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ABSTRACT 

 

Systems are needed to support access to and analysis of larger and more 

heterogeneous scientific datasets. Users need support in the location, organization, 

analysis, and interpretation of data to support their current activities with appropriate 

services and tools. We developed PerCon, a data management and analysis environment, 

to support such use.  

PerCon processes and integrates data gathered via queries to existing data 

providers to create a personal or a small group digital library of data. Users may then 

search, browse, visualize, annotate, and organize the data as they proceed with analysis 

and interpretation. Analysis and interpretation in PerCon takes place in a visual 

workspace in which multiple data visualizations and annotations are placed into spatial 

arrangements based on the current task. The system watches for patterns in the user’s 

data selection, exploration, and organization, then through mixed-initiative interaction 

assists users by suggesting potentially relevant data from unexplored data sources. In 

order to identify relevant data, PerCon builds up various precomputed feature tables of 

data objects including their metadata (e.g. similarities, distances) and a user interest 

model to infer the user interest or specific information need. In particular, probabilistic 

networks in PerCon model user interactions (i.e. event features) and predict the data type 

of greatest interest through network training. In turn, the most relevant data objects of 

interest in the inferred data type are identified through a weighted feature computation 

then recommended to the user. 
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PerCon’s data location and analysis capabilities were evaluated in a controlled 

study with 24 users. The study participants were asked to locate and analyze 

heterogeneous weather and river data with and without the visual workspace and mixed-

initiative interaction, respectively. Results indicate that the visual workspace facilitated 

information representation and aided in the identification of relationships between 

datasets. The system’s suggestions encouraged data exploration, leading participants to 

identify more evidences of correlation among data streams and more potential 

interactions among weather and river data. 
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1. INTRODUCTION  


 

People in scientific communities and industry need help in collecting, managing 

and interpreting data. A crucial issue for providing useful results from the current data 

explosion [9] is facilitating interactions with heterogeneous data sources. Advances in 

sensors along with software for scientific data management/delivery mean more data of 

more data types and are available than ever before. Additionally, increases in 

interdisciplinary research put greater demands on scientists to bring together datasets 

from independent communities to better understand phenomena. As a result, they are 

often overwhelmed by the amount of data and the related information activities such as 

data location, exploration, and analysis.  

Tools supporting heterogeneous data management and analysis often focus on 

domain-specific representations and interfaces [9] or create separate silos for data of 

each data type (e.g. GenBank [5]). Domain-oriented visualizations are used for exploring 

and locating data. Indexing and classification of data most often occur in relation to 

predefined structured representations developed for specific domains using database or 

repository. Subsequently, searching or querying data applies to the domain-specific 

classified indices. The required preliminary efforts such a particular data processing and 

integration are also domain-dependent approaches.  

                                                 
*Part of this section is reprinted from the following paper: ©2014 IEEE. Reprinted, with permission, from 

Su Inn Park and Frank Shipman. PerCon: A personal digital library for heterogeneous data. In Proceedings 

of IEEE/ACM Joint Conference on Digital Libraries (JCDL), pages 97-106, IEEE, Sept. 2014. 
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Despite the benefit of domain-oriented digital libraries, there are still challenges 

for presentation and analysis in heterogeneous data. The domain-oriented digital libraries 

provide a limited or no general method that can represent other domain data. Indexing, 

classification, and search in predefined domain-specific data have no or little 

consideration to comprehend how different data are potentially related. In addition, 

locating data of interest in large heterogeneous data becomes a potentially time-

consuming activity. These problems motivate the research on a heterogeneous data 

platform and mixed-initiative interaction for data analysis.  

We are interested in supporting the collection, management, and interpretation of 

unanticipated collections of data types – the type of idiosyncratic collections that occur 

in the formative stages of exploratory research. We liken these personal and small group 

data collections to personal book and document collections. Thus, our long-term goal is 

to support the ingestion, management, indexing, and interpretation of ad-hoc collections 

of data. 

As a step towards this vision, we developed a personal or small group digital 

library system called PerCon (Personalized and Contextual Data Environment) that 

allows users to process, manipulate, analyze, and interpret diverse and interrelated data. 

We investigated domain-specific environments including software tools and applications 

for data processing, visualization and analysis. Beyond a typical digital library, PerCon 

is a combination of digital library and data platform for heterogeneous data. The goal of 

combining digital library and data analysis components led us to design and instantiate a 

layered architecture for managing the interconnections among the many and varied 
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necessary software components. Along with the architecture, PerCon’s main interface 

was designed consisting of three interface components: a repository browser, a visual 

workspace, and a suggestion viewer. 

PerCon is unique in that it features a visual workspace and mixed-initiative 

interaction with the user. The visual workspace includes a model for selecting among 

multiple applicable data visualizations according to different requirements.  Thus, a user 

can explore and translate data into information visibly in multiple 

presentations/visualizations (e.g. temporal, thematic, and spatial composition), and 

discover knowledge from information through data annotation, and spatial organization 

to express the relationships. Each visual data object in the workspace is composed of two 

objects; the base data object that is used for user expression and the application object 

which is used for data visualization. To improve human data analysis ability, PerCon 

observes user behavior to infer user interests and locates and recommends related data 

within the current collection. In order to identify relevant data, PerCon builds up feature 

spaces of data objects including their metadata and preserves records of user activity. It 

also includes a user interest model to infer the user interest or specific information need. 

In particular, Bayesian networks in PerCon model user interactions (i.e. event features) 

and predict the data type of greatest interest through network training. Beyond the 

system features and capability, PerCon allows us to examine how the visual workspace 

and mixed-initiative recommendations affect a user’s work practices and performance of 

data exploration, analysis, and interpretation. 
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Evaluation of PerCon was performed with two central hypotheses associated 

with the effect of the visual workspace and mixed-initiative recommendation. Twenty 

four participants were asked to fulfill three tasks under two different system 

configurations out of four (i.e. with/without the visual workspace and mixed-initiative 

interaction) with river and weather datasets. Then, all user and system activities recorded 

were analyzed. The results show user perception, work practices, and effect of the visual 

workspace and recommendation: more satisfied user experiences, efficient user 

interactions, and improvements over data analysis by finding more evidences with the 

workspace and recommendation. 

The following section provides an overview of related work. Section 3 addresses 

problems and issues. Section 4 describes PerCon’s architecture, interface, and analysis 

capabilities. Evaluation of PerCon and findings are discussed in Sections 5 and 6. Finally, 

Section 7 addresses conclusions and future work. 
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2. RELATED WORK

 

 

Work informing our efforts comes from a variety of subfields: abstract models of 

digital libraries, digital libraries for scientific data management, analysis and 

interpretation tools, interactions within digital libraries, and implicit relevance feedback. 

2.1 Abstract Modes of Digital Libraries 

With early efforts to build digital libraries to provide basic functionalities [35] 

fundamental abstractions and models/architectures of digital libraries have been well-

defined and established.  

McCray and Gallagher [34] addressed underlying principles for digital libraries 

development. Gonçalves et al. [18] explored and defined fundamental concepts for 

digital libraries in their 5S (Streams, Structures, Spaces, Scenarios, and Societies) model.  

The DELOS Network of Excellence on Digital Libraries [10] introduced a reference 

model for systematic approaches to digital libraries defining four perspectives (end-user, 

designer, system administrator, and application developer). In that model, conceptual 

frameworks are represented in six core domains – content, user, architecture, policy, 

quality, and functionality. In addition, DSSP [17] provides abstraction for interrelated 

but disparate data management. 

Scientific literature digital libraries, such as CiteSeerχ [32], NDLTD [16], and 

SAO/NASA Astrophysics Data System [21], are built around service-oriented 

                                                 
*Part of this section is reprinted from the following paper: ©2014 IEEE. Reprinted, with permission, from 

Su Inn Park and Frank Shipman. PerCon: A personal digital library for heterogeneous data. In Proceedings 

of IEEE/ACM Joint Conference on Digital Libraries (JCDL), pages 97-106, IEEE, Sept. 2014. 
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models/architectures. For example, CiteSeerχ comprises three layers: storage, 

application, and user interface layer. Since each library focus is unique (e.g., semantic 

web services or search engines via distributed servers/repositories), the models are 

specialized to functions matching that focus (e.g., crawling, storage). Open-source 

digital library systems, such as Fedora [38], DSpace [54], and Greenstone [62], are 

versatile environments for creating and managing collections in various domains. 

However, they were mainly designed for contents management and acquisition.  

2.2 Domain-Oriented Digital Libraries for Scientific Data 

Digital libraries for scientific data often take the form of generic holders of 

unindexed data, modeling and providing access via generic metadata attached to data 

files or other institutional repository software.    

Domain-oriented digital libraries can make use of domain-specific 

representations to index into datasets. In practice, these libraries often provide siloed 

access, limiting user queries to a particular type of data. For example, based on data 

integration, researchers in bioinformatics have developed databases and 

computational/statistical analysis tools to explore different types of large-scale genome 

sequencing. Genbank [5] in the U.S is an implementation of huge databases functioning 

as a type of fine-grained digital library systems. Diverse geography datasets have also 

been incorporated into domain-oriented data libraries [60]. For instance, the Alexandria 

Digital Library [50] provides search services from collections of geographically 

referenced materials. Healthcare informatics digital libraries, such as Microsoft 

HealthVault [36] are used for managing and sharing personal health records collected 

http://portal.acm.org/citation.cfm?id=645584.659144&coll=DL&dl=GUIDE&CFID=5125258&CFTOKEN=26684604
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from different devices. The capabilities of these systems are necessary for our vision of 

digital libraries of personal data but they assume users have the expertise and tools for 

merging and analyzing the data located. The separation of data access from data analysis 

also reduces the likelihood that systems provide proactive support across this 

access/analysis border (e.g. recommendations of new data based on the user’s analysis 

activity). 

2.3 Digital Libraries for Data Management 

There have been many proposed architectural approaches to digital libraries to 

manage data. As an amount of the data and the number of data types are increasing, 

several architecture approaches to (distributed) data store and processing have been 

researched. Digital libraries such as Massively Parallel Processing (MPP) Databases [14], 

Hadoop-based digital libraries [65] are examples for big data management including data 

processing. Additionally, NoSQL-featured digital libraries [11] are another approach to 

highly scalable data management.  

With regards to scientific data management, digital library instances in various 

research fields have been developed. Based on data integration, researchers on 

bioinformatics, as a representative data-intensive science, have developed databases and 

computational/statistical analysis tools to explore large-scale genome sequencing. 

EMBL-Bank [25] in the U.K. is an instance of huge databases functioning as a type of 

fine-grained digital library system. Geography datasets have also been incorporated in 

domain-oriented data libraries. Health (care) informatics digital libraries, such as Intel 

Healthcare [23] and Microsoft HealthVault [36], are for managing and sharing personal 

http://portal.acm.org/citation.cfm?id=645584.659144&coll=DL&dl=GUIDE&CFID=5125258&CFTOKEN=26684604
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health records. The primary boundary is that the datasets are composed of interrelated 

data streams that are collected simultaneously from individual participants. This breadth 

has motivated the use of a combination of domain-independent ontologies, domain-

dependent ontologies, and personal ontologies for representing the potential 

relationships within datasets. In addition, online digital library, ETANA-DL [43], 

manages archaeological heterogeneous data.   

As the volume and the need to share heterogeneous data have increased, long-

term research on heterogeneous data management, such as DataSpace [17] and DataNet 

[31], has been performed within the database community. As a traditional approach for 

data management, the data repository and (relational) database have offered well-defined 

structures and schema to store and access the original data objects as well as 

computed/filtered datasets including metadata [42]. In addition, many interdisciplinary 

areas have contributed to managing various types of data. For processing and integrating 

the heterogeneous data collections, algorithms based on various models, transformations, 

and filtering methods have been explored [15]. 

2.4 Digital Libraries for Data Analysis 

For data analysis, computational, statistical, visualization-based, and human-

computer interaction-based methods has been applied in digital libraries. Primarily, 

visualization in digital libraries leverages human visual cognitive perception to help to 

explore data/information and provides insight into data. Visualization also leads to 

analytical reasoning for data interpretation and analysis in significantly increasing data 

size and complexity. In particular, associated with diverse data sources, various 
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scientific data have been processed using computational and statistical methods and then 

visualized within digital libraries.  For example, Bernard et al. [6] proposed metadata 

visualization with respect to content-based similarity to lead the user to find 

relationships between data items. Ordonez et al. [39] developed a visualization of time-

series physiological data to recognize significant changes in a patient’s condition. As an 

effort toward visual representation of textual data, Abbasi and Chen [1] applied a 

linguistic feature-based visualization technique for analysis and categorization. In 

addition, the textual search results in a digital library were visualized [48]. Rowe et al. 

