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ABSTRACT

We begin this research by asking "can we bettemagt reserves in unconventional
reservoirs using Bayes' theorem?" To attempt savanthis question, we obtained data
for 68 wells in the Greater Core of the Eagle Fendle, Texas. As process, we eliminated
the wells that did not have enough data, that @dshow a production decline and/or
wells that had too much data noise (this left ufBiwells for analysis).

We next performed decline curve analysis (DCA) gdire Modified Hyperbolic (MH)
and Power-Law Exponential (PLE) models (the two tmo@mmon DCA models),
consisting in user-guided analysis software. Théme Bayesian paradigm was

implemented to calibrate the same two models osdnge set of wells.

The primary focus of the research was the impleat&mt of the Bayesian paradigm on
the 8 well data set. We first performed a "bdSplarameter estimation using least squares
optimization, which provided an optimized set ofgaeters for the two decline curve
models. This was followed by using the Markov Chdionte Carlo (MCMC) integration

of the Bayesian posterior function for each moeadijch provided a full probabilistic
description of its parameters. This allowed for gulation of a number of likely
realizations of the decline curves, from which tfisder statistics were computed to
provide a confidence metric on the calibration aflemodel as applied to the production

data of each well.

Results showed variation on the calibration of Mi¢ and PLE models. The forward
models (MH and PLE) either over- or underestiméie rieserves compared with the
Bayesian calibrations, proving that the Bayesiaragigm was able to capture a more
accurate trend of the data and thus able to datermbre accurate estimates of reserves.
In industry, the same decline curve models are dsedinconventional wells as for
conventional wells, even though we know that theesanodels may not apply. Based on

the proposed results, we believe that Bayesiamante yields more accurate estimates of
ii



reserves for unconventional reservoirs than detastc DCA methods. Moreover, it
provides a measure of confidence on the predictigmoduction as as function of varying

data and varying decline curve models.
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Intercept constant for Duong's model

Arp's dimensionless hyperbolic constant

Barrels of Oil Equivalent (BOE)

Barrels of Oil Equivalent per Day (BOE/d)

Initial decline (1/day)

Decline parameter for the Power-Law Exponem@A model (1/day)
Limit below whichD cannot decline (1/day)

Estimated Ultimate Recovery (BOE)

EUR parameter for the Logistic Growth Curve D@adel (BOE)
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Markov Chain Monte Carlo
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1. INTRODUCTION

The petroleum industry in the U.S. has shiftediatsis to unconventional plays due to the
enormous amount of estimated reserves and itdyatblirevolutionize the oil and gas

industry, notably with new technology. The majpof proved oil reserves are located in
the Middle East as of January 2011, as is the ntyajoirthe world's natural gas reserves.
The United States has 322.7 trillion cubic feega$ reserves and 33.4 billion barrels of
oil (EIA, 2012-13.) This being said, there is eeversible shift to gas both in exploration

and production, as seenfig. 1.
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Source: U.S. Energy Information Administration, Form EIA-23L, Annual Survey of Domestic Oil and Gas Reserves, 2006-13.

Fig. 1— U.S. total natural gas proved reserves shows aaase in shale gas reserves,
where in 2008 it was approximately 12% of the gaerves, and in 2013 it was
nearly 50% of gas reserves (U.S. EIA, 2013)

As seen inFig. 2, the majority of the energy production today igunal gas, and is

forecasted to continue being the main source afggrthrough 2040.
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Fig. 2— U.S. energy production by fuel, 1980-2040, quadnliBTU (U.S. DOE EIA
2012)
Natural gas is produced from shale gas, tight gdscaalbed methane reservoirs. Due to
the extremely low permeability of such reservoinsyizontal drilling and hydraulic
fracturing are used to produce them economicallgcording to the "resource triangle"
(Holditch, 2011) shown ifrig. 3 below, conventional reservoirs are of high to medi
quality, are difficult to find but easy to produeed thus less expensive. However, as we
shift to unconventional reservoirs, the reservaeialgy is low, and although the location
of unconventional reservoirs are relative well-kmofas source rocks), these are difficult
to exploit and new technologies are required taaextthe hydrocarbons, leading to
increased prices for drilling and completions, whidtimate requires high oil and gas

prices to achieve profitability.

In the "resource triangle, the apex of the triangl@here the conventional reservoirs are
located, and "are difficult to find but easy toraxt,” and we progress lower into the

resource triangle, the resources are easier to-fiftbwever harder to extract due to the



necessity of improved technologies, and are thusermgpensive to extract (Holditch,
2011).

This study will focus on the Eagle Ford Shale, englarticular, on oil wells in the Greater
Core Eagle Ford Area. Our stated goal is to dgvalonethod based on a probabilistic
approach to identify, characterize, and better rhaad production based on standard

decline curve models.

Conventional Reservoirs
Small volumes that are &
easy to develop -

Unconventional
Large volumes
difficult to
develop

Improved technology

<
&é

ik N
|01l Shale

Fig. 3— The resource triangle (Holditch, 2011).

The Eagle Ford Shale is located in Texas and isn88s wide and 400 miles long,
covering 23 counties in South Central Texas (Gdrad,2013). The Eagle Ford Shale is
the source rock for the Austin Chalk and is nowngaleveloped as its own self-sourcing

reservoir (Tian, et al, 2013). This play is comgmbsf Cretaceous mudstone and
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carbonates which are especially brittle due tohige carbonate and low clay content,
meaning that hydraulic fracturing is especiallyeetive. The productive portion of the
Eagle Ford shale ranges from 2,500 to 14,000 &;the thickness ranges from 120 to 350
ft (Gong et al). The geology of the Eagle Fordslsquite complex and the calcareous
makeup of the rock leads to the "condensate riglr@mment of this play” which presents

"unique fracture design challenges" (Bazan eéll2).

The Eagle Ford Shale has been in development 80@@ and is being exploited using
horizontal wells with multi-stage hydraulic fractutreatments. The estimated resources
in the Eagle Ford Shale are 21 trillion cubic f@&TF) of gas and 3.35 billion barrels of
oil (BBO), however the estimation of resources higs uncertainty (Gong et al., 2013).

According to Ayers, et al., the Greater Core of Hagjle Ford is the region of highest oll
production, and this is where the focus of thissihewill lie. In the first month of
production a well will generally produce more tHg000 bbl. The regions of highest gas
production are between the Stuart City and Sligelf3¥Ylargins, where the first month of
the wells' production exceeds 60 MMcf (Tian et 2013).

Although the production differs throughout the pldlye most productive wells "are
located south of the Stuart City Shelf Margin, wehproduction commonly exceeds 80
MMcf/month/well" while oil production is highest iKarnes and Gonzalez counties,
typically exceeding 16 Mbbl/month/well (Tian et,&013).



2. LITERATURE REVIEW

2.1 Geology of the Eagle Ford Shale
The Eagle Ford Shale is the source rock for thetiAuShalk, however is now being
developed as its own self-sourcing reservoir (Tearal., 2013). The lower part of the
reservoir is shale-rich, and the upper part is@aabe-rich, and the whole Eagle Ford lies
over the Buda Limestone, which is overlain by Augthalk (Tian et al., 2013). This being
said, the Eagle Ford Shale is an unconventionaftves, which "consists of a wide variety
of liquid sources including oil sands, extra heaiy gas to liquids and other liquids."
(IEA 2013). Furthermore, unconventional reservansmore difficult to produce because
they require advanced technology. With regardfi¢cshale plays, they are self-sourcing
reservoirs, therefore the hydrocarbon does notategbut stays in place. These shale
reservoirs have also been the source rocks for robtig conventional reservoirs, before
it was determined that we could economically predtieese unconventional reservoirs.
A conventional reservoirs is defined as "a petnolesystem is a dynamic hydrocarbon
generating system, functioning in a geologic spaiceé time scale" that requires "the
timely convergence of geologic elements and evestential to the formation of
petroleum deposits that include mature source reggulsion, secondary migration to

reservoir rock, accumulation in a trap and retentifAyers, 2011).

The characteristics of a source rock are thatéineynade up of fine grained clastics, most
organics are deposited on ocean or lake bottorey, lthve a low matrix porosity and
permeability and are also brittle, indicating ttiegy may be naturally fractured.

The Eagle Ford Shale is an Upper Cretaceous shhkre the regional source rock has
Kerogen Types 1, 2 and possibly Type 3, and whezehydrocarbon fluid composition
greatly varies with thermal maturity.

Kerogen is defined as "the organic material in meditary rocks that is insoluble in

organic solves, under microscopic examination, gencappear as disseminated organic

fragments within sedimentary rocks and some keragistructured and recognizable as
5



plant fragments, spores, algae, and other piedisdefinite biological origins.” (Ayers,
2011).

Kerogen types are defined by the Van Krevelen Riagrshown below ifrig. 4, which
indicates the Atomic Hydrogen (H) to Carbon (C)aatkersus the Atomic Oxygen (O) to
Carbon (C) Ratio. Kerogen Types 1 and 2 are inieaif a higher H:C ratio, and are
indicative of oil whereas Type 3 kerogen has a la#/€ ratio, and higher O:C ratio, more
indicative of gas. Since the Eagle Ford Shale heggminantly Types 1 and 2 of Kerogen,
this means that there is oil present in the field.

Fig. 4 — Van Krevelen diagram, defining the four types ofé&gen, where Types 1 and
2 are indicative of oil, and Types 3 and 4 aredative of gas (Ayers, 2011)

The permeability of the Eagle Ford Shale ranges fi@® and 1 md. Furthermore, the
permeability decreases and the depth of the foomaincreases. The permeability



decreases with depth because of compaction, whemeeper layers are more compacted

therefore get "crushed" and thus, decreasing thegsbility.

Through the work that Mullen (2010) performed, &sndiscovered that the mineralogy of
the Eagle Ford changes going from west to eastntoge western well is more quartz
rich" while the other two wells he investigated amere carbonate and clay rich. This
difference in mineralogy is explained by the geglag the Eagle Ford Shale. "In the
Cretaceous period, the eastern side of play subbsidss than the western side;
consequently, the upper Cretaceous rocks in theraasde of the play contain more shale
and carbonates and less sandstone in comparisotimvé-equivalent rocks in the western
part of the play" (Mullen, 2010).

2.2Producing the Eagle Ford Shale

Hydraulic fracturing has been used since the 1%@$ is now a "key element” in
developing unconventional reservoirs worldwide @geour, 2011(a)). Hydraulic

fracturing provides an economical way to recovee thydrocarbons present in
unconventional reservoirs — such as the Eagle Bbale. To optimize these hydraulic
fractures, it is common to increase the lengthhef well, along with implementing an
increased multi-stage hydraulic fracturing treatmboth of which lead to the maximum
of the reservoir exposed, hence producing the maxinamount of hydrocarbons
(Fazelipour, 2011(a)).

Since 2009, the Eagle Ford Shale has grown sigmifig, greatly due to the use of
hydraulic fractures to acquire the hydrocarbon ftbmplay, and the strong performance
of the wells. This paper focuses primarily on tlas,gcondensate and oil windows of the
Eagle Ford Shale, whose acreage has over 200 sig$ Bebruary 2012 (Bazan et al.,
2012).



Shale-gas formations (such as the Eagle Ford Shale) natural fractures present, which
increase the complexity of the "growth patternByafraulic fractures." Furthermore, when
multistage hydraulic-fracturing treatments are iempénted, it creates "conductive
networks that could be considered as stimulatedrves volumes which have been
effectively contacted and contribute to economycaliable production profiles.”
(Fazelipour, 2011(b)).

When designing the hydraulic fracture, severaldiacimust be considered. The space
between the hydraulic fractures and the amountropgmant to be injected are two
important parameters. Furthermore, the orientatiche well and the conductivity of the
fractures are "fundamental design parameters thest fme rigorously evaluated when
designing horizontal wells." When determining tmegpant to use, five main parameters
are considered:

» The fracture fluid selection

* Proppant cost

* Availability

* Resulting fracture conductivity

« Economics

The fluid used in the hydraulic fracture has a hinggact on the type of proppant that will
be used. Since the Eagle Ford Shale has very lowgability, "often the need for fracture
conductivity is regarded as unimportant, and irgfeacture designs focus on increasing

reservoir contact."

In unconventional reservoirs, one of the primarglgavhen designing the completion, is
to contact as much of the reservoir as possibles ftakes these reservoirs economical
for development, however leads to limited conndigtibetween the hydraulic fractures

and the wellbore (Bazan et al., 2012).

When designing the hydraulic fracture treatmentsHe Eagle Ford Shale, a large volume

of water is pumped to displace the proppant froe wrellbore. This is the standard
8



practice used for all unconventional reservoirsweeer, this method was unsuccessful
in the Eagle Ford because of the calcareous makedipomplex geology of the reservair,
which poses significant completion design challengehe hydraulic fracture design
currently used in the Eagle Ford is composed td'15@0-9000 bbl of a hybrid fracturing
fluid (slickwater and linear gel) with 40/80 lightyght ceramic proppant.” (Bazan et al.,
2012). This design has proved successful in théeHagyd, increases the conductivity of
the fractures and uses remarkably less water pge shan the original design that was
first mentioned (Bazan et al., 2012).

2.3Fluids Present in the Eagle Ford Shale

There are three different fluid types present iea Bagle Ford Shale due to the three
maturation windows, ranging from black oil to digsy(llk et al., 2012), as seenkig. 5.
Tian, et al. (2013) determined the type of hydrboarpresent by analyzing the GOR of
the first three months of production. As seen m itiap below, The Greater Core Eagle
Ford (circled in red) ranges from black oil to dygs wells (Tian et al., 2013), and the
hydrocarbon fluid composition greatly varies wiltietmal maturity, as previously stated.
It is seen in the figure below, which indicatedfeliént degrees of thermal maturation.
Higher thermal maturation leads to gas, and loWwernhal maturation leads to oil. This

study will focus on certain oil wells in the Karnegjion.
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The majority of the dry gas wells are located om $tuart City Shelf Margin, which, as
seen in Fig. 5 runs though The Greater Core Eaglé. H he oil wells are located above
the Stuart City Shelf Margin, and range from vadéabil to black oil wells as you move
upward into the county.

