU Iowa upstream 05449500 12, 6, (4, 3) Prior 3 
ID Iowa downstream 05465500 12, (6, 4) Prior 2 

DMU Des Moines upstream 05476000 12, (6, 4, 3) Prior 2 
DMD Des Moines downstream 05490500 12, 6 Prior 3 
ILU Illinois upstream 05543500 12, 6, 3 Prior 4 
ILD Illinois downstream 05568500 12, 6, 3 Prior 4 

UMD 
Upper Mississippi 

downstream 
07010000 12, (6) Prior 2 

MS Missouri 06934500 12, 6 Prior 3 
OH Ohio 03611500 12 Prior 2 
WU White upstream 07077000 12 Prior 2 
WD White downstream 07289000 12, 6 Prior 3 
BB Big Black 07290000 12, 6, 4 Prior 5 
BU Buffalo 07295000 12 Prior 2 

OUU Ouachita upstream 07359002 12, 6, 4, 3 Prior 6 
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Table 7-2 Continued 

Name Location Station Periodicity 
Suggesting 

prior 
OUD Ouachita downstream 07367005 12 Prior 2 

LMD 
Lower Mississippi 

downstream 
07374000 12 Prior 2 

 

It is noted from equation (7-24) that the prior cepstrum is imposed as the 

background of streamflow fluctuation to maintain the periodicity assumed in the prior 

spectral density. Figure 7-2 plots the prior cepstrum corresponding to the six priors, which 

shows how spectral analysis impacts the streamflow time series. It is seen from the figure 

that the cepstrum fluctuated over time and the fluctuating frequency is different for each 

prior depending on which periodicity is assumed in the prior spectral density. When no 

prior information is given, the prior cepstrum constantly equals 0 and has no impact on 

streamflow forecasting. 
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Figure 7-2 Prior cepstrum computed from six prior spectral densities  

 

7.3 Evaluation 

7.3.1 Spectral density estimation 

For assumed six priors, the posterior spectral density was estimated by the RESAF 

theory. The estimated spectral density was verified with the one obtained from fast Fourier 

transform (FFT) through the Itakura-Saito (I-S) distortion, which is listed in Table 7-3. It 

was noted from the table that choosing priors 2-6 generally had higher resolution than 
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prior 1 except for the OUD and LMD. The I-S distortion estimated from prior 1 was 1.1 

to 38.9 times that from prior 2, especially for White River downstream (WD) prior 1 

became 180 times of prior 2. It suggested that prior information improves the resolution 

of spectral estimation. 

 

Table 7-3 Computed Itakura-Saito distortion for each prior 

Name Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 
Choosing 
Prior 

UMU 6.155 2.340 2.157 2.169 2.268 2.261 Prior 3 
MNU 41.527 1.894 2.458 2.107 2.095 2.119 Prior 2 
MND 3.688 1.409 1.288 1.171 1.091 1.194 Prior 5 
UMC 6.243 1.276 0.916 0.918 0.930 0.977 Prior 3 

IU 1.513 0.064 0.076 0.054 0.062 0.062 Prior 4 
ID 5.504 1.997 2.275 2.039 2.150 2.180 Prior 2 

DMU 19.464 2.218 2.060 1.911 1.856 1.908 Prior 5 
DMD 8.956 2.454 2.632 2.247 2.468 2.350 Prior 4 
ILU 26.459 0.692 1.018 0.945 0.925 1.080 Prior 2 
ILD 27.722 1.065 1.368 1.302 1.295 1.450 Prior 2 

UMD 16.128 2.862 2.801 2.825 2.928 2.946 Prior 3 
MS 2.010 1.875 1.905 1.825 1.860 1.962 Prior 4 
OH 2.799 0.274 0.614 0.520 0.534 0.665 Prior 2 
WU 1.962 1.144 1.634 1.445 1.489 1.641 Prior 2 
WD 158.595 0.881 1.165 1.041 1.025 1.225 Prior 2 
BB 4.820 0.446 0.675 0.601 0.593 0.758 Prior 2 
BU 26.210 1.481 1.659 1.569 1.559 1.705 Prior 2 

OUU 39.996 1.612 2.396 2.135 2.150 2.419 Prior 2 
OUD 1.793 1.839 2.505 2.261 2.311 2.525 Prior 1 
LMD 0.896 1.439 1.615 1.559 1.569 1.687 Prior 1 

 

Comparing the Itakura-Saito distortion of different priors, the one having the least 

distortion (prior*) was tabulated in the last column of Table 7-2. It was interesting to note 

that the prior with the least I-S distortion is not exactly the same as that suggested in Table 
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7-1. For example, the periodicity observed for the Minnesota River (MN) suggested prior 

6 for four spectral peaks, while after verification, it reduced to prior 2 with uni-peak for 

the upstream reach and prior 5 with three peaks for the downstream reach. It implies that 

the small peaks observed at 3 month or 4 moth periodicity were not that significant for the 

MN. Besides, prior 6 was not suggested by any of the cases, which implied that none of 

the streamflow possessed equally strong periodicity for frequencies of 1/6, 1/4 and 1/3. 

On the contrary, for the Des Moines River upstream (DMU), where the only 12 month 

periodicity was observed to be significant, the spectral density estimated with prior 5 was 

suggested for additional peaks at 1/6 and 1/3 frequencies.  

Though the prior selected from the observed periodicity may not possess the least 

I-S distortion, the difference between the values of I-S distortion for different priors was 

not significant. The variation of the I-S distortion was between 0.0005 and 0.10 from prior 

2 to prior 6. Besides, the difference in the value of I-S distortion between prior 2 and prior* 

was not significant and varied from 0.01 to 0.36 as shown in Figure 7-3. Especially for the 

Lower Mississippi, prior 2 led to the least I-S distortion. It can also be seen from Figure 

7-4 where the estimated spectral density with prior 1, prior 2 and prior* were plotted 

against the one from the FFT. For all the priors, the 1/12th peak was clearly detected, 

though it is about 23% overestimated by prior 2 and 11.7% overestimated by prior*. The 

shape of the spectral peak by prior 2 and prior* were closer to the one from FFT than that 

by prior 1, as the peak by prior 1 is wider than observed. For example, the area under the 

1/12th peak of spectral density estimated for MND was 2 times the one estimated by FFT 

or other priors. Furthermore, it can be seen from the figure that the location of spectral 
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peak of the posterior spectral density was consistent with the one assumed from the prior. 

For the Upper Mississippi River (UMU, UMC, and UMD), spectral peak at frequencies 

1/12 and 1/6 were estimated with prior 3, which were the hypothesized peaks by prior 3. 

For MND or MS, the additional peaks occurred at frequencies 1/3 or 1/4, where prior 5 or 

prior 4 was assumed. However, the estimated peaks at small frequencies sometimes were 

too large as compared with the one from FFT, and the use of prior* was doubtful. As 

shown in the figure, the spectral peak estimated was 2.8 times the observed peak at the 

1/6th frequency for UMD, more than 10 times the observed peak at the 1/4th frequency for 

MS. Nevertheless, the prior* had estimated a slightly smaller I-S distortion, the estimate 

with prior 2 provided for a satisfactory resolution. Furthermore, when forecasting 

streamflow with the lack of periodicity information, prior 2 can be a proper choice as 

monthly streamflow possesses a strong 12 month periodicity. 

 

 

Figure 7-3 Comparison of the Itakura-Saito distortions for Prior 2 and Prior* 
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Figure 7-4 Estimated spectral densities with different priors 

 

  

UMU

MND

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

Prior 1

Prior 2

Prior 4

MS

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

prior 1

prior 2

prior 3

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

Prior 1

Prior 2

Prior 5

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

Prior 1

Prior 2

Prior 3

UMC

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

Prior 1

Prior 2

ILU

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

Prior 1

Prior 2

Prior 3

UMD

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

FFT

Prior 1

Prior 2

LMD

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

S
pe

ct
ra

l d
en

si
ty

Frequency

Prior 1

Prior 2

FFT

WU



 

136 
 

 

7.3.2 Streamflow forecasting 

Streamflow was forecasted using prior 2 and prior*, the one with the least 

distortion, and were plotted in Figure 7-5 with forecasted errors plotted in Figure 7-6. As 

shown in the figure, streamflows forecasted with prior 2 and prior* were close to each 

other. For both priors, streamflow was forecasted properly, as the average values of NSE 

with the two priors were 0.77 and 0.78, respectively. Figure 7-7 plots values of NSE 

estimated with prior 2 and prior*, where it can be seen that the difference between the two 

priors was minimal. It was interesting to note that the I-S distortion for MNU was smaller 

for prior* than for prior 2, but NSE was higher for Prior 2. Besides, for Lower Mississippi, 

prior 2 was the only choice for forecasting. Thus, combining the discussion on the 

performance of spectral estimation by prior 2 and prior*, it suggested prior 2 be a proper 

assumption for estimating the spectral density and forecasting streamflow of the 

Mississippi River.  
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Figure 7-5 Forecasted streamflow with prior 2 and prior* 
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Figure 7-6 Forecasted errors by RESAF with prior 2 
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Figure 7-7 Comparison of NSE for prior 2 and prior* 
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fashion. For this case, the MREF was only able to provide the forecast with r2 of 0.631 

and NSE of 0.569 for a 2 year lead time, where the error in forecasted peak was about 0.7. 

