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ABSTRACT 

There have been numerous studies, both modeling and field, related to the design 

and evaluation of vegetative treatment systems used to treat animal feeding operation 

runoff; however, none of these have studies evaluated the effectiveness of vegetative 

treatment areas (VTAs) receiving direct runoff from small swine operations (<100 

animals) during natural rainfall events.  Is it possible that a sufficiently sized VTA alone, 

with no solids pretreatment, can effectively treat direct runoff from small swine 

operations?  This research aims to answer that question and evaluate the effectiveness of 

VTAs as a practical and cost-effective alternative wastewater management option to 

protect surface water quality on small swine facilities.  Three locations in central Texas 

were established in 2012, and sampling sites were installed to monitor runoff water 

quantity and quality at the inlet and outlet of the VTA and a nearby control area not 

receiving swine effluent.  Data show that the VTAs provided substantial treatment of the 

swine facility runoff in terms of reduced NO3-N, NH4-N, PO4-P, TN, and TP mean 

concentrations (24% - 91%) and total loads (50%-96%), but VTA runoff was still higher 

in nutrients than the control site.  Further research of design elements and site 

management impacts on VTA performance is needed to develop guidelines for VTAs as 

a waste management option at small swine facilities. 
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1. INTRODUCTION AND LITERATURE REVIEW

1.1  Introduction 

Agriculture is listed as a major source of excess nutrients in surface water 

according to the United States Environmental Protection Agency (USEPA) and Texas 

Commission on Environmental Quality (TCEQ) (USEPA, 2002; TCEQ, 2012).  Over 

application of commercial fertilizer is the primary contributor of agricultural nutrients as 

farmers are often unsure of optimal crop needs due to uncertainties about weather and 

soil nutrient availability.  Another significant agricultural source of pollutants is animal 

manure.  Since the 1950’s, the number of animals produced has greatly increased, but 

the number of production facilities has steadily declined.  The heightened concentration 

in animal production has led to manure production in excess of what can be assimilated 

on site (USEPA, 2003). 

In the 2003 ruling regulating concentrated animal feeding operations (CAFOs), 

the USEPA encouraged all animal feeding operations (AFOs) to manage their waste in a 

manner protective of water quality, regardless of whether they were classified as CAFOs 

or not, by adopting nutrient management plans (USEPA, 2003).  Hassinger et al. (2000) 

found in Pennsylvania that larger facilities tended to be more aware of their nutrient 

management practices and had more safeguards in place to prevent nutrient discharge 

than smaller operations.  This is in part because CAFOs pose a much larger potential 

environmental risk if poorly managed and, unlike smaller facilities, are legally 
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considered point sources and required to obtain a National Pollutant Discharge 

Elimination System (NPDES) permit (USEPA, 2003).   

As a nonpoint source, AFOs are not regulated and their nutrients are typically 

managed through voluntary efforts (Centner et al., 2008; USDA and USEPA, 1999).  In 

Texas, the Texas State Soil and Water Conservation Board (TSSWCB) is the agency 

responsible for the abatement and management of agriculturally based nonpoint source 

pollution (TCEQ, 2012).  Their Water Quality Management Plan (WQMP) program is a 

voluntary program that combines land treatment and management practices and 

technologies designed to prevent or reduce pollution from agricultural land (TSSWCB, 

2004).  More than 90% of hog operations in Texas have less than 100 animals (USDA-

NASS, 2014b).  Historically, there has been low participation in the WQMP program 

among these small swine producers due to the logistic and economic barriers of 

implementing traditional waste management practices on relatively small pieces of land 

(TSSWCB, 2005).  To encourage participation of small pork producers in the WQMP 

program, more practical and cost-effective waste management techniques are necessary.  

A vegetative treatment area (VTA), as defined by United States Department of 

Agriculture – Natural Resource Conservation Service (USDA-NRCS), is a “vegetative 

area composed of perennial grass or forages used for the treatment of runoff from an 

open lot production system or other process waters” (USDA-NRCS, 2006).  They are 

typically part of a vegetative treatment system (VTS) that includes additional 

components to remove solids, such as a solids settling basin (SSB) or vegetative 

infiltration basin (VIB) (USDA-NRCS, 2006).  Of the few swine-related VTA studies, 
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none looked at VTAs receiving direct runoff from hog feedlots with small livestock 

populations.  This study is a preliminary inquiry into the potential effectiveness of 

minimally and practically designed VTAs to reduce the impact of small swine operations 

on water quality. 

1.2  Literature Review 

1.2.1  Impact of Swine Manure on Water Quality 

In an attempt to meet the rising demand for food in the United States and across 

the globe, modern agricultural practices have focused on attaining higher yields from the 

same amount of land (Hooda et al., 2000).  With the increased number of animals per 

unit area, the load of contaminants shed by AFOs is often more than the land can 

assimilate and can serve as a source of pollution for the receiving watershed if 

improperly managed (Burkholder et al., 2007).  The development and implementation of 

practices to improve the water quality of AFO runoff should begin with an 

understanding of these pollutants and their environmental impacts.   

1.2.1.1  Nutrients 

 The high nutrient content of animal manure makes it a valuable product, but 

excess nutrients can be transported via runoff into surface water or accumulate in the soil 

and leach into the groundwater or be lost through erosion (Khaleel et al., 1980).  

Nitrogen (N) and phosphorus (P) are the nutrients of most concern in manure because, in 

excess, they can accelerate the eutrophication of water bodies which has adverse effects 

on the aquatic ecosystem (Carpenter et al., 1998).  Phosphorus tends to be bound to the 

soil and is readily available for mineralization to the inorganic form to be taken up by 
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plants but N is more soluble and mobile and tends to be lost in water exiting the system 

(Heathwaite et al., 1996; Espinoza et al., 2005). Several studies have shown that water 

bodies close to AFOs are likely to have heightened concentrations of multiple forms of 

N and P.  Westerman et al. (1995) and Evans et al. (1984) reported nitrate-nitrogen 

(NO3-N) concentrations of 3-6 mg/L in surface runoff and 7-30 mg/L in subsurface 

drainage from swine manure spray fields.  This is well above the 0.1-0.2 mg/L that 

Mallin (2000) described as supportive of algal blooms that can emit harmful toxins as 

they reproduce or deplete the dissolved oxygen as they consume all the nutrients and 

start to die off.  Either scenario can disrupt the ecosystem and potentially lead to 

extensive fish kills and the loss of habitat and biodiversity (Carpenter et al., 1998).  

While both N and P contribute to algae growth, P tends to be the limiting factor for 

inland waters and N for estuaries (Sharpley and Withers, 1994). 

Besides the environmental impacts of excess nutrients, there are also known links 

to human health issues.  The USEPA standard for drinking water is 10 mg NO3-N/L due 

to concerns about its links to a raised risk of methemoglobinemia, or blue baby 

syndrome, in children under six months old (Ward et al., 2005).  At even higher 

concentrations (11-61 mg/L) for prolonged periods of times, nitrate consumption is 

thought to increase the risk of hyperthyroidism (Burkholder et al., 2007).  Other reports 

have associated varying levels of nitrate exposure (10-25 mg/L) to insulin-dependent 

diabetes and increased risk for birth defects (Kostraba et al., 1992). 
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1.2.1.2  Pathogens 

Untreated manure contains a high a load of microorganisms, some of which are 

known human pathogens.  Even waste that is treated in a lagoon, anaerobic digester, or 

an aerobic process prior to land application can release harmful bacteria, protozoa, and 

viruses into the environment (Burkholder et al., 2007).  One significant pathway of 

pollution is the conveyance of pathogens to surface and ground water via runoff and 

leachate, but there are several other potential pathways of microbial transmission 

including small mammals and birds as vectors or reservoirs, or from the direct contact of 

grazing animals with water sources (Hooda et al., 2000).  Livestock and humans are 

subject to adverse health effects from coming in direct contact with infected manure, 

soil, or water, or from consuming tainted produce or meat. 

Escherichia coli (E. coli), fecal coliforms (FC), and total coliforms (TC), have 

traditionally been used to assess bacterial contamination levels, but Campylobacter, 

Salmonella, and Yersinia bacterium are also associated with swine waste and known to 

cause illness in humans (USEPA, 2013; Hooda et al., 2000).  Cryptosporidium and 

Giardia are two protozoan parasites known to cause gastroenteritis and other 

gastrointestinal issues that are commonly found in surface waters receiving feedlot 

runoff (USEPA, 2013).  Depending on factors such as pH, temperature, solar radiation, 

and the presence of nutrients, these microbes can survive for up to 36 months in feces, 

31 months in soil, and 47 days in water, making the onsite retention of AFO waste and 

water an important focus for bacterial mitigation (Sherer et al., 1992).  Also of 

importance is the consideration of how bacteria from animals who receive low doses of 
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anti-microbial medicine, which can encourage the selection of drug resistant genes in 

bacterial populations, can impact public and environmental health (Burkholder et al., 

2007). 

1.2.1.3  Pharmaceuticals 

Millions of kilograms of anti-microbials are used annually in animal production 

systems.  They are used both therapeutically to treat infections and sub-therapeutically to 

increase growth rates among swine, cattle, and poultry (Lee et al., 2007).  Because they 

are not well absorbed in the intestinal tract, up to 90% of the drugs administered can be 

excreted in the urine and manure, depending on the particular compound in question 

(Lee et al., 2007).  For facilities with large animal populations, this can translate to a 

waste stream with a high occurrence of these medications which, in turn, end up in the 

water and soil on and around the site.  For example, one study reported that anti-

microbials were found in 31% and 67% of surface and ground water samples of swine 

and poultry farms, respectively, although the concentrations were typically low 

(Campagnolo et al., 2002).  Hormones can have potentially harmful impacts on wildlife 

as an endocrine disrupting compound (EDC), but hormones specifically linked to AFO 

waste streams have not yet been directly linked to illnesses in humans (Lee et al., 2007). 

1.2.2  Waste Management Options 

 An important aspect of decreasing the input of harmful contaminants into the 

environment from AFOs is responsible management of waste so that water, soil, and 

manure stay on site for as long as possible to allow the progression of natural cycles that 

can help reduce their concentrations (Khaleel et al., 1980).  Limiting the amount of 
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erosion, runoff, and leaching of pollutants are key strategies in attaining that goal 

(USEPA, 2013).  Typical waste management practices, like lagoons and land 

application, can discharge excessive nutrients and pathogens into the environment when 

not utilized properly (Mallin, 2000).  However, if time and effort are invested in 

planning appropriate procedures for handling the manure, the potential of spreading 

contamination can be minimized.  Studies of the impact of AFOs and CAFOs on water 

quality have yielded useful recommendations on how to best manage waste streams and 

the physical site to mitigate associated risks.  The following is a review of some of those 

options. 

1.2.2.1  Land Application 

Because animal waste is rich in nutrients, many operators choose to use it as 

fertilizer for their crop and pasture lands.  However, the actual nutrient content of the 

feces varies greatly depending on the animal, feeding regimen, how long the waste has 

accumulated, the moisture content, and how much bedding material is included 

(Sharpley and Withers, 1994).  Managing the rate, timing, and method of land 

application can greatly reduce the release of manure-based pollutants into the 

environment.  Ideally, the N and P content of the manure and soil should be determined 

and used to establish an appropriate application rate to provide nutrients without over 

loading the land beyond its capacity.  Greater loss of nutrients and other contaminants 

can occur if the ground is water-logged, frozen, or covered in snow, or if precipitation 

events are in the forecast at the time of manure spreading, so it is best to reschedule in 

these instances (Sharpley et al., 2004).  It has also been shown that incorporating the 
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waste into the soil by tilling it in or direct injection helps to lower losses from the 

manure (Mueller et al., 1984).  If tilling will be done, employing soil conservation 

practices, such as contouring and conservation tillage, to prevent loss of soil-bound 

contaminants is highly recommended (Khaleel et al., 1988).  

1.2.2.2 Waste Lagoons 

Many sites also store waste or make use of physical, biological, and chemical 

processes to preemptively reduce the input of contaminants.  The anaerobic conditions 

created in well-constructed and maintained storage lagoons have been shown to lower 

concentrations of nutrients and microbial pathogens (Bicudo and Goyal, 2003).  

However, leaks and ruptures are common for poorly designed, constructed or managed 

facilities, and they can also overflow during intense precipitation, which can have a 

substantial negative environmental impact (Mallin, 2000).  Anaerobic digesters have 

been used to stabilize and reduce odor from swine manure in addition to lagoon storage, 

and if designed to include a thermophilic anaerobic regime, they can provide significant 

levels of bacterial disinfection (Bicudo and Goyal, 2003).   

1.2.2.3 Constructed Wetlands 

 Constructed wetlands have been studied as a potential treatment option to work 

in conjunction with other waste management practices such as storage lagoons, solids 

settling, and land application (Gersberg et al., 1989; Cronk, 1996).  The prolonged 

interaction of the water with the soil and plants within the wetland provides several 

mechanisms by which nutrients, pathogens, and other contaminants can be removed 

(Knight et al., 2000).  High N reduction rates have been reported, due in large part to the 
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microbial-driven process of denitrification, which has been reported as the most 

important means of N removal in wetlands, and plant uptake (Cronk, 1996).  Shallow, 

slow-moving water through the system is another key component in treating animal 

waste because it allows for the settling of solids and sediments (Richardson, 1985).  This 

is helpful in the removal of P because it tends to be adsorbed to soil particles, although P 

reduction may be less in wetlands than on dry soil because the adsorption process is 

inhibited by the anaerobic conditions (Richardson, 1985).  In studies of domestic 

wastewater, indicator bacteria and virus concentrations shrank by 90-99% due to sun 

exposure, predation and competition with other microbes, and toxins, and imply high 

potential in abating pathogens from animal waste (Gersberg et al., 1989). 