[44] represented spatial data visually to model 3D complex geometry data via interactive 

and sketch-based interfaces. Also, Booker et al. [8] visualized geo-temporal data by 

combining a geospatial node map and a timeline view with their GIANT system.  

Exploratory visualization techniques have been developed to provide interaction with 

large and complex datasets and to give users broad bandwidth of understanding 

interpretation [33], [40]. Beyond type-dependent visualization methods, prior studies for 

classification, techniques, and challenges of visualization were addressed in [27] and 

[63]. Curdt et al. [13] managed and visualized heterogeneous scientific data in 

multiplicity of interdisciplinary subprojects including agricultural sciences, hydrology, 

geohydrology, geophysics, meteorology, and geoinformatics. PerCon builds on such 

capabilities but places their results in an analytic workspace in which users can organize 

and interpret data objects, much like the visual expression enabled in our group’s prior 

work on the Visual Knowledge Builder (VKB) [45]. 
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Compared to computational/statistical/visualization-based data analysis within 

digital libraries, data analysis through human-computer interaction is not still largely 

applied while interaction modeling/framework [7], or interaction-based applications for 

design [19], task planning [24], configuration [41]  have been described to date.  

2.5 Interaction between User and System 

Interactions between a user and the digital library system fall into three major 

approaches – interaction of system control, human control, and human-system 

interactive control. First, system-controlled interaction is employed in automated 

systems that take full control and guide users to perform a task. Systems, such as Google, 

ResearchIndex [30], Informedia [59], are representative examples of automated digital 

libraries for information discovery/retrieval, citations/hyperlinks/reference linking, and 

metadata aggregation, respectively. However, many automated digital library systems 

are designed for lowering cost based on computation power rather than enhancing 

interaction with human users. The second approach for interaction is a direct 

manipulation, for example, where users take initiative in terms of manipulating, 

evaluating, and displaying data. Direct manipulation is supported by well-designed 

interfaces, functions, and data visualization. For example, various systems researched by 

Shneiderman [48] or other systems, such as DRAGON [26], approached direct user 

manipulation with user interfaces and visualization techniques. Finally, as a flexible and 

collaborative interaction, mixed-initiative interaction combines automated services with 

direct manipulation to provide various supports such as planning, configuration, and 

diagnosis while a user performs a task. Conventionally, the system agent(s) computes 
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related data and information according to the user’s responses and infers a user’s 

interests. For example, scheduling system, Lookout [22], combinFormation for 

information discovery and exploratory search [29], AIDE for exploratory data analysis 

[51] adopt mixed-initiative interaction between users and systems. As such, these 

interactive systems incrementally access and achieve goals. In the collaborative mixed-

initiative interaction, while the user performs a task, PerCon recognizes a user’s 

information needs, searches relevant data, and assists a user’s activities.  

2.6 Recommender System: Relevance Feedback and Filtering 

Most data search, location and analysis tools leave the users in control, and on 

their own, during the performance of their task. The users’ actions in the system provide 

evidence of their interests that can be used to generate recommendations; the system 

adapts to individual user’s information needs or interests. For the recommendations, 

techniques of relevance feedback and filtering have been considered to model user 

interest and support user-dependent/personalized information delivery.  

Relevance feedback takes user’s feedback from an initial set of queried results   

and uses that information (i.e., whether the result set are relevant or not) to improve the 

retrieval process. The types of relevance feedback are usually distinguished as implicit 

feedback, explicit feedback, and semi-explicit feedback. Recommendations via implicit 

relevance feedback have been well studied in the context of information location 

environments [28]. Conventionally, the system infers a model of the users’ interests, 

based on patterns in metadata or contents, and uses this model to locate related 

information. For example, the Curious Browser [12] uses observations of mouse usage, 
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keyboard usage and the time spent viewing documents to generate suggestions and our 

prior work on the Interest Profile Manager builds a model based on activity in multiple 

applications [4]. Explicit feedback requires users to proactively indicate their interests or 

assess the relevance of documents on a scale using score/number or descriptions (e.g. 

“relevant”, “not relevant”), etc. Thus, explicit relevance feedback is strong and direct 

evidence of user interest and information need, however, the users are usually reluctant 

to indicate (e.g. ratings), apart from information seeking activities or given tasks. In 

addition, user interest or task can be out of explicit feedback due to interest shift and 

unexpected findings. Furthermore, placing graded relevance on documents or expressing 

user interests using keywords can be limited to expand in the overwhelming information 

space.  
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3. PROBLEMS AND ISSUES 

 

Prior research has considered domain-specific environments (e.g. database, 

schema and its mapping, code-based algorithms) for data integration rather than 

considering integrated data environments. Even various software tools and applications 

that offer computing environments or libraries for data processing, visualization, and 

analysis are widely used in specific research groups. However, many additional efforts 

to manage, access, and share diverse data are needed upon demand. Outside of this 

research and tools specific to some data domain, there are more generic systems for 

sharing data presentations and interpretations. However, these systems do not have 

capabilities or services to handle diverse datasets. Herein, the overall problems and 

issues related to heterogeneous data management and analysis are stated in detail.  

3.1 Visualizations for Large and Various Types of Data 

To manage and analyze heterogeneous data, domain-specific and cross-domain 

visualization methods are necessary. Much of the raw and computed data collected in 

many research areas consist of numerical values associated with measurements in time-

series or spatial domain. Without appropriate visual representation, tasks such as 

understanding waveforms, obtaining desired information, and interpreting data 

relationship (even in a single data object) may require a long time or even impossible to 

complete. In particular, due to the nature of data-intensive measurements in many recent 

research areas, visualization (e.g., time-based plot, map, and graph) needs to be 

emphasized to explore and analyze data as addressed in Section 2.5. Besides, the non-
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numerical values in the dataset (e.g., textual data or multimedia data) often lack the 

accountability of itself because a spatial situation or a specific context presumes to affect 

or be related with other data/measurements. Multi-parameter synchronized visualization 

(e.g. spatial representation with textual data) is required to enable one to find 

correlations or relationships between heterogeneous datasets.  

3.2 Need for an Integrated Workspace 

The importance of a shared workspace to support heterogeneous data 

management and analysis needs to be emphasized. A workspace serves as a virtual 

repository to produce a user’s data and an important framework in digital libraries to 

translate data into information through appropriate processing, visualization methods, 

and applications depending on data types. A workspace, where the translation occurs, 

potentially manages the interrelationship between information objects and includes 

information evolving records.  

Users and the system need a workspace to produce data and to build and 

represent the corresponding information explicitly in their desired manner. In particular, 

formalizing the information, which usually takes place in a workspace, at the human 

level is another challenge to data management. Computers only process formalized 

information and the formalization allows domain-dependent/independent data 

management. In addition, as Shipman et al. addressed in [46], for systems to support 

users, formal models or formalities are required to add necessary functionalities as users 

deal with increasing datasets and information. With regards to users, knowledge which is 

an understanding of information through human cognitive process is often implicit to 
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share. By formalizing large scale and complex information explicitly in a workspace, 

users can (1) improve the understanding of the nature of diverse types of dataset, (2) 

interpret the given information and discover knowledge in different ways, (3) share 

findings and understandings, and (4) reuse data. Furthermore, in domains whose 

knowledge can change rapidly, the formalization in a workspace facilitates knowledge 

acquisition [47].   

With regards to human-computer interaction, a shared workspace is valuable for 

managing user-system cooperation. Terveen [55] describes the potential for a shared 

workspace to mediate user-system collaboration. In particular, a shared workspace 

where a user and the system can interactively and visibly build and manipulate a context 

enhances data management and analysis. When the user and system can communicate by 

constructing representations of information such as Critspace [3] in a shared workspace, 

a complementary approach [56] between human and computer can be achieved for data 

analysis.   

3.3 Digital Library as a Data Platform 

We intend to support the collection, management, and interpretation of 

unanticipated collections of data types. Developing a digital library system to support 

heterogeneous data management, including data management plans, poses many 

difficulties. First, managing heterogeneous data requires a comprehensive understanding 

in order to process and integrate the data collected from different sources. Second, data 

granularity varies grossly based on data transactions and desired performance. 

Developing a digital library with coarse-grained and fine-grained data structures and 
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models involves various schema designs and it also needs to consider schema matching 

for (meta)data sharing and interchangeability. Third, diverse services and applications 

should be provided in order to manage and analyze heterogeneous data. For the services 

and applications, different data processing methods, flexible and scalable 

infrastructure/architecture for new types of data are required.  Finally, due to the 

inconsistency and lack of standards [37] between heterogeneous datasets, discovering 

interrelationships is important but difficult. In practice, one digital library instance 

cannot support any required or necessary visualization applications on demand.  To 

tackle these issues, our digital library should have the ability that serves as a unifying 

platform to collect, process, organize, analyze, and interpret (un)structured data from any 

source. Namely, the solution to a data platform with methods is required. Compared to 

domain-oriented digital libraries, little research on digital libraries as a data platform has 

been carried out.  

3.4 User Interest Model and Inference  

Locating and finding (relevant) data of interest or in a specific context can be 

time-consuming and difficult among a large amount of heterogeneous data. Identifying 

the user’s context and interest/goal for the data location is not simple. In specific, there 

are many difficulties to tackle: how we define implicit/explicit feedbacks, how a system 

acquires and correlates them with user interest, how we quantify 

relationships/similarities between the heterogeneous data in various domains, how a 

system notifies   
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Compared to studies on relevance feedback, less attention has been given to 

mechanisms of how user events and feedback are applied to mixed-initiative interaction, 

or user interest modeling with heterogeneous data. Heterogeneous data involves various 

variables associated with relevant or preferred visualizations, activities and attributes in 

a workspace, and relationships between data sources/objects. Besides similar or relevant 

data location with proper ranks, the user interest model needs to encompass these 

variables.   

By recognizing user’s context and data of interest, a digital library enables 

recommendation for the user’s data analysis activity in collaborative mixed-initiative 

interaction. As the amount of data being analyzed and the evidence being collected 

increases and many machine learning algorithms are being developed and sophisticated, 

the recommendations are appreciated with values. 

3.5 Interactions for Data Management and Analysis 

While visualization conceptually enables a user to interact with data/information, 

in the real world, a user’s interaction with a system involves his/her use of physical user 

interfaces for various purposes.  Several conventional approaches to user interaction, 

such as command windows, selectable menu items, and dialogue popups have been 

employed.  

However, even if digital libraries potentially include numerous selectable menu 

items on the screen and a user has great control over interfaces, one still faces several 

issues in terms of data management and analysis [49]. In particular, the issues seem 

more obvious when a system requires users to formalize information in a workspace; 
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Shipman et al. [46] mentioned possible reasons for rejecting formalisms in an interactive 

system. First, task overload and workload are likely to continuously increase. As 

researchers deal with more complicated information domains and build more knowledge 

space for data analysis, they may have a number of subtasks to undertake, issues to 

monitor, and relations among heterogeneous data to examine. This leads to limitations 

for researchers to explore all the related datasets as the amount of datasets increases. 

Second, users have various backgrounds, interests, hypotheses, and tasks regarding the 

datasets. Individual users have different data/work practices in terms of data exploration 

and structure [2], even when pursuing for the same purpose. In addition, the relevant 

data to find and analyze varies depending on the user’s goals. There is no way to 

facilitate flexible and effective data analysis depending on several conditions of users 

and given tasks. Third, the more complex the system environment becomes, the more 

time users need to spend to learn the system interface and functions. Difficulty in 

locating interface or menu of interest can be posed within the system. Even if the user 

knows every possible interface and has full control over it, the user may not want to 

perform all of the potential subtasks for some reason.  These issues indicate flexible 

interactions between a user and system for data analysis are necessary and should 

provide a high degree of collaboration. A collaborative interaction for solving problems 

or performing tasks allows users to reach goals in an incremental fashion. 
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4. PERCON: A PERSONAL DIGITAL LIBRARY FOR HETEROGENEOUS DATA

 

 

PerCon is more than a typical digital library; the system is a combination of 

digital library and data platform for heterogeneous data. It integrates data management 

with data manipulation, presentation, and analysis. The envisioned process for collecting, 

locating, and making use of data streams in PerCon is shown in Figure 1. The lower left 

represents the collection and ingestion of heterogeneous data, and the lower right shows 

the visualization, location, analysis, and interpretation of data through applications. The 

top right is a database and data repository for the data and the top left shows the feature 

space used to encode characteristics of the data necessary for its analysis and use as 

metadata.  

