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ABSTRACT 

 

We begin this research by asking "can we better estimate reserves in unconventional 

reservoirs using Bayes' theorem?"  To attempt to answer this question, we obtained data 

for 68 wells in the Greater Core of the Eagle Ford Shale, Texas.  As process, we eliminated 

the wells that did not have enough data, that did not show a production decline and/or 

wells that had too much data noise (this left us with 8 wells for analysis). 

We next performed decline curve analysis (DCA) using the Modified Hyperbolic (MH) 

and Power-Law Exponential (PLE) models (the two most common DCA models), 

consisting in user-guided analysis software. Then, the Bayesian paradigm was 

implemented to calibrate the same two models on the same set of wells. 

 

The primary focus of the research was the implementation of the Bayesian paradigm on 

the 8 well data set.  We first performed a "best fit" parameter estimation using least squares 

optimization, which provided an optimized set of parameters for the two decline curve 

models. This was followed by using the Markov Chain Monte Carlo (MCMC) integration 

of the Bayesian posterior function for each model, which provided a full probabilistic 

description of its parameters. This allowed for the simulation of a number of likely 

realizations of the decline curves, from which first order statistics were computed to 

provide a confidence metric on the calibration of each model as applied to the production 

data of each well. 

 

Results showed variation on the calibration of the MH and PLE models.  The forward 

models (MH and PLE) either over- or underestimate the reserves compared with the 

Bayesian calibrations, proving that the Bayesian paradigm was able to capture a more 

accurate trend of the data and thus able to determine more accurate estimates of reserves.  

In industry, the same decline curve models are used for unconventional wells as for 

conventional wells, even though we know that the same models may not apply.  Based on 

the proposed results, we believe that Bayesian inference yields more accurate estimates of 
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reserves for unconventional reservoirs than deterministic DCA methods. Moreover, it 

provides a measure of confidence on the prediction of production as as function of varying 

data and varying decline curve models.  
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DEDICATION 

 

To life.  

I am excited to see where you will take me from here.  
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NOMENCLATURE 

 

a = Intercept constant for Duong's model 

b = Arp's dimensionless hyperbolic constant 

BOE = Barrels of Oil Equivalent (BOE) 

BOE/D = Barrels of Oil Equivalent per Day (BOE/d) 

Di = Initial decline (1/day) 

D∞ = Decline parameter for the Power-Law Exponential DCA model (1/day) 

Dlim = Limit below which D cannot decline (1/day) 

EUR = Estimated Ultimate Recovery (BOE) 

K = EUR parameter for the Logistic Growth Curve DCA model (BOE) 

LSQ = Least Squares  

m = Dimensionless slope parameter for Duong DCA model  

MCMC = Markov Chain Monte Carlo  

MH = Modified Hyperbolic DCA model 

n = Time exponent parameter for the Power-Law Exponential DCA model 

PLE = Power Law Exponential DCA model 

 = Posterior  

 = Prior 

 = Likelihood  

qi = Initial flowrate (BOE/D)  

q(t) = Flowrate (BOE/D) 

t = Time (days)  

x = Observed data  

α = Parameter for the Logistic Growth Curve DCA model 

η = Time exponent parameter for the Stretched Exponential DCA model 

θ = Set of known parameters 

µ = Mean of parameters  

σ = Standard deviation  

τ = Time parameter of the Stretched Exponential DCA model (days) 

)( DP θ
)(θP

)( θDP
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1. INTRODUCTION  

 

The petroleum industry in the U.S. has shifted its focus to unconventional plays due to the 

enormous amount of estimated reserves and its ability to revolutionize the oil and gas 

industry, notably with new technology.  The majority of proved oil reserves are located in 

the Middle East as of January 2011, as is the majority of the world's natural gas reserves. 

The United States has 322.7 trillion cubic feet of gas reserves and 33.4 billion barrels of 

oil (EIA, 2012-13.)  This being said, there is an irreversible shift to gas both in exploration 

and production, as seen in Fig. 1.  

 

 

Fig. 1― U.S. total natural gas proved reserves shows an increase in shale gas reserves, 
where in 2008 it was approximately 12% of the gas reserves, and in 2013 it was 
nearly 50% of gas reserves (U.S. EIA, 2013) 

 

As seen in Fig. 2, the majority of the energy production today is natural gas, and is 

forecasted to continue being the main source of energy through 2040.  
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Fig. 2 ― U.S. energy production by fuel, 1980-2040, quadrillion BTU (U.S. DOE EIA 

2012) 
 
Natural gas is produced from shale gas, tight gas and coalbed methane reservoirs.  Due to 

the extremely low permeability of such reservoirs, horizontal drilling and hydraulic 

fracturing are used to produce them economically.  According to the "resource triangle" 

(Holditch, 2011) shown in Fig. 3 below, conventional reservoirs are of high to medium 

quality, are difficult to find but easy to produce, and thus less expensive.  However, as we 

shift to unconventional reservoirs, the reservoir quality is low, and although the location 

of unconventional reservoirs are relative well-known (as source rocks), these are  difficult 

to exploit and new technologies are required to extract the hydrocarbons, leading to 

increased prices for drilling and completions, which ultimate requires high oil and gas 

prices to achieve profitability.  

 
In the "resource triangle, the apex of the triangle is where the conventional reservoirs are 

located, and "are difficult to find but easy to extract," and we progress lower into the 

resource triangle, the resources are easier to find — however harder to extract due to the 
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necessity of improved technologies, and are thus more expensive to extract (Holditch, 

2011). 

 

This study will focus on the Eagle Ford Shale, and in particular, on oil wells in the Greater 

Core Eagle Ford Area.  Our stated goal is to develop a method based on a probabilistic 

approach to identify, characterize, and better model well production based on standard 

decline curve models.  

 

 

Fig. 3 ― The resource triangle (Holditch, 2011). 
 
The Eagle Ford Shale is located in Texas and is 50 miles wide and 400 miles long, 

covering 23 counties in South Central Texas (Gong et al, 2013).  The Eagle Ford Shale is 

the source rock for the Austin Chalk and is now being developed as its own self-sourcing 

reservoir (Tian, et al, 2013).  This play is composed of Cretaceous mudstone and 
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carbonates which are especially brittle due to the high carbonate and low clay content, 

meaning that hydraulic fracturing is especially effective.  The productive portion of the 

Eagle Ford shale ranges from 2,500 to 14,000 ft; and the thickness ranges from 120 to 350 

ft (Gong et al).  The geology of the Eagle Ford shale is quite complex and the calcareous 

makeup of the rock leads to the "condensate rich environment of this play" which presents 

"unique fracture design challenges" (Bazan et al., 2012).  

 
The Eagle Ford Shale has been in development since 2008 and is being exploited using 

horizontal wells with multi-stage hydraulic fracture treatments.  The estimated resources 

in the Eagle Ford Shale are 21 trillion cubic feet (TCF) of gas and 3.35 billion barrels of 

oil (BBO), however the estimation of resources has high uncertainty (Gong et al., 2013).  

 
According to Ayers, et al., the Greater Core of the Eagle Ford is the region of highest oil 

production, and this is where the focus of this thesis will lie.  In the first month of 

production a well will generally produce more than 5,000 bbl.  The regions of highest gas 

production are between the Stuart City and Sligo Shelf Margins, where the first month of 

the wells' production exceeds 60 MMcf (Tian et al., 2013).  

 
Although the production differs throughout the play, the most productive wells "are 

located south of the Stuart City Shelf Margin, where production commonly exceeds 80 

MMcf/month/well" while oil production is highest in Karnes and Gonzalez counties, 

typically exceeding 16 Mbbl/month/well (Tian et al., 2013).  
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2. LITERATURE REVIEW  

2.1 Geology of the Eagle Ford Shale 

The Eagle Ford Shale is the source rock for the Austin Chalk, however is now being 

developed as its own self-sourcing reservoir (Tian et al., 2013). The lower part of the 

reservoir is shale-rich, and the upper part is carbonate-rich, and the whole Eagle Ford lies 

over the Buda Limestone, which is overlain by Austin Chalk (Tian et al., 2013). This being 

said, the Eagle Ford Shale is an unconventional reservoir, which "consists of a wide variety 

of liquid sources including oil sands, extra heavy oil, gas to liquids and other liquids." 

(IEA 2013). Furthermore, unconventional reservoirs are more difficult to produce because 

they require advanced technology. With regards to the shale plays, they are self-sourcing 

reservoirs, therefore the hydrocarbon does not migrate, but stays in place. These shale 

reservoirs have also been the source rocks for many of the conventional reservoirs, before 

it was determined that we could economically produce these unconventional reservoirs.  

A conventional reservoirs is defined as "a petroleum system is a dynamic hydrocarbon 

generating system, functioning in a geologic space and time scale" that requires "the 

timely convergence of geologic elements and events essential to the formation of 

petroleum deposits that include mature source rock, expulsion, secondary migration to 

reservoir rock, accumulation in a trap and retention." (Ayers, 2011). 

 

The characteristics of a source rock are that they are made up of fine grained clastics, most 

organics are deposited on ocean or lake bottoms, they have a low matrix porosity and 

permeability and are also brittle, indicating that they may be naturally fractured.  

The Eagle Ford Shale is an Upper Cretaceous shale, where the regional source rock has 

Kerogen Types 1, 2 and possibly Type 3, and where the hydrocarbon fluid composition 

greatly varies with thermal maturity.  

 

Kerogen is defined as "the organic material in sedimentary rocks that is insoluble in 

organic solves, under microscopic examination, kerogen appear as disseminated organic 

fragments within sedimentary rocks and some kerogen is structured and recognizable as 
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plant fragments, spores, algae, and other pieces with definite biological origins."  (Ayers, 

2011). 

 
Kerogen types are defined by the Van Krevelen Diagram, shown below in Fig. 4, which 

indicates the Atomic Hydrogen (H) to Carbon (C) ratio versus the Atomic Oxygen (O) to 

Carbon (C) Ratio. Kerogen Types 1 and 2 are indicative of a higher H:C ratio, and are 

indicative of oil whereas Type 3 kerogen has a lower H:C ratio, and higher O:C ratio, more 

indicative of gas. Since the Eagle Ford Shale has predominantly Types 1 and 2 of Kerogen, 

this means that there is oil present in the field.  

 

  

Fig. 4 ― Van Krevelen diagram, defining the four types of Kerogen, where Types 1 and 
2 are indicative of oil, and Types 3 and 4 are indicative of gas (Ayers, 2011) 

 
The permeability of the Eagle Ford Shale ranges from 10-8 and 1 md. Furthermore, the 

permeability decreases and the depth of the formation increases. The permeability 
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decreases with depth because of compaction, where the deeper layers are more compacted 

therefore get "crushed" and thus, decreasing the permeability.  

 

Through the work that Mullen (2010) performed, it was discovered that the mineralogy of 

the Eagle Ford changes going from west to east; the "more western well is more quartz 

rich" while the other two wells he investigated are more carbonate and clay rich. This 

difference in mineralogy is explained by the geology of the Eagle Ford Shale. "In the 

Cretaceous period, the eastern side of play subsided less than the western side; 

consequently, the upper Cretaceous rocks in the eastern side of the play contain more shale 

and carbonates and less sandstone in comparison with time-equivalent rocks in the western 

part of the play" (Mullen, 2010).  

 

2.2 Producing the Eagle Ford Shale  

Hydraulic fracturing has been used since the 1940s and is now a "key element" in 

developing unconventional reservoirs worldwide (Fazelipour, 2011(a)). Hydraulic 

fracturing provides an economical way to recover the hydrocarbons present in 

unconventional reservoirs – such as the Eagle Ford Shale. To optimize these hydraulic 

fractures, it is common to increase the length of the well, along with implementing an 

increased multi-stage hydraulic fracturing treatment, both of which lead to the maximum 

of the reservoir exposed, hence producing the maximum amount of hydrocarbons 

(Fazelipour, 2011(a)).  

 
Since 2009, the Eagle Ford Shale has grown significantly, greatly due to the use of 

hydraulic fractures to acquire the hydrocarbon from the play, and the strong performance 

of the wells. This paper focuses primarily on the gas, condensate and oil windows of the 

Eagle Ford Shale, whose acreage has over 200 rigs as of February 2012 (Bazan et al., 

2012).  
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Shale-gas formations (such as the Eagle Ford Shale) have natural fractures present, which 

increase the complexity of the "growth patterns of hydraulic fractures." Furthermore, when 

multistage hydraulic-fracturing treatments are implemented, it creates "conductive 

networks that could be considered as stimulated reservoir volumes which have been 

effectively contacted and contribute to economically viable production profiles." 

(Fazelipour, 2011(b)). 

 
When designing the hydraulic fracture, several factors must be considered. The space 

between the hydraulic fractures and the amount of proppant to be injected are two 

important parameters. Furthermore, the orientation of the well and the conductivity of the 

fractures are "fundamental design parameters that must be rigorously evaluated when 

designing horizontal wells." When determining the proppant to use, five main parameters 

are considered: 

• The fracture fluid selection 

• Proppant cost 

• Availability 

• Resulting fracture conductivity 

• Economics 

The fluid used in the hydraulic fracture has a huge impact on the type of proppant that will 

be used. Since the Eagle Ford Shale has very low permeability, "often the need for fracture 

conductivity is regarded as unimportant, and instead fracture designs focus on increasing 

reservoir contact." 

 
In unconventional reservoirs, one of the primary goals when designing the completion, is 

to contact as much of the reservoir as possible. This makes these reservoirs economical 

for development, however leads to limited connectivity between the hydraulic fractures 

and the wellbore (Bazan et al., 2012).  

 
When designing the hydraulic fracture treatments for the Eagle Ford Shale, a large volume 

of water is pumped to displace the proppant from the wellbore. This is the standard 
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practice used for all unconventional reservoirs. However, this method was unsuccessful 

in the Eagle Ford because of the calcareous makeup and complex geology of the reservoir, 

which poses significant completion design challenges. The hydraulic fracture design 

currently used in the Eagle Ford is composed to use "7500-9000 bbl of a hybrid fracturing 

fluid (slickwater and linear gel) with 40/80 lightweight ceramic proppant." (Bazan et al., 

2012). This design has proved successful in the Eagle Ford, increases the conductivity of 

the fractures and uses remarkably less water per stage than the original design that was 

first mentioned (Bazan et al., 2012). 

 

2.3 Fluids Present in the Eagle Ford Shale  

There are three different fluid types present in the Eagle Ford Shale due to the three 

maturation windows, ranging from black oil to dry gas (Ilk et al., 2012), as seen in Fig. 5. 

Tian, et al. (2013) determined the type of hydrocarbon present by analyzing the GOR of 

the first three months of production. As seen in the map below, The Greater Core Eagle 

Ford (circled in red) ranges from black oil to dry gas wells (Tian et al., 2013), and the 

hydrocarbon fluid composition greatly varies with thermal maturity, as previously stated. 

It is seen in the figure below, which indicated different degrees of thermal maturation. 

Higher thermal maturation leads to gas, and lower thermal maturation leads to oil.  This 

study will focus on certain oil wells in the Karnes region.   
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Fig. 5 ― Different hydrocarbon types present in the Eagle Ford Shale (Tian et al., 2013) 
 

The majority of the dry gas wells are located on the Stuart City Shelf Margin, which, as 

seen in Fig. 5 runs though The Greater Core Eagle Ford. The oil wells are located above 

the Stuart City Shelf Margin, and range from volatile oil to black oil wells as you move 

upward into the county.  