2.4Flow Regimes of the Eagle Ford Shale
Three flow regimes are present in the Eagle Foateshas regions. The three regimes are
bilinear flow, boundary dominated flow and matindar flow, and are present only in the
gas-bearing zones of the Eagle Ford. These thgemee are seen in a log-log plot of the
production of a well over time, where early timendicative of bilinear flow due to the
negative ¥ slope, late time is where the bound#fgcteis seen and in between is the
matrix linear flow, shown by the negative half-#¢o@s indicated ifig. 6 below (Xu et
al., 2012)
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Fig. 6 — Identification of the three flow regimes in the gaservoir of the Eagle Ford
(Xu et al., 2012)

When producing these different regions, differeydraulic fracture treatments are used,
"depending on the fluid type — for example, slickevdluid system is pumped for gas rich
areas, whereas hybrid or crosslink fluid systenmhwigher proppant concentrations are
pumped for the liquid-rich areas (Bazan, et al120

Bilinear flow is "resulting from combined simultangs linear flow in perpendicular
directions. This flow regime is seen most commadnlyests of hydraulically fractured
wells and occurs for finite-conductivity fracturehere linear flow exists both in the
fracture and to the fracture plane." (Schlumbefglessary, 2014).
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2.5Models Already Created to Forecast and Determine Rerves
Reservoir simulation, type-curve and decline-cuamalysis were considered the most
useful methods for estimating reserves (Gong gtS¢veral methods have been used to
to estimate and forecast the production of the &&glrd. Monte Carlo simulation was
performed along with reservoir simulation was perfed by Dong et al. on dry gas wells
to forecast production and determine the resedmgss' decline curve analysis has often
been used in unconventional reservoirs to determeserves and forecast production,

however is inaccurate due to the low permeabilitthe reservoir (Gong et al., 2013).

Decline curve models have been created to estinestrves. The power-law decline
model was introduced by Ik et al. The stretchepesential-production-decline (SEPD)
model was introduced by Valko and Lee, and has bdapted to determine resources and

reserves, however tends to underestimate totaiveséGong et al., 2013).

Bootstrap methods were created by Jochen and Spavely Cheng et al. that generate
probabilistic decline-curve forecasts for wells déhon producing wells. A Bayesian

method has been developed by Gong et al. whiclm agses a probabilistic approach and
data from producing wells. These methods also oheter reserves and resources, and it

is the method that was used in Gong et al. (202ggp

In this study, we will apply only the Modified Hyrimlic and the Power Law Exponential
Models to our data set, however will present aetgrof different equations that can be

used to perform decline curve analysis.

25.1 Deterministic Decline Curve Models
In this section, | will present the different detenistic decline curve models that are used

for decline curve analysis.
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Eq. 2.1 and Eq. 2.2 are Arps' equations, whereEXjis the exponential decline and Eq.
2.1 follows a harmonic decline whén=1 and a hypedutdicline wheb #1 . These two
eguations are standard equations used when pernfgrd&cline curve analysis, and are

ideal for the conventional reservoirs cases.

_ q :
q(t) _—(1+bDit)1’b TDZ O (2.1)
g(t) =0 eXPEDE); D = 0 (2.1)

In the two equations aboveé, is Arp's dimensionless hyperbolic decline constémt
conventional reservoirs, the exponent b is betwkand 1 and the producing well is in
boundary-dominated flow. However, in unconventiomeservoirs, the flow is not
boundary-dominated, therefdoes greater than 1. Though this is an incorrectaigap's

equation, it is often used to estimate reservesig&b al.).

Eq. 2.3is the Power Law Exponential (PLE) equation.

q(t) = eXpEDt =Dit") oo (2.2)

where—D,, is the power law decline rate at infinite time stamt,n is the dimensionless

time exponent, typically between 0 and 1, abdd & plower law decline constant,

however is determined by determiniigy , which is it&antaneous decline at t=1,

therefore

D, , in this model, is not the initial instantaneowlthe but the instantaneous decline at

t=1 divided by n wherD_ is equal to one. Also, bg rmtean fit many different values
in early-time, however it affects late-time ratesrefore the "forecasts become sensitive
to D, " (Mattar et al., 2008)

13



Eq. 2.5 is the Modified Hyperbolic (MH) equation.

qi 1/b : t<t*
q) =dL+oDa™ (2.5)
ai exp exp[_Dlimt]; t>t*
D= LT (2.6)
— +Dbt
D

The decline rateD , is not a constant but decreesesnuously, as seen in Eq. 2.6.
"When D becomes too small, the gas rate no longédingecignificantly, and the reserves
can be over-predicted. To circumvent the problenbdiecoming too small, Robertson
(1988) introduced the Modified Hyperbolic Declineetimod, that imposes a limit below
which D is not allowed to decline,, )." (Mattar ét 2008)

Eq. 2.7 is the Stretched Exponential ProductionliDedodel equation.

qt) =g, exp[—(%)”] .................................................................... 2.7)

where T is the characteristic time parameter apds the dimensionless exponent
parameter. This model was introduced by Valko aee in 2010, and is used to quantify
the uncertainty in field production forecasts. Hoer it does not quantify the uncertainty

the reserves based on the production of a singlg@eng et al., 2012)

Eq. 2.8 is the Rate-Decline Analysis for FractuBsaminated Shale Reservoir equation.

qt)=qgt™ expﬁ(tl’m ) | I PP (2.8)

wherea is the intercept constant for Duong's model (J#)imnd m is the dimensionless
slope for Duong's model (Gonzalez, 2013).

Eq. 2.9 is the Logistic growth curve equation.
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whereK is the EUR in Mcfa is a constanty is a hyperbolic exponent that controls the
steepness of the decline, and where

K

2

eeinn(2.10)

Clark et al presented this method in 2011 (Gonzelez., 2013).

None of the above DCA models quantify the uncetyain production forecasts and
reserves estimates by themselves (they need torbliced with other models to properly

guantify these uncertainties - Gong et al., 2012) .

2.5.2 Probabilistic Decline Curve Models Proposed for Decline Curve
Analysis
The Bootstrap Method (JSM) was presented by JoahdnSpivey in 1996. This model
generates synthetic realizations of production ,dlatavever is not well calibrated for
conventional reservoirs. This model can generaibahilistic decline curve forecasts and
guantify reserves uncertainty for single wells loase the existing production. The P90-
P10 range for reserves using this method estimé&®&d of the "true reserves". This
method modifies the historical production to geteerdifferent realizations to match,
which should be avoided because we want the pramtudata to be untouched. The work

done was done on 100 conventional wells (Gong.g2@12).

The Modified Bootstrap Method (MBM) was presentgd @heng et al. (2010). This
method generates synthetic realizations of prodndafiata, and has been well calibrated
for a limited number of test cases. This model gsoerates probabilistic decline curve
forecasts and quantifies uncertainty for single Isvddased on existing production.

However, the P90-P10 range for reserves is estt&it80% of the true reserves, which
15



is expected because this method is calibrated piidiecally. This method, again, alters

the original production data which is avoided wipessible (Gong et al.)

The Markov Chain Monte Carlo (MCMC) was presentgdDong et al. (2011). It does
not modify the actual production data, and has leslhcalibrated for a limited number
of test cases. This method is faster and genesasesaller confidence interval than the
MBM. MCMC has been combined with Bayes' theorenLiobyand McVay in 2009 and

Xie et al. in 2011, to quantify uncertainty in rassr simulation (Gong et al., 2012).
These three methods were all developed based ds igihod, and there is limited work

published on the use of these methods (particularlyunconventional reservoirs)
(Gonzalez, 2013). The methods presented aboveallatene on Barnett Shale wells.
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3. SITE CHARACTERIZATION OF THE EAGLE FORD SHALE

3.1 Specific Geology of the Greater Core of the Eagledfd Shale
The Greater Core Eagle Ford has an interestingoggobecause of the plethora of
geological features present. Firstly, the Karnesugh runs through the county.
Furthermore, the Stuart Shelf line runs throughcinenty as well. As seen in Fig. 4, the

majority of the dry gas wells fall along this line.

The Karnes Trough is a thick, organic-rich parthef Eagle Ford Shale that is a "sediment
trap for shelf-derived Eagle Ford siltsone" and i$ault-controlled graben system with
expected higher natural fracture intensity" (Card&10). The trough was created by the
Person-Dubose Edwards shelf edge, which sepatedsapgle Ford Shale into an "up-dip
oil play and a down-dip gas play." This also halpstrol the fluid migration by using the
faults as barriers. This all explains the reasenefare several fluid types within the same

county, and can be seen in the figure below.
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Fig. 7 — The Eagie Ford Play Distribution V\'/h'ere we can kedlifference between the
oil and gas plays due to the Karnes Trough anéthart City Edwards reef
(Corbett, 2010)

These two plays found in the same region (and Bpaity, the Greater Core Eagle Ford)
create two environments. As previously seen, updafighe reef margin is oil-rich,
however it is also normally pressured, with a "gigant lateral variability in organic-rich
shale abundance and reservoir quality related eéb meargin controlled depocenters."”
(Corbett, 2010). Down-dip of the reef margin is thas play, and is an area of the field
that is significantly over-pressured, with a higiteral variation of the reservoir "and
primary permeability controlled by the location dital turbidite deposition.” (Corbett,
2010).

The northwestern part of The Greater Core Eagld,dnere the oil play is located, shows
deposits of the Early Cretaceous, which are alen s& the outcrops, located 75 miles
northwest of the county. This region is not affecty any significant facies changes,

however they are observed in different areas oEtgle Ford.
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There are three different geological groups inrtbghwestern part of The Greater Core
Eagle Ford. The deepest, named Trinity, consistdivef formations. The deepest
formation is Sligo, with a lithology of limestonAbove is Hammet, with a lithology of
shale, followed by Cow Creek with a lithology oaghlimestone. Above is Bexar with a
lithology of shale and finally, the upper Trinitfsrmation is the Glen Rose, with a
lithology of shale, limestone and dolomitic limesto Above Trinity is the Fredericksburg
group which consists of two formations. The Walfarmation has a lithology of shaly
limestone and the lower Edwards has a lithologylabmitic limestone. Finally the
Washita group consists of five formations. The nedgédwards with a lithology of shale
and limestone, the upper Edwards with a litholofggadomitic limestone, the Georgetown
with a lithology of shaly limestone dolomitic lintesie, the Del Rio with a lithology of
calcareous clay, and finally, the Buda with a lidgy of shaly limestone. As previously
discussed, the oil play of The Greater Core Eagle is primarily shale-based, which is

proven by this break down of the different formato

3.2 Specific Production of the Greater Core Eagle Ford
Based orfig. 8 below, it is evident that the oil production ofd@reater Core Eagle Ford
is higher than the majority of the Eagle Ford. Tieximum oil production reaches around
80,000 barrels on the northwest side of the cowtigh is where the majority of the oil
wells are located. It is evident from the same riggthat the oil production decreases as
we go to the southeast side of the county. Thishere the Stuart City Shelf Margin
intercepts the county, indicating that this regifilled with dry gas wells, as seen in Fig.
8. Hence, the decrease in oil production in theaasf the county is expected due to the

nature of the wells.
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Fig. 8 — Hydrocarbon production window. The Greater Corgl&&ord has one of the
regions of maximum oil production of the regionisated on the map. The red
circled area of The Greater Core Eagle Ford indic#tie gas condensate and
dry gas wells (Breyer et al., 2013)

According to Tian et al. (2013), it can also beeabthat there are fewer gas wells and
the gas production of The Greater Core Eagle Fosibnificantly lower than the oil
production.

3.3 Specific Fluid Types of the Greater Core Eagle Ford
As previously stated, The Greater Core Eagle Farsdthree different hydrocarbon types
being produced. The fluid types range from oiltp gls. The Greater Core Eagle Ford is
especially interesting because all three of tydefuas are produced, which is a trend

not seen in other counties, as seeRig 9 below.
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Fig. 9 — Fluid phases of the Eagle Ford Shale, specifidaltusing on the Greater Core
Eagle Ford and the three phases present (Mullet))20

Mullen (2010) performed a case study on three wliffe wells in three different
hydrocarbon zones - a dry-gas window, a gas coademsndow and an oil window. The
author has not disclosed the location of the tiweks thus we will assume that the fluid
types are the same throughout the play. Well 1-¢gaslensate) is located in the Eastern
part of the field, and Well 3 (oil) is located imet Western part of the field, with Well 2

(dry-gas) in between the two, as seen belofign 10.
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Fig. 10— Relative locations of the three wells, along wihihit thicknesses and the
basic log response across the Eagle Ford Shaldgih@010)
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Each of the three fluid windows has different pmbijes, and the three will be explored
below. The gas-condensate window, where Well 1 allén's analysis is located, is in the
eastern part of the field. The rock in this parthef field is soft due to the high clay content,
and thus the proppant used when hydraulically @réng this part of the reservoir can
become embedded in the fractures, and also cartdelaigh closure pressures. Both of
these characteristics need to be taken into coradide when finalizing the completions
design of this part of the reservoir. From Mullearslysis, it was also determine that the
porosity of this area ranges from 8% to 18%, thengability from 1 to 800 nD, and has
a total organics content (TOC) ranging from 2% %. 8t was also determined that the
"sweet spot” is between 12,860 and 12,880 feaettwe future drilling in this area should
be targeted to this interval.

Well 2 is located in the dry-gas window. This ah@a a different geological composition
than seen in Well 1. It is more clay-rich, makihg teservoir rock is much "softer”, thus
swelling is a potential problem and the complesbiould be designed accordingly. The
porosity was determined to be 8%, and the permgalbvias tested using core data,

however could not be identified due to the limaas of the NMR tool and the extremely
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low permeability. This area of the Eagle Ford isoken-rich, meaning that the reservoir
rock in the lower Eagle Ford is of better qualltgn the rock in the higher Eagle Ford.
Well 3 is located in the oil window. This area b&tEagle Ford is much more clay-rich
than seen previously, with "~70% swelling clays mgkup about 7% of the total rock
composition" meaning that when fracturing the resier clay control will be necessary
to minimize "swelling clays on the pore throat$ha reservoir." (Mullen, 2010). The total
porosity of this area of the Eagle Ford is betwg¥nand 14%, averaging around 10%. It
is evident from Fig. 10 that the thickness of tleservoir in Well 3 is much larger

compared to the other two wells.
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4 METHODOLOGY

4.1 Overview of the Research
Production and completion data of 68 wells in thred®er Eagle Ford Core was used to
perform this study. The first step of this process to determine what type of fluid we
wanted to work with. It was decided to work withrBas of Oil Equivalent (BOE) to
incorporate both the oil and gas production of ¢heells. Therefore, we converted the
gas production to oil production, using the coniershown below in Eq. 4.1, and added

it to the oil production.

bbl :MTSCf(41)

After this was done, we plotted all of the prodontdata against time to determine which
wells were good candidates to perform decline camnaysis. From these 68 wells, we
determined that 16 had a good set of data, withoa glecline and an adequate amount of

data to perform the study. The production datags¢nted below ifig. 11
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Production Data of 16 Wells in the Greater Core of the Eagle Ford Shale
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Fig. 11— Data Production of the initial 16 wells to be usethis study, located in the
Greater Eagle Ford

We performed the decline curve analysis on theseel® using the Modified Hyperbolic
(MH) and Power Law Exponential (PLE) models, where retrieved the Estimated

Ultimate Recovery (EUR), and different parametessdcuin each model.