1.2.2.4 Vegetative Treatment Options 

 A VTA, also called a vegetative filter strip (VFS) or buffer strip, is a tract of land 

that uses the biological and physical processes at the interface of soil, water and 

vegetation to remove pollutants in runoff from upland contamination sources (Koelsch et 

al., 2006).  When used for AFO waste management, they are typically part of a VTS 

which includes a SSB or VIB to remove solids from the waste stream before it enters the 

VTA (Koelsch et al., 2006). Contaminants leaving open feedlots and waste application 

fields with runoff, either in solution or bound to eroded soil particles, are removed as the 

overland velocities are reduced, allowing the processes of settling, filtration, adsorption, 

and infiltration to occur (Dickey and Vanderholm, 1981).  Plant uptake and microbial 

activity are also important to VTA function (Woodbury et al., 2006).  They may be 

entirely planted with one species of grass or contain a variety of pasture or prairie 
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vegetation (Koelsch et al., 2006).  Because infiltration plays such an important role in its 

function, VTAs with soils that are well drained tend to exhibit better performance 

(Sharpley et al., 2004). The mechanisms of pollutant removal are more successful at 

removing suspended elements than dissolved ones so it is particularly effective in 

retaining particulate N and P, sediment, and microbes (Koelsch et al., 2006).  However, 

efficiency suffers when the filter strip is on steep slopes (>4%), receives channelized 

flows, or when dried solids accumulate in the field to form a barrier between the runoff, 

soil, and vegetation (Komor and Hansen, 2003; Dickey and Vanderholm, 1981; Koelsch 

et al., 2006). 

 There have been numerous studies, both modeling and field, related to the design 

and evaluation of VTSs used to treat AFO runoff (Koelsch et al., 2006).  A majority of 

these studies assessed the effectiveness of VTSs on cattle AFOs (e.g., Edwards et al.; 

1983; Komor and Hansen, 2003; Woodbury et al., 2005).  However, there are a limited 

number of similar swine-related studies.  Chaubey et al. (1994) examined rainfall 

simulator-induced runoff at different downslope distances on a VFS treated with swine 

manure from a waste pit.  They found that the VFS substantially reduced (65-99%) the 

loads of ammonium nitrogen (NH4-N), total Kjeldahl N (TKN), orthophosphate (PO4-P), 

and total P (TP) but had no meaningful effect on NO3-N load.  No substantial increase in 

nutrient removal occurred beyond a treatment length of 9 m.  Hawkins et al. (1998) 

studied runoff of swine lagoon effluent applied to a VFS and found that outflow from the 

VFS showed a 60-93% mass reduction in N and P relative to inflow, mostly due to the 

retention of 85-100% of the runoff.  Dickey and Vanderholm (1981) studied the 
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effectiveness of a vegetated terrace channel and grassed waterway designed to treat 

runoff from swine and cattle AFOs.  They found nutrient reductions of 80% and 90% in 

concentrations and loads, respectively, and that overland flow was more effective than 

channelized flow at treating the effluent.   

1.3  Research Question, Objectives, and Hypothesis 

None of these previously mentioned studies evaluated the effectiveness of VTAs 

receiving direct runoff from small swine operations during natural rainfall events.  Most 

of the studies were of VTSs which involved pretreatment of the solids prior to the VTA 

that can take up valuable space and may require more of a financial commitment from 

the operator.  This research sought to determine if a sufficiently sized VTA alone can 

effectively treat direct runoff from small swine AFOs during daily operation and natural 

rainfall events.  It would provide a preliminary evaluation of the potential effectiveness 

of VTAs as a practical and cost-effective alternative wastewater management option for 

small swine facilities to protect surface water quality.  The objectives of this study were 

to: 1) evaluate the effectiveness of a stand-alone VTA at removing N and P from swine 

facility runoff, and 2) compare the VTA effluent to local ambient water quality to 

evaluate VTA effectiveness. 

Based on previous research, it is anticipated that there will be a considerable 

reduction in nutrient concentrations and loads between the VTA inlet and outlet, 

indicating that a solitary VTA can improve runoff water quality from small hog AFOs.  

How results may have been impacted by different elements of the project and options for 

altering VTA management and design to improve its performance will be discussed, as 
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well as future research needed to fully evaluate the use of VTAs for small swine 

operations. 
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2.  MATERIALS AND METHODS 

 

 

2.1  Site Description 

Three research locations were established in September through December 2012 

at small swine AFOs in Bell, Brazos, and Robertson counties in central Texas (Figure 1).  

In each county, three sampling sites were installed to monitor runoff water quantity and 

quality at the inlet and outlet of the VTA, and exiting a nearby control area. Locations 

were chosen based on size of operation, availability of appropriate land for VTA 

establishment, and relative distance to laboratory facilities.  General characteristics for 

each location are listed in Table 1 and described in detail below.   

 
 
 

 
Figure 1.  Map of VTA study locations 
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Table 1. General location characteristics 

Location 
(County) 

Source 
area 
(ha) 

VTA 
area 

(ha)[a] 

Control 
area 
(ha) 

VTA 
area/ 

Source 
area ratio 

Animals 
(#)[b] 

VTA area/ 
Animal 

ratio 
(m2/pig) 

VTA 
Vegetation[c] 

VTA 
Slope 
(%) 

Bell 0.15 0.34 0.48 2.3 50 70 Coastal 
Bermuda/oats 2.0 

Brazos 0.10 0.40 1.2 4.0 20 160 Native 
Pasture/oats 2.5 

Robertson 0.03 0.11 0.16 3.7 8 140 Native 
Pasture/oats 1.6 

[a] Actual VTA areas are slightly greater because these areas are the treatment area below the distribution pipes, which 
leaves out a small portion of the upper VTA.  
[b] Animal counts vary through the year.  This number represents the estimated average annual animal population. 
[c] In all locations, VTAs are hayed and vegetation is removed as needed. 
 

 

The Bell County location (Figure 2) consisted of 0.15 ha of barn and outdoor pen 

areas that contain approximately 30-100 animals.  The soil was Houston Black clay 

which is a moderately well drained, highly expansive clay that is very slowly permeable 

when wet (USDA-NRCS, 1997a). Waste from the enclosed pens on the north side of the 

site drained via pipe directly to the inlet of the VTA.  Runoff from the unsheltered pens 

drained to the east and was redirected to the VTA inlet with berms.  The VTA itself was 

0.34 ha of coastal Bermuda grass on a 2% slope, over-seeded with oats in the winter, 

isolated from surrounding fields with earthen berms.  The control site is 0.48 ha of rural 

land above the pens that drained through a grassed waterway to the south of the fields 

that emptied into a small farm pond.  Runoff into the inlet of the VTA was routed to a 

0.46 m H-flume by berms.  For the VTA outlet and the control area, 0.61 m H-flumes 

were used in conjunction with berms.   
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Figure 2. Bell County site (a) above flume at “VTA In,” (b) “VTA In” and runoff distribution system, (c) 
“Control” site, and (d) view of flume at “VTA Out” with “Control” site in background. 
 
 
 

In Brazos County (Figure 3), the facility was 0.1 ha of barn and outdoor pens that 

holds approximately 10-30 animals.  This soil was a mix of Boonville fine sandy loam 

and Zack fine sandy loam which are poorly to moderately well-drained and very slowly 

permeable soils (USDA-NRCS, 2002a and 1997b).  Waste from the pens drained from 

the south side onto a 0.4 ha treatment area that was a native prairie on a 2.5% slope over-

seeded with oats in the winter.  A 1.2 ha rural residential area northwest of the barns was 

monitored as the control area.  A 0.46 m and 0.30 m H-flume were used for the VTA 

outlet and inlet, respectively.  The control area drained through a culvert in which an 

area-velocity meter is installed to monitor flow. 

VTA$ 
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Figure 3.  Brazos County site (a) view of pens above flume at “VTA In,” (b) culvert through which 
“Control” site drains, and (c) entire VTA with runoff distribution system. 
 
 
 

The Robertson County operation (Figure 4) consisted of a 0.03 ha area with an 

outdoor walking pen and barn that housed an average of 5-20 animals.  The soils in this 

area were dominated by Tabor fine sandy loam, a moderately well-drained soil that is 

very slowly permeable when wet (USDA-NRCS, 2002b).  Waste was washed out the 

southwest corner and south wall of the barn on a weekly basis and used bedding was 

periodically applied to the walking pen on the west side of the barn.  All wash water and 

runoff was directed to the inlet of the VTA via a system of drainage trenches and berms.  

(a)! (b)!

(c)!
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On the south side of the barn was a native prairie field on 1.6% slope, over-seeded with 

oats in the winter, from which a 0.11 ha VTA and adjacent 0.16 ha control site were 

sectioned off using berms.  At the inlet and outlet of the VTA, 0.30 m and 0.46 m H-

flumes, respectively, were installed to monitor flow.  A 0.46 m H-flume was also 

installed at the outlet of the control site to monitor runoff.  

 
 
 

 
Figure 4.  Robertson County site (a) view of “VTA Out” and “Control” sites from “VTA In,” (b) barn 
drainage trench to “VTA In” and runoff distribution system, and (c) view of barn at “VTA In” from “VTA 
Out.” 
 
 
 
 
 

(a)!

(b)! (c)!

Control VTA Out 
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2.2  VTA Design and Setup 

In an extensive review of VTA studies spanning nearly 40 years of research 

Koelsch et al. (2006) found that pre-treatment, sheet flow, discharge control, siting, and 

sizing are the main design factors that need to be considered to create a highly 

functioning VTA.  The Koelsch et al. (2006) study reviewed VTAs for facilities with 4-

20 times more animal units than the operations used in this project.  Though these 

recommendations were factored into the overall design, some elements were altered to 

ensure practicality and economic feasibility for small facilities.  The major departure 

from the design suggestions was the lack of solids pretreatment because the main 

question of this study was whether a stand-alone VTA is sufficient for small operations.  

Discharge control, VTA siting, and VTA sizing are all closely related in that if the VTA 

is not properly sized or sited, discharge of runoff could be too much or too fast and 

reduce treatment efficiency (Sharpley et al., 2004; Dickey and Vanderholm, 1981).  The 

most important element for consideration in the design was the ratio of the VTA area 

relative to the contributing area, which is one of the sizing approaches Koelsch et al. 

(2006) deemed most suitable for smaller AFOs. 

Flume sizes were chosen based on peak discharge as calculated using Worksheet 

2 from Chapter 2 of the USDA-Soil Conservation Service Engineering Field Handbook 

(USDA-SCS, 1984).  It used equations and nomographs relating drainage area, soil type, 

land cover, flow length and slope, and rainfall distribution patterns to determine time of 

concentration and initial abstraction.  The peak discharges were then determined for a 

25-year, 24-hour event and used to choose an appropriately sized flume (Teledyne Isco, 
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2011).  Worksheets and data used for the calculations are listed in the appendix and 

calculated discharges with corresponding flume sizes are listed in Table 2.  Peak flow 

through the culvert at the Brazos County control site was calculated by the Brazos 

County USDA-NRCS office, who also conducted the site survey, utilizing their own 

hydrology worksheet.  The data from those calculations are also listed in the appendix. 

 

 

Table 2. Peak discharges and flume sizes 
 Bell County Brazos County Robertson County 

 
VTA 

In 
VTA 
Out Control VTA 

In 
VTA 
Out Control[a] VTA 

In 
VTA 
Out Control 

Peak discharge (cfs) 2.9 8.8 3.0 1.1 3.9 6.0 1.9 2.4 2.3 

Flume size (ft) 1.5 2.0 2.0 1.0 1.5 1.0 1.0 1.5 1.5 
[a] Runoff from Brazos County control site flowed through a 1 ft culvert instead of a flume. 
 
 
 
 

Since sheet flow was recommended for maximum treatment efficiency, the 

wastewater and runoff that was concentrated at the VTA inlet for measurement purposes 

must be spread out across the width of the treatment area after flowing through the flume 

(Figure 5) (Dillaha et al., 1988; Dickey and Vanderholm, 1981).  Thus, a runoff 

distribution system was constructed of a 15.24 cm deep tank, which received outflow 

from the flume, and 10.16 cm PVC pipes installed laterally approximately 2.54 cm from 

the top of the tank.  In these pipes, 2 cm holes were drilled starting 3 m from the tank 

and every 1.5 m thereafter, essentially creating a gated pipe.  For non-research 
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applications, this distribution system would be unnecessary because there would be no 

need to concentrate flow through a single point to measure or test the water.   

 
 
 

 
Figure 5. General VTA layout with samplers and runoff distribution system 
 

 

2.3  Water Quality Data Collection and Analysis 

2.3.1  Automated Sampling  

Each sampling station was equipped with a Teledyne ISCO Avalanche Portable 

Refrigerated Sampler with site specific programming to collect a 200 mL sample at 0.5-

1.5 mm volumetric depth flow intervals.  The original intent was to collect a sample 

every 1.32 mm of volumetric depth which is within the range that Harmel et al. (2006b) 

suggest to improve the sample’s representation of the storm event and decrease data 

uncertainty.  However, in the second year of the study it was discovered that calculations 

of the volumetric flow interval were based on the wrong areas so actual volumetric depth 
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intervals were incorrect.  To maintain a consistent sampling regimen for the duration of 

the project, and because the intervals were still small enough to collect a representative 

sample, flow intervals in the program were not changed to reflect the originally intended 

value.   

Collected samples were composited into a single 20 L bottle instead of several 

individual bottles to ensure events with a long duration would be accurately 

characterized, as described by Harmel et al. (2006a, b).  The resulting nutrient data 

represented the event mean concentration (EMC).  This flow-weighted sampling 

protocol and the EMC it produced provided a representative picture of the flux of 

nutrients from the contributing areas and allows for easy conversion from concentrations 

to loads.  Prior to collection of each subsample, the sampler tubing was rinsed and 

purged with ambient water to decrease likelihood of sample contamination.   