 

2.4 Flow Regimes of the Eagle Ford Shale 

Three flow regimes are present in the Eagle Ford shale gas regions. The three regimes are 

bilinear flow, boundary dominated flow and matrix linear flow, and are present only in the 

gas-bearing zones of the Eagle Ford. These three regimes are seen in a log-log plot of the 

production of a well over time, where early time is indicative of bilinear flow due to the 

negative ¼ slope, late time is where the boundary effect is seen and in between is the 

matrix linear flow, shown by the negative half-slope, as indicated in Fig. 6 below (Xu et 

al., 2012) 
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Fig. 6 ― Identification of the three flow regimes in the gas reservoir of the Eagle Ford 
(Xu et al., 2012) 

 

When producing these different regions, different hydraulic fracture treatments are used, 

"depending on the fluid type – for example, slickwater fluid system is pumped for gas rich 

areas, whereas hybrid or crosslink fluid system with higher proppant concentrations are 

pumped for the liquid-rich areas (Bazan, et al., 2012)  

 

Bilinear flow is "resulting from combined simultaneous linear flow in perpendicular 

directions. This flow regime is seen most commonly in tests of hydraulically fractured 

wells and occurs for finite-conductivity fracture where linear flow exists both in the 

fracture and to the fracture plane." (Schlumberger Glossary, 2014). 
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2.5 Models Already Created to Forecast and Determine Reserves 

Reservoir simulation, type-curve and decline-curve analysis were considered the most 

useful methods for estimating reserves (Gong et al.). Several methods have been used to 

to estimate and forecast the production of the Eagle Ford. Monte Carlo simulation was 

performed along with reservoir simulation was performed by Dong et al. on dry gas wells 

to forecast production and determine the reserves. Arps' decline curve analysis has often 

been used in unconventional reservoirs to determine reserves and forecast production, 

however is inaccurate due to the low permeability of the reservoir (Gong et al., 2013).  

 

Decline curve models have been created to estimate reserves. The power-law decline 

model was introduced by Ilk et al. The stretched-exponential-production-decline (SEPD) 

model was introduced by Valko and Lee, and has been adapted to determine resources and 

reserves, however tends to underestimate total reserves (Gong et al., 2013).  

 

Bootstrap methods were created by Jochen and Spivey, and Cheng et al. that generate 

probabilistic decline-curve forecasts for wells based on producing wells. A Bayesian 

method has been developed by Gong et al. which, again, uses a probabilistic approach and 

data from producing wells. These methods also determine reserves and resources, and it 

is the method that was used in Gong et al. (2012) paper.  

 

In this study, we will apply only the Modified Hyperbolic and the Power Law Exponential 

Models to our data set, however will present a variety of different equations that can be 

used to perform decline curve analysis.  

 

2.5.1 Deterministic Decline Curve Models 

In this section, I will present the different deterministic decline curve models that are used 

for decline curve analysis.  
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Eq. 2.1 and Eq. 2.2 are Arps' equations, where Eq. 2.2 is the exponential decline and Eq. 

2.1 follows a harmonic decline when and a hyperbolic decline when . These two 

equations are standard equations used when performing decline curve analysis, and are 

ideal for the conventional reservoirs cases.  

………………………………………….………... (2.1) 

..……….…………………………...………..……. (2.1) 
 

In the two equations above, b is Arp's dimensionless hyperbolic decline constant. In 

conventional reservoirs, the exponent b is between 0 and 1 and the producing well is in 

boundary-dominated flow. However, in unconventional reservoirs, the flow is not 

boundary-dominated, therefore b is greater than 1. Though this is an incorrect use of Arp's 

equation, it is often used to estimate reserves (Gong et al.).  

 
 Eq. 2.3 is the Power Law Exponential (PLE) equation.  

………………….………………………………. (2.2) 

  

where −�� is the power law decline rate at infinite time constant, is the dimensionless 

time exponent, typically between 0 and 1, and is the power law decline constant, 

however is determined by determining , which is the instantaneous decline at t=1, 

therefore 

………..….……………………………………...…………………..(2.4) 

 

, in this model, is not the initial instantaneous decline but the instantaneous decline at 

t=1 divided by n when is equal to one. Also, the term can fit many different values 

in early-time, however it affects late-time rates therefore the "forecasts become sensitive 

to " (Mattar et al., 2008) 
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Eq. 2.5 is the Modified Hyperbolic (MH) equation.  

….………………..…….….(2.5) 

….………………….………………….………………………...….(2.6)  

 

The decline rate, , is not a constant but decreases continuously, as seen in Eq. 2.6. 

"When becomes too small, the gas rate no longer declines significantly, and the reserves 

can be over-predicted. To circumvent the problem of becoming too small, Robertson 

(1988) introduced the Modified Hyperbolic Decline method, that imposes a limit below 

which D is not allowed to decline ( )." (Mattar et al., 2008) 

 

Eq. 2.7 is the Stretched Exponential Production Decline Model equation.  

…………………………………………..……………...(2.7) 

 

where � is the characteristic time parameter and � is the dimensionless exponent 

parameter. This model was introduced by Valko and Lee in 2010, and is used to quantify 

the uncertainty in field production forecasts. However, it does not quantify the uncertainty 

the reserves based on the production of a single well (Gong et al., 2012)   

 

Eq. 2.8 is the Rate-Decline Analysis for Fractured-Dominated Shale Reservoir equation.  

…………………………………………..….(2.8) 

 

where � is the intercept constant for Duong's model (1/time) and  � is the dimensionless 

slope for Duong's model (Gonzalez, 2013). 

Eq. 2.9 is the Logistic growth curve equation.  
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……………………………………………………………....(2.9) 

 

where � is the EUR in Mcf, � is a constant, 	 is a hyperbolic exponent that controls the 

steepness of the decline, and where 

……………………………………………………………………....(2.10) 

 

Clark et al presented this method in 2011 (Gonzalez et al., 2013). 

 

None of the above DCA models quantify the uncertainty in production forecasts and 

reserves estimates by themselves (they need to be combined with other models to properly 

quantify these uncertainties - Gong et al., 2012) . 

 

2.5.2 Probabilistic Decline Curve Models Proposed for Decline Curve 

Analysis 

The Bootstrap Method (JSM) was presented by Jochen and Spivey in 1996. This model 

generates synthetic realizations of production data, however is not well calibrated for 

conventional reservoirs. This model can generate probabilistic decline curve forecasts and 

quantify reserves uncertainty for single wells based on the existing production. The P90-

P10 range for reserves using this method estimated 40% of the "true reserves". This 

method modifies the historical production to generate different realizations to match, 

which should be avoided because we want the production data to be untouched. The work 

done was done on 100 conventional wells (Gong et al., 2012). 

 

The Modified Bootstrap Method (MBM) was presented by Cheng et al. (2010). This 

method generates synthetic realizations of production data, and has been well calibrated 

for a limited number of test cases. This model also generates probabilistic decline curve 

forecasts and quantifies uncertainty for single wells based on existing production. 

However, the P90-P10 range for reserves is estimated at 80% of the true reserves, which 
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is expected because this method is calibrated probabilistically. This method, again, alters 

the original production data which is avoided when possible (Gong et al.)   

 

The Markov Chain Monte Carlo (MCMC) was presented by Dong et al. (2011). It does 

not modify the actual production data, and has been well calibrated for a limited number 

of test cases. This method is faster and generates a smaller confidence interval than the 

MBM. MCMC has been combined with Bayes' theorem by Liu and McVay in 2009 and 

Xie et al. in 2011, to quantify uncertainty in reservoir simulation (Gong et al., 2012).   

 

These three methods were all developed based on Arp's method, and there is limited work 

published on the use of these methods (particularly in unconventional reservoirs) 

(Gonzalez, 2013). The methods presented above were all done on Barnett Shale wells. 
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3. SITE CHARACTERIZATION OF THE EAGLE FORD SHALE 

3.1 Specific Geology of the Greater Core of the Eagle Ford Shale   

The Greater Core Eagle Ford has an interesting geology because of the plethora of 

geological features present. Firstly, the Karnes trough runs through the county. 

Furthermore, the Stuart Shelf line runs through the county as well. As seen in Fig. 4, the 

majority of the dry gas wells fall along this line.  

 

The Karnes Trough is a thick, organic-rich part of the Eagle Ford Shale that is a "sediment 

trap for shelf-derived Eagle Ford siltsone" and is a "fault-controlled graben system with 

expected higher natural fracture intensity" (Corbett, 2010). The trough was created by the 

Person-Dubose Edwards shelf edge, which separates the Eagle Ford Shale into an "up-dip 

oil play and a down-dip gas play." This also helps control the fluid migration by using the 

faults as barriers. This all explains the reason there are several fluid types within the same 

county, and can be seen in the figure below.  
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Fig. 7  ― The Eagle Ford Play Distribution where we can see the difference between the 

oil and gas plays due to the Karnes Trough and the Stuart City Edwards reef 
(Corbett, 2010) 

 

These two plays found in the same region (and specifically, the Greater Core Eagle Ford) 

create two environments. As previously seen, up-dip of the reef margin is oil-rich, 

however it is also normally pressured, with a "significant lateral variability in organic-rich 

shale abundance and reservoir quality related to reef margin controlled depocenters." 

(Corbett, 2010).  Down-dip of the reef margin is the gas play, and is an area of the field 

that is significantly over-pressured, with a high lateral variation of the reservoir "and 

primary permeability controlled by the location of distal turbidite deposition." (Corbett, 

2010). 

 

The northwestern part of The Greater Core Eagle Ford, where the oil play is located, shows 

deposits of the Early Cretaceous, which are also seen in the outcrops, located 75 miles 

northwest of the county. This region is not affected by any significant facies changes, 

however they are observed in different areas of the Eagle Ford.  
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There are three different geological groups in the northwestern part of The Greater Core 

Eagle Ford. The deepest, named Trinity, consists of five formations. The deepest 

formation is Sligo, with a lithology of limestone. Above is Hammet, with a lithology of 

shale, followed by Cow Creek with a lithology of shaly limestone. Above is Bexar with a 

lithology of shale and finally, the upper Trinity's formation is the Glen Rose, with a 

lithology of shale, limestone and dolomitic limestone.  Above Trinity is the Fredericksburg 

group which consists of two formations. The Walnut formation has a lithology of shaly 

limestone and the lower Edwards has a lithology of dolomitic limestone.  Finally the 

Washita group consists of five formations. The middle Edwards with a lithology of shale 

and limestone, the upper Edwards with a lithology of dolomitic limestone, the Georgetown 

with a lithology of shaly limestone dolomitic limestone, the Del Rio with a lithology of 

calcareous clay, and finally, the Buda with a lithology of shaly limestone. As previously 

discussed, the oil play of The Greater Core Eagle Ford is primarily shale-based, which is 

proven by this break down of the different formations.  

 

3.2 Specific Production of the Greater Core Eagle Ford 

Based on Fig. 8 below, it is evident that the oil production of The Greater Core Eagle Ford 

is higher than the majority of the Eagle Ford. The maximum oil production reaches around 

80,000 barrels on the northwest side of the county which is where the majority of the oil 

wells are located. It is evident from the same figure that the oil production decreases as 

we go to the southeast side of the county.  This is where the Stuart City Shelf Margin 

intercepts the county, indicating that this region is filled with dry gas wells, as seen in Fig. 

8. Hence, the decrease in oil production in this area of the county is expected due to the 

nature of the wells.   
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Fig. 8  ― Hydrocarbon production window. The Greater Core Eagle Ford has one of the 
regions of maximum oil production of the region indicated on the map. The red 
circled area of The Greater Core Eagle Ford indicates the gas condensate and 
dry gas wells (Breyer et al., 2013) 

 

According to Tian et al. (2013), it can also be noted that there are fewer gas wells and 

the gas production of The Greater Core Eagle Ford is significantly lower than the oil 

production.  

 

3.3 Specific Fluid Types of the Greater Core Eagle Ford 

As previously stated, The Greater Core Eagle Ford has three different hydrocarbon types 

being produced. The fluid types range from oil to dry gas. The Greater Core Eagle Ford is 

especially interesting because all three of types of fluids are produced, which is a trend 

not seen in other counties, as seen in Fig. 9 below.  
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Fig. 9 ― Fluid phases of the Eagle Ford Shale, specifically focusing on the Greater Core 
Eagle Ford and the three phases present (Mullen, 2010) 

 

Mullen (2010) performed a case study on three different wells in three different 

hydrocarbon zones - a dry-gas window, a gas condensate window and an oil window. The 

author has not disclosed the location of the three wells thus we will assume that the fluid 

types are the same throughout the play. Well 1 (gas-condensate) is located in the Eastern 

part of the field, and Well 3 (oil) is located in the Western part of the field, with Well 2 

(dry-gas) in between the two, as seen below in Fig. 10.  
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Fig. 10 ― Relative locations of the three wells, along with their thicknesses and the 

basic log response across the Eagle Ford Shale (Mullen, 2010) 
 

Each of the three fluid windows has different properties, and the three will be explored 

below. The gas-condensate window, where Well 1 of Mullen's analysis is located, is in the 

eastern part of the field. The rock in this part of the field is soft due to the high clay content, 

and thus the proppant used when hydraulically fracturing this part of the reservoir can 

become embedded in the fractures, and also can lead to high closure pressures. Both of 

these characteristics need to be taken into consideration when finalizing the completions 

design of this part of the reservoir. From Mullen's analysis, it was also determine that the 

porosity of this area ranges from 8% to 18%, the permeability from 1 to 800 nD, and has 

a total organics content (TOC) ranging from 2% to 8%. It was also determined that the 

"sweet spot" is between 12,860 and 12,880 feet, therefore future drilling in this area should 

be targeted to this interval.  

 

Well 2 is located in the dry-gas window. This area has a different geological composition 

than seen in Well 1. It is more clay-rich, making the reservoir rock is much "softer", thus 

swelling is a potential problem and the completion should be designed accordingly. The 

porosity was determined to be 8%, and the permeability was tested using core data, 

however could not be identified due to the limitations of the NMR tool and the extremely 
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low permeability. This area of the Eagle Ford is kerogen-rich, meaning that the reservoir 

rock in the lower Eagle Ford is of better quality than the rock in the higher Eagle Ford.  

Well 3 is located in the oil window. This area of the Eagle Ford is much more clay-rich 

than seen previously, with "~70% swelling clays making up about 7% of the total rock 

composition" meaning that when fracturing the reservoir, clay control will be necessary 

to minimize "swelling clays on the pore throats in the reservoir." (Mullen, 2010). The total 

porosity of this area of the Eagle Ford is between 5% and 14%, averaging around 10%. It 

is evident from Fig. 10 that the thickness of the reservoir in Well 3 is much larger 

compared to the other two wells.  
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4 METHODOLOGY 

4.1 Overview of the Research 

Production and completion data of 68 wells in the Greater Eagle Ford Core was used to 

perform this study. The first step of this process was to determine what type of fluid we 

wanted to work with. It was decided to work with Barrels of Oil Equivalent (BOE) to 

incorporate both the oil and gas production of these wells. Therefore, we converted the 

gas production to oil production, using the conversion shown below in Eq. 4.1, and added 

it to the oil production.  

 

6

Mscf
bbl = ……………………………………………….………………..(4.1) 

 

After this was done, we plotted all of the production data against time to determine which 

wells were good candidates to perform decline curve analysis. From these 68 wells, we 

determined that 16 had a good set of data, with a good decline and an adequate amount of 

data to perform the study. The production data is presented below in Fig. 11. 
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Fig. 11 — Data Production of the initial 16 wells to be used in this study, located in the 
Greater Eagle Ford 

 

We performed the decline curve analysis on these 16 wells using the Modified Hyperbolic 

(MH) and Power Law Exponential (PLE) models, where we retrieved the Estimated 

Ultimate Recovery (EUR), and different parameters used in each model.  

 

We looked at these 16 wells, and decided to set up two sets of wells. The first set was for 

five wells producing more than 700 days, and the second set was for three wells producing 

more than 450 days. Set 1 data set was then truncated to 700 days, and the set 2 data was 
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truncated to 450 days. This was done to be able to compare the results of the wells in each 

set to each other, which provides a good comparison of the results.  