 

Table 7-4 Forecasted result of RESAF 

Name RMSE (m2/s) r2 NSE 
UMU 5.719 0.968 0.862 
MNU 2.113 0.880 0.741 
MND 15.816 0.973 0.835 
UMC 46.866 0.934 0.932 

IU 1.116 0.844 0.704 
ID 13.316 0.891 0.838 

DMU 1.531 0.971 0.837 
DMD 16.215 0.978 0.850 
ILU 10.488 0.946 0.867 
ILD 16.236 0.891 0.805 

UMD 209.338 0.986 0.884 
MS 30.595 0.998 0.960 
OH 860.748 0.660 0.618 
WU 605.073 0.631 0.569 
WD 1809.441 0.739 0.533 
BB 22.956 0.855 0.809 
BU 0.309 0.895 0.834 

OUU 5.120 0.782 0.774 
OUD 55.651 0.749 0.611 
LMD 1179.229 0.950 0.811 

 

7.4 Summary 

The minimum relative entropy theory was developed by considering frequency as 

a random variable in this section. The development of RESAF theory entails the cepstrum 

analysis, as a result, an explicit solution is given for computing the Lagrange multipliers. 

The RESAF theory hypothesizes prior with information given from the periodicity of 

streamflow. 
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No matter which prior is chosen, even with no prior information, the MREF theory 

did not miss estimating the largest peak at frequency of 1/12, the main periodicity of the 

Mississippi River. However, with additional information as prior, the spectral density had 

higher resolution than that of the CESA theory. The difference in the estimation of spectral 

density with different priors was minimal, and prior 2 was applicable for monthly 

streamflow of any station on Mississippi River, as spectral peaks at other frequencies were 

not as significant as the one at frequency 1/12.  

The MREF theory forecasted monthly streamflow from 20 stations in the 

Mississippi River watershed with a high value of NSE of 0.784. Similar to the MRES 

theory, streamflow forecasted for the Upper Mississippi River had a higher NSE than for 

the Lower Mississippi, but the difference was less than 0.1.  
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8 COMPARISON OF ENTROPY THEORIES FOR UNIVARIATE 

STREAMFLOW FORECASTING 

 

Four entropy spectral analysis theories were developed using the configurational 

entropy and relative entropy for univariate streamflow time series forecasting. Both were 

developed using spectral power or frequency as a random variable. The configurational 

entropy spectral analysis (CESA) is obtained by maximizing entropy, and with Burg 

entropy spectral analysis (BESA) form the maximum entropy spectral analysis (MESA). 

The relative entropy spectral analysis is minimized, thus is called minimum relative 

entropy spectral analysis (MRESA) theory. However, the CESAS developed with spectral 

power as a random variable yielded the BESA, and was less convenient in estimating 

parameters than BESA. Thus, BESA is used to compare with other entropy based spectral 

analysis instead of CESAS, and CESA only represents the configurational spectral 

analysis developed with frequency as a random variable. This section compares the four 

entropy theory: BESA, CESA, RESAS and RESAF.  

8.1 Entropy versus AR 

8.1.1 Comparison between MESA and AR 

First of all, the forecasted streamflows of Table 5-1 by two maximum entropy 

spectral analysis BESA and CESA were compared to the AR method, was shown in Figure 

8-1.  
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Figure 8-1 Comparison of two maximum entropy spectral analysis with the AR 
method 
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Using the Levinson algorithm, the AR method yielded a low order (3-5) of 

forecasting, while two entropy theories had an order of 10-13. The classical AR method 

was not comparable to the two MESA methods. Except for the forecasting for the Big 

Black River, Missouri River and Upper Colorado River, the forecasted streamflow using 

AR had r2 lower than 0.5. The AR method requires longer past series so that it can provide 

the same accuracy as the entropy methods. For instance, both configurational entropy and 

the Burg entropy used 24 months streamflow series to forecast monthly streamflow of 

Greenbrier River up to 48 months lead time with r2 higher than 0.8. The forecasted values 

by AR had r2 lower than 0.7, and to increase the accuracy comparable to the entropy 

methods, past streamflow of at least 48 months needs to be given.  

The other disadvantage of the AR method was its shorter lead time. The forecast 

of AR was not reliable over 48 months whereas two entropy methods can go as long as 60 

months. The variation of NSE over the forecast lead time is shown in Figure 8-2. The NSE 

of AR dropped below 0.5 after the 1st year for Greenbrier River and after the 2nd year for 

others.  
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Figure 8-2 Nash-Sutcliffe coefficient against lead time for Greenbrier River, 

Upper Colorado River and Green River 
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8.1.2 Comparison of MRESA with AR 

The orders of model used for forecasting by two MRESA (RESAS and RESAF) 

and AR are plotted in Figure 8-3. In almost all cases, the two entropy methods required 

higher order than did the AR method. The average order used by the MRES theory was 

around 13, by the MREF theory was around 14, but only 7 was for AR. Small order may 

cause poor prediction and incomplete peak fit in the spectrum. According to the NSE plot 

in Figure 8-4, the NSE values for all cases are higher for the entropy methods than for the 

AR method. Especially for WU, WD, OUU, OUD and LMD, where order of AR is less 

than 2, the NSE was less than 0.1. It showed that AR failed to capture the autocorrelation 

of these series and could not forecast monthly streamflow.  

 

 

Figure 8-3 Model orders for RESAS, RESAF and AR 
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Figure 8-4 Comparison of NSE for RESAS, RESAF and AR 
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Figure 8-5 Streamflow forecasted by MRESA and AR 
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Figure 8-6 Relative errors against lead time by RESAS and AR 
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Though the average numbers of order used by the entropy methods are larger than 

AR, they enable the entropy methods to uncover longer autocorrelations of time series 

than would the AR method. The autocorrelation of the time series is the basis for 

forecasting univariate series from itself, thus the AR method may lose important 

information for forecasting, because the order represents how long the past data would be 

used to forecast the future. Thus, the autocorrelation, extended by either the maximum or 

minimum entropy, relied on longer past series than least squared extension, and 

forecasting was more reliable. Nevertheless, the higher order will make the computation 

of parameters more tedious, however, such tedium would be recommended for improving 

the accuracy. 

Furthermore, the AR forecasting was weak to respond to sudden impulses of 

streamflow. For example, in the forecasting of streamflow at BB or BU, streamflow 

increased from December to January, paused in February then started to increase in March 

with a large slope. However, the AR method cannot forecast the change and fails to 

forecast the peak in March, while the entropy methods can. For other series, even though 

the forecast of AR fluctuated, it was still not comparable to that of the two entropy methods. 

For forecasted streamflow of UMU, UMC, UMD, OH, BB and BU, more than 20% of 

peak in March was lost by AR. It is noted that the relative errors forecasted for the March 

streamflow of the above stations periodically exceeded 0.65, 0.27, 0.25, 1.6, 4.8, and 2.2, 

respectively. 

Furthermore, the AR forecast had a shorter lead time than the two entropy methods. 

For example, in the forecasting for UMC in Figure 8-5, the forecasts by the two entropy 
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methods were within 90% of the observed values, but AR dropped from 85% of the peak 

in the first lead year to 83% in the second lead year, and finally to 78% of the observed 

value in the third year. The average absolute relative error increased from 0.091 of the first 

lead year to 0.126 of the third lead year, while that by entropy methods stayed between 

0.04 and 0.05 during the three-year lead time. To keep the error less than 0.2, the forecast 

by AR could not extend to longer than 24 months for all cases. In general, the AR method 

was not comparable to the two MRE-based forecasting methods. 