At every station with an H-flume, ISCO 730 Bubbler Flow Modules were used to 

monitor water level and flow rates.  Alternatively, the station with a culvert utilized an 

ISCO 750 Area Velocity (A-V) Module.  The bubbler gauged the amount of pressure 

needed to force a metered amount of air out of the bubbler tube into the stilling well and 

used that pressure head to determine the water level (Teledyne Isco, 2013a). The A-V 

module emitted an ultrasonic signal and determined the fluid velocity by measuring the 

Doppler shift in the wavelengths as they bounced off suspended particles in the water 

(Teledyne Isco, 2013b).  Similar to the bubbler, the A-V module determined the depth of 

flow from pressure readings of its internal pressure transducer.  The sampler used these 
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measurements and the internally stored dimensions of the flumes, or culvert, to calculate 

flow rates.  

2.3.2  VTA Management 

 Weekly site checks were conducted to ensure equipment functioned as intended 

in storm events.  The bubbler was first checked to see if it was sending out a steady 

bubble every 1-3 seconds to make sure changes in water level would be quickly and 

correctly assessed (Teledyne Isco, 2013c).  Bubblers were also checked for accuracy by 

filling the stilling well and observing the stage readings as the water receded to the zero 

level.  If the sampler did not respond to the rising water and then even out to zero, the 

level was manually adjusted to reflect the true water level (Teledyne Isco, 2013c).  If the 

time between bubbles was too high and was not resolved by clearing any blockages in 

the line, or if stage readings could not be validated and stabilized, bubbler modules were 

replaced and sent to Teledyne ISCO for maintenance (Teledyne Isco, 2013c).  Desiccant 

tubes, suction hose, and bubbler tubing were also replaced as needed.  The solar panel 

and battery combination was checked to ensure a sufficient power for storm events.   

The flume and distribution system were also regularly checked for functionality.  

For the stage-to-flow relationship of the flume to hold true, it must remain level 

(Teledyne Isco, 2011).  If during the bubbler check, outflow from the stilling well was 

not obviously evenly distributed, the flume level was checked and adjustments were 

made as needed.  Periodically, the outfall of the flume had to be re-trenched to make 

sure flow through would be allowed to freefall out of the flume, which is also important 

for its proper function (Teledyne Isco, 2011).  The distribution system was inspected to 
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ensure pipes were free of debris, connections between pipe sections were intact, and that 

flowing water would reach the end of each distribution arm. 

Because plant uptake was key to VTA removal of nutrients, the only fertilization 

the fields received came from the AFO runoff (Dickey and Vanderholm, 1981).  From 

previous studies that showed the reduction of nutrient load by a VTA is due in large part 

to the reduction in the amount of runoff leaving the field, it can be assumed that much of 

the nutrients remain within the VTA system until the vegetation is removed (Woodbury 

et al., 2005; Barker and Young, 1984).  Therefore, VTA fields were hayed once or twice 

during each growing season, as needed, to completely remove the nutrients from the 

system.   

2.3.3  Sample Collection  

Sites were monitored and data collected from January 2013 through November 

2014.  Weekly maintenance checks were made to ensure proper working order of all 

equipment and to make on-site adjustments as needed.  At each location, the sampler at 

the VTA inlet was equipped with a ISCO 674 Tipping Bucket Rain Gauge for site 

specific precipitation data, and an ISCO 6712Ci modem to allow remote communication 

with the sampler unit.  During a runoff event, alarms were sent out when the minimum 

flow threshold was reached and the programs were enabled.  Subsequent status updates 

were then requested wirelessly to determine when the first sample was taken.  Within 24 

h of the first sample, each composite sample was thoroughly mixed, poured into three 20 

mL high density polyethylene bottles, and transported on ice to the USDA-ARS 

Grassland, Soil, and Water Research Laboratory for nutrient analysis.   
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2.3.4  Sample Analysis 

PO4-P, NH3-N, and NO3-N concentrations were determined utilizing a SEAL 

AA3 Segmented Flow Analyzer in which samples were introduced to a continuous flow 

of chemical reagents that had been divided into segments by air bubbles (SEAL 

Analytical, 2011).  The bubbles created a turbulent flow within each liquid segment that 

rapidly mixed the two streams, allowing the steady-state of the chemical reaction to be 

reached quickly (SEAL Analytical, 2011). By passing through a copper-cadmium 

column, NO3-N was reduced to NO2-N (nitrite), which first reacted with sulfanilamide 

and then N1-naphthyethylenediamine dihydrochloride to form an azo dye with a reddish-

purple hue (SEAL Analytical, 2010).  NH4-N was reacted with salicylate and phenate 

with a nitroprusside catalyst to create a blue compound for analysis (SEAL Analytical, 

2012b).  With antimony potassium as the catalyst, PO4-P reacted with molybdate and 

ascorbic acid to also form a blue compound (SEAL Analytical, 2009).  

Nutrient concentrations, which were proportional to the intensity of the color 

compound formed in the reaction, were determined by measuring the amount of light of 

a specific wavelength absorbed by the mixed sample in this steady state and comparing 

it to that of standards of known concentrations under identical conditions (SEAL 

Analytical, 2012a).  NO3-N, NH4-N, and PO4-P were measured at 520, 660, and 880 nm, 

respectively (SEAL Analytical 2009, 2010, 2012b).  These photometric methods are 

based on the Lambert-Beer law that states, when all other parameters are held constant, 

there is a direct linear relationship between the concentration of analyte in a solution and 

that solution’s absorbance (SEAL Analytical, 2011).  However, this linear relationship is 
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distorted at very high concentrations and samples should be diluted to avoid error (SEAL 

Analytical, 2012a).   

The SEAL AACE software that controlled AA3 operation used the absorbances 

of the standards to create a calibration curve, with R2 ≥ 0.999, from which the unknown 

concentrations of samples could be calculated (SEAL Analytical, 2011).  The 

absorbance of each sample and standard showed up as a peak on a continuous line that 

can drift over time due to carryover between measurements (SEAL Analytical, 2011).  

The baseline drift was the difference in the line height while the sample aspirator is in 

the wash solution and the sensitivity drift was the difference in absorbance peak height 

for the highest standard, both measured at the beginning and end of the sample run 

(SEAL Analytical, 2012a).  Based on the assumption of drift linearity over time, a 

different portion of the drifts were applied to each absorbance peak and a final corrected 

concentration was reported (SEAL Analytical, 2012a). 

TN concentrations were determined via a chemiluminescence process using a 

Teledyne Tekmar Apollo 9000 combustion total organic carbon (TOC) analyzer with a 

TN module (Teledyne Instruments, 2003).  All N in the samples was converted to nitric 

oxide (NO) via catalytic combustion oxidation (Neumann et al., 2012).  The NO was 

then reacted with ozone (O3) to create nitrogen dioxide in an excited state (NO2
*) 

(Teledyne Instruments, 2003).  Light energy emitted by the NO2
* as it returned to its 

ground state, which was proportional to the amount of NO present in the sample, was 

detected by a chemiluminescence photodiode detector and converted to an electrical 

signal for quantification (Teledyne Instruments, 2003).  A blank correction was applied 
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to the three measurements for each sample from which the mean was calculated and 

compared to internal calibration data to determine TN concentration (Teledyne 

Instruments, 2003). 

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was 

utilized to determine TP content of the samples with a Varian Vista-MPX CCD 

Simultaneous ICP-OES (Varian Instruments, 2001).  Samples were aerosolized and 

injected into an axially-viewed radiofrequency-induced argon plasma torch that, at a 

temperature of 10,000 K, quickly vaporized the sample and released free atoms of the 

analytes (Hou and Jones, 2000).  The plasma further energized the atoms into an excited 

state causing the emission of photons proportional to the concentration of analyte and 

with a wavelength characteristic of the atom from which it originated (Hou and Jones, 

2000).  The arrangement of the 1.1 million pixels (or megapixel, MPX) in the charge 

coupled device (CCD) detects wavelengths of 96% of the analytical light spectrum, 

allowing for simultaneous measurement of several elements (Knowles, 2010).  This 

broad coverage also provided the ICP-Expert software with multiple wavelengths to use 

with internal and user-provided calibration standards for more accurate concentration 

determinations to which background corrections were applied (Knowles, 2010). 

2.4  Soil Quality Data Collection and Analysis 

A set of soil samples, with 12 sample points in Bell County and 10 points each in 

Brazos and Robertson Counties, was collected biannually in April and October from 

each location.  The sampling sites were determined by overlaying an aerial photo of each 

location with a grid in which each block represented the total VTA area divided by the 
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number of samples to be collected.  The physical location of each site was marked by 

screwing two large washers to the top of a wooden stake and driving it beneath the 

surface of the ground.  GPS coordinates were also taken in case the site could not be 

found by future metal detection and for mapping purposes.   

After clearing away surface litter, but leaving any black decomposing matter, a 

soil sampler probe was used to collect two core samples, one representing the 0-15.24 

cm layer and another for the 15.24-30.48 cm layer.  Soil samples were analyzed for total, 

inorganic, and organic N and P utilizing an enhanced soil test developed by Haney et al. 

(2006, 2008, 2010).  Because these methods focus on plant available portions of the 

organic and total N and P pools, only the inorganic N and P data were analyzed for 

potential spatial and temporal trends within each VTA. 

Maps were created in ArcGIS 9.3 by first using the GPS coordinates and soil data 

to create a tagged image file format (TIFF) and then converting it into a raster with the 

nutrient concentrations as the value for each grid in the dataset (Marilyn Gambone, GIS 

Research Specialist, Texas A&M Agrilife Research Center, personal communication 9 

July 2013).  The maps were organized so that the color of the field represents the final 

concentrations of N or P, and the label of each sampling point represents the change in 

concentration from October 2013 to October 2014 at that point.  Due to a data collection 

error, the April 2013 samples were not able to be assigned to a specific point and could 

not be used for the labels.  However, the average concentration for each VTA was 

calculated for each sampling period and used to track patterns of nutrient accumulation 

over time. 
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2.5  Statistical Analysis 

Descriptive statistics (mean, median, and standard deviation) for the nutrient 

concentrations and loads at each of the nine sampler stations were determined.  The 

percent difference between the average concentrations at the VTA inlet and outlet, and 

similarly with load totals, was calculated to determine the reduction of nutrients 

occurring within each VTA.  To assess whether the calculated reduction was statistically 

significant, an appropriate hypothesis test was needed.  Using R-commander, boxplots 

were created for graphical analysis of the distribution of each parameter (NO3-N, NH4-

N, PO4-P, TN, TP, and runoff), and the Shapiro-Wilk test of normality was conducted as 

confirmation (Karp, 2014).   

The Shapiro-Wilk test returns as its p-value the R2 for the linear regression 

between the ordered data and their corresponding normal quantiles (Helsel and Hirsch, 

2002).  The p-values were determined based on the test statistic, W, which was 

calculated as 

W=
( ai(xn+1-i-xi))m

i=1
2

(xi-xn
i=1 )2

 

where 
  n  = sample size 
  m  =  n

2
, if n is even; n-1

2
, if n is odd 

  ai  = Shapiro-Wilk coefficient based on n 
  !  = sample mean 

Results (p < 0.0003 for all constituents) indicated data did not fit a normal distribution 

and therefore, a nonparametric test would have more power than a parametric test to 

correctly reject Ho if it was indeed false (Helsel and Hirsch, 2002).  Nonparametric tests 
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compare median values to determine if there is a significant difference between two 

independent samples.  However, the mean is less resistant to the impact of outliers and 

more reflective of the entire range of data (Helsel and Hirsch, 2002).  Therefore, 

calculations of the percent reduction between the VTA inlet and outlet were based on 

mean or total values for concentrations and loads, respectively.   

The Wilcoxon Rank-Sum Test was used to test for significant differences in 

nutrient concentrations among the three sites (VTA In, VTA Out, and Control) at each 

location (Bell, Brazos, and Robertson Counties).  The premise of this test is that if two 

independent samples (sample sizes n and m, n < m) come from the same population, the 

probability of an observation from one sample being greater than an observation from 

the other is around 50% (Ho: Prob [x > y] = 0.5) (Helsel and Hirsch, 2002).  The 

combined data from both samples were assigned ranks (Rk = 1 to N, N = n + m) and the 

sum of ranks for the smaller data set ( Rn
i=1 ) was used as the test statistic, W (Helsel and 

Hirsch, 2002).  R-commander returned a p-value indicating the probability of W being 

different than what was calculated, based on the two sample sizes, if Ho was indeed true 

and Ho was rejected if p < α (Karp, 2014).  A commonly used significance level of α = 

0.05 was used for all hypothesis tests in this study. 

Sites that did not collect a sample for an event were listed as having zero load of 

all constituents if another site at that location did collect a sample for that same event. 

While it can be argued that some flow may have occurred at a site even if a sample was 

not collected, there was no concentration to estimate a value to assign as a replacement 

for non-detects.  Any flow below the sampler’s enable level and less than the volume of 
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the first flow interval was not captured for any of the events; therefore, assigning a zero 

value to a site with no sample was within reason for the purposes of load comparison.  

With a recorded value at each site and for each event, a matched pair test, such as the 

Sign Test, could be conducted to look for significant differences between the median 

loads while also helping to cancel out noise from the event-to-event variability by 

looking at differences between the paired observations (Helsel and Hirsch, 2002). 

Similar to the Wilcoxon Rank-Sum test, the Sign Test also assumed that if x and 

y were from the same population, Prob [x > y] = 0.5 (Ho) (Helsel and Hirsch, 2002).  