 

The next step was to perform the Bayesian forecasting using the Bayesian paradigm on 

the wells in the two different sets. We began this step by performing a least-squares 

optimization to obtain the optimized values of the different parameters of the two different 

models. After this was done, we performed a Markov Chain Monte Carlo (MCMC) using 

both the MH and PLE models. The MCMC was run between 2 and 50 million iterations, 

depending on how long it took for the parameters to converge.   This gave the most 

accurate value of each of the parameters of the two models.  

 

With the values of MCMC, we ran the prediction using the Bayesian paradigm. The 

prediction was run for the number of truncated days in the two sets, meaning 700 days for 

Set 1 and 450 days for Set 2, and then it was run for 30 years, the industry set time for 

abandonment. Therefore, each well has two sets of results – one using the MH model to 

run the Bayesian Forecasting, and one using the PLE model to run the Bayesian paradigm.  

 

Finally, the results of the Bayesian approach were compared to the results of the decline 

curve analysis. This research was to determine whether or not the decline curve analysis 

performed in industry is an appropriate analysis of the reserves in unconventional 

reservoirs.  

 

4.2 Deterministic Decline Models 

 

4.2.1 Decline Curve Analysis using the Modified Hyperbolic and Power Law 

Exponential Models 

We plotted the production data of the 68 wells and determined that 16 of the 68 had a good 

set of data to perform decline curve analysis. The 16 wells chosen had enough production 
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data to show the trend of the data, and showed a decline, which is necessary when 

performing decline curve analysis.  

The two models used in this study are the Modified Hyperbolic and the Power Law 

Exponential, shown below in Eq. 4.2 and Eq. 4.5, respectively.  

 

………………….….….(4.2) 

 

where: 

………………………………………..…………….…...….(4.3) 

 

…………………………………………...………….…..…….(4.4) 

For the Modified Hyperbolic method, we set the decline limit (p) to 10%, which is a 

conservative decline limit. "When D becomes too small, the gas rate no longer declines 

significantly, and the reserves can be over-predicted. To circumvent the problem of D, 

Robertson (1988) introduced the Modified Decline method that imposes a limit below 

which D is not allowed to decline (Dlim). Once the decline reaches Dlim, the equation 

switches to Exponential Decline" (Mattar et al., 2008) 

 

………….………………………………..….…….(4.5) 

 

In the Power Law Exponential, we will set D∞ to 0 and n to 1, which makes the power law 

change to an exponential decline. "As n trends to 0, the power law's decline rates start off 

large, but become smaller over time, similar to how tight reservoirs behave. The reason 

for D∞ in the Power Law is that it places a limit on how low the decline can become to 

avoid reserve over-prediction". (Mattar et al., 2008) 
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After we ran the two models, we obtained a set of results of the parameters of each 

equation, as well as a value of Estimated Ultimate Recovery (EUR). Tables 1 and 2 show 

the results for each of the models.  

 

Table 1 — Parameters of the Modified Hyperbolic method, along with the EUR 

  

 

We notice that the Di is very low, which differs from what is used in industry. This is 

because these results are initial decline per day, not per year. However, it can also be noted 

that there are several results that are unrealistic. Wells 25 and 49 both show reserves 

around 1 million BOE, which are unlikely.   
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Table 2 — Parameters of the Power Law Exponential method, along with the EUR 

 

 

As previously stated, Dinf should be approximately 0. It is evident from these results that 

many of the values are, in fact, very close to 0 however others are not. We also see that 

there are several initial rates (qboi) that are unrealistic, such as in wells 19, 20, 40, 57 and 

67. It can also be seen that in the wells where qboi is unrealistic, so is Di. This is most likely 

due to the data not following the PLE model, therefore we are forcing the data to fit this 

model and we obtain unrealistic results.  
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Fig. 12 — qDb plot of Well 41: The solid lines represent the two decline curve models.  
 

4.2.2 Parametric Analysis of the Three Parameters in each DCA Model 

There are several parameters in these two equations.  In the Modified Hyperbolic, the three 

variable parameters are the b-factor, Di and qi, and in the Power Law Exponential, the 

three variable parameters are n, Di and qi, while time (t) is considered constant in both. To 

better understand how these three parameters affect the two decline curve models, we 

performed a parametric analysis. The results of this analysis are presented in Fig. 13-18.  
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Fig. 13 — Parametric Analysis of the b-factor of the Modified Hyperbolic model  
 

For the parametric analysis of the b-factor, we can see from the graph above that when the 

b-factor is increased, the curve slightly rises above the initial curve, but only in late time. 

We see the opposite with a decrease in the b-factor. It is also very interesting to see that 

the curves do not begin to diverge until around 200 days, so the b-factor has more of an 

influence in the later times of the wells' production.   
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Fig. 14 — Parametric Analysis of for the Modified Hyperbolic model 

 

For the parametric analysis of , we can see from the graph above that when  is 

increased, the curve falls below the initial curve instantaneously. We see the opposite with 

a decrease in . It is also very interesting to see that the curves begin to depart from time 

0, therefore the initial decline plays an important role in the trend that the decline curve 

will take.  
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Fig. 15 — Parametric Analysis of qi for the Modified Hyperbolic Model 
 

For the parametric analysis of , we can see from the graph above that when  is 

increased, the starting point of the decline curve is higher. We see the opposite with a 

decrease in . These results are expected because the initial rate is changing. It is also 

interesting to see that the decline curve does not fit the production data when the is 

incorrect, however the three curves converge in late time. This indicates that initial rate's 

primary influence is on the early time of the decline curve, however it is also evident that 

if the value is too high, we will overestimate the reserves, and if the initial rate is too low, 

we will underestimate the reserves.  

 

iq iq
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Fig. 16 — Parametric Analysis of the time exponent (n) of the Power Law Exponential 

model  
 

For the parametric analysis of the time exponent (n), when n is increased, we see that the 

decline curve begins at the same rate as the original n value, however we see that the slope 

is decreased. Furthermore, we see that when we increase the n, the initial point remains 

the same (as seen when the n is decreased), however that the slope of the curve increases. 

This is consistent with the definition, because the time exponent is, in fact, a slope.  
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Fig. 17— Parametric Analysis of Di for the Power Law Exponential Model. 
  

For the parametric analysis of Di, the three curves share the same initial point. However, 

when Di is increased, we see that the decline curve falls below the original curve and that 

the decline curve is underestimating the reserves. When Di is decreased, we see that the 

curve is significantly higher than when using the correct Di. Furthermore, we can see that 

using a low Di will greatly overestimate the reserves, while using a higher value of Di will 

underestimate the reserves. It is also interesting to note that the behavior of Di in the PLE 

model is the same as the behavior of the Di in the MH model.  
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Fig. 18 — Parametric Analysis of qi for the Power Law Exponential Model 
 

For the parametric analysis of qi, we can see from the graph above that when qi is 

increased, the starting point of the decline curve is higher. We see the opposite with a 

decrease in qi. These results are expected because the initial rate is changing. It is also 

interesting to see that the decline curve does not fit the production data when the qi is 

incorrect, however the three curves converge in late time. This indicates that initial rate's 

primary influence is on the early time of the decline curve, however it is also evident that 

if the value is too high, we will overestimate the reserves, and if the initial rate is too low, 

we will underestimate the reserves. This is the same behavior seen in the MH model.  
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4.3 Data Truncation 

Once we performed the decline curve analysis using the Modified Hyperbolic and the 

Power Law Exponential on the 16 wells, we looked at the production days of these wells. 

We then decided to truncate the data based on the number of production days each well 

has. Several wells only produce for a short period of time, therefore we decided to discard 

them for this study. The desired wells for this study have been producing for over one 

year.  

We identified two sets of wells. One set that has production of over 700 days and another 

set that has production over 450 days. We then truncated each well's production data to 

700 and 450 days, respectively. This was done to be able to perform the Bayesian 

forecasting on both sets of wells, and then to be able to compare the results to each other, 

while having a consistent data set of all the wells in each set. Set 1 is the data set that is 

truncated at 700 days and consists of five wells; Set 2 is truncated to 450 days and consists 

of three wells. Table 3 below identifies both data sets.  
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Table 3 — Identification of two sets of truncated wells. The wells in red font are Set 1, 
truncated to 700 days, the wells in purple font are Set 2, truncated to 450 days 

 

 

Once these two data sets were identified, we implemented the Bayesian paradigm on only 

the eight identified wells. The table shows the number of production days of all 16 wells 

that we had initially identified, and we can see that Wells 8, 9, 45, 57 and 58 do not have 

sufficient data, therefore the trend of the production data is not as prevalent as in the wells 

that have been on production longer. This is why we decided to use 700 days and 450 days 

to truncate the wells. Furthermore, we did not want to truncate the wells of Set 1 to 450 

days because we would have lost the trend of the production data, and would not be able 

to capture the decline correctly.   

 

Well Name Production Days

Well_8 266

Well_9 268

Well_18 489

Well_19 727

Well_20 738

Well_24 560

Well_25 644

Well_38 705

Well_40 721

Well_41 740

Well_45 274

Well_57 360

Well_58 359

Well_67 459
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4.4 Solving the Inverse Problem using Bayes' Theorem 

There are several steps needed to implement Bayes' Theorem. First, we apply an 

optimization to obtain an optimized set of parameters for each model. It was determined 

that the least squares optimization was suitable for this study.  

 

After we obtained the optimized set of parameters, we implemented the Markov Chain 

Monte Carlo. Using the optimized values of parameters, we begin the MCMC using these 

optimized results. Then, the MCMC runs between two and 50 million iterations, until the 

parameters converge, which is seen when the results of the MCMC are graphed. From the 

graphed results, we determine the burn-in point. The burn-in point identifies the point 

where the parameter has converged, and needs to be the same for each of the three 

parameters of the two models. After it has been set, we run the Bayesian paradigm. We 

obtained 1,000 realizations of 1,000 different possibilities of decline curves, then took the 

mean of these realizations and plotted them against the forward model (either the MH or 

the PLE). We extended the forecast to 30 years, and compared the forward model with the 

Bayesian forecast.  

 

4.4.1 Least Squares Optimization 

We chose the least squares optimization (LSQ), which is a type of regression analysis, 

where "the most important applications is "data fitting"(Wikipedia). The objective of the 

least squares optimization is to obtain the best fit of the model by changing the parameters. 

For this study, we applied the nonlinear least squares optimization, where we defined the 

initial values of the parameters (b, Di, qi for the MH and n, Di, qi for the PLE). When we 

completed this optimization, we obtain an optimized set of values for the parameters. For 

this study, we used the least squares optimization function in Matlab. The flowchart for 

the optimization is shown below in Fig. 16, which shows the specific progression of the 

code. 
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Fig. 19 — Flowchart of the Least Squares Optimization 
 

We plotted the results of the optimized results versus the forward model results, shown 

below in Fig. 20.  
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Fig. 20 ― The MH model compared with the Least Squares Optimization results. It is 
visible that the LSQ results show a different starting point, and furthermore we 
see that the MH model begins higher than the LSQ results, however around day 
100 moves beneath the optimized curve, until they converge at 700 days 

 

Since we see a lower initial rate with the optimized results than with the results found 

when performing the MH model, this means that the optimized qi is lower than the actual 

qi. Furthermore, we see that the b-factor and the initial decline are both a bit lower than 

the initial MH results, which is why there is a slight discrepancy between the two curves. 

The same analysis was performed on each of the wells for both the MH and the PLE 

models, and the results are presented in Appendix I at the end.  
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4.4.2 The Bayesian Paradigm 

It is known that none of decline curve equations will accurately forecast the amount of 

hydrocarbon in shale reservoirs or the length of time that it will produce economically. 

This is due to the fact that Arp's equations are based on Darcy's law, which are meant for 

conventional reservoirs with high permeability. Shale reservoirs have a negligible 

permeability therefore this set of equations will not provide an accurate representation of 

the well's behavior. The inverse problem does not take into consideration Darcy's 

equation, and will be solved using Bayes' Theorem and MCMC. 

 

To perform the inverse problem, we will use Bayes theorem that states: 

 

…………………………….………………..…………(4.6) 

 

Meaning that the posterior, , is proportional to the prior, , times the 

likelihood, . The is the set of known parameters, and the likelihood function 

indicates the likelihood of the event to occur. In this study, the priors are the initial rate

, the initial decline , the b-factor and the time exponent , and we will assume 

that they are non-informative priors, meaning that they will all follow a uniform 

distribution.  

 

We can obtain the posterior distribution using Bayes' Theorem with Eq. 4.7 and Eq. 4.8 

below.  

 

…….………………………….……...………….…….(4.7) 
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…….……………………….……............…….(4.8) 

 

 

We can re-write the above equations to find the following equation: 

 

….………………………………...……...……...…….(4.9) 

 

where is the likelihood.  

We then move to apply the MCMC, which is "a class of algorithms for sampling from a 

probability distribution based on constructing a Markov chain that has the desired 

distribution as its equilibrium distribution. The state of the chain after a number of steps 

is then used as a sample of the desired distribution." (Wikipedia). We used the Metropolis-

Hasting algorithm, which is a "MCMC method for obtaining a sequence of random 

samples from a probability distribution for which direct sampling is difficult"(Wikipedia).  

The Metropolis-Hastings criteria follows Eq. 4.10 below.  

 

….………………………………....….….(4.10) 

 

where is the proposed distribution. In this research, we will assume that the priors 

will follow a uniform distribution. The constant values in in Eq. 4.10 will cancel from the 

numerator and the denominator.  

We will assume that the likelihood is normally distributed, and will be determined using 

Eq. 4.11 below. 
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π ………………………………...…..(4.11) 

 

where σσσσ is the standard deviation, d is the observed data and that θθθθ is the forward model, 

so in this research, either the MH or the PLE models.  

 

The first step in beginning this research is to determine the random and the constant 

variables of the two decline curve analysis models. For the MH model, we will set , 

and the b-factor as the set of random variables, and they are all greater than 0, and will 

keep t and as a constant variable. For the PLE model, we will set , , and as the 

random variables, and keep t and as the constant variables.  

 

The next step was to perform the least squares optimization on the initial values of the 

forward model parameters. A set of results was presented in Fig. 17 for Well 19. After 

this, we determine the standard deviation as a constant for the likelihood definition. Fig. 

21 below shows the least square model results against the production data. From here, we 

will determine the error of the LSQ versus the actual data, shown in a histogram in Fig. 

22 and the cumulative distribution of the error, shown in Fig. 23, and finally the total error 

is presented in Fig. 24. Fig. 21-24 are the MH results of Well 41.  
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Fig. 21 — Results of the least squares optimization against the production data 
 

The figure above shows the decline curve using the optimized parameters for the MH 

model of Well 41. This was performed using the LSQ method, as previously described. 

We used the least squares optimization function in Matlab to obtain these results.  
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Fig. 22 — The distribution of error between the production data and the LSQ results 
 

Fig. 22 shows that the distribution of error between the optimized results and the actual 

production data is a Gaussian distribution.  
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Fig. 23 — The cumulative distribution of error is plotted against the normal cumulative 
distribution function 

 

The figure above shows the cumulative error distribution function (blue curve) against the 

normal cumulative distribution function (red curve). This graphs shows the error of the 

LSQ optimization against the actual normal distribution. From this graph, it can be 

deduced that the optimization performed yielded accurate results because the two curves 

are very close to each other. However, it would be ideal if the two curves overlapped.  
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Fig. 24 — The error of the least squares optimization against the number of production 
days 

 

Fig. 24 shows the error between the least squares optimization and the production data. It 

is visible from the graph that the error decreases with an increasing number of production 

days. This is expected when applying the LSQ optimization, and it is also ideal for the 

study. This graph indicates that as we increase the amount of information, the more 

accurate our optimized results will become, which is what we see in the graph above. 