8.2 Minimum relative entropy versus maximum entropy 

The improvement in estimating spectral density with prior was discussed in 

Sections 6.5.1 and 7.3.1. This section compares the performance of forecasting streamflow 

by two MRESA theories and two MESA theories, and to see if imbedded prior information 

also improves time series forecasting.  

8.2.1 Comparison between RESAS and BESA 

As shown in Figure 8-7, the NSE values of RESAS forecasts were almost all higher 

than those of BESA, though for UMU, UMC, DMD, UMD and BB, the two entropy 

methods had similar results. It can be seen from Figure 8-8 for UMU and UMC that though 

the errors in peak forecasted using two entropy methods were both under 2.4%, the 

smallest values forecasted were much different. The mean value from September to 

February at UMU was about 52 m3/s, while the mean value during this time forecasted by 

RESAS was 57 m3/s and by BESA was 63 m3/s. The BESA forecast exceeded the 

observations by 21%. Furthermore, it is seen from Figure 8-9 that the relative error 

forecasted by BESA was farther for this period, and the average of forecasted error for 
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this period by RESAS was 0.103 and by BE it was 0.173. In the previous section, it was 

shown that the two entropy methods had a longer lead time than AR. Here, RESAS showed 

even longer lead time than BESA. As shown in Figure 8-8 for BB, as time went far, the 

lower value forecasted by BESA was larger and the peak value forecasted by BESA was 

smaller. As a result, the peak forecasted decreased by 0.9% each year and the error in peak 

increased by 53% afterwards. Besides, the relative error exceeded 3 after forecasting 12 

month ahead, and the average of relative error was larger than 0.5 after third lead year. On 

the contrary, the forecasting of RESAS was consistently good for up to 48 months lead 

time with average of relative error around 0.3-0.4. The peak in error was kept within 3.6% 

even for the fourth year’s peak, and the forecast during low flow season still maintained a 

93% accuracy. 

 

 

Figure 8-7 Forecasted NSE for RESAS and BESA 
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Figure 8-8 Forecasted streamflow by RESAS and BESA 
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Figure 8-9 Forecasted errors by RESAS and BESA 
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However, the advantage of using RESAS over BESA was more significant in 

forecasting streamflow located downstream, where the determination of the locations of 

spectral peaks was more accurate. The NSE value of RESAS was about 1.2 to 1.5 times of 

that of BESA for ID, WD and OUD. While for MND, where BESA estimated the largest 

peak at fk=1/3, the forecasted streamflow from July to February did not follow the 

observed periodicity pattern. It was interesting to find that during the test on the prior 

distribution, the probability of downstream spectral power was more prone to accepting 

the uniform prior than upstream. But when used for spectral estimation or streamflow 

forecasting, the advantage of choosing the exponential distribution over the uniform 

distribution as the prior was significant.  

The streamflow of Ouachita possessed the least regular pattern and the least 

amount of information compared to other streamflow in the Mississippi River. BESA even 

failed to determine its spectral density as shown in Figure 6-5. Here, in Figure 8-8, the 

forecasting by BESA was as unsatisfactory as the one forecasted by AR. It failed to 

fluctuate with the observation but remained around the mean value, suggesting that the 

BESA method is limited to data with periodicity clearly given. It can be seen from the 

plotted errors that the errors from BESA coincided with those from AR and were all larger 

than RESAS. For limited data series or data with unclear periodicity, RESAS used prior 

information, additional to BESA, to clarify the periodicity, and further improved 

streamflow forecasting. In such cases, the advantage of imposing the prior distribution is 

significant. As a result, for forecasting streamflow of Ouachita River, the RESAS theory 

had an NSE of 0.75 and 0.62 for the upstream reach and the downstream reach respectively. 
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The cases where the BESA forecast was comparable to RESASor had NSE larger 

than 0.5 (for example UMU, ID, DMD or MS), had more possibility to be forecasted by 

the AR method than by others. This phenomenon showed an agreement with the result 

found by Liefhbber and Boekee (1987) that BESA was somehow limited to the AR series. 

It was reasonable, since the forecasting by BESA, though under entropy maximization, 

turned out to be a linear forecasting as the AR method. However, the RESAS theory was 

more general and not limited to the AR process. It makes the MRE more widely applicable 

than BE. 

8.2.2 Comparison between RESAF and CESA 

Streamflow forecasted by CESA theory and RESAF theory were plotted in Figure 

8-10. Without any prior information, streamflow forecasted by CESA was smoother than 

with prior 2, and the shape of hydrograph kept the same from year to year. Thus, when 

observed streamflow is regular, repeatable, streamflow forecasted by CESA were as good 

as with other priors (see UMC, UMD and MS). However, streamflow forecasting by 

CESA was weak for an irregular change in hydrograph or a multi-peak flow. It can be seen 

from streamflow forecasted for LMD that CESA theory forecasted streamflow 

monotonically rising from October to May and then decreasing, while observed 

streamflow had fluctuating peaks. For UMU and MND Rivers, streamflow did not drop 

directly after the peak in March, however, there was another small rise in May, which was 

not forecasted using CESA. For the above cases, RESAF is recommended. It can be seen 

that RESAF with prior 2 was capable to forecast multi-peaks that fluctuated during the 

peak season of LMD and WU, and to forecast the small rise for UMU and MND.  



 

157 
 

 

 

Figure 8-10 Streamflow forecasted by CESA and RESAF 
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Furthermore, streamflow forecasted during the low flow period was more reliable 

for choosing RESAF over CESA. It can be seen from the figure that streamflow forecasted 

with CESA during September to February was 2.7 m3/s to 20.8 m3/s higher than the 

observation, while for other prior the difference was less than 5.4 m3/s. Besides, the peak 

flow forecasted by CESA dropped by 5.6% to 13.5% year by year. Due to the drop of 

forecasted peak of Illinois upstream (ILU) the forecasted NSE of the second lead year 

decreased from 0.769 of the first lead year to 0.547, when the forecasted peak from 

RESAF was within 4.3% variation. 

8.3 Spectral power versus frequency as a random variable 

The estimated spectral density and forecasted streamflow showed that adding prior 

information generally yielded higher resolution and accuracy. It suggested that no matter 

which variable is defined as a random variable, the prior information improves the 

MRESA theory over the MESA theory. Then comes the question of which way of defining 

entropy is better, spectral power as a random variable or frequency as a random variable.  

When the random variable is defined by the spectral power, both the RESAS and 

BESA theories yielded the spectral density in the form of inverse polynomials, where the 

roots were the forecasting coefficients. In this case, the coefficients were solved from N 

nonlinear equations, and streamflow was forecasted by linear prediction. On the other 

hand, when the random variable is defined by frequency, the spectral density was in the 

form of exponential function for RESAF and CESA. Taking the inverse Fourier transform 

of the logarithm of the spectral density, which was the cepstrum of the autocorrelation, the 

Lagrange multipliers can be directly solved from the autocepstrum. The extension of 
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autocorrelation and forecasting of streamflow, in this case, were processed from the 

recursive function associated with the cepstrum. Furthermore, the prior is hypothesized 

for the distribution of spectral power for RESAS while the spectral density for RESAF. 

Comparison is made for different definition of entropy in this section. 

8.3.1 Without prior information 

Without considering the impact of prior information, the two maximum entropy 

spectral analysis theories, BESA and CESA, were first compared. It can be seen from 

Figure 8-11 that the spectral density estimated from BESA had multiple peaks but the 

order of significance was disordered. The main periodicity of the Mississippi River is 1/12, 

thus, the most significant peak should be found at frequency 1/12, which was estimated 

correctly by CESA. However, using BESA, the largest peak shifted, for example, the 

spectral peak estimated for UMC, UMD, and MS in the figure, shifted to frequency 1/6 

but not at frequency 1/12. Besides, for the spectral density estimated for ILU, and ILD, 

though the largest peak was estimated at frequency 1/12 for BESA the same as for CESA, 

the second largest peak estimated at frequency 1/6 by BESA was 2.3 and 4.7 times larger 

than the one from FFT, respectively. However, CESA ignored small peaks to make sure 

the largest peak was correctly estimated, thus, the spectral density obtained by CESA was 

uni-peak with periodicity at frequency 1/12.  
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Figure 8-11 Computation of spectral densities estimated by BESA and CESA 

 

Besides, the I-S distortion of spectral density estimated by two MESA theories in 

Table 8-1 shows that the I-S distortion is higher for BESA than CESA. It suggested that 

the resolution by CESA in estimating the spectral density was higher than by BESA.  
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Table 8-1 Continued 

Name CESA BESA 
ILU 26.459 20.933 
ILD 27.722 33.325 

UMD 16.128 49.393 
MS 2.010 2.644 
OH 2.799 2.783 
WU 1.962 2.062 
WD 158.595 563.501
BB 4.820 4.056 
BU 26.210 33.181 

OUU 39.996 16.724 
OUD 1.793 1.958 
LMD 0.896 1.547 

 

The advantage of estimating the location of spectral peaks by CESA continued in 

streamflow forecasting. It can be seen from Figure 8-12 that graphs streamflow forecasted 

for the two MESA methods. Due to the shift in the estimation of spectral density for UMC, 

UMD and MS, the peak flow forecasted by BESA did not match the observation. The peak 

flow forecasted by BESA was 1 month late for the third lead year for UMC and 1 month 

early for UMD and MS. CESA can capture the peak flow correctly repeated every 12 

months, as CESA strongly emphasized the 12 month periodicity for spectral estimation. 