We looked at these 16 wells, and decided to sétvapsets of wells. The first set was for
five wells producing more than 700 days, and tlveseé set was for three wells producing

more than 450 days. Set 1 data set was then tetht@a00 days, and the set 2 data was
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truncated to 450 days. This was done to be aldertgpare the results of the wells in each

set to each other, which provides a good compan$dime results.

The next step was to perform the Bayesian foreugstsing the Bayesian paradigm on
the wells in the two different sets. We began 8tep by performing a least-squares
optimization to obtain the optimized values of thiéerent parameters of the two different
models. After this was done, we performed a Markbain Monte Carlo (MCMC) using
both the MH and PLE models. The MCMC was run betw2and 50 million iterations,
depending on how long it took for the parametersdaoverge. This gave the most

accurate value of each of the parameters of thentaels.

With the values of MCMC, we ran the prediction gsithe Bayesian paradigm. The
prediction was run for the number of truncated daybe two sets, meaning 700 days for
Set 1 and 450 days for Set 2, and then it wasouB0 years, the industry set time for
abandonment. Therefore, each well has two setssoits — one using the MH model to
run the Bayesian Forecasting, and one using theradiel to run the Bayesian paradigm.

Finally, the results of the Bayesian approach veerapared to the results of the decline
curve analysis. This research was to determinehehetr not the decline curve analysis
performed in industry is an appropriate analysistied reserves in unconventional

reservoirs.

4.2 Deterministic Decline Models

4.2.1 Decline Curve Analysis using the Modified Hyperbolic and Power Law
Exponential Models
We plotted the production data of the 68 wells dermined that 16 of the 68 had a good
set of data to perform decline curve analysis. Té&ells chosen had enough production
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data to show the trend of the data, and showedchndge which is necessary when
performing decline curve analysis.
The two models used in this study are the Modifigperbolic and the Power Law

Exponential, shown below in Eq. 4.2 and Eq. 4.5peetively.

qi 1/b ’ t < t *
qt) = [L+bDt]™ . (4.2)

qi exp exp[— DIim t]1 t>t*

where:
D, '”[;6;'0] ......................................................................... (4.3)
D.
(D —-1)

t* = Iki)mD ............................................................................ (4.4)

For the Modified Hyperbolic method, we set the dexllimit (p) to 10%, which is a
conservative decline limit. "When D becomes too I§ntilze gas rate no longer declines
significantly, and the reserves can be over-predicTo circumvent the problem of D,
Robertson (1988) introduced the Modified Declinethd that imposes a limit below
which D is not allowed to declindd(jm). Once the decline reach&m, the equation

switches to Exponential Decline" (Mattar et al.02p

QL) =G €XPEDE = DA™Y e (4.5)

In the Power Law Exponential, we will d8&to 0 andn to 1, which makes the power law
change to an exponential decline. 'M\gends to 0, the power law's decline rates sfért o
large, but become smaller over time, similar to hmht reservoirs behave. The reason
for D« in the Power Law is that it places a limit on hlmw the decline can become to

avoid reserve over-prediction”. (Mattar et al., 00
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After we ran the two models, we obtained a setesiits of the parameters of each
equation, as well as a value of Estimated UltinRgeovery (EUR)Tables 1and2 show

the results for each of the models.

Table 1 —Parameters of the Modified Hyperbolic method, alamiy the EUR

Modified Hyperbolic
D-parameter =30 vears [gboe=5 BOE/d
Well Intercept (Di) [gboie b EUR (BOE) |[EUR(BOE)

1 0.00373] 1115.386 0.5 643454 632495
0.00898 789.355 1 394789 387327

0.00628 824.935 0.48 247315 235310

18 0.00277] 1020.636 0.3 505779 495450
19 0.0036 714.131 0.21 252692 247766
20 0.00219 723.808 0.46 552483 543715
24 0.0019 626.8 0.87 807015 817654
25 0.00227 713.334 1 909052 924353
38 0.00157 286.153 0.21 215717 207021
40 0.00191 435.649 0.18 267903 260995
41 0.00347 525.846 0.73 380685 372341
45 0.00463 996.807 0.6 480552 470083
49 0.00135 986.275 0.51 1267115 1282834
57 0.00356 968.403 0.06 285287 283237
58 0.00779] 1091.106 0.32 215884 210765
67 0.00425| 1063.37 0.3 353379 345636

We notice that th®;is very low, which differs from what is used in ustry. This is
because these results are initial decline perrdzyper year. However, it can also be noted
that there are several results that are unrealigfiells 25 and 49 both show reserves

around 1 million BOE, which are unlikely.
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Table 2 —Parameters of the Power Law Exponential methoagalath the EUR

Power-Law Exponential

=30 vears ghoe=5 BOE/d
Well Slope (n) |Intercept (Di hat) (D infinity |gboie EUR (BOE) EUR (BOE)

1 0.6965 0.0187 0] 1232.802 551036 546140

8 0.6647 0.0323 1E-14 827.781 208848 205579

9 0.817 0.0147 1E-14 939.062 178914 177303
18 0.0435 1.34] 0.0017121 4425.02 454454 451574
19 0.0285 2.59] 0.0024472] 12780.193 241667 239657
20 0.0075 11.23] 0.0012364] 72724314 436232 432252
24 0.7955 0.00519 1E-14 635.131 504339 497220
25 0.3675 0.123] 5.102E-05) 1125.896 950851 1014745
38 0.0075 1.6] 0.0015799] 1484.943 169108 165952
40 0.0125 6.69| 0.0012804] 468183.01 262772 258939
41 0.6505 0.021 1E-14 577211 289908 282623
45 0.8965 0.00654 1E-14] 1030.316 292684 290799
49 0.8965 0.00191 12E-14 972.7 1081871 1074957
57 0.0105 1.87] 0.0034623] 6919.812 272443 271004
38 0.0285 1.43] 0.0050045] 4947.388 192747 191755
67 0.024 2.16] 0.0029534] 10663.469 306097 304421

As previously stated)ins should be approximately 0. It is evident from thessults that
many of the values are, in fact, very close to @éaer others are not. We also see that
there are several initial rategd) that are unrealistic, such as in wells 19, 20,540and
67. It can also be seen that in the wells wiygsigs unrealistic, so iBi. This is most likely
due to the data not following the PLE model, therefwe are forcing the data to fit this

model and we obtain unrealistic results.
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Time-Rate Models Comparison, Well 41
MH and PLE Models—Numerical Simulation Case

g-,D-,b-parameters versus Time Plot [Log-Log Scale]
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Fig. 12 —qDb plot of Well 41: The solid lines represent thve decline curve models.

4.2.2 Parametric Analysisof the Three Parametersin each DCA Model
There are several parameters in these two equatiotise Modified Hyperbolic, the three
variable parameters are thdactor, Di andg;, and in the Power Law Exponential, the
three variable parameters axd; andq;, while time ¢) is considered constant in both. To
better understand how these three parameters dlfffedivo decline curve models, we
performed a parametric analysis. The results sfahalysis are presentedrig. 13-18
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Fig. 13 —Parametric Analysis of the b-factor of the Modifidglperbolic model

For the parametric analysis of thdactor, we can see from the graph above that \itien
b-factor is increased, the curve slightly risesvabibe initial curve, but only in late time.
We see the opposite with a decrease in the b-falttisralso very interesting to see that
the curves do not begin to diverge until around 88¢s, so the b-factor has more of an

influence in the later times of the wells' prodanti
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Fig. 14 —Parametric Analysis oD, for the Modified Hyperbafiodel

For the parametric analysisDf , we can see fromgtiaph above that wheD, is

increased, the curve falls below the initial cuingantaneously. We see the opposite with

adecrease iD;, . Itis also very interesting to Baethe curves begin to depart from time

0, therefore the initial decline plays an importesie in the trend that the decline curve
will take.

32



1000 T | i

I
©  Production Data
e - 25% of gi
. : - +25%of qi
800 \ R

900 -

700%

600

500

400

Flowrate (BOED)

300

200

100

1 | | | | |
0 100 200 300 400 500 600 700
Time (Days)

Fig. 15 —Parametric Analysis dj for the Modified Hyperbolic Model

For the parametric analysis @f , we can see fromgtiaph above that when, is
increased, the starting point of the decline cusvhigher. We see the opposite with a
decrease ig, . These results are expected becausgdtidlerate is changing. It is also
interesting to see that the decline curve doesfintite production data when the is

incorrect, however the three curves converge mtiate. This indicates that initial rate's
primary influence is on the early time of the deelcurve, however it is also evident that
if the value is too high, we will overestimate tieserves, and if the initial rate is too low,

we will underestimate the reserves.
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Fig. 16 —Parametric Analysis of the time exponent (n) ofPleever Law Exponential
model

For the parametric analysis of the time exponehtwhenn is increased, we see that the
decline curve begins at the same rate as the atigiralue, however we see that the slope
is decreased. Furthermore, we see that when weaserthe, the initial point remains
the same (as seen when this decreased), however that the slope of the danoreases.

This is consistent with the definition, becausettitee exponent is, in fact, a slope.
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Fig. 17— Parametric Analysis dd; for the Power Law Exponential Model.

For the parametric analysis Of, the three curves share the same initial pointvéir,
whenD; is increased, we see that the decline curve bballsw the original curve and that
the decline curve is underestimating the rese#enD; is decreased, we see that the
curve is significantly higher than when using tlerectDi. Furthermore, we can see that
using a lowD; will greatly overestimate the reserves, while usartggher value ob; will
underestimate the reserves. It is also interestimgte that the behavior B% in the PLE

model is the same as the behavior oflhe the MH model.
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Fig. 18— Parametric Analysis dji for the Power Law Exponential Model

For the parametric analysis gf, we can see from the graph above that whers
increased, the starting point of the decline cusvhigher. We see the opposite with a
decrease imjj. These results are expected because the initmlisachanging. It is also
interesting to see that the decline curve doedintite production data when thgg is
incorrect, however the three curves converge mtiate. This indicates that initial rate's
primary influence is on the early time of the deelcurve, however it is also evident that
if the value is too high, we will overestimate tieserves, and if the initial rate is too low,

we will underestimate the reserves. This is theeshahavior seen in the MH model.
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4.3 Data Truncation

Once we performed the decline curve analysis ugiegModified Hyperbolic and the

Power Law Exponential on the 16 wells, we lookethatproduction days of these wells.
We then decided to truncate the data based onuimder of production days each well
has. Several wells only produce for a short peoitiime, therefore we decided to discard
them for this study. The desired wells for thisdstinave been producing for over one

year.

We identified two sets of wells. One set that haslpction of over 700 days and another
set that has production over 450 days. We thercated each well's production data to
700 and 450 days, respectively. This was done talde to perform the Bayesian
forecasting on both sets of wells, and then tolide & compare the results to each other,
while having a consistent data set of all the wielleach set. Set 1 is the data set that is
truncated at 700 days and consists of five wel$,23s truncated to 450 days and consists

of three wellsTable 3 below identifies both data sets.
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Table 3— Ildentification of two sets of truncated wells. Thells in red font are Set 1,
truncated to 700 days, the wells in purple font®ee?2, truncated to 450 days

Well Name | Production Days
Well_8 266
Well_9 264
Well 18 48¢
Well 19 721
Well_20 73§
Well 24 56(
Well_25 644
Well 38 705
Well 40 721
Well 41 74(
Well_45 274
Well_57 36(
Well_58 35¢
Well 67 454

Once these two data sets were identified, we impiged the Bayesian paradigm on only
the eight identified wells. The table shows the banof production days of all 16 wells
that we had initially identified, and we can seattWells 8, 9, 45, 57 and 58 do not have
sufficient data, therefore the trend of the produrctiata is not as prevalent as in the wells
that have been on production longer. This is whyleeded to use 700 days and 450 days
to truncate the wells. Furthermore, we did not wartruncate the wells of Set 1 to 450
days because we would have lost the trend of théyation data, and would not be able
to capture the decline correctly.
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4.4 Solving the Inverse Problem using Bayes' Theorem
There are several steps needed to implement Badyeirem. First, we apply an
optimization to obtain an optimized set of paramsefer each model. It was determined
that the least squares optimization was suitalsléhie study.

After we obtained the optimized set of parametess,implemented the Markov Chain
Monte Carlo. Using the optimized values of paramsetee begin the MCMC using these
optimized results. Then, the MCMC runs between awad 50 million iterations, until the

parameters converge, which is seen when the redute MCMC are graphed. From the
graphed results, we determine the burn-in poine Barn-in point identifies the point

where the parameter has converged, and needs tebgame for each of the three
parameters of the two models. After it has beenvsetrun the Bayesian paradigm. We
obtained 1,000 realizations of 1,000 different gmkses of decline curves, then took the
mean of these realizations and plotted them agthiesiorward model (either the MH or

the PLE). We extended the forecast to 30 yearscangbared the forward model with the
Bayesian forecast.