This was tested by examining differences between data pairs, (Di = xi – yi) and assigning 

a + for Di > 0 and a – for Di < 0.  If Ho was true, the total number of +’s (S+) should be 

approximately equal to n
2
, with n = number of Di excluding instances where Di = 0 

(Helsel and Hirsch, 2002).  The p-value for a one-sided test (Ha: Prob [x > y] > 0.5) was 

the cumulative probability, based on a binomial distribution, that S+ would be greater 

than or equal to what it was if Ho were indeed true (Helsel and Hirsch, 2002).  For a two-

sided test ( Ha: Prob [x > y] ≠ 0.5), the p-value was doubled and Ho was rejected if that p 

< α = 0.05. 
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3. RESULTS AND DISCUSSION

3.1  Water Quality Analysis 

3.1.1  Results 

3.1.1.1  Bell County  

Boxplots of the Bell County concentration and load data are shown in Figures 6 

and 7, respectively.  There was a 31% - 91% reduction in mean nutrient concentrations 

and > 83% decrease in total nutrient event loads between the VTA inlet and outlet (Table 

3).  Ideal VTA performance would be indicated by a significant (p < 0.05) difference 

between VTA In and VTA Out but no significant difference between VTA Out and the 

control site measurements.  Those results were shown in the NH4-N and TP 

concentrations and for all loads except NO3-N.  This was consistent with previous 

studies showing that VTAs can significantly reduce NH4-N, PO4-P, TN, and TP 

concentrations (>70%) but provide less reduction, and often an increase, of NO3-N 

compared to other forms of N and other nutrients (Chaubey et al., 1994; Edwards et al., 

1983; Koelsch et al., 2006).  Barker and Young (1984) showed that even in cases where 

NO3-N concentrations increase, runoff retention can enhance the ability of VTAs to 

decrease nutrient loads.  This was reflected in the substantially higher decrease in NO3-N 

load (83%) compared to the concentration reduction (31%), and similarly for the other 

constituents, which is likely attributable to the 55% decrease in runoff.   
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Figure 6. Boxplots of Bell County concentration data.  Red asterisks (*) show locations of sample means. 
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Figure 7. Boxplots of Bell County event load data.  Red asterisks (*) show locations of sample means.  
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Table 3. Summary of Bell County water quality data[a]  

Nutrient Statistic VTA 
 In 

VTA 
Out Ctrl %Red[d] Statistic VTA 

 In 
VTA 
Out Ctrl %Red[d] 

  mg/L  kg/ha 

NO3-N Mean(SD)[b] 4.2(6.9) 2.9(2.0) 0.6(0.6) 31% 
Total 10.2 1.7 1.1 83% 

  Median[c] 0.2ab 2.4a 0.6b Median[c] 0.0a 0.0a 0.0a 

NH4-N  Mean(SD)[b] 6.2(4.9) 0.5(0.5) 0.2(0.2) 91% 
Total 5.3 0.2 0.1 96% 

  Median[c] 5.9a 0.5b 0.2b Median[c] 0.1a 0.0b 0.0b 

PO4-P  Mean(SD)[b] 16.7(7.6) 2.8(1.7) 1.2(2.1) 83% 
Total 27.2 1.5 0.8 95% 

  Median[c] 16.0a 2.3b 0.8c Median[c] 0.5a 0.0b 0.0b 

TN    Mean(SD)[b] 15.0(5.0) 4.6(2.0) 2.9(3.9) 69% 
Total 19.3 2.5 2.2 87% 

  Median[c] 15.2a 4.7b 2.0c Median[c] 0.5a 0.0b 0.1b 

TP     Mean(SD)[b] 59.8(81.5) 9.5(17.1) 4.0(6.1) 84% 
Total 97.8 5.3 3.9 95% 

  Median[c] 18.7a 2.8b 0.9b Median[c] 0.9a 0.0b 0.0b 

  mm 

runoff Mean(SD)[b] 7.6(9.0) 3.4(5.0) 6.5(6.9) 55% Total 129.0 58.2 116.6 55% 
[a] Number of events per site: VTA In = 13, VTA Out = 6, Ctrl = 15 
[b] Mean and standard deviation are reported 
[c] Within the same row, values followed by the same letter are not significantly different (p < 0.05) according to 
Wilcoxon Rank-Sum and Sign tests for concentrations and loads, respectively 
[d] %Red = Percent reduction from VTA In to VTA Out; based on mean for concentrations and total for loads; 
negative values indicate an increase 
 

 

3.1.1.2  Brazos County 

At the Brazos County location, the VTA reduced nutrient concentrations by an 

average of 42% - 88%, and decreased total event loads 50% - 88% (Figures 8 and 9, 

Table 4).  Again, following trends seen in previous studies, NO3-N was the only nutrient 

with no significant difference in the median concentration or load of VTA influent and 

effluent (Chaubey et al., 1994; Edwards et al., 1983; Koelsch et al., 2006).  The 

difference between measurements at the control site and VTA outlet was statistically 

significant for all constituents except NO3-N concentration, which was similar for all 

three sites, and TP load, which was the only constituent to exhibit ideal VTA 
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performance.  There was less runoff reduction (19%) compared to Bell County but total 

nutrient loads were still more greatly reduced than the corresponding concentrations. 

 
 
 

 
Figure 8. Boxplots of Brazos County concentration data.  Red asterisks (*) show locations of sample 
means. 
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Figure 9. Boxplots of Brazos County event load data.  Red asterisks (*) show locations of sample means.  
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Table 4. Summary of Brazos County water quality data[a]  
Nutrient Statistic VTA 

 In 
VTA  
Out Ctrl %Red[d] Statistic VTA  

In 
VTA 
Out Ctrl %Red[d] 

  mg/L  kg/ha 

NO3-N Mean(SD)[b] 4.7(8.6) 2.7(5.2) 0.3(0.6) 42% 
Total 30.1 7.9 0.3 74% 

  Median[c] 0.3a 0.7a 0.1a Median[c] 0.1a 0.2a 0.0b 

NH4-N  Mean(SD)[b] 30.5(24.7) 3.6(4.2) 0.2(0.2) 88% 
Total 151.5 18.1 0.2 88% 

  Median[c] 33.7a 2.1b 0.1c Median[c] 4.3a 0.2b 0.0c 

PO4-P  Mean(SD)[b] 20.9(23.7) 4.5(5.4) 0.7(1.0) 79% 
Total 87.9 17.1 0.6 81% 

  Median[c] 15.7a 3.2b 0.4c Median[c] 2.5a 0.4b 0.0c 

TN    Mean(SD)[b] 36.2(28.5) 9.9(9.5) 3.0(5.5) 73% 
Total 169.1 35.2 2.3 79% 

  Median[c] 28.7a 6.9b 1.6c Median[c] 5.7a 1.1b 0.1c 

TP     Mean(SD)[b] 47.2(95.6) 26.1(69.7) 5.1(15.2) 45% 
Total 283.0 141.5 5.7 50% 

  Median[c] 21.4a 4.7b 0.6c Median[c] 3.9a 1.1b 0.0b 

  mm 

runoff Mean(SD)[b] 27.6(30.8) 22.2(24.4) 4.6(4.6) 19% Total 689.6 556.1 115.3 19% 
[a] Number of events per site: VTA In = 21, VTA Out = 21, Ctrl = 17 
[b] Mean and standard deviation are reported 
[c] Within the same row, values followed by the same letter are not significantly different (p < 0.05) according to 
Wilcoxon Rank-Sum and Sign tests for concentrations and loads, respectively 
 [d] %Red = Percent reduction from VTA In to VTA Out; based on mean for concentrations and total for loads; 
negative values indicate an increase 

 

 

 
3.1.1.3 Robertson County 

The Robertson County VTA decreased mean nutrient concentrations by 24% - 

87% on average, and reduced the total loads by 58% - 85% (Figures 10 and 11, Table 5).  

Possibly due to the very small source, this was the only site where the median NO3-N 

load at VTA Out was significantly lower than that at VTA In.  The median PO4-P load 

and concentration and the TN and TP median loads were also significantly decreased by 

the VTA.  Statistically, ideal results were seen in PO4-P concentration and load, as well 

as NO3-N load, which is contrary to previously mentioned studies and results from other 

locations showing low VTA performance with regards to NO3-N.  Possible explanations 

for this departure will be discussed in the following section.   
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Figure 10. Boxplots of Robertson County concentration data.  Red asterisks (*) show locations of sample 
means. 
 



39!
!

 
Figure 11. Boxplots of Robertson County event load data.  Red asterisks (*) show locations of sample 
means. 
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Table 5. Summary of Robertson County water quality data[a]!
Nutrient Statistic VTA  

In 
VTA 
 Out Ctrl %Red[d] Statistic VTA 

In 
VTA 
 Out Ctrl %Red[d] 

  mg/L  kg/ha 

NO3-N Mean(SD)[b] 0.5(0.6) 0.4(0.2) 0.3(0.4) 24% 
Total 1.4 0.4 0.1 70% 

  Median[c] 0.3a 0.4a 0.1a Median[c] 0.0a 0.0b 0.0b 

NH4-N  Mean(SD)[b] 1.0(2.7) 0.1(0.2) 1.1(1.3) 87% 
Total 1.3 0.2 0.1 85% 

  Median[c] 0.1a 0.0a 0.8a Median[c] 0.0a 0.0a 0.0a 

PO4-P  Mean(SD)[b] 0.6(0.6) 0.3(0.3) 0.1(0.1) 59% 
Total 1.2 0.4 0.0 67% 

  Median[c] 0.5a 0.2b 0.1b Median[c] 0.0a 0.0b 0.0b 

TN    Mean(SD)[b] 2.0(2.2) 1.2(0.5) 2.9(2.7) 38% 
Total 3.2 1.4 0.4 58% 

  Median[c] 1.4a 1.1a 1.5a Median[c] 0.1a 0.0b 0.0c 

TP     Mean(SD)[b] 1.7(1.9) 1.3(1.0) 0.3(0.4) 25% 
Total 2.5 1.0 0.1 62% 

  Median[c] 1.0a 1.3a 0.3a Median[c] 0.0a 0.0b 0.0c 

  mm 

runoff Mean(SD)[b] 11.3(14.1) 7.3(11.6) 1.4(4.4) 35% Total 169.3 109.5 21.1 35% 
[a] Number of events per site: VTA In = 13, VTA Out = 6, Ctrl = 3 
[b] Mean and standard deviation are reported 
[c] Within the same row, values followed by the same letter are not significantly different (p < 0.05) according to 
Wilcoxon Rank-Sum and Sign tests for concentrations and loads, respectively 
 [d] %Red = Percent reduction from VTA In to VTA Out; based on mean for concentrations and total for loads; 
negative values indicate an increase 
 
 
 
 
3.1.2  Discussion 

3.1.2.1  VTA Performance 

A portion of the organic pool of N in swine manure was mineralized into NH3, 

NH4
+, and NO3

-, but with the lack of a sufficiently anaerobic environment for 

denitrification to occur, the NO3
- accumulated instead of being converted into gaseous 

forms of N and released from the soil (Espinoza et al., 2005).  This is one possible 

explanation for why NO3-N was typically the nutrient decreased the least by the VTA in 

this and other studies (Koelsch et al., 2006).  At the Robertson County location, 

however, a seasonally high water table was observed in the area of the field near the 

control site and VTA outlet during a particularly rainy time of the study period.  These 
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conditions may have been more appropriate for denitrification and can help explain why 

there was a larger decrease in NO3-N at this location.  But even at the other locations, 

NO3-N concentrations in VTA runoff were still lower than the 3 – 6 mg/L found in 

runoff from swine manure spray fields, and substantially lower than the VTA inflow 

(Westerman et al., 1995).  Though there were only a few instances of nutrient levels at 

the VTA outlet being both significantly lower than the VTA inlet and similar to the 

control site, nutrient reductions at all locations were comparable to results of previous 

studies (Barker and Young, 1984; Mankin and Okoren, 2003; Andersen et al., 2013).   

In studies where both concentrations and loads were analyzed, the reduction of 

nutrient loads was typically greater than the concentration reduction, in large part due to 

the retention of runoff within the VTA (Barker and Young, 1984; Keaton et al., 1998; 

Hawkins et al., 1999).  This trend was generally true for this project; however, Brazos 

County had the lowest reduction of total runoff but still showed better performance, in 

most regards, than Robertson County.  The additional runoff was possibly from 

subsurface lateral flow due to a restrictive layer in the soil profile and/or the proximity of 

the VTA outlet to a farm pond (< 30 m).  The lower concentration of nutrients entering 

the Robertson County VTA and the limitations of contaminant removal mechanisms 

when acting upon such a small pool of nutrients may have also contributed to these 

results.   

3.1.2.2  Impact of Solids Management 

For the Bell County location, a large influx of solids drained directly from the 

farrowing crate to the VTA inlet during farrowing season and repeatedly clogged the 
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bubbler tube.  This issue was resolved by installing a pipe to allow the crate drainage to 

bypass the inlet flume and sampler and empty directly into the VTA.  The outlet of the 

bypass was periodically moved along the top of VTA to distribute the solids across the 

top of the field.  While this did allow for more seamless site management, it also meant 

that samples were not completely representative of the amount of nutrients entering the 

VTA.  Because of this, the actual nutrient reduction from the Bell County VTA is likely 

much higher than was reflected in this study. 

There was not as much of a solids management issue with the other two locations 

although there was no solids pre-treatment stage prior to the VTA.  Overall, however, 

the Bell County VTA showed the best performance in reducing nutrient concentrations 

and loads and in retaining runoff.  The recommendation of removing solids from the 

waste stream prior to it entering the VTA is to prevent damage to vegetation at the top of 

the VTA that could potentially limit its effectiveness (Koelsch et al., 2006).  That the 

location with the largest solids issue was also the one with the best overall performance 

implies that the impact of solids accumulation can be overcome by adjusting other 

design factors, especially at small facilities.   

3.1.2.3  Influence of Design Factors 

It was expected that site design factors such as VTA area/Source area ratio and 

VTA area/Animal ratio would help explain differences in nutrient removal (Table 1).  

Because the data sets were so small, finding a statistically significant relationship 

between percent reductions and site factors would be virtually impossible.  However, a 

visual examination of the data (Figures 12 – 14) did not show any obvious trend that 
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comported with previous studies demonstrating improved VTA efficiency with increased 

treatment length and treatment area/source area ratio (Chaubey et al., 1994).  Other 

elements such as nutrient and solids loading, vegetation, soil type, and site management 

may have masked the influence of factors relating to the VTA size, but more data would 

be necessary to explore those relationships.  Trend analysis of all these components in a 

larger data set, or some combination thereof, should show increased VTA performance 

as factors that improve runoff retention and plant uptake also increase (Koelsch et al., 

2006). 