 

4.5 Analysis and Discussion of the Results 

Three methods were used in this study to forecast the eight wells in the Greater Core Eagle 

Ford. The first was the forward model, using the MH and the PLE models, as would be 

used in industry. Secondly, was the LSQ optimization, where we used the MH and PLE, 

but optimized the parameters of the two equations to provide a more accurate set of 
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parameters than those determined visually when fitting the decline curve of the MH and 

PLE models. Finally, we applied the Bayesian paradigm. This included performing the 

MCMC on the three parameters to obtain the most accurate value, and then implement 

Bayesian forecasting, which works by learning the trend of the production data and better 

estimating the following point. These three approaches have their pros and cons, which is 

what will be discussed in this section, along with a comparison of the DCA results.  

 

The MH and PLE models were implemented by using proprietary software. To perform 

this initial part of the study, we input the production data of the wells into the software. 

After this was completed, we chose which models we wanted to implement in this study, 

and decided on the MH and the PLE models. To fit the data, we manually moved the 

curves using the cursor and when it was visually determined that there was a fit, saved the 

parameters and the data of the set decline curve. This practice is done in industry on 

unconventional wells, and it also gave us values of the three different parameters of the 

two equations. We created qDb plots of the results of each well using Igor, all of which 

are included in Appendix I.  

 

Once we obtained the initial results using the DCA models, we applied the LSQ 

optimization. This method used the parameters determined when using the conventional 

forward models and optimized them to create a more accurate result. After this was done, 

we applied the MCMC on the three parameters of the two forward equations. This method 

used millions of iterations to determine the most accurate value of each parameter, which 

was then used when applying the Bayesian paradigm. The Bayesian paradigm works by 

"learning" about the trend of the data and thus estimating where the next point will be 

based on the knowledge it has acquired from the previous data points. Since there are 

several possibilities, we plotted 1,000 possible realizations and took the mean of these 

realizations.  
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4.5.1 Analysis of the Bayesian Paradigm Results when Implementing the 

Modified Hyperbolic of Well 41 

As previously stated, we will also assume that the priors are all non-informative, meaning 

that they follow a uniform distribution. The next step is to set the coefficient of variation 

to fix the step size of the proposed distribution. We decided the set the coefficient of 

variation to 0.1 for all of the wells and all the models.  

 

From this step, we generated the MCMC iterations, which generated the cumulative mean 

and standard deviation of each random variable, along with a graph of the iterations of 

each parameter. Fig. 25 through 30 show these results, and are the results of the MH model 

of Well 41.  

 

 

Fig. 25 — MCMC results of the b-factor for the MH model 
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The figure above shows the b-factor of the MH model converges immediately. It is also 

clear that the mean value of b is approximately 0.4, which is confirmed in Fig. 26, below.  

 

 

Fig. 26 — Cumulative mean and standard deviation of the b-factor 
 

It is evident from the graph above that the b-factor for Well 41 converges after one million 

iterations. It is evident that there is no more noise in the data and that the MCMC has 

determined the true value of the b-factor. Furthermore, the standard deviation of b is 0.11 

from the figure above.  

 

We performed the same analysis on Di and qi, and the results are presented below.  
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Fig. 27 — MCMC results of Di for the MH model 
  

The figure above shows the Di of the MH model converges immediately. It is also clear 

that the mean value of Di is approximately 2.8E-03, which is confirmed in Fig. 28, below.  
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Fig. 28 — Cumulative mean and standard deviation of Di 
 

It is evident from the graph above that Di for Well 41 converges almost immediately. After 

one million iterations, it is obvious that there is no more noise in the data and that the 

MCMC has determined the true value of the Di.  
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Fig. 29 — MCMC results of qi for the MH model 
 

The figure above shows the qi of the MH model converges immediately. It is also clear 

that the mean value of qi is approximately 515 BOED, which is confirmed in Fig. 30, 

below.  
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Fig. 30 — Cumulative mean and standard deviation of qi 
 

It is evident from the graph above that qi for Well 41 converges almost immediately. After 

one million iterations, it is obvious that there is no more noise in the data and that the 

MCMC has determined the true value of the qi.  

 

Overall, the MH model for Well 41 is a very successful run. All three parameters 

converged after only two million iterations. The results for the remainder wells vary 

depending on the model used when the Bayesian paradigm was implemented.  

 

From the cumulative means and standard deviations of each parameter (presented in Fig. 

26, 28 and 30), we set the burn-in point, which is the point where the iterations reach a 

stationary condition. This burn-in point was determined visually, as some cases converged 



 

56 

 

very quickly with only 2 million iterations, and others did not converge after 50 million 

iteration. For the case presented above, we set the burn-in point at one million iterations.  

After the burn-in point was determined, it only took into consideration the values after the 

set point; meaning that if we set the burn-in point at one million iterations and we had a 

total of 2 million iterations, the model will only take into account the last million values 

and not the first million, where there is noise in the data.  

 

From the results of using the burn-in point, we obtain the descriptive statistics of our 

models; the random variable histograms, the relative frequency histograms, and the 

cumulative distribution of the parameters. This gives a visual representation of the 

behavior of the parameters of the different models. Fig. 31 through 39 below show the 

results.  
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Fig. 31 — Posterior relative frequency histogram of b 
 

The posterior relative frequency histogram of b shows the distribution of the b-factor after 

the burn-in point has been set. This graph indicates that the b-factor has a Gaussian 

distribution after the initial million data points were discarded.  
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Fig. 32 — Cumulative posterior relative frequency histogram of the b-factor 
 

The cumulative posterior relative frequency histogram of the b-factor shows the error 

between the value of the MCMC after the burn-in point was set, with respect to the normal 

cumulative distribution function. The two curves are superposed, indicating that the results 

we have determined do not have any error attributed to them, and this is the correct value 

of the b-factor to use for this data set, while using the MH model.  
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Fig. 33 — Posterior relative frequency histogram of Di 
 

The posterior relative frequency histogram of Di shows a lognormal distribution, as 

opposed to the Gaussian distribution seen for the b-factor.  
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Fig. 34 — Cumulative posterior relative frequency histogram of Di 
 

The cumulative posterior relative frequency histogram of Di shows the error between the 

value of the MCMC after the burn-in point was set, with respect to the normal 

cumulative distribution function. The two curves are superposed, indicating that the 

results we have determined do not have any error attributed to them, and this is the 

correct value of Di to use for this data set, while using the MH model.  
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Fig. 35 — Posterior relative frequency histogram of qi 
 

The posterior relative frequency histogram of qi shows the distribution of qi after the 

burn-in point has been set. This graph indicates that the qi has a Gaussian distribution 

after the initial million data points were discarded.  
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Fig. 36 — Cumulative posterior relative frequency histogram of qi 
 

The cumulative posterior relative frequency histogram of qi shows the error between the 

value of the MCMC after the burn-in point was set, with respect to the normal cumulative 

distribution function. The two curves are superposed, indicating that the results we have 

determined do not have any error attributed to them, and this is the correct value of qi to 

use for this data set, while using the MH model.  
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Fig. 37 — Relative frequency diagram between Di and b 
 

The relative frequency diagram between Di and b shows the relationship between these 

two parameters for the MH model. The red region in the center of the curvature in the 

graph indicates the ideal combination of these two parameters for this specific set of data 

points and model. Though there should not be any relationship between these parameters, 

it is evident from the graph above that there is a relationship.  
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Fig. 38 — Relative frequency diagram between qi and b 
 

The relative frequency diagram between qi and b shows the relationship between these two 

parameters for the MH model. The red region in the center of the curvature in the graph 

indicates the ideal combination of these two parameters for this specific set of data points 

and model. Though there should not be any relationship between these parameters, it is 

evident from the graph above that there is a linear relationship. 
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Fig. 39 — Relative frequency diagram between qi and Di 
 

The relative frequency diagram between qi and Di shows the relationship between these 

two parameters for the MH model. The red region in the center of the curvature in the 

graph indicates the ideal combination of these two parameters for this specific set of data 

points and model. Though there should not be any relationship between these parameters, 

it is evident from the graph above that there is a relationship. 

 

The results presented in Fig. 31-39 validate that our model is working properly and that 

the set burn-in point was accurate.  

 

Using the spatial statistics and the results of the parameters, we generated 1,000 

realizations of the model predictions from the determined posterior distribution. It is 

possible to generate as many realizations are desired, however it was determined that 
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1,000 gave an accurate range of results. From there, we determine the mean of these 

realizations and the standard deviation, which indicates the uncertainty of our Bayesian 

model. This was done for the 700 and 450 days, and then was extended to 30 years. Below 

are the results in Fig. 40 through 45 for Well 41 using the MH model.  

 

 

Fig. 40 — The 1,000 realizations of the model predictions using the Bayesian paradigm 
 

Fig. 40 shows the 1,000 realizations that were created using the parameters that were 

determined with the MCMC. By looking at the graph, we can see that all the results fall 

in a similar range. This graph shows 1,000 possible combinations of results. The next step 

is to take the mean of these results, and compare it to the optimized values and the forward 

model values.  
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Fig. 41 — The production data with the mean of the realizations, the optimal forward 
model and the expert forward model 

 

The graph above shows the three methods used in this study against the production data. 

In this case, the black curve is the optimal forward model, that was determined by the 

applying the least squares optimization, the blue curve is the mean of the 1,000 realizations 

and finally, the turquoise curve is the expert forward model, which in this case is the MH 

model. It is evident that in this case, the MH model and the mean of the model predictions 

are superposed; therefore the two returned the same result. This is unexpected, however it 

means that the MH was the correct model to use initially, and it means that the Bayesian 

model produced the same results, therefore it agrees with the original forward model.  
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Fig. 42 — The 1,000 realizations of the model predictions using the Bayesian paradigm 
for 30 years 

 

Fig. 42 shows the realizations of the model predictions for 30 years. We produced this 

result because in industry, the economic limit of the DCA practice is 30 years. In the graph 

above, the red curve is the expert forward model, therefore in this case, the MH model, 

and the remaining curves are the realizations. It is interesting to note that the forward 

model underestimates the reserves, which is noticeable because the curve is so far below 

the remaining curves.  
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Fig. 43 — The mean of the realizations and the expert forward model, plotted for 30 
years 

 

Like the previous figure, Fig. 43 is plotted for 30 years because of the economic limit set 

by the industry. This graph is similar to the previous graph, however shows the mean of 

the 1,000 realizations, therefore gives a clearer view of the behavior of the model 

predictions. In this graph, it is evident that the expert model (the MH model) is 

underestimating the results. We can see that in early time, the two graphs seem to be 

overlapped, which is also evident in Fig. 41, however it is evident from Fig. 43 that the 

forward model and the Bayesian model do not yield the same results. This is interesting 

to see, and an important conclusion to draw, because it shows that the forecast is necessary 

for a longer period of time to see how the two models act. We can see again that the 

forward model is significantly underestimating the reserves compared to the Bayesian 

model. 
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Fig. 44 — The standard deviation of the Bayesian model  
 

Fig. 44 shows the standard deviation of the Bayesian model, however it is representing the 

uncertainty of the model. This graph is interesting because it shows that the uncertainty 

quickly decreases in early time, which is where we have the production data, and then 

begins to increase again. However, we can also see that as we continue to run the forecast, 

the uncertainty decreases once more.  

 

4.5.2 Analysis of the Bayesian Paradigm Results when Implementing the 

Power Law Exponential of Well 41 

The same process was used when the PLE model was applied to Bayesian paradigm. The 

coefficient of variation was set to 0.1 for all of the wells and all the models, just as before. 

This is constant for all the models for all the wells.   
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From this step, we generated the MCMC iterations, which generated the cumulative mean 

and standard deviation of each random variable, along with a graph of the iterations of 

each parameter. Fig. 45 through 50 show these results, and are the results of the PLE model 

of Well 41.  

 

 

Fig. 45 — MCMC results of n for the PLE model 

 

The figure above shows n of the PLE model converges immediately. It is also clear that 

the mean value of n is approximately 0.76, which is confirmed in Fig. 46, below.  
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Fig. 46 — Cumulative mean and standard deviation of the b-factor 
 

It is evident from the graph above that n for Well 41 converges after one million iterations. 

It is evident that there is no more noise in the data and that the MCMC has determined the 

true value of the b-factor. Furthermore, the standard deviation of n is 0.04 from the figure 

above.  

 

We performed the same analysis on Di and qi, and the results are presented below.  
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Fig. 47 — MCMC results of Di for the PLE model 
  

The figure above shows the Di of the PLE model converges immediately. It is also clear 

that the mean value of Di is approximately 0.01, which is confirmed in Fig. 48, below.  
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Fig. 48 — Cumulative mean and standard deviation of Di 
 

It is evident from the graph above that Di for Well 41 converges almost immediately. After 

one million iterations, it is obvious that there is no more noise in the data and that the 

MCMC has determined the true value of the Di.  
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Fig. 49 — MCMC results of qi for the PLE model 
 

The figure above shows the qi of the PLE model converges immediately. It is also clear 

that the mean value of qi is approximately 550 BOED, which is confirmed in Fig. 50, 

below.  
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Fig. 50 — Cumulative mean and standard deviation of qi 
 
It is evident from the graph above that qi for Well 41 converges almost immediately. After 

one million iterations, it is obvious that there is no more noise in the data and that the 

MCMC has determined the true value of the qi.  

 

Overall, the PLE model for Well 41 is a very successful run. All three parameters 

converged after only two million iterations.  

 

From the cumulative means and standard deviations of each parameter (presented in Fig. 

46, 48 and 50), we set the burn-in point to one million iterations.  

From the results of using the burn-in point, we obtain the descriptive statistics of our 

models. Fig. 51 through 59 below show the results.  
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Fig. 51 — Posterior relative frequency histogram of n 
 

The posterior relative frequency histogram of n shows a Gaussian distribution after the 

initial million data points were discarded. This result is expected and is seen in other cases.  
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Fig. 52 — Cumulative posterior relative frequency histogram of n 
 

The cumulative posterior relative frequency histogram of n shows the error between the 

value of the MCMC after the burn-in point was set, with respect to the normal cumulative 

distribution function. The two curves have a slight different, indicating that the results we 

have determined have a slight error attributed to them.  
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Fig. 53 — Posterior relative frequency histogram of Di 
 

The posterior relative frequency histogram of Di shows a lognormal distribution, as 

opposed to the Gaussian distribution seen for n. This result is consistent through this study.  
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Fig. 54 — Cumulative posterior relative frequency histogram of Di 
 

The cumulative posterior relative frequency histogram of Di shows the error between the 

value of the MCMC after the burn-in point was set, with respect to the normal cumulative 

distribution function. The two curves are not entirely superposed, indicating a slight error, 

and therefore we can assume that this is the correct value of Di to use for this data set, 

while using the PLE model.  
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Fig. 55 — Posterior relative frequency histogram of qi 
 

The posterior relative frequency histogram of qi shows the distribution of qi after the burn-

in point has been set. This graph indicates that the qi has a Gaussian distribution after the 

initial million data points were discarded.  
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Fig. 56 — Cumulative posterior relative frequency histogram of qi 
 

The cumulative posterior relative frequency histogram of qi shows the error between the 

value of the MCMC after the burn-in point was set, with respect to the normal cumulative 

distribution function. The two curves are superposed, indicating that the results we have 

determined do not have any error attributed to them, and this is the correct value of qi to 

use for this data set, while using the PLE model.  
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Fig. 57 — Relative frequency diagram between Di and n 
 

The relative frequency diagram between Di and n shows the relationship between these 

two parameters for the PLE model. There is no distinct relationship between these two 

parameters, though the red center of the curve in the graph above indicates the most 

accurate set of parameters for the given data set.  
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Fig. 58 — Relative frequency diagram between qi and n 

 

The relative frequency diagram between qi and n shows the relationship between these two 

parameters for the PLE model. The red region in the center of the curvature in the graph 

indicates the ideal combination of these two parameters for this specific set of data points 

and model. Though there should not be any relationship between these parameters, it is 

evident from the graph above that there is a negative linear relationship. 
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Fig. 59 — Relative frequency diagram between qi and Di 
 

The relative frequency diagram between qi and Di shows the relationship between these 

two parameters for the MH model. The red region in the center of the curvature in the 

graph indicates the ideal combination of these two parameters for this specific set of data 

points and model.  