PerCon was originally developed as a tool for a local research group to manage 

and analyze data from an investigation looking for patterns in physiological data from a 

variety of wearable sensors (e.g. heart rate, galvanic skin response), contextual data from 

portable devices (e.g. geocode and sound pressure level data), and behavior data (e.g. 

users’ answers to questions). PerCon has since been extended to work with data from 

external sources and other domains, as is the case in the evaluation reported in Sections 

5 and 6.  

  

                                                 
*Part of this section is reprinted from the following paper: ©2014 IEEE. Reprinted, with permission, from 

Su Inn Park and Frank Shipman. PerCon: A personal digital library for heterogeneous data. In Proceedings 

of IEEE/ACM Joint Conference on Digital Libraries (JCDL), pages 97-106, IEEE, Sept. 2014. 
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Figure 1. Flow of information in PerCon. 
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This section describes PerCon’s architecture, overall interface, visual workspace, 

and mixed-initiative recommendation subsystem. The next subsection describes the 

layered architecture being developed to isolate the PerCon software components.  

4.1 PerCon Architecture 

The goal of combining digital library and data analysis components led us to 

develop a layered architecture for managing the interconnections among the many and 

varied necessary software components. As illustrated in Figure 2, PerCon’s architecture 

for managing the interconnections and interoperations among the diverse software 

components and data resources consists of three layers: the resource layer, the 

middleware layer, and the application layer. The figure also describes some of the core 

capabilities at each layer and the components within it. As is typical for layered software 

development, software components in a layer are accessed only by software components 

in the next higher layer.  

The resource layer provides functionality to store and preserve the original data 

objects, computed and filtered datasets, and metadata. This includes maintaining a 

record of the data provenance of data ingested from other sources (e.g. where it came 

from and when), data entered from local sources (e.g. project and user IDs, data types, 

dates) and computed data (e.g. recording what operations were performed on which 

existing data streams and when). It is implemented via a combination of a local 

repository and a database. The repository is designed to include loosely connected data 

sources. It stores and manages the raw and processed data objects, and data relation 

objects that record similarities and differences between data objects. The database stores 
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Figure 2. PerCon’s architecture and software components. 
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descriptive metadata, visual thumbnails of the digital objects, and indexes into the data 

objects stored in the repository.  The resource layer also includes a web server to provide 

network applications access to the data resources in the repository and database. Finally, 

the resource layer records information about data provenance.  

The middleware layer of the architecture includes functionality for data ingestion, 

data access, automated data analysis, and lower-level components that enable data 

visualization the data workspace, which is a modified version of VKB [45].  

The data ingestion component provides three services: data processing, data 

integration, and provenance recording. The processing service includes a data reliability 

check to ensure that the data object content correlates with that expected for the data 

object type. The processing service also provides algorithms for processing existing data 

to generate computed data objects and metadata, and to populate the data relations 

objects in the repository that record correlations and other similarities/distances between 

data objects. The data integration service populates database tables used to index the 

data object repository. For example, a table of high and low values per day enables 

searching the repository based on these content features efficiently. Finally, the 

provenance recording service extracts metadata regarding the data provenance. 

The second functionality of the middleware layer is to enable the application 

layer components to access and interact with the resource layer's contents through a set 

of external APIs. A query-processing module parses requests and determines the 

communication necessary with the resource layer (e.g., database and repository) to fulfill 

the requests. 
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The third functionality of the middleware layer is data visualization, which instantiates 

data as a visual object in the workspace. The initial visual and spatial attributes of the 

visual object are assigned depending on the data type and query.  

The final functionality of the middleware layer is data analysis. PerCon’s 

analysis framework associates data objects in the resource layer with metadata and 

visual properties determined by the user and workspace, ranging from the highly 

interactive to the highly automated.   

PerCon’s application layer enables end-users and external systems to access the 

content in the digital library. This layer implements the user interfaces for browsing, 

searching, and visualizing the contents of the resource layer. A data registration interface 

enables adding, updating, and deleting data and datasets. The application layer also 

includes a data publication interface that enables remote access to certain contents of the 

digital library.  

4.2 PerCon Instantiation 

The architecture of PerCon presented in section 4.1 is instantiated for use in 

heterogeneous data. As such, the current PerCon system components provide a platform 

for various data types and data analyses via mixed-initiative interaction. Here, we 

describe the instantiation of the database and repository, the data processing and analysis 

components, the interfaces and services provided, and the API for developing additional 

services and providing external access.  
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The system is integrated into Java technology interoperating with other 

languages/scripts and interfaces of data repository and database. It attempts to provide a 

data platform as a solution to issues found in prior domain-specific digital libraries.  

4.2.1 Database and Repository in Resource Layer 

The resource layer of PerCon is instantiated through the combination of a data 

file repository and a relational database (e.g. MySQL) to maintain metadata, indexes, 

processed data objects into the data files. The repository includes both raw and 

computed data files, which can greatly vary in size depending on what type of data is 

being recorded and the data rate. A local or network storage can consist of repository 

directories. As is common in such repositories, the relational database maintains 

relationships between the data files in the repository and the metadata stored in the 

database. In addition, the relational database maintains indexes into the data files for 

particular events, words, or values.  

Metadata in the database and repository is organized based on a representation of 

the domain of the research. In Figure 1, this domain representation is found in the 

Feature/Knowledge Space, consisting of domain-independent (or cross-domain) features, 

domain-specific features, and personalized features. The feature space also represents 

the potential relations between data files. Thus, the forms of computation over data files 

used to generate other data files are represented as a hierarchy. Unlike the original raw 

data, the domain-dependent, domain-independent, personalized features and relation-

representing features are generated in a binary format for efficient data storage and fast 

access. Classes of functions used to generate computed data files include normalization 



 

26 

 

functions, filtering functions, and statistical functions, which are supported by the 

middleware layer. The preservation of the metadata about data collection (e.g. name, 

date, time, capture device, digital object types, etc.) and metadata describing the 

relationships between the digital objects combined with the feature/knowledge base 

enables greater understanding of the raw and computed data files.  

The repository of digital objects (i.e. data files) is organized as a hierarchy of file 

directories, such as study, data type, research participant, and the sensor type. Thus, raw 

data and the data objects computed based on that raw data are found together. In addition, 

this can facilitate access control, which relates to issues of data privacy.  

Along with the repository and database, as many digital libraries operate on web-

based applications such as search engine and pivot viewer, PerCon can communicate 

with a web server. The search engine library in the web server is provided and the 

indexed data files are referenced by the search engine.  

Finally, to abstract the resource layer, a PerCon configuration file is provided. 

Simply designating IP or domain address in the configuration (with authorization 

information if required), PerCon requests a connection then imports information of 

repository data files and database tables. In addition, by addressing web server address, 

users are allowed to use web-based applications or tools.  

4.2.2 Data Processing and Analysis in Middleware Layer 

The middleware layer of PerCon mainly supports ingestion of data into the 

repository/database, data analysis, query facilities, and visual workspace. As already 

implied in the previous section, data ingestion begins with a preprocessing step to verify 
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whether the raw data has been recorded correctly. In particular, the first check is to make 

sure the data file format is as expected (i.e. the data can be parsed if it is of a type meant 

to be manipulated). This step consists of validating data files, ensuring that the custom 

parser can read the data file without error. In addition, the ingestion may invoke a data-

specific “sanity check” program to determine if the data has the characteristics expected. 

The user ingesting the data file is notified of any issues. Part of the ingestion process is 

to generate computed data files and indexes into the data files. Pre-processing of the raw 

includes modules for data parsing, filtering, transforming, indexing, and partitioning 

(based on a logical criterion or physical size). For example, the timestamps of raw data 

(which are recorded with CPU clocks) are transformed into a user-readable time to the 

second. It can add the results of a window mean, variance, and normalization to the 

computed data file. The ingestion process, including all processing steps and generation 

of processed data files, is dated/recorded for provenance analysis. 

Data analysis capabilities of the middleware layer include a set of computation 

modules associated with the feature space and inference networks for mixed-initiative 

interaction. In particular, the computation modules enable various distances/similarities 

analyses in time-domain and frequency-domain (e.g., Fast Fourier Transform). The 

similarities/distances such as Pearson correlation coefficient, cosine similarity and user-

defined metrics for representing relationships are used to find relevant data objects of 

interest to the user. In turn, to infer the user interest based on user-created events and 

feedback, Bayesian networks are modeled. Causal relationships between user interests 

and interactions in the workspace (e.g. events, visual/spatial attributes, applications) can 
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be modeled by the Bayesian network nodes and edges. Since the inference networks 

need to reflect the current user interest that can change over time and a given task, the 

learning process in the Bayesian network is light-weight. Furthermore, when user data is 

sufficiently accumulated in the resource layer, more personalized user interest models 

can be obtained through network structure learning. As a result, the computed data files 

and Bayesian inference networks enable mechanisms of how user events and feedback 

are applied to mixed-initiative interaction. Figure 3 demonstrates an example of a 

Bayesian network designed for our study in Section 5. The procedure of mixed-initiative 

interaction in PerCon is addressed in Section 4.4 in detail.  

 

 

 

Figure 3. Example of a Bayesian network designed for user study. 
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Besides, the visual work including data multiple representations/visualizations 

and history mechanism is another main component in the middleware layer. We 

delineate the visual workspace in Section 4.3.  

4.2.3 PerCon Interface 

PerCon’s main interface is composed of three interface components: a repository 

browser, a visual workspace, and a suggestion viewer. Figure 4 shows this interface 

being used to analyze precipitation and river data. 

The repository browsing interface organizes the digital objects (i.e., data files) 

into a hierarchy. The hierarchy ensures that raw data and the data objects computed from 

it are found together. Users can filter the view by selecting the types of data or files that 

are of interest. A property often important when analyzing heterogeneous data is locating 

concurrent data sources, i.e., temporal overlap in data capture. Users of the repository 

browser can bring up the list of overlapping data objects from a selected element in the 

hierarchy. 

The hierarchic browser also allows users to preview the data objects in 

precomputed thumbnails. Previewing was found crucial in early testing of PerCon as it 

aids the ability of users to rapidly locate initial data pertaining to their task while 

reducing undesired activity and complexity in the workspace.  

Much of PerCon’s interface is a workspace for visualizing and organizing data 

objects. Users can drag objects from the repository browser into the workspace to 

generate a new manipulable visualization of the data. More than one visualization can be 

available for individual data types. The initial visualization is based on the data type and
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Figure 4. PerCon interface. 
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query used to locate the data but can be changed by the user. The workspace is described 

in more detail in the next subsection. 

A history mechanism records user actions in the workspace. This history can be 

replayed to facilitate the comprehension of visualized information and to formalize 

interrelated knowledge. Based on user activity within the workspace, PerCon infers the 

user’s interests resulting in additional data being presented in the suggestion viewer. 

The suggestion viewer displays thumbnails of each recommended data object. 

The user can drag a suggested data object from the suggestion viewer into the workspace. 

A selection of the suggested data object from the suggestion viewer highlights a 

corresponding data object in the repository browser. This allows the user to know the 

suggested data source location. The suggestion viewer preserves the recommendation 

history for future reuse. This recommendation history can reflect shifts in user interest or 

transitions between subtasks. 

The displays of the three components of the user interface communicate to 

ensure presentation consistency. When a data object is selected in one component of the 

interface, it is indicated in all of the interface components. 

In addition to the main persistent interface, PerCon includes a query interface for 

locating data within the collection. As the data objects increase in number and size, 

locating data within the main tree view can be challenging. The query interface supports 

searching for particular types of data in particular date ranges. Figure 5 shows the 

calendar view of query results. Data that matches the query is shown as a set of labels 

and visualizations on the days from which the data comes. The data visualizations in this 
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interface use color to represent the type and content of the data. Each data type maps to 

its own unique color with different tones of that color used to represent different data 

values. Data entities in the calendar view can be dragged into the workspace and opened 

for a more detailed view.   

 

 

 

Figure 5. Calendar visualization of query results. 

 

 

4.2.4 Interoperability and Compatibility 

As indicated by the vision of data reuse in e-Science, digital libraries should not 

only preserve scientific datasets, but also share the resources with other systems. To 

share the resources, the applications and tools in the digital library system should 
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provide services such as searching, browsing, digital object manipulation, and analytical 

visualization. Associated with the possibility of infrastructure consolidation for relieving 

technical limits and reliable work with other system, operators in the middleware should 

be addressed. To respond to these demands, PerCon middleware components include 

application programmer interfaces (APIs).  The example APIs for middleware services 

are shown in Table 1. 