 

 

 
Figure 12.  Relationship between VTA Area/Source Area ratio and percent reduction of the sum of TN and 
TP based on the average concentrations and total loads for all locations. 
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Figure 13.  Relationship of VTA Area/# Animals ratio and percent reduction of the sum of TN and TP 
based on the average concentrations and total loads for all locations. 
 
 
 

 
Figure 14.  Relationship between VTA Slope and percent reduction of the sum of TN and TP based on the 
average concentrations and total loads for all locations. 
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the storm (Harmel et al., 2006).  During the course of this study, there were several 

occasions where flow measurement was compromised due to flume malfunction, an 

error in the sampling program, or sampler malfunction.  In order to maintain as much 

data integrity as possible, if samples were collected and analyzed for these instances, the 

corresponding data was not included in statistical analysis.   

 A study by Lentz (2011) suggests that, due to the dynamic biological processes 

that control nutrient cycling, prolonged sample storage may impact the measurement of 

their dissolved nutrients.  In an effort to test more than just a few samples at one time, 

some samples were held for as long as 3.5 months before nutrient analysis was 

conducted.  Though there is uncertainty in any measurement made, these delays likely 

increased that error.  Samples collected after reading the Lentz study (2011) in July 2014 

were tested more rapidly in order to reduce the uncertainty. 

 Another source of error was the use of the calibration curve to determine the 

concentrations of samples with analytical responses outside the range of experimentally 

determined responses of the calibration standards.  As previously stated, the linear 

response/concentration relationship in the Lambert-Beer law is not applicable at high 

concentrations (SEAL Analytical, 2012a).  For more accurate measurement, samples 

with high analyte content should be diluted or calibration curves should be developed 

using nonlinear or weighted linear regression methods to account for a wider range of 

standards (Bonicamp et al., 1999).  This information was learned late in the project when 

there was no remaining sample material and most of the data analysis had already been 
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done.  As the project continues, future sample analysis will take these issues into 

consideration. 

The cumulative uncertainty in data for a water quality study can be calculated as 

!! = !!! + !!! +⋯+ !!!
!

!!!
 

where 
  EP   = probable range of cumulative error (± %) 
  n   = number of sources of potential error 
  E1,E2,…, En = potential sources of error (± %) (Harmel et al., 2006).  

Common sources of error, as reported by Harmel et al. (2006), include a range of values 

for typical, best case, and worst case data collection scenarios based on the conditions of 

flow monitoring (EQ), sample collection (EC), sample processing and storage (EPS), and 

laboratory analysis (ELA) processes. 

In this study, the low end of the typical range of EQ (± 6%) was selected because 

flumes are one of the most accurate flow monitoring devices when they are functioning 

properly and instances where flow measurement was compromised were removed from 

the data set (Harmel et al., 2006).  Automated samplers also minimize human-introduced 

error in sample collection, so the minimum of the typical EC range (± 4.6%) was chosen 

(Harmel et al., 2006).  Overall, laboratory analysis was fairly standard since there were 

only a few samples impacted by the calibration curve issue; therefore, an average typical 

ELA value (± 12.6%) was selected (Harmel et al., 2006).  The highest typical EPS value (± 

16 %) was selected for total nutrient data; however, the low end of the worst case-
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scenario EPS range (± 34.5%) was chosen for dissolved nutrient data because the delayed 

analysis would not necessarily show the same nutrient speciation in the samples as when 

they were first collected (Harmel et al., 2006; Lentz, 2011).  Final cumulative EP was ± 

37% for NO3-N, NH4-N, PO4-P and ± 22% for TN and TP. 

3.2  Soil Quality Analysis 

3.2.1  Results 

Soil test results for Bell, Brazos, and Robertson counties are listed in Tables 6, 7, 

and 8, respectively.  All three locations showed the same overall pattern of an increase in 

the inorganic N and P between April and October of 2013 and then a continual decrease 

through October 2014.  On average, there was a 16-95% reduction in soil nutrients 

between the first and last round of soil tests except in Bell County, which showed a 5% 

increase of N in the surface soil sample. 

 Maps of the data show that all the final soil samples had low to very low nutrient 

concentrations, as indicated by the green and light green coloration (Figures 15 – 20).  

Between October 2013 and October 2014, there was a decrease of 7.2 – 282.1 lbs/ac N 

and 0.2 – 521 lbs/ac P at the individual sampling points, with a few notable exceptions.  

The surface soil sample near the outlet of a flow distribution pipe at the Bell County 

location showed an increase of 23.6 lbs/ac N.  An increase of 8.3 lbs/ac P was seen in the 

surface sample closest to the VTA inlet in Brazos County. 
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Table 6. Bell County soil data  

  
Inorganic N (lb/ac)  Inorganic P (lb/ac) 

Depth Sample Site Apr 2013 Oct 2013 Apr 2014 Oct 2014  Apr 2013 Oct 2013 Apr 2014 Oct 2014 
0-6" 1 6.4 21.9 25.0 45.5  10.4 47.6 102.5 18.3 

 
2 11.5 21.2 33.5 4.8  5.3 76.1 133.5 3.1 

 
3 10.0 149.6 17.0 20.8  8.3 71.3 12.1 31.9 

 
4 5.0 27.2 6.0 4.3  4.0 3.8 1.9 1.4 

 
5 8.6 28.2 3.9 5.5  7.8 81.1 23.7 11.5 

 
6 15.8 27.5 8.5 3.6  207.0 13.9 9.8 2.4 

 
7 6.8 20.6 5.4 4.0  29.1 11.3 5.2 1.9 

 
8 4.6 26.8 10.2 3.6  488.9 56.1 14.3 5.6 

 
9 7.0 29.5 3.8 3.9  0.4 7.3 4.0 1.1 

 
10 8.6 42.3 2.8 3.3  8.9 2.8 0.8 1.2 

 
11 7.3 16.6 4.9 4.2  4.8 531.0 136.5 10.0 

 
12 10.9 23.6 4.7 4.5  133.3 17.2 12.2 6.7 

 
Mean 8.5 36.2 10.5 9.0  75.7 76.6 38.0 7.9 

 
Max 15.8 149.6 33.5 45.5  488.9 531.0 136.5 31.9 

 
Min 4.6 16.6 2.8 3.3  0.4 2.8 0.8 1.1 

 Overall Change[a]    5%     -90% 
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Table 6 Continued. 
 

 
Inorganic N (lb/ac)  Inorganic P (lb/ac) 

Depth Sample Site Apr 2013 Oct 2013 Apr 2014 Oct 2014  Apr 2013 Oct 2013 Apr 2014 Oct 2014 
6-12" 1 5.3 19.2 11.6 4.4  4.8 2.1 7.9 1.4 

 
2 6.7 18.0 23.6 3.1  0.6 19.9 80.2 1.0 

 
3 5.2 286.2 13.7 4.1  0.7 15.8 5.5 0.7 

 
4 4.1 14.2 6.5 2.8  0.4 1.8 2.4 0.9 

 
5 7.3 12.6 4.5 3.0  2.2 31.9 25.3 2.2 

 
6 8.2 14.9 3.2 3.5  24.3 1.7 2.4 1.2 

 
7 5.4 15.7 2.9 3.8  0.6 5.1 1.6 1.3 

 
8 4.9 18.0 3.7 2.5  195.3 42.5 2.8 2.3 

 
9 4.5 19.5 15.1 5.9  0.6 4.5 4.9 1.1 

 
10 5.3 21.7 1.4 3.0  1.3 1.7 0.5 1.1 

 
11 6.1 13.8 4.8 2.9  0.5 224.0 109.5 65.6 

 
12 9.5 17.2 3.5 4.8  63.7 11.3 2.1 2.0 

 Mean 6.0 39.3 7.9 3.7  24.6 30.2 20.4 6.7 

 
Max 9.5 286.2 23.6 5.9  195.3 224.0 109.5 65.6 

 
Min 4.1 12.6 1.4 2.5  0.4 1.7 0.5 0.7 

 Overall Change[a]    -39%     -73% 
[a] Overall change reflects the percent difference between Apr 2013 and Oct 2014 sample sets based on the mean. 
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Table 7. Brazos County soil data 

  
Inorganic N (lb/ac)  Inorganic P (lb/ac) 

Depth Sample Site Apr 2013 Oct 2013 Apr 2014 Oct 2014  Apr 2013 Oct 2013 Apr 2014 Oct 2014 
0-6" 1 14.5 76.5 7.0 10.8  18.7 22.7 14.5 7.8 

 
2 3.3 22.9 1.3 4.6  13.4 14.7 4.4 23.0 

 
3 2.7 25.4 4.2 3.1  9.2 6.2 2.9 1.6 

 
4 8.6 46.9 2.1 4.3  22.3 15.3 10.5 13.3 

 
5 9.8 173.8 2.7 3.7  8.2 33.1 7.1 2.6 

 
6 3.2 18.7 2.4 5.9  11.4 27.4 3.4 10.5 

 
7 11.6 36.2 3.4 4.7  14.7 10.7 3.8 4.1 

 
8 4.0 40.0 6.5 3.5  8.4 35.6 13.0 14.0 

 
9 7.2 33.1 3.4 3.8  5.1 30.8 2.8 2.7 

 
10 7.2 27.2 4.4 4.0  11.4 8.6 5.7 6.3 

 Mean 7.2 50.1 3.7 4.8  12.3 20.5 6.8 8.6 

 
Max 14.5 173.8 7.0 10.8  22.3 35.6 14.5 23.0 

 
Min 2.7 18.7 1.3 3.1  5.1 6.2 2.8 1.6 

 Overall Change[a]    -33%     -30% 
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Table 7 Continued. 

  
Inorganic N (lb/ac)  Inorganic P (lb/ac) 

Depth Sample Site Apr 2013 Oct 2013 Apr 2014 Oct 2014  Apr 2013 Oct 2013 Apr 2014 Oct 2014 
6-12" 1 7.6 29.9 9.5 6.0  14.6 11.3 2.3 4.2 

 
2 2.4 17.6 13.0 2.6  0.7 8.8 2.7 4.6 

 
3 1.9 14.6 14.7 2.4  4.0 7.4 1.2 0.8 

 
4 8.4 21.6 13.1 3.1  12.4 9.4 4.1 4.0 

 
5 5.4 19.6 18.0 2.5  5.2 5.6 3.1 1.0 

 
6 2.9 11.8 8.3 4.6  4.1 6.0 3.0 5.1 

 
7 2.6 40.4 8.1 2.7  1.8 34.9 2.6 1.2 

 
8 3.6 18.3 17.2 3.2  8.2 9.7 4.2 3.3 

 
9 3.6 34.6 14.3 4.9  1.4 10.8 2.0 3.5 

 
10 2.6 30.9 23.4 2.5  0.3 5.4 2.4 1.6 

 
Mean 4.1 23.9 14.0 3.5  5.3 10.9 2.8 2.9 

 
Max 8.4 40.4 23.4 6.0  14.6 34.9 4.2 5.1 

 
Min 1.9 11.8 8.1 2.4  0.3 5.4 1.2 0.8 

 Overall Change[a]    -16%     -44% 
[a] Overall change reflects the percent difference between Apr 2013 and Oct 2014 sample sets based on the mean. 
 
  



52#
#

Table 8. Robertson County soil data  

  
Inorganic N (lbs/ac)  Inorganic P (lbs/ac) 

Depth Sample Site Apr 2013 Oct 2013 Apr 2014 Oct 2014  Apr 2013 Oct 2013 Apr 2014 Oct 2014 
0-6" 1 11.6 23.6 4.8 3.5  28.0 3.9 3.9 2.8 

 
2 4.4 77.6 8.4 4.4  18.3 13.5 4.1 4.7 

 
3 15.1 56.7 4.2 10.0  19.4 7.2 1.7 2.9 

 
4 4.8 52.9 13.2 5.1  21.2 16.1 3.5 2.6 

 
5 10.2 55.9 10.7 5.1  18.1 13.5 1.8 3.1 

 
6 14.4 29.9 9.7 4.0  17.7 9.6 1.5 3.2 

 
7 15.8 52.1 12.0 4.2  18.2 6.3 1.7 2.7 

 
8 6.3 54.3 11.3 4.0  16.4 23.7 1.5 2.9 

 
9 5.6 19.6 6.0 3.0  16.8 3.6 1.8 2.3 

 
10 8.1 15.4 4.9 3.0  17.4 9.8 4.1 1.7 

 
Mean 9.6 43.8 8.5 4.6  19.1 10.7 2.6 2.9 

 
Max 15.8 77.6 13.2 10.0  28.0 23.7 4.1 4.7 

 
Min 4.4 15.4 4.2 3.0  16.4 3.6 1.5 1.7 

 Overall Change[a]    -52%     -85% 
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Table 8 Continued. 