Besides, the forecasting lead time for UMU and UMC is longer for CESA than BESA. As 

shown in Figure 8-12, the peak flow was forecasted with error less than 0.1 by CESA for 

two years lead time, but the error by BESA was larger than 0.3 for the forecasted peak 

second lead year.  
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Figure 8-12 Comparison of streamflow forecasted by BESA and CESA 
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Figure 8-13 Forecasted errors by BESA and CESA 
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It can be seen from Figure 8-13, where the forecasted errors are plotted against 

lead time that forecasted error by BESA was earlier to exceed 0.2 than by CESA. However, 

both BESA and CESA were weak at forecasting streamflow during low flow season, 

which were from September to February. For example, during the 2nd lead year of UMU, 

the average streamflow forecasted by BESA was 21.1% higher than the observed values, 

while that of CESA was 19.3% higher than observation. It is noted from Figure 8-13 the 

absolute values of errors by BESA were larger than 0.3 during the low flow season 

comparing to those by CESA of around 0.2. 

The order of forecasting model and NSE are given in Table 8-2, which shows that 

CESA used 1-2 more orders for streamflow forecasting than BESA, especially for Lower 

Mississippi, where BESA failed to provide reliable forecasting with model order of 2. 

CESA theory was more widely available to forecast streamflow than BESA. As a result, 

the goodness of forecasting measurement of CESA was higher than BESA. with NSE of 

0.604 compared to that of 0.525 for BESA as shown in Table 7.  

 

Table 8-2 Forecasting details of CESA and BESA 

Name 
Model order NSE 

CESA BESA CESA BESA 
UMU 13 13 0.725 0.697 
MNU 13 12 0.492 0.484 
MND 12 13 0.585 0.554 
UMC 13 12 0.785 0.737 

IU 12 13 0.498 0.475 
ID 14 14 0.548 0.544 

DMU 14 14 0.501 0.476 
DMD 14 13 0.653 0.700 
ILU 14 12 0.658 0.658 
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Table 8-2 Continued 

Name 
Model order NSE 

CESA BESA CESA BESA 
ILD 16 14 0.755 0.709 

UMD 15 14 0.787 0.752 
MS 15 15 0.790 0.783 
OH 16 15 0.540 0.539 
WU 18 6 0.432 0.179 
WD 9 9 0.498 0.274 
BB 15 16 0.481 0.543 
BU 16 15 0.670 0.623 

OUU 13 2 0.427 0.004 
OUD 11 2 0.503 0.071 
LMD 12 11 0.746 0.708 

Average 13.75 11.75 0.604 0.525 
 

8.3.2 With prior information 

The difference in the spectral estimation between RESAS and RESAF was similar 

to that between BESA and CESA. It can be seen from Figure 8-14 that the spectral density 

estimated by RESAS is more likely to be multi-peak spectra compared to RESAF, though 

the location of small peaks may not exactly be consistent with the one from FFT. As shown 

in the figure, the spectral density estimated by RESAS had additional peaks at frequencies 

1/4 and 1/3 for UMU, at frequency 1/3 for UMD and at frequency 1/4 for ILD. On the 

contrary, the spectral density estimated by RESAF had peaks at the specified frequency 

from the prior and seldom had peaks additional to the one from FFT. Like the maximum 

entropy case, RESAF was more likely to have the largest peak at the correct location.  
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Figure 8-14 Comparison of spectral density by RESAS and RESAF 

 

However, the capability of detecting multi-peaks of RESAS did not guarantee a 

smaller I-S distortion. As shown in Table 8-3 that the values of I-S distortion of two 

methods were similar, where the average value of I-S distortion was 1.386 for RESAS and 

1.268 and RESAF. The number of counts that the I-S distortion was smaller for RESAF 

vs. RESAS was 10:10, as plotted in Figure 8-15. It was smaller than that by CESA vs. 

BESA of 14:6, which suggested that the advantage of estimating the spectral density using 

frequency as a random variable is more significant for applying MESA than MRESA. 

 

Table 8-3 Computed Itakura-Saito distortion for RESAF and RESAS 

Name RESAF RESAS 
UMU 2.157 2.919 
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Table 8-3 Continued 

Name RESAF RESAS 
MNU 1.894 1.187 
MND 1.091 1.606 
UMC 0.916 0.942 

IU 0.054 0.071 
ID 1.997 2.510 

DMU 1.856 1.995 
DMD 2.247 2.904 
ILU 0.692 0.505 
ILD 1.065 1.356 

UMD 2.801 1.917 
MS 1.825 1.981 
OH 0.274 0.235 
WU 1.144 0.429 
WD 0.881 0.631 
BB 0.446 0.472 
BU 1.481 1.250 

OUU 1.612 0.651 
OUD 1.839 0.873 
LMD 1.439 0.922 
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Figure 8-15 Preference of choosing CESA over BESA and RESAF over RESAS 

 

The model orders used for streamflow forecasting by the two entropy methods 

were similar, as shown in Table 8-4, which suggested that the capability of possessing the 

past information was similar for the two methods. Thus, the difference was how the two 

methods dealt with that information to forecast streamflow. It was seen from the table that 

the average NSE obtained by RESAF was 0.784 slightly higher than 0.728 of RESAS. 

Based on the computed NSE, the preference for choosing RESAF over RESAS rose to 

15:5 as shown in Figure 8-14. It suggested that though there were 5 stations that had higher 

1010

Itakura-Saito distance

MRES MREF

14

6

Itakura-Saito distance

CE BE

15

5

NSE

RESAF RESAS

17

3

NSE

CESA BESA



 

169 
 

 

resolution spectral density using RESAS, streamflow forecasted by RESAF was more 

reliable.  

 

Table 8-4 Forecasting details by RESAF and RESAS 

Name 
Model order NSE 

RESAF RESAS RESAF RESAS 
UMU 13 13 0.841 0.724 
MNU 13 12 0.741 0.702 
MND 13 12 0.774 0.671 
UMC 14 12 0.857 0.816 

IU 13 13 0.800 0.608 
ID 13 14 0.888 0.829 

DMU 14 13 0.780 0.674 
DMD 14 14 0.877 0.764 
ILU 15 14 0.867 0.788 
ILD 16 15 0.905 0.783 

UMD 16 15 0.841 0.814 
MS 16 15 0.929 0.920 
OH 16 16 0.618 0.645 
WU 18 18 0.569 0.545 
WD 10 8 0.533 0.544 
BB 16 16 0.809 0.624 
BU 16 15 0.834 0.869 

OUU 14 15 0.774 0.748 
OUD 10 8 0.611 0.621 
LMD 12 11 0.811 0.874 

Average 14.1 13.45 0.784 0.728 
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Figure 8-16 Comparison of streamflow by RESAS and RESAF 
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Figure 8-17 Forecasted errors by MRES and MREF 
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However, it was noticed that the difference between the values of NSE for RESAS 

and RESAF was less than 0.04. Besides, streamflows forecasted by the two MRESA 

theories were difficult to be distinguished from Figure 8-16, where both theories fitted 

observations satisfactorily. It can further be noted from forecasted errors in Figure 8-17 

that two methods had similar accuracy and forecasting lead time for forecasting 

streamflow. But for UMU, MRES was slightly better than MREF for forecasting low flow. 