 

 

Table 1. Example APIs in a high-level design. 

Method API Description 

Browse getObjectList 
lists digital objects and directories 

from specified directory  

Search 

findByUserId searches data/object by user ID 

findByTimePeriod 
searches data/object within 

specific data-created time period   

findBySensorId searches data/object by sensor id 

findByFunction 
searches data/object optional) 

setting time window 

findByURI 
finds data/object by location 

address 

Result Access 

getGraph 
retrieves result data/object in 

visualized fashion  

getDocument 
retrieves result data/object in 

specified document types 

getData 
retrieves result data/object in 

specified data type 

Data  Object creation 

 in the workspace 

createNewObject 
creates data object in the 

workspace 

plugin2Visual 
adds data application object to 

base object in the workspace 

Data object manipulation 

componentResized resizes data object  

setLocation 
sets data object coordinate (top 

left coordinate) 

Mixed-initiative interaction addEventInteraction records events to internal database  

Exception showException 
returns error codes each of which 

has the meaning. 
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4.3 Integrated Visual Workspace 

Based on the architecture and instantiation aforementioned, the PerCon offers 

various capabilities and functionalities for user data management and interpretation via 

the visual workspace.  

PerCon extends the capabilities of our group’s prior visual workspaces such as 

[45] in that it includes a model for selecting among multiple applicable data 

visualizations according to different requirements. For example, the same stream of 

quantitative data can be presented as a plot showing the value over time or as a bar chart 

showing the relative frequency of values in different ranges. Besides the system-

generated visualization of the data, each data object includes visual and spatial attributes 

(e.g. border/background colors, font styles, data object x-y coordinates) that users can 

manipulate to express interpretations of the data.  

The innovative approach to PerCon’s visual data object is the separation of the 

base data object that is used for user expression and the application object which is used 

for data visualization. The base object model provides a method to add application 

objects onto the base object without constraints. Since movement, resizing and other 

event-based workspace interactions are managed by the base data object, only 

application-specific interactions must be considered when adding a new application 

object type. The result is a combination of human visual expression via base data objects 

and data visualization via application objects. Application objects can allow users to 

investigate the data in detail using appropriate methods (e.g. zooming) within the 

application object portion of the overall data object. To facilitate creating necessary
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Figure 6. Example of application objects in the workspace.
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application objects on the workspace, PerCon provides the external APIs. Other types of 

data with required management tools and applications can be integrated and 

accommodated in the workspace with less effort. This design rationale enables fine-

grained data manipulations, adaptation of new types of data to visual workspace, and 

maximizing utilization. 

A variety of application objects have been integrated in PerCon. Data editing and 

plotting tools, a HTML viewer, a multimedia data streaming application, interfaces to 

database tables, and timelines are available. In many cases, metadata standards and 

structured languages like XML and JSON, are employed for encoding characteristics of 

the data objects stored in the repository. Hence, PerCon also includes XML and JSON 

viewers. Figure 6 shows examples of application objects.  

One PerCon-specific application object type is the multi-datastream 

synchronized viewer (e.g. [61] ) shown in Figure 7. This was developed for our original 

application domain of analyzing physiological and contextual data. Since these 

datastreams are recorded from different sources in parallel, their 

correlations/relationships are not seen or detected visually in a single parameter view. 

An application object that integrated and visualized data from multiple data elements 

from the repository was desired to help identify patterns/relationships, as well as to form 

and assess new hypotheses. The multi-datastream synchronized viewer allows users to 

visually observe interrelated changes regarding the relationship between heterogeneous 

data.    
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Interoperating with the history mechanism, the workspace records and stores all 

interactions in the system internal database. The captured records can be used to revisit 

and replay workspace activity and are used for mixed-initiative interaction, which is 

described in the following section.  

 

 

 

Figure 7. Multi-datastream synchronized viewer. 

 

 

4.4 Mixed-Initiative Recommendation 

Knowing what content is available is a challenge for users of most any library 

but is particularly difficult in a library containing a large quantity of heterogeneous data. 

PerCon includes a mixed-initiative interface for recommending data objects to the user 
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to improve data exploration and analysis in this context.  The key functions of the 

recommender subsystem are (1) understanding relationships within the heterogeneous 

datasets, (2) recognizing user interests from a record of user activity, and (3) associating 

the relationships with the user interests. The agent’s framework to accomplish these 

three functions is shown in Figure 8. The following two subsections describe the key 

procedures in mixed-initiative recommendation.  

In an effort to avoid making recommendations that are perceived as random, we 

initially focused on getting users attention to the data they had not already seen that is 

most like what they have been recently examining. Future efforts can alter this strategy. 

4.4.1 Understanding Relationships in Data 

To understand relationships within the heterogeneous data collection, the agent 

generates precomputed tables of data object similarities. These tables are stored in the 

repository. Because different notions of similarity are important for data selection in 

different tasks, the processing framework computes five similarities/distances with 

values from 0 to 1 for all combinations of data objects of the same data type:  

 Pearson correlation coefficient – standard measure of similarity of values 

over time in data elements; 

 cosine similarity – breaks the data elements’ timestream into segments and 

aggregates data in each segment into a single value; the two sequences of 

values are compared as vectors; 
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Figure 8. Mixed-initiative interaction framework. 
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 temporal similarity – how close together in time are the two data elements, 

value is 1 if the data elements overlap and is 0 if the time gap exceeds a 

preset threshold;  

 trendline similarity – computes the Euclidean distance between the two-

dimensional tuples composed of (the slope of linear regression of data 

readings, the sum of values of readings); and    

 mean/variance similarity – difference between the mean/variances of the two 

data elements.  

Before the similarities can be computed, interpolation and smoothing are 

necessary for comparing data elements with different sampling rates and/or missing 

values.  

Overall similarity of two data elements is a weighted sum of the five similarities 

above. The initial weights for the five similarity metrics are set heuristically based on 

experience with the system. These weights are modified based on user interaction with 

recommendations by increasing the weight for similarity metrics that correlate with 

accepted recommendations. 

The similarity assessment mechanism is extensible. Our initial measure of overall 

similarity was much simpler, using a combination of the mean values and variances, but 

the resulting recommendations were quite bad. Iterative testing of the mechanism led to 

the set of similarity metrics described. Additional metrics can be included in the overall 

assessment if experience indicates the need to include new features. 
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4.4.2 Recognizing User Interests and Selecting Recommendations 

PerCon records user activity in the workspace as a sequence of events (e.g. 

dragging data elements from the repository browser into the workspace to create a new 

data object, resizing the data object, etc.). In addition, each event type has been 

heuristically assigned an evidence weight (e.g. data object creation is 0.1, resizing a data 

object is 0.01, etc.). Using the event log and the list of weights, PerCon generates a 

model of user interest as follows: 

1. Each event in the workspace is added to a table recording the event type and 

features of the data object involved in the event (e.g., data type, application object 

type, color1, color2, annotation) and the evidence weight for the event is added to 

an evidence tally. 

2. When the evidence tally exceeds a threshold, the table is used to train a Bayesian 

network composed of nodes modeling the event features in order to predict the 

data type of greatest interest. 

3. The data objects in the workspace of the predicted data type are ranked based on 

the table of activity and those above a threshold are selected as reference data 

objects. 

4. Similarity between the data elements of the predicted data type not already in the 

workspace and the reference data objects is computed based on the weighted sum 

of the five similarity metrics. 
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5. The five most similar objects that are not already in the history of 

recommendations are added to the suggestion viewer as thumbnails and the 

evidence tally is reset to zero. 

Rather than building a model around a fixed notion of feature importance, the 

probabilistic model aims to capture the unforeseeable characteristics of practical action 

[53]. As users proceed through a data analysis task, the sets of data that are their focus, 

the applications they use to view the data, and the interpretive coding and annotation 

they apply in the workspace are likely to change [57], [64]. By including all these event 

and data object features in the Bayesian network, recommendations can take into 

account such shifts in behavior. 

A last component to the recommendation system is controlling the frequency of 

recommendations. As described in the steps above, the accumulation of activity into the 

evidence tally is one method for controlling recommendations. Users have to perform 

enough actions in the workspace to (re)fill the evidence tally before a recommendation is 

made. In order to build recommendations that represent different lengths of user activity, 

the system includes shorter-term and longer-term evidence tallies. This means there can 

occasionally be multiple recommendations simultaneously or quite near together. 

In addition to inferring user interests, the mixed-initiative interface allows a user 

to express his or her interests explicitly and to ask for recommendations. This is 

important because user activities in the workspace may not reflect user interests in cases 

when significant effort is required to examine data to locate data of interest, when there 

are sudden task shifts, and when the user performs multiple tasks in parallel. Also, a user 



 

43 

 

may want to explore data different from that which was recently examined. Users can 

select a workspace data object and request related data to request recommendations. 

Subsequently, the explicitly expressed interest is included in the agent’s user interest 

model and thus affects future system-generated recommendations. 
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5. USER STUDY

 

 

PerCon is a large software environment and the result of many different design 

hypotheses. We conducted a user study to observe data analysis in PerCon focusing on 

two central hypotheses: (1) H1: the visual workspace helps a user to manage data and to 

translate data into knowledge about the domain, and (2) H2: the mixed-initiative 

recommendations improve a user’s ability to explore and analyze data. The participants 

were asked to perform several specific tasks with/without the visual workspace and 

with/without the mixed-initiative interaction. 

5.1 Participants 

PerCon is meant to support people who need to analyze heterogeneous datasets. 

Thus, our population of convenience, the students and researchers at a large academic 

institution, is representative of the target population. The twenty-four participants 

included one undergraduate, four Masters, sixteen PhD students, and three postdoctoral 

researchers. The participants ranged in age from 24 to 36 and represented a variety of 

disciplines: computer science, computer engineering, electrical engineering, soil 

hydrology, biomedical engineering, industrial engineering, and management information 

systems. 

 

 

                                                 
*Part of this section is reprinted from the following paper: ©2014 IEEE. Reprinted, with permission, from 

Su Inn Park and Frank Shipman. PerCon: A personal digital library for heterogeneous data. In Proceedings 

of IEEE/ACM Joint Conference on Digital Libraries (JCDL), pages 97-106, IEEE, Sept. 2014. 
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5.2 Domain Data for Participant Analysis 

Data for the study was selected to include relations that are intuitive in nature but 

complex in detail. In particular, we selected weather and river data along two different 

geographic regions of a river system to provide two comparable sets of tasks with which 

to examine the effects of alternate configurations of PerCon. 

Since weather and river data are recorded hourly or daily over decades, they 

provide a voluminous dataset. Weather data includes many variables that exhibit a great 

deal of spatial and temporal correlations with one another. Many variables in the weather 

data also have an observable impact on environmental variables. River stream level is a 

representative environmental variable significantly affected by weather conditions. 

Depending on geographic relationships and intermediate reservoirs and dams, river 

stream levels exhibit a strong relationship between upstream and downstream values. 

Data was collected from two public repositories: the National Oceanic and Atmospheric 

Administration [58] and the Brazos River Authority in Texas [52].  

Two years of weather and river data (from 2011 to 2013) were ingested into 

PerCon for this study. The weather data consists of five elements: temperature, 

precipitation, relative humidity, wind speed, and wet bulb temperature. The river data 

includes two data elements: the river level and discharge recorded. Data was collected 

from six different locations in Texas along the Brazos River and its tributaries. One data 

set included the data from College Station, Waco, and Temple while the other included 

data from South Bend, Seymour, and Fort Griffin. 
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The value for each data element was ingested for each hour, resulting in about 25 

Mbytes of raw data and 229 Mbytes of computed similarity data for each of the two 

tasks. To facilitate access to the data, a directory of each data element provides 

participants access to annual, monthly, and daily segments of data. 

5.3 Participants Tasks 

Participants were asked to perform three tasks with each of the two datasets. 

These tasks motivated participants to carry out a complete cycle of data exploration, 

manipulation, management, analysis, and interpretation. Throughout the tasks, we 

provided the participants with a basic approach and methodology; each task included 

step-by-step procedures. To observe and discover how weather and river data are 

correlated, one possible approach is to classify and organize data objects based on 

individual changes, trends, and patterns in the data.  

Task 1: Participants had 20 minutes to organize and classify river level and 

precipitation data according to common trends, quantities, durations, or other user-

perceived criteria.  

Task 2: With the classified weather and river data from Task 1, participants were 

asked to investigate the implications and identify correlations among the classified data.  