4.4.1 Least Squares Optimization

We chose the least squares optimization (LSQ), wigca type of regression analysis,
where "the most important applications is "datangt'(Wikipedia). The objective of the
least squares optimization is to obtain the besf the model by changing the parameters.
For this study, we applied the nonlinear least segiaptimization, where we defined the
initial values of the parametets, Oi, g for the MH andh, Dj, g for the PLE). When we
completed this optimization, we obtain an optimizetlof values for the parameters. For
this study, we used the least squares optimizdtioation in Matlab. The flowchart for
the optimization is shown below Fig. 16, which shows the specific progression of the
code.
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Least Squares Optimization + Mean of the Error
Load the production data 44 Fori=lL:n

xdata = time
ydata = flowrate

std = std+(ydata(i)-ymean)"2

ForwardModel = forwardmodel+(ydata(i)-modelfit)"2

Standard Dev =0
Mean of flowrate

variance =
[b: Di: q1)

Save the LSQ fit model +—
/

Set least squares fit to fit
forward model

Plot:

Define:

Error of Standard Dev, Mean,
Production data

Error of the production data

Optimization Results against
the Production data

Standard Deviation of the
Error

[

Fig. 19— Flowchart of the Least Squares Optimization

We plotted the results of the optimized resultsusrthe forward model results, shown

below inFig. 20
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Fig. 20— The MH model compared with the Least Squares Opétiun results. It is
visible that the LSQ results show a different stgrpoint, and furthermore we
see that the MH model begins higher than the LSQIt® however around day
100 moves beneath the optimized curve, until tleywerge at 700 days

Since we see a lower initial rate with the optindizesults than with the results found
when performing the MH model, this means that thinauizedq is lower than the actual
gi. Furthermore, we see that thdactor and the initial decline are both a bit lowiean
the initial MH results, which is why there is agit discrepancy between the two curves.
The same analysis was performed on each of thes viggllboth the MH and the PLE
models, and the results are presented in Appenatixhe end.
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4.4.2 TheBayesian Paradigm

It is known that none of decline curve equation8 agcurately forecast the amount of
hydrocarbon in shale reservoirs or the length moktthat it will produce economically.
This is due to the fact that Arp's equations asetlaon Darcy's law, which are meant for
conventional reservoirs with high permeability. Bhaeservoirs have a negligible
permeability therefore this set of equations wit provide an accurate representation of
the well's behavior. The inverse problem does e tinto consideration Darcy's

equation, and will be solved using Bayes' TheorachMCMC.

To perform the inverse problem, we will use Bayeotem that states:

P(O]D) O P(O)P(D]B) ...t (4.6)

Meaning that the posterid?(6’|D) , is proportional to theor, P(8), times the
likelihood, P(D|H) . Théd is the set of known parameterg] #re likelihood function

indicates the likelihood of the event to occurthis study, the priors are the initial rate
(a,), the initial decling(D,) , the-factor and the time exponefit) , and we will assume

that they are non-informative priors, meaning tkia¢y will all follow a uniform

distribution.

We can obtain the posterior distribution using Bayéheorem with Eq. 4.7 and Eq. 4.8

below.

p(old) = P(6)P(d|0)
j P(6)P(d|6)de

42



f (0)P(0)P(d|0)de
E[f(e)d]:j (OP©) (|) ............................................................ (4.8)
j P(6)P(d|6)de
We can re-write the above equations to find theofailhg equation:
jummmm
Bl F ()] ST e 4.9
[£(X)] I 2000 (4.9)

where 71(X) is the likelihood.

We then move to apply the MCMC, which is "a classlgbrithms for sampling from a
probability distribution based on constructing arkéaw chain that has the desired
distribution as its equilibrium distribution. Th&ate of the chain after a number of steps
is then used as a sample of the desired distribttf@Vikipedia). We used the Metropolis-
Hasting algorithm, which is a "MCMC method for obfam a sequence of random
samples from a probability distribution for whichietit sampling is difficult"(Wikipedia).
The Metropolis-Hastings criteria follows Eq. 4.10dvel

ar()(t Y) = mm{lw}

77(%.)a(Y|,)

where q(>q|y) is the proposed distribution. In this reseanehwill assume that the priors

will follow a uniform distribution. The constant vasiin in Eqg. 4.10 will cancel from the
numerator and the denominator.

We will assume that the likelihood is normally distaited, and will be determined using
Eq. 4.11 below.
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P(D[8) = (27) 2 [o| e @D e (4011)

whereagis the standard deviatiod s the observed data and tigis the forward model,

so in this research, either the MH or the PLE models.

The first step in beginning this research is to detegntie random and the constant

variables of the two decline curve analysis modelsift®MH model, we will seg, D,

and theb-factor as the set of random variables, and they amggredter than 0, and will

keept andD,,,, as a constant variable. For the PLE model, wesetd, ,D, , andn as the

random variables, and keepnd D, as the constant variables.

The next step was to perform the least squares @aion on the initial values of the
forward model parameters. A set of results was presentedyirl7 for Well 19. After
this, we determine the standard deviation as a can&tathe likelihood definitionFig.

21 below shows the least square model results agamgroduction data. From here, we
will determine the error of the LSQ versus the actu#d,dghown in a histogram ifig.

22 and the cumulative distribution of the error, showRim 23 and finally the total error
is presented ifrig. 24. Fig. 21-24 are the MH results of Well 41.

44



700

*  Observed Well Production
—+—Nonlinear Least Square Method

600

500 M

B
o
o

Flowrate (BOED)
S

200

0 100 200 300 400 500 600 700
Time (Days)

Fig. 21 —Results of the least squares optimization againgbith@uction data

The figure above shows the decline curve using thengged parameters for the MH
model of Well 41. This was performed using the LSQ metlas previously described.
We used the least squares optimization function atldl to obtain these results.
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Fig. 22 —The distribution of error between the production datathad-SQ results

Fig. 22 shows that the distribution of error betweenadpimized results and the actual

production data is a Gaussian distribution.
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Fig. 23 —The cumulative distribution of error is plotted agaih&t normal cumulative
distribution function

The figure above shows the cumulative error distributioiction (blue curve) against the

normal cumulative distribution function (red curve). Tgraphs shows the error of the

LSQ optimization against the actual normal distriboti From this graph, it can be

deduced that the optimization performed yielded ateuesults because the two curves
are very close to each other. However, it would balidehe two curves overlapped.
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Fig. 24 —The error of the least squares optimization againstaingber of production
days

Fig. 24 shows the error between the least squaresimation and the production data. It
is visible from the graph that the error decreases with@aeasing number of production
days. This is expected when applying the LSQ opttion, and it is also ideal for the
study. This graph indicates that as we increase itheuat of information, the more
accurate our optimized results will become, whicvigt we see in the graph above.

4.5 Analysis and Discussion of the Results
Three methods were used in this study to forecatitjint wells in the Greater Core Eagle
Ford. The first was the forward model, using the MH #redPLE models, as would be
used in industry. Secondly, was the LSQ optimizgtishere we used the MH and PLE,

but optimized the parameters of the two equationsréwigle a more accurate set of
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parameters than those determined visually when fittiegdecline curve of the MH and
PLE models. Finally, we applied the Bayesian pamadighis included performing the
MCMC on the three parameters to obtain the most atcwedue, and then implement
Bayesian forecasting, which works by learning the tratie production data and better
estimating the following point. These three approatia® their pros and cons, which is

what will be discussed in this section, along veitbomparison of the DCA results.

The MH and PLE models were implemented by using petgmy software. To perform
this initial part of the study, we input the produatidata of the wells into the software.
After this was completed, we chose which models wetadhto implement in this study,
and decided on the MH and the PLE models. To fitda®, we manually moved the
curves using the cursor and when it was visually deterrthat there was a fit, saved the
parameters and the data of the set decline curve.pradice is done in industry on
unconventional wells, and it also gave us valuethefthree different parameters of the
two equations. We created gDb plots of the resultsaof evell using Igor, all of which

are included in Appendix .

Once we obtained the initial results using the DCAdeis, we applied the LSQ
optimization. This method used the parameters detednivhen using the conventional
forward models and optimized them to create a more dectgsult. After this was done,
we applied the MCMC on the three parameters of thddweard equations. This method
used millions of iterations to determine the most eateuvalue of each parameter, which
was then used when applying the Bayesian paradidp@ BRyesian paradigm works by
"learning” about the trend of the data and thus egiimg where the next point will be
based on the knowledge it has acquired from the guevdata points. Since there are
several possibilities, we plotted 1,000 possibleizatibns and took the mean of these

realizations.
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45.1 Analysisof the Bayesian Paradigm Results when I mplementing the
Modified Hyperbolic of Well 41
As previously stated, we will also assume that therp are all non-informative, meaning
that they follow a uniform distribution. The next sisfo set the coefficient of variation
to fix the step size of the proposed distribution. Véeided the set the coefficient of

variation to 0.1 for all of the wells and all the madel

From this step, we generated the MCMC iterationschvigenerated the cumulative mean
and standard deviation of each random variable, alatigavgraph of the iterations of
each parameter. Fig. 25 through 30 show these reanttsre the results of the MH model
of Well 41.

0.9 u l l

0.8

o 1 1 1
0 0.5 1 1.5 2

Iterations x 10

o

Fig. 25 —MCMC results of thé-factor for the MH model
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The figure above shows thefactor of the MH model converges immediately. laiso

clear that the mean value lofs approximately 0.4, which is confirmed in Fig. B&Jow.
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Fig. 26 —Cumulative mean and standard deviation oftttfiactor

It is evident from the graph above that bafactor for Well 41 converges after one million
iterations. It is evident that there is no more naiséhe data and that the MCMC has
determined the true value of thdactor. Furthermore, the standard deviatioi of 0.11

from the figure above.

We performed the same analysisirandg;, and the results are presented below.
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Fig. 27 —MCMC results ofD; for the MH model

The figure above shows tli% of the MH model converges immediately. It is alssac

that the mean value @ is approximately 2.8E-03, which is confirmed in Fi§, Below.
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Fig. 28 —Cumulative mean and standard deviatiopf

It is evident from the graph above tiatfor Well 41 converges almost immediately. After
one million iterations, it is obvious that therenis more noise in the data and that the

MCMC has determined the true value of bhe
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Fig. 29 —MCMC results ofg; for the MH model

The figure above shows thig of the MH model converges immediately. It is alseacl
that the mean value @f is approximately 515 BOED, which is confirmed in Faf,

below.
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Fig. 30 —Cumulative mean and standard deviatiowof

It is evident from the graph above tigafor Well 41 converges almost immediately. After
one million iterations, it is obvious that therenis more noise in the data and that the

MCMC has determined the true value of the

Overall, the MH model for Well 41 is a very succesgiuh. All three parameters
converged after only two million iterations. The resuibr the remainder wells vary

depending on the model used when the Bayesian ganadas implemented.
From the cumulative means and standard deviationaabf parameter (presented in Fig.
26, 28 and 30), we set the burn-in point, which isgbimt where the iterations reach a

stationary condition. This burn-in point was deterrdimsually, as some cases converged
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very quickly with only 2 million iterations, and afs did not converge after 50 million
iteration. For the case presented above, we set theilbpoint at one million iterations.

After the burn-in point was determined, it only tooloicbnsideration the values after the
set point; meaning that if we set the burn-in potmrae million iterations and we had a
total of 2 million iterations, the model will onlykea into account the last million values

and not the first million, where there is noise in diaa.

From the results of using the burn-in point, we obthm descriptive statistics of our
models; the random variable histograms, the relativeuéegy histograms, and the
cumulative distribution of the parameters. This gieewisual representation of the
behavior of the parameters of the different models. FighBugh 39 below show the

results.
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Fig. 31 —Posterior relative frequency histogrambof
The posterior relative frequency histogranbahows the distribution of tHefactor after

the burn-in point has been set. This graph indicdias theb-factor has a Gaussian

distribution after the initial million data points wedescarded.
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Fig. 32 —Cumulative posterior relative frequency histogram oftttiactor

The cumulative posterior relative frequency histogrdnthe b-factor shows the error

between the value of the MCMC after the burn-in poirg s&t, with respect to the normal
cumulative distribution function. The two curves arpeposed, indicating that the results
we have determined do not have any error attributetetm tand this is the correct value

of theb-factor to use for this data set, while using the MH etod
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Fig. 33 —Posterior relative frequency histogramDnf

The posterior relative frequency histogranDp§hows a lognormal distribution, as

opposed to the Gaussian distribution seen fobitfeetor.
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Fig. 34 —Cumulative posterior relative frequency histogranDof

The cumulative posterior relative frequency histogréamishows the error between the
value of the MCMC after the burn-in point was set, wékpect to the normal
cumulative distribution function. The two curves arpesposed, indicating that the
results we have determined do not have any error agdlotthem, and this is the

correct value oD; to use for this data set, while using the MH model.
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Fig. 35 —Posterior relative frequency histogramgof

The posterior relative frequency histogrango$hows the distribution @j after the
burn-in point has been set. This graph indicatesthiea} has a Gaussian distribution

after the initial million data points were discarded.
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Fig. 36 —Cumulative posterior relative frequency histograng;of

The cumulative posterior relative frequency histogrdrg shows the error between the
value of the MCMC after the burn-in point was sethweéspect to the normal cumulative
distribution function. The two curves are superposedicating that the results we have
determined do not have any error attributed to themh thlais is the correct value gf to

use for this data set, while using the MH model.
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Fig. 37 —Relative frequency diagram betweenandb

The relative frequency diagram betwd@mndb shows the relationship between these
two parameters for the MH model. The red region in theeceof the curvature in the

graph indicates the ideal combination of these tarameters for this specific set of data
points and model. Though there should not be anjioakhip between these parameters,

it is evident from the graph above that there is atiaiship.
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Fig. 38 —Relative frequency diagram betwegrandb

The relative frequency diagram betwegandb shows the relationship between these two
parameters for the MH model. The red region in the caftthe curvature in the graph
indicates the ideal combination of these two pararadte this specific set of data points
and model. Though there should not be any relatipnsétween these parameters, it is

evident from the graph above that there is a lineatiogiship.
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Fig. 39 —Relative frequency diagram betwegrandD;

The relative frequency diagram betwegand D; shows the relationship between these
two parameters for the MH model. The red region in theceof the curvature in the

graph indicates the ideal combination of these tarameters for this specific set of data
points and model. Though there should not be anjioakhip between these parameters,

it is evident from the graph above that there is atiaiship.

The results presented in Fig. 31-39 validate that catehis working properly and that

the set burn-in point was accurate.