  
Inorganic N (lbs/ac)  Inorganic P (lbs/ac) 

Depth Sample Site Apr 2013 Oct 2013 Apr 2014 Oct 2014  Apr 2013 Oct 2013 Apr 2014 Oct 2014 
6-12" 1 7.6 18.6 3.6 1.0  22.9 2.6 2.1 0.8 

 
2 3.2 17.9 4.0 1.0  18.4 2.5 1.2 1.2 

 
3 7.7 12.1 3.2 1.7  18.8 2.2 2.0 0.8 

 
4 2.7 21.4 3.2 2.1  20.1 4.2 1.2 1.1 

 
5 3.0 18.3 5.9 1.5  17.5 4.3 1.2 0.8 

 
6 15.3 16.5 2.9 1.2  17.9 2.7 1.0 0.9 

 
7 5.6 19.8 2.5 1.2  17.7 43.2 1.0 0.7 

 
8 5.3 17.6 7.7 0.8  16.6 2.3 1.2 0.7 

 
9 5.1 15.2 2.2 1.1  16.8 3.1 1.2 0.7 

 
10 6.2 15.1 2.9 1.7  17.2 24.6 1.1 2.0 

 
Mean 6.2 17.3 3.8 1.3  18.4 9.2 1.3 1.0 

 
Max 15.3 21.4 7.7 2.1  22.9 43.2 2.1 2.0 

 
Min 2.7 12.1 2.2 0.8  16.6 2.2 1.0 0.7 

 Overall Change[a]    -78%     -95% 
[a] Overall change reflects the percent difference between Apr 2013 and Oct 2014 sample sets based on the mean. 
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Figure 15. Inorganic N in Bell County soil samples (a) 0 – 15.24 cm depth, and (b) 15.24 – 30.48 cm depth  
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Figure 16. Inorganic P in Bell County soil samples (a) 0 – 15.24 cm depth, and (b) 15.24 – 30.48 cm depth 
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Figure 17. Inorganic N in Brazos County soil samples (a) 0 – 15.24 cm depth, and (b) 15.24 – 30.48 cm depth 
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Figure 18. Inorganic P in Brazos County soil samples (a) 0 – 15.24 cm depth, and (b) 15.24 – 30.48 cm depth 
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Figure 19. Inorganic N in Robertson County soil samples (a) 0 – 15.24 cm depth, and (b) 15.24 – 30.48 cm depth 
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Figure 20. Inorganic P in Robertson County soil samples (a) 0 – 15.24 cm depth, and (b) 15.24 – 30.48 cm depth
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3.2.2  Discussion 

These results imply that once the VTA was established, the initial influx of 

nutrients was offset by the subsequent plant uptake.  This illustrates the importance of 

regular haying to remove nutrients from the system.  Figure 3 shows the plots of data 

from Oct 2013 to Oct 2014 to examine potential spatial trends in soil N and P 

accumulation, (data from April 2013 were not used because of an error relating sampling 

location to lab results).  The increase of N in Bell County VTA was found at a sampling 

location near the outlet of the farrowing crate drainage pipe.  There was a high input of 

solids in this area, which was likely the cause of the increase. 

There is typically more concern about the accumulation of P on land receiving 

manure because it tends to adsorb to soil particles while inorganic N is highly mobile 

and easily lost in surface runoff and percolate (Sharpley and Withers., 1994; Heathwaite 

et al., 1996).  There was some evidence of P accumulation at the top of the Bell County 

VTA where a large amount of solids were introduced but the final set of data shows an 

ultimate decrease.  The same area of high solids input also showed elevated N levels on 

one end of the distribution pipe.  Additional data might be expected to show increased N 

and P concentrations in the 15.24-30.48 cm depth samples due to vertical movement, but 

these increase have not yet been seen.  Continued monitoring will be important to ensure 

the VTA soils are not overloaded and become a source of potential groundwater 

contamination instead of a sink for nutrients in overland runoff (Hawkins et al., 1998).  
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4.  SUMMARY AND CONCLUSIONS 

 

 

 The purpose of this study was to evaluate the potential of minimally designed 

VTAs to reduce nutrient levels in runoff from swine facilities with small animal 

populations.  By increasing the treatment to contribution area ratios, the VTAs were able 

to overcome the lack of solids pretreatment which has previously been listed as one of 

the most important aspects of VTA design for facilities with much larger waste streams.  

Mean TN concentrations were reduced by 38% - 69%, and total loads were reduced by 

58% - 87% at all three sites (Table 9).  There was a decrease of 25%- 84% in TP 

concentrations and 50% - 62% in total TP load (Table 9).  The impact of runoff 

reduction was reflected in the consistently greater decrease of nutrient loads than 

concentrations.   

 

 

Table 9. Overall summary of water quality results 

County 
TN Reduction (%) TP Reduction (%) Total Runoff 

Reduction (%) Concentration[a] Load[a] Concentration[a] Load[a] 
Bell 69 87 84 95 55 

Brazos 73 79 45 50 19 
Robertson 38 58 25 62 35 

[a] Reductions are based on means for concentrations, and totals for loads. 
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This marked a substantial reduction within the VTA, especially when considering 

loads, but VTA runoff still tended to have significantly higher nutrient levels than the 

control site.  Bell County, the location with the solids management issue, was the only 

location to consistently show ideal results with most nutrient loads in VTA outflow 

being both significantly lower than the inflow and similar to the control site runoff.  The 

exception was NO3-N, which was typically the least decreased nutrient among all 

locations, similarly to past VTA research (Chaubey et al., 1994; Edwards et al., 1983).  

Though this research did not include any solids pretreatment, as most previous VTA 

studies recommend, these results still fall within the range of findings of those same 

studies (Koelsch et al., 2006; Chaubey et al., 1994; Barker and Young, 1984; Edwards et 

al., 1983).  This indicates that there may be slightly different VTA design and 

management guidelines for these small swine facilities with less than 100 animals that 

would be more appropriate for their conditions. 

Currently, there are approximately 560,000 hogs in production in Texas, and 

much like the national trend, that number has been on the decline for several years 

(USDA-NASS, 2014a).  Less than 1% of swine operations nationwide are similar in size 

to the facilities in this study (USDA-NASS, 2011).  In Texas, however, over 90% of hog 

farms have less than 100 animals (USDA-NASS, 2014b).  Therefore, this research is 

relevant in the quest to produce options for engaging more pork producers in the 

TSSWCB’s WQMP program.  The VTA recommendations generated from this research 

will fill a resource gap, but more research is still needed to develop the necessary design 

and management standards. 
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 Future inquiries into different design guidelines appropriate for very small 

operations would be beneficial.  Analyzing the data for seasonal variations in VTA 

effectiveness could also prove helpful in developing management and design guidelines.  

A more in depth study into the correlation of VTA efficiency and site characteristics 

such as soil type, vegetation, area ratios, slope, and number of animals could provide 

important guidelines for determining which hog AFOs would be suitable for waste 

management via VTA.  To that end, more VTA study sites (or at least several 

consecutive studies on various design elements at the same sites) would need to be 

established in order to create a large enough data set for appropriate statistical analysis.  

The development of other methods to create reasonable edge-of-field standards that are 

protective of water quality is also important.  This may require the use of modelling 

software to relate edge-of-field and surface water pollutant levels based on VTA and 

watershed characteristics.  By expanding the field of knowledge of their behavior on 

small hog farms and forming clear goals for their performance, the standalone VTA may 

be soundly established as an economical and practical waste management option for 

small swine operations across the state of Texas. 
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APPENDIX 

 
Table A-1. Actual flow intervals for sampler programs  

County Site 
actual flow interval area sampling interval 

(mm) (ac) (ft3) 
Bell VTA In 1.57 0.368 82.4 

 VTA Out 1.30 1.477 275.4 
 Control 1.24 1.175 207.5 

Brazos VTA In 1.54 0.086 18.9 
 VTA Out 1.68 0.392 94.3 
 Control 0.54 3.000 188.6 

Robertson VTA In 1.38 0.067 13.2 
 VTA Out 1.23 0.354 62.3 
 Control 1.33 0.386 73.6 
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Table A-2. Data for peak discharge calculations 
  Bell County Brazos County Robertson County 

  VTA In VTA Out Control VTA In VTA Out Control[f] VTA In VTA Out Control 
Rainfall Distribution Type[a] III III III III III III III III III 

Drainage area[b] (ac) 0.3 1.2 0.5 0.1 0.4 1.0 0.2 0.5 0.4 

Curve number 86 78 78 86 78 81 86 78 76 
Slope (%) 2.0 2.0 2.0 3.0 2.5 3.2 2.0 1.6 1.6 
Flow length (ft) 140 300 553 80 254 510 100 170 145 

Time of Concentration[c] (h) 0.07 0.15 0.25 0.03 0.12 0.17 0.05 0.12 0.14 

Initial abstraction[d] (in) 0.33 0.56 0.56 0.33 0.56 0.46 0.33 0.56 0.63 

Rainfall[e] (in) 7.8 7.8 7.8 8.8 8.8 8.8 8.4 8.4 8.4 
Calculated peak discharge 
(cfs) 2.9 8.8 3 1.1 3.9 6.0 1.9 2.4 2.3 

[a] Rainfall distribution type was based on geographic location and determined using Figure 2-1of the Engineering Field Handbook (USDA-SCS, 1984) 
[b] Drainage areas here may be slightly different than actual areas listed in body of text.  Discrepancies in area information were discovered after these 
calculations were done. 
[c] Time of concentration was calculated using equation within worksheet 
[d] Initial abstraction was determined, based on curve number, from Table 2-4 of the Engineering Field Handbook (USDA-SCS, 1984) 
[e] All rainfall amounts are for a 25-year, 24-hour storm 
[f] Brazos control site peak discharge was determined by Brazos County NRCS field office. 
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Figure A-1. Worksheet 2 from Engineering Field Handbook (USDA-SCS, 1984). 
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Table A-3. Shapiro-Wilk normality test p-values[a]    
 

runoff 
Concentrations Loads 

County NO3-N NH3-N PO4-P TN TP NO3-N NH3-N PO4-P TN TP 

Bell 1.61E-09 1.95E-09 1.30E-06 4.39E-06 2.82E-04 1.89E-09 1.95E-10 1.42E-11 2.97E-10 4.67E-09 4.71E-11 
Brazos 7.05E-10 2.02E-12 5.29E-11 1.96E-10 5.73E-09 1.87E-14 4.79E-14 6.12E-11 1.55E-12 3.18E-10 1.03E-14 

Robertson 5.71E-06 2.04E-05 5.56E-10 5.56E-06 1.03E-07 3.99E-06 2.27E-07 1.59E-07 1.23E-07 5.03E-05 8.18E-06 
[a] p < α (0.05) indicates data is not from a normal distribution 
 
 
 
Table A-4.  Hypothesis test p-values 

 
Wilcoxon rank-sum test p-value and Ho result[a]  Wilcoxon signed-rank test p-value and Ho result[a] 

Bell 
runoff Concentrations  Loads 

 
NO3-N NH3-N PO4-P TN TP  NO3-N NH3-N PO4-P TN TP 

in v. out 0.79(F) 0.35(F) 0.03(R) 0.00(R) 0.00(R) 0.01(R)  0.09(F) 0.18(F) 0.03(R) 0.02(R) 0.12(F) 
out v. ctrl 0.61(F) 0.05(F) 0.20(F) 0.02(R) 0.09(F) 0.30(F)  0.87(F) 0.42(F) 1.00(F) 0.30(F) 0.91(F) 
in v. ctrl 0.41(F) 1.00(F) 0.00(R) 0.00(R) 0.00(R) 0.00(R)  0.23(F) 0.00(R) 0.00(R) 0.00(R) 0.00(R) 

Brazos             
in v. out 0.27(F) 0.56(F) 0.00(R) 0.00(R) 0.00(R) 0.00(R)  0.47(F) 0.00(R) 0.00(R) 0.00(R) 0.00(R) 
out v. ctrl 0.02(R) 0.00(R) 0.00(R) 0.00(R) 0.00(R) 0.00(R)  0.00(R) 0.00(R) 0.00(R) 0.00(R) 0.00(F) 
in v. ctrl 0.00(R) 0.24(F) 0.00(R) 0.00(R) 0.00(R) 0.00(R)  0.00(R) 0.00(R) 0.00(R) 0.00(R) 0.00(R) 
Robertson             
in v. out 0.51(F) 0.97(F) 0.45(F) 0.21(F) 0.67(F) 0.83(F)  0.02(R) 0.06(F) 0.00(R) 0.02(R) 0.06(F) 
out v. ctrl 0.38(F) 0.51(F) 0.24(F) 0.04(R) 0.19(F) 0.19(F)  0.06(F) 1.00(F) 0.10(F) 0.10(F) 0.06(F) 
in v. ctrl 0.64(F) 0.31(F) 0.42(F) 0.07(F) 0.64(F) 0.11(F)  0.02(R) 0.06(F) 0.00(R) 0.01(R) 0.04(R) 

[a] (R): Reject Ho; (F): Fail to reject Ho for p < 0.05 



74#
#

Table A-5.  Bell County concentration data[a] 

 
[a] “n/a” indicates an error occurred in data collection and information was not included in analysis; “-“ indicates no sample was collected for the event 

rainfall
(in) VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control Bell,IN Bell,OUT Bell,CONT