For low streamflow forecasting, RESAS yielded 11.7 m3/s higher than observed flow, 

while that by RESAF was 1.1 m3/s higher than observation. Though the forecasted errors 

were close and the differences in errors were less than 0.05 for almost all cases, but the 

difference for forecasted low flows of UMU was larger than 0.1. 

8.3.3 Spectral power or frequency 

With the spectral power as a random variable, the spectral density derived from 

RESAS or BESA was in the form of polynomial, while the other one, with frequency as a 

random variable, obtained spectral density in the form of exponential. With the 

exponential formula, the spectral density estimated by CESA and RESAF was no longer 

restricted to the AR process, but can also be applied to ARMA and MA (Liefhebber and 

Boekee, 1987) processes. However, RESAS or BESA was more likely to capture small 

peaks, while RESAF or CESA ignored small peaks and only focused on dominant peak.  

Another difference was in the hypothesis on the way of imposing prior when 

applying MRESA. RESAS assumed a prior for the distribution of spectral power, while 

RESAF assumed one on the spectral density. The way of imposing prior by RESAF was 

more straight-forward than RESAS. To apply the RESAS, one need to collect long 
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historical data to obtain the past spectral power series and to analyze the distribution of 

spectral powers at each frequency, or at least the periodicity of streamflow need to be 

known, but RESAF did not. To apply RESAF, one need to add spectral peak at the 

significant period of the streamflow analyzed in addition to the background noise. In such 

a way RESAF can even be applied to data without periodicity information, since the 12 

month periodicity is common for monthly streamflow. Thus, the prior 2 assumption is 

generally applicable for any monthly streamflow series. It suggested that to maintain the 

same resolution RESAS required more information to be collected a priori than RESAF. 

The way for solving for the Lagrange multipliers and the forecasting coefficients 

was more straightforward for RESAF and CESA than for RESAS and BESA. RESAS or 

BESA estimated parameters by solving for N nonlinear equations, while RESAF or CESA 

used cepstrum analysis to estimate the Lagrange multipliers. From the given N 

autocorrelations, cepstrum can be obtained through the recursive function up to lag N. 

Though, BESA had an exception. Beyond solving the nonlinear equations by Newton’s 

method, the Levinson-Burg algorithm can be used, which was more efficient than solving 

the nonlinear numerical equations. However, it was less convenient than using cepstrum 

analysis. 

The autocorrelation was linearly extended by RESAS or BESA, while for RESAF 

and CESA it was extended from the N posterior cepstrum with or without prior cepstrum 

beyond the lag N for RESAF and CESA. Likewise, the forecasting by RESAS and RESAF 

yielded linear prediction, though the RESAF or CESA theory forecasted streamflow based 

on cepstrum analysis. Using the cepstrum analysis, small fluctuations transferred from the 
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spectral analysis can be loaded into the forecasting time series. It may be the reason why 

RESAF or CESA had the capability to forecast small peaks of streamflow, and the 

hydrograph is less smooth but closer to the observation than RESAS or BESA.  

8.4 Summary 

Through comparisons conducted in this section, following conclusions can be 

drawn. 

Both MESA and MRESA were generally recommended over the classical AR 

process. Though the AR method yielded the lowest order of model to simplify 

computation, AR did not forecast well. It suggested that the AR method does not get 

enough information for forecasting. The AR process required longer memory to forecast 

than entropy theories but shorter lead time was reached. Though larger orders of model 

are used, the entropy methods extract information from much further part of the past and 

collect more information from the time series than the AR. As a result, forecasting by the 

entropy methods leads to higher accuracy 

By comparing RESAS with BESA and RESAF with CESA, it was found that 

minimum relative entropy spectral analysis provided higher resolution in spectral 

estimation and more reliable streamflow forecasting, especially for multi-peak flow 

condition. In general, the MRESA theory was more accurate in forecasting streamflow for 

both peak and low flow values than MESA with longer lead time. By imposing the prior, 

MRESA theory can also be used to forecast streamflow where the periodicity information 

was limited, while BESA was not applicable and CESA was limited.  
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The spectral density estimated by the RESAF or CESA theory showed higher 

resolution than the RESAS or BESA theory, respectively, based on the I-S distortion, and 

streamflow forecasted by RESAF or CESA was more reliable than by RESAS or BESA. 

It suggested choosing frequency as a random variable. However, the advantage of 

choosing frequency as a random variable over spectral power was more significant 

between MESA theories than MRESA theories, since BESA shifted the peaks for multi-

peak condition.   
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9 MULTI-CHANNEL ENTROPY SPECTRAL ANALYSIS FOR LONG-

TERM DROUGHT FORECASTING 

 

As indicated in Section 5 that low streamflow is difficult to forecast by itself as it 

is weakly autocorrelated. Thus, additional approaches may needed to increase the 

reliability of forecasting drought. One approach is to transfer streamflow to standardized 

streamflow index (SSI) to quantify drought. Similar to the widely used drought index, the 

standardized precipitation index (SPI), SSI incorporates hydrological processes and tells 

information about drought intensity and duration (Mishra and Singh, 2010). Besides, 

transferring streamflow observations to SSI is easier to identify the severity of the drought 

condition and turns highly skewed low streamflow normalized. The other approach is to 

combine related climatic indicators since climate indices are shown to be significant 

indicators of drought occurrences (Ozger et al., 2009). A strong relationship is noticed in 

the southern United States that dry conditions occur consistently during the La Nina events 

(McCabe et al., 2004; McKee et al., 1993; Piechota and Dracup, 1996). El Nino Southern 

Oscillation (ENSO) is shown to influence the hydrological processes such as precipitation, 

soil moisture, and streamflow (Barlow et al., 2001; Chiew and McMahon, 2002; Chiew et 

al., 1998; Kahya and Dracup, 1993; McCabe and Dettinger, 1999; Ning and Bradley, 2014; 

Redmond and Koch, 1991; Ropelewski and Halpert, 1986; Trenberth, 1997; Woolhiser et 

al., 1993), and a common three-month lag has been observed between and either 

precipitation or streamflow (Khedun et al., 2012; Woolhiser et al., 1993). ENSO-

streamflow relationship can be suggested for use in streamflow or drought forecasting to 
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increase the forecasting reliability and lead time (Kalra et al., 2013; Maurer and 

Lettenmaier, 2003; Morid et al., 2007; Ruiz et al., 2007). Thus, multi-channel entropy 

spectral analysis (MCESA) is developed to forecast long-term drought represented by SSI 

with ENSO in this section. 

9.1 Development of multi-channel entropy spectral analysis 

Let us consider time series of k variable with each time series detonated as yi(t), 

for t=1, 2,…, n, and l=1, 2,…, k. The multi-variate time series can be written as vectors of 

 Tk tytytyty )()()()( 21 
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 . The dependence of the variable is represented by 

autocorrelation and cross-correlation, which are defined as 
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where Tl is the length of each series and T is the sum of length of each series. Equation (9-

1) defines the autocorrelation of time series yl and equation (9-2) defines the cross-

correlation between time series yl and yj. Then the autocorrelation and cross-correlation of 

the same lag can be written in the matrix of 
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It is noted that )(n  is k by k matrix, and when k=1 it reduces to autocorrelation as 

defined in Section 3. 
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9.1.1 Definition of entropy 

In spectral analysis, there marginal spectral density pl(f)of each time series yl(t) 

and cross-spectral density plj(f) between time series yl and yj. Then the entropy of each 

time series defined by configurational entropy can be written as 





W

W

lll dffpfpfH )](ln[)()(       (9-4) 

and similarly, the cross-entropy between two time series is defined from cross-spectral 

density as 


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ljljlj dffpfpfH )](ln[)()(       (9-5) 

Likewise, the entropy of the multi-channel spectra can be written as a k by k matrix as 

H=

kk

k

HH

HH

1

11

         (9-6) 

It can be seen from equation (9-6) that the diagonals in the matrix are marginal 

entropies of each time series. It is noted that when k=1, it reduces to the univariate case, 

which is equivalent to configurational entropy developed in Section 5. To obtain the least-

biased estimation of the spectral density, the determinant of the entropy matrix needs to 

be maximized. 