Using the spatial statistics and the results of paeameters, we generated 1,000

realizations of the model predictions from the determipesterior distribution. It is

possible to generate as many realizations are desioseever it was determined that
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1,000 gave an accurate range of results. From there eteemine the mean of these
realizations and the standard deviation, which indaéhe uncertainty of our Bayesian
model. This was done for the 700 and 450 days, ardwlas extended to 30 years. Below
are the results in Fig. 40 through 45 for Well 41 usirgMH model.
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Fig. 40 —The 1,000 realizations of the model predictions uiiegBayesian paradigm

Fig. 40 shows the 1,000 realizations that were creasaty the parameters that were
determined with the MCMC. By looking at the graph, eam see that all the results fall
in a similar range. This graph shows 1,000 possitetinations of results. The next step

is to take the mean of these results, and compar¢hietoptimized values and the forward
model values.
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Fig. 41 —The production data with the mean of the realizatithres pptimal forward
model and the expert forward model

The graph above shows the three methods used isttldg against the production data.
In this case, the black curve is the optimal forwardlehothat was determined by the
applying the least squares optimization, the biugeis the mean of the 1,000 realizations
and finally, the turquoise curve is the expert forward ehoahich in this case is the MH

model. It is evident that in this case, the MH made the mean of the model predictions
are superposed; therefore the two returned the sanie fidss is unexpected, however it

means that the MH was the correct model to usallyitiand it means that the Bayesian

model produced the same results, therefore it agreesheitbriginal forward model.
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Fig. 42 —The 1,000 realizations of the model predictions uiiegBayesian paradigm
for 30 years

Fig. 42 shows the realizations of the model predistifor 30 years. We produced this
result because in industry, the economic limit of @A practice is 30 years. In the graph
above, the red curve is the expert forward model, therdfottes case, the MH model,

and the remaining curves are the realizations. Itteresting to note that the forward
model underestimates the reserves, which is noticéeuiause the curve is so far below

the remaining curves.
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Fig. 43 —The mean of the realizations and the expert forward mptited for 30
years

Like the previous figure, Fig. 43 is plotted for 30 seebecause of the economic limit set
by the industry. This graph is similar to the pregauiaph, however shows the mean of
the 1,000 realizations, therefore gives a clearer viéwhe behavior of the model
predictions. In this graph, it is evident that thepert model (the MH model) is
underestimating the results. We can see that ity éank, the two graphs seem to be
overlapped, which is also evident in Fig. 41, howeaté evident from Fig. 43 that the
forward model and the Bayesian model do not yieldstimae results. This is interesting
to see, and an important conclusion to draw, bedassews that the forecast is necessary
for a longer period of time to see how the two modets \A®e can see again that the
forward model is significantly underestimating the ressreompared to the Bayesian

model.
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Fig. 44 —The standard deviation of the Bayesian model

Fig. 44 shows the standard deviation of the Bayesiagiel, however it is representing the
uncertainty of the model. This graph is interestingalise it shows that the uncertainty
quickly decreases in early time, which is where weehténe production data, and then
begins to increase again. However, we can also aeagtwe continue to run the forecast,

the uncertainty decreases once more.

45.2 Analysis of the Bayesian Paradigm Results when Implementing the
Power Law Exponential of Well 41
The same process was used when the PLE model \whsdfp Bayesian paradigm. The
coefficient of variation was set to 0.1 for all of the lw@nd all the models, just as before.

This is constant for all the models for all the wells.
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From this step, we generated the MCMC iterationschvigenerated the cumulative mean
and standard deviation of each random variable, alatigavgraph of the iterations of
each parameter. Fig. 45 through 50 show these resnitigre the results of the PLE model
of Well 41.
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Fig. 45 —MCMC results oin for the PLE model

The figure above shows of the PLE model converges immediately. It is alar that

the mean value af is approximately 0.76, which is confirmed in Fig. #8Jow.
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Fig. 46 —Cumulative mean and standard deviation oftttiactor

It is evident from the graph above timdbr Well 41 converges after one million iterations.
It is evident that there is no more noise in the daththat the MCMC has determined the
true value of thé-factor. Furthermore, the standard deviation &f 0.04 from the figure

above.

We performed the same analysisirandg;, and the results are presented below.
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Fig. 47 —MCMC results oD; for the PLE model

The figure above shows tlig of the PLE model converges immediately. It is aleaic

that the mean value @f; is approximately 0.01, which is confirmed in Fig. #8|ow.
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Fig. 48 —Cumulative mean and standard deviatiopf

It is evident from the graph above tiatfor Well 41 converges almost immediately. After
one million iterations, it is obvious that therenis more noise in the data and that the

MCMC has determined the true value of bhe
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Fig. 49 —MCMC results ofg for the PLE model

The figure above shows tlgeof the PLE model converges immediately. It is alac
that the mean value @f is approximately 550 BOED, which is confirmed in Fif),

below.
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Fig. 50 —Cumulative mean and standard deviatiowjof

It is evident from the graph above tigator Well 41 converges almost immediately. After
one million iterations, it is obvious that therenis more noise in the data and that the
MCMC has determined the true value of the

Overall, the PLE model for Well 41 is a very successtul. All three parameters
converged after only two million iterations.

From the cumulative means and standard deviationaabf parameter (presented in Fig.
46, 48 and 50), we set the burn-in point to one nmliterations.

From the results of using the burn-in point, we obthm descriptive statistics of our
models. Fig. 51 through 59 below show the results.
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Fig. 51 —Posterior relative frequency histogramnof

The posterior relative frequency histogramnogshows a Gaussian distribution after the

initial million data points were discarded. This résiexpected and is seen in other cases.
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Fig. 52 —Cumulative posterior relative frequency histogranm of
The cumulative posterior relative frequency histogatm shows the error between the
value of the MCMC after the burn-in point was sethweéspect to the normal cumulative

distribution function. The two curves have a sligltitedlent, indicating that the results we

have determined have a slight error attributed to them.
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Fig. 53 —Posterior relative frequency histogramDnf

The posterior relative frequency histogram fshows a lognormal distribution, as

opposed to the Gaussian distribution seen.fdhis result is consistent through this study.
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Fig. 54 —Cumulative posterior relative frequency histogranDof

The cumulative posterior relative frequency histogrdmishows the error between the
value of the MCMC after the burn-in point was sethweéspect to the normal cumulative
distribution function. The two curves are not entirelgerposed, indicating a slight error,
and therefore we can assume that this is the corraet wD; to use for this data set,

while using the PLE model.
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Fig. 55 —Posterior relative frequency histogramgof

The posterior relative frequency histograngiaghows the distribution af after the burn-
in point has been set. This graph indicates theagjthas a Gaussian distribution after the
initial million data points were discarded.
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Fig. 56 —Cumulative posterior relative frequency histograng;of

The cumulative posterior relative frequency histogrdrg shows the error between the
value of the MCMC after the burn-in point was sethweéspect to the normal cumulative
distribution function. The two curves are superposedicating that the results we have
determined do not have any error attributed to themh thlais is the correct value gf to

use for this data set, while using the PLE model.
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Fig. 57 —Relative frequency diagram betwelenandn

The relative frequency diagram betwd@mndn shows the relationship between these
two parameters for the PLE model. There is no distielettionship between these two
parameters, though the red center of the curve in thehgrbhove indicates the most

accurate set of parameters for the given data set.
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Fig. 58— Relative frequency diagram betweem andn

The relative frequency diagram betwegandn shows the relationship between these two
parameters for the PLE model. The red region in theecefitthe curvature in the graph
indicates the ideal combination of these two pararadte this specific set of data points
and model. Though there should not be any relatipnisétween these parameters, it is

evident from the graph above that there is a neghitigar relationship.
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Fig. 59 —Relative frequency diagram betwegrandD;

The relative frequency diagram betwegand D; shows the relationship between these
two parameters for the MH model. The red region in theceof the curvature in the
graph indicates the ideal combination of these tarameters for this specific set of data

points and model.

The results presented in Fig. 51-59 validate that catehis working properly and that

the set burn-in point was accurate.

Using the spatial statistics and the results of paeameters, we generated 1,000

realizations of the model predictions from the determipesterior distribution. It is

possible to generate as many realizations are des$ioeekver it was determined that

1,000 gave an accurate range of results. From there eteemine the mean of these
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realizations and the standard deviation, which indaéhe uncertainty of our Bayesian
model. This was done for the 700 and 450 days, ardwlas extended to 30 years. Below
are the results in Fig. 60 through 65 for Well 41 usirggPLE model.
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Fig. 60 —The 1,000 realizations of the model predictions uiiegBayesian paradigm

Fig. 60 shows the 1,000 realizations that were creaséty the parameters that were
determined with the MCMC. By looking at the graph, eam see that all the results fall
in a similar range. This graph shows 1,000 possitetinations of results. The next step
is to take the mean of these results, and compar¢hietoptimized values and the forward
model values.
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Fig. 61 —The production data with the mean of the realizatithres pptimal forward
model and the expert forward model

The graph above shows the three methods used isttldg against the production data.
In this case, the black curve is the optimal forwardlehothat was determined by the
applying the least squares optimization, the blugeis the mean of the 1,000 realizations
and finally, the turquoise curve is the expert forwardlehowhich in this case is the PLE
model. It is evident that in this case, the PLE sl@hd the mean of the model predictions
are superposed; therefore the two returned the sanie fidss is unexpected, however it
means that the PLE was the correct model to usalipjtand it means that the Bayesian

model produced the same results, therefore it agreesheitbriginal forward model.
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Fig. 62 —The 1,000 realizations of the model predictions uiiegBayesian paradigm
for 30 years

Fig. 62 shows the realizations of the model predistifmm 30 years. In the graph above,
the red curve is the expert forward model, therefore incdése, the MH model, and the
remaining curves are the realizations. It is intengsto note that the forward model
underestimates the reserves, which is noticeablausecthe curve is so far below the

remaining curves.
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Fig. 63 —The mean of the realizations and the expert forward mptsted for 30
years

Like the previous figure, Fig. 63 is plotted for 30ay& This graph is similar to the
previous graph, however shows the mean of the 1,002akans, therefore gives a
clearer view of the behavior of the model predictidnghis graph, it is evident that the
expert model (the PLE model) is underestimating thdtseedfe can see that in early time,
the two graphs seem to be overlapped, which is esent in Fig. 61, however it is
evident from Fig. 63 that the forward model and the Beyemodel do not yield the same
results. This is interesting to see, and an impoxantlusion to draw, because it shows
that the forecast is necessary for a longer period & torsee how the two models act.
We can see again that the forward model is signifigamderestimating the reserves

compared to the Bayesian model.
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Fig. 64 —The comparison of the standard deviations of the twe8an models

Fig. 64 shows the two standard deviations of the Bagesian models. It compares the
uncertainty of the two models. From the graph, it iglewt that the uncertainty of
Bayesian paradigm when used with the MH model deseeaver time, whereas that of
the PLE model remains constant. From this, it islewi that the MH model would be
more desirable for this specific case because the olgeavhen implementing the

Bayesian paradigm, is to decrease uncertainty ove. ti

The results of the other seven wells are included ipefgdix | through VIII.
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4.5.3 Discussion of the Results

Well 41 shows a beautiful convergence of the MCMC Itedor all three parameter of
the MH model and of the PLE model. The posterior digtions for the MH model when
implemented the Bayesian paradigm are also as &gedGaussian for tHefactor and
for gi, and lognormal foD;, which has been a trend in this study. We see time $eends
for the PLE posterior results; a Gaussian distributionnf@and g, and a lognormal
distribution ofDi. This is a truly excellent example of what we weyeng to show with
this study. The parameters of the two different modele hiae same distributions, even
though they are not related. This does tell us tirattwo D; values may somehow be

related, since we see the same behavior.

Based on the posterior distributions of the three paemewve created the relative
frequency histograms that show the relationship betviwerdifferent parameters Bb;
vs. b, g vs.bandq vs Di for the MH model and; vs. n, givs.nandgq; vs D; for the PLE
model.

The PLE results of the relative frequency histogramesalso very clear, and follow the
same trend as seen in Well 19 (Appendix IIl). It ipariant to show that both models for

all the wells are showing the same trends.

Finally we reach the realizations of the Bayesiangigm using the MH and PLE models.
We notice when we plot the mean of the realizaticersus the optimal forward model
(the results from the LSQ optimization), and the expmwvard model (either MH or

PLE), the mean of the model prediction and the expentdia model often times have
close values for the 700 production days plotted. Hewevhen we extend the results to
30 years that there is a divergence between twmetsults. In this case, the MH model,
when applied to the Bayesian paradigm overestimateyvesHowever in this case, the

PLE model does not follow the same trend as the Mideh@nd is underestimating the
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reserves. This is the first time that we see this reu#t interesting to see that the same

well and same set of production data can lead to difigrent results.

The graph that compares the standard deviations ofwbesets of Bayesian results
identifies the uncertainty of the two models. Fromrawilts, we see a similar trend in the
uncertainty as we did for Well 41. This is interestiegause this well's cases both yielded
excellent results, however from these results, we caths¢ the MH model is decreasing
uncertainty with time but the PLE model is not.
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5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The conclusions of based on our detailed analysiseaif ¥ are:

* The Bayesian paradigm implemented with the MH mogefestimates reserves.

» The Bayesian paradigm implemented with the PLE modderestimates reserves.
Furthermore, thencertainty of the two models:

» Decreases when the MH model is applied to the Baggzmradigm.

* Remains constant when the PLE model is appliededayesian paradigm.

An indicator of a successful model in the Bayesian gigma is that it's uncertainty
decreases with time — as such, this work suggestsittaMH model should yield the
most reliable results when the Bayesian paradigmpseap We note for completeness
that these results and conclusions are only validhisr well (Well 41), and may not

necessarily apply for the other two wells.

The data diagnostics and analyses for the remaindeneofvells are shown in the
Appendices. Overall, Set 1, the set of five wellatated at 700 days, has more accurate
results than Set 2, the set of three wells truncaté8@tlays. This is most likely because
there are more production data available in Set ltlae@fore the Bayesian model can
more effectively isolate the model based on the uyidertrend in the data. However,
there are certain results of Set 2 that show a goodecgance of the three parameters of
the model (e.g., the Bayesian forecast using the Pa#eifor Well 67). Overall, it is
better to have more production history. Due to éssér production history, it is probable
that the decline behavior of the wells in Set 2 ahlhnge as more data is collected.

The majority of the wells exhibit behavior that favioe tMH model (in particular, Wells
18, 20, 24, 38, 40 and 41), all of which yield theistresults when we apply the Bayesian
paradigm using the MH model. Wells 19 and 67 aretwlee"best cases" for when the
PLE model is applied to the Bayesian paradigm.
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We see that the MH and PLE forward models and the roktre realizations are often
juxtaposed at early times and the difference betweemtodels is seen at later times.
When the forecast was extended to 30 years, we cam\abwhether or not the forward
model over- or underestimates the reserves. As cominisrifiteresting that the majority

of the wells evaluated follow the MH model rather tiiam PLE model.