In particular, participants were asked to investigate the data correlations focusing on: 

what and how a weather factor(s) affects river level, and how the river data from 

different locations (e.g., Waco, Cameron, and College Station) are correlated. They had 

10 minutes for this task. 
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Task 3: With the discovered evidence of relationships among the weather and 

river data elements from Task 2, participants were asked to explain river level 

changes/trends based on weather and upstream river flow conditions for 5 minutes. For 

example, some participants estimated river factors that caused these changes/trends 

(such as delay time) based on past weather data and other river stream conditions. Other 

participants interpreted why some river level changes are more or less affected by other 

river level changes. 

5.4 System Conditions 

For this study, our main hypotheses concern the effects of the workspace and 

mixed-initiative recommendations on data exploration and interpretation. To evaluate 

our hypotheses, we compared four PerCon configurations varying the availability of the 

visual workspace and recommendations. These are shown in Figure 9 through 12. 

Without the visual workspace, the two configurations in Figure 9 and 10, the system 

provided up to two information objects (i.e. application windows) with spatially preset 

size and location. The two configurations in Figure 11 and 12 show when the mixed-

initiative data recommendation system was turned off.  

When participants performed the tasks without the visual workspace, they could 

not use visual attributes and spatial organization to express themselves. In these 

configurations, they were allowed to use other application(s) such as MS Word or Excel 

to record notes, intermediate and final task results.  
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Figure 9. Configuration 1:  The visual workspace and the mixed-initiative 

recommendations are both unavailable. 

 

 

 

Figure 10. Configuration 2: The visual workspace is unavailable but the mixed-

initiative recommendations are available. 
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Figure 11. Configuration 3: The visual workspace is available but the mixed-

initiative recommendations are not available.  

 

 

 

Figure 12. Configuration 4: The visual workspace and the mixed-initiative 

recommendations are both available. 
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5.5 Procedure 

Before conducting the given tasks, participants were trained in the use of PerCon. 

This involved watching a 10-minute video tutorial to follow along with a written 

tutorial/manual to ensure consistent training. After being led through the use of features 

important to the tasks they would be given, participants had 5-minutes to try out features 

on their own. 

 

 

Table 2. Evaluation groups and interface modes. 

Group Subgroup 
System interface modes 

with dataset 1 

System interface modes 

with dataset 2 

Group 1 

A Configuration 1  Configuration 2 

B Configuration 2 Configuration 1 

Group 2 

A Configuration 1  Configuration 3 

B Configuration 3 Configuration 1 

Group 3 

A Configuration 1  Configuration 4 

B Configuration 4 Configuration 1 

Group 4 

A Configuration 2  Configuration 3 

B Configuration 3 Configuration 2 

Group 5 

A Configuration 2  Configuration 4 

B Configuration 4 Configuration 2 

Group 6 

A Configuration 3  Configuration 4 

B Configuration 4 Configuration 3 
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Each participant was asked to perform the three tasks in Section 5.3 in two of the 

four system conditions. After each task, the participants were asked to save their task as 

a file where user events and system logs had been recorded. As shown in Table 2, the 

order of exposure to system configuration and data set were balanced to account for 

learning effects, interactions between experiences with configurations, and complexities 

inherent in the two data sets. Table 2 shows the six evaluation groups covering the 

combinations of different interface modes. Four participants were in each evaluation 

group. 

At the end of the user study, the participants were given a questionnaire to 

explore the effects of the visual workspace and recommendations in each condition. The 

study duration for each participant was 120 minutes: learning how to use the system for 

15 minutes, performing the given tasks for 70 minutes, and answering the questionnaire 

for 20 minutes.  

5.6 Result Data Collection 

Data about participant activities, system logs, and experiences was collected 

from four sources: (1) Likert-scale responses about the task and PerCon, (2) open-ended 

questions, (3) the final and intermediate user-created workspaces, and (4) a record of 

time-stamped events/interactions (i.e. user activities and system logs) with PerCon 

throughout the tasks. In particular, the final saved workspaces and the records of the 

events/interactions include quite a large amount of usage data. We collected 144 

workspaces; twenty-four participants performed a total of six tasks in two system 

configurations. Figure 13 shows an example of the final user-created workspace in 
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configuration 3 throughout the three tasks.  In addition, 1,728 system-recorded files were 

collected; as shown in Table 3, PerCon is designed to record twelve individual user and 

system log files along with the workspace. Figure 14 shows a snippet of the recorded 

event logs in the event_interaction.dat file. 

 

 

 

Figure 13. Example of the final user-created workspace in Configuration 3. 
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Table 3. A list of files which PerCon records. 

File name Description 

event_interaction.dat 
Events in the repository browser, visual workspace, and  

suggestion viewer are recorded 

history_events.dat History events in the workspace are recorded. 

history_segment.dat History segments in the workspace are recorded. 

object_attributes.dat 
Visual and spatial attributes of individual base objects 

are recorded. 

object_values.dat Data object values (such as annotation) are recorded. 

percon_symbols.dat 
Events of individual user application objects are 

recorded. 

visual_symbols.dat 
Events of individual classic objects or collections are 

recorded. 

symbol_attribute.dat 
Visual and spatial attributes of individual collections are 

recorded. 

symbol_values.dat Values of base objects or collections are recorded. 

objects.dat Events of base objects are recorded. 

suggestionList.dat Recommended data are recorded.  

workspaceList.dat 
Current data objects in the workspace are recorded and 

updated. 
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Figure 14. Snippet of event logs recorded in event_interaction.dat. 

 

 

Table 4 lists the eight statements included as 7-point Likert-scale responses (1 

means “strongly disagree” and 7 means “strongly agree”) concerning the effect and 

usefulness of the workspace and mixed-initiative interaction. Participants in 

Configurations 1 and 2 were told to consider the fixed layout configuration of the 

workspace combined with their chosen external tools as their effective workspace. 
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Table 4. Likert-scale questions. 

 
 

Statements 

Workspace 

Q1 
I had enough support to understand the data content in the 

workspace 

Q2 I had enough support to express relationships in the way I wanted 

Q3 
It was easy to interpret and characterize given/created objects in the 

workspace 

Q4 I had enough support to effortlessly / quickly browse and select data 

Mixed-

initiative 

interaction 

Q5 I was satisfied with the data suggested 

Q6 I was satisfied with the suggestion request 

Q7 I had enough support to find and interpret data I was interested in 

Q8 I had enough support to find correlations within the dataset 
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6. RESULTS

 

 

Data from the Likert-scale questions will be reported first to give a sense of user 

perceptions of the different configurations. This will be followed by a more detailed 

analysis of the activity logs, workspaces, and mixed-initiative recommendations to 

examine how the different configurations objectively changed data analysis practice. 

From user experiences with the repository browser and workspace applications, we will 

find the effects of the other interfaces and draw lessons.   

 

 

 

Figure 15. Responses to questions related to workspace. 

                                                 
*Part of this section is reprinted from the following paper: ©2014 IEEE. Reprinted, with permission, from 

Su Inn Park and Frank Shipman. PerCon: A personal digital library for heterogeneous data. In Proceedings 

of IEEE/ACM Joint Conference on Digital Libraries (JCDL), pages 97-106, IEEE, Sept. 2014. 
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6.1 Perceptions of Participants 

Figure 15 presents the mean and standard error of participant assessments for the 

five workspace-related statements after using each interface configuration. The 

distributions for the five statements are all similar.  

 

 

 

Figure 16. Responses to questions related to recommendations. 

 

 

The means of the responses for Configurations 3 and 4, which include the 
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which did not include the workspace, were between 1.75 and 3.25.  In all cases, the 

difference between “without the workspace” and “with the workspace” is statistically 

significant (p < 0.001 for the closest, Q3). In the case of question 3, a few participants 

valued the larger fixed-size graphs while analyzing data, explaining that it provided a 

“bigger plot” and was “easy to check the pattern” in their open-ended questions (e.g., 

“Did the visual workspace help or hinder your tasks regarding data management?”, 

“Did the visual workspace help or hinder your interpretation of data?”) 

Responses to the statements related to mixed-initiative interaction were requested 

only after using configurations that included suggestions (configurations 2 and 4). As is 

clear from the results shown in Figure 16, the impact of the recommendations was 

different depending on whether users had access to the workspace. Without the visual 

workspace (configuration 2), participants were more reluctant to explore recommended 

data as it would take over one of the two plotting areas they had available. This 

restriction was also commented on in the open-ended questions, (e.g., “Did mixed-

initiative interaction help or hinder your analysis of data?”) as below: 

“My analysis was hindered but I do not think it is because of the mixed initiative 

feature. Instead, it was the restricted workspace.” 

6.2 Participant Work Practices 

To investigate the effects in each interface mode, we first examined the work 

practices of each participant group; we analyzed the sequence and number of events 

associated with exploring, organizing, and interpreting data/information with timestamps. 

We also examined the effects of interface configuration on the number of data elements 
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classified/analyzed and the number of events occurred by participants. In particular, the 

next two sections examine the effects of the visual workspace and the mixed-initiative 

recommendations on the number of data elements classified/analyzed throughout the 

three tasks and the number of events/interactions per analyzed data in the repository 

browser, respectively. In order to account for the increased possibility of familywise 

error rate (Type-I error) caused by each individual hypothesis, a Bonferroni-adjusted 

significance level of 0.025 was calculated. Next we looked at the distribution and pattern 

of activity in the repository browser and workspace in the different configurations. 

Finally, we looked at the interleaving of system-initiated and user-requested suggestions. 

6.2.1 Number of Data Elements Examined 

We first examined and compared the number of data objects classified or 

analyzed in the two configurations of each group during the three tasks. Table 5 and 

Figure 17 show the number of the data objects examined and the average number in each 

group, respectively. Notably, the substantial increases in the number of the data objects 

among the groups was observed for all the participants in Group 2 (configurations 1 and 

3) and 3 (configurations 1 and 4) as shown in Figure 17 and Table 5; the average 

increased from 13 to 38.8 in Group 2 and from 6.8 to 38.5 in Group 3. Since the 

common system configuration change in the two groups is the workspace, the potential 

effect of the workspace is likely to be significant. To quantify the effect of the visual 

workspace and mixed-initiative interaction, we examined the number of the data objects 

depending on the system conditions.  
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Figure 17. Average number of data objects examined between two interface modes in each group.
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Table 5. Number of data classified or analyzed in each group. 

Group Configuration User 1 User 2 User 3 User 4 

Group1 

Config. 1 16 7 23 15 

Config. 2 18 9 45 46 

Group2 

Config. 1 9 24 13 6 

Config. 3 25 31 67 32 

Group3 

Config. 1 11 2 10 4 

Config. 4 57 17 59 21 

Group4 

Config. 2 2 27 4 0 

Config. 3 14 22 15 24 

Group5 

Config. 2 26 15 15 7 

Config. 4 27 48 28 15 

Group6 

Config. 3 52 37 41 15 

Config. 4 54 95 57 24 
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Figure 18. Average number of data objects classified or analyzed during the tasks. 

 

 

Figure 18 shows how many data elements were classified or analyzed during the 

35 minutes spent with a single data set under the four conditions. Without either the 

workspace or the suggestions, the average was around 11. When only suggestions were 

added, the mean rose to 17 and when only the workspace was added the mean went to 31. 

With both the visual workspace and suggestions, participants examined about 41 data 

elements on average. It is clear that having a drag-and-drop interface that supports the 

visualization of an open-ended set of data elements facilitates rapid data analysis.  
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The effect of the workspace on the number of data elements classified or 

analyzed is strongly significant (p < 0.001, t-test, Bonferroni-adjusted significance level 

= 0.025) when comparing the activity in configurations 1 and 2 to the activity in 

configurations 3 and 4. Along with the significant difference, the effectiveness of the 

workspace is large (Cohen’s d = 1.287).  

The larger number of data elements the participants explored, the more evidence 

they discovered to identify and explain relationships between data elements. Thus, the 

results of their Tasks 2 and 3 were strengthened. Furthermore, participants receiving 

recommendations were able to substantiate correlations over broader time periods.  

Comments in the open-ended questions confirmed that the workspace supported 

rapid and persistent analysis: 

“Obviously, there is still quite a large amount of data and sources to sift through. 

Being able to collect data objects together, stack them, and reshuffle at will allowed 

for more opportunity to see potential correlations in data that otherwise might have 

gone unnoticed.”  

“The visual workspace drastically reduced time spent switching between documents 

and shifting focus away from the data to writing notes. I could leave the most 

important/relevant data to my task in the workspace and return to it as necessary 

without having to jot down notes and re-search separate documents.” 