9.1.2 Constraints 

The relationship between the spectral density and autocorrelation still holds in the 

multi-variate case. Thus  
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where Δt is the discretization or sampling interval, and .1i  

9.1.3 Entropy maximization 

Maximization of the determination of maximum entropy can be done by the 

Lagrange multipliers method. With k by k Lagrange multipliers matrix )(n , for n=1, 

2, …, N, the Lagrange function matrix can be written as 
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where Lagrange multipliers are a k by k matrix:
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It is noted that taking the derivative of equation (9-9) with respect to cross-spectral density 

plj(f) is equivalent to taking derivative of the cross entropy term Llj(f) with respect to plj(f), 

since plj(f) is independent from other entropy elements. Thus, one has 
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Thus, equaling equation (9-12) to zero, the cross-spectral density is obtained as 
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In the same manner, the each element of spectral density can be obtained and the 

spectral density can be written as 































































N

Nn

tfni
k

N

Nn

tfni
k

N

Nn

tfni
k

N

Nn

tfni

kk

k

enen

enen

fPfP

fPfP

fP

))(1exp))(1exp

))(1exp))(1exp

)()(

)()(

)(

22
1

2
1

2
1

1

11









  (9-14) 

9.1.4 Computation of Lagrange multipliers 

Computation of the Lagrange multipliers follows the same method as in Section 5 

using the cepstrum analysis. Let us define the cross-cepstrum from cross-spectral density 

as 
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For finite series of data, the k by k cross-cepstrum matrix can be obtained from cross-

correlation using equation (3-39), which is 
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Following the steps in equations (5-8) to (5-11), each element of equation (9-14) can be 

written as 
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where σn is the delta function. Equation (9-16) can be expanded in N linear equations as 
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It is seen from equation (9-18) that the Lagrange multipliers can be estimated from the 

cepstrum given in equation (9-16). 

9.1.5 Extension of cross-correlation 

In order to do time series forecasting, correlation is needed to be extended. Like 

the univariate condition, the correlation matrix can be extended by taking the inverse of 

equation (9-16), which is 
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It is noted that equation (9-19) extends the correlation matrix under the maximum 

entropy theory, which yields linear extension. Thus, the time series can be forecasted using 

a linear model with prediction coefficient matrix A equal to 
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9.1.6 Forecasting 

As is shown in the Section 3, for linear forecasting the coefficient of extending 

autocorrelation function is the same as the prediction coefficient. Thus, multi-channel time 

series forecasting can be obtained by 
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It is noted that equation (9-21) is h-step forecasting, and all k time series are forecasted 

simultaneously. Thus, from the second step of forecasting, the previous forecasted values 

are combined. However, in this Section, the object is to forecast long-term drought using 

ENSO data as an indicator, and future ENSO data are supposed to be given, not to be 

forecasted. Let denote us x(t) as ENSO series for t=1,…, Tx, and y(t) for t=1, …, Ty is 

drought index series given and ŷ are the forecasted values. The long-term drought is 

forecasted from 
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where )(ˆ)(' qtTyqtTy yy  , for t-q>0 and )()(' qtTyqtTy yy  , for t-q<0. 

But no forecasted values will be used for ENSO. Equation (9-21) ensures drought 

forecasted from past drought information and future ENSO series. 

9.2 Data description 

9.2.1 ENSO 

ENSO refers to the large-scale ocean-atmosphere climate phenomenon linked to 

periodic warm or cold in sea-surface temperature near the center and east center of 
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equatorial Pacific. The "Southern Oscillation" refers to variations in the temperature of 

the sea-surface, and El Nino represents warm phase in air surface pressure, while La Nina 

as cooling phase represents cool phase.  

Monthly ENSO data estimated by Oceanic Nino Index (ONI) from 1953-2012 

were obtained from the website of NOAA’s National Weather Service 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). 

ENSO data are computed by 3 month running mean of ERSST.v3b (Smith et al., 2008) 

anomalies in the Niño 3.4 region (5°N-5°S, 120°-170°W). It is noted that El Nino and La 

Nina episodes are defined on a threshold of +/-0.5˚C. El Nino is evidenced when the 3-

month average sea-surface temperature departure exceeds 0.5˚C, vice versa. Figure 9-1 

plots the ENSO time series from January 1953 to December 2012. As seen from the figure, 

during the 60 year period, the total number of 205 months were under El Nino and 215 

months were under La Nina. 
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Figure 9-1 ENSO time series from 1953 to 2012 

 

9.2.2 Streamflow data 

Twelve stations in Texas were selected and downloaded from the USGS website 

for drought analysis, which are tabulated in Table 9-1. The average monthly streamflow 

for these stations were all less than 90 m3/s and had large deviations. Except for the stations 

on Trinity River and Brazos River, the mean monthly streamflows from other rivers were 

smaller than 7.5 m3/s. These rivers were under different degrees of drought, where the 

mode of flow was lower than 5 l/sec/km2. The ratio of maximum monthly streamflow to 

mean streamflow was 10 to 136. Besides, streamflow had high values of skewness varying 

from 2.6 to 20. It can be seen from Figure 9-2, where histograms of observed streamflow 

are plotted, that the distributions were highly right skewed with long tails. More than 86% 

of data were observed in the first 10% quintiles. 
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Figure 9-2 Histograms of observed streamflow in Texas 
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Table 9-1 Statistics of streamflow stations 

Station name 
Station 

no. 
Latitude Longitude 

Drainage 
area 

(km2) 

Mean 
(m3/s) 

Max 
(m3/s) 

Min 
(m3/s) 

Std* 
(m3/s) 

Skewness 

Canadian River near 
Amarillo 

07227500 35°28'13" 101°52'45" 50363 6.90 226.9 0.00 18.20 6.73 

Red River near 
Wayside 

07297910 34°50'15" 101°24'49" 9723 0.74 39.9 0.00 2.22 11.57 

Big Cow Creek near 
Newton 

08029500 30°49'08" 93°47'08" 332 3.64 42.8 0.12 3.62 3.20 

Trinity River near 
Rosser 

08062500 32˚25'35'' 96˚27'46'' 21101 89.51 
1143.

3 
0.93 

120.4
7 

3.20 

Spring creek near 
Spring 

08068500 30°06'37" 95°26'10" 1059 7.35 146.8 0.08 12.08 3.87 

Brazos River near 
Highbank 

08098290 31˚08'02'' 96˚49'29'' 78829 75.18 903.6 0.87 
115.8

4 
3.43 

Millers Creek near 
Munday 

08082700 33°19'45" 99°27'53" 269 0.16 10.0 0.00 0.79 9.57 

Mill Creek near 
Bellville 

08111700 29°52'51" 96°12'18" 974 5.88 61.9 0.00 10.41 2.61 

Colorado River near 
Stacy 

08136700 31˚29'37'' 99˚34'25'' 62660 3.71 83.6 0.00 8.10 4.49 

Nueces River below 
Uvalde 

08192000 29°07'25" 99°53'40" 4820 4.03 253.1 0.00 15.23 10.24 

Dry Frio River near 
Reagan Wells 

08196000 29°30'16" 99°46'52" 326 0.96 14.6 0.00 1.56 3.98 

Pecos River at Pecos 08446500 31°06'47" 102°25'02" 76560 1.78 240.7 0.08 9.52 20.04 
*Std=standard deviation 
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9.2.3 Standardized streamflow index 

The standardized streamflow index (SSI), also called standardized runoff index 

(SRI), was derived by Shukla and Wood (2008) to determine the loss of streamflow due 

to climate change. Monthly SSI was shown to be a useful complement to standardized 

precipitation index for depicting hydrological aspects of drought (Mishra and Singh, 2010). 

One of the advantages standardizing streamflow is that it ensures the severity of drought 

in different locations to be compared independently of local climatic characteristics 

(Vicente-Serrano et al., 2012). Thus, there were common standards to quantify the drought 

severity, which are shown in Table 9-2. 

 

Table 9-2 Weather classification based on SSI 

SSI values Weather class 
SSI>2 Extremely wet 

1.5<SSI<1.99 Very wet 
1.0<SSI<1.49 Moderately wet 

-0.99<SSI<0.99 Near normal 
-1.49<SSI<-1 Moderately dry 

-1.99<SSI<-1.5 Severely dry 
SSI<-2 Extremely dry 

 

According to discussion by Shukla and Wood (2008), the SSI can be computed 

from the concept for computing standardized precipitation index (SPI) developed by 

McKee et al. (1993). First of all, the probability distribution of streamflow is needed to 

calculate the SSI. Shukla and Wood (2008), Tabari (2013) and Zaidman et al. (2002), 

suggested fitting low streamflow with a lognormal distribution or a gamma distribution. 

The Kolgomorov-Smirnov test shows that streamflow in Texas follows the lognormal 
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distribution, which is plotted in Figure 9-2. Thus, the lognormal distribution was used for 

computing SSI. 