 

The results presented in Fig. 51-59 validate that our model is working properly and that 

the set burn-in point was accurate.  

 

Using the spatial statistics and the results of the parameters, we generated 1,000 

realizations of the model predictions from the determined posterior distribution. It is 

possible to generate as many realizations are desired, however it was determined that 

1,000 gave an accurate range of results. From there, we determine the mean of these 
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realizations and the standard deviation, which indicates the uncertainty of our Bayesian 

model. This was done for the 700 and 450 days, and then was extended to 30 years. Below 

are the results in Fig. 60 through 65 for Well 41 using the PLE model.  

 

 

Fig. 60 — The 1,000 realizations of the model predictions using the Bayesian paradigm 
 

Fig. 60 shows the 1,000 realizations that were created using the parameters that were 

determined with the MCMC. By looking at the graph, we can see that all the results fall 

in a similar range. This graph shows 1,000 possible combinations of results. The next step 

is to take the mean of these results, and compare it to the optimized values and the forward 

model values.  
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Fig. 61 — The production data with the mean of the realizations, the optimal forward 
model and the expert forward model 

 

The graph above shows the three methods used in this study against the production data. 

In this case, the black curve is the optimal forward model, that was determined by the 

applying the least squares optimization, the blue curve is the mean of the 1,000 realizations 

and finally, the turquoise curve is the expert forward model, which in this case is the PLE 

model. It is evident that in this case, the PLE model and the mean of the model predictions 

are superposed; therefore the two returned the same result. This is unexpected, however it 

means that the PLE was the correct model to use initially, and it means that the Bayesian 

model produced the same results, therefore it agrees with the original forward model.  
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Fig. 62 — The 1,000 realizations of the model predictions using the Bayesian paradigm 
for 30 years 

 

Fig. 62 shows the realizations of the model predictions for 30 years. In the graph above, 

the red curve is the expert forward model, therefore in this case, the MH model, and the 

remaining curves are the realizations. It is interesting to note that the forward model 

underestimates the reserves, which is noticeable because the curve is so far below the 

remaining curves.  
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Fig. 63 — The mean of the realizations and the expert forward model, plotted for 30 
years 

 

Like the previous figure, Fig. 63 is plotted for 30 years. This graph is similar to the 

previous graph, however shows the mean of the 1,000 realizations, therefore gives a 

clearer view of the behavior of the model predictions. In this graph, it is evident that the 

expert model (the PLE model) is underestimating the results. We can see that in early time, 

the two graphs seem to be overlapped, which is also evident in Fig. 61, however it is 

evident from Fig. 63 that the forward model and the Bayesian model do not yield the same 

results. This is interesting to see, and an important conclusion to draw, because it shows 

that the forecast is necessary for a longer period of time to see how the two models act. 

We can see again that the forward model is significantly underestimating the reserves 

compared to the Bayesian model. 
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Fig. 64 — The comparison of the standard deviations of the two Bayesian models  
 

Fig. 64 shows the two standard deviations of the two Bayesian models. It compares the 

uncertainty of the two models. From the graph, it is evident that the uncertainty of 

Bayesian paradigm when used with the MH model decreases over time, whereas that of 

the PLE model remains constant. From this, it is evident that the MH model would be 

more desirable for this specific case because the objective, when implementing the 

Bayesian paradigm, is to decrease uncertainty over time.  

 

The results of the other seven wells are included in Appendix I through VIII.  
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4.5.3 Discussion of the Results  

Well 41 shows a beautiful convergence of the MCMC results for all three parameter of 

the MH model and of the PLE model. The posterior distributions for the MH model when 

implemented the Bayesian paradigm are also as expected – Gaussian for the b-factor and 

for qi, and lognormal for Di, which has been a trend in this study. We see the same trends 

for the PLE posterior results; a Gaussian distribution for n and qi, and a lognormal 

distribution of Di. This is a truly excellent example of what we were trying to show with 

this study. The parameters of the two different models have the same distributions, even 

though they are not related. This does tell us that the two Di values may somehow be 

related, since we see the same behavior.  

 

Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model.  

 

The PLE results of the relative frequency histograms are also very clear, and follow the 

same trend as seen in Well 19 (Appendix III).  It is important to show that both models for 

all the wells are showing the same trends.   

 

Finally we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 production days plotted. However, when we extend the results to 

30 years that there is a divergence between two sets of results. In this case, the MH model, 

when applied to the Bayesian paradigm overestimates reserves. However in this case, the 

PLE model does not follow the same trend as the MH model, and is underestimating the 
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reserves. This is the first time that we see this result. It is interesting to see that the same 

well and same set of production data can lead to such different results.  

 

The graph that compares the standard deviations of the two sets of Bayesian results 

identifies the uncertainty of the two models. From the results, we see a similar trend in the 

uncertainty as we did for Well 41. This is interesting because this well's cases both yielded 

excellent results, however from these results, we can see that the MH model is decreasing 

uncertainty with time but the PLE model is not.  
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The conclusions of based on our detailed analysis of Well 41 are: 

• The Bayesian paradigm implemented with the MH model overestimates reserves. 

• The Bayesian paradigm implemented with the PLE model underestimates reserves. 

Furthermore, the uncertainty of the two models: 

• Decreases when the MH model is applied to the Bayesian paradigm. 

• Remains constant when the PLE model is applied to the Bayesian paradigm. 

 
An indicator of a successful model in the Bayesian paradigm is that it's uncertainty 

decreases with time — as such, this work suggests that the MH model should yield the 

most reliable results when the Bayesian paradigm is applied.  We note for completeness 

that these results and conclusions are only valid for this well (Well 41), and may not 

necessarily apply for the other two wells.  

 
The data diagnostics and analyses for the remainder of the wells are shown in the 

Appendices.  Overall, Set 1, the set of five wells truncated at 700 days, has more accurate 

results than Set 2, the set of three wells truncated at 450 days.  This is most likely because 

there are more production data available in Set 1 and therefore the Bayesian model can 

more effectively isolate the model based on the underlying trend in the data.  However, 

there are certain results of Set 2 that show a good convergence of the three parameters of 

the model (e.g., the Bayesian forecast using the PLE model for Well 67).  Overall, it is 

better to have more production history.  Due to the lesser production history, it is probable 

that the decline behavior of the wells in Set 2 will change as more data is collected. 

 
The majority of the wells exhibit behavior that favor the MH model (in particular, Wells 

18, 20, 24, 38, 40 and 41), all of which yield their best results when we apply the Bayesian 

paradigm using the MH model.  Wells 19 and 67 are the two "best cases" for when the 

PLE model is applied to the Bayesian paradigm. 
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We see that the MH and PLE forward models and the mean of the realizations are often 

juxtaposed at early times and the difference between the models is seen at later times.  

When the forecast was extended to 30 years, we can observe whether or not the forward 

model over- or underestimates the reserves.  As comment, it is interesting that the majority 

of the wells evaluated follow the MH model rather than the PLE model.  

 
Well 38 has poor results for both models, however when the MH model was applied to 

the Bayesian forecast, only one of the three parameters did not converge.  The same 

behavior was observed for Well 24.  However as previously discussed, Well 24 does not 

exhibit a good production trend and the lack of a strong data trend does not aid in obtaining 

accurate DCA or statistical results.  Well 41 does exhibit a good match when the PLE 

model was applied to the Bayesian forecast although the standard deviation for the MH 

model is lower, which is our target criteria.  

 
The goal of this study is to show the discrepancy (or error) obtained when using traditional 

decline curve methods compared to the application of the (Bayesian) statistical model. As 

process, the DCA approach using the two forward models (Modified-Hyperbolic (MH) 

and Power-Law Exponential (PLE)) was performed visually, where the best fit of the data 

was obtained using a proprietary software.  After this process was performed for each of 

the wells, the resulting values of the different parameters for each DCA relation were 

documented, along with the EUR results.  This part of the study was not very time 

consuming, and as is the convention, we would expect such results to tend towards the 

median of the Bayesian paradigm (at least that is the expectation).  

 
When applying the Bayesian paradigm using the MH or PLE models, there are multiple 

steps involved, and significant computational time is required.  Initially, we apply the LSQ 

optimization, then apply the MCMC methodology on the different parameters for each 

decline model, and finally we forecast the results for the historical data, and then for 30 

years.  When the MCMC methodology is implemented, the simulation takes hours to run 

for the case of two million iterations — however, for the case of 50 million iterations, 
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models took several days to run.  This process, being time consuming, can be seen as a 

drawback.  However; once the results are presented, we can visually see that the Bayesian 

paradigm produces results that are statistically more accurate, and clearly shows when the 

forward model is over- or under-estimating results for a given case.   

 

5.2 Future Work 

The next step in this study is to perform a comparison of the 30-year forecasted cumulative 

production as a surrogate for EUR.  This action was not provided in this work due to 

constraints in the modeling approach.  This would have to be performed "externally" to 

the Bayesian approach in the current solution configuration.  After this has been done, it 

would be ideal to change the prior estimate.  Instead of assuming that the prior estimate is 

unknown, we can begin to update this value using the different stages of information.  This 

will show that the more information we have, the more accurate the Bayesian forecast will 

be.  Using these results we could show directly that uncertainty decreases over time, 

indicating that the more information known in the model, the less uncertain the model will 

be.  Such a process will also indicate if there is a point where no more information is 

needed in the prior estimations, and that having information on a certain (minimum) 

number of data points will not affect the result of the forecast.  We can assume that the 

model will be more accurate as more information is provided — however; we would like 

to prove this conjecture.  

 
Finally, we would like to plot surfaces of the different parameters of the two forward 

equations to have a 3D representation of how the parameters change in 3D space.  Initially, 

we will plot the values of the eight wells that have been used in this study.  Then, we will 

eliminate one well and see if the estimated values at that point are the same, or 

approximately the same as the actual values.  If we find that the two values correspond, 

we can remove another well, to see how well the model will estimate the values at that 

point.  After this has been completed, we can increase the area of investigation and begin 

to estimate values at different parts of the play that do not have producing wells.  The 
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results may also indicate if a particular well is worth drilling or not, and there would be a 

visual representation production potential of the play.  
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APPENDIX I   

 

QDB PLOTS OF MH AND PLE MODELS 

Results of the Modified Hyperbolic and Power Law Exponential methods of the 
two truncated data sets. Set 1 includes wells 19, 20, 38, 40, 41 and Set 2 includes wells 
18, 24 and 67.  

 
 

 
Fig. 65 — qDb plot of Well 18 using the MH and PLE models 
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Fig. 66 — qDb plot of Well 19 using the MH and PLE models 

 

Fig. 67 — qDb plot of Well 20 using the MH and PLE models 
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Fig. 68 — qDb plot of Well 24 using the MH and PLE models 
 

 

Fig. 69 — qDb plot of Well 38 using the MH and PLE models 
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Fig. 70 — qDb plot of Well 40 using the MH and PLE models 
 

 

Fig. 71 — qDb plot of Well 67 using the MH and PLE models 
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 From the eight graphs in this appendix, we can see the production trend of each 

well, along with the match in the b-factor and Di parameters. It is from these graphs that 

we determined the values of these three parameters, found in Tables 1 and 2. As previously 

stated, we used the results to perform the LSQ optimization and when applying the 

Bayesian paradigm. The above graphs have both the PLE and MH results, presented in the 

black and blue curves, respectively. The objective when performing the DCA in these 

wells was the best match the production data (the green curve). This sometimes led to 

unrealistic results for all three parameters, however this can also be attributed to using the 

incorrect model to forecast the well.  

  

From this step, we performed the LSQ optimization on all the wells, for both the 

MH and PLE models, and then the Bayesian paradigm will be implemented. The results 

of all the wells are presented below.  
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APPENDIX II  

 

RESULTS AND ANALYSIS OF WELL 18 
 
Well 18 – Modified Hyperbolic Model 

 
Fig. 72 — Results of the least squares optimization against the production data of Well 

18 for the MH Model 
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Fig. 73 — The distribution of error between the production data and the LSQ results for 

Well 18 for the MH Model 

 
Fig. 74 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 18 for the MH Model 
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Fig. 75 — The error of the least squares optimization against the number of production 

days of Well 18 for the MH Model 

 
Fig. 76 — MCMC results of the b-factor for the MH model of Well 18 using the MH 

model 
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Fig. 77 — Cumulative mean and standard deviation of the b-factor of Well 18 using the 

MH model 

 
Fig. 78 —MCMC results of Di for the MH model of Well 18 using the MH model 
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Fig. 79 — Cumulative mean and standard deviation of Di of Well 18 using the MH 

model 

 
Fig. 80 — MCMC results of qi for the MH model of Well 18 using the MH model 
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Fig. 81 — Cumulative mean and standard deviation of qi of Well 18 using the MH 

model 

 
Fig. 82 — Posterior relative frequency histogram of b of Well 18 using the MH model 
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Fig. 83 — Cumulative posterior relative frequency histogram of the b-factor of Well 18 

using the MH model 

 
Fig. 84 — Posterior relative frequency histogram of Di of Well 18 using the MH model 
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Fig. 85 — Cumulative posterior relative frequency histogram of Di of Well 18 using the 

MH model 

 
Fig. 86 — Posterior relative frequency histogram of qi of Well 18 using the MH model 
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Fig. 87 — Cumulative posterior relative frequency histogram of qi of Well 18 using the 

MH model 

 
Fig. 88 — Relative frequency diagram between Di and b of Well 18 using the MH 

model 
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Fig. 89 — Relative frequency diagram between qi and b of Well 18 using the MH model 

 
Fig. 90 — Relative frequency diagram between qi and Di of Well 18 
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Fig. 91 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 18 with the MH model 

 
Fig. 92 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 18 
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Fig. 93 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 18 

 
Fig. 94 — The mean of the realizations and the MH model, plotted for 30 years for Well 

18 
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Well 18 – Power Law Exponential Model 

 
Fig. 95 — Results of the least squares optimization against the production data of Well 

18 for the PLE Model 
 

 
Fig. 96 — The distribution of error between the production data and the LSQ results for 

Well 18 for the PLE Model 
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Fig. 97 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 18 for the PLE Model 
 

 
Fig. 98 — The error of the least squares optimization against the number of production 

days of Well 18 for the PLE Model 
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Fig. 99 — MCMC results of n for the PLE model of Well 18 
 

 
Fig. 100 — Cumulative mean and standard deviation of n of Well 18 using the PLE 

model 
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Fig. 101 — MCMC results of Di for the MH model of Well 18 using the PLE model 
 

 
Fig. 102 — Cumulative mean and standard deviation of Di of Well 18 using the PLE 

model 
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Fig. 103 — MCMC results of qi for the MH model of Well 18 using the PLE model 
 

 
Fig. 104 — Cumulative mean and standard deviation of qi of Well 18 using the PLE 

model 
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Fig. 105 — Posterior relative frequency histogram of n of Well 18 using the PLE model 
 

 
Fig. 106 — Cumulative posterior relative frequency histogram of n of Well 18 using the 

PLE model 
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Fig. 107 — Posterior relative frequency histogram of Di of Well 18 using the PLE model 
 

 
Fig. 108 — Cumulative posterior relative frequency histogram of Di of Well 18 using 

the PLE model 
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Fig. 109 — Posterior relative frequency histogram of qi of Well 18 using the PLE model 
 

 
Fig. 110 — Cumulative posterior relative frequency histogram of qi of Well 18 using the 

PLE model 
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Fig. 111 — Relative frequency diagram between Di and n of Well 18 using the PLE 

model 
 

 
Fig. 112 — Relative frequency diagram between qi and n of Well 18 using the PLE 

model 
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Fig. 113 — Relative frequency diagram between qi and Di of Well 18 using the PLE 

model 
 

 
Fig. 114 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 18 with the PLE model 
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Fig. 115 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 18 
 

 

 
Fig. 116 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 18 
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Fig. 117 — The mean of the realizations and the PLE model, plotted for 30 years for 

Well 18 
 

 
Fig. 118 — Comparison of the Standard Deviation of the two Bayesian forecasts using 

the MH and PLE models of Well 18 
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Analysis 

Well 18 shows interesting results with the MCMC results, especially when determining 

the b-factor, shown in Fig. 76. Di converges immediately, as does the qi, which can be seen 

in Fig. 78 and 80. We applied the burn-in point and notice that the posterior distribution 

of the three parameters is quite different. We see a Gaussian distribution for both Di and 

qi in Fig. 84 and 86, however see a different distribution for the b-factor (Fig. 82), which 

is attributed to the non-convergence of the MCMC. We expect to obtain normally 

distributed posteriors because this was an assumption made initially.  