6.2.2 Number of Events/Interactions  

 Along with the number of data elements classified/analyzed, we also investigated 

the number of events/interactions in the two configurations of each group throughout the 
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three tasks. Since the participants could explore and locate data through the repository 

browser, the number of events in the repository browser indicates how efficiently they 

located data of interest during the tasks; a smaller number of data previews (i.e. 

exploration in the repository browser) implies that the users located the data objects 

efficiently. Table 6 shows the number of the events that occurred in the repository 

browser with the number of data objects analyzed in each group.  

We observed the average number of events in the repository browser per 

analyzed data object. As shown in Figure 19, the average number of the events 

substantially decreased for all the participants in Group 3 (configurations 1 and 4) and 6 

(configurations 3 and 4). In the two groups, the common system configuration changes 

are with and without the mixed-initiative recommendation. As the participants in Group 

3 and 6 efficiently identified data objects with the recommendation, the mixed-initiative 

interaction is potentially effective in terms of data location. To evaluate the effect of the 

mixed-initiative interaction, we examined and compared the average number of the 

events associated with system configurations. Since the participants in configuration 2 

(without the visual workspace and with the mixed-initiative interaction) were reluctant to 

explore recommended data due to workspace unavailability, we examined the average 

number of events in configurations 3 and 4. 
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Table 6. Number of interactions in the repository browser (in bold) and number of 

data objects analyzed (in parentheses). 

Group Configuration User 1 User 2 User 3 User 4 

Group1 

Config. 1 172 (16) 85 (7) 263 (23) 126 (15) 

Config. 2 152 (18) 64 (9) 58 (45) 421 (46) 

Group2 

Config. 1 441 (9) 238 (24) 263 (13) 103 (6) 

Config. 3 194 (25) 284 (31) 138 (67) 147 (32)  

Group3 

Config. 1 414 (11) 139 (2) 234 (10) 227 (4) 

Config. 4 188 (57) 152 (17) 124 (59) 174 (21) 

Group4 

Config. 2 59 (2) 43 (27) 111 (4) 262 (0) 

Config. 3 157 (14) 56 (22) 103 (15) 236 (24) 

Group5 

Config. 2 398 (26) 184 (15) 58 (15) 57 (7) 

Config. 4 52 (27) 136 (48) 77 (28) 72 (15) 

Group6 

Config. 3 440 (52) 248 (37) 354 (41) 92 (15) 

Config. 4 94 (54) 324 (95) 103 (57) 67 (24) 
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Figure 19. Average number of events in the repository browser for each data object analyzed.



 

67 

 

Figure 20 shows how many events in the repository browser occurred with each 

analyzed data object under the configurations 3 and 4. Without the suggestions, the 

average was approximately 6.38. When suggestions were provided, the mean decreased 

to 3.72. This supports the interpretation that the mixed-initiative interaction suggested 

relevant data and helped the users to locate data of interest while performing the tasks.  

 

 

 

Figure 20. Average number of events in the repository browser per analyzed data 

object. 

 

 

When comparing the number of activities in the repository browser for all the 

participants in configurations 3 and 4, the effect of the mixed-initiative interaction for 

the efficient data location is significant (p = 0.025, t-test, Bonferroni-adjusted 
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significance level = 0.025). In addition, the effectiveness of data location through the 

mixed-initiative recommendations is strong (Cohen’s d = 0.981).  

6.2.3 Distribution of Activity 

Given the same tasks but different interface configurations, participants showed 

different work practices. Without the visual workspace and recommendations 

(configuration 1), 40% to 95% of the activities/interactions occurred in the repository 

browser (mean = 0.71, standard deviation (std) = 0.24). On the other hand, with the 

visual workspace and without recommendations (configuration 3), 11% to 69% of the 

activities were recorded in the repository browser (mean = 0.41, std= 0.21). 

 

 

 

Figure 21. Ordering of user events in the repository browser and workspace shows 

distinct patterns of work. 
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 Figure 21 shows the event sequences in the repository browser and the 

workspace for the four participants in Group 2. User1 and user3 were first exposed to 

configuration 1 and then configuration 3 (subgroup A in Table 2). On the other hand, 

user2 and user4 were first exposed to configuration 3 and then configuration 1 (subgroup 

B in Table 2). Regardless of the order of exposure, the availability, or lack thereof, of the 

workspace had a strong effect on individual work practices. 

Without the visual workspace, users focused on and spent more time searching 

for data using data previews in the repository browser. They then relied on their short-

term memory or notes taken in other applications to get back to the data. In particular, 

the user’s short-term memory dependency was commented on by open-ended responses 

such as: 

“It was not helpful because I needed to find more information and memorize 

relationships among many variables” 

However, as shown in Figure 21, with the visual workspace, users spent more 

time exploring potential data relationships in the workspace than searching data of 

interest in the repository browser. To identify users’ data activities/practices with the 

workspace in detail, we examined the workspace events of all the users in configurations 

3 and 4.  

In particular, we classified each event in the workspace as being either a data 

exploration event, one which provided access to or altered the visualization of data, or 

data interpretation event, where the user is expressing something about the data. Table 7 

shows workspace event types and their descriptions.  
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Table 7.  Workspace event types. 

Event name Description 
Category of 

data activity  

AddSymbol Creates a data object (application) 

Data exploration 

Plot_Exp Explores data within a data object  

MaximizeSymbol Maximizes a data object or collection 

RestoreSymbol 
Restores a maximized data object or 

collection 

DeleteSymbol Deletes a data object or collection 

MoveSymbol  
Moves a data object or collection (except 

moving a data object into a collection) 

ResizeSymbol Resizes a data object or collection 

MoveToCollection Moves a data object into a collection 

Data  

interpretation 

ChangeContent 

Annotates or changes annotation on a 

data object (including notepad) or 

collection 

ChangeBackgroundColor 
Changes background color of a data 

object or collection 

ChangeBorderWidth 
Changes border line width of a data 

object or collection 

ChangeBorderColor 
Changes border color of a data object or 

collection 

AddCollection Creates a collection 

AddNotepad 
Creates a notepad object (application) for 

annotation 
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Figure 22. Number and percentage of the users’ workspace activities of data exploration and data interpretation in 

configuration 3. 
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Figure 23. Number and percentage of the users’ workspace activities of data exploration and data interpretation in 

configuration 4.
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Along with the categorization, Figure 22 and Figure 23 show the distributions of 

the number and percentage of the users’ workspace activities related to data exploration 

and data interpretation in configurations 3 and 4, respectively. 

 

 

 

Figure 24. Average number of the occurred workspace events for data exploration 

and data interpretation in configurations 3 and 4. 

 

 

As shown in Figure 22 and Figure 23, 11.3% to 54.1% and 16.2 % to 48.8% of 

the activities for data interpretation occurred in configurations 3 and 4, respectively 
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(mean =  0.31, std = 0.036 in configuration 3, mean = 0.32, std = 0.028 in configuration 

4). After the initial data search in the repository browser, the visual workspace enabled 

the users to explore and manipulate refined data (e.g. ‘Plot_Exp’, or ‘ResizeSymbol’). 

While the users explored the data objects, they first attempted to develop an 

understanding of the data contents and then represented the data relationships they 

identified; the data objects for correlated data elements were spatially and visually 

organized (e.g. ‘MoveToCollection’, ‘ChangeBackgroundColor’), annotated (e.g. 

“ChangeContent’) and interacted (e.g. “MoveSymbol’) with in ways that made their 

relationships significant and meaningful.  

Figure 24 shows the average number of the events in the workspace for the two 

configurations. Around 30% of the workspace events involved data interpretation. 

Notice that, when comparing the number of occurred workspace events in configuration 

3 to that in configuration 4, the number with respect to data exploration and data 

representation increased by 31.3% and 29.5%, respectively. These increases account for 

the effect of mixed-initiative recommendations, which is covered in section 6.2.4.  

The effects of the availability of the workspace on users can be inferred in 

comments for participants. When the configuration changed from “without the 

workspace” to “with the workspace”, many of the corresponding participants (Groups 2, 

3, 4, and 5 in Table 2) explicitly expressed their relief with data exploration and 

interpretation. But, for those participants who went from “with the workspace” to 

“without the workspace” conditions, comments indicated that they found it stressful to 

explore and interpret data in the second task. 
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6.2.4 Mixed-Initiative Recommendations 

As already indicated, participants were more willing to make use of 

recommendations when their configuration had a workspace. Thus, to evaluate the 

effectiveness of recommendations, we examined how the twelve users of configuration 4 

located data objects, which included both the workspace and recommendations. Figure 

25 shows the distributions of the number of data examined associated with how the users 

located data objects: (1) the user explored/examined in the repository browser, (2) the 

user accepted user-requested recommendations, and (3) the user accepted system-

provided recommendations. All twelve of the participants in this configuration accepted 

and explored some of the suggested data. Indeed, 37.5% to 55.9% (mean = 45.8, std = 

9.6) of the data objects in their workspaces were from recommendations. All the users in 

the configuration used system-provided recommendations for their analyses and 7.1% to 

51.6% (mean = 28.0, std = 13.1) of the data objects were from the system-provided 

recommendations. In addition, ten of the twelve participants actively used the ability to 

request suggestions. 5.3% to 37% (mean = 21.4, std = 10.7) of the data objects were 

from the user-requested recommendations. Both implicit (system-provided) and explicit 

(user-requested) inference-based recommendations were observed.  

Along with how the users located the data objects, we also investigated 

workspace events related with suggestions.  Figure 26 shows the temporal sequence of 

suggestion events triggered by the system and requested by users during the task. This 

shows that at least half of the participants requested suggestions fairly frequently over 

the 35 minute period. In addition, Figure 27 demonstrates another temporal sequence of 
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data creation events in the workspace when the users located the data objects. All the 

users started to explore the data objects in the repository browser, but, depending on 

individual work practices, events of data creation through user-requested or system-

provided recommendations were interleaving with events when they explored the data in 

the repository browser. This implies the users were often encouraged to explore and 

identify the data context in the repository browser. This continued use implies that the 

recommendations were seen as being valuable. This was corroborated by open-ended 

comments such as: 

“When I wanted to find data with a similar pattern/trend, the recommendations 

reasonably provided me with data objects that resembled what I was looking for. There 

were other times when I wanted to have [data with new patterns] recommended, e.g. 

only considerable amounts of rain in College Station, and this is where I tended to have 

to look more for myself or hunt more in the requested recommendations to find what I 

was looking for.” 

Thus, through the mixed-initiative recommendations, PerCon helped users 

significantly reduce unnecessary additional effort in information seeking or exploration.  
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Figure 25. Number and percentage of data objects located. 
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Figure 26. A sequence of suggestion events.  
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Figure 27. A sequence of data creation events in the workspace. 
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6.3 Effects of Other Interfaces 

 Besides the effects of the workspace and recommendations, through the user 

study we confirmed the design rationale and importance of the system interface and 

model. In particular, data visualization in the repository browser was valued for initial 

data exploration, filtering, and identification of the context. In addition, the integrated 

workspace model for unanticipated data types was justified in contrast to using 

individually separate applications. 

6.3.1 Effect of Visualization in Repository Browser 

In our questionnaire, a statement about the repository browser interface was 

included and the participants responded to the question of “It was useful to explore data 

using a thumbnail preview (previsualization) in the repository view before instantiating 

it in the workspace.” 

Figure 28 shows the average responses to the question. In the four configurations, 

the average varies between 5.9 and 6.5. Regardless of the configurations associated with 

the workspace or recommendation, the value of the data preview in the repository 

browser was assessed as important. Also, 35% to 97% of the activities/interactions 

occurred in the repository browser for all configurations and users. Functionally, the 

repository browser served as an interface of initial exploration, which led to a reduction 

in the workspace overload by previsualizing and filtering the objects of interest. 

Furthermore, beyond the intended design, it played the role of an interface between the 

workspace and recommendation. Rather than instantiating thumbnailed data (i.e. 

recommended data) from the suggestion browser to the workspace directly, the 
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participants showed common work practices of identifying the data context through the 

repository browser; they checked the information about the data (e.g., date, location, 

etc.), confirmed the data object with the preview, or explored neighbor data objects 

around the recommended data. As a result, the usefulness of data hierarchy and 

previsualization in the repository browser was demonstrated by the assessment and 

activities of the users.  