Well 38 has poor results for both models, however wherMH model was applied to
the Bayesian forecast, only one of the three pamematid not converge. The same
behavior was observed for Well 24. However as prelyaliscussed, Well 24 does not
exhibit a good production trend and the lack of agfmata trend does not aid in obtaining
accurate DCA or statistical results. Well 41 doeBilka good match when the PLE
model was applied to the Bayesian forecast althohglstandard deviation for the MH

model is lower, which is our target criteria.

The goal of this study is to show the discrepancgfmr) obtained when using traditional
decline curve methods compared to the applicatioheo{Bayesian) statistical model. As
process, the DCA approach using the two forward modetslifiMd-Hyperbolic (MH)
and Power-Law Exponential (PLE)) was performed visualthere the best fit of the data
was obtained using a proprietary software. After thicg@ss was performed for each of
the wells, the resulting values of the different paramsefor each DCA relation were
documented, along with the EUR results. This parthef study was not very time
consuming, and as is the convention, we would expech results to tend towards the

median of the Bayesian paradigm (at least that isxtpectation).

When applying the Bayesian paradigm using the MHLdE Bodels, there are multiple
steps involved, and significant computational tisyequired. Initially, we apply the LSQ
optimization, then apply the MCMC methodology oe tifferent parameters for each
decline model, and finally we forecast the results fier historical data, and then for 30
years. When the MCMC methodology is implemented simulation takes hours to run

for the case of two million iterations — however, foe tbase of 50 million iterations,
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models took several days to run. This process, keimg consuming, can be seen as a
drawback. However; once the results are presentedameisually see that the Bayesian
paradigm produces results that are statistically morerate, and clearly shows when the

forward model is over- or under-estimating results foivargcase.

5.2 Future Work

The next step in this study is to perform a comparigahe 30-year forecasted cumulative
production as a surrogate for EUR. This action waspnotided in this work due to
constraints in the modeling approach. This wouldehavbe performed "externally” to
the Bayesian approach in the current solution cordiiipn. After this has been done, it
would be ideal to change the prior estimate. Irstdaassuming that the prior estimate is
unknown, we can begin to update this value usieglifierent stages of information. This
will show that the more information we have, the maeusate the Bayesian forecast will
be. Using these results we could show directly thatertainty decreases over time,
indicating that the more information known in the mothee less uncertain the model will
be. Such a process will also indicate if there i@tpwhere no more information is
needed in the prior estimations, and that havingrinéion on a certain (minimum)
number of data points will not affect the result of theecast. We can assume that the
model will be more accurate as more information is pedig- however; we would like

to prove this conjecture.

Finally, we would like to plot surfaces of the differgrgarameters of the two forward
equations to have a 3D representation of how the gaeaschange in 3D space. Initially,
we will plot the values of the eight wells that hdaeen used in this study. Then, we will
eliminate one well and see if the estimated valueshat point are the same, or
approximately the same as the actual values. If meethat the two values correspond,
we can remove another well, to see how well the madlekestimate the values at that
point. After this has been completed, we can inedlas area of investigation and begin
to estimate values at different parts of the play tleahot have producing wells. The
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results may also indicate if a particular well is waithling or not, and there would be a

visual representation production potential of the play.
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APPENDIX |

QDB PLOTS OF MH AND PLE MODELS

Results of the Modified Hyperbolic and Power Law Expuia methods of the
two truncated data sets. Set 1 includes wells 1932040, 41 and Set 2 includes wells
18, 24 and 67.

Time-Rate Models Comparison, Well 18
MH and PLE Models—Numerical Simulation Case
g-.D-,b-parameters versus Time Plot [Log-Log Scale]
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Fig. 65 —qDb plot of Well 18 using the MH and PLE models
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Time-Rate Models Comparison, Well 19
MH and PLE Models—Numerical Simulation Case
g-,D- b-parameters versus Time Plot [Log-Log Scale]
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Fig. 66 —qDb plot of Well 19 using the MH and PLE models
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Fig. 67 —qDb plot of Well 20 using the MH and PLE models
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Time-Rate Models Comparison, Well 24
MH and PLE Models-Numerical Simulation Case
g-,D-,b-parameters versus Time Plot [Log-Log Scale]
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Fig. 68 —qDb plot of Well 24 using the MH and PLE models

Time-Rate Models Comparison, Well 38
MH and PLE Models—-Numerical Simulation Case
g-,D-,b-parameters versus Time Plot [Log-Log Scale]
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Fig. 69 —qgDb plot of Well 38 using the MH and PLE models
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Time-Rate Models Comparison, Well 40
MH and PLE Models—Numerical Simulation Case
g-,D-,b-parameters versus Time Plot [Log-Log Scale]
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Fig. 70 —qgDb plot of Well 40 using the MH and PLE models

Time-Rate Models Comparison, Well 67
MH and PLE Models-Numerical Simulation Case
q-,D-,b-parameters versus Time Plot [Log-Log Scale]
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Fig. 71 —qgDb plot of Well 67 using the MH and PLE models
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From the eight graphs in this appendix, we can se@itbduction trend of each
well, along with the match in thefactor andD; parameters. It is from these graphs that
we determined the values of these three parameters, ifodiattles 1 and 2. As previously
stated, we used the results to perform the LSQ optimaizaand when applying the
Bayesian paradigm. The above graphs have both theaRtl MH results, presented in the
black and blue curves, respectively. The objectiveenvperforming the DCA in these
wells was the best match the production data (thengreeve). This sometimes led to
unrealistic results for all three parameters, howeverctmsalso be attributed to using the
incorrect model to forecast the well.

From this step, we performed the LSQ optimization lbtha wells, for both the
MH and PLE models, and then the Bayesian paradighbeimplemented. The results

of all the wells are presented below.
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APPENDIX Il

RESULTS AND ANALYSIS OF WELL 18

Well 18 — Modified Hyperbolic Model
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Fig. 72 —Results of the least squares optimization againgprtheéuction data of Well
18 for the MH Model
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Fig. 92 —The production data with the mean of the realizatitres pptimal forward
model and the MH model of Well 18
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Well 18 — Power Law Exponential Model
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Fig. 95 —Results of the least squares optimization againgprtheéuction data of Well
18 for the PLE Model

70

I rrrrrrrrrr
50
W RSO — S j
30+

20

0 Il | Il
=500 -400 -300 =200 -100 0 100 200 300 400 500
Distribution of Error

Fig. 96 —The distribution of error between the production datathed.SQ results for
Well 18 for the PLE Model

120



Empirical CDF

1 T ‘ T o 1)_)/_,,_,—»— T
oo . f& 777777777777777
: fJ ! |
i By : |
0.8 - / i
0.7 -y
b ' :
wff : |
QB - = o ranmcns T R e R
L e e R

/ i

/o !
0.4 / : : B
0.3F / : 5 _

02r ; ; J
.
0AF----- /// e T * 7| —— Cumulative Error Distribution Function
,/'? - | —— Normal Cumulative Distribution Function
e L L T T T T
-800 -100 0 100 200 300 400 500

Cumulative Distribution of Error
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Empirical CDF
1 T T T T \ T
Cumulative Distribution Function -
0.9 —— Normal Cumulative Distribution Function|. - .. .. ... ...

0.8|
0.7
0.6-
Z0.5+

0.4

0.3r
0.2

01 R e L

ol e \ 1 I I L
820 840 860 880 900 920 940 960
qi (BOED)
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Fig. 111 —Relative frequency diagram betwenandn of Well 18 using the PLE
model
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Fig. 113 —Relative frequency diagram betwegrandD; of Well 18 using the PLE
model
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model and the PLE model of Well 18
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Analysis

Well 18 shows interesting results with the MCMC resudtspecially when determining
theb-factor, shown irFig. 76. D converges immediately, as doesdhehich can be seen
in Fig. 78and80. We applied the burn-in point and notice that thst@aor distribution
of the three parameters is quite different. We see ad@awudistribution for botiD; and
giin Fig. 84and86, however see a different distribution for théactor Fig. 82, which

is attributed to the non-convergence of the MCMC. Wpeet to obtain normally
distributed posteriors because this was an assumpidoie initially.

If we compare these MCMC results with the results pteduwhen applying the PLE
model, we notice that that model convergesifaheD; and for theg;, shown inFig. 99,
101 and 103 respectively, after four million iterations. Howevaer,this case, the only
parameter that exhibits a Gaussian distribution inptb&terior isg, shown inFig. 109
Both posterior distributions fon andD; are lognormal in this case. This is a different
result that we have not seen from anothefhe results may be exhibit this distribution
because the conversion is not excellent, thus skgthim further results.

Based on the posterior distributions of the three paemetwve created the relative
frequency histograms that show the relationship betwserdifferent parameters Bi

vs. b, g vs.bandq vs Di for the MH model andi vs. n, gi vs.nandgq; vs D; for the PLE
model. These results can be seefig 88, 89and90, respectively, for the MH model
andFig. 111, 112and 113 respectively, for the PLE model. The quality of thiatree
frequency histograms is based upon the quality optis¢erior of the parameters, because
it is just a representation of the two parameters agaach other. From Fig. 88 and 89,
we see that because of the poor results due tb-thetor that the histograms become
skewed and we cannot determine the relationship diwbgarameters. However, we see
that in Fig. 90 that there is a linear relationstepAieng andDi. These are same results

we have seen in other wells, and have encounteredaime problem due to poor
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convergence of parameters. The PLE results of theveliequency histogram show

interesting results that are the same results we se®n with the other wells.

We then reach the realizations of the Bayesian paradging the MH and PLE models.
We notice when we plot the mean of the realizatiaersus the optimal forward model
(the results from the LSQ optimization), and the expamvard model (either MH or

PLE), the mean of the model prediction and the expentdial model often times have
close values for the 700 days plotted. However, wherextend the results to 30 years
that there is a divergence between two sets of resultisis case, the MH forward model
overestimates the reserves, as seéfign 94 for the MH model anérig. 117for the PLE

model. Both models show that they overestimate therves.

Finally, the standard deviation comparison of the 8&ts of Bayesian resultSig. 118
identifies the uncertainty of the two models. In thseof this well, it is evident that the
uncertainty is much greater in the PLE model thanh® MH model, in early time.
However, as the model progresses, we see that thet@nwdard deviation values converge,
and are at 0. This means that there is no more unugrtaiated to either of the models,
which is a fascinating discovery. This being sdié,uncertainty in early time is very great
in the PLE model, therefore the MH model seems toigeoa more accurate result when
implementing the Bayesian paradigm.
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APPENDIX 11l

RESULTS AND ANALYSIS OF WELL 19

Well 19 — Modified Hyperbolic Model
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Fig. 119 —Results of the least squares optimization agaimsptbduction data of Well
19 for the MH Model
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Fig. 120 —The distribution of error between the production datathed_SQ results
for Well 19 for the MH Model
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Fig. 121 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 19 for the MH Model
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Fig. 123 —MCMC results of thé-factor for the MH model of Well 19 using the MH
model
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Fig. 125 —MCMC results oD; for the MH model of Well 19 using the MH model
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Fig. 129 —Posterior relative frequency histogrambadf Well 19 using the MH model
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Fig. 130 —Cumulative posterior relative frequency histogram ofttfiector of Well 19
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Fig. 131 —Posterior relative frequency histogramafof Well 19 using the MH model
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Fig. 132 —Cumulative posterior relative frequency histogranbpdf Well 19 using
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Fig. 133 —Posterior relative frequency histogramgobf Well 19 using the MH model
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Fig. 135 —Relative frequency diagram betweenandb of Well 19 using the MH
model
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Fig. 138 —The 1,000 realizations of the model predictions uiiegBayesian paradigm
of Well 19 with the MH model
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Fig. 139 —The production data with the mean of the realizatitms pptimal forward
model and the MH model of Well 19
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Well 19 — Power Law Exponential Model
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Fig. 142 —Results of the least squares optimization agaimsptbduction data of Well
19 for the PLE Model
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Fig. 143 —The distribution of error between the production datataed_SQ results
for Well 19 for the PLE Model
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Fig. 144 —The cumulative distribution of error is plotted agaihst normal cumulative
distribution function of Well 19 for the PLE Model
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model
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Fig. 152 —Posterior relative frequency histogramnadf Well 19 using the PLE model
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Fig. 153 —Cumulative posterior relative frequency histogranm of Well 19 using the
PLE model
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Fig. 154 —Posterior relative frequency histogramafof Well 19 using the PLE model
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Fig. 155 —Cumulative posterior relative frequency histogranbopdf Well 19 using
the PLE model
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Fig. 156 —Posterior relative frequency histogramgpbf Well 19 using the PLE model
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Fig. 157 —Cumulative posterior relative frequency histograngaff Well 19 using the
PLE model
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Fig. 158—Relative frequency diagram betweBnandn of Well 19 using the PLE
model
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Fig. 159 —Relative frequency diagram betwegrandn of Well 19 using the PLE
model
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Fig. 160 —Relative frequency diagram betwegrandD; of Well 19 using the PLE
model
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Fig. 161 —The 1,000 realizations of the model predictions ulegBayesian paradigm
of Well 19 with the PLE model
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Fig. 162 —The production data with the mean of the realizatitms pptimal forward
model and the PLE model of Well 19
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Analysis

Well 19 shows interesting results with the MCMC resudtspecially when determining
theb-factor, shown irFig. 123 From the theory, thie-factor should have converged and
is not, even after 10 million iterations. This ind&sto me that the restriction that we set
of theb-factor being greater than 0 is incorrect because thesafb are close to 0, but
the b-factor should set to 0 in this case, when usingMhiemodel to apply the MCMC.
However, we notice that tH& converges immediately, as does th&vhich can be seen
in Fig. 125and127. We applied the burn-in point and notice that thetg@aor distribution

of the three parameters is quite different. We see adizaudistribution for boti; and

g in Fig. 131and133 however see a different distribution for thdactor Fig. 129,
which is attributed to the non-convergence of the MCM@ expect to obtain normally
distributed posteriors because this was an assumpthaie initially. If we compare these
MCMC results with the results produced when applyimg PLE model, we notice that
that model converges nicely for thetheD; and for theg;, shown inFig. 146 148 and
150, respectively, after only two million iterations. Whbtain a clean mean of all three
parameters, which lead to clear posterior distributibhen andg; posteriors are normally
distributed Fig. 152and156 respectively, however we see a log-normal distribution for
Di (Fig. 154).1t is a trend throughout the PLE results that Bheshows a lognormal
distribution, which, as previously stated, is anxpezted result because we expected the

distribution to be normal.