Then, SSI was calculated as 

3
3
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and Fy represents the fitted cumulative distribution for streamflow; C0=2.515517, 

C1=0.802853, C2=0.010328, d1=1.432788, d2=0.189269, and d3=0.001308. The time 

series of calculated SSI are shown in Figure 9-3. As shown in the figure, SSI shows 

stationarity over time, and has mean zero. Most of the SSI values fall between -2 and 2, 

but for the Canadian River and the Pecos River they drop below -2 more frequently than 

for other rivers.  
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Figure 9-3 Computed SSI for rivers in Texas 
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Table 9-3 Flow conditions 

River 
Weather 

zone 
Extremely 

wet 
Very 
wet 

Moderately 
wet 

Near 
normal 

Moderately 
dry 

Severely 
dry 

Extremely 
dry 

Canadian River 
Continental 

0.6% 3.3% 11.7% 74.9% 5.3% 2.5% 1.8% 
Red River 0.2% 1.6% 5.1% 83.9% 5.8% 2.0% 1.4% 

Big Cow Creek 
Subtropical 

humid 

1.4% 6.3% 10.4% 65.3% 11.5% 4.0% 1.1% 
Trinity River 1.9% 5.8% 11.1% 66.1% 8.8% 4.3% 1.9% 
Spring Creek 1.1% 6.8% 11.0% 64.6% 11.4% 4.4% 0.7% 
Brazos River 3.2% 5.7% 8.5% 69.1% 6.9% 4.6% 2.0% 
Millers Creek Subtropical 

semi-humid 
 

0.3% 7.7% 8.3% 72.4% 6.6% 2.8% 1.9% 
Mill Creek 0.0% 9.2% 9.2% 64.9% 10.3% 4.9% 1.4% 

Colorado River 0.0% 1.5% 6.8% 89.8% 0.6% 0.2% 1.1% 
Nueces River 

Semi arid 
0.0% 1.3% 5.7% 85.6% 4.6% 1.7% 1.1% 

Dry Frio River 0.0% 1.0% 6.7% 85.7% 3.8% 1.4% 1.5% 
Pecos River Arid 3.1% 2.1% 6.1% 74.9% 7.9% 3.1% 2.9% 
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The percentage of SSI during 1953-2012 falling into different weather criteria in 

Table 9-2 are calculated and listed in Table 9-3. The weather zones where each station is 

located are stated in Table 9-3. The rivers under different climate zone show different 

distributions of the severity of drought as shown in Figure 9-4. It is seen that SSI of rivers 

under subtropical humid and subtropical semi-humid weather have the shortest duration 

of normal condition around 64%-72%, but more than 15% of time, they are under drought. 

Besides, for these river basins, the duration of wet condition is similar to that of dry 

condition. However, Pecos River from arid zone had the longest period (2.9%) during 

extreme drought, which is shown in Figure 9-4.  

 

 

Figure 9-4 Percentage of weather condition based on SSI 
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9.3 Evaluation 

9.3.1 Correlation 

The autocorrelation of SSI and cross-correlation between SSI and ENSO are 

examined and are plotted in Figure 9-5. Recall the autocorrelation plot in Figure 5-4 in 

Section 5 that autocorrelation of low streamflow rarely showed the periodically repeating 

pattern or had significant values beyond the confidence bounds. As a result, the entropy 

approach for forecasting those low streamflow was not successful. However, when 

transferred to SSI, autocorrelation, shown in the first rows in Figure 9-5 shows a periodic 

pattern of 12 months, except for Dry Frio River. It reveals the periodicity which is 

contained but were too weak to be shown in the original series. Autocorrelation from Big 

Cow Creek under subtropical humid condition has the most significant values, as 

compared to rivers from other weather zones. Besides, more significant values are found 

in autocorrelation of SSI. For example, autocorrelation of SSI in Canadian River and Big 

Cow Creek is strong even after 4 years’ lag time. Much stronger autocorrelation and 

periodicity of SSI than original streamflow made forecasting more reliable.  
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Figure 9-5 Autocorrelation and cross-correlation of SSI
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The second row in Figure 9-5 plots the cross-correlation between ENSO and SSI. 

Many significant values are found for cross-correlation, which ensures the existence of 

link between ENSO and SSI. The most significant values are observed near lag 0 for 

Canadian River, Big Cow creek and Mill Creek, which suggests the synchronization 

between ENSO and SSI. Furthermore, it is seen from the figure that the cross-correlation 

is more significant for positive lags than negative lags. It suggests that the impact of ENSO 

may have some delay on SSI and the influence will maintain in the future series. Such 

correlation provided sufficient evidence to forecast SSI using ENSO. However, for rivers 

from semi-arid and arid region, the correlation between ENSO and SSI are weaker, and 

less significant values are observed. 

9.3.2 Forecasted SSI 

Based on equation (9-22), SSI was forecasted with ENSO for four to six years lead 

time, and the result can be found in Table 9-4. Though the mean values was forecasted 

with 8% to 21% error compared to observed values, forecasting SSI using multi-channel 

spectral analysis was more reliable than forecasting low streamflow using CESA. 

However, the forecasted SSI series had smaller deviations compared to observations. It 

was noted that r2 using MCESA was larger than or around 0.2, which was less than 0.1 in 

Section 5. Besides, the NSE values were all positive and between 0.15 and 0.3, which was 

more than 10 times of that obtained for low streamflow. Especially, for Trinity River, 

Brazos River and Colorado River, forecasted low streamflow using CESA had r2 of 0.258, 

0.016 and 0.054, respectively, with 1 year lead time. But using MCESA, r2 of forecasted 

SSI increased to 0.347, 0.373 and 0.153, and forecasting lead time increased to 6 years. 



 

195 
 

 

Though the forecasting for SSI was not as accurate as forecasting univariate high 

streamflow, the progress from forecasting low streamflow was evident. 

 

Table 9-4 Forecasted result of SSI in Texas 

Station name Forecasting 
period 

Obs. 
Mean

Est. 
Mean

Obs. 
Std

Est. 
Std

RMSE  r2 NSE 

Canadian River 1995-2000 0.056 0.033 1.579 0.426 1.267 0.347 0.175
Red River 2005-2010 0.103 0.085 1.134 0.887 0.145 0.329 0.188

Big Cow Creek 1989-1994 0.481 0.362 0.850 0.345 0.670 0.369 0.258
Trinity River 2007-2012 0.216 0.109 0.732 0.489 0.703 0.347 0.274
Spring creek 1995-2000 0.105 0.125 0.937 0.425 0.787 0.285 0.243
Brazos River 2006-2011 0.073 0.102 0.704 0.556 0.581 0.373 0.294
Millers Creek 2003-2006 0.044 0.006 0.062 0.041 0.065 0.219 0.173

Mill Creek  1983-1988 0.222 0.212 0.893 0.415 0.723 0.334 0.180
Colorado River 2007-2012 -0.645 -0.497 0.385 0.213 0.352 0.153 0.120
Nueces River 1997-2000 0.529 0.435 3.400 1.447 0.749 0.197 0.211

Dry Frio River 2007-2012 0.104 -0.004 0.677 0.293 0.575 0.267 0.124
Pecos River 1969-1974 0.071 -0.216 1.182 0.340 1.005 0.267 0.098

 

The forecasted SSI for the rivers under subtropical humid climate showed the 

highest reliability with r2 over 0.35 and 6 years lead time in Table 9-4. As shown in Figure 

9-6, the SSI of Big Cow Creek showed the most significant periodicity, where the dry and 

wet conditions occurred repeatedly. Thus, the forecasted SSI using MCESA showed 

periodically up and down. However, the forecasted severity of wet and drought conditions 

were different from observations. As a result, the residuals were large when the SSI 

observed was beyond normal condition (+/- 1) as shown in Figure 9-7.  

For rivers under subtropical semi-humid, semi-arid or continental climate, the SSI 

was less regular and the periodicity was less significant compared to that under 

subtropical-humid condition, as shown in Figure 9-6. In these cases the MCESA was 
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capable to forecast SSI for 4-6 years lead time with r2 around 0.2-0.3. However, the 

droughts of Mill Creek during 1963 and 1965 were underestimated, and the residuals 

during these periods were over 1.  

The SSI of rivers under arid climate was much different from others, which was 

more frequently lower than 0. As shown in Figure 9-6, 87% of the forecasted SSI of Pecos 

River were negative. In this case, the significant residuals were mostly from the period of 

observed wet condition, for example, from late 1969 to 1970 and late 1974.  