 

 

 

Figure 28. Reponses to a question to related to repository browser. 
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6.3.2 Resistance to Individual Applications/Representations 

 When we designed the workspace model in 2-D space, i.e. the separation of 

system base panel and application panel, our design rationale of the model was initiated 

to support various multiple representations or applications without constraints. In 

particular, we compared an integrated data environment that supports multi-applications 

to another conventional environment where users just use existing individual 

applications (when necessary). Along with the effect of workspace regarding the data 

exploration and interpretation, our user study strengthens the value and design rationale 

of the multi-application supported workspace.  

Though the participants in configuration 1 or 2 (without the workspace) were 

allowed to freely use other applications such as MS Word or Notepad to annotate or 

write notes during the tasks, no one used the separate applications as a means of data 

analysis or to write intermediate results. The participants only used them as a final 

answer sheet relying on their short-term memory or confirming the same data objects by 

exploring in the repository browser several times. Some participants explicitly expressed 

that they wanted to annotate their intermediate findings using a PerCon notepad 

application. Namely, they tried to switch their focus minimally between PerCon and 

other applications. On the other hand, the participants in configuration 3 or 4 (with the 

workspace) did not show any resistance to annotating or writing their intermediate and 

final results on the PerCon notepad object.  

 Obviously, the individually available but separate applications can lead to 

cognitive overhead of or resistance to their usage. This justifies not only our workspace 
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model, but also strengthens the workspace effectiveness in the perspective of a data 

analysis platform.   
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7. CONCLUSION AND FUTURE WORK

 

 

 We started this project with the goal of building an environment that would 

integrate much of the data ingestion, management, and analysis activities for an on-

going data-intensive research project; the initial use of PerCon was in the domain of 

personal physiological, psychological, and contextual data using wearable sensors and 

devices. As such, the original system architecture and development focused on the 

system-side perspective of storing, processing, and visualizing data that were appropriate 

for the particular types of data. As development continued, our focus shifted to the 

human activities of locating, annotating, and interpreting data. Also, as new data 

collection, types, and formats were ingested to PerCon, the system has the potential to be 

valuable for many different research goals as a generic data platform.  

In terms of data location, PerCon’s main interface provides metadata-based 

access to the collection via the repository browser. A weakness of our initial 

implementation was that it just showed the limited metadata of the data elements (e.g. 

data type, date/time, location or name). This completely obscured the data contents, 

making it difficult to know what the data was really like until it was brought into the 

workspace by the user, resulting in workspace management issues (e.g. continually 

rearranging and deleting content). This observation led to the addition of thumbnails for 

previewing data in the repository browser. 

                                                 
*Part of this section is reprinted from the following paper: ©2014 IEEE. Reprinted, with permission, from 

Su Inn Park and Frank Shipman. PerCon: A personal digital library for heterogeneous data. In Proceedings 

of IEEE/ACM Joint Conference on Digital Libraries (JCDL), pages 97-106, IEEE, Sept. 2014. 
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In addition to browsing the data collection, PerCon supports queries that filter the 

content presented in the browser.  Because many domains require understanding 

temporal relations among data elements, query results can also be examined in a 

calendar view. The calendar visualization uses a combination of labels and colorized 

thumbnails to present the types and contents of data elements. 

PerCon is built around the main workspace for visualizing and interpreting data. 

The workspace enables the visualization of heterogeneous data types and the expression 

of interpretation through annotation and visual structure. The user study showed that the 

workspace has a large effect on data analysis practice in terms of the number of data 

elements classified, the time spent locating vs. time spent interpreting data, and the users’ 

perceptions of system support. The ability to develop persistent task-oriented 

workspaces from data collections seems crucial to efficient and effective data analysis. 

Data location is traditionally a user-driven activity. Our efforts to recommend 

data elements based on user activity in the workspace aimed to overcome the difficulty 

of users not knowing what data is available in a collection. The development of a multi-

faceted approach to similarity assessment and probabilistic reasoning about user interests 

combine to generate recommendations. The user study showed that recommendations 

increased the number of data elements classified with and without the workspace and 

that many of the users valued the recommendations enough to take the initiative to ask 

for recommendations and to accept the recommended data. 

There are a number of directions for future work: exploring the various 

workflows (e.g. [20]) surrounding data collection, ingestion, and analysis, adopting 
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available metadata standards and repository communication, improving workspace 

interactions, extending the recommendation subsystem, and exploring the user of 

PerCon in new domains and with new user communities. 

With the ability to add most any Java application as an element in the workspace, 

PerCon has the potential for broad use considering interoperability with other scientific 

data. In practice, most data analysis proceeds via a simple graphing object type.  We 

want to explore data visualization objects that are more dynamic and tailorable. For 

example, we envision workspace objects that synchronize the presentations of time-

aligned data elements. Another example is extending the data graph object to allow users 

to merge data elements into a single presentation. If the user drags one data graph object 

into another data graph object, the two are presented in a single graph. This new data 

object type would allow the user to pull a data line back out of the graph to separate the 

two again. This mode of interaction is common in tabbed web browsers where users can 

put windows together and pull tabs out to create new windows. 

The recommendation subsystem shows the potential for data analysis 

environments to be more proactive in supporting users. The current approach to 

recommendation generation assumes the user wants more data of the same data types 

with similar characteristics to those already included in the workspace. A natural 

extension is to look for similarities across data types. Because the phenomena being 

measured in the data are often dissimilar, an alternative similarity metric is likely to be 

needed.  
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PerCon was originally designed with the expectation that users are either 

professionals engaged in this type of work or are otherwise knowledgeable about data 

types and data manipulations. The user study showed the system was usable by such a 

population. We would like to explore the use of a PerCon-like interface for more casual 

use in the domain of personal health. Enabling people to explore the data collected on 

their smart watches, health monitoring devices, cell phones, etc. could lead to improved 

mental models about how their lifestyle and health are intertwined. 
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APPENDIX A 

 

IRB Protocol Summary (IRB2014-0115D) 

PerCon: Support for Weather and River Data Management and Analysis 
 

Background and Rationale for Study:  

Weather data include various variables that exhibit a great deal of spatial and temporal 

correlations with one another. Each variable in weather data, such as precipitation, wind, 

humidity, and temperature, has an impact on environmental variables. River stream level 

is a representative environmental variable significantly affected by weather conditions. 

Depending on geographic relationships (i.e. relative location), river stream levels exhibit 

a strong relation (engagement) between upstream and downstream.  

Public repositories such as the National Oceanic and Atmospheric Administration 

(NOAA) provide weather data to the public via web services. State water organizations 

such as the Brazos River Authority in Texas provide river level data for comprehensive 

monitoring and water quality management. Thus, weather and river data collections are 

easily accessible. However, even though a large amount of the data collection is 

available, its management and analysis pose many difficulties. Since data measurements 

are in numeric or text format, exploring and examining the meaning of each data 

measurement is difficult. Even though each data can be viewed with proper visualization 

tools (e.g. graphs and color maps on web browsers), sharing and intercommunicating 

data between tool instances may not be possible or may demand expensive effort.  

 

Research Design: 

To manage and analyze these heterogeneous and interrelated weather data and other 

related data, we have developed a digital library system called PerCon (Personalized and 

Contextual Data Environment). PerCon pre-processes raw weather and river data. It 

provides users with a visual workspace in which to visualize both weather and 

environmental data and to express interpretations of the data. Thus, the system enables 

users to build their own knowledge space to interpret visualized data. Interactively, the 

user-created information and knowledge in the workspace are shared with the system as 

evidence to infer a user’s goal or interest. In order to enhance data exploration capability 

among a large amount of data, PerCon enables a user to view data before generating data 

objects in the workspace. To support the analysis, users can examine the data in a variety 

of resolutions or scales. PerCon adopts a collaborative interaction with the user; it is 

designed to support a mixed-initiative interaction for data analysis. PerCon monitors 

user activity with a goal of understanding user interest. It also analyzes the data in order 

to identify similarity, correlation, and clusters of data variables. The user activity and 
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analysis of data together are used to automatically recommend additional data to the 

user. Users can also request suggestions if desired.   

 

Data Being Analyzed: 

For this user study, PerCon has processed 2 years of recorded weather and river data 

(from 2011 Oct. to 2013 Oct.). The weather data includes temperature, precipitation, 

relative humidity, wind speed, and wet bulb temperature, measured at six different 

weather observation stations in Texas (Dataset1 collected from College Station, Waco, 

and Temple, Dataset2 collected from South Bend, Seymour, and Fort Griffin). The river 

data includes the river level and discharge recorded from the Brazos River near the 

aforementioned weather stations. To facilitate data management and analysis, various 

granular levels of data are provided. A data directory of each data element is provided 

with annual, monthly, and daily (hourly) data available within a data hierarchy.   

The user study involves three specific tasks with respect to using weather and river data. 

The tasks are: (1) classifying and organizing the data in the workspace, (2) investigating 

and identifying data correlations, and (3) interpreting and estimating data events. To 

perform the tasks, a system user manual (tutorial) and a user task sheet will be given to 

participants.  

 

Task Procedure:  

Before conducting given tasks, participants will be given a user manual which includes a 

10-minute video clip to understand PerCon. Then, they will have an additional 5-minute 

trial and learning time to practice how to use it.  

For the study, there are four different system interface modes depending on the 

availability of visual workspace and mixed-initiative interaction: the visual workspace 

and mixed-initiative interaction will and will not be provided, respectively. Table 1 

shows evaluation groups which are all permutations of two different interface modes 

(considering the order of interface modes). The participants will be randomly assigned to 

one of the groups. In each group, two system interfaces will be evaluated and the same 

three tasks will be asked to the participants in each interface mode. The entire 

assignments to each group will have equal numbers of the participants to be balanced. 

The given weather and river datasets in the first and second tasks will be equivalent: the 

only difference is the geographic location of data recorded. In brief, after learning about 

the system, the participants will be asked to perform the three tasks in each interface 

mode according to the group they belong to.  

Table 1. User study groups and interface modes 

 Tasks with dataset1 Tasks with dataset2 

Group 1 Mode 1  Mode 2 

Group 2 Mode 1 Mode 3 

Group 3 Mode 1 Mode 4 

Group 4 Mode 2 Mode 1 

https://maps.google.com/maps?saddr=Waco,+TX&daddr=College+Station,+TX+to:Temple,+TX&hl=en&sll=33.245579,-98.934631&sspn=1.777872,2.69165&geocode=FZVn4QEd0qg1-inTUQEj8YJPhjEQqtHWA0vX-w%3BFYlY0wEduQ1C-imjPEYZhoRGhjHJar-2TcdpyQ%3BFXqF2gEdwqoy-imlkhSXb0JFhjFkyzaZBi5MLw&oq=Temple&mra=ls&t=m&z=9
https://maps.google.com/maps?saddr=Waco,+TX&daddr=College+Station,+TX+to:Temple,+TX&hl=en&sll=33.245579,-98.934631&sspn=1.777872,2.69165&geocode=FZVn4QEd0qg1-inTUQEj8YJPhjEQqtHWA0vX-w%3BFYlY0wEduQ1C-imjPEYZhoRGhjHJar-2TcdpyQ%3BFXqF2gEdwqoy-imlkhSXb0JFhjFkyzaZBi5MLw&oq=Temple&mra=ls&t=m&z=9
https://maps.google.com/maps?saddr=Seymour,+TX&daddr=South+Bend,+TX+to:Fort+Griffin,+TX&hl=en&ll=33.245579,-98.934631&spn=1.777872,2.69165&sll=38.696878,-86.207256&sspn=24.45136,48.515625&geocode=FZWbAAIdP2gV-ikb0sD3FINUhjHzs_ge6dOmpA%3BFRKc9wEdl3Ae-ilrBmj4gsVThjEVhlJk-b_i8Q%3BFf1P9gEdxeEV-iGd0nwG4j3s_SlhvUAvfwhUhjGd0nwG4j3s_Q&oq=South+Bend&mra=ls&t=m&z=9
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Group 5 Mode 2 Mode 3 

Group 6 Mode 2 Mode 4 

Group 7 Mode 3 Mode 1 

Group 8 Mode 3 Mode 2 

Group 9 Mode 3 Mode 4 

Group 10 Mode 4 Mode 1 

Group 11 Mode 4 Mode 2 

Group 12 Mode 4 Mode 3 

        * Mode 1: The visual workspace and the mixed-initiative interaction are both unavailable 

           Mode 2: The visual workspace is unavailable but the mixed-initiative interaction is available 

           Mode 3: The visual workspace is available but the mixed-initiative interaction is unavailable 

           Mode 4: The visual workspace and the mixed-initiative interaction are both available. 

 

The following four figures (Figure 1, 2, 3, and 4) describe the characteristics of the 

workspace and suggestion panel according to the system interface modes.  