1/9/2013 2.98 34.30 9.50 27.14 15.65 5.04 1.38 0.00 0.00 0.00 32.00 5.79 0.78 15.4 5.5 1.7 197.0 44.4 5.6
2/10/2013 1.64 6.38 0.00 13.96 17.95 C 1.96 0.00 C 0.00 22.06 C 0.81 15.2 C 2.7 152.0 C 5.7
3/10/2013 0.10 0.00 0.00 1.24 C C 0.75 C C 0.03 C C 0.48 C C 1.3 C C 4.9
5/16/2013 2.00 15.81 10.45 9.87 0.04 1.77 0.64 14.32 1.13 0.12 24.53 1.45 0.38 22.4 3.8 1.3 27.9 1.5 0.4
5/21/2013 1.41 0.00 6.52 7.37 C 1.84 0.60 C 0.85 0.44 C 1.43 0.57 C 3.6 1.8 C 1.5 0.6
7/14/2013 0.66 7.81 0.00 0.00 0.00 C C 10.81 C C 16.05 C C 16.5 C C 16.4 C C
10/13/2013 2.06 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/17/2013 0.89 6.16 0.00 0.00 2.55 C C 6.76 C C 8.00 C C 10.0 C C 10.2 C C
10/27/2013 1.24 6.29 0.00 6.21 0.00 C 0.32 5.88 C 0.30 16.25 C 0.60 12.8 C 1.3 18.7 C 0.7
10/31/2013 6.80 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
11/22/2013 0.91 1.57 0.00 3.77 0.05 C 0.36 4.71 C 0.16 12.18 C 0.77 6.09 C 1.4 246.08 C 22.6
4/6/2014 1.60 20.90 16.07 13.40 15.01 5.53 1.77 0.01 0.02 0.02 26.20 3.10 0.70 17.9 7.0 2.6 27.8 4.1 1.6
5/13/2014 2.55 4.70 1.30 2.43 0.60 2.86 0.59 6.98 1.12 0.26 16.04 3.40 0.80 11.2 6.3 2.3 18.5 3.8 0.9
5/27/2014 1.44 1.57 0.00 2.49 0.00 C 0.22 12.27 C 0.56 13.68 C 0.91 24.0 C 2.7 15.5 C 0.8
5/28/2014 0.31 1.57 0.00 1.24 0.00 C 0.01 11.68 C 0.53 14.22 C 1.02 18.7 C 2.3 18.9 C 0.9
6/10/2014 1.32 3.13 0.00 2.75 0.19 C 0.06 2.83 C 0.37 6.64 C 0.69 14.1 C 2.0 15.8 C 0.9
7/18/2014 2.44 12.54 7.80 4.93 2.48 0.28 0.12 4.21 0.15 0.00 9.14 1.53 0.61 10.8 1.6 1.3 12.0 1.8 0.6
10/13/2014 0.94 0.00 0.00 6.18 C C 0.19 C C 0.29 C C 0.80 C C 2.5 C C 1.3
11/6/2014 1.56 0.00 0.00 1.24 C C 0.79 C C 0.01 C C 8.83 C C 17.0 C C 12.5
max,= 6.80 34.30 16.07 27.14 17.95 5.53 1.96 14.32 1.13 0.56 32.00 5.79 8.83 24.0 7.0 17.0 246.1 44.4 22.6

min,= 0.10 0.00 0.00 0.00 0.00 0.28 0.01 0.00 0.00 0.00 6.64 1.43 0.38 6.1 1.6 1.3 10.2 1.5 0.4
mean,= 1.73 7.22 3.04 6.13 4.19 2.89 0.65 6.19 0.54 0.20 16.69 2.78 1.25 15.0 4.6 2.9 59.8 9.5 4.0
median,= 1.44 4.70 0.00 3.77 0.19 2.35 0.59 5.88 0.50 0.16 16.04 2.32 0.77 15.2 4.7 2.0 18.7 2.8 0.9

s,= 1.44 9.20 5.04 6.91 6.93 2.04 0.61 4.90 0.55 0.20 7.56 1.72 2.10 5.0 2.0 3.9 81.5 17.1 6.1
%CV,= 83.0 127.4 165.8 112.7 165.3 70.5 93.5 79.1 100.4 99.2 45.3 61.7 168.5 33.5 43.4 133.1 136.4 179.8 153.5
n,= 19 13 6 15

Percent,Reduction,based,on,mean

in,C,out out,C,ctrl in,C,ctrl in,C,out out,C,ctrl in,C,ctrl in,C,out out,C,ctrl in,C,ctrl in,C,out out,C,ctrl in,C,ctrl in,C,out out,C,ctrl in,C,ctrl in,C,out out,C,ctrl in,C,ctrl
58% C102% 15% 31% 78% 85% 91% 62% 97% 83% 55% 93% 69% 37% 80% 84% 58% 93%

Storm,Date
runoff,volume,(mm) NO3CN,(mg/L) NH4CN,(mg/L) PO4CP,(mg/L) TN,(mg/L) TP,(mg/L)

TP,(mg/L)runoff,volume,(mm) NO3CN,(mg/L) NH4CN,(mg/L) PO4CP,(mg/L) TN,(mg/L)



75#
#

Table A-6. Bell County load data 

 
[a] “n/a” indicates an error occurred in data collection and information was not included in analysis; “-“ indicates no sample was collected for the event 
  

rainfall
(in) VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control

1/9/2013 2.98 5.37 0.48 0.37 0.00 0.00 0.00 10.98 0.55 0.21 5.3 0.5 0.5 67.6 4.2 1.5
2/10/2013 1.64 1.15 0.00 0.27 0.00 0.00 0.00 1.41 0.00 0.11 1.0 0.0 0.4 9.7 0.0 0.8
3/10/2013 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.0 0.0 0.0 0.0 0.0 0.1
5/16/2013 2.00 0.01 0.18 0.06 2.26 0.12 0.01 3.88 0.15 0.04 3.5 0.4 0.1 4.4 0.2 0.0
5/21/2013 1.41 0.00 0.12 0.04 0.00 0.06 0.03 0.00 0.09 0.04 0.0 0.2 0.1 0.0 0.1 0.0
7/14/2013 0.66 0.00 0.00 0.00 0.84 0.00 0.00 1.25 0.00 0.00 1.3 0.0 0.0 1.3 0.0 0.0
10/13/2013 2.06 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/17/2013 0.89 0.16 0.00 0.00 0.42 0.00 0.00 0.49 0.00 0.00 0.6 0.0 0.0 0.6 0.0 0.0
10/27/2013 1.24 0.00 0.00 0.02 0.37 0.00 0.02 1.02 0.00 0.04 0.8 0.0 0.1 1.2 0.0 0.0
10/31/2013 6.80 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
11/22/2013 0.91 0.00 0.00 0.01 0.07 0.00 0.01 0.19 0.00 0.03 0.10 0.00 0.1 3.86 0.00 0.9
4/6/2014 1.60 3.14 0.89 0.24 0.00 0.00 0.00 5.48 0.50 0.09 3.8 1.1 0.3 5.8 0.7 0.2
5/13/2014 2.55 0.03 0.04 0.01 0.33 0.01 0.01 0.75 0.04 0.02 0.5 0.1 0.1 0.9 0.0 0.0
5/27/2014 1.44 0.00 0.00 0.01 0.19 0.00 0.01 0.21 0.00 0.02 0.4 0.0 0.1 0.2 0.0 0.0
5/28/2014 0.31 0.00 0.00 0.00 0.18 0.00 0.01 0.22 0.00 0.01 0.3 0.0 0.0 0.3 0.0 0.0
6/10/2014 1.32 0.01 0.00 0.00 0.09 0.00 0.01 0.21 0.00 0.02 0.4 0.0 0.1 0.5 0.0 0.0
7/18/2014 2.44 0.31 0.02 0.01 0.53 0.01 0.00 1.15 0.12 0.03 1.4 0.1 0.1 1.5 0.1 0.0
10/13/2014 0.94 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.05 0.0 0.0 0.2 0.0 0.0 0.1
11/6/2014 1.56 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.11 0.0 0.0 0.2 0.0 0.0 0.2
max,= 6.80 5.37 0.89 0.37 2.26 0.12 0.03 10.98 0.55 0.21 5.3 1.1 0.5 67.6 4.2 1.5
min,= 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
total,= 32.85 10.16 1.73 1.08 5.29 0.20 0.13 27.25 1.46 0.83 19.3 2.5 2.2 97.8 5.3 3.9
mean,= 1.73 0.60 0.10 0.06 0.31 0.01 0.01 1.60 0.09 0.05 1.1 0.1 0.1 5.8 0.3 0.2
median,= 1.44 0.00 0.00 0.01 0.09 0.00 0.01 0.49 0.00 0.03 0.5 0.0 0.1 0.9 0.0 0.0

s,= 1.44 1.46 0.24 0.11 0.56 0.03 0.01 2.84 0.17 0.05 1.6 0.3 0.1 16.1 1.0 0.4
%CV,= 83.0 244.0 232.0 179.4 179.1 256.5 123.8 177.0 200.9 111.7 136.7 203.4 106.2 280.6 325.2 184.3
n,= 19

Percent,Reduction,based,on,total

in,J,out out,J,ctrl in,J,ctrl in,J,out out,J,ctrl in,J,ctrl in,J,out out,J,ctrl in,J,ctrl in,J,out out,J,ctrl in,J,ctrl in,J,out out,J,ctrl in,J,ctrl
83% 37% 89% 96% 38% 98% 95% 43% 97% 87% 11% 88% 95% 27% 96%

Storm,Date
NO3JN,(kg/ha) NH4JN,(kg/ha) PO4JP,(kg/ha) TN,(kg/ha)

NO3JN,(kg/ha) NH4JN,(kg/ha) PO4JP,(kg/ha) TN,(kg/ha) TP,(kg/ha)

TP,(kg/ha)



76#
#

Table A-7. Brazos County concentration data 

#
[a] “n/a” indicates an error occurred in data collection and information was not included in analysis; “-“ indicates no sample was collected for the event 
 

rainfall
(in) VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control

1/9/2013 3.97 82.87 101.41 12.75 11.41 1.37 0.75 0.00 0.01 0.00 0.92 0.50 0.21 9.4 2.1 1.2 9.3 6.8 3.0
5/9/2013 2.64 10.76 1.68 0.00 3.06 0.03 ? 16.11 6.42 ? 12.11 3.23 ? 21.7 7.5 ? 14.7 3.8 ?
5/16/2013 0.19 33.80 22.09 2.20 0.00 1.02 0.34 46.10 15.70 0.21 33.66 7.99 0.60 30.8 15.9 1.5 28.7 9.0 0.7
5/21/2013 2.83 63.39 55.94 10.12 1.52 2.03 0.36 11.33 0.89 0.54 12.80 2.75 0.62 18.6 3.3 1.9 17.1 2.8 0.7
6/2/2013 1.02 6.10 3.39 0.00 14.48 0.27 ? 3.53 0.40 ? 7.37 0.97 ? 14.4 1.6 ? 7.7 1.2 ?
9/28/2013 4.65 106.62 57.23 12.54 11.31 1.42 0.54 11.05 0.74 0.14 7.91 1.07 0.28 19.1 4.6 1.3 10.4 2.1 0.3
10/13/2013 2.20 30.66 25.64 8.24 14.54 2.20 0.20 6.03 0.56 0.33 7.85 1.13 0.36 18.6 3.7 1.6 9.9 1.5 0.5
10/27/2013 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/31/2013 1.62 103.30 32.07 15.09 0.00 0.04 0.00 38.96 9.63 0.21 16.97 5.90 0.54 29.9 12.1 1.7 24.2 7.9 0.4
11/6/2013 1.05 7.72 10.11 8.98 0.00 0.35 0.00 79.00 5.54 0.33 17.79 4.23 0.57 31.9 9.2 2.1 25.2 5.7 0.4
11/22/2013 0.70 22.24 20.17 3.61 0.00 1.24 0.00 45.57 4.57 0.15 15.69 4.36 0.41 31.4 7.0 1.4 21.4 5.8 1.0
11/24/2013 0.27 0.00 6.73 1.50 ? 0.63 0.00 ? 3.19 0.03 ? 3.68 0.35 ? 5.7 1.5 ? 133.4 5.3
11/26/2013 1.11 35.49 35.35 7.32 0.38 0.73 0.00 42.23 8.88 0.05 9.33 3.74 0.37 28.7 10.0 1.0 452.5 303.9 63.5
1/10/2014 0.99 0.00 6.73 1.74 ? 17.20 0.93 ? 0.09 0.00 ? 2.99 0.38 ? 26.1 2.5 ? 4.7 0.5
3/9/2014 0.64 13.79 3.38 0.00 0.00 17.54 ? 79.97 2.59 ? 28.92 6.94 ? 98.1 31.4 ? 37.1 8.1 ?
5/13/2014 3.70 49.22 45.43 4.84 0.14 0.36 0.03 17.75 8.96 0.74 16.19 5.44 0.59 25.4 8.3 1.2 20.5 5.9 0.6
5/27/2014 1.93 18.46 1.68 3.96 0.00 0.00 0.05 33.67 1.14 0.17 17.34 1.76 0.39 43.5 6.2 3.2 21.0 3.4 0.4
5/28/2014 0.54 10.49 8.41 0.00 0.00 0.26 ? 40.87 3.44 ? 25.16 2.99 ? 48.4 6.9 ? 28.6 3.2 ?
6/10/2014 1.22 13.90 0.00 0.00 0.00 ? ? 35.36 ? ? 22.75 ? ? 49.8 ? ? 28.3 ? ?
6/26/2014 2.93 20.50 34.24 7.46 0.35 0.74 0.11 11.68 2.06 0.11 9.13 3.20 0.50 18.8 6.8 1.7 12.4 3.9 0.6
6/27/2014 ? 1.54 0.00 0.00 0.00 ? ? 68.80 ? ? 40.10 ? ? 75.7 ? ? 48.1 ? ?
7/18/2014 3.02 27.98 28.74 4.40 2.24 0.70 0.08 6.53 1.18 0.00 8.98 3.13 0.43 17.2 3.8 1.6 48.1 3.9 0.4
9/13/2014 2.60 13.90 6.88 0.88 3.66 0.1615 0.0518 4.29 0.0012 0.06 11.61 1.30 0.50 11.8 1.5 1.1 12.7 2.0 1.2
11/6/2014 3.16 1.54 8.47 2.64 34.96 8.99 2.17 41.60 0.17 0.03 115.75 26.16 4.73 117.2 35.0 24.1 113.0 29.6 6.8
max,= 4.65 106.62 101.41 15.09 34.96 17.54 2.17 79.97 15.70 0.74 115.75 26.16 4.73 117.2 35.0 24.1 452.5 303.9 63.5
min,= 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.50 0.21 9.4 1.5 1.0 7.7 1.2 0.3
mean,=, 1.95 29.32 22.43 4.71 4.67 2.73 0.33 30.50 3.63 0.18 20.87 4.45 0.69 36.2 9.9 3.0 47.2 26.1 5.1
median,= 1.78 18.46 10.11 3.61 0.35 0.73 0.08 33.67 2.06 0.14 15.69 3.20 0.43 28.7 6.9 1.6 21.4 4.7 0.6

s,= 1.29 31.52 24.70 4.71 8.59 5.23 0.55 24.70 4.20 0.20 23.74 5.35 1.05 28.5 9.5 5.5 95.6 69.7 15.2
%CV,= 66.0 107.5 110.2 100.0 183.9 191.6 167.8 81.0 115.7 112.8 113.7 120.3 150.4 78.6 95.7 183.7 202.7 266.9 298.9
n,= 22 21 21 17