 

 

Figure 9-6 Forecasted SSI for Big Cow Creek, Mill Creek, Canadian River, and 

Pecos River 
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Figure 9-7 Residuals for Big Cow Creek, Mill Creek, Canadian River, and Pecos 

River 

 

9.3.3 Comparison with univariate forecasting 

To see how the proposed multichannel spectral analysis improves drought 

forecasting, forecasting of SSI with ENSO were compared to univariate forecasting 

without ENSO input. For comprehensive comparison, one El Nino condition and one La 

Nina condition were selected as shown in Figure 9-8.  

The SSI forecasted for Big Cow Creek was under El Nino condition for 76% of 

lead time, which lasted from year 1990 to year 1994, as shown in Figure 9-8. Without 
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ENSO as an indicator, SSI was forecasted as a univariate series using the configurational 

entropy method developed in Section 5. The observed periodicity was correctly 

determined by the CESA method, and the forecasted SSI fluctuated with observations in 

the figure. However, the univariate forecasting yielded r2 of 0.196 and NSE of 0.181. For 

ENSO, as an indicator incorporated in the model, the forecasted SSI had responded to 

observed El Nino phenomena. The drought forecasted by the proposed method was 

reduced as the ENSO indicated it was under El Nino condition. Thus, drought forecasted 

with ENSO were weaker than that without ENSO. Especially, during the summer of 1991, 

the negative SSI reached -0.5 by CE, which was corrected to near 0 with ENSO. As a 

result, the residuals were decreased by 60% during 1991, the r2 increased to 0.369, and 

NSE to 0.258 with ENSO. However, the droughts during August to December in 1989, 

June to December in 1990, which showed less association with ENSO, were not forecasted 

by either of the methods. 

On the contrary, the 91% of forecasting lead time was under La Nina in Spring 

Creek. It is seen in Figure 9-8, except for the first five months in 1995 and April 1997 to 

March 1998, other months were under the drought condition. Thus, forecasted SSI with 

ENSO enlarged the drought forecasted during the La Nina condition. As shown in Figure 

9-8, the forecasted droughts during late 1999 and 2000 were increased with the ENSO 

indicator. On the other hand, for the El Nino condition during late 1997, the drought 

forecasted by CESA diminished after joining the ENSO indicator. Thus, forecasted 

residuals with ENSO were much smaller than without ENSO. As a result, r2 increased 

from 0 to 0.285 and NSE was increased from -0.09 to 0.243 by multichannel option. 
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Figure 9-8 Forecasted SSI with and without ENSO 

 

9.4 Summary 

The multi-channel spectral analysis was developed based on the configurational 

entropy and applied to forecast long-term standardized streamflow index. When univariate 
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series is used, it is equivalent to the configurational entropy spectral analysis (CESA) 

developed in Section 5.  

By transferring to SSI, the time series showed stationarity, and the 12 month 

periodicity appeared, which was weak in original streamflow data. Besides, the strong 

autocorrelation of SSI and strong cross-correlation with ENSO yield reliable forecasting 

of SSI.  

Thus, SSI was successfully forecasted using multi-channel spectral analysis with 

ENSO as an indicator. The monthly drought was able to be forecasted for lead time of 4-

6 years with NSE higher than 0.2. The forecasted SSI for rivers under subtropical humid 

condition were more reliable than other weather conditions for higher periodicity. 

Comparison from the forecasting by CESA, it showed that proposed method did 

response to the climatic indicator. The forecasting under El Nino reduces the severity of 

drought, while that under La Nina increases the severity. 
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10 CONCLUSIONS 

 

The study created in the dissertation builds a foundation for entropy theory for 

streamflow forecasting. CESAS and CESAF theory discussed in Sections 4 and 5 belong 

to the maximum entropy spectral analysis, while RESAS and RESAF developed in 

Sections 6 and 7 belong to the minimum relative entropy spectral analysis. The BESA, 

CESA, RESAS and RESAS theories, as a whole, complete the entropy theory for 

univariate time series forecasting. Besides, the cepstrum analysis applied in the study is 

first used in hydrology. The RESAF and CESA theory successfully link time series, 

spectral analysis and cepstrum analysis, and it provides a new approach for solving the 

autoregressive coefficient. These theories are verified by forecasting monthly streamflow 

and provide reliable results.  

The conclusions drawn from the comparison of estimating spectral density and 

forecasting streamflow by different methods are summarized in Table 10-1. In general, 

MRESA theories, both RESAS and RESAF, require more information as the prior than 

the MESA theories including BESA and CESA. Besides, RESAS need longer historical 

data to assume the prior hypothesis than RESAF. The entropy theory of RESAS, RESAF 

or CESA need a larger model order than BESA, and the order used by all entropy theories 

are larger than AR. The spectral density estimation has a higher resolution for the MRESA 

theories than the MESA theories, and within two MESA theories CESA yields lower I-S 

distortion than BESA. Forecasted errors were smaller for MRESA than MESA, and using 

frequency as a random variable (RESAF or CESA) was smaller than that using spectral 
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power (RESAS or BESA). The forecasting lead time is found to be longer using MRESA 

than MESA, and longer using CESA than BESA. To sum up, the reliability of streamflow 

forecasting from high to low is RESAF, RESAS, CESA, BESA and then AR.  

 

Table 10-1 Summary of different forecasting theories 

Statistics Order 

Model order AR< BESA< RESAS, CESA, RESAF 

Itakaru-Saito distance BESA> CESA> RESAS, RESAF 

RMS AR> BESA> CESA> RESAS > RESAF 

NSE AR< BESA< CESA< RESAS < RESAF 

Lead time AR< BESA< CESA< RESAS, RESAF 

Information needed BESA, CESA< RESAF< RESAS 

 

The multichannel-spectral analysis is developed for long-term drought forecasting 

using configurational entropy, which allows entropy spectral analysis to be applied for 

multi-variate forecasting. The monthly SSI is successfully forecasted with ENSO as an 

indicator.  

10.1 Recommendations 

The proposed univariate entropy theories, though applied to monthly streamflow 

forecasting, are not restricted to monthly time scale, but may also be applied to daily, 

weekly and annual streamflows. They can also be applied to forecast other hydrological 

time series, such as rainfall, evapotranspiration and groundwater flow.  
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The multi-channel spectral analysis is developed based on the configurational 

entropy in this study. Other entropy theories for multi-channel can also be developed for 

multi-variate forecasting. The proposed multi-channel spectral analysis can be used to 

forecast streamflow with rainfall or flood with rainfall, and to see how it will work 

compared to traditional rainfall-runoff models. In such way, the failure to forecast 

streamflow due to sudden change may be mitigated. 

Furthermore, the developed theories can be used for time series related to climate 

index both for univariate condition and multi-variate condition, and will be potentially 

useful to climate change analysis. ENSO is quantified by Nino 3.4 in the dissertation, 

however, there are SOI and MEI can also be used to represent ENSO. Except for ENSO, 

other climatic indicators, such as Pacific Decadal Oscillation, North Atlantic oscillation 

and North Atlantic Oscillation can be tested to forecast long-term drought or high 

streamflow for different regions. Besides, more than one indicator can be used together to 

forecast. 

At last, the selection of model order is obtained based on AIC and BIC criteria in 

the study, while the uncertainty analysis can be conducted and be used to determine the 

model order.   
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NOTATIONS 

aj prediction coefficient 

bm backward prediction error 

C(n) cepstrum 

e(n) cepstrum of autocorrelation/ autocepstrum 

ep(n) prior cepstrum of autocorrelation/ autocepstrum 

eq(n) posterior cepstrum of autocorrelation/ autocepstrum 

G(f) power spectrum 

H entropy 

N length of given autocorrelation 

p(f) (prior) spectral density 

p(xk) (prior) probability distribution of spectral power xk  

)( xp
  (prior) joint probability distribution of spectral power xk  

q(f) posterior spectral density 

q(xk) posterior probability distribution of spectral power xk  

)(xq
  posterior joint probability distribution of spectral power xk 

R autocovariance 

t time interval 

T record length 

W Nyquist frequency 

xk spectral power 

x

 spectral power series 
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y time series variable 

y  mean of time series observation 

ŷ  forecasted value 

  autocorrelation matrix 

σ standard deviation of time series observation 

n  mean squared error 

λ Lagrange multiplier 

ρ autocorrelation 
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