Based on the posterior distributions of the three paemetwve created the relative
frequency histograms that show the relationship betviwerdifferent parameters Bb;

vs. b, g vs.bandq vs Di for the MH model andi vs. n, givs.nandgq; vs D; for the PLE
model. These results can be seehign 135, 136and137, respectively, for the MH model
andFig. 158, 159and 160, respectively, for the PLE model. The quality of thiatree
frequency histograms is based upon the quality optis¢erior of the parameters, because
it is just a representation of the two parametersnagaach other. From Fig. 135 and 136,
we see that because of the poor results due tb-thetor that the histograms become
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skewed and we cannot determine the relationship diwbgarameters. However, we see
that in Fig. 137 that there is a linear relationsbgweeng andDi. The red part of the
graph identifies the ideal set of the two paramédtarshis data set using the MH model.
For the PLE results of the relative frequency histogramsee interesting results. In Fig.
158, we see a very interesting relationship betw&emdn, which shows a curve. This
may indicate that there is no set relationship betwtbese two parameters, because there
should not be. However, another interesting obsemdtom Fig. 159 and 160 is that

has opposite relationships withand theb-factor.

Finally we reach the realizations of the Bayesiangigm using the MH and PLE models.
We notice when we plot the mean of the realizaticgrsus the optimal forward model
(the results from the LSQ optimization), and the expmwvard model (either MH or
PLE), the mean of the model prediction and the expentdia model often times have
close values for the 700 days plotted. However, wherextend the results to 30 years
that there is a divergence between two sets of eednlgeneral, the results show that the
forward model underestimates the reserves, as séeg ib41for the MH model anéig.
164 for the PLE model.

The most interesting graph to discuss, however,egthph that compares the standard
deviations of the two sets of Bayesian resufiy. 165 This figure identifies the
uncertainty of the two models. We can see that tlcerti@inty is approximately the same
in early time, however as time progresses, the PLEeingltbws less uncertainty while
the MH model's uncertainty increases and is prevalenugh the 30 years. From this
graph, | would determine that the most acceptabldeitm use would be the Bayesian

forecast model, by applying the PLE model.
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APPENDIX IV

RESULTS AND ANALYSIS OF WELL 20

Well 20 — Modified Hyperbolic Model
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Fig. 166 —Results of the least squares optimization agaimsptbduction data of Well
20 for the MH Model
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Fig. 167 —The distribution of error between the production datathed_SQ results
for Well 20 for the MH Model
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Fig. 168 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 20 for the MH Model
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Fig. 169 —The error of the least squares optimization againstahgber of production
days of Well 20 for the MH Model
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Fig. 170 —MCMC results of thé-factor for the MH model of Well 20 using the MH
model
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Fig. 171 —Cumulative mean and standard deviation ofiifi@ctor of Well 20 using the
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Fig. 172 —MCMC results oD; for the MH model of Well 20 using the MH model
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Fig. 174 —MCMC results ofg; for the MH model of Well 20 using the MH model
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Fig. 182 —Relative frequency diagram betwe@nandb of Well 20 using the MH
model
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Well 20 — Power Law Exponential Model
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Fig. 189 —Results of the least squares optimization agaimsptbduction data of Well
20 for the PLE Model
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Fig. 199 —Posterior relative frequency histogramnadf Well 20 using the PLE model
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Fig. 210 —The 1,000 realizations of the model predictions usiiegBayesian paradigm
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Analysis

The MCMC results of Well 20's three parameters convefgg two million iterations
when using the MH model, as seerfig. 170 172and174. This is an excellent example
of the behavior expected when performing the MCMC given parameter. We applied
the burn-in point and notice that the posterior distidvuof the three parameters follow
the similar distributions. We see a Gaussian distiobuior bothbandg;in Fig. 176and
180, however see more of a lognormal distributionPpr(Fig. 178. This is consistent
with the behavior oD; for Well 19 PLE model, which is even more interggtirecause

the two values oD; have different meanings.

If we compare these MCMC results with the results predughen applying the PLE
model, we notice that that model does not convefgeany of the parameters, Di, )
shown inFig. 193 195 and197, respectively, after 10 million iterations. Since aaf
the parameters converge, we do not obtain a cleaan minerefore the posterior
distributions are incorrect. The Di andqg posteriors show a type of distributiolid.
199, 201and203 respectively, however these distributions do not tell us muchuabee
posterior.

In this instance, it is evident that Well 20 does follow the PLE model. None of the
three parameters converge, though the code ran for li@mmterations and did not
converge. The relative frequency histograms of the Midite show beautiful correlations
between the parameters, however, unfortunately, therB&lts yield no information.
The explanation can be that the well's productiaia & not following the PLE model,
which is also visible in the unlikely results of EURD; andq; from the initial DCA work,
presented in Table 2. The PLE relative frequency hiatog are presented kig. 205
206 and207.

Finally we reach the realizations of the Bayesiangigm using the MH and PLE models.
In this well's case, the results of the MH model aleal, as presented in Fig. 196.
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However, we cannot have faith in the results of the Ridélel, and this is evident with
the representation of the mean of the realizations.cTinve created while implementing
the Bayesian paradigm does not fit the data in thst|@nd neither does the curve of the
forward model PLE results, seenkig. 209 However, the curve of the optimized results

does capture a better trend of the data, which istaneisting result.

The graph that compares the standard deviations divtheets of Bayesian resultsg.

212 shows that the uncertainty of the PLE model remeimstant as the uncertainty of
the MH model decrease with time. From this result, gredinconclusive results of the
PLE, | would say that this well follows the MH modElurthermore, it is evident that the
Bayesian implementation gives a more realistic dedihan the forward model, and when
comparing the mean of realizations against the forwardehin this case the MH model,

it is evident that the forward model is underestimatireggreserves (Fig. 198).
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APPENDIX V

RESULTS AND ANALYSIS OF WELL 24

Well 24 — Modified Hyperbolic Model
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Fig. 213 —Results of the least squares optimization agaimsptbduction data of Well
24 for the MH Model
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Fig. 214 —The distribution of error between the production datataed_SQ results
for Well 24 for the MH Model
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Fig. 215 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 24 for the MH Model
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Fig. 217 —MCMC results of thé-factor for the MH model of Well 24 using the MH
model

188



42 .

o AT B e —_—

B e e e W = S =~ i e i M

3 f = o

= AT d

¢ 38 i

&

-

]

4 ‘ '
B 0 0.5 1 1.5 2

lterations x 10°

o

c 0.4 ; :

e e e

5 .

g 0 SF'W\N\’JW ................................

T

©

T02

©

n

R

g % 0.5 1 15 2
Iterations x 10°

Fig. 218 —Cumulative mean and standard deviation oftifi@ctor of Well 24 using the
MH model

0.08 T

0.07

2 | e L |

0.05

05004

0.03n

0.02

0.01

00 0.5 1 1.5 2

Iterations x 10°

Fig. 219 —MCMC results oD; for the MH model of Well 24 using the MH model
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Fig. 225 —Posterior relative frequency histogramafof Well 24 using the MH model
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Fig. 226 —Cumulative posterior relative frequency histogranbpdf Well 24 using
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Fig. 228 —Cumulative posterior relative frequency histograngiaff Well 24 using the
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Fig. 231 —Relative frequency diagram betwegrandD; of Well 24 using the MH
model
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Fig. 232 —The 1,000 realizations of the model predictions usiregBayesian paradigm
of Well 24 with the MH model
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Fig. 233 —The production data with the mean of the realizatitmes pptimal forward
model and the MH model of Well 24
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Well 24 — Power Law Exponential Model
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Fig. 236 —Results of the least squares optimization agaimsptbduction data of Well
19 for the PLE Model
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Fig. 237 —The distribution of error between the production datataed_SQ results
for Well 24 for the PLE Model
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Fig. 238 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 24 for the PLE Model
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Fig. 251 —Cumulative posterior relative frequency histograngiaff Well 24 using the
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model
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Fig. 254 —Relative frequency diagram betwegrandD; of Well 24 using the PLE
model
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Fig. 255 —The 1,000 realizations of the model predictions usiiegBayesian paradigm
of Well 24 with the PLE model
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Fig. 256 —The production data with the mean of the realizatitms pptimal forward
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for 30 years of Well 24

208



10 T Tt
10° ; ! L
@) ‘ | i
(1N} | ! ]
e 1 s :
D, | 3 TRL:
R B I 1 R
§ : \\ .
T ! \
o | |
o g1 | Wil
S i ; it
c ] 1 i
© | |
0 | bl v | ‘
= 10 L L LAl A A
—— Mean of Model Plrediétion 30 years, PLE
—— Expert Forward Model |
10'20 . n T L n T T T H vl .
0 1 2 3 4 5
10 10 10 10 10 10
Time (Days)
Fig. 258 —The mean of the realizations and the PLE model,quddtir 30 years for
Well 24
80 T
Standard Deviation - PLE, 30 years
Standard Deviation - MH, 30 years
70 i
L i i ---------------- -
Ll ! :
@] | !
@ 5 3 !
c ‘ {
0o ‘ !
© j i
B R s e -
® ‘ A
[m] j i
T a0t ; ; .
© ‘ !
o ‘ "
c ‘ P . -
g 20| R .
i
10 V/ _
0 | ) 77—7—77_77¥7_7_77_ ——
0 2000 4000 6000 8000 10000 12000
Time (Days)

Fig. 259 —Comparison of the Standard Deviation of the two Bayefsieecasts using
the MH and PLE models of Well 24
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Analysis

Well 24 is an interesting case because there is @f ldisruption in the production data.
Though we cleaned the data before beginning the/sisathe truncation of the data, along
with the different completions changes are challetgepply any DCA, but also to obtain
accurate results using the LSQ optimization anBtgesian paradigm.

The MCMC results do not converge for any of the threarpaters of the MH model, as
seen inFig. 217,219and221 The best conversion of the three parameters is-thetor,
shown in Fig. 236. Because of the lack of convergeoicthe three parameters, the
posterior distribution of the three parameters is intergstt seems that the posteriors of
b andq;, shown inFig. 223and227, respectively, are trying to be normally distributed,
but because of the lack of convergence, they are\Wat.do see a lognormal distribution
of Diin Fig. 225 This is consistent with the trend we have seerutftrout this study.

When we compare these MCMC results with the resuldymed when applying the PLE
model, we notice that that model does not conveigesny of the three PLE parameters,
shown inFig. 24Q 242 and244, after 50 million iterations. This is a very strangsute
because it is expected that after 50 million iteretjghe parameters would converge. This
may be due to the production data, but also to #te kot following the PLE model. Due
to the results of the MCMC, the posterior distributidos all three parameters are
meaningless, seen kg. 246 248and250

Based on the posterior distributions of the three paemetwve created the relative
frequency histograms that show the relationship betwserdifferent parameters Bi

vs. b, g vs.bandq vs Di for the MH model andi vs. n, givs.nandgq; vs D; for the PLE
model. These results can be seehign 229, 230and231, respectively, for the MH model
andFig. 252, 253and 254, respectively, for the PLE model. The quality of thiatree
frequency histograms is based upon the quality optis¢erior of the parameters, because
it is just a representation of the two parametersagaach other. From Fig. 252, 253 and
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254, we see that because of the poor results duetla¢k of convergence of all three
parameters. However the trend of the relationship bettfeeparameters is still visible.
These are same results we have seen in other wetishave encountered the same
problem due to poor convergence of parameters. The Rulig®f the relative frequency

histograms do not show results.

Finally we reach the realizations of the Bayesiangigm using the MH and PLE models.
We notice when we plot the mean of the realizaticgrsus the optimal forward model
(the results from the LSQ optimization), and the expamvard model (either MH or
PLE), the mean of the model prediction and the expentda model often times have
close values for the 700 days plotted. However, wherextend the results to 30 years
that there is a divergence between two sets of resultisis case, the MH forward model
underestimates the reserves, as sedfign235for the MH model andrig. 258 for the

PLE model. Both models show that they underestittiegt@eserves.

Finally, the standard deviation comparison of the $&ts of Bayesian resultsig. 259
identifies the uncertainty of the two models. In thsecof this well, the standard deviation
is very interesting because it shows that the twdets have the same uncertainty in early
time, and then the uncertainty of the MH model de@gawhile the uncertainty of the
PLE model increases. This gives little faith in tesults of the PLE model for this well.
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APPENDIX VI

RESULTS AND ANALYSIS OF WELL 38

Well 38 — Modified Hyperbolic Model
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Fig. 260 —Results of the least squares optimization agaimsptbduction data of Well
38 for the MH Model
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Fig. 261 —The distribution of error between the production datathed_SQ results

for Well 38 for the MH Model
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Fig. 264 —MCMC results of thé-factor for the MH model of Well 38 using the MH
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Fig. 272 —Posterior relative frequency histogramafof Well 38 using the MH model
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Fig. 273 —Cumulative posterior relative frequency histogranbpdf Well 38 using
the MH model
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Fig. 274 —Posterior relative frequency histogramgobf Well 38 using the MH model
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Fig. 275 —Cumulative posterior relative frequency histograngiaff Well 38 using the
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Fig. 276 —Relative frequency diagram betwenandb of Well 38 using the MH
model
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Fig. 279 —The 1,000 realizations of the model predictions usiiegBayesian paradigm
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Fig. 280 —The production data with the mean of the realizatitmes pptimal forward
model and the MH model of Well 38
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Well 38 — Power Law Exponential Model
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Fig. 283 —Results of the least squares optimization agaimsptbduction data of Well
38 for the PLE Model
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Fig. 284 —The distribution of error between the production datathed_SQ results
for Well 38 for the PLE Model
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Fig. 285 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 38 for the PLE Model
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Fig. 293 —Posterior relative frequency histogramnadf Well 38 using the PLE model
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PLE model
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Fig. 295 —Posterior relative frequency histogramafof Well 38 using the PLE model
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Fig. 298 —Cumulative posterior relative frequency histograngiaff Well 38 using the
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Fig. 299 —Relative frequency diagram betwenandn of Well 38 using the PLE
model
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Fig. 300 —Relative frequency diagram betwegrandn of Well 38 using the PLE
model
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Fig. 301 —Relative frequency diagram betwegrandD; of Well 38 using the PLE
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Fig. 302 —The 1,000 realizations of the model predictions usilegBayesian paradigm
of Well 38 with the PLE model
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Fig. 303 —The production data with the mean of the realizatitms pptimal forward
model and the PLE model of Well 38
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Analysis

Well 38 also shows interesting results with the MCMe&sults, especially when
determining theb-factor, shown inFig. 264 From the theory, thb-factor should have
converged and is not, even after 10 million iteratiorasaw the same conclusion as with
Well 19, that the restriction that was set on lbFfactor being greater than 0 is incorrect
because the valueslofare close to 0, but thefactor should be set to 0 in this case, when
using the MH model to apply the MCMC. However, wdic that theD; converges
immediately, as does tlig which can be seen ifg. 266and270. We applied the burn-
in point and notice that the posterior distributiorttaf three parameters is quite different.
We see a Gaussian distribution for b&thandgiin Fig. 272 and274, however see a
different distribution for theb-factor (Fig. 270, which is attributed to the non-
convergence of the MCMC.