Percent,Reduction,based,on,mean

in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl
24% 79% 84% 42% 88% 93% 88% 95% 99% 79% 84% 97% 73% 70% 92% 45% 81% 89%

Storm,Date
runoff,volume,(mm) NO3?N,(mg/L) NH4?N,(mg/L) PO4?P,(mg/L)

runoff,volume,(mm)

TP,(mg/L)

NO3?N,(mg/L) NH4?N,(mg/L) PO4?P,(mg/L) TN,(mg/L) TP,(mg/L)

TN,(mg/L)



77#
#

Table A-8.  Brazos County load data 

 
[a] “n/a” indicates an error occurred in data collection and information was not included in analysis; “-“ indicates no sample was collected for the event 
 
  

rainfall
(in) VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control

1/9/2013 3.97 9.45 1.38 0.10 0.00 0.01 0.00 0.76 0.51 0.03 7.8 2.1 0.1 7.7 6.9 0.4

5/9/2013 2.64 0.33 0.00 0.00 1.73 0.11 0.00 1.30 0.05 0.00 2.3 0.1 0.0 1.6 0.1 0.0
5/16/2013 0.19 0.00 0.22 0.01 15.58 3.47 0.00 11.38 1.76 0.01 10.4 3.5 0.0 9.7 2.0 0.0
5/21/2013 2.83 0.96 1.13 0.04 7.18 0.50 0.05 8.11 1.54 0.06 11.8 1.8 0.2 10.8 1.6 0.1
6/2/2013 1.02 0.88 0.01 0.00 0.22 0.01 0.00 0.45 0.03 0.00 0.9 0.1 0.0 0.5 0.0 0.0
9/28/2013 4.65 12.06 0.81 0.07 11.78 0.42 0.02 8.43 0.61 0.04 20.3 2.7 0.2 11.1 1.2 0.0
10/13/2013 2.20 4.46 0.56 0.02 1.85 0.14 0.03 2.41 0.29 0.03 5.7 0.9 0.1 3.0 0.4 0.0
10/27/2013 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/31/2013 1.62 0.00 0.01 0.00 40.25 3.09 0.03 17.53 1.89 0.08 30.9 3.9 0.3 25.0 2.5 0.1
11/6/2013 1.05 0.00 0.04 0.00 6.10 0.56 0.03 1.37 0.43 0.05 2.5 0.9 0.2 1.9 0.6 0.0
11/22/2013 0.70 0.00 0.25 0.00 10.13 0.92 0.01 3.49 0.88 0.01 7.0 1.4 0.1 4.8 1.2 0.0
11/24/2013 0.27 0.00 0.04 0.00 0.00 0.21 0.00 0.00 0.25 0.01 0.00 0.39 0.02 0.00 8.98 0.08
11/26/2013 1.11 0.13 0.26 0.00 14.99 3.14 0.00 3.31 1.32 0.03 10.2 3.5 0.1 160.6 107.4 4.7
1/10/2014 0.99 0.00 1.16 0.02 0.00 0.01 0.00 0.00 0.20 0.01 0.0 1.8 0.0 0.0 0.3 0.0
3/9/2014 0.64 0.00 0.59 0.00 11.03 0.09 0.00 3.99 0.23 0.00 13.5 1.1 0.0 5.1 0.3 0.0
5/13/2014 3.70 0.07 0.16 0.00 8.74 4.07 0.04 7.97 2.47 0.03 12.5 3.8 0.1 10.1 2.7 0.0
5/27/2014 1.93 0.00 0.00 0.00 6.22 0.02 0.01 3.20 0.03 0.02 8.0 0.1 0.1 3.9 0.1 0.0
5/28/2014 0.54 0.00 0.02 0.00 4.29 0.29 0.00 2.64 0.25 0.00 5.1 0.6 0.0 3.0 0.3 0.0
6/10/2014 1.22 0.00 0.00 0.00 4.92 0.00 0.00 3.16 0.00 0.00 6.9 0.0 0.0 3.9 0.0 0.0
6/26/2014 2.93 0.07 0.25 0.01 2.39 0.71 0.01 1.87 1.10 0.04 3.9 2.3 0.1 2.5 1.3 0.0
6/27/2014 ? 0.00 0.00 0.00 1.06 0.00 0.00 0.62 0.00 0.00 1.2 0.0 0.0 0.7 0.0 0.0
7/18/2014 3.02 0.63 0.20 0.00 1.83 0.34 0.00 2.51 0.90 0.02 4.8 1.1 0.1 13.5 1.1 0.0
9/13/2014 2.60 0.51 0.01 0.00 0.60 0.00 0.00 1.61 0.09 0.00 1.6 0.1 0.0 1.8 0.1 0.0
11/6/2014 3.16 0.54 0.76 0.06 0.64 0.01 0.00 1.78 2.21 0.12 1.8 3.0 0.6 1.7 2.5 0.2

max,= 4.65 12.06 1.38 0.10 40.25 4.07 0.05 17.53 2.47 0.12 30.9 3.9 0.6 160.6 107.4 4.7

min,= 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
total,= 42.98 30.09 7.89 0.31 151.52 18.12 0.23 87.91 17.06 0.58 169.1 35.2 2.3 283.0 141.5 5.7
mean,= 1.95 1.31 0.34 0.01 6.59 0.79 0.01 3.82 0.74 0.03 7.4 1.5 0.1 12.3 6.2 0.2
median,= 1.78 0.07 0.20 0.00 4.29 0.21 0.00 2.51 0.43 0.02 5.7 1.1 0.1 3.9 1.1 0.0

s,= 1.29 3.15 0.43 0.03 8.83 1.28 0.02 4.23 0.77 0.03 7.2 1.3 0.1 32.8 22.2 1.0
%CV,= 66.0 240.6 125.2 190.5 134.1 162.5 155.3 110.7 104.0 121.3 98.5 87.2 136.8 267.0 360.7 387.7
n,= 22

Percent,Reduction,based,on,total

in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl
74% 96% 99% 88% 99% 100% 81% 97% 99% 79% 93% 99% 50% 96% 98%

TP,(kg/ha)
Storm,Date

NO3?N,(kg/ha) NH4?N,(kg/ha) PO4?P,(kg/ha) TN,(kg/ha)

NO3?N,(kg/ha) NH4?N,(kg/ha) PO4?P,(kg/ha) TN,(kg/ha) TP,(kg/ha)



78#
#

Table A-9.  Robertson County concentration data 

 
[a] “n/a” indicates an error occurred in data collection and information was not included in analysis; “-“ indicates no sample was collected for the event 
  

rainfall
(in) VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control

1/9/2013 3.16 9.22 15.76 0.00 1.44 0.42 > 0.00 0.00 > 0.51 0.13 > 1.4 0.8 > 4.4 2.7 >
3/10/2013 1.62 4.02 2.67 1.32 1.30 0.42 0.03 0.00 0.03 0.84 0.75 0.15 0.05 1.5 0.9 1.3 6.6 2.0 0.8
4/3/2013 2.67 17.12 3.64 0.00 0.92 0.43 > 0.00 0.00 > 0.32 0.08 > 1.1 0.9 > 3.5 1.6 >
5/9/2013 2.63 46.10 35.70 17.15 1.33 0.59 0.72 0.83 0.48 0.04 1.38 0.87 0.06 2.8 2.0 1.5 1.7 1.0 0.3
5/16/2013 1.53 6.62 4.93 0.00 0.23 0.01 > 10.34 0.23 > 2.10 0.16 > 8.9 1.2 > 2.2 0.1 >
5/21/2013 2.03 40.29 27.11 2.63 1.08 0.49 0.12 0.35 0.01 2.56 0.43 0.17 0.15 1.6 1.5 6.0 0.6 0.3 0.0
6/2/2013 0.99 2.72 0.00 0.00 0.12 > > 0.06 > > 0.00 > > 0.3 > > 0.0 > >
7/14/2013 0.86 3.60 0.00 0.00 0.13 > > 0.11 > > 0.18 > > 1.9 > > 0.3 > >
9/28/2013 1.36 13.21 0.00 0.00 0.03 > > 0.05 > > 0.19 > > 0.3 > > 0.2 > >
10/13/2013 > n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/27/2013 > n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/31/2013 > n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
11/22/2013 > 1.32 0.00 0.00 0.03 > > 0.16 > > 0.34 > > 1.3 > > 0.1 > >
5/27/2014 2.36 1.32 0.00 0.00 0.30 > > 0.11 > > 0.61 > > 1.9 > > 1.0 > >
5/28/2014 > n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
6/10/2014 1.70 3.92 0.00 0.00 0.27 > > 1.55 > > 1.11 > > 3.2 > > 0.9 > >
9/19/2014 1.88 1.32 0.00 0.00 0.00 > > 0.01 > > 0.40 > > 0.7 > > 1.1 > >
10/13/2014 1.21 1.32 0.00 0.00 0.06 > > 0.05 > > 0.60 > > 0.8 > > 1.1 > >
max,= 3.16 46.10 35.70 17.15 1.44 0.59 0.72 10.34 0.48 2.56 2.10 0.87 0.15 8.9 2.0 6.0 6.6 2.7 0.8
min,= 0.86 1.32 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.04 0.00 0.08 0.05 0.3 0.8 1.3 0.0 0.1 0.0
mean,= 1.85 10.86 6.42 1.51 0.52 0.39 0.29 0.97 0.12 1.14 0.64 0.26 0.08 2.0 1.2 2.9 1.7 1.3 0.3
median,= 1.70 3.97 0.00 0.00 0.25 0.42 0.12 0.08 0.02 0.84 0.47 0.15 0.06 1.4 1.1 1.5 1.0 1.3 0.3

s,= 0.70 14.55 11.52 4.56 0.56 0.20 0.38 2.73 0.20 1.29 0.56 0.30 0.05 2.2 0.5 2.7 1.9 1.0 0.4
%CV,= 37.8 133.9 179.6 302.9 108.0 50.5 131.6 280.9 157.8 112.6 87.6 116.0 64.7 109.6 37.3 92.7 113.8 79.0 109.4
n,= 13 14 14 14 14 6 3

Percent,Reduction,based,on,mean

in,>,out out,>,ctrl in,>,ctrl in,>,out out,>,ctrl in,>,ctrl in,>,out out,>,ctrl in,>,ctrl in,>,out out,>,ctrl in,>,ctrl in,>,out out,>,ctrl in,>,ctrl in,>,out out,>,ctrl in,>,ctrl
41% 77% 86% 24% 27% 45% 87% >825% >18% 59% 68% 87% 38% >139% >47% 25% 73% 79%

Storm,Date
runoff,volume,(mm) NO3>N,(mg/L) NH4>N,(mg/L) PO4>P,(mg/L) TP,(mg/L)

runoff,volume,(mm) NO3>N,(mg/L) NH4>N,(mg/L) PO4>P,(mg/L) TN,(mg/L) TP,(mg/L)

TN,(mg/L)



79#
#

Table A-10. Robertson County load data 

 
[a] “n/a” indicates an error occurred in data collection and information was not included in analysis; “-“ indicates no sample was collected for the event 

rainfall
(in) VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control VTA,In VTA,Out Control

1/9/2013 3.16 0.13 0.07 0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.1 0.1 0.0 0.4 0.4 0.0
3/10/2013 1.62 0.05 0.01 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.1 0.0 0.0 0.3 0.1 0.0
4/3/2013 2.67 0.16 0.02 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.2 0.0 0.0 0.6 0.1 0.0
5/9/2013 2.63 0.61 0.21 0.12 0.38 0.17 0.01 0.63 0.31 0.01 1.3 0.7 0.2 0.8 0.3 0.0
5/16/2013 1.53 0.02 0.00 0.00 0.68 0.01 0.00 0.14 0.01 0.00 0.6 0.1 0.0 0.1 0.0 0.0
5/21/2013 2.03 0.43 0.13 0.00 0.14 0.00 0.07 0.17 0.05 0.00 0.7 0.4 0.2 0.2 0.1 0.0
6/2/2013 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
7/14/2013 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.1 0.0 0.0 0.0 0.0 0.0
9/28/2013 1.36 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
10/13/2013 ? n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/27/2013 ? n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
10/31/2013 ? n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
11/22/2013 ? 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
5/27/2014 2.36 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
5/28/2014 ? n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
6/10/2014 1.70 0.01 0.00 0.00 0.06 0.00 0.00 0.04 0.00 0.00 0.1 0.0 0.0 0.0 0.0 0.0
9/19/2014 1.88 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
10/13/2014 1.21 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
max,= 3.16 0.61 0.21 0.12 0.68 0.17 0.07 0.63 0.31 0.01 1.3 0.7 0.2 0.8 0.4 0.0
min,= 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0
total,= 24.00 1.43 0.43 0.13 1.28 0.19 0.08 1.18 0.39 0.01 3.2 1.4 0.4 2.5 1.0 0.1
mean,= 1.85 0.10 0.03 0.01 0.09 0.01 0.01 0.08 0.03 0.00 0.2 0.1 0.0 0.2 0.1 0.0
median,= 1.70 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.1 0.0 0.0 0.0 0.0 0.0

s,= 0.70 0.19 0.06 0.03 0.20 0.05 0.02 0.17 0.08 0.00 0.4 0.2 0.1 0.2 0.1 0.0
%CV,= 37.8 184.5 204.6 363.5 218.3 343.5 297.4 198.1 294.3 271.1 161.6 214.9 249.9 137.6 200.2 306.8
n,= 13

Percent,Reduction,based,on,total

in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl in,?,out out,?,ctrl in,?,ctrl
70% 71% 91% 85% 55% 93% 67% 96% 99% 58% 69% 87% 62% 94% 98%

Storm,Date
NO3?N,(kg/ha) NH4?N,(kg/ha) PO4?P,(kg/ha) TN,(kg/ha)

NO3?N,(kg/ha) NH4?N,(kg/ha) PO4?P,(kg/ha) TN,(kg/ha) TP,(kg/ha)

TP,(kg/ha)