 

If we compare these MCMC results with the results produced when applying the PLE 

model, we notice that that model converges for n, the Di and for the qi, shown in Fig. 99, 

101 and 103, respectively, after four million iterations. However, in this case, the only 

parameter that exhibits a Gaussian distribution in the posterior is qi, shown in Fig. 109. 

Both posterior distributions for n and Di are lognormal in this case. This is a different 

result that we have not seen from another n. The results may be exhibit this distribution 

because the conversion is not excellent, thus skewing the further results.   

 

Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model. These results can be seen in Fig. 88, 89 and 90, respectively, for the MH model 

and Fig. 111, 112 and 113, respectively, for the PLE model. The quality of the relative 

frequency histograms is based upon the quality of the posterior of the parameters, because 

it is just a representation of the two parameters against each other. From Fig. 88 and 89, 

we see that because of the poor results due to the b-factor that the histograms become 

skewed and we cannot determine the relationship of the two parameters. However, we see 

that in Fig. 90 that there is a linear relationship between qi and Di. These are same results 

we have seen in other wells, and have encountered the same problem due to poor 
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convergence of parameters. The PLE results of the relative frequency histogram show 

interesting results that are the same results we have seen with the other wells.   

 

We then reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 days plotted. However, when we extend the results to 30 years 

that there is a divergence between two sets of results. In this case, the MH forward model 

overestimates the reserves, as seen in Fig.  94 for the MH model and Fig. 117 for the PLE 

model. Both models show that they overestimate the reserves.  

 

Finally, the standard deviation comparison of the two sets of Bayesian results, Fig. 118 

identifies the uncertainty of the two models. In the case of this well, it is evident that the 

uncertainty is much greater in the PLE model than in the MH model, in early time. 

However, as the model progresses, we see that the two standard deviation values converge, 

and are at 0. This means that there is no more uncertainty related to either of the models, 

which is a fascinating discovery. This being said, the uncertainty in early time is very great 

in the PLE model, therefore the MH model seems to provide a more accurate result when 

implementing the Bayesian paradigm.  
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APPENDIX III  

 

RESULTS AND ANALYSIS OF WELL 19 
 

Well 19 – Modified Hyperbolic Model 

 
Fig. 119 — Results of the least squares optimization against the production data of Well 

19 for the MH Model 
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Fig. 120 — The distribution of error between the production data and the LSQ results 

for Well 19 for the MH Model 
 

 
Fig. 121 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 19 for the MH Model 



 

136 

 

 
Fig. 122 — The error of the least squares optimization against the number of production 

days of Well 19 for the MH Model 
 

 
Fig. 123 — MCMC results of the b-factor for the MH model of Well 19 using the MH 

model 
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Fig. 124 — Cumulative mean and standard deviation of the b-factor of Well 19 using the 

MH model 
 

 
Fig. 125 — MCMC results of Di for the MH model of Well 19 using the MH model 
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Fig. 126 — Cumulative mean and standard deviation of Di of Well 19 using the MH 

model 
 

 
Fig. 127 — MCMC results of qi for the MH model of Well 19 using the MH model 
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Fig. 128 — Cumulative mean and standard deviation of qi of Well 19 using the MH 

model 
 

 
Fig. 129 — Posterior relative frequency histogram of b of Well 19 using the MH model 
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Fig. 130 — Cumulative posterior relative frequency histogram of the b-factor of Well 19 

using the MH model 
 

 
Fig. 131 — Posterior relative frequency histogram of Di of Well 19 using the MH model 
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Fig. 132 — Cumulative posterior relative frequency histogram of Di of Well 19 using 

the MH model 
 

 
Fig. 133 — Posterior relative frequency histogram of qi of Well 19 using the MH model 
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Fig. 134 — Cumulative posterior relative frequency histogram of qi of Well 19 using the 

MH model 
 

 
Fig. 135 — Relative frequency diagram between Di and b of Well 19 using the MH 

model 
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Fig. 136 — Relative frequency diagram between qi and b of Well 19 using the MH 

model 
 

 
Fig. 137 — Relative frequency diagram between qi and Di of Well 19 using the MH 

model 
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Fig. 138 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 19 with the MH model 
 

 
Fig. 139 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 19 
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Fig. 140 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 19 
 

 
Fig. 141 — The mean of the realizations and the MH model, plotted for 30 years for 

Well 19 
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Well 19 – Power Law Exponential Model 

 
Fig. 142 — Results of the least squares optimization against the production data of Well 

19 for the PLE Model 
 

 
Fig. 143 — The distribution of error between the production data and the LSQ results 

for Well 19 for the PLE Model 
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Fig. 144 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 19 for the PLE Model 
 

 
Fig. 145 — The error of the least squares optimization against the number of production 

days of Well 19 for the PLE Model 
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Fig. 146 — MCMC results of n for the PLE model of Well 19 
 

 
Fig. 147 — Cumulative mean and standard deviation of n of Well 19 using the PLE 

model 
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Fig. 148 — MCMC results of Di for the MH model of Well 19 using the PLE model 
 

 
Fig. 149 — Cumulative mean and standard deviation of Di of Well 19 using the PLE 

model 
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Fig. 150 — MCMC results of qi for the MH model of Well 19 using the PLE model 
 

 
Fig. 151 — Cumulative mean and standard deviation of qi of Well 19 using the PLE 

model 
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Fig. 152 — Posterior relative frequency histogram of n of Well 19 using the PLE model 
 

 
Fig. 153 — Cumulative posterior relative frequency histogram of n of Well 19 using the 

PLE model 
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Fig. 154 — Posterior relative frequency histogram of Di of Well 19 using the PLE model 
 

 
Fig. 155 — Cumulative posterior relative frequency histogram of Di of Well 19 using 

the PLE model 
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Fig. 156 — Posterior relative frequency histogram of qi of Well 19 using the PLE model 
 

 
Fig. 157 — Cumulative posterior relative frequency histogram of qi of Well 19 using the 

PLE model 
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Fig. 158— Relative frequency diagram between Di and n of Well 19 using the PLE 

model 
 

 
Fig. 159 — Relative frequency diagram between qi and n of Well 19 using the PLE 

model 
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Fig. 160 — Relative frequency diagram between qi and Di of Well 19 using the PLE 

model 
 

 
Fig. 161 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 19 with the PLE model 



 

156 

 

 
Fig. 162 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 19 
 

 
Fig. 163 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 19 
 



 

157 

 

 
Fig. 164— The mean of the realizations and the PLE model, plotted for 30 years for 

Well 19 
 

 
Fig. 165 — Comparison of the Standard Deviation of the two Bayesian forecasts using 

the MH and PLE models of Well 19 
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Analysis 
 
Well 19 shows interesting results with the MCMC results, especially when determining 

the b-factor, shown in Fig. 123. From the theory, the b-factor should have converged and 

is not, even after 10 million iterations. This indicates to me that the restriction that we set 

of the b-factor being greater than 0 is incorrect because the values of b are close to 0, but 

the b-factor should set to 0 in this case, when using the MH model to apply the MCMC. 

However, we notice that the Di converges immediately, as does the qi, which can be seen 

in Fig. 125 and 127. We applied the burn-in point and notice that the posterior distribution 

of the three parameters is quite different. We see a Gaussian distribution for both Di and 

qi in Fig. 131 and 133, however see a different distribution for the b-factor (Fig. 129), 

which is attributed to the non-convergence of the MCMC. We expect to obtain normally 

distributed posteriors because this was an assumption made initially. If we compare these 

MCMC results with the results produced when applying the PLE model, we notice that 

that model converges nicely for the n, the Di and for the qi, shown in Fig. 146, 148 and 

150, respectively, after only two million iterations. We obtain a clean mean of all three 

parameters, which lead to clear posterior distributions. The n and qi posteriors are normally 

distributed (Fig. 152 and 156, respectively), however we see a log-normal distribution for 

Di (Fig. 154). It is a trend throughout the PLE results that the Di shows a lognormal 

distribution, which, as previously stated, is an unexpected result because we expected the 

distribution to be normal.  

 

Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model. These results can be seen in Fig. 135, 136 and 137, respectively, for the MH model 

and Fig. 158, 159 and 160, respectively, for the PLE model. The quality of the relative 

frequency histograms is based upon the quality of the posterior of the parameters, because 

it is just a representation of the two parameters against each other. From Fig. 135 and 136, 

we see that because of the poor results due to the b-factor that the histograms become 
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skewed and we cannot determine the relationship of the two parameters. However, we see 

that in Fig. 137 that there is a linear relationship between qi and Di. The red part of the 

graph identifies the ideal set of the two parameters for this data set using the MH model. 

For the PLE results of the relative frequency histogram, we see interesting results. In Fig. 

158, we see a very interesting relationship between Di and n, which shows a curve. This 

may indicate that there is no set relationship between these two parameters, because there 

should not be. However, another interesting observation from Fig. 159 and 160 is that qi 

has opposite relationships with Di and the b-factor.  

 

Finally we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 days plotted. However, when we extend the results to 30 years 

that there is a divergence between two sets of results. In general, the results show that the 

forward model underestimates the reserves, as seen in Fig. 141 for the MH model and Fig. 

164 for the PLE model.  

 

The most interesting graph to discuss, however, is the graph that compares the standard 

deviations of the two sets of Bayesian results, Fig. 165. This figure identifies the 

uncertainty of the two models. We can see that the uncertainty is approximately the same 

in early time, however as time progresses, the PLE model shows less uncertainty while 

the MH model's uncertainty increases and is prevalent through the 30 years. From this 

graph, I would determine that the most acceptable model to use would be the Bayesian 

forecast model, by applying the PLE model.  
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APPENDIX IV  

 

RESULTS AND ANALYSIS OF WELL 20 
 
Well 20 – Modified Hyperbolic Model 
 

 
Fig. 166 — Results of the least squares optimization against the production data of Well 

20 for the MH Model 
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Fig. 167 — The distribution of error between the production data and the LSQ results 

for Well 20 for the MH Model 
 

 
Fig. 168 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 20 for the MH Model 
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Fig. 169 — The error of the least squares optimization against the number of production 

days of Well 20 for the MH Model 
 

 
Fig. 170 — MCMC results of the b-factor for the MH model of Well 20 using the MH 

model 
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Fig. 171 — Cumulative mean and standard deviation of the b-factor of Well 20 using the 

MH model 
 

 
Fig. 172 — MCMC results of Di for the MH model of Well 20 using the MH model 
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Fig. 173 — Cumulative mean and standard deviation of Di of Well 20 using the MH 

model 
 

 
Fig. 174 — MCMC results of qi for the MH model of Well 20 using the MH model 
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Fig. 175 — Cumulative mean and standard deviation of qi of Well 20 using the MH 

model 
 

 
Fig. 176 — Posterior relative frequency histogram of b of Well 20 using the MH model 
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Fig. 177 — Cumulative posterior relative frequency histogram of the b-factor of Well 20 

using the MH model 
 

 
Fig. 178 — Posterior relative frequency histogram of Di of Well 20 using the MH model 
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Fig. 179 — Cumulative posterior relative frequency histogram of Di of Well 20 using 

the MH model 
 

 
Fig. 180 — Posterior relative frequency histogram of qi of Well 20 using the MH model 
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Fig. 181 — Cumulative posterior relative frequency histogram of qi of Well 20 using the 

MH model 
 

 
Fig. 182 — Relative frequency diagram between Di and b of Well 20 using the MH 

model 
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Fig. 183 — Relative frequency diagram between qi and b of Well 20 using the MH 

model 
 

 
Fig. 184 — Relative frequency diagram between qi and Di of Well 20 using the MH 

model 
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Fig. 185 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 20 with the MH model 
 

 
Fig. 186 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 20 
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Fig. 187 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 20 
 

 
Fig. 188 — The mean of the realizations and the MH model, plotted for 30 years for 

Well 20 
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Well 20 – Power Law Exponential Model  
 

 
Fig. 189 — Results of the least squares optimization against the production data of Well 

20 for the PLE Model 
 

 
Fig. 190 — The distribution of error between the production data and the LSQ result 

for Well 20 for the PLE Model 
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Fig. 191 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 20 for the PLE Model 
 

 
Fig. 192 — The error of the least squares optimization against the number of production 

days of Well 20 for the PLE Model 
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Fig. 193 — MCMC results of n for the PLE model of Well 20 

 
Fig. 194 — Cumulative mean and standard deviation of n of Well 20 using the PLE 

model 
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Fig. 195 — MCMC results of Di for the MH model of Well 20 using the PLE model 
 

 
Fig. 196 — Cumulative mean and standard deviation of Di of Well 20 using the PLE 

model 
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Fig. 197 — MCMC results of qi for the MH model of Well 20 using the PLE model 
 

 
Fig. 198 — Cumulative mean and standard deviation of qi of Well 20 using the PLE 

model 
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Fig. 199 — Posterior relative frequency histogram of n of Well 20 using the PLE model 
 

 
Fig. 200 — Cumulative posterior relative frequency histogram of n of Well 20 using the 

PLE model 
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Fig. 201 — Posterior relative frequency histogram of Di of Well 20 using the PLE model 
 

 
Fig. 202 — Cumulative posterior relative frequency histogram of Di of Well 20 using 

the PLE model 



 

179 

 

 
Fig. 203 — Posterior relative frequency histogram of qi of Well 20 using the PLE model 
 

 
Fig. 204 — Cumulative posterior relative frequency histogram of qi of Well 20 using the 

PLE model 
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Fig. 205 — Relative frequency diagram between Di and n of Well 20 using the PLE 

model 
 

 
Fig. 206 — Relative frequency diagram between qi and n of Well 20 using the PLE 

model 
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Fig. 207 — Relative frequency diagram between qi and Di of Well 20 using the PLE 

model 
 

 
Fig. 208 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 20 with the PLE model 
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Fig. 209 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 20 
 

 
Fig. 210 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 20 
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Fig. 211 — The mean of the realizations and the PLE model, plotted for 30 years for 

Well 20 
 

 
Fig. 212 — Comparison of the Standard Deviation of the two Bayesian forecasts using 

the MH and PLE models of Well 20 
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Analysis 

The MCMC results of Well 20's three parameters converge after two million iterations 

when using the MH model, as seen in Fig. 170, 172 and 174. This is an excellent example 

of the behavior expected when performing the MCMC on a given parameter.    We applied 

the burn-in point and notice that the posterior distribution of the three parameters follow 

the similar distributions. We see a Gaussian distribution for both b and qi in Fig. 176 and 

180, however see more of a lognormal distribution for Di (Fig. 178). This is consistent 

with the behavior of Di for Well 19 PLE model, which is even more interesting because 

the two values of Di have different meanings.  