 

Figure 1. Configuration 1:  The visual workspace and the mixed-initiative interaction 

are both unavailable. PerCon allows users to view up to two information objects in the 

workspace to explore weather and river data.  
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Figure 2.  Configuration 2: The visual workspace is unavailable but the mixed-

initiative interaction is available. Compared with Configuration1, data suggestion is 

available. 

 

Figure 3.  Configuration 3: The visual workspace is available but the mixed-initiative 

interaction is unavailable. PerCon allows users to use all features of the visual 

workspace. PerCon does not suggest any data to users.   

  

Figure 4.  Configuration 4: The visual workspace and the mixed-initiative interaction 

are both available. PerCon allows users to use all features in PerCon.  

 

Once participants are done with the given tasks, they will be asked to answer a 

questionnaire for about 20 minutes.  

 

*When they perform the tasks without the visual workspace, they can use a text editor 

such as MS word or notepad to write down task results including data object name(s) for 

identification. After completing each task, participants will need to save their 

workspace (File – Save in Menu or ctrl + ‘s’) and include each task number in the saved 

file name. Total estimated time to complete the tasks is 70 minutes.  
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APPENDIX B 

 

TASK SHEET 

Task 1.  Classifying and organizing data (40 minutes) 

To observe and discover how weather and river data are correlated, one of the possible 

initial approaches is to classify and organize data objects based on individual changes, 

trends, and patterns in the data.  

 

 

 

 

 

With Dataset 1 

1-1. Classify and organize daily river level and precipitation data according to its 

changes, trends, quantity, duration or user-perceived criteria. You can use 

“Collection” to classify similar datasets or to represent classification hierarchy. ( 

20 minutes) 

 

 

 

 

 

With Dataset 2 

1-2. Classify and organize daily river level and precipitation data according to its 

changes, trends, quantity, duration or user-perceived criteria. You can use 

“Collection” to classify similar datasets or to represent classification hierarchy. ( 

20 minutes) 
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Task 2.  Investigating and identifying data correlation (20 minutes) 

With the classified weather and river data from Task 1, we would like you to 

- Investigate the implications   

- Identify correlations among the classified data  

   (e.g. how river level is affected by various weather components and other river data) 

 

 

 

 

With Dataset 1 

2-1. Based on your workspace data, investigate what and how weather factor(s) 

affects river level. Also, investigate how rivers at different places (Waco, 

Cameron, and College Station) are correlated. Briefly explain the rationale with 

evidence and explain how they are related.  (10 minutes) 

 

 

 

 

 

With Dataset 2 

2-2. Based on your workspace data, investigate what and how weather factor(s) 

affects river level. Also, investigate how rivers at different places (South Bend, 

Cameron, and College Station) are correlated. Briefly explain the rationale with 

evidence and explain how they are related.  (10 minutes) 
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Task 3. Interpreting and estimating river data events/causes (10 minutes) 

If you found evidence of correlation and identified various possible impacts between the 

weather and river data, we would like you to interpret river level changes/trends under 

the given weather and upstream river flow conditions. Also, we expect you to estimate 

river factors that causes these changes/trends (such as delay time) based on past weather 

data and other river stream conditions. In addition, estimate why some factor(s) are more 

or less affected by river level changes.  

 

 

With Dataset 1 

3-1. Based on your workspace data, interpret the river level changes. Also, estimate 

the (average) time delay regarding the flow if you find any. Briefly explain the 

changes considering weather factors and other river stream flows.  (5 minutes) 

 

 

 

 

 

With Dataset 2 

3-2. Based on your workspace data, interpret the river level changes. Also, estimate 

the (average) time delay regarding the flow if you find any. Briefly explain the 

changes considering weather factors and other river stream flows.  (5 minutes) 
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APPENDIX C 

 

USER MANUAL  

PerCon: PERSONALIZED & CONTEXTUAL  

DATA ENVIRONMENT 

 

THE USER’S MAUNAL 

Version 1.0 

 

 

 

 

 

CENTER FOR THE STUDY OF DIGITAL LIBRARIES 

TEXAS A&M UNIVESRITY 
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Chapter 1: About PerCon 

 

Personal and Contextual Data Environment (PerCon) is designed to  

support the management and analysis of heterogeneous weather data  

with other potentially related data (e.g. environmental data).  

PerCon provides an integrated environment for managing and analyzing those data.  

 
 

 

A vast amount of research has been performed on managing and analyzing weather data. It 

involves studying weather data trends and impacts on the environment. These types of studies 

pose many difficulties such as analyzing massively recorded data and gross differences between 

datasets. Thus, the design and development of an environment to support weather data 

management and analysis is indispensable. 

PerCon is a combination of a digital library and a data analysis platform for weather data and 

other potentially related data (e.g. river). As an information infrastructure, PerCon manages, 

accesses, preserves, and shares various types of weather data and information objects created by 

individual research participants. In addition, to enhance user’s data analysis ability, PerCon 

suggests a relevant dataset according to user’s interests or tasks.  

The following two chapters describe the main user interfaces and components in PerCon 

and provide instructions of how to use PerCon with a video demo.   

   1 
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Chapter 2: Getting Started  

In this chapter, we describe PerCon user interfaces. The user interface involves three 

main components for repository view (data source view), visual workspace, and data 

suggestion view. Detailed features of each user interface component are described.  

 

PerCon User Interface 
The PerCon user interface involves three major components: the repository view, the visual 

workspace, and the suggestion view. Each component is depicted in the below figure.  

 

 

PerCon Desktop Application (User Interface)  

   2 
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Repository View 

A repository stores and preserves (1) the original weather data 

objects (e.g. data streams), and (2) computed and filtered 

datasets. The interface for the repository displays a 

hierarchical structure of the data objects. The hierarchy levels 

relate to data observation station (location), data type/element, 

and recorded date and its period.                 

Visual Workspace  

The PerCon workspace embeds the designs of Visual Knowledge Builder (VKB) 

workspace and its features. VKB’s user manual or web tutorial can be found here: 

http://www.csdl.tamu.edu/vkb/Download/VKBManual.PDF (user manual v0.7) 

http://www.csdl.tamu.edu/vkb/tutorial/UsersTutorialFinal.html (web tutorial) 

The visual workspace allows users to visualize data and organize information. Once a 

user queries data through a mouse operation or a menu selection, the proper data is 

visualized.  

 

 

 

 

http://www.csdl.tamu.edu/vkb/Download/VKBManual.PDF
http://www.csdl.tamu.edu/vkb/tutorial/UsersTutorialFinal.html
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Suggestion View 

Based on user events and activities within the visual workspace, PerCon infers the user’s 

interests. Depending on the inferred interests, PerCon suggests and visualizes relevant 

datasets in the suggestion view.  

 

Tool Bar  

 

 
 

 
 

New 

 Workspace 

Save  

Workspace  

Open 

Workspace 

Upload 

Workspace to 

PerCon Server 

Query 

Search 
Calendar  

View 

Metadata 

View  

Map 

View   

Pivot 

View 

Plot Timeline 
XML 

View 

JSON 

View  
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Information 

Object 

Collection Selection  Color Option Font Option 

History 

Filter 

History Playback 

Menu 

History Index 

& Order 
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Chapter 3: Short Video Demo  

The following video clip gives instructions on how to use system.  

To see the video clip: (Click here) 

 

URL:  

https://www.dropbox.com/s/111laysf649ovzw/UserManual_VideoClip.mp4 

http://www.youtube.com/watch?v=drPMD-2F9cQ   

  

   3 

https://www.dropbox.com/s/111laysf649ovzw/UserManual_VideoClip.mp4?m=
https://www.dropbox.com/s/111laysf649ovzw/UserManual_VideoClip.mp4
http://www.youtube.com/watch?v=drPMD-2F9cQ
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APPENDIX D 

QEUSTIONNAIRE  

 

 

Question Set 1.  

1. Gender   

- Male  

- Female  

 

 

2. Highest Degree (finished or currently pursuing)   

- Bachelors  

- Masters  

- Doctorate  

- Other (please specify):  

 

 

3. Field of Study (Major)  

 

 

4. Age 

 18 ~ 20 

 20 ~ 25  

 26 ~ 30 

 31 ~ 35 

 36 ~ 40 

 Over 40 
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Question Set 2.  Workspace 

5. It was useful to explore data using thumbnail preview (previsualization) in the 

repository view before instantiating it in the workspace  

 

  1                  2               3                4                5              6              7 

 Strongly disagree                                  Neutral                                   Strongly agree 

 

6. I had enough support to understand data content in the workspace  

 

  1                  2               3                4                5              6              7 

 Strongly disagree                                  Neutral                                   Strongly agree 

 

7. I had enough support to express data relationships by organizing the dataset in 

the way I wanted: 

 

1                    2               3                4                5              6              7 

Strongly disagree                   Neutral                                     Strongly agree 

 

8. It will be easy for someone else to understand the way I organized the dataset in 

the workspace 

 

1                    2               3                4                5              6              7 

Strongly disagree                   Neutral                                     Strongly agree 

 

9. It was easy to visualize and represent targeted objects in the workspace 

 

1                    2               3                4                5              6              7 

Strongly disagree                   Neutral                                     Strongly agree 
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10. I had enough support to effortlessly / quickly browse and select co-occurrent 

data: 

 

1                    2               3                4                5              6              7 

Strongly disagree                   Neutral                                     Strongly agree 

 

11. The visualization methods provided for different data were sufficient:  

 

1                    2               3                4                5              6              7 

Strongly disagree                   Neutral                                     Strongly agree 

 

12. It was easy to interpret and characterize given/created objects in the workspace: 

 

1                    2               3                4                5              6              7 

Strongly disagree                   Neutral                                     Strongly agree 

 

13. What criteria did you apply to organize the data of interest in visual workspace? 

In case of multiple selections, rank your selections.  

 Data granularity  

 Particular events / occurrences / changes in data 

 Data component (source) 

 Visualization types (plot, web browser, etc.) 

 Content-based data similarity  

 Other (please be specific) 

_______________________________________ 
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14. During the tasks, what activities/attributes in the workspace do you think were 

the main focus of your attention? In case of multiple selections, rank your 

selections. 

 

 Textual information (annotation) in data object  

 Temporal attributes in data   

 Spatial structures in workspace  

 Visual patterns in data  

 Other (please be specific) 

_______________________________________ 

 

15. What was useful when you explored data/information objects and performed the 

several tasks in the workspace? Ex) Mouse Drag and Drop, hierarchical view 

(tree structure) of repository, data-source view synchronization with suggested 

data, pre-visualization, etc. 

 

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________ 

 

 

16. Did the visual workspace help or hinder your tasks regarding data management? 

Explain. 

 

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 
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17. Did the visual workspace help or hinder your interpretation of data? Explain. 

 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________  

 

Question Set 3. Mixed-Initiative Interaction (MI) 

18. I was satisfied with the data suggested by the MI agent. 

(I had enough support to find and select other related data through mixed-

initiative interaction) 

 

1            2           3            4             5     6             7 

Strongly disagree        Neutral                           Strongly agree 

 

19. I was satisfied with the suggestion request functionality to MI agent. 

 

1            2           3            4             5     6             7 

Strongly disagree        Neutral                           Strongly agree 

 

20. I was satisfied with the suggested data I requested from the MI agent. 

 

1            2           3            4             5     6             7 

Strongly disagree        Neutral                           Strongly agree 

 

21. I was satisfied with the suggestion frequency of the MI agent. 

 

1            2           3            4             5     6             7 

Strongly disagree        Neutral                           Strongly agree 
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22. I had enough support to find and interpret data I was interested in with MI: 

 

1            2           3            4             5     6             7 

Strongly disagree        Neutral                           Strongly agree 

 

23. I had enough support to find correlations  within the data set: 

1            2           3            4             5     6             7 

 

Strongly disagree        Neutral                           Strongly agree 

 

 

24. Overall, I think PerCon is useful to analyze the given weather and river data 

collections: 

 

1            2           3            4             5     6             7 

 

Strongly disagree        Neutral                           Strongly agree 

 

 

25. What attribute(s) was useful for data analysis? In case of multiple selections, 

rank your selections. 

 Trend in data 

 Particular incidence in data 

 Pattern in data 

 Measurement date (co-occourrent data) 

 Other (please be specific) 

_______________________________________ 
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26. Did mixed-initiative interaction help or hinder your analysis of data?  Explain. 

 

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________ 

 

27. Did the recommendation request to the mixed-initiative interaction agent help 

you? Explain. 

 

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________ 

 

 