If we compare these MCMC results with the results predughen applying the PLE
model, we notice that this model does not convergk for n andDi, shown inFig. 287
and289, respectivelyhowever does converge fgt shown inFig. 291 This model was
let to run for five million iterations, as we were hopfoga better convergence in the two

first parameters mentioned above.

Since then andD; MCMC results do not converge, the posteriors of the@separameters
are also inaccurate, seenHig. 293 and295 respectively. From these results, we also
notice thatn is greater than 1, even though we expect it to retmetvwween 0 and 1. This
is most likely due to the fact that the Eagle Fondl8 is an unconventional reservoir, and
the PLE model is meant for conventional reservoirgnethough it is applied to the
unconventional ones as wdll. somewhat converges after four million iterations, havev
it is evident that it is not a stable result. Tmdycaccurate representation of the posterior

is theqi (Fig. 299 because it converged.
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Based on the posterior distributions of the three paemetwve created the relative
frequency histograms that show the relationship betviwerdifferent parameters Bb;
vs. b, g vs.bandq vs Di for the MH model andi vs. n, givs.nandgq; vs D; for the PLE
model. These results can be seeRign 276, 277and278, respectively, for the MH model
andFig. 299, 300and301, respectively, for the PLE model.

From Fig. 276 and 277, we see that the poor resuét$altheb-factor that the histograms
become skewed and we cannot determine a good redaipof the two parameters.
However, we see that in Fig. 278 that there is atimelationship betwees andDi. The
red part of the graph identifies the ideal set of the pax@meters for this data set using
the MH model.

For the PLE results of the relative frequency histogramsee interesting results. In Fig.
299, we see a very interesting relationship betw&emdn, which shows a curve. This
may indicate that there is no set relationship betwtbese two parameters, because there
should not be. However, another interesting obsemdtom Fig. 300 and 301 is that

has opposite relationships wilh and theb-factor. This is similar to the trend seen for
Well 19, however the relationship is not as cleahis well. However, we see a consistent

trend between parameters which is an interestingtresul

Finally we reach the realizations of the Bayesiangigm using the MH and PLE models.
We notice when we plot the mean of the realizaticersus the optimal forward model
(the results from the LSQ optimization), and the expewvard model (either MH or

PLE), the mean of the model prediction and the expentdial model often times have
close values for the 700 days plotted. However, wherextend the results to 30 years
that there is a divergence between two sets of eedulthis case, the MH model, when
applied to the Bayesian paradigm overestimates resasegen ifrig. 282.This is the

same result that is presented for the PLE model whplnedpto the Bayesian paradigm,
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shown inFig. 305 These results show that the forward models can ovresdst or

underestimate the reserves.

The graph that compares the standard deviations divtheets of Bayesian resultsg.
306, identifies the uncertainty of the two models. Frdra tesults of the two standard
deviations plotted against each other, it is evidbat in early time (to approximately
2,000 days), the PLE model shows a higher uncertathbyvever in later time, the
uncertainty of the PLE model decreases. This resutliéxpected due to the results of the
MCMC.
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APPENDIX VII

RESULTS AND ANALYSIS OF WELL 40

Well 40 — Modified Hyperbolic Model
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Fig. 307 —Results of the least squares optimization agaimsptbduction data of Well
40 for the MH Model
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Fig. 308 —The distribution of error between the production datathed_SQ results
for Well 40 for the MH Model
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Fig. 309 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 40 for the MH Model
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Fig. 310 —The error of the least squares optimization againstahgber of production
days of Well 40 for the MH Model
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Fig. 311 —MCMC results of thé-factor for the MH model of Well 40 using the MH
model
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Fig. 313 —MCMC results oD; for the MH model of Well 40 using the MH model
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Fig. 319 —Posterior relative frequency histogramafof Well 40 using the MH model
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Fig. 320 —Cumulative posterior relative frequency histogranbpdf Well 40 using
the MH model
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Fig. 321 —Posterior relative frequency histogramgobf Well 40 using the MH model
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Fig. 322 —Cumulative posterior relative frequency histograngiaff Well 40 using the
MH model
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Fig. 326 —The 1,000 realizations of the model predictions utlegBayesian paradigm
of Well 40 with the MH model
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Fig. 327 —The production data with the mean of the realizatitmes pptimal forward
model and the MH model of Well 40
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Well 40 — Power Law Exponential Model
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Fig. 330 —Results of the least squares optimization agaimsptbduction data of Well
40 for the PLE Model
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Fig. 331 —The distribution of error between the production datataed_SQ results
for Well 40 for the PLE Model
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Fig. 332 —The cumulative distribution of error is plotted agathst normal cumulative
distribution function of Well 40 for the PLE Model
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Fig. 336 —MCMC results oD; for the MH model of Well 40 using the PLE model
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Fig. 340 —Posterior relative frequency histogramnadf Well 40 using the PLE model
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Fig. 341 —Cumulative posterior relative frequency histogranm of Well 40 using the
PLE model
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Fig. 342 —Posterior relative frequency histogramafof Well 40 using the PLE model
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Fig. 343 —Cumulative posterior relative frequency histogranDobf Well 40 using
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Fig. 344 —Posterior relative frequency histogramgpbf Well 40 using the PLE model
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Fig. 345 —Cumulative posterior relative frequency histograngiaff Well 40 using the
PLE model
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Fig. 347 —Relative frequency diagram betwegrandn of Well 40 using the PLE
model
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Fig. 348 —Relative frequency diagram betwegrandD; of Well 40 using the PLE
model
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Fig. 349 —The 1,000 realizations of the model predictions usiiegBayesian paradigm
of Well 40 with the PLE model
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Fig. 350 —The production data with the mean of the realizatitms pptimal forward
model and the PLE model of Well 40
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Fig. 351 —The 1,000 realizations of the model predictions usilegBayesian paradigm
for 30 years of Well 40
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Analysis

Well 40 shows a beautiful convergence of the MCMC Itedor all three parameter of
the MH model, seen ifig. 311, 313 and 315 The posterior distributions are also as
expected — Gaussian for thdactor and fo;, seen irFig. 317and321, respectively, and
lognormal forDi, which has been a trend in this study, showhig 319

If we compare the MCMC results while applying the Mhigdel with the results produced
when applying the PLE model, we notice that thidlel@loes not converge well for any
of the parameters, shownhig. 334, 33nd338 This model was let to run for 20 million

iterations, as we were hoping for a better convergencalfthe parameters.

Since the parameters did not converge when the MCld€applied, the posteriors of all
three parameters are also inaccurate, se€igin34Q 342 and344 If the model ran for
more iterations, it is probable that the parameters dvoahverge, because it is evident

that they beginning to towards the end of the 20ioniliterations.

Based on the posterior distributions of the three paemewve created the relative
frequency histograms that show the relationship betviwerdifferent parameters Bb;
vs.b, givs.bandgq; vs Di for the MH model andi vs. n, g vs. nandq; vs D; for the PLE
model. These results can be seehign 323, 324and325, respectively, for the MH model
andFig. 346, 347and348, respectively, for the PLE model.

From Fig. 323, 324 and 325, we see beautiful repragens of the relationship between
these parameters. It seems that Fig. 323 showspamenrtial relationship betwe&n and

b, whereas Fig. 324 shows a linear relationship betweandb, as does Fig. 325.

For the PLE results of the relative frequency histograime trend is visible, and it is the

same trend that has been visible in other PLE re$wdtgever there is no definition of the
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relationship between the parameters. This is duesttatik of convergence in the MCMC

results.

Finally we reach the realizations of the Bayesiangigm using the MH and PLE models.
We notice when we plot the mean of the realizaticersus the optimal forward model
(the results from the LSQ optimization), and the expamvard model (either MH or
PLE), the mean of the model prediction and the expentdial model often times have
close values for the 700 production days plotted. Hewevhen we extend the results to
30 years that there is a divergence between twmetsults. In this case, the MH model,
when applied to the Bayesian paradigm underestimesesves, as seenhig. 329.This

is the same result that is presented for the PLE meteh applied to the Bayesian
paradigm, shown ikig. 352 These results show that the forward models can ouasdst

or underestimate the reserves.

The graph that compares the standard deviations divtheets of Bayesian resultsg.
353 identifies the uncertainty of the two models. From tesults, it can be seen that the
uncertainty of the MH model reaches a maximum aroud@2jays, however it decreases
rapidly, and we can see that the uncertainty is glage to 0 after the 30 years forecasted.
However, we see that the PLE model's uncertainty mesvamost constant throughout the
forecast, which is not ideal. When applying the Bayegaradigm, we expect the
uncertainty of the model to decrease because the nedalning more knowledge and
better estimating the following point of the forecasbri these results, we can see that
the MH model is doing just that but the PLE modahot.
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APPENDIX VI

RESULTS AND ANALYSIS OF WELL 67

Well 67 — Modified Hyperbolic Model
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Fig. 354 —Results of the least squares optimization agaimsptbduction data of Well
67 for the MH Model
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Fig. 355 —The distribution of error between the production datathed_SQ results
for Well 67 for the MH Model
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Fig. 356 —The cumulative distribution of error is plotted agaithe& normal cumulative
distribution function of Well 67 for the MH Model
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Fig. 358 —MCMC results of thé-factor for the MH model of Well 67 using the MH
model
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Fig. 360 —MCMC results oD; for the MH model of Well 67 using the MH model
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Fig. 362 —MCMC results ofg; for the MH model of Well 67 using the MH model
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Fig. 366 —Posterior relative frequency histogramDyfof Well 67 using the MH model
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Fig. 367 —Cumulative posterior relative frequency histogranbpdf Well 67 using
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Fig. 368 —Posterior relative frequency histogramgobf Well 67 using the MH model

272



Empirical CDF
1 T T T
—— Cumulative Distribution Function
0.9/ —— Normal Cumulative Distribution Function| .-~~~ |

0.8

=
w
T

0.2r

01F----- e T A e

| I 1 ! 1 1
gOO 820 840 860 880 900 920 940 960 980
qi (BOED)

Fig. 369 —Cumulative posterior relative frequency histograngiaff Well 67 using the
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Fig. 370 —Relative frequency diagram betwenandb of Well 67 using the MH
model
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Fig. 371 —Relative frequency diagram betwegrandb of Well 67 using the MH
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Fig. 373 —The 1,000 realizations of the model predictions ulegBayesian paradigm
of Well 67 with the MH model
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Fig. 374 —The production data with the mean of the realizatitimes pptimal forward
model and the MH model of Well 67
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Well 67 — Power Law Exponential Model
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Fig. 377 —Results of the least squares optimization agaimsptbduction data of Well
67 for the PLE Model
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Fig. 378 —The distribution of error between the production datataed_SQ results
for Well 67 for the PLE Model
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Fig. 379 —The cumulative distribution of error is plotted agathst normal cumulative
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model
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Fig. 389 —Posterior relative frequency histogramafof Well 67 using the PLE model
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Fig. 396 —The 1,000 realizations of the model predictions usilegBayesian paradigm
of Well 67 with the PLE model
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Analysis

Well 67 shows interesting results. The MCMC resdtisnot converge for thie-factor,
even after 20 million iterations, of the MH model,seen inFig. 358 However, theD;
andq; results both converge beautifully, as seekig 360 and362 Due to the lack of
convergence ob, the posterior distribution db is meaningless, as seen kig. 364
However, the posterior distributions Bf andg; both show normal distributions, seen in
Fig. 366and368 This is interesting because the trend of the postdistribution ofD;
has been lognormal for all wells. This result is purxlbecause there is no reason for it
to be different than the previous posterior resul@ipthere is convergence of the MCMC
results therefore we expect it to follow the same trévadl e have observed until this

point.

When we compare these MCMC results with the resuldymed when applying the PLE
model, we notice that that model converges for adeHPLE parameters, shownHig.
381, 383and385. Furthermore, the posterior distributions of these thezameters are as
expected; Gaussian farandg;, as seen ifrig. 387and391, and lognormal fobj, seen
in Fig. 389

Based on the posterior distributions of the three paemetwve created the relative
frequency histograms that show the relationship betwserdifferent parameters Bi

vs. b, g vs.bandq vs Di for the MH model andi vs. n, givs.nandgq; vs D; for the PLE
model. These results can be seehRign 370, 371and372, respectively, for the MH model
andFig. 393, 394and395 respectively, for the PLE model. From Fig. 370 andl, 3fie
results are incorrect because of the lack of convergehttee b-factor. Most times, we
have seen the trend of the relationship betweennpseas even if there was no
convergence, but in this case there is not. Fig.dd&2 show a nice relationship between
g andD; that follows the same trend that we have seendrother wells. The results of

the PLE model all show the same results that we lsaen throughout this study.
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Then, we reach the realizations of the Bayesian paradging the MH and PLE models.
We notice when we plot the mean of the realizaticersus the optimal forward model
(the results from the LSQ optimization), and the expmmvard model (either MH or
PLE), the mean of the model prediction and the expentard model often times have
close values for the 700 days plotted. However, wherextend the results to 30 years
that there is a divergence between two sets of resultisis case, the MH forward model
overestimates the reserves, as sedrdgn 376 for the MH model andrig. 399for the
PLE model. Both models show that they overestintatgdserves.

Finally, the standard deviation comparison of the $&ts of Bayesian resulfsig. 40Q

identifies the uncertainty of the two models. In thsecof this well, the standard deviation
follow approximately the same trend. The standardadewvi of the PLE model peaks
higher than that of the MH model, but also drops before the standard deviation of the
MH. From these results, | conclude that the PLE madeld be ideal when implementing

the Bayesian paradigm.
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