 

If we compare these MCMC results with the results produced when applying the PLE 

model, we notice that that model does not converges for any of the parameters (n, Di, qi) 

shown in Fig. 193, 195 and 197, respectively, after 10 million iterations. Since none of 

the parameters converge, we do not obtain a clean mean, therefore the posterior 

distributions are incorrect. The n, Di and qi posteriors show a type of distribution (Fig. 

199, 201 and 203, respectively), however these distributions do not tell us much about the 

posterior.  

 

In this instance, it is evident that Well 20 does not follow the PLE model. None of the 

three parameters converge, though the code ran for 10 million iterations and did not 

converge. The relative frequency histograms of the MH results show beautiful correlations 

between the parameters, however, unfortunately, the PLE results yield no information. 

The explanation can be that the well's production data is not following the PLE model, 

which is also visible in the unlikely results of EUR, n, Di and qi from the initial DCA work, 

presented in Table 2. The PLE relative frequency histograms are presented in Fig. 205, 

206 and 207. 

 

Finally we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

In this well's case, the results of the MH model are ideal, as presented in Fig. 196. 
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However, we cannot have faith in the results of the PLE model, and this is evident with 

the representation of the mean of the realizations. The curve created while implementing 

the Bayesian paradigm does not fit the data in the least, and neither does the curve of the 

forward model PLE results, seen in Fig. 209. However, the curve of the optimized results 

does capture a better trend of the data, which is an interesting result.  

 

The graph that compares the standard deviations of the two sets of Bayesian results, Fig. 

212, shows that the uncertainty of the PLE model remains constant as the uncertainty of 

the MH model decrease with time. From this result, and the inconclusive results of the 

PLE, I would say that this well follows the MH model. Furthermore, it is evident that the 

Bayesian implementation gives a more realistic decline than the forward model, and when 

comparing the mean of realizations against the forward model, in this case the MH model, 

it is evident that the forward model is underestimating the reserves (Fig. 198).  
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APPENDIX V  

 

RESULTS AND ANALYSIS OF WELL 24 
 
Well 24 – Modified Hyperbolic Model 

 
Fig. 213 — Results of the least squares optimization against the production data of Well 

24 for the MH Model 
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Fig. 214 — The distribution of error between the production data and the LSQ results 

for Well 24 for the MH Model 
 

 
Fig. 215 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 24 for the MH Model 
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Fig. 216 — The error of the least squares optimization against the number of production 

days of Well 24 for the MH Model 
 

 
Fig. 217 — MCMC results of the b-factor for the MH model of Well 24 using the MH 

model 
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Fig. 218 — Cumulative mean and standard deviation of the b-factor of Well 24 using the 

MH model 
 

 
Fig. 219 — MCMC results of Di for the MH model of Well 24 using the MH model 
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Fig. 220 — Cumulative mean and standard deviation of Di of Well 24 using the MH 

model 
 

 
Fig. 221 — MCMC results of qi for the MH model of Well 24 using the MH model 
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Fig. 222 — Cumulative mean and standard deviation of qi of Well 24 using the MH 

model 
 

 
Fig. 223 — Posterior relative frequency histogram of b of Well 24 using the MH model 
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Fig. 224 — Cumulative posterior relative frequency histogram of the b-factor of Well 24 

using the MH model 
 

 
Fig. 225 — Posterior relative frequency histogram of Di of Well 24 using the MH model 
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Fig. 226 — Cumulative posterior relative frequency histogram of Di of Well 24 using 

the MH model 
 

 

 
Fig. 227 — Posterior relative frequency histogram of qi of Well 24 using the MH model 
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Fig. 228 — Cumulative posterior relative frequency histogram of qi of Well 24 using the 

MH model 
 

 
Fig. 229 — Relative frequency diagram between Di and b of Well 24 using the MH 

model 
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Fig. 230 — Relative frequency diagram between qi and b of Well 24 using the MH 

model 
 

 
Fig. 231 — Relative frequency diagram between qi and Di of Well 24 using the MH 

model 
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Fig. 232 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 24 with the MH model 
 

 
Fig. 233 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 24 
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Fig. 234 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 24 
 

 
Fig. 235 — The mean of the realizations and the MH model, plotted for 30 years for 

Well 24 
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Well 24 – Power Law Exponential Model 

 
Fig. 236 — Results of the least squares optimization against the production data of Well 

19 for the PLE Model 
 

 
Fig. 237 — The distribution of error between the production data and the LSQ results 

for Well 24 for the PLE Model 
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Fig. 238 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 24 for the PLE Model 
 

 
Fig. 239 — The error of the least squares optimization against the number of production 

days of Well 24 for the PLE Model 
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Fig. 240 — MCMC results of n for the PLE model of Well 24 

 

 
Fig. 241 — Cumulative mean and standard deviation of n of Well 24 using the PLE 

model 



 

201 

 

 
Fig. 242 — MCMC results of Di for the MH model of Well 24 using the PLE model 

 

 
Fig. 243 — Cumulative mean and standard deviation of Di of Well 24 using the PLE 

model 
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Fig. 244 — MCMC results of qi for the MH model of Well 24 using the PLE model 

 

 
Fig. 245 — Cumulative mean and standard deviation of qi of Well 24 using the PLE 

model 
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Fig. 246 — Posterior relative frequency histogram of n of Well 24 using the PLE model 

 

 
Fig. 247 — Cumulative posterior relative frequency histogram of n of Well 24 using the 

PLE model 
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Fig. 248 — Posterior relative frequency histogram of Di of Well 24 using the PLE model 

 

 
Fig. 249 — Cumulative posterior relative frequency histogram of Di of Well 24 using 

the PLE model 
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Fig. 250 — Posterior relative frequency histogram of qi of Well 24 using the PLE model 
 

 
Fig. 251 — Cumulative posterior relative frequency histogram of qi of Well 24 using the 

PLE model 
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Fig. 252 — Relative frequency diagram between Di and n of Well 24 using the PLE 

model 
 

 
Fig. 253 — Relative frequency diagram between qi and n of Well 24 using the PLE 

model 
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Fig. 254 — Relative frequency diagram between qi and Di of Well 24 using the PLE 

model 
 

 
Fig. 255 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 24 with the PLE model 
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Fig. 256 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 24 
 

 
Fig. 257 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 24 
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Fig. 258 — The mean of the realizations and the PLE model, plotted for 30 years for 

Well 24 
 

 
Fig. 259 — Comparison of the Standard Deviation of the two Bayesian forecasts using 

the MH and PLE models of Well 24 
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Analysis 

Well 24 is an interesting case because there is a lot of disruption in the production data. 

Though we cleaned the data before beginning the analysis, the truncation of the data, along 

with the different completions changes are challenges to apply any DCA, but also to obtain 

accurate results using the LSQ optimization and the Bayesian paradigm.  

 

The MCMC results do not converge for any of the three parameters of the MH model, as 

seen in Fig. 217, 219 and 221. The best conversion of the three parameters is the b-factor, 

shown in Fig.  236. Because of the lack of convergence of the three parameters, the 

posterior distribution of the three parameters is interesting. It seems that the posteriors of 

b and qi, shown in Fig. 223 and 227, respectively, are trying to be normally distributed, 

but because of the lack of convergence, they are not.  We do see a lognormal distribution 

of Di in Fig. 225. This is consistent with the trend we have seen throughout this study.  

 

When we compare these MCMC results with the results produced when applying the PLE 

model, we notice that that model does not converges for any of the three PLE parameters, 

shown in Fig. 240, 242 and 244, after 50 million iterations. This is a very strange result 

because it is expected that after 50 million iterations, the parameters would converge. This 

may be due to the production data, but also to the data not following the PLE model. Due 

to the results of the MCMC, the posterior distributions for all three parameters are 

meaningless, seen in Fig. 246, 248 and 250.  

 

Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model. These results can be seen in Fig. 229, 230 and 231, respectively, for the MH model 

and Fig. 252, 253 and 254, respectively, for the PLE model. The quality of the relative 

frequency histograms is based upon the quality of the posterior of the parameters, because 

it is just a representation of the two parameters against each other. From Fig. 252, 253 and 
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254, we see that because of the poor results due to the lack of convergence of all three 

parameters. However the trend of the relationship between the parameters is still visible. 

These are same results we have seen in other wells, and have encountered the same 

problem due to poor convergence of parameters. The PLE results of the relative frequency 

histograms do not show results.  

 

Finally we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 days plotted. However, when we extend the results to 30 years 

that there is a divergence between two sets of results. In this case, the MH forward model 

underestimates the reserves, as seen in Fig. 235 for the MH model and Fig. 258 for the 

PLE model. Both models show that they underestimate the reserves.  

 

Finally, the standard deviation comparison of the two sets of Bayesian results, Fig. 259, 

identifies the uncertainty of the two models. In the case of this well, the standard deviation 

is very interesting because it shows that the two models have the same uncertainty in early 

time, and then the uncertainty of the MH model decreases, while the uncertainty of the 

PLE model increases. This gives little faith in the results of the PLE model for this well.  

 

 

 



 

212 

 

APPENDIX VI  

 

RESULTS AND ANALYSIS OF WELL 38 
 

Well 38 – Modified Hyperbolic Model 

 
Fig. 260 — Results of the least squares optimization against the production data of Well 

38 for the MH Model 
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Fig. 261 — The distribution of error between the production data and the LSQ results 

for Well 38 for the MH Model 
 

 
Fig. 262 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 38 for the MH Model 
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Fig. 263 — The error of the least squares optimization against the number of production 

days of Well 38 for the MH Model 
 

 
Fig. 264 — MCMC results of the b-factor for the MH model of Well 38 using the MH 

model 
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Fig. 265 — Cumulative mean and standard deviation of the b-factor of Well 38 using the 

MH model 
 

 
Fig. 266 — MCMC results of Di for the MH model of Well 38 using the MH model 
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Fig. 267 — Cumulative mean and standard deviation of Di of Well 38 using the MH 

model 
 

 
Fig. 268 — MCMC results of qi for the MH model of Well 38 using the MH model 
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Fig. 269 — Cumulative mean and standard deviation of qi of Well 38 using the MH 

model 
 

 
Fig. 270 — Posterior relative frequency histogram of b of Well 38 using the MH model 
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Fig. 271 — Cumulative posterior relative frequency histogram of the b-factor of Well 38 

using the MH model 
 

 
Fig. 272 — Posterior relative frequency histogram of Di of Well 38 using the MH model 
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Fig. 273 — Cumulative posterior relative frequency histogram of Di of Well 38 using 

the MH model 
 

 
Fig. 274 — Posterior relative frequency histogram of qi of Well 38 using the MH model 
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Fig. 275 — Cumulative posterior relative frequency histogram of qi of Well 38 using the 

MH model 
 

 
Fig. 276 — Relative frequency diagram between Di and b of Well 38 using the MH 

model 
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Fig. 277 — Relative frequency diagram between qi and b of Well 38 using the MH 

model 
 

 
Fig. 278 — Relative frequency diagram between qi and Di of Well 38 using the MH 

model 
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Fig. 279 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 38 with the MH model 
 

 
Fig. 280 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 38 
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Fig. 281 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 38 
 

 
Fig. 282 — The mean of the realizations and the MH model, plotted for 30 years for 

Well 38 
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Well 38 – Power Law Exponential Model 

 
Fig. 283 — Results of the least squares optimization against the production data of Well 

38 for the PLE Model 
 

 
Fig. 284 — The distribution of error between the production data and the LSQ results 

for Well 38 for the PLE Model 
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Fig. 285 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 38 for the PLE Model 
 

 
Fig. 286 — The error of the least squares optimization against the number of production 

days of Well 38 for the PLE Model 
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Fig. 287 — MCMC results of n for the PLE model of Well 38 

 

 
Fig. 288 — Cumulative mean and standard deviation of n of Well 38 using the PLE 

model 
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Fig. 289 — MCMC results of Di for the MH model of Well 38 using the PLE model 

 

 
Fig. 290 — Cumulative mean and standard deviation of Di of Well 38 using the PLE 

model 
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Fig. 291 — MCMC results of qi for the MH model of Well 38 using the PLE model 

 

 
Fig. 292 — Cumulative mean and standard deviation of qi of Well 38 using the PLE 

model 
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Fig. 293 — Posterior relative frequency histogram of n of Well 38 using the PLE model 

 

 
Fig. 294 — Cumulative posterior relative frequency histogram of n of Well 38 using the 

PLE model 
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Fig. 295 — Posterior relative frequency histogram of Di of Well 38 using the PLE model 

 

 
Fig. 296 — Cumulative posterior relative frequency histogram of Di of Well 38 using 

the PLE model 
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Fig. 297 — Posterior relative frequency histogram of qi of Well 38 using the PLE model 

 

 
Fig. 298 — Cumulative posterior relative frequency histogram of qi of Well 38 using the 

PLE model 
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Fig. 299 — Relative frequency diagram between Di and n of Well 38 using the PLE 

model 
 

 
Fig. 300 — Relative frequency diagram between qi and n of Well 38 using the PLE 

model 
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Fig. 301 — Relative frequency diagram between qi and Di of Well 38 using the PLE 

model 
 

 
Fig. 302 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 38 with the PLE model 
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Fig. 303 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 38 
 

 
Fig. 304 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 38 
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Fig. 305 — The mean of the realizations and the PLE model, plotted for 30 years for 

Well 38 
 

 
Fig. 306 — Comparison of the Standard Deviation of the two Bayesian forecasts using 

the MH and PLE models of Well 38 
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Analysis 

Well 38 also shows interesting results with the MCMC results, especially when 

determining the b-factor, shown in Fig. 264. From the theory, the b-factor should have 

converged and is not, even after 10 million iterations. I draw the same conclusion as with 

Well 19, that the restriction that was set on the b-factor being greater than 0 is incorrect 

because the values of b are close to 0, but the b-factor should be set to 0 in this case, when 

using the MH model to apply the MCMC. However, we notice that the Di converges 

immediately, as does the qi, which can be seen in Fig. 266 and 270. We applied the burn-

in point and notice that the posterior distribution of the three parameters is quite different. 

We see a Gaussian distribution for both Di and qi in Fig. 272 and 274, however see a 

different distribution for the b-factor (Fig. 270), which is attributed to the non-

convergence of the MCMC.  

 

If we compare these MCMC results with the results produced when applying the PLE 

model, we notice that this model does not converge well for n and Di, shown in Fig. 287 

and 289, respectively, however does converge for qi, shown in Fig.  291. This model was 

let to run for five million iterations, as we were hoping for a better convergence in the two 

first parameters mentioned above.  

 

Since the n and Di MCMC results do not converge, the posteriors of these two parameters 

are also inaccurate, seen in Fig. 293 and 295, respectively. From these results, we also 

notice that n is greater than 1, even though we expect it to remain between 0 and 1. This 

is most likely due to the fact that the Eagle Ford Shale is an unconventional reservoir, and 

the PLE model is meant for conventional reservoirs, even though it is applied to the 

unconventional ones as well. Di somewhat converges after four million iterations, however 

it is evident that it is not a stable result. The only accurate representation of the posterior 

is the qi (Fig.  298) because it converged.  
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Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model. These results can be seen in Fig. 276, 277 and 278, respectively, for the MH model 

and Fig. 299, 300 and 301, respectively, for the PLE model.  

 

From Fig. 276 and 277, we see that the poor results due to the b-factor that the histograms 

become skewed and we cannot determine a good relationship of the two parameters. 

However, we see that in Fig. 278 that there is a linear relationship between qi and Di. The 

red part of the graph identifies the ideal set of the two parameters for this data set using 

the MH model.  

 

For the PLE results of the relative frequency histogram, we see interesting results. In Fig. 

299, we see a very interesting relationship between Di and n, which shows a curve. This 

may indicate that there is no set relationship between these two parameters, because there 

should not be. However, another interesting observation from Fig. 300 and 301 is that qi 

has opposite relationships with Di and the b-factor. This is similar to the trend seen for 

Well 19, however the relationship is not as clear in this well. However, we see a consistent 

trend between parameters which is an interesting result.  

 

Finally we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 days plotted. However, when we extend the results to 30 years 

that there is a divergence between two sets of results. In this case, the MH model, when 

applied to the Bayesian paradigm overestimates reserves, as seen in Fig. 282. This is the 

same result that is presented for the PLE model when applied to the Bayesian paradigm, 
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shown in Fig. 305. These results show that the forward models can overestimate or 

underestimate the reserves.  

 

The graph that compares the standard deviations of the two sets of Bayesian results, Fig.  

306, identifies the uncertainty of the two models. From the results of the two standard 

deviations plotted against each other, it is evident that in early time (to approximately 

2,000 days), the PLE model shows a higher uncertainty. However in later time, the 

uncertainty of the PLE model decreases. This result is unexpected due to the results of the 

MCMC.   
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APPENDIX VII  

 

RESULTS AND ANALYSIS OF WELL 40 
 
Well 40 – Modified Hyperbolic Model 

 
Fig. 307 — Results of the least squares optimization against the production data of Well 

40 for the MH Model 
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Fig. 308 — The distribution of error between the production data and the LSQ results 

for Well 40 for the MH Model 
 

 
Fig. 309 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 40 for the MH Model 
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Fig. 310 — The error of the least squares optimization against the number of production 

days of Well 40 for the MH Model 
 

 
Fig. 311 — MCMC results of the b-factor for the MH model of Well 40 using the MH 

model 
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Fig. 312 — Cumulative mean and standard deviation of the b-factor of Well 40 using the 

MH model 
 

 
Fig. 313 — MCMC results of Di for the MH model of Well 40 using the MH model 
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Fig. 314 — Cumulative mean and standard deviation of Di of Well 40 using the MH 

model 
 

 
Fig. 315 — MCMC results of qi for the MH model of Well 40 using the MH model 
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Fig. 316 — Cumulative mean and standard deviation of qi of Well 40 using the MH 

model 
 

 
Fig. 317 — Posterior relative frequency histogram of b of Well 40 using the MH model 
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Fig. 318 — Cumulative posterior relative frequency histogram of the b-factor of Well 40 

using the MH model 
 

 
Fig. 319 — Posterior relative frequency histogram of Di of Well 40 using the MH model 
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Fig. 320 — Cumulative posterior relative frequency histogram of Di of Well 40 using 

the MH model 
 

 
Fig. 321 — Posterior relative frequency histogram of qi of Well 40 using the MH model 
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Fig. 322 — Cumulative posterior relative frequency histogram of qi of Well 40 using the 

MH model 
 

 
Fig. 323 — Relative frequency diagram between Di and b of Well 40 using the MH 

model 
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Fig. 324 — Relative frequency diagram between qi and b of Well 40 using the MH 

model 
 

 
Fig. 325 — Relative frequency diagram between qi and Di of Well 40 using the MH 

model 
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Fig. 326 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 40 with the MH model 
 

 
Fig. 327 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 40 
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Fig. 328 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 40 
 

 
Fig. 329 — The mean of the realizations and the MH model, plotted for 30 years for 

Well 40 
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Well 40 – Power Law Exponential Model 

 
Fig. 330 — Results of the least squares optimization against the production data of Well 

40 for the PLE Model 
 

 
Fig. 331 — The distribution of error between the production data and the LSQ results 

for Well 40 for the PLE Model 
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Fig. 332 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 40 for the PLE Model 
 

 
Fig. 333 — The error of the least squares optimization against the number of production 

days of Well 40 for the PLE Model 
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Fig. 334 — MCMC results of n for the PLE model of Well 40 

 

 
Fig. 335 — Cumulative mean and standard deviation of n of Well 40 using the PLE 

model 
 



 

254 

 

 
Fig. 336 — MCMC results of Di for the MH model of Well 40 using the PLE model 

 

 
Fig. 337 — Cumulative mean and standard deviation of Di of Well 40 using the PLE 

model 
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Fig. 338 — MCMC results of qi for the MH model of Well 40 using the PLE model 

 

 
Fig. 339 — Cumulative mean and standard deviation of qi of Well 40 using the PLE 

model 
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Fig. 340 — Posterior relative frequency histogram of n of Well 40 using the PLE model 

 

 
Fig. 341 — Cumulative posterior relative frequency histogram of n of Well 40 using the 

PLE model 
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Fig. 342 — Posterior relative frequency histogram of Di of Well 40 using the PLE model 

 

 
Fig. 343 — Cumulative posterior relative frequency histogram of Di of Well 40 using 

the PLE model 
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Fig. 344 — Posterior relative frequency histogram of qi of Well 40 using the PLE model 

 

 
Fig. 345 — Cumulative posterior relative frequency histogram of qi of Well 40 using the 

PLE model 
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Fig. 346 — Relative frequency diagram between Di and n of Well 40 using the PLE 

model 
 

 
Fig. 347 — Relative frequency diagram between qi and n of Well 40 using the PLE 

model 
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Fig. 348 — Relative frequency diagram between qi and Di of Well 40 using the PLE 

model 
 

 
Fig. 349 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 40 with the PLE model 
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Fig. 350 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 40 
 

 
Fig. 351 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 40 
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Fig. 352 — The mean of the realizations and the PLE model, plotted for 30 years for 

Well 40 
 

 
Fig. 353 — Comparison of the Standard Deviation of the two Bayesian forecasts using 

the MH and PLE models of Well 40 
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Analysis  

Well 40 shows a beautiful convergence of the MCMC results for all three parameter of 

the MH model, seen in Fig. 311, 313 and 315. The posterior distributions are also as 

expected – Gaussian for the b-factor and for qi, seen in Fig. 317 and 321, respectively, and 

lognormal for Di, which has been a trend in this study, shown in Fig. 319. 

 

If we compare the MCMC results while applying the MH model with the results produced 

when applying the PLE model, we notice that this model does not converge well for any 

of the parameters, shown in Fig. 334, 336 and 338. This model was let to run for 20 million 

iterations, as we were hoping for a better convergence for all the parameters.  

 

Since the parameters did not converge when the MCMC was applied, the posteriors of all 

three parameters are also inaccurate, seen in Fig. 340, 342 and 344. If the model ran for 

more iterations, it is probable that the parameters would converge, because it is evident 

that they beginning to towards the end of the 20 million iterations.  

 

Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model. These results can be seen in Fig. 323, 324 and 325, respectively, for the MH model 

and Fig. 346, 347 and 348, respectively, for the PLE model.  

 

From Fig. 323, 324 and 325, we see beautiful representations of the relationship between 

these parameters. It seems that Fig. 323 shows an exponential relationship between Di and 

b, whereas Fig. 324 shows a linear relationship between qi and b, as does Fig. 325.  

 

For the PLE results of the relative frequency histograms, the trend is visible, and it is the 

same trend that has been visible in other PLE results, however there is no definition of the 
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relationship between the parameters. This is due to the lack of convergence in the MCMC 

results.  

 

Finally we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 production days plotted. However, when we extend the results to 

30 years that there is a divergence between two sets of results. In this case, the MH model, 

when applied to the Bayesian paradigm underestimates reserves, as seen in Fig. 329. This 

is the same result that is presented for the PLE model when applied to the Bayesian 

paradigm, shown in Fig. 352. These results show that the forward models can overestimate 

or underestimate the reserves.  

 

The graph that compares the standard deviations of the two sets of Bayesian results, Fig. 

353, identifies the uncertainty of the two models. From the results, it can be seen that the 

uncertainty of the MH model reaches a maximum around 2,000 days, however it decreases 

rapidly, and we can see that the uncertainty is very close to 0 after the 30 years forecasted. 

However, we see that the PLE model's uncertainty remains almost constant throughout the 

forecast, which is not ideal. When applying the Bayesian paradigm, we expect the 

uncertainty of the model to decrease because the model is gaining more knowledge and 

better estimating the following point of the forecast. From these results, we can see that 

the MH model is doing just that but the PLE model is not.  
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APPENDIX VIII  

 

RESULTS AND ANALYSIS OF WELL 67 
 
Well 67 – Modified Hyperbolic Model 

 
Fig. 354 — Results of the least squares optimization against the production data of Well 

67 for the MH Model 
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Fig. 355 — The distribution of error between the production data and the LSQ results 

for Well 67 for the MH Model 
 

 
Fig. 356 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 67 for the MH Model 
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Fig. 357 — The error of the least squares optimization against the number of production 

days of Well 67 for the MH Model 
 

 
Fig. 358 — MCMC results of the b-factor for the MH model of Well 67 using the MH 

model 
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Fig. 359 — Cumulative mean and standard deviation of the b-factor of Well 67 using the 

MH model 
 

 
Fig. 360 — MCMC results of Di for the MH model of Well 67 using the MH model 
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Fig. 361 — Cumulative mean and standard deviation of Di of Well 67 using the MH 

model 
 

 
Fig. 362 — MCMC results of qi for the MH model of Well 67 using the MH model 
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Fig. 363 — Cumulative mean and standard deviation of qi of Well 67 using the MH 

model 
 

 
Fig. 364 — Posterior relative frequency histogram of b of Well 67 using the MH model 
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Fig. 365 — Cumulative posterior relative frequency histogram of the b-factor of Well 67 

using the MH model 
 

 
Fig. 366 — Posterior relative frequency histogram of Di of Well 67 using the MH model 
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Fig. 367 — Cumulative posterior relative frequency histogram of Di of Well 67 using 

the MH model 
 

 
Fig. 368 — Posterior relative frequency histogram of qi of Well 67 using the MH model 
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Fig. 369 — Cumulative posterior relative frequency histogram of qi of Well 67 using the 

MH model 
 

 
Fig. 370 — Relative frequency diagram between Di and b of Well 67 using the MH 

model 
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Fig. 371 — Relative frequency diagram between qi and b of Well 67 using the MH 

model 
 

 
Fig. 372 — Relative frequency diagram between qi and Di of Well 67 using the MH 

model 
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Fig. 373 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 67 with the MH model 
 

 
Fig. 374 — The production data with the mean of the realizations, the optimal forward 

model and the MH model of Well 67 
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Fig. 375 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 67 
 

 
Fig. 376 — The mean of the realizations and the MH model, plotted for 30 years for 

Well 67 
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Well 67 – Power Law Exponential Model 

 
Fig. 377 — Results of the least squares optimization against the production data of Well 

67 for the PLE Model 
 

 
Fig. 378 — The distribution of error between the production data and the LSQ results 

for Well 67 for the PLE Model 
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Fig. 379 — The cumulative distribution of error is plotted against the normal cumulative 

distribution function of Well 67 for the PLE Model 
 

 
Fig. 380 — The error of the least squares optimization against the number of production 

days of Well 67 for the PLE Model 
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Fig. 381 — MCMC results of n for the PLE model of Well 67 

 

 
Fig. 382 — Cumulative mean and standard deviation of n of Well 67 using the PLE 

model 
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Fig. 383 — MCMC results of Di for the MH model of Well 67 using the PLE model 

 

 
Fig. 384 — Cumulative mean and standard deviation of Di of Well 67 using the PLE 

model 
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Fig. 385 — MCMC results of qi for the MH model of Well 67 using the PLE model 

 

 
Fig. 386 — Cumulative mean and standard deviation of qi of Well 67 using the PLE 

model 
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Fig. 387 — Posterior relative frequency histogram of n of Well 67 using the PLE model 

 

 
Fig. 388 — Cumulative posterior relative frequency histogram of n of Well 67 using the 

PLE model 
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Fig. 389 — Posterior relative frequency histogram of Di of Well 67 using the PLE model 

 

 
Fig. 390 — Cumulative posterior relative frequency histogram of Di of Well 67 using 

the PLE model 
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Fig. 391 — Posterior relative frequency histogram of qi of Well 67 using the PLE model 

 

 
Fig. 392 — Cumulative posterior relative frequency histogram of qi of Well 67 using the 

PLE model 
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Fig. 393 — Relative frequency diagram between Di and n of Well 67 using the PLE 

model 
 

 
Fig. 394 — Relative frequency diagram between qi and n of Well 67 using the PLE 

model 
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Fig. 395 — Relative frequency diagram between qi and Di of Well 67 using the PLE 

model 
 

 
Fig. 396 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

of Well 67 with the PLE model 
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Fig. 397 — The production data with the mean of the realizations, the optimal forward 

model and the PLE model of Well 67 
 

 
Fig. 398 — The 1,000 realizations of the model predictions using the Bayesian paradigm 

for 30 years of Well 67 
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Fig. 399 — The mean of the realizations and the PLE model, plotted for 30 years for 

Well 67 
 

 
Fig. 400 — Comparison of the Standard Deviation of the two Bayesian models using the 

MH and PLE models of Well 67 
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Analysis 

Well 67 shows interesting results.  The MCMC results do not converge for the b-factor, 

even after 20 million iterations, of the MH model, as seen in Fig. 358. However, the Di 

and qi results both converge beautifully, as seen in Fig. 360 and 362. Due to the lack of 

convergence of b, the posterior distribution of b is meaningless, as seen in Fig. 364. 

However, the posterior distributions of Di and qi both show normal distributions, seen in 

Fig. 366 and 368. This is interesting because the trend of the posterior distribution of Di 

has been lognormal for all wells. This result is puzzling because there is no reason for it 

to be different than the previous posterior results of Di; there is convergence of the MCMC 

results therefore we expect it to follow the same trend that we have observed until this 

point.  

 

When we compare these MCMC results with the results produced when applying the PLE 

model, we notice that that model converges for all three PLE parameters, shown in Fig. 

381, 383 and 385. Furthermore, the posterior distributions of these three parameters are as 

expected; Gaussian for n and qi, as seen in Fig. 387 and 391, and lognormal for Di, seen 

in Fig. 389.   

 

Based on the posterior distributions of the three parameters, we created the relative 

frequency histograms that show the relationship between two different parameters -- Di 

vs. b, qi vs. b and qi vs Di for the MH model and Di vs. n, qi vs. n and qi vs Di for the PLE 

model. These results can be seen in Fig. 370, 371 and 372, respectively, for the MH model 

and Fig. 393, 394 and 395, respectively, for the PLE model. From Fig. 370 and 371, the 

results are incorrect because of the lack of convergence of the b-factor. Most times, we 

have seen the trend of the relationship between parameters even if there was no 

convergence, but in this case there is not. Fig. 372 does show a nice relationship between 

qi and Di that follows the same trend that we have seen in the other wells. The results of 

the PLE model all show the same results that we have seen throughout this study.  
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Then, we reach the realizations of the Bayesian paradigm using the MH and PLE models. 

We notice when we plot the mean of the realizations versus the optimal forward model 

(the results from the LSQ optimization), and the expert forward model (either MH or 

PLE), the mean of the model prediction and the expert forward model often times have 

close values for the 700 days plotted. However, when we extend the results to 30 years 

that there is a divergence between two sets of results. In this case, the MH forward model 

overestimates the reserves, as seen in Fig.  376 for the MH model and Fig. 399 for the 

PLE model. Both models show that they overestimate the reserves.  

 

Finally, the standard deviation comparison of the two sets of Bayesian results, Fig. 400, 

identifies the uncertainty of the two models. In the case of this well, the standard deviation 

follow approximately the same trend. The standard deviation of the PLE model peaks 

higher than that of the MH model, but also drops to 0 before the standard deviation of the 

MH. From these results, I conclude that the PLE model would be ideal when implementing 

the Bayesian paradigm.  

 

 

 
 
 
 
 
 
 
